runtime: copy cpuprof code from Go 1.7 runtime
[official-gcc.git] / libgo / go / runtime / cpuprof.go
blob873276f3639be8355ec16a0b8591c96b381d1141
1 // Copyright 2011 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // CPU profiling.
6 // Based on algorithms and data structures used in
7 // http://code.google.com/p/google-perftools/.
8 //
9 // The main difference between this code and the google-perftools
10 // code is that this code is written to allow copying the profile data
11 // to an arbitrary io.Writer, while the google-perftools code always
12 // writes to an operating system file.
14 // The signal handler for the profiling clock tick adds a new stack trace
15 // to a hash table tracking counts for recent traces. Most clock ticks
16 // hit in the cache. In the event of a cache miss, an entry must be
17 // evicted from the hash table, copied to a log that will eventually be
18 // written as profile data. The google-perftools code flushed the
19 // log itself during the signal handler. This code cannot do that, because
20 // the io.Writer might block or need system calls or locks that are not
21 // safe to use from within the signal handler. Instead, we split the log
22 // into two halves and let the signal handler fill one half while a goroutine
23 // is writing out the other half. When the signal handler fills its half, it
24 // offers to swap with the goroutine. If the writer is not done with its half,
25 // we lose the stack trace for this clock tick (and record that loss).
26 // The goroutine interacts with the signal handler by calling getprofile() to
27 // get the next log piece to write, implicitly handing back the last log
28 // piece it obtained.
30 // The state of this dance between the signal handler and the goroutine
31 // is encoded in the Profile.handoff field. If handoff == 0, then the goroutine
32 // is not using either log half and is waiting (or will soon be waiting) for
33 // a new piece by calling notesleep(&p.wait). If the signal handler
34 // changes handoff from 0 to non-zero, it must call notewakeup(&p.wait)
35 // to wake the goroutine. The value indicates the number of entries in the
36 // log half being handed off. The goroutine leaves the non-zero value in
37 // place until it has finished processing the log half and then flips the number
38 // back to zero. Setting the high bit in handoff means that the profiling is over,
39 // and the goroutine is now in charge of flushing the data left in the hash table
40 // to the log and returning that data.
42 // The handoff field is manipulated using atomic operations.
43 // For the most part, the manipulation of handoff is orderly: if handoff == 0
44 // then the signal handler owns it and can change it to non-zero.
45 // If handoff != 0 then the goroutine owns it and can change it to zero.
46 // If that were the end of the story then we would not need to manipulate
47 // handoff using atomic operations. The operations are needed, however,
48 // in order to let the log closer set the high bit to indicate "EOF" safely
49 // in the situation when normally the goroutine "owns" handoff.
51 package runtime
53 import (
54 "runtime/internal/atomic"
55 "unsafe"
58 const (
59 numBuckets = 1 << 10
60 logSize = 1 << 17
61 assoc = 4
62 maxCPUProfStack = 64
65 type cpuprofEntry struct {
66 count uintptr
67 depth int
68 stack [maxCPUProfStack]uintptr
71 type cpuProfile struct {
72 on bool // profiling is on
73 wait note // goroutine waits here
74 count uintptr // tick count
75 evicts uintptr // eviction count
76 lost uintptr // lost ticks that need to be logged
78 // Active recent stack traces.
79 hash [numBuckets]struct {
80 entry [assoc]cpuprofEntry
83 // Log of traces evicted from hash.
84 // Signal handler has filled log[toggle][:nlog].
85 // Goroutine is writing log[1-toggle][:handoff].
86 log [2][logSize / 2]uintptr
87 nlog int
88 toggle int32
89 handoff uint32
91 // Writer state.
92 // Writer maintains its own toggle to avoid races
93 // looking at signal handler's toggle.
94 wtoggle uint32
95 wholding bool // holding & need to release a log half
96 flushing bool // flushing hash table - profile is over
97 eodSent bool // special end-of-data record sent; => flushing
100 var (
101 cpuprofLock mutex
102 cpuprof *cpuProfile
104 eod = [3]uintptr{0, 1, 0}
107 func setcpuprofilerate(hz int32) {
108 systemstack(func() {
109 setcpuprofilerate_m(hz)
113 // lostProfileData is a no-op function used in profiles
114 // to mark the number of profiling stack traces that were
115 // discarded due to slow data writers.
116 func lostProfileData() {}
118 // SetCPUProfileRate sets the CPU profiling rate to hz samples per second.
119 // If hz <= 0, SetCPUProfileRate turns off profiling.
120 // If the profiler is on, the rate cannot be changed without first turning it off.
122 // Most clients should use the runtime/pprof package or
123 // the testing package's -test.cpuprofile flag instead of calling
124 // SetCPUProfileRate directly.
125 func SetCPUProfileRate(hz int) {
126 // Clamp hz to something reasonable.
127 if hz < 0 {
128 hz = 0
130 if hz > 1000000 {
131 hz = 1000000
134 lock(&cpuprofLock)
135 if hz > 0 {
136 if cpuprof == nil {
137 cpuprof = (*cpuProfile)(sysAlloc(unsafe.Sizeof(cpuProfile{}), &memstats.other_sys))
138 if cpuprof == nil {
139 print("runtime: cpu profiling cannot allocate memory\n")
140 unlock(&cpuprofLock)
141 return
144 if cpuprof.on || cpuprof.handoff != 0 {
145 print("runtime: cannot set cpu profile rate until previous profile has finished.\n")
146 unlock(&cpuprofLock)
147 return
150 cpuprof.on = true
151 // pprof binary header format.
152 // https://github.com/gperftools/gperftools/blob/master/src/profiledata.cc#L119
153 p := &cpuprof.log[0]
154 p[0] = 0 // count for header
155 p[1] = 3 // depth for header
156 p[2] = 0 // version number
157 p[3] = uintptr(1e6 / hz) // period (microseconds)
158 p[4] = 0
159 cpuprof.nlog = 5
160 cpuprof.toggle = 0
161 cpuprof.wholding = false
162 cpuprof.wtoggle = 0
163 cpuprof.flushing = false
164 cpuprof.eodSent = false
165 noteclear(&cpuprof.wait)
167 setcpuprofilerate(int32(hz))
168 } else if cpuprof != nil && cpuprof.on {
169 setcpuprofilerate(0)
170 cpuprof.on = false
172 // Now add is not running anymore, and getprofile owns the entire log.
173 // Set the high bit in cpuprof.handoff to tell getprofile.
174 for {
175 n := cpuprof.handoff
176 if n&0x80000000 != 0 {
177 print("runtime: setcpuprofile(off) twice\n")
179 if atomic.Cas(&cpuprof.handoff, n, n|0x80000000) {
180 if n == 0 {
181 // we did the transition from 0 -> nonzero so we wake getprofile
182 notewakeup(&cpuprof.wait)
184 break
188 unlock(&cpuprofLock)
191 // add adds the stack trace to the profile.
192 // It is called from signal handlers and other limited environments
193 // and cannot allocate memory or acquire locks that might be
194 // held at the time of the signal, nor can it use substantial amounts
195 // of stack. It is allowed to call evict.
196 //go:nowritebarrierrec
197 func (p *cpuProfile) add(pc []uintptr) {
198 p.addWithFlushlog(pc, p.flushlog)
201 // addWithFlushlog implements add and addNonGo.
202 // It is called from signal handlers and other limited environments
203 // and cannot allocate memory or acquire locks that might be
204 // held at the time of the signal, nor can it use substantial amounts
205 // of stack. It may be called by a signal handler with no g or m.
206 // It is allowed to call evict, passing the flushlog parameter.
207 //go:nosplit
208 //go:nowritebarrierrec
209 func (p *cpuProfile) addWithFlushlog(pc []uintptr, flushlog func() bool) {
210 if len(pc) > maxCPUProfStack {
211 pc = pc[:maxCPUProfStack]
214 // Compute hash.
215 h := uintptr(0)
216 for _, x := range pc {
217 h = h<<8 | (h >> (8 * (unsafe.Sizeof(h) - 1)))
218 h += x * 41
220 p.count++
222 // Add to entry count if already present in table.
223 b := &p.hash[h%numBuckets]
224 Assoc:
225 for i := range b.entry {
226 e := &b.entry[i]
227 if e.depth != len(pc) {
228 continue
230 for j := range pc {
231 if e.stack[j] != pc[j] {
232 continue Assoc
235 e.count++
236 return
239 // Evict entry with smallest count.
240 var e *cpuprofEntry
241 for i := range b.entry {
242 if e == nil || b.entry[i].count < e.count {
243 e = &b.entry[i]
246 if e.count > 0 {
247 if !p.evict(e, flushlog) {
248 // Could not evict entry. Record lost stack.
249 p.lost++
250 return
252 p.evicts++
255 // Reuse the newly evicted entry.
256 e.depth = len(pc)
257 e.count = 1
258 copy(e.stack[:], pc)
261 // evict copies the given entry's data into the log, so that
262 // the entry can be reused. evict is called from add, which
263 // is called from the profiling signal handler, so it must not
264 // allocate memory or block, and it may be called with no g or m.
265 // It is safe to call flushlog. evict returns true if the entry was
266 // copied to the log, false if there was no room available.
267 //go:nosplit
268 //go:nowritebarrierrec
269 func (p *cpuProfile) evict(e *cpuprofEntry, flushlog func() bool) bool {
270 d := e.depth
271 nslot := d + 2
272 log := &p.log[p.toggle]
273 if p.nlog+nslot > len(log) {
274 if !flushlog() {
275 return false
277 log = &p.log[p.toggle]
280 q := p.nlog
281 log[q] = e.count
283 log[q] = uintptr(d)
285 copy(log[q:], e.stack[:d])
286 q += d
287 p.nlog = q
288 e.count = 0
289 return true
292 // flushlog tries to flush the current log and switch to the other one.
293 // flushlog is called from evict, called from add, called from the signal handler,
294 // so it cannot allocate memory or block. It can try to swap logs with
295 // the writing goroutine, as explained in the comment at the top of this file.
296 //go:nowritebarrierrec
297 func (p *cpuProfile) flushlog() bool {
298 if !atomic.Cas(&p.handoff, 0, uint32(p.nlog)) {
299 return false
301 notewakeup(&p.wait)
303 p.toggle = 1 - p.toggle
304 log := &p.log[p.toggle]
305 q := 0
306 if p.lost > 0 {
307 lostPC := funcPC(lostProfileData)
308 log[0] = p.lost
309 log[1] = 1
310 log[2] = lostPC
311 q = 3
312 p.lost = 0
314 p.nlog = q
315 return true
318 // addNonGo is like add, but runs on a non-Go thread.
319 // It can't do anything that might need a g or an m.
320 // With this entry point, we don't try to flush the log when evicting an
321 // old entry. Instead, we just drop the stack trace if we're out of space.
322 //go:nosplit
323 //go:nowritebarrierrec
324 func (p *cpuProfile) addNonGo(pc []uintptr) {
325 p.addWithFlushlog(pc, func() bool { return false })
328 // getprofile blocks until the next block of profiling data is available
329 // and returns it as a []byte. It is called from the writing goroutine.
330 func (p *cpuProfile) getprofile() []byte {
331 if p == nil {
332 return nil
335 if p.wholding {
336 // Release previous log to signal handling side.
337 // Loop because we are racing against SetCPUProfileRate(0).
338 for {
339 n := p.handoff
340 if n == 0 {
341 print("runtime: phase error during cpu profile handoff\n")
342 return nil
344 if n&0x80000000 != 0 {
345 p.wtoggle = 1 - p.wtoggle
346 p.wholding = false
347 p.flushing = true
348 goto Flush
350 if atomic.Cas(&p.handoff, n, 0) {
351 break
354 p.wtoggle = 1 - p.wtoggle
355 p.wholding = false
358 if p.flushing {
359 goto Flush
362 if !p.on && p.handoff == 0 {
363 return nil
366 // Wait for new log.
367 notetsleepg(&p.wait, -1)
368 noteclear(&p.wait)
370 switch n := p.handoff; {
371 case n == 0:
372 print("runtime: phase error during cpu profile wait\n")
373 return nil
374 case n == 0x80000000:
375 p.flushing = true
376 goto Flush
377 default:
378 n &^= 0x80000000
380 // Return new log to caller.
381 p.wholding = true
383 return uintptrBytes(p.log[p.wtoggle][:n])
386 // In flush mode.
387 // Add is no longer being called. We own the log.
388 // Also, p.handoff is non-zero, so flushlog will return false.
389 // Evict the hash table into the log and return it.
390 Flush:
391 for i := range p.hash {
392 b := &p.hash[i]
393 for j := range b.entry {
394 e := &b.entry[j]
395 if e.count > 0 && !p.evict(e, p.flushlog) {
396 // Filled the log. Stop the loop and return what we've got.
397 break Flush
402 // Return pending log data.
403 if p.nlog > 0 {
404 // Note that we're using toggle now, not wtoggle,
405 // because we're working on the log directly.
406 n := p.nlog
407 p.nlog = 0
408 return uintptrBytes(p.log[p.toggle][:n])
411 // Made it through the table without finding anything to log.
412 if !p.eodSent {
413 // We may not have space to append this to the partial log buf,
414 // so we always return a new slice for the end-of-data marker.
415 p.eodSent = true
416 return uintptrBytes(eod[:])
419 // Finally done. Clean up and return nil.
420 p.flushing = false
421 if !atomic.Cas(&p.handoff, p.handoff, 0) {
422 print("runtime: profile flush racing with something\n")
424 return nil
427 func uintptrBytes(p []uintptr) (ret []byte) {
428 pp := (*slice)(unsafe.Pointer(&p))
429 rp := (*slice)(unsafe.Pointer(&ret))
431 rp.array = pp.array
432 rp.len = pp.len * int(unsafe.Sizeof(p[0]))
433 rp.cap = rp.len
435 return
438 // CPUProfile returns the next chunk of binary CPU profiling stack trace data,
439 // blocking until data is available. If profiling is turned off and all the profile
440 // data accumulated while it was on has been returned, CPUProfile returns nil.
441 // The caller must save the returned data before calling CPUProfile again.
443 // Most clients should use the runtime/pprof package or
444 // the testing package's -test.cpuprofile flag instead of calling
445 // CPUProfile directly.
446 func CPUProfile() []byte {
447 return cpuprof.getprofile()
450 //go:linkname runtime_pprof_runtime_cyclesPerSecond runtime_pprof.runtime_cyclesPerSecond
451 func runtime_pprof_runtime_cyclesPerSecond() int64 {
452 return tickspersecond()