2010-11-11 Jakub Jelinek <jakub@redhat.com>
[official-gcc.git] / gcc / tree-cfg.c
blob0745a681347a09327091dd99b1c1eb919b678ef3
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "toplev.h"
42 #include "except.h"
43 #include "cfgloop.h"
44 #include "cfglayout.h"
45 #include "tree-ssa-propagate.h"
46 #include "value-prof.h"
47 #include "pointer-set.h"
48 #include "tree-inline.h"
50 /* This file contains functions for building the Control Flow Graph (CFG)
51 for a function tree. */
53 /* Local declarations. */
55 /* Initial capacity for the basic block array. */
56 static const int initial_cfg_capacity = 20;
58 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
59 which use a particular edge. The CASE_LABEL_EXPRs are chained together
60 via their TREE_CHAIN field, which we clear after we're done with the
61 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
63 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
64 update the case vector in response to edge redirections.
66 Right now this table is set up and torn down at key points in the
67 compilation process. It would be nice if we could make the table
68 more persistent. The key is getting notification of changes to
69 the CFG (particularly edge removal, creation and redirection). */
71 static struct pointer_map_t *edge_to_cases;
73 /* If we record edge_to_cases, this bitmap will hold indexes
74 of basic blocks that end in a GIMPLE_SWITCH which we touched
75 due to edge manipulations. */
77 static bitmap touched_switch_bbs;
79 /* CFG statistics. */
80 struct cfg_stats_d
82 long num_merged_labels;
85 static struct cfg_stats_d cfg_stats;
87 /* Nonzero if we found a computed goto while building basic blocks. */
88 static bool found_computed_goto;
90 /* Hash table to store last discriminator assigned for each locus. */
91 struct locus_discrim_map
93 location_t locus;
94 int discriminator;
96 static htab_t discriminator_per_locus;
98 /* Basic blocks and flowgraphs. */
99 static void make_blocks (gimple_seq);
100 static void factor_computed_gotos (void);
102 /* Edges. */
103 static void make_edges (void);
104 static void make_cond_expr_edges (basic_block);
105 static void make_gimple_switch_edges (basic_block);
106 static void make_goto_expr_edges (basic_block);
107 static void make_gimple_asm_edges (basic_block);
108 static unsigned int locus_map_hash (const void *);
109 static int locus_map_eq (const void *, const void *);
110 static void assign_discriminator (location_t, basic_block);
111 static edge gimple_redirect_edge_and_branch (edge, basic_block);
112 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
113 static unsigned int split_critical_edges (void);
115 /* Various helpers. */
116 static inline bool stmt_starts_bb_p (gimple, gimple);
117 static int gimple_verify_flow_info (void);
118 static void gimple_make_forwarder_block (edge);
119 static void gimple_cfg2vcg (FILE *);
120 static gimple first_non_label_stmt (basic_block);
122 /* Flowgraph optimization and cleanup. */
123 static void gimple_merge_blocks (basic_block, basic_block);
124 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
125 static void remove_bb (basic_block);
126 static edge find_taken_edge_computed_goto (basic_block, tree);
127 static edge find_taken_edge_cond_expr (basic_block, tree);
128 static edge find_taken_edge_switch_expr (basic_block, tree);
129 static tree find_case_label_for_value (gimple, tree);
130 static void group_case_labels_stmt (gimple);
132 void
133 init_empty_tree_cfg_for_function (struct function *fn)
135 /* Initialize the basic block array. */
136 init_flow (fn);
137 profile_status_for_function (fn) = PROFILE_ABSENT;
138 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
139 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
140 basic_block_info_for_function (fn)
141 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
142 VEC_safe_grow_cleared (basic_block, gc,
143 basic_block_info_for_function (fn),
144 initial_cfg_capacity);
146 /* Build a mapping of labels to their associated blocks. */
147 label_to_block_map_for_function (fn)
148 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
149 VEC_safe_grow_cleared (basic_block, gc,
150 label_to_block_map_for_function (fn),
151 initial_cfg_capacity);
153 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
154 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
155 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
156 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
158 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
159 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
160 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
161 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
164 void
165 init_empty_tree_cfg (void)
167 init_empty_tree_cfg_for_function (cfun);
170 /*---------------------------------------------------------------------------
171 Create basic blocks
172 ---------------------------------------------------------------------------*/
174 /* Entry point to the CFG builder for trees. SEQ is the sequence of
175 statements to be added to the flowgraph. */
177 static void
178 build_gimple_cfg (gimple_seq seq)
180 /* Register specific gimple functions. */
181 gimple_register_cfg_hooks ();
183 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
185 init_empty_tree_cfg ();
187 found_computed_goto = 0;
188 make_blocks (seq);
190 /* Computed gotos are hell to deal with, especially if there are
191 lots of them with a large number of destinations. So we factor
192 them to a common computed goto location before we build the
193 edge list. After we convert back to normal form, we will un-factor
194 the computed gotos since factoring introduces an unwanted jump. */
195 if (found_computed_goto)
196 factor_computed_gotos ();
198 /* Make sure there is always at least one block, even if it's empty. */
199 if (n_basic_blocks == NUM_FIXED_BLOCKS)
200 create_empty_bb (ENTRY_BLOCK_PTR);
202 /* Adjust the size of the array. */
203 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
204 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
206 /* To speed up statement iterator walks, we first purge dead labels. */
207 cleanup_dead_labels ();
209 /* Group case nodes to reduce the number of edges.
210 We do this after cleaning up dead labels because otherwise we miss
211 a lot of obvious case merging opportunities. */
212 group_case_labels ();
214 /* Create the edges of the flowgraph. */
215 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
216 free);
217 make_edges ();
218 cleanup_dead_labels ();
219 htab_delete (discriminator_per_locus);
221 /* Debugging dumps. */
223 /* Write the flowgraph to a VCG file. */
225 int local_dump_flags;
226 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
227 if (vcg_file)
229 gimple_cfg2vcg (vcg_file);
230 dump_end (TDI_vcg, vcg_file);
235 static unsigned int
236 execute_build_cfg (void)
238 gimple_seq body = gimple_body (current_function_decl);
240 build_gimple_cfg (body);
241 gimple_set_body (current_function_decl, NULL);
242 if (dump_file && (dump_flags & TDF_DETAILS))
244 fprintf (dump_file, "Scope blocks:\n");
245 dump_scope_blocks (dump_file, dump_flags);
247 return 0;
250 struct gimple_opt_pass pass_build_cfg =
253 GIMPLE_PASS,
254 "cfg", /* name */
255 NULL, /* gate */
256 execute_build_cfg, /* execute */
257 NULL, /* sub */
258 NULL, /* next */
259 0, /* static_pass_number */
260 TV_TREE_CFG, /* tv_id */
261 PROP_gimple_leh, /* properties_required */
262 PROP_cfg, /* properties_provided */
263 0, /* properties_destroyed */
264 0, /* todo_flags_start */
265 TODO_verify_stmts | TODO_cleanup_cfg
266 | TODO_dump_func /* todo_flags_finish */
271 /* Return true if T is a computed goto. */
273 static bool
274 computed_goto_p (gimple t)
276 return (gimple_code (t) == GIMPLE_GOTO
277 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
281 /* Search the CFG for any computed gotos. If found, factor them to a
282 common computed goto site. Also record the location of that site so
283 that we can un-factor the gotos after we have converted back to
284 normal form. */
286 static void
287 factor_computed_gotos (void)
289 basic_block bb;
290 tree factored_label_decl = NULL;
291 tree var = NULL;
292 gimple factored_computed_goto_label = NULL;
293 gimple factored_computed_goto = NULL;
295 /* We know there are one or more computed gotos in this function.
296 Examine the last statement in each basic block to see if the block
297 ends with a computed goto. */
299 FOR_EACH_BB (bb)
301 gimple_stmt_iterator gsi = gsi_last_bb (bb);
302 gimple last;
304 if (gsi_end_p (gsi))
305 continue;
307 last = gsi_stmt (gsi);
309 /* Ignore the computed goto we create when we factor the original
310 computed gotos. */
311 if (last == factored_computed_goto)
312 continue;
314 /* If the last statement is a computed goto, factor it. */
315 if (computed_goto_p (last))
317 gimple assignment;
319 /* The first time we find a computed goto we need to create
320 the factored goto block and the variable each original
321 computed goto will use for their goto destination. */
322 if (!factored_computed_goto)
324 basic_block new_bb = create_empty_bb (bb);
325 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
327 /* Create the destination of the factored goto. Each original
328 computed goto will put its desired destination into this
329 variable and jump to the label we create immediately
330 below. */
331 var = create_tmp_var (ptr_type_node, "gotovar");
333 /* Build a label for the new block which will contain the
334 factored computed goto. */
335 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
336 factored_computed_goto_label
337 = gimple_build_label (factored_label_decl);
338 gsi_insert_after (&new_gsi, factored_computed_goto_label,
339 GSI_NEW_STMT);
341 /* Build our new computed goto. */
342 factored_computed_goto = gimple_build_goto (var);
343 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
346 /* Copy the original computed goto's destination into VAR. */
347 assignment = gimple_build_assign (var, gimple_goto_dest (last));
348 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
350 /* And re-vector the computed goto to the new destination. */
351 gimple_goto_set_dest (last, factored_label_decl);
357 /* Build a flowgraph for the sequence of stmts SEQ. */
359 static void
360 make_blocks (gimple_seq seq)
362 gimple_stmt_iterator i = gsi_start (seq);
363 gimple stmt = NULL;
364 bool start_new_block = true;
365 bool first_stmt_of_seq = true;
366 basic_block bb = ENTRY_BLOCK_PTR;
368 while (!gsi_end_p (i))
370 gimple prev_stmt;
372 prev_stmt = stmt;
373 stmt = gsi_stmt (i);
375 /* If the statement starts a new basic block or if we have determined
376 in a previous pass that we need to create a new block for STMT, do
377 so now. */
378 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
380 if (!first_stmt_of_seq)
381 seq = gsi_split_seq_before (&i);
382 bb = create_basic_block (seq, NULL, bb);
383 start_new_block = false;
386 /* Now add STMT to BB and create the subgraphs for special statement
387 codes. */
388 gimple_set_bb (stmt, bb);
390 if (computed_goto_p (stmt))
391 found_computed_goto = true;
393 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
394 next iteration. */
395 if (stmt_ends_bb_p (stmt))
397 /* If the stmt can make abnormal goto use a new temporary
398 for the assignment to the LHS. This makes sure the old value
399 of the LHS is available on the abnormal edge. Otherwise
400 we will end up with overlapping life-ranges for abnormal
401 SSA names. */
402 if (gimple_has_lhs (stmt)
403 && stmt_can_make_abnormal_goto (stmt)
404 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
406 tree lhs = gimple_get_lhs (stmt);
407 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
408 gimple s = gimple_build_assign (lhs, tmp);
409 gimple_set_location (s, gimple_location (stmt));
410 gimple_set_block (s, gimple_block (stmt));
411 gimple_set_lhs (stmt, tmp);
412 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
413 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
414 DECL_GIMPLE_REG_P (tmp) = 1;
415 gsi_insert_after (&i, s, GSI_SAME_STMT);
417 start_new_block = true;
420 gsi_next (&i);
421 first_stmt_of_seq = false;
426 /* Create and return a new empty basic block after bb AFTER. */
428 static basic_block
429 create_bb (void *h, void *e, basic_block after)
431 basic_block bb;
433 gcc_assert (!e);
435 /* Create and initialize a new basic block. Since alloc_block uses
436 GC allocation that clears memory to allocate a basic block, we do
437 not have to clear the newly allocated basic block here. */
438 bb = alloc_block ();
440 bb->index = last_basic_block;
441 bb->flags = BB_NEW;
442 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
443 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
445 /* Add the new block to the linked list of blocks. */
446 link_block (bb, after);
448 /* Grow the basic block array if needed. */
449 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
451 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
452 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
455 /* Add the newly created block to the array. */
456 SET_BASIC_BLOCK (last_basic_block, bb);
458 n_basic_blocks++;
459 last_basic_block++;
461 return bb;
465 /*---------------------------------------------------------------------------
466 Edge creation
467 ---------------------------------------------------------------------------*/
469 /* Fold COND_EXPR_COND of each COND_EXPR. */
471 void
472 fold_cond_expr_cond (void)
474 basic_block bb;
476 FOR_EACH_BB (bb)
478 gimple stmt = last_stmt (bb);
480 if (stmt && gimple_code (stmt) == GIMPLE_COND)
482 location_t loc = gimple_location (stmt);
483 tree cond;
484 bool zerop, onep;
486 fold_defer_overflow_warnings ();
487 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
488 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
489 if (cond)
491 zerop = integer_zerop (cond);
492 onep = integer_onep (cond);
494 else
495 zerop = onep = false;
497 fold_undefer_overflow_warnings (zerop || onep,
498 stmt,
499 WARN_STRICT_OVERFLOW_CONDITIONAL);
500 if (zerop)
501 gimple_cond_make_false (stmt);
502 else if (onep)
503 gimple_cond_make_true (stmt);
508 /* Join all the blocks in the flowgraph. */
510 static void
511 make_edges (void)
513 basic_block bb;
514 struct omp_region *cur_region = NULL;
516 /* Create an edge from entry to the first block with executable
517 statements in it. */
518 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
520 /* Traverse the basic block array placing edges. */
521 FOR_EACH_BB (bb)
523 gimple last = last_stmt (bb);
524 bool fallthru;
526 if (last)
528 enum gimple_code code = gimple_code (last);
529 switch (code)
531 case GIMPLE_GOTO:
532 make_goto_expr_edges (bb);
533 fallthru = false;
534 break;
535 case GIMPLE_RETURN:
536 make_edge (bb, EXIT_BLOCK_PTR, 0);
537 fallthru = false;
538 break;
539 case GIMPLE_COND:
540 make_cond_expr_edges (bb);
541 fallthru = false;
542 break;
543 case GIMPLE_SWITCH:
544 make_gimple_switch_edges (bb);
545 fallthru = false;
546 break;
547 case GIMPLE_RESX:
548 make_eh_edges (last);
549 fallthru = false;
550 break;
551 case GIMPLE_EH_DISPATCH:
552 fallthru = make_eh_dispatch_edges (last);
553 break;
555 case GIMPLE_CALL:
556 /* If this function receives a nonlocal goto, then we need to
557 make edges from this call site to all the nonlocal goto
558 handlers. */
559 if (stmt_can_make_abnormal_goto (last))
560 make_abnormal_goto_edges (bb, true);
562 /* If this statement has reachable exception handlers, then
563 create abnormal edges to them. */
564 make_eh_edges (last);
566 /* BUILTIN_RETURN is really a return statement. */
567 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
568 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
569 /* Some calls are known not to return. */
570 else
571 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
572 break;
574 case GIMPLE_ASSIGN:
575 /* A GIMPLE_ASSIGN may throw internally and thus be considered
576 control-altering. */
577 if (is_ctrl_altering_stmt (last))
578 make_eh_edges (last);
579 fallthru = true;
580 break;
582 case GIMPLE_ASM:
583 make_gimple_asm_edges (bb);
584 fallthru = true;
585 break;
587 case GIMPLE_OMP_PARALLEL:
588 case GIMPLE_OMP_TASK:
589 case GIMPLE_OMP_FOR:
590 case GIMPLE_OMP_SINGLE:
591 case GIMPLE_OMP_MASTER:
592 case GIMPLE_OMP_ORDERED:
593 case GIMPLE_OMP_CRITICAL:
594 case GIMPLE_OMP_SECTION:
595 cur_region = new_omp_region (bb, code, cur_region);
596 fallthru = true;
597 break;
599 case GIMPLE_OMP_SECTIONS:
600 cur_region = new_omp_region (bb, code, cur_region);
601 fallthru = true;
602 break;
604 case GIMPLE_OMP_SECTIONS_SWITCH:
605 fallthru = false;
606 break;
608 case GIMPLE_OMP_ATOMIC_LOAD:
609 case GIMPLE_OMP_ATOMIC_STORE:
610 fallthru = true;
611 break;
613 case GIMPLE_OMP_RETURN:
614 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
615 somewhere other than the next block. This will be
616 created later. */
617 cur_region->exit = bb;
618 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
619 cur_region = cur_region->outer;
620 break;
622 case GIMPLE_OMP_CONTINUE:
623 cur_region->cont = bb;
624 switch (cur_region->type)
626 case GIMPLE_OMP_FOR:
627 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
628 succs edges as abnormal to prevent splitting
629 them. */
630 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
631 /* Make the loopback edge. */
632 make_edge (bb, single_succ (cur_region->entry),
633 EDGE_ABNORMAL);
635 /* Create an edge from GIMPLE_OMP_FOR to exit, which
636 corresponds to the case that the body of the loop
637 is not executed at all. */
638 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
639 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
640 fallthru = false;
641 break;
643 case GIMPLE_OMP_SECTIONS:
644 /* Wire up the edges into and out of the nested sections. */
646 basic_block switch_bb = single_succ (cur_region->entry);
648 struct omp_region *i;
649 for (i = cur_region->inner; i ; i = i->next)
651 gcc_assert (i->type == GIMPLE_OMP_SECTION);
652 make_edge (switch_bb, i->entry, 0);
653 make_edge (i->exit, bb, EDGE_FALLTHRU);
656 /* Make the loopback edge to the block with
657 GIMPLE_OMP_SECTIONS_SWITCH. */
658 make_edge (bb, switch_bb, 0);
660 /* Make the edge from the switch to exit. */
661 make_edge (switch_bb, bb->next_bb, 0);
662 fallthru = false;
664 break;
666 default:
667 gcc_unreachable ();
669 break;
671 default:
672 gcc_assert (!stmt_ends_bb_p (last));
673 fallthru = true;
676 else
677 fallthru = true;
679 if (fallthru)
681 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
682 if (last)
683 assign_discriminator (gimple_location (last), bb->next_bb);
687 if (root_omp_region)
688 free_omp_regions ();
690 /* Fold COND_EXPR_COND of each COND_EXPR. */
691 fold_cond_expr_cond ();
694 /* Trivial hash function for a location_t. ITEM is a pointer to
695 a hash table entry that maps a location_t to a discriminator. */
697 static unsigned int
698 locus_map_hash (const void *item)
700 return ((const struct locus_discrim_map *) item)->locus;
703 /* Equality function for the locus-to-discriminator map. VA and VB
704 point to the two hash table entries to compare. */
706 static int
707 locus_map_eq (const void *va, const void *vb)
709 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
710 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
711 return a->locus == b->locus;
714 /* Find the next available discriminator value for LOCUS. The
715 discriminator distinguishes among several basic blocks that
716 share a common locus, allowing for more accurate sample-based
717 profiling. */
719 static int
720 next_discriminator_for_locus (location_t locus)
722 struct locus_discrim_map item;
723 struct locus_discrim_map **slot;
725 item.locus = locus;
726 item.discriminator = 0;
727 slot = (struct locus_discrim_map **)
728 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
729 (hashval_t) locus, INSERT);
730 gcc_assert (slot);
731 if (*slot == HTAB_EMPTY_ENTRY)
733 *slot = XNEW (struct locus_discrim_map);
734 gcc_assert (*slot);
735 (*slot)->locus = locus;
736 (*slot)->discriminator = 0;
738 (*slot)->discriminator++;
739 return (*slot)->discriminator;
742 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
744 static bool
745 same_line_p (location_t locus1, location_t locus2)
747 expanded_location from, to;
749 if (locus1 == locus2)
750 return true;
752 from = expand_location (locus1);
753 to = expand_location (locus2);
755 if (from.line != to.line)
756 return false;
757 if (from.file == to.file)
758 return true;
759 return (from.file != NULL
760 && to.file != NULL
761 && strcmp (from.file, to.file) == 0);
764 /* Assign a unique discriminator value to block BB if it begins at the same
765 LOCUS as its predecessor block. */
767 static void
768 assign_discriminator (location_t locus, basic_block bb)
770 gimple first_in_to_bb, last_in_to_bb;
772 if (locus == 0 || bb->discriminator != 0)
773 return;
775 first_in_to_bb = first_non_label_stmt (bb);
776 last_in_to_bb = last_stmt (bb);
777 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
778 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
779 bb->discriminator = next_discriminator_for_locus (locus);
782 /* Create the edges for a GIMPLE_COND starting at block BB. */
784 static void
785 make_cond_expr_edges (basic_block bb)
787 gimple entry = last_stmt (bb);
788 gimple then_stmt, else_stmt;
789 basic_block then_bb, else_bb;
790 tree then_label, else_label;
791 edge e;
792 location_t entry_locus;
794 gcc_assert (entry);
795 gcc_assert (gimple_code (entry) == GIMPLE_COND);
797 entry_locus = gimple_location (entry);
799 /* Entry basic blocks for each component. */
800 then_label = gimple_cond_true_label (entry);
801 else_label = gimple_cond_false_label (entry);
802 then_bb = label_to_block (then_label);
803 else_bb = label_to_block (else_label);
804 then_stmt = first_stmt (then_bb);
805 else_stmt = first_stmt (else_bb);
807 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
808 assign_discriminator (entry_locus, then_bb);
809 e->goto_locus = gimple_location (then_stmt);
810 if (e->goto_locus)
811 e->goto_block = gimple_block (then_stmt);
812 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
813 if (e)
815 assign_discriminator (entry_locus, else_bb);
816 e->goto_locus = gimple_location (else_stmt);
817 if (e->goto_locus)
818 e->goto_block = gimple_block (else_stmt);
821 /* We do not need the labels anymore. */
822 gimple_cond_set_true_label (entry, NULL_TREE);
823 gimple_cond_set_false_label (entry, NULL_TREE);
827 /* Called for each element in the hash table (P) as we delete the
828 edge to cases hash table.
830 Clear all the TREE_CHAINs to prevent problems with copying of
831 SWITCH_EXPRs and structure sharing rules, then free the hash table
832 element. */
834 static bool
835 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
836 void *data ATTRIBUTE_UNUSED)
838 tree t, next;
840 for (t = (tree) *value; t; t = next)
842 next = TREE_CHAIN (t);
843 TREE_CHAIN (t) = NULL;
846 *value = NULL;
847 return false;
850 /* Start recording information mapping edges to case labels. */
852 void
853 start_recording_case_labels (void)
855 gcc_assert (edge_to_cases == NULL);
856 edge_to_cases = pointer_map_create ();
857 touched_switch_bbs = BITMAP_ALLOC (NULL);
860 /* Return nonzero if we are recording information for case labels. */
862 static bool
863 recording_case_labels_p (void)
865 return (edge_to_cases != NULL);
868 /* Stop recording information mapping edges to case labels and
869 remove any information we have recorded. */
870 void
871 end_recording_case_labels (void)
873 bitmap_iterator bi;
874 unsigned i;
875 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
876 pointer_map_destroy (edge_to_cases);
877 edge_to_cases = NULL;
878 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
880 basic_block bb = BASIC_BLOCK (i);
881 if (bb)
883 gimple stmt = last_stmt (bb);
884 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
885 group_case_labels_stmt (stmt);
888 BITMAP_FREE (touched_switch_bbs);
891 /* If we are inside a {start,end}_recording_cases block, then return
892 a chain of CASE_LABEL_EXPRs from T which reference E.
894 Otherwise return NULL. */
896 static tree
897 get_cases_for_edge (edge e, gimple t)
899 void **slot;
900 size_t i, n;
902 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
903 chains available. Return NULL so the caller can detect this case. */
904 if (!recording_case_labels_p ())
905 return NULL;
907 slot = pointer_map_contains (edge_to_cases, e);
908 if (slot)
909 return (tree) *slot;
911 /* If we did not find E in the hash table, then this must be the first
912 time we have been queried for information about E & T. Add all the
913 elements from T to the hash table then perform the query again. */
915 n = gimple_switch_num_labels (t);
916 for (i = 0; i < n; i++)
918 tree elt = gimple_switch_label (t, i);
919 tree lab = CASE_LABEL (elt);
920 basic_block label_bb = label_to_block (lab);
921 edge this_edge = find_edge (e->src, label_bb);
923 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
924 a new chain. */
925 slot = pointer_map_insert (edge_to_cases, this_edge);
926 TREE_CHAIN (elt) = (tree) *slot;
927 *slot = elt;
930 return (tree) *pointer_map_contains (edge_to_cases, e);
933 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
935 static void
936 make_gimple_switch_edges (basic_block bb)
938 gimple entry = last_stmt (bb);
939 location_t entry_locus;
940 size_t i, n;
942 entry_locus = gimple_location (entry);
944 n = gimple_switch_num_labels (entry);
946 for (i = 0; i < n; ++i)
948 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
949 basic_block label_bb = label_to_block (lab);
950 make_edge (bb, label_bb, 0);
951 assign_discriminator (entry_locus, label_bb);
956 /* Return the basic block holding label DEST. */
958 basic_block
959 label_to_block_fn (struct function *ifun, tree dest)
961 int uid = LABEL_DECL_UID (dest);
963 /* We would die hard when faced by an undefined label. Emit a label to
964 the very first basic block. This will hopefully make even the dataflow
965 and undefined variable warnings quite right. */
966 if (seen_error () && uid < 0)
968 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
969 gimple stmt;
971 stmt = gimple_build_label (dest);
972 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
973 uid = LABEL_DECL_UID (dest);
975 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
976 <= (unsigned int) uid)
977 return NULL;
978 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
981 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
982 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
984 void
985 make_abnormal_goto_edges (basic_block bb, bool for_call)
987 basic_block target_bb;
988 gimple_stmt_iterator gsi;
990 FOR_EACH_BB (target_bb)
991 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
993 gimple label_stmt = gsi_stmt (gsi);
994 tree target;
996 if (gimple_code (label_stmt) != GIMPLE_LABEL)
997 break;
999 target = gimple_label_label (label_stmt);
1001 /* Make an edge to every label block that has been marked as a
1002 potential target for a computed goto or a non-local goto. */
1003 if ((FORCED_LABEL (target) && !for_call)
1004 || (DECL_NONLOCAL (target) && for_call))
1006 make_edge (bb, target_bb, EDGE_ABNORMAL);
1007 break;
1012 /* Create edges for a goto statement at block BB. */
1014 static void
1015 make_goto_expr_edges (basic_block bb)
1017 gimple_stmt_iterator last = gsi_last_bb (bb);
1018 gimple goto_t = gsi_stmt (last);
1020 /* A simple GOTO creates normal edges. */
1021 if (simple_goto_p (goto_t))
1023 tree dest = gimple_goto_dest (goto_t);
1024 basic_block label_bb = label_to_block (dest);
1025 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1026 e->goto_locus = gimple_location (goto_t);
1027 assign_discriminator (e->goto_locus, label_bb);
1028 if (e->goto_locus)
1029 e->goto_block = gimple_block (goto_t);
1030 gsi_remove (&last, true);
1031 return;
1034 /* A computed GOTO creates abnormal edges. */
1035 make_abnormal_goto_edges (bb, false);
1038 /* Create edges for an asm statement with labels at block BB. */
1040 static void
1041 make_gimple_asm_edges (basic_block bb)
1043 gimple stmt = last_stmt (bb);
1044 location_t stmt_loc = gimple_location (stmt);
1045 int i, n = gimple_asm_nlabels (stmt);
1047 for (i = 0; i < n; ++i)
1049 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1050 basic_block label_bb = label_to_block (label);
1051 make_edge (bb, label_bb, 0);
1052 assign_discriminator (stmt_loc, label_bb);
1056 /*---------------------------------------------------------------------------
1057 Flowgraph analysis
1058 ---------------------------------------------------------------------------*/
1060 /* Cleanup useless labels in basic blocks. This is something we wish
1061 to do early because it allows us to group case labels before creating
1062 the edges for the CFG, and it speeds up block statement iterators in
1063 all passes later on.
1064 We rerun this pass after CFG is created, to get rid of the labels that
1065 are no longer referenced. After then we do not run it any more, since
1066 (almost) no new labels should be created. */
1068 /* A map from basic block index to the leading label of that block. */
1069 static struct label_record
1071 /* The label. */
1072 tree label;
1074 /* True if the label is referenced from somewhere. */
1075 bool used;
1076 } *label_for_bb;
1078 /* Given LABEL return the first label in the same basic block. */
1080 static tree
1081 main_block_label (tree label)
1083 basic_block bb = label_to_block (label);
1084 tree main_label = label_for_bb[bb->index].label;
1086 /* label_to_block possibly inserted undefined label into the chain. */
1087 if (!main_label)
1089 label_for_bb[bb->index].label = label;
1090 main_label = label;
1093 label_for_bb[bb->index].used = true;
1094 return main_label;
1097 /* Clean up redundant labels within the exception tree. */
1099 static void
1100 cleanup_dead_labels_eh (void)
1102 eh_landing_pad lp;
1103 eh_region r;
1104 tree lab;
1105 int i;
1107 if (cfun->eh == NULL)
1108 return;
1110 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1111 if (lp && lp->post_landing_pad)
1113 lab = main_block_label (lp->post_landing_pad);
1114 if (lab != lp->post_landing_pad)
1116 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1117 EH_LANDING_PAD_NR (lab) = lp->index;
1121 FOR_ALL_EH_REGION (r)
1122 switch (r->type)
1124 case ERT_CLEANUP:
1125 case ERT_MUST_NOT_THROW:
1126 break;
1128 case ERT_TRY:
1130 eh_catch c;
1131 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1133 lab = c->label;
1134 if (lab)
1135 c->label = main_block_label (lab);
1138 break;
1140 case ERT_ALLOWED_EXCEPTIONS:
1141 lab = r->u.allowed.label;
1142 if (lab)
1143 r->u.allowed.label = main_block_label (lab);
1144 break;
1149 /* Cleanup redundant labels. This is a three-step process:
1150 1) Find the leading label for each block.
1151 2) Redirect all references to labels to the leading labels.
1152 3) Cleanup all useless labels. */
1154 void
1155 cleanup_dead_labels (void)
1157 basic_block bb;
1158 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1160 /* Find a suitable label for each block. We use the first user-defined
1161 label if there is one, or otherwise just the first label we see. */
1162 FOR_EACH_BB (bb)
1164 gimple_stmt_iterator i;
1166 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1168 tree label;
1169 gimple stmt = gsi_stmt (i);
1171 if (gimple_code (stmt) != GIMPLE_LABEL)
1172 break;
1174 label = gimple_label_label (stmt);
1176 /* If we have not yet seen a label for the current block,
1177 remember this one and see if there are more labels. */
1178 if (!label_for_bb[bb->index].label)
1180 label_for_bb[bb->index].label = label;
1181 continue;
1184 /* If we did see a label for the current block already, but it
1185 is an artificially created label, replace it if the current
1186 label is a user defined label. */
1187 if (!DECL_ARTIFICIAL (label)
1188 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1190 label_for_bb[bb->index].label = label;
1191 break;
1196 /* Now redirect all jumps/branches to the selected label.
1197 First do so for each block ending in a control statement. */
1198 FOR_EACH_BB (bb)
1200 gimple stmt = last_stmt (bb);
1201 if (!stmt)
1202 continue;
1204 switch (gimple_code (stmt))
1206 case GIMPLE_COND:
1208 tree true_label = gimple_cond_true_label (stmt);
1209 tree false_label = gimple_cond_false_label (stmt);
1211 if (true_label)
1212 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1213 if (false_label)
1214 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1215 break;
1218 case GIMPLE_SWITCH:
1220 size_t i, n = gimple_switch_num_labels (stmt);
1222 /* Replace all destination labels. */
1223 for (i = 0; i < n; ++i)
1225 tree case_label = gimple_switch_label (stmt, i);
1226 tree label = main_block_label (CASE_LABEL (case_label));
1227 CASE_LABEL (case_label) = label;
1229 break;
1232 case GIMPLE_ASM:
1234 int i, n = gimple_asm_nlabels (stmt);
1236 for (i = 0; i < n; ++i)
1238 tree cons = gimple_asm_label_op (stmt, i);
1239 tree label = main_block_label (TREE_VALUE (cons));
1240 TREE_VALUE (cons) = label;
1242 break;
1245 /* We have to handle gotos until they're removed, and we don't
1246 remove them until after we've created the CFG edges. */
1247 case GIMPLE_GOTO:
1248 if (!computed_goto_p (stmt))
1250 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1251 gimple_goto_set_dest (stmt, new_dest);
1253 break;
1255 default:
1256 break;
1260 /* Do the same for the exception region tree labels. */
1261 cleanup_dead_labels_eh ();
1263 /* Finally, purge dead labels. All user-defined labels and labels that
1264 can be the target of non-local gotos and labels which have their
1265 address taken are preserved. */
1266 FOR_EACH_BB (bb)
1268 gimple_stmt_iterator i;
1269 tree label_for_this_bb = label_for_bb[bb->index].label;
1271 if (!label_for_this_bb)
1272 continue;
1274 /* If the main label of the block is unused, we may still remove it. */
1275 if (!label_for_bb[bb->index].used)
1276 label_for_this_bb = NULL;
1278 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1280 tree label;
1281 gimple stmt = gsi_stmt (i);
1283 if (gimple_code (stmt) != GIMPLE_LABEL)
1284 break;
1286 label = gimple_label_label (stmt);
1288 if (label == label_for_this_bb
1289 || !DECL_ARTIFICIAL (label)
1290 || DECL_NONLOCAL (label)
1291 || FORCED_LABEL (label))
1292 gsi_next (&i);
1293 else
1294 gsi_remove (&i, true);
1298 free (label_for_bb);
1301 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1302 the ones jumping to the same label.
1303 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1305 static void
1306 group_case_labels_stmt (gimple stmt)
1308 int old_size = gimple_switch_num_labels (stmt);
1309 int i, j, new_size = old_size;
1310 tree default_case = NULL_TREE;
1311 tree default_label = NULL_TREE;
1312 bool has_default;
1314 /* The default label is always the first case in a switch
1315 statement after gimplification if it was not optimized
1316 away */
1317 if (!CASE_LOW (gimple_switch_default_label (stmt))
1318 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1320 default_case = gimple_switch_default_label (stmt);
1321 default_label = CASE_LABEL (default_case);
1322 has_default = true;
1324 else
1325 has_default = false;
1327 /* Look for possible opportunities to merge cases. */
1328 if (has_default)
1329 i = 1;
1330 else
1331 i = 0;
1332 while (i < old_size)
1334 tree base_case, base_label, base_high;
1335 base_case = gimple_switch_label (stmt, i);
1337 gcc_assert (base_case);
1338 base_label = CASE_LABEL (base_case);
1340 /* Discard cases that have the same destination as the
1341 default case. */
1342 if (base_label == default_label)
1344 gimple_switch_set_label (stmt, i, NULL_TREE);
1345 i++;
1346 new_size--;
1347 continue;
1350 base_high = CASE_HIGH (base_case)
1351 ? CASE_HIGH (base_case)
1352 : CASE_LOW (base_case);
1353 i++;
1355 /* Try to merge case labels. Break out when we reach the end
1356 of the label vector or when we cannot merge the next case
1357 label with the current one. */
1358 while (i < old_size)
1360 tree merge_case = gimple_switch_label (stmt, i);
1361 tree merge_label = CASE_LABEL (merge_case);
1362 tree t = int_const_binop (PLUS_EXPR, base_high,
1363 integer_one_node, 1);
1365 /* Merge the cases if they jump to the same place,
1366 and their ranges are consecutive. */
1367 if (merge_label == base_label
1368 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1370 base_high = CASE_HIGH (merge_case) ?
1371 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1372 CASE_HIGH (base_case) = base_high;
1373 gimple_switch_set_label (stmt, i, NULL_TREE);
1374 new_size--;
1375 i++;
1377 else
1378 break;
1382 /* Compress the case labels in the label vector, and adjust the
1383 length of the vector. */
1384 for (i = 0, j = 0; i < new_size; i++)
1386 while (! gimple_switch_label (stmt, j))
1387 j++;
1388 gimple_switch_set_label (stmt, i,
1389 gimple_switch_label (stmt, j++));
1392 gcc_assert (new_size <= old_size);
1393 gimple_switch_set_num_labels (stmt, new_size);
1396 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1397 and scan the sorted vector of cases. Combine the ones jumping to the
1398 same label. */
1400 void
1401 group_case_labels (void)
1403 basic_block bb;
1405 FOR_EACH_BB (bb)
1407 gimple stmt = last_stmt (bb);
1408 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1409 group_case_labels_stmt (stmt);
1413 /* Checks whether we can merge block B into block A. */
1415 static bool
1416 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1418 gimple stmt;
1419 gimple_stmt_iterator gsi;
1420 gimple_seq phis;
1422 if (!single_succ_p (a))
1423 return false;
1425 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1426 return false;
1428 if (single_succ (a) != b)
1429 return false;
1431 if (!single_pred_p (b))
1432 return false;
1434 if (b == EXIT_BLOCK_PTR)
1435 return false;
1437 /* If A ends by a statement causing exceptions or something similar, we
1438 cannot merge the blocks. */
1439 stmt = last_stmt (a);
1440 if (stmt && stmt_ends_bb_p (stmt))
1441 return false;
1443 /* Do not allow a block with only a non-local label to be merged. */
1444 if (stmt
1445 && gimple_code (stmt) == GIMPLE_LABEL
1446 && DECL_NONLOCAL (gimple_label_label (stmt)))
1447 return false;
1449 /* Examine the labels at the beginning of B. */
1450 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1452 tree lab;
1453 stmt = gsi_stmt (gsi);
1454 if (gimple_code (stmt) != GIMPLE_LABEL)
1455 break;
1456 lab = gimple_label_label (stmt);
1458 /* Do not remove user labels. */
1459 if (!DECL_ARTIFICIAL (lab))
1460 return false;
1463 /* Protect the loop latches. */
1464 if (current_loops && b->loop_father->latch == b)
1465 return false;
1467 /* It must be possible to eliminate all phi nodes in B. If ssa form
1468 is not up-to-date and a name-mapping is registered, we cannot eliminate
1469 any phis. Symbols marked for renaming are never a problem though. */
1470 phis = phi_nodes (b);
1471 if (!gimple_seq_empty_p (phis)
1472 && name_mappings_registered_p ())
1473 return false;
1475 /* When not optimizing, don't merge if we'd lose goto_locus. */
1476 if (!optimize
1477 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1479 location_t goto_locus = single_succ_edge (a)->goto_locus;
1480 gimple_stmt_iterator prev, next;
1481 prev = gsi_last_nondebug_bb (a);
1482 next = gsi_after_labels (b);
1483 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1484 gsi_next_nondebug (&next);
1485 if ((gsi_end_p (prev)
1486 || gimple_location (gsi_stmt (prev)) != goto_locus)
1487 && (gsi_end_p (next)
1488 || gimple_location (gsi_stmt (next)) != goto_locus))
1489 return false;
1492 return true;
1495 /* Return true if the var whose chain of uses starts at PTR has no
1496 nondebug uses. */
1497 bool
1498 has_zero_uses_1 (const ssa_use_operand_t *head)
1500 const ssa_use_operand_t *ptr;
1502 for (ptr = head->next; ptr != head; ptr = ptr->next)
1503 if (!is_gimple_debug (USE_STMT (ptr)))
1504 return false;
1506 return true;
1509 /* Return true if the var whose chain of uses starts at PTR has a
1510 single nondebug use. Set USE_P and STMT to that single nondebug
1511 use, if so, or to NULL otherwise. */
1512 bool
1513 single_imm_use_1 (const ssa_use_operand_t *head,
1514 use_operand_p *use_p, gimple *stmt)
1516 ssa_use_operand_t *ptr, *single_use = 0;
1518 for (ptr = head->next; ptr != head; ptr = ptr->next)
1519 if (!is_gimple_debug (USE_STMT (ptr)))
1521 if (single_use)
1523 single_use = NULL;
1524 break;
1526 single_use = ptr;
1529 if (use_p)
1530 *use_p = single_use;
1532 if (stmt)
1533 *stmt = single_use ? single_use->loc.stmt : NULL;
1535 return !!single_use;
1538 /* Replaces all uses of NAME by VAL. */
1540 void
1541 replace_uses_by (tree name, tree val)
1543 imm_use_iterator imm_iter;
1544 use_operand_p use;
1545 gimple stmt;
1546 edge e;
1548 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1550 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1552 replace_exp (use, val);
1554 if (gimple_code (stmt) == GIMPLE_PHI)
1556 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1557 if (e->flags & EDGE_ABNORMAL)
1559 /* This can only occur for virtual operands, since
1560 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1561 would prevent replacement. */
1562 gcc_assert (!is_gimple_reg (name));
1563 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1568 if (gimple_code (stmt) != GIMPLE_PHI)
1570 size_t i;
1572 fold_stmt_inplace (stmt);
1573 if (cfgcleanup_altered_bbs)
1574 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1576 /* FIXME. This should go in update_stmt. */
1577 for (i = 0; i < gimple_num_ops (stmt); i++)
1579 tree op = gimple_op (stmt, i);
1580 /* Operands may be empty here. For example, the labels
1581 of a GIMPLE_COND are nulled out following the creation
1582 of the corresponding CFG edges. */
1583 if (op && TREE_CODE (op) == ADDR_EXPR)
1584 recompute_tree_invariant_for_addr_expr (op);
1587 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1588 update_stmt (stmt);
1592 gcc_assert (has_zero_uses (name));
1594 /* Also update the trees stored in loop structures. */
1595 if (current_loops)
1597 struct loop *loop;
1598 loop_iterator li;
1600 FOR_EACH_LOOP (li, loop, 0)
1602 substitute_in_loop_info (loop, name, val);
1607 /* Merge block B into block A. */
1609 static void
1610 gimple_merge_blocks (basic_block a, basic_block b)
1612 gimple_stmt_iterator last, gsi, psi;
1613 gimple_seq phis = phi_nodes (b);
1615 if (dump_file)
1616 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1618 /* Remove all single-valued PHI nodes from block B of the form
1619 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1620 gsi = gsi_last_bb (a);
1621 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1623 gimple phi = gsi_stmt (psi);
1624 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1625 gimple copy;
1626 bool may_replace_uses = !is_gimple_reg (def)
1627 || may_propagate_copy (def, use);
1629 /* In case we maintain loop closed ssa form, do not propagate arguments
1630 of loop exit phi nodes. */
1631 if (current_loops
1632 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1633 && is_gimple_reg (def)
1634 && TREE_CODE (use) == SSA_NAME
1635 && a->loop_father != b->loop_father)
1636 may_replace_uses = false;
1638 if (!may_replace_uses)
1640 gcc_assert (is_gimple_reg (def));
1642 /* Note that just emitting the copies is fine -- there is no problem
1643 with ordering of phi nodes. This is because A is the single
1644 predecessor of B, therefore results of the phi nodes cannot
1645 appear as arguments of the phi nodes. */
1646 copy = gimple_build_assign (def, use);
1647 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1648 remove_phi_node (&psi, false);
1650 else
1652 /* If we deal with a PHI for virtual operands, we can simply
1653 propagate these without fussing with folding or updating
1654 the stmt. */
1655 if (!is_gimple_reg (def))
1657 imm_use_iterator iter;
1658 use_operand_p use_p;
1659 gimple stmt;
1661 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1662 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1663 SET_USE (use_p, use);
1665 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1666 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1668 else
1669 replace_uses_by (def, use);
1671 remove_phi_node (&psi, true);
1675 /* Ensure that B follows A. */
1676 move_block_after (b, a);
1678 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1679 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1681 /* Remove labels from B and set gimple_bb to A for other statements. */
1682 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1684 gimple stmt = gsi_stmt (gsi);
1685 if (gimple_code (stmt) == GIMPLE_LABEL)
1687 tree label = gimple_label_label (stmt);
1688 int lp_nr;
1690 gsi_remove (&gsi, false);
1692 /* Now that we can thread computed gotos, we might have
1693 a situation where we have a forced label in block B
1694 However, the label at the start of block B might still be
1695 used in other ways (think about the runtime checking for
1696 Fortran assigned gotos). So we can not just delete the
1697 label. Instead we move the label to the start of block A. */
1698 if (FORCED_LABEL (label))
1700 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1701 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1704 lp_nr = EH_LANDING_PAD_NR (label);
1705 if (lp_nr)
1707 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1708 lp->post_landing_pad = NULL;
1711 else
1713 gimple_set_bb (stmt, a);
1714 gsi_next (&gsi);
1718 /* Merge the sequences. */
1719 last = gsi_last_bb (a);
1720 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1721 set_bb_seq (b, NULL);
1723 if (cfgcleanup_altered_bbs)
1724 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1728 /* Return the one of two successors of BB that is not reachable by a
1729 complex edge, if there is one. Else, return BB. We use
1730 this in optimizations that use post-dominators for their heuristics,
1731 to catch the cases in C++ where function calls are involved. */
1733 basic_block
1734 single_noncomplex_succ (basic_block bb)
1736 edge e0, e1;
1737 if (EDGE_COUNT (bb->succs) != 2)
1738 return bb;
1740 e0 = EDGE_SUCC (bb, 0);
1741 e1 = EDGE_SUCC (bb, 1);
1742 if (e0->flags & EDGE_COMPLEX)
1743 return e1->dest;
1744 if (e1->flags & EDGE_COMPLEX)
1745 return e0->dest;
1747 return bb;
1750 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1752 void
1753 notice_special_calls (gimple call)
1755 int flags = gimple_call_flags (call);
1757 if (flags & ECF_MAY_BE_ALLOCA)
1758 cfun->calls_alloca = true;
1759 if (flags & ECF_RETURNS_TWICE)
1760 cfun->calls_setjmp = true;
1764 /* Clear flags set by notice_special_calls. Used by dead code removal
1765 to update the flags. */
1767 void
1768 clear_special_calls (void)
1770 cfun->calls_alloca = false;
1771 cfun->calls_setjmp = false;
1774 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1776 static void
1777 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1779 /* Since this block is no longer reachable, we can just delete all
1780 of its PHI nodes. */
1781 remove_phi_nodes (bb);
1783 /* Remove edges to BB's successors. */
1784 while (EDGE_COUNT (bb->succs) > 0)
1785 remove_edge (EDGE_SUCC (bb, 0));
1789 /* Remove statements of basic block BB. */
1791 static void
1792 remove_bb (basic_block bb)
1794 gimple_stmt_iterator i;
1796 if (dump_file)
1798 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1799 if (dump_flags & TDF_DETAILS)
1801 dump_bb (bb, dump_file, 0);
1802 fprintf (dump_file, "\n");
1806 if (current_loops)
1808 struct loop *loop = bb->loop_father;
1810 /* If a loop gets removed, clean up the information associated
1811 with it. */
1812 if (loop->latch == bb
1813 || loop->header == bb)
1814 free_numbers_of_iterations_estimates_loop (loop);
1817 /* Remove all the instructions in the block. */
1818 if (bb_seq (bb) != NULL)
1820 /* Walk backwards so as to get a chance to substitute all
1821 released DEFs into debug stmts. See
1822 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1823 details. */
1824 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1826 gimple stmt = gsi_stmt (i);
1827 if (gimple_code (stmt) == GIMPLE_LABEL
1828 && (FORCED_LABEL (gimple_label_label (stmt))
1829 || DECL_NONLOCAL (gimple_label_label (stmt))))
1831 basic_block new_bb;
1832 gimple_stmt_iterator new_gsi;
1834 /* A non-reachable non-local label may still be referenced.
1835 But it no longer needs to carry the extra semantics of
1836 non-locality. */
1837 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1839 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1840 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1843 new_bb = bb->prev_bb;
1844 new_gsi = gsi_start_bb (new_bb);
1845 gsi_remove (&i, false);
1846 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1848 else
1850 /* Release SSA definitions if we are in SSA. Note that we
1851 may be called when not in SSA. For example,
1852 final_cleanup calls this function via
1853 cleanup_tree_cfg. */
1854 if (gimple_in_ssa_p (cfun))
1855 release_defs (stmt);
1857 gsi_remove (&i, true);
1860 if (gsi_end_p (i))
1861 i = gsi_last_bb (bb);
1862 else
1863 gsi_prev (&i);
1867 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1868 bb->il.gimple = NULL;
1872 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1873 predicate VAL, return the edge that will be taken out of the block.
1874 If VAL does not match a unique edge, NULL is returned. */
1876 edge
1877 find_taken_edge (basic_block bb, tree val)
1879 gimple stmt;
1881 stmt = last_stmt (bb);
1883 gcc_assert (stmt);
1884 gcc_assert (is_ctrl_stmt (stmt));
1886 if (val == NULL)
1887 return NULL;
1889 if (!is_gimple_min_invariant (val))
1890 return NULL;
1892 if (gimple_code (stmt) == GIMPLE_COND)
1893 return find_taken_edge_cond_expr (bb, val);
1895 if (gimple_code (stmt) == GIMPLE_SWITCH)
1896 return find_taken_edge_switch_expr (bb, val);
1898 if (computed_goto_p (stmt))
1900 /* Only optimize if the argument is a label, if the argument is
1901 not a label then we can not construct a proper CFG.
1903 It may be the case that we only need to allow the LABEL_REF to
1904 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1905 appear inside a LABEL_EXPR just to be safe. */
1906 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1907 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1908 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1909 return NULL;
1912 gcc_unreachable ();
1915 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1916 statement, determine which of the outgoing edges will be taken out of the
1917 block. Return NULL if either edge may be taken. */
1919 static edge
1920 find_taken_edge_computed_goto (basic_block bb, tree val)
1922 basic_block dest;
1923 edge e = NULL;
1925 dest = label_to_block (val);
1926 if (dest)
1928 e = find_edge (bb, dest);
1929 gcc_assert (e != NULL);
1932 return e;
1935 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1936 statement, determine which of the two edges will be taken out of the
1937 block. Return NULL if either edge may be taken. */
1939 static edge
1940 find_taken_edge_cond_expr (basic_block bb, tree val)
1942 edge true_edge, false_edge;
1944 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1946 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1947 return (integer_zerop (val) ? false_edge : true_edge);
1950 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1951 statement, determine which edge will be taken out of the block. Return
1952 NULL if any edge may be taken. */
1954 static edge
1955 find_taken_edge_switch_expr (basic_block bb, tree val)
1957 basic_block dest_bb;
1958 edge e;
1959 gimple switch_stmt;
1960 tree taken_case;
1962 switch_stmt = last_stmt (bb);
1963 taken_case = find_case_label_for_value (switch_stmt, val);
1964 dest_bb = label_to_block (CASE_LABEL (taken_case));
1966 e = find_edge (bb, dest_bb);
1967 gcc_assert (e);
1968 return e;
1972 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1973 We can make optimal use here of the fact that the case labels are
1974 sorted: We can do a binary search for a case matching VAL. */
1976 static tree
1977 find_case_label_for_value (gimple switch_stmt, tree val)
1979 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1980 tree default_case = gimple_switch_default_label (switch_stmt);
1982 for (low = 0, high = n; high - low > 1; )
1984 size_t i = (high + low) / 2;
1985 tree t = gimple_switch_label (switch_stmt, i);
1986 int cmp;
1988 /* Cache the result of comparing CASE_LOW and val. */
1989 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1991 if (cmp > 0)
1992 high = i;
1993 else
1994 low = i;
1996 if (CASE_HIGH (t) == NULL)
1998 /* A singe-valued case label. */
1999 if (cmp == 0)
2000 return t;
2002 else
2004 /* A case range. We can only handle integer ranges. */
2005 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2006 return t;
2010 return default_case;
2014 /* Dump a basic block on stderr. */
2016 void
2017 gimple_debug_bb (basic_block bb)
2019 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2023 /* Dump basic block with index N on stderr. */
2025 basic_block
2026 gimple_debug_bb_n (int n)
2028 gimple_debug_bb (BASIC_BLOCK (n));
2029 return BASIC_BLOCK (n);
2033 /* Dump the CFG on stderr.
2035 FLAGS are the same used by the tree dumping functions
2036 (see TDF_* in tree-pass.h). */
2038 void
2039 gimple_debug_cfg (int flags)
2041 gimple_dump_cfg (stderr, flags);
2045 /* Dump the program showing basic block boundaries on the given FILE.
2047 FLAGS are the same used by the tree dumping functions (see TDF_* in
2048 tree.h). */
2050 void
2051 gimple_dump_cfg (FILE *file, int flags)
2053 if (flags & TDF_DETAILS)
2055 const char *funcname
2056 = lang_hooks.decl_printable_name (current_function_decl, 2);
2058 fputc ('\n', file);
2059 fprintf (file, ";; Function %s\n\n", funcname);
2060 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2061 n_basic_blocks, n_edges, last_basic_block);
2063 brief_dump_cfg (file);
2064 fprintf (file, "\n");
2067 if (flags & TDF_STATS)
2068 dump_cfg_stats (file);
2070 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2074 /* Dump CFG statistics on FILE. */
2076 void
2077 dump_cfg_stats (FILE *file)
2079 static long max_num_merged_labels = 0;
2080 unsigned long size, total = 0;
2081 long num_edges;
2082 basic_block bb;
2083 const char * const fmt_str = "%-30s%-13s%12s\n";
2084 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2085 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2086 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2087 const char *funcname
2088 = lang_hooks.decl_printable_name (current_function_decl, 2);
2091 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2093 fprintf (file, "---------------------------------------------------------\n");
2094 fprintf (file, fmt_str, "", " Number of ", "Memory");
2095 fprintf (file, fmt_str, "", " instances ", "used ");
2096 fprintf (file, "---------------------------------------------------------\n");
2098 size = n_basic_blocks * sizeof (struct basic_block_def);
2099 total += size;
2100 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2101 SCALE (size), LABEL (size));
2103 num_edges = 0;
2104 FOR_EACH_BB (bb)
2105 num_edges += EDGE_COUNT (bb->succs);
2106 size = num_edges * sizeof (struct edge_def);
2107 total += size;
2108 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2110 fprintf (file, "---------------------------------------------------------\n");
2111 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2112 LABEL (total));
2113 fprintf (file, "---------------------------------------------------------\n");
2114 fprintf (file, "\n");
2116 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2117 max_num_merged_labels = cfg_stats.num_merged_labels;
2119 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2120 cfg_stats.num_merged_labels, max_num_merged_labels);
2122 fprintf (file, "\n");
2126 /* Dump CFG statistics on stderr. Keep extern so that it's always
2127 linked in the final executable. */
2129 DEBUG_FUNCTION void
2130 debug_cfg_stats (void)
2132 dump_cfg_stats (stderr);
2136 /* Dump the flowgraph to a .vcg FILE. */
2138 static void
2139 gimple_cfg2vcg (FILE *file)
2141 edge e;
2142 edge_iterator ei;
2143 basic_block bb;
2144 const char *funcname
2145 = lang_hooks.decl_printable_name (current_function_decl, 2);
2147 /* Write the file header. */
2148 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2149 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2150 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2152 /* Write blocks and edges. */
2153 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2155 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2156 e->dest->index);
2158 if (e->flags & EDGE_FAKE)
2159 fprintf (file, " linestyle: dotted priority: 10");
2160 else
2161 fprintf (file, " linestyle: solid priority: 100");
2163 fprintf (file, " }\n");
2165 fputc ('\n', file);
2167 FOR_EACH_BB (bb)
2169 enum gimple_code head_code, end_code;
2170 const char *head_name, *end_name;
2171 int head_line = 0;
2172 int end_line = 0;
2173 gimple first = first_stmt (bb);
2174 gimple last = last_stmt (bb);
2176 if (first)
2178 head_code = gimple_code (first);
2179 head_name = gimple_code_name[head_code];
2180 head_line = get_lineno (first);
2182 else
2183 head_name = "no-statement";
2185 if (last)
2187 end_code = gimple_code (last);
2188 end_name = gimple_code_name[end_code];
2189 end_line = get_lineno (last);
2191 else
2192 end_name = "no-statement";
2194 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2195 bb->index, bb->index, head_name, head_line, end_name,
2196 end_line);
2198 FOR_EACH_EDGE (e, ei, bb->succs)
2200 if (e->dest == EXIT_BLOCK_PTR)
2201 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2202 else
2203 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2205 if (e->flags & EDGE_FAKE)
2206 fprintf (file, " priority: 10 linestyle: dotted");
2207 else
2208 fprintf (file, " priority: 100 linestyle: solid");
2210 fprintf (file, " }\n");
2213 if (bb->next_bb != EXIT_BLOCK_PTR)
2214 fputc ('\n', file);
2217 fputs ("}\n\n", file);
2222 /*---------------------------------------------------------------------------
2223 Miscellaneous helpers
2224 ---------------------------------------------------------------------------*/
2226 /* Return true if T represents a stmt that always transfers control. */
2228 bool
2229 is_ctrl_stmt (gimple t)
2231 switch (gimple_code (t))
2233 case GIMPLE_COND:
2234 case GIMPLE_SWITCH:
2235 case GIMPLE_GOTO:
2236 case GIMPLE_RETURN:
2237 case GIMPLE_RESX:
2238 return true;
2239 default:
2240 return false;
2245 /* Return true if T is a statement that may alter the flow of control
2246 (e.g., a call to a non-returning function). */
2248 bool
2249 is_ctrl_altering_stmt (gimple t)
2251 gcc_assert (t);
2253 switch (gimple_code (t))
2255 case GIMPLE_CALL:
2257 int flags = gimple_call_flags (t);
2259 /* A non-pure/const call alters flow control if the current
2260 function has nonlocal labels. */
2261 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2262 && cfun->has_nonlocal_label)
2263 return true;
2265 /* A call also alters control flow if it does not return. */
2266 if (flags & ECF_NORETURN)
2267 return true;
2269 /* BUILT_IN_RETURN call is same as return statement. */
2270 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2271 return true;
2273 break;
2275 case GIMPLE_EH_DISPATCH:
2276 /* EH_DISPATCH branches to the individual catch handlers at
2277 this level of a try or allowed-exceptions region. It can
2278 fallthru to the next statement as well. */
2279 return true;
2281 case GIMPLE_ASM:
2282 if (gimple_asm_nlabels (t) > 0)
2283 return true;
2284 break;
2286 CASE_GIMPLE_OMP:
2287 /* OpenMP directives alter control flow. */
2288 return true;
2290 default:
2291 break;
2294 /* If a statement can throw, it alters control flow. */
2295 return stmt_can_throw_internal (t);
2299 /* Return true if T is a simple local goto. */
2301 bool
2302 simple_goto_p (gimple t)
2304 return (gimple_code (t) == GIMPLE_GOTO
2305 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2309 /* Return true if T can make an abnormal transfer of control flow.
2310 Transfers of control flow associated with EH are excluded. */
2312 bool
2313 stmt_can_make_abnormal_goto (gimple t)
2315 if (computed_goto_p (t))
2316 return true;
2317 if (is_gimple_call (t))
2318 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2319 && !(gimple_call_flags (t) & ECF_LEAF));
2320 return false;
2324 /* Return true if STMT should start a new basic block. PREV_STMT is
2325 the statement preceding STMT. It is used when STMT is a label or a
2326 case label. Labels should only start a new basic block if their
2327 previous statement wasn't a label. Otherwise, sequence of labels
2328 would generate unnecessary basic blocks that only contain a single
2329 label. */
2331 static inline bool
2332 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2334 if (stmt == NULL)
2335 return false;
2337 /* Labels start a new basic block only if the preceding statement
2338 wasn't a label of the same type. This prevents the creation of
2339 consecutive blocks that have nothing but a single label. */
2340 if (gimple_code (stmt) == GIMPLE_LABEL)
2342 /* Nonlocal and computed GOTO targets always start a new block. */
2343 if (DECL_NONLOCAL (gimple_label_label (stmt))
2344 || FORCED_LABEL (gimple_label_label (stmt)))
2345 return true;
2347 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2349 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2350 return true;
2352 cfg_stats.num_merged_labels++;
2353 return false;
2355 else
2356 return true;
2359 return false;
2363 /* Return true if T should end a basic block. */
2365 bool
2366 stmt_ends_bb_p (gimple t)
2368 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2371 /* Remove block annotations and other data structures. */
2373 void
2374 delete_tree_cfg_annotations (void)
2376 label_to_block_map = NULL;
2380 /* Return the first statement in basic block BB. */
2382 gimple
2383 first_stmt (basic_block bb)
2385 gimple_stmt_iterator i = gsi_start_bb (bb);
2386 gimple stmt = NULL;
2388 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2390 gsi_next (&i);
2391 stmt = NULL;
2393 return stmt;
2396 /* Return the first non-label statement in basic block BB. */
2398 static gimple
2399 first_non_label_stmt (basic_block bb)
2401 gimple_stmt_iterator i = gsi_start_bb (bb);
2402 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2403 gsi_next (&i);
2404 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2407 /* Return the last statement in basic block BB. */
2409 gimple
2410 last_stmt (basic_block bb)
2412 gimple_stmt_iterator i = gsi_last_bb (bb);
2413 gimple stmt = NULL;
2415 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2417 gsi_prev (&i);
2418 stmt = NULL;
2420 return stmt;
2423 /* Return the last statement of an otherwise empty block. Return NULL
2424 if the block is totally empty, or if it contains more than one
2425 statement. */
2427 gimple
2428 last_and_only_stmt (basic_block bb)
2430 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2431 gimple last, prev;
2433 if (gsi_end_p (i))
2434 return NULL;
2436 last = gsi_stmt (i);
2437 gsi_prev_nondebug (&i);
2438 if (gsi_end_p (i))
2439 return last;
2441 /* Empty statements should no longer appear in the instruction stream.
2442 Everything that might have appeared before should be deleted by
2443 remove_useless_stmts, and the optimizers should just gsi_remove
2444 instead of smashing with build_empty_stmt.
2446 Thus the only thing that should appear here in a block containing
2447 one executable statement is a label. */
2448 prev = gsi_stmt (i);
2449 if (gimple_code (prev) == GIMPLE_LABEL)
2450 return last;
2451 else
2452 return NULL;
2455 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2457 static void
2458 reinstall_phi_args (edge new_edge, edge old_edge)
2460 edge_var_map_vector v;
2461 edge_var_map *vm;
2462 int i;
2463 gimple_stmt_iterator phis;
2465 v = redirect_edge_var_map_vector (old_edge);
2466 if (!v)
2467 return;
2469 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2470 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2471 i++, gsi_next (&phis))
2473 gimple phi = gsi_stmt (phis);
2474 tree result = redirect_edge_var_map_result (vm);
2475 tree arg = redirect_edge_var_map_def (vm);
2477 gcc_assert (result == gimple_phi_result (phi));
2479 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2482 redirect_edge_var_map_clear (old_edge);
2485 /* Returns the basic block after which the new basic block created
2486 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2487 near its "logical" location. This is of most help to humans looking
2488 at debugging dumps. */
2490 static basic_block
2491 split_edge_bb_loc (edge edge_in)
2493 basic_block dest = edge_in->dest;
2494 basic_block dest_prev = dest->prev_bb;
2496 if (dest_prev)
2498 edge e = find_edge (dest_prev, dest);
2499 if (e && !(e->flags & EDGE_COMPLEX))
2500 return edge_in->src;
2502 return dest_prev;
2505 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2506 Abort on abnormal edges. */
2508 static basic_block
2509 gimple_split_edge (edge edge_in)
2511 basic_block new_bb, after_bb, dest;
2512 edge new_edge, e;
2514 /* Abnormal edges cannot be split. */
2515 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2517 dest = edge_in->dest;
2519 after_bb = split_edge_bb_loc (edge_in);
2521 new_bb = create_empty_bb (after_bb);
2522 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2523 new_bb->count = edge_in->count;
2524 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2525 new_edge->probability = REG_BR_PROB_BASE;
2526 new_edge->count = edge_in->count;
2528 e = redirect_edge_and_branch (edge_in, new_bb);
2529 gcc_assert (e == edge_in);
2530 reinstall_phi_args (new_edge, e);
2532 return new_bb;
2536 /* Verify properties of the address expression T with base object BASE. */
2538 static tree
2539 verify_address (tree t, tree base)
2541 bool old_constant;
2542 bool old_side_effects;
2543 bool new_constant;
2544 bool new_side_effects;
2546 old_constant = TREE_CONSTANT (t);
2547 old_side_effects = TREE_SIDE_EFFECTS (t);
2549 recompute_tree_invariant_for_addr_expr (t);
2550 new_side_effects = TREE_SIDE_EFFECTS (t);
2551 new_constant = TREE_CONSTANT (t);
2553 if (old_constant != new_constant)
2555 error ("constant not recomputed when ADDR_EXPR changed");
2556 return t;
2558 if (old_side_effects != new_side_effects)
2560 error ("side effects not recomputed when ADDR_EXPR changed");
2561 return t;
2564 if (!(TREE_CODE (base) == VAR_DECL
2565 || TREE_CODE (base) == PARM_DECL
2566 || TREE_CODE (base) == RESULT_DECL))
2567 return NULL_TREE;
2569 if (DECL_GIMPLE_REG_P (base))
2571 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2572 return base;
2575 return NULL_TREE;
2578 /* Callback for walk_tree, check that all elements with address taken are
2579 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2580 inside a PHI node. */
2582 static tree
2583 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2585 tree t = *tp, x;
2587 if (TYPE_P (t))
2588 *walk_subtrees = 0;
2590 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2591 #define CHECK_OP(N, MSG) \
2592 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2593 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2595 switch (TREE_CODE (t))
2597 case SSA_NAME:
2598 if (SSA_NAME_IN_FREE_LIST (t))
2600 error ("SSA name in freelist but still referenced");
2601 return *tp;
2603 break;
2605 case INDIRECT_REF:
2606 error ("INDIRECT_REF in gimple IL");
2607 return t;
2609 case MEM_REF:
2610 x = TREE_OPERAND (t, 0);
2611 if (!POINTER_TYPE_P (TREE_TYPE (x))
2612 || !is_gimple_mem_ref_addr (x))
2614 error ("invalid first operand of MEM_REF");
2615 return x;
2617 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2618 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2620 error ("invalid offset operand of MEM_REF");
2621 return TREE_OPERAND (t, 1);
2623 if (TREE_CODE (x) == ADDR_EXPR
2624 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2625 return x;
2626 *walk_subtrees = 0;
2627 break;
2629 case ASSERT_EXPR:
2630 x = fold (ASSERT_EXPR_COND (t));
2631 if (x == boolean_false_node)
2633 error ("ASSERT_EXPR with an always-false condition");
2634 return *tp;
2636 break;
2638 case MODIFY_EXPR:
2639 error ("MODIFY_EXPR not expected while having tuples");
2640 return *tp;
2642 case ADDR_EXPR:
2644 tree tem;
2646 gcc_assert (is_gimple_address (t));
2648 /* Skip any references (they will be checked when we recurse down the
2649 tree) and ensure that any variable used as a prefix is marked
2650 addressable. */
2651 for (x = TREE_OPERAND (t, 0);
2652 handled_component_p (x);
2653 x = TREE_OPERAND (x, 0))
2656 if ((tem = verify_address (t, x)))
2657 return tem;
2659 if (!(TREE_CODE (x) == VAR_DECL
2660 || TREE_CODE (x) == PARM_DECL
2661 || TREE_CODE (x) == RESULT_DECL))
2662 return NULL;
2664 if (!TREE_ADDRESSABLE (x))
2666 error ("address taken, but ADDRESSABLE bit not set");
2667 return x;
2670 break;
2673 case COND_EXPR:
2674 x = COND_EXPR_COND (t);
2675 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2677 error ("non-integral used in condition");
2678 return x;
2680 if (!is_gimple_condexpr (x))
2682 error ("invalid conditional operand");
2683 return x;
2685 break;
2687 case NON_LVALUE_EXPR:
2688 gcc_unreachable ();
2690 CASE_CONVERT:
2691 case FIX_TRUNC_EXPR:
2692 case FLOAT_EXPR:
2693 case NEGATE_EXPR:
2694 case ABS_EXPR:
2695 case BIT_NOT_EXPR:
2696 case TRUTH_NOT_EXPR:
2697 CHECK_OP (0, "invalid operand to unary operator");
2698 break;
2700 case REALPART_EXPR:
2701 case IMAGPART_EXPR:
2702 case COMPONENT_REF:
2703 case ARRAY_REF:
2704 case ARRAY_RANGE_REF:
2705 case BIT_FIELD_REF:
2706 case VIEW_CONVERT_EXPR:
2707 /* We have a nest of references. Verify that each of the operands
2708 that determine where to reference is either a constant or a variable,
2709 verify that the base is valid, and then show we've already checked
2710 the subtrees. */
2711 while (handled_component_p (t))
2713 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2714 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2715 else if (TREE_CODE (t) == ARRAY_REF
2716 || TREE_CODE (t) == ARRAY_RANGE_REF)
2718 CHECK_OP (1, "invalid array index");
2719 if (TREE_OPERAND (t, 2))
2720 CHECK_OP (2, "invalid array lower bound");
2721 if (TREE_OPERAND (t, 3))
2722 CHECK_OP (3, "invalid array stride");
2724 else if (TREE_CODE (t) == BIT_FIELD_REF)
2726 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2727 || !host_integerp (TREE_OPERAND (t, 2), 1))
2729 error ("invalid position or size operand to BIT_FIELD_REF");
2730 return t;
2732 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2733 && (TYPE_PRECISION (TREE_TYPE (t))
2734 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2736 error ("integral result type precision does not match "
2737 "field size of BIT_FIELD_REF");
2738 return t;
2740 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2741 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2742 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2744 error ("mode precision of non-integral result does not "
2745 "match field size of BIT_FIELD_REF");
2746 return t;
2750 t = TREE_OPERAND (t, 0);
2753 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2755 error ("invalid reference prefix");
2756 return t;
2758 *walk_subtrees = 0;
2759 break;
2760 case PLUS_EXPR:
2761 case MINUS_EXPR:
2762 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2763 POINTER_PLUS_EXPR. */
2764 if (POINTER_TYPE_P (TREE_TYPE (t)))
2766 error ("invalid operand to plus/minus, type is a pointer");
2767 return t;
2769 CHECK_OP (0, "invalid operand to binary operator");
2770 CHECK_OP (1, "invalid operand to binary operator");
2771 break;
2773 case POINTER_PLUS_EXPR:
2774 /* Check to make sure the first operand is a pointer or reference type. */
2775 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2777 error ("invalid operand to pointer plus, first operand is not a pointer");
2778 return t;
2780 /* Check to make sure the second operand is an integer with type of
2781 sizetype. */
2782 if (!useless_type_conversion_p (sizetype,
2783 TREE_TYPE (TREE_OPERAND (t, 1))))
2785 error ("invalid operand to pointer plus, second operand is not an "
2786 "integer with type of sizetype");
2787 return t;
2789 /* FALLTHROUGH */
2790 case LT_EXPR:
2791 case LE_EXPR:
2792 case GT_EXPR:
2793 case GE_EXPR:
2794 case EQ_EXPR:
2795 case NE_EXPR:
2796 case UNORDERED_EXPR:
2797 case ORDERED_EXPR:
2798 case UNLT_EXPR:
2799 case UNLE_EXPR:
2800 case UNGT_EXPR:
2801 case UNGE_EXPR:
2802 case UNEQ_EXPR:
2803 case LTGT_EXPR:
2804 case MULT_EXPR:
2805 case TRUNC_DIV_EXPR:
2806 case CEIL_DIV_EXPR:
2807 case FLOOR_DIV_EXPR:
2808 case ROUND_DIV_EXPR:
2809 case TRUNC_MOD_EXPR:
2810 case CEIL_MOD_EXPR:
2811 case FLOOR_MOD_EXPR:
2812 case ROUND_MOD_EXPR:
2813 case RDIV_EXPR:
2814 case EXACT_DIV_EXPR:
2815 case MIN_EXPR:
2816 case MAX_EXPR:
2817 case LSHIFT_EXPR:
2818 case RSHIFT_EXPR:
2819 case LROTATE_EXPR:
2820 case RROTATE_EXPR:
2821 case BIT_IOR_EXPR:
2822 case BIT_XOR_EXPR:
2823 case BIT_AND_EXPR:
2824 CHECK_OP (0, "invalid operand to binary operator");
2825 CHECK_OP (1, "invalid operand to binary operator");
2826 break;
2828 case CONSTRUCTOR:
2829 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2830 *walk_subtrees = 0;
2831 break;
2833 default:
2834 break;
2836 return NULL;
2838 #undef CHECK_OP
2842 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2843 Returns true if there is an error, otherwise false. */
2845 static bool
2846 verify_types_in_gimple_min_lval (tree expr)
2848 tree op;
2850 if (is_gimple_id (expr))
2851 return false;
2853 if (TREE_CODE (expr) != TARGET_MEM_REF
2854 && TREE_CODE (expr) != MEM_REF)
2856 error ("invalid expression for min lvalue");
2857 return true;
2860 /* TARGET_MEM_REFs are strange beasts. */
2861 if (TREE_CODE (expr) == TARGET_MEM_REF)
2862 return false;
2864 op = TREE_OPERAND (expr, 0);
2865 if (!is_gimple_val (op))
2867 error ("invalid operand in indirect reference");
2868 debug_generic_stmt (op);
2869 return true;
2871 /* Memory references now generally can involve a value conversion. */
2873 return false;
2876 /* Verify if EXPR is a valid GIMPLE reference expression. If
2877 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2878 if there is an error, otherwise false. */
2880 static bool
2881 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2883 while (handled_component_p (expr))
2885 tree op = TREE_OPERAND (expr, 0);
2887 if (TREE_CODE (expr) == ARRAY_REF
2888 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2890 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2891 || (TREE_OPERAND (expr, 2)
2892 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2893 || (TREE_OPERAND (expr, 3)
2894 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2896 error ("invalid operands to array reference");
2897 debug_generic_stmt (expr);
2898 return true;
2902 /* Verify if the reference array element types are compatible. */
2903 if (TREE_CODE (expr) == ARRAY_REF
2904 && !useless_type_conversion_p (TREE_TYPE (expr),
2905 TREE_TYPE (TREE_TYPE (op))))
2907 error ("type mismatch in array reference");
2908 debug_generic_stmt (TREE_TYPE (expr));
2909 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2910 return true;
2912 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2913 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2914 TREE_TYPE (TREE_TYPE (op))))
2916 error ("type mismatch in array range reference");
2917 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2918 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2919 return true;
2922 if ((TREE_CODE (expr) == REALPART_EXPR
2923 || TREE_CODE (expr) == IMAGPART_EXPR)
2924 && !useless_type_conversion_p (TREE_TYPE (expr),
2925 TREE_TYPE (TREE_TYPE (op))))
2927 error ("type mismatch in real/imagpart reference");
2928 debug_generic_stmt (TREE_TYPE (expr));
2929 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2930 return true;
2933 if (TREE_CODE (expr) == COMPONENT_REF
2934 && !useless_type_conversion_p (TREE_TYPE (expr),
2935 TREE_TYPE (TREE_OPERAND (expr, 1))))
2937 error ("type mismatch in component reference");
2938 debug_generic_stmt (TREE_TYPE (expr));
2939 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2940 return true;
2943 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2945 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2946 that their operand is not an SSA name or an invariant when
2947 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2948 bug). Otherwise there is nothing to verify, gross mismatches at
2949 most invoke undefined behavior. */
2950 if (require_lvalue
2951 && (TREE_CODE (op) == SSA_NAME
2952 || is_gimple_min_invariant (op)))
2954 error ("conversion of an SSA_NAME on the left hand side");
2955 debug_generic_stmt (expr);
2956 return true;
2958 else if (TREE_CODE (op) == SSA_NAME
2959 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2961 error ("conversion of register to a different size");
2962 debug_generic_stmt (expr);
2963 return true;
2965 else if (!handled_component_p (op))
2966 return false;
2969 expr = op;
2972 if (TREE_CODE (expr) == MEM_REF)
2974 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2976 error ("invalid address operand in MEM_REF");
2977 debug_generic_stmt (expr);
2978 return true;
2980 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2981 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2983 error ("invalid offset operand in MEM_REF");
2984 debug_generic_stmt (expr);
2985 return true;
2988 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2990 if (!TMR_BASE (expr)
2991 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2993 error ("invalid address operand in in TARGET_MEM_REF");
2994 return true;
2996 if (!TMR_OFFSET (expr)
2997 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
2998 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3000 error ("invalid offset operand in TARGET_MEM_REF");
3001 debug_generic_stmt (expr);
3002 return true;
3006 return ((require_lvalue || !is_gimple_min_invariant (expr))
3007 && verify_types_in_gimple_min_lval (expr));
3010 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3011 list of pointer-to types that is trivially convertible to DEST. */
3013 static bool
3014 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3016 tree src;
3018 if (!TYPE_POINTER_TO (src_obj))
3019 return true;
3021 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3022 if (useless_type_conversion_p (dest, src))
3023 return true;
3025 return false;
3028 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3029 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3031 static bool
3032 valid_fixed_convert_types_p (tree type1, tree type2)
3034 return (FIXED_POINT_TYPE_P (type1)
3035 && (INTEGRAL_TYPE_P (type2)
3036 || SCALAR_FLOAT_TYPE_P (type2)
3037 || FIXED_POINT_TYPE_P (type2)));
3040 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3041 is a problem, otherwise false. */
3043 static bool
3044 verify_gimple_call (gimple stmt)
3046 tree fn = gimple_call_fn (stmt);
3047 tree fntype;
3048 unsigned i;
3050 if (TREE_CODE (fn) != OBJ_TYPE_REF
3051 && !is_gimple_val (fn))
3053 error ("invalid function in gimple call");
3054 debug_generic_stmt (fn);
3055 return true;
3058 if (!POINTER_TYPE_P (TREE_TYPE (fn))
3059 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3060 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))
3062 error ("non-function in gimple call");
3063 return true;
3066 if (gimple_call_lhs (stmt)
3067 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3068 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3070 error ("invalid LHS in gimple call");
3071 return true;
3074 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3076 error ("LHS in noreturn call");
3077 return true;
3080 fntype = TREE_TYPE (TREE_TYPE (fn));
3081 if (gimple_call_lhs (stmt)
3082 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3083 TREE_TYPE (fntype))
3084 /* ??? At least C++ misses conversions at assignments from
3085 void * call results.
3086 ??? Java is completely off. Especially with functions
3087 returning java.lang.Object.
3088 For now simply allow arbitrary pointer type conversions. */
3089 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3090 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3092 error ("invalid conversion in gimple call");
3093 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3094 debug_generic_stmt (TREE_TYPE (fntype));
3095 return true;
3098 if (gimple_call_chain (stmt)
3099 && !is_gimple_val (gimple_call_chain (stmt)))
3101 error ("invalid static chain in gimple call");
3102 debug_generic_stmt (gimple_call_chain (stmt));
3103 return true;
3106 /* If there is a static chain argument, this should not be an indirect
3107 call, and the decl should have DECL_STATIC_CHAIN set. */
3108 if (gimple_call_chain (stmt))
3110 if (!gimple_call_fndecl (stmt))
3112 error ("static chain in indirect gimple call");
3113 return true;
3115 fn = TREE_OPERAND (fn, 0);
3117 if (!DECL_STATIC_CHAIN (fn))
3119 error ("static chain with function that doesn%'t use one");
3120 return true;
3124 /* ??? The C frontend passes unpromoted arguments in case it
3125 didn't see a function declaration before the call. So for now
3126 leave the call arguments mostly unverified. Once we gimplify
3127 unit-at-a-time we have a chance to fix this. */
3129 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3131 tree arg = gimple_call_arg (stmt, i);
3132 if ((is_gimple_reg_type (TREE_TYPE (arg))
3133 && !is_gimple_val (arg))
3134 || (!is_gimple_reg_type (TREE_TYPE (arg))
3135 && !is_gimple_lvalue (arg)))
3137 error ("invalid argument to gimple call");
3138 debug_generic_expr (arg);
3142 return false;
3145 /* Verifies the gimple comparison with the result type TYPE and
3146 the operands OP0 and OP1. */
3148 static bool
3149 verify_gimple_comparison (tree type, tree op0, tree op1)
3151 tree op0_type = TREE_TYPE (op0);
3152 tree op1_type = TREE_TYPE (op1);
3154 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3156 error ("invalid operands in gimple comparison");
3157 return true;
3160 /* For comparisons we do not have the operations type as the
3161 effective type the comparison is carried out in. Instead
3162 we require that either the first operand is trivially
3163 convertible into the second, or the other way around.
3164 The resulting type of a comparison may be any integral type.
3165 Because we special-case pointers to void we allow
3166 comparisons of pointers with the same mode as well. */
3167 if ((!useless_type_conversion_p (op0_type, op1_type)
3168 && !useless_type_conversion_p (op1_type, op0_type)
3169 && (!POINTER_TYPE_P (op0_type)
3170 || !POINTER_TYPE_P (op1_type)
3171 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3172 || !INTEGRAL_TYPE_P (type))
3174 error ("type mismatch in comparison expression");
3175 debug_generic_expr (type);
3176 debug_generic_expr (op0_type);
3177 debug_generic_expr (op1_type);
3178 return true;
3181 return false;
3184 /* Verify a gimple assignment statement STMT with an unary rhs.
3185 Returns true if anything is wrong. */
3187 static bool
3188 verify_gimple_assign_unary (gimple stmt)
3190 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3191 tree lhs = gimple_assign_lhs (stmt);
3192 tree lhs_type = TREE_TYPE (lhs);
3193 tree rhs1 = gimple_assign_rhs1 (stmt);
3194 tree rhs1_type = TREE_TYPE (rhs1);
3196 if (!is_gimple_reg (lhs)
3197 && !(optimize == 0
3198 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3200 error ("non-register as LHS of unary operation");
3201 return true;
3204 if (!is_gimple_val (rhs1))
3206 error ("invalid operand in unary operation");
3207 return true;
3210 /* First handle conversions. */
3211 switch (rhs_code)
3213 CASE_CONVERT:
3215 /* Allow conversions between integral types and pointers only if
3216 there is no sign or zero extension involved.
3217 For targets were the precision of sizetype doesn't match that
3218 of pointers we need to allow arbitrary conversions from and
3219 to sizetype. */
3220 if ((POINTER_TYPE_P (lhs_type)
3221 && INTEGRAL_TYPE_P (rhs1_type)
3222 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3223 || rhs1_type == sizetype))
3224 || (POINTER_TYPE_P (rhs1_type)
3225 && INTEGRAL_TYPE_P (lhs_type)
3226 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3227 || lhs_type == sizetype)))
3228 return false;
3230 /* Allow conversion from integer to offset type and vice versa. */
3231 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3232 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3233 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3234 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3235 return false;
3237 /* Otherwise assert we are converting between types of the
3238 same kind. */
3239 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3241 error ("invalid types in nop conversion");
3242 debug_generic_expr (lhs_type);
3243 debug_generic_expr (rhs1_type);
3244 return true;
3247 return false;
3250 case ADDR_SPACE_CONVERT_EXPR:
3252 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3253 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3254 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3256 error ("invalid types in address space conversion");
3257 debug_generic_expr (lhs_type);
3258 debug_generic_expr (rhs1_type);
3259 return true;
3262 return false;
3265 case FIXED_CONVERT_EXPR:
3267 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3268 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3270 error ("invalid types in fixed-point conversion");
3271 debug_generic_expr (lhs_type);
3272 debug_generic_expr (rhs1_type);
3273 return true;
3276 return false;
3279 case FLOAT_EXPR:
3281 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3283 error ("invalid types in conversion to floating point");
3284 debug_generic_expr (lhs_type);
3285 debug_generic_expr (rhs1_type);
3286 return true;
3289 return false;
3292 case FIX_TRUNC_EXPR:
3294 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3296 error ("invalid types in conversion to integer");
3297 debug_generic_expr (lhs_type);
3298 debug_generic_expr (rhs1_type);
3299 return true;
3302 return false;
3305 case VEC_UNPACK_HI_EXPR:
3306 case VEC_UNPACK_LO_EXPR:
3307 case REDUC_MAX_EXPR:
3308 case REDUC_MIN_EXPR:
3309 case REDUC_PLUS_EXPR:
3310 case VEC_UNPACK_FLOAT_HI_EXPR:
3311 case VEC_UNPACK_FLOAT_LO_EXPR:
3312 /* FIXME. */
3313 return false;
3315 case TRUTH_NOT_EXPR:
3316 case NEGATE_EXPR:
3317 case ABS_EXPR:
3318 case BIT_NOT_EXPR:
3319 case PAREN_EXPR:
3320 case NON_LVALUE_EXPR:
3321 case CONJ_EXPR:
3322 break;
3324 default:
3325 gcc_unreachable ();
3328 /* For the remaining codes assert there is no conversion involved. */
3329 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3331 error ("non-trivial conversion in unary operation");
3332 debug_generic_expr (lhs_type);
3333 debug_generic_expr (rhs1_type);
3334 return true;
3337 return false;
3340 /* Verify a gimple assignment statement STMT with a binary rhs.
3341 Returns true if anything is wrong. */
3343 static bool
3344 verify_gimple_assign_binary (gimple stmt)
3346 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3347 tree lhs = gimple_assign_lhs (stmt);
3348 tree lhs_type = TREE_TYPE (lhs);
3349 tree rhs1 = gimple_assign_rhs1 (stmt);
3350 tree rhs1_type = TREE_TYPE (rhs1);
3351 tree rhs2 = gimple_assign_rhs2 (stmt);
3352 tree rhs2_type = TREE_TYPE (rhs2);
3354 if (!is_gimple_reg (lhs)
3355 && !(optimize == 0
3356 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3358 error ("non-register as LHS of binary operation");
3359 return true;
3362 if (!is_gimple_val (rhs1)
3363 || !is_gimple_val (rhs2))
3365 error ("invalid operands in binary operation");
3366 return true;
3369 /* First handle operations that involve different types. */
3370 switch (rhs_code)
3372 case COMPLEX_EXPR:
3374 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3375 || !(INTEGRAL_TYPE_P (rhs1_type)
3376 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3377 || !(INTEGRAL_TYPE_P (rhs2_type)
3378 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3380 error ("type mismatch in complex expression");
3381 debug_generic_expr (lhs_type);
3382 debug_generic_expr (rhs1_type);
3383 debug_generic_expr (rhs2_type);
3384 return true;
3387 return false;
3390 case LSHIFT_EXPR:
3391 case RSHIFT_EXPR:
3392 case LROTATE_EXPR:
3393 case RROTATE_EXPR:
3395 /* Shifts and rotates are ok on integral types, fixed point
3396 types and integer vector types. */
3397 if ((!INTEGRAL_TYPE_P (rhs1_type)
3398 && !FIXED_POINT_TYPE_P (rhs1_type)
3399 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3400 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3401 || (!INTEGRAL_TYPE_P (rhs2_type)
3402 /* Vector shifts of vectors are also ok. */
3403 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3404 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3405 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3406 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3407 || !useless_type_conversion_p (lhs_type, rhs1_type))
3409 error ("type mismatch in shift expression");
3410 debug_generic_expr (lhs_type);
3411 debug_generic_expr (rhs1_type);
3412 debug_generic_expr (rhs2_type);
3413 return true;
3416 return false;
3419 case VEC_LSHIFT_EXPR:
3420 case VEC_RSHIFT_EXPR:
3422 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3423 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3424 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3425 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3426 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3427 || (!INTEGRAL_TYPE_P (rhs2_type)
3428 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3429 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3430 || !useless_type_conversion_p (lhs_type, rhs1_type))
3432 error ("type mismatch in vector shift expression");
3433 debug_generic_expr (lhs_type);
3434 debug_generic_expr (rhs1_type);
3435 debug_generic_expr (rhs2_type);
3436 return true;
3438 /* For shifting a vector of non-integral components we
3439 only allow shifting by a constant multiple of the element size. */
3440 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3441 && (TREE_CODE (rhs2) != INTEGER_CST
3442 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3443 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3445 error ("non-element sized vector shift of floating point vector");
3446 return true;
3449 return false;
3452 case PLUS_EXPR:
3453 case MINUS_EXPR:
3455 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3456 ??? This just makes the checker happy and may not be what is
3457 intended. */
3458 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3459 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3461 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3462 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3464 error ("invalid non-vector operands to vector valued plus");
3465 return true;
3467 lhs_type = TREE_TYPE (lhs_type);
3468 rhs1_type = TREE_TYPE (rhs1_type);
3469 rhs2_type = TREE_TYPE (rhs2_type);
3470 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3471 the pointer to 2nd place. */
3472 if (POINTER_TYPE_P (rhs2_type))
3474 tree tem = rhs1_type;
3475 rhs1_type = rhs2_type;
3476 rhs2_type = tem;
3478 goto do_pointer_plus_expr_check;
3480 if (POINTER_TYPE_P (lhs_type)
3481 || POINTER_TYPE_P (rhs1_type)
3482 || POINTER_TYPE_P (rhs2_type))
3484 error ("invalid (pointer) operands to plus/minus");
3485 return true;
3488 /* Continue with generic binary expression handling. */
3489 break;
3492 case POINTER_PLUS_EXPR:
3494 do_pointer_plus_expr_check:
3495 if (!POINTER_TYPE_P (rhs1_type)
3496 || !useless_type_conversion_p (lhs_type, rhs1_type)
3497 || !useless_type_conversion_p (sizetype, rhs2_type))
3499 error ("type mismatch in pointer plus expression");
3500 debug_generic_stmt (lhs_type);
3501 debug_generic_stmt (rhs1_type);
3502 debug_generic_stmt (rhs2_type);
3503 return true;
3506 return false;
3509 case TRUTH_ANDIF_EXPR:
3510 case TRUTH_ORIF_EXPR:
3511 gcc_unreachable ();
3513 case TRUTH_AND_EXPR:
3514 case TRUTH_OR_EXPR:
3515 case TRUTH_XOR_EXPR:
3517 /* We allow any kind of integral typed argument and result. */
3518 if (!INTEGRAL_TYPE_P (rhs1_type)
3519 || !INTEGRAL_TYPE_P (rhs2_type)
3520 || !INTEGRAL_TYPE_P (lhs_type))
3522 error ("type mismatch in binary truth expression");
3523 debug_generic_expr (lhs_type);
3524 debug_generic_expr (rhs1_type);
3525 debug_generic_expr (rhs2_type);
3526 return true;
3529 return false;
3532 case LT_EXPR:
3533 case LE_EXPR:
3534 case GT_EXPR:
3535 case GE_EXPR:
3536 case EQ_EXPR:
3537 case NE_EXPR:
3538 case UNORDERED_EXPR:
3539 case ORDERED_EXPR:
3540 case UNLT_EXPR:
3541 case UNLE_EXPR:
3542 case UNGT_EXPR:
3543 case UNGE_EXPR:
3544 case UNEQ_EXPR:
3545 case LTGT_EXPR:
3546 /* Comparisons are also binary, but the result type is not
3547 connected to the operand types. */
3548 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3550 case WIDEN_MULT_EXPR:
3551 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3552 return true;
3553 return ((2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type))
3554 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3556 case WIDEN_SUM_EXPR:
3557 case VEC_WIDEN_MULT_HI_EXPR:
3558 case VEC_WIDEN_MULT_LO_EXPR:
3559 case VEC_PACK_TRUNC_EXPR:
3560 case VEC_PACK_SAT_EXPR:
3561 case VEC_PACK_FIX_TRUNC_EXPR:
3562 case VEC_EXTRACT_EVEN_EXPR:
3563 case VEC_EXTRACT_ODD_EXPR:
3564 case VEC_INTERLEAVE_HIGH_EXPR:
3565 case VEC_INTERLEAVE_LOW_EXPR:
3566 /* FIXME. */
3567 return false;
3569 case MULT_EXPR:
3570 case TRUNC_DIV_EXPR:
3571 case CEIL_DIV_EXPR:
3572 case FLOOR_DIV_EXPR:
3573 case ROUND_DIV_EXPR:
3574 case TRUNC_MOD_EXPR:
3575 case CEIL_MOD_EXPR:
3576 case FLOOR_MOD_EXPR:
3577 case ROUND_MOD_EXPR:
3578 case RDIV_EXPR:
3579 case EXACT_DIV_EXPR:
3580 case MIN_EXPR:
3581 case MAX_EXPR:
3582 case BIT_IOR_EXPR:
3583 case BIT_XOR_EXPR:
3584 case BIT_AND_EXPR:
3585 /* Continue with generic binary expression handling. */
3586 break;
3588 default:
3589 gcc_unreachable ();
3592 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3593 || !useless_type_conversion_p (lhs_type, rhs2_type))
3595 error ("type mismatch in binary expression");
3596 debug_generic_stmt (lhs_type);
3597 debug_generic_stmt (rhs1_type);
3598 debug_generic_stmt (rhs2_type);
3599 return true;
3602 return false;
3605 /* Verify a gimple assignment statement STMT with a ternary rhs.
3606 Returns true if anything is wrong. */
3608 static bool
3609 verify_gimple_assign_ternary (gimple stmt)
3611 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3612 tree lhs = gimple_assign_lhs (stmt);
3613 tree lhs_type = TREE_TYPE (lhs);
3614 tree rhs1 = gimple_assign_rhs1 (stmt);
3615 tree rhs1_type = TREE_TYPE (rhs1);
3616 tree rhs2 = gimple_assign_rhs2 (stmt);
3617 tree rhs2_type = TREE_TYPE (rhs2);
3618 tree rhs3 = gimple_assign_rhs3 (stmt);
3619 tree rhs3_type = TREE_TYPE (rhs3);
3621 if (!is_gimple_reg (lhs)
3622 && !(optimize == 0
3623 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3625 error ("non-register as LHS of ternary operation");
3626 return true;
3629 if (!is_gimple_val (rhs1)
3630 || !is_gimple_val (rhs2)
3631 || !is_gimple_val (rhs3))
3633 error ("invalid operands in ternary operation");
3634 return true;
3637 /* First handle operations that involve different types. */
3638 switch (rhs_code)
3640 case WIDEN_MULT_PLUS_EXPR:
3641 case WIDEN_MULT_MINUS_EXPR:
3642 if ((!INTEGRAL_TYPE_P (rhs1_type)
3643 && !FIXED_POINT_TYPE_P (rhs1_type))
3644 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3645 || !useless_type_conversion_p (lhs_type, rhs3_type)
3646 || 2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type)
3647 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3649 error ("type mismatch in widening multiply-accumulate expression");
3650 debug_generic_expr (lhs_type);
3651 debug_generic_expr (rhs1_type);
3652 debug_generic_expr (rhs2_type);
3653 debug_generic_expr (rhs3_type);
3654 return true;
3656 break;
3658 case FMA_EXPR:
3659 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3660 || !useless_type_conversion_p (lhs_type, rhs2_type)
3661 || !useless_type_conversion_p (lhs_type, rhs3_type))
3663 error ("type mismatch in fused multiply-add expression");
3664 debug_generic_expr (lhs_type);
3665 debug_generic_expr (rhs1_type);
3666 debug_generic_expr (rhs2_type);
3667 debug_generic_expr (rhs3_type);
3668 return true;
3670 break;
3672 default:
3673 gcc_unreachable ();
3675 return false;
3678 /* Verify a gimple assignment statement STMT with a single rhs.
3679 Returns true if anything is wrong. */
3681 static bool
3682 verify_gimple_assign_single (gimple stmt)
3684 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3685 tree lhs = gimple_assign_lhs (stmt);
3686 tree lhs_type = TREE_TYPE (lhs);
3687 tree rhs1 = gimple_assign_rhs1 (stmt);
3688 tree rhs1_type = TREE_TYPE (rhs1);
3689 bool res = false;
3691 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3693 error ("non-trivial conversion at assignment");
3694 debug_generic_expr (lhs_type);
3695 debug_generic_expr (rhs1_type);
3696 return true;
3699 if (handled_component_p (lhs))
3700 res |= verify_types_in_gimple_reference (lhs, true);
3702 /* Special codes we cannot handle via their class. */
3703 switch (rhs_code)
3705 case ADDR_EXPR:
3707 tree op = TREE_OPERAND (rhs1, 0);
3708 if (!is_gimple_addressable (op))
3710 error ("invalid operand in unary expression");
3711 return true;
3714 /* Technically there is no longer a need for matching types, but
3715 gimple hygiene asks for this check. In LTO we can end up
3716 combining incompatible units and thus end up with addresses
3717 of globals that change their type to a common one. */
3718 if (!in_lto_p
3719 && !types_compatible_p (TREE_TYPE (op),
3720 TREE_TYPE (TREE_TYPE (rhs1)))
3721 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3722 TREE_TYPE (op)))
3724 error ("type mismatch in address expression");
3725 debug_generic_stmt (TREE_TYPE (rhs1));
3726 debug_generic_stmt (TREE_TYPE (op));
3727 return true;
3730 return verify_types_in_gimple_reference (op, true);
3733 /* tcc_reference */
3734 case INDIRECT_REF:
3735 error ("INDIRECT_REF in gimple IL");
3736 return true;
3738 case COMPONENT_REF:
3739 case BIT_FIELD_REF:
3740 case ARRAY_REF:
3741 case ARRAY_RANGE_REF:
3742 case VIEW_CONVERT_EXPR:
3743 case REALPART_EXPR:
3744 case IMAGPART_EXPR:
3745 case TARGET_MEM_REF:
3746 case MEM_REF:
3747 if (!is_gimple_reg (lhs)
3748 && is_gimple_reg_type (TREE_TYPE (lhs)))
3750 error ("invalid rhs for gimple memory store");
3751 debug_generic_stmt (lhs);
3752 debug_generic_stmt (rhs1);
3753 return true;
3755 return res || verify_types_in_gimple_reference (rhs1, false);
3757 /* tcc_constant */
3758 case SSA_NAME:
3759 case INTEGER_CST:
3760 case REAL_CST:
3761 case FIXED_CST:
3762 case COMPLEX_CST:
3763 case VECTOR_CST:
3764 case STRING_CST:
3765 return res;
3767 /* tcc_declaration */
3768 case CONST_DECL:
3769 return res;
3770 case VAR_DECL:
3771 case PARM_DECL:
3772 if (!is_gimple_reg (lhs)
3773 && !is_gimple_reg (rhs1)
3774 && is_gimple_reg_type (TREE_TYPE (lhs)))
3776 error ("invalid rhs for gimple memory store");
3777 debug_generic_stmt (lhs);
3778 debug_generic_stmt (rhs1);
3779 return true;
3781 return res;
3783 case COND_EXPR:
3784 if (!is_gimple_reg (lhs)
3785 || (!is_gimple_reg (TREE_OPERAND (rhs1, 0))
3786 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1, 0)))
3787 || (!is_gimple_reg (TREE_OPERAND (rhs1, 1))
3788 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 1)))
3789 || (!is_gimple_reg (TREE_OPERAND (rhs1, 2))
3790 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 2))))
3792 error ("invalid COND_EXPR in gimple assignment");
3793 debug_generic_stmt (rhs1);
3794 return true;
3796 return res;
3798 case CONSTRUCTOR:
3799 case OBJ_TYPE_REF:
3800 case ASSERT_EXPR:
3801 case WITH_SIZE_EXPR:
3802 case POLYNOMIAL_CHREC:
3803 case DOT_PROD_EXPR:
3804 case VEC_COND_EXPR:
3805 case REALIGN_LOAD_EXPR:
3806 /* FIXME. */
3807 return res;
3809 default:;
3812 return res;
3815 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3816 is a problem, otherwise false. */
3818 static bool
3819 verify_gimple_assign (gimple stmt)
3821 switch (gimple_assign_rhs_class (stmt))
3823 case GIMPLE_SINGLE_RHS:
3824 return verify_gimple_assign_single (stmt);
3826 case GIMPLE_UNARY_RHS:
3827 return verify_gimple_assign_unary (stmt);
3829 case GIMPLE_BINARY_RHS:
3830 return verify_gimple_assign_binary (stmt);
3832 case GIMPLE_TERNARY_RHS:
3833 return verify_gimple_assign_ternary (stmt);
3835 default:
3836 gcc_unreachable ();
3840 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3841 is a problem, otherwise false. */
3843 static bool
3844 verify_gimple_return (gimple stmt)
3846 tree op = gimple_return_retval (stmt);
3847 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3849 /* We cannot test for present return values as we do not fix up missing
3850 return values from the original source. */
3851 if (op == NULL)
3852 return false;
3854 if (!is_gimple_val (op)
3855 && TREE_CODE (op) != RESULT_DECL)
3857 error ("invalid operand in return statement");
3858 debug_generic_stmt (op);
3859 return true;
3862 if ((TREE_CODE (op) == RESULT_DECL
3863 && DECL_BY_REFERENCE (op))
3864 || (TREE_CODE (op) == SSA_NAME
3865 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3866 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3867 op = TREE_TYPE (op);
3869 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3871 error ("invalid conversion in return statement");
3872 debug_generic_stmt (restype);
3873 debug_generic_stmt (TREE_TYPE (op));
3874 return true;
3877 return false;
3881 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3882 is a problem, otherwise false. */
3884 static bool
3885 verify_gimple_goto (gimple stmt)
3887 tree dest = gimple_goto_dest (stmt);
3889 /* ??? We have two canonical forms of direct goto destinations, a
3890 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3891 if (TREE_CODE (dest) != LABEL_DECL
3892 && (!is_gimple_val (dest)
3893 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3895 error ("goto destination is neither a label nor a pointer");
3896 return true;
3899 return false;
3902 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3903 is a problem, otherwise false. */
3905 static bool
3906 verify_gimple_switch (gimple stmt)
3908 if (!is_gimple_val (gimple_switch_index (stmt)))
3910 error ("invalid operand to switch statement");
3911 debug_generic_stmt (gimple_switch_index (stmt));
3912 return true;
3915 return false;
3919 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
3920 and false otherwise. */
3922 static bool
3923 verify_gimple_phi (gimple stmt)
3925 tree type = TREE_TYPE (gimple_phi_result (stmt));
3926 unsigned i;
3928 if (TREE_CODE (gimple_phi_result (stmt)) != SSA_NAME)
3930 error ("invalid PHI result");
3931 return true;
3934 for (i = 0; i < gimple_phi_num_args (stmt); i++)
3936 tree arg = gimple_phi_arg_def (stmt, i);
3937 if ((is_gimple_reg (gimple_phi_result (stmt))
3938 && !is_gimple_val (arg))
3939 || (!is_gimple_reg (gimple_phi_result (stmt))
3940 && !is_gimple_addressable (arg)))
3942 error ("invalid PHI argument");
3943 debug_generic_stmt (arg);
3944 return true;
3946 if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
3948 error ("incompatible types in PHI argument %u", i);
3949 debug_generic_stmt (type);
3950 debug_generic_stmt (TREE_TYPE (arg));
3951 return true;
3955 return false;
3959 /* Verify a gimple debug statement STMT.
3960 Returns true if anything is wrong. */
3962 static bool
3963 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3965 /* There isn't much that could be wrong in a gimple debug stmt. A
3966 gimple debug bind stmt, for example, maps a tree, that's usually
3967 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3968 component or member of an aggregate type, to another tree, that
3969 can be an arbitrary expression. These stmts expand into debug
3970 insns, and are converted to debug notes by var-tracking.c. */
3971 return false;
3975 /* Verify the GIMPLE statement STMT. Returns true if there is an
3976 error, otherwise false. */
3978 static bool
3979 verify_types_in_gimple_stmt (gimple stmt)
3981 switch (gimple_code (stmt))
3983 case GIMPLE_ASSIGN:
3984 return verify_gimple_assign (stmt);
3986 case GIMPLE_LABEL:
3987 return TREE_CODE (gimple_label_label (stmt)) != LABEL_DECL;
3989 case GIMPLE_CALL:
3990 return verify_gimple_call (stmt);
3992 case GIMPLE_COND:
3993 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
3995 error ("invalid comparison code in gimple cond");
3996 return true;
3998 if (!(!gimple_cond_true_label (stmt)
3999 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4000 || !(!gimple_cond_false_label (stmt)
4001 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4003 error ("invalid labels in gimple cond");
4004 return true;
4007 return verify_gimple_comparison (boolean_type_node,
4008 gimple_cond_lhs (stmt),
4009 gimple_cond_rhs (stmt));
4011 case GIMPLE_GOTO:
4012 return verify_gimple_goto (stmt);
4014 case GIMPLE_SWITCH:
4015 return verify_gimple_switch (stmt);
4017 case GIMPLE_RETURN:
4018 return verify_gimple_return (stmt);
4020 case GIMPLE_ASM:
4021 return false;
4023 case GIMPLE_PHI:
4024 return verify_gimple_phi (stmt);
4026 /* Tuples that do not have tree operands. */
4027 case GIMPLE_NOP:
4028 case GIMPLE_PREDICT:
4029 case GIMPLE_RESX:
4030 case GIMPLE_EH_DISPATCH:
4031 case GIMPLE_EH_MUST_NOT_THROW:
4032 return false;
4034 CASE_GIMPLE_OMP:
4035 /* OpenMP directives are validated by the FE and never operated
4036 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4037 non-gimple expressions when the main index variable has had
4038 its address taken. This does not affect the loop itself
4039 because the header of an GIMPLE_OMP_FOR is merely used to determine
4040 how to setup the parallel iteration. */
4041 return false;
4043 case GIMPLE_DEBUG:
4044 return verify_gimple_debug (stmt);
4046 default:
4047 gcc_unreachable ();
4051 /* Verify the GIMPLE statements inside the sequence STMTS. */
4053 static bool
4054 verify_types_in_gimple_seq_2 (gimple_seq stmts)
4056 gimple_stmt_iterator ittr;
4057 bool err = false;
4059 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4061 gimple stmt = gsi_stmt (ittr);
4063 switch (gimple_code (stmt))
4065 case GIMPLE_BIND:
4066 err |= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt));
4067 break;
4069 case GIMPLE_TRY:
4070 err |= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt));
4071 err |= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt));
4072 break;
4074 case GIMPLE_EH_FILTER:
4075 err |= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt));
4076 break;
4078 case GIMPLE_CATCH:
4079 err |= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt));
4080 break;
4082 default:
4084 bool err2 = verify_types_in_gimple_stmt (stmt);
4085 if (err2)
4086 debug_gimple_stmt (stmt);
4087 err |= err2;
4092 return err;
4096 /* Verify the GIMPLE statements inside the statement list STMTS. */
4098 void
4099 verify_types_in_gimple_seq (gimple_seq stmts)
4101 if (verify_types_in_gimple_seq_2 (stmts))
4102 internal_error ("verify_gimple failed");
4106 /* Verify STMT, return true if STMT is not in GIMPLE form.
4107 TODO: Implement type checking. */
4109 static bool
4110 verify_stmt (gimple_stmt_iterator *gsi)
4112 tree addr;
4113 struct walk_stmt_info wi;
4114 bool last_in_block = gsi_one_before_end_p (*gsi);
4115 gimple stmt = gsi_stmt (*gsi);
4116 int lp_nr;
4118 if (is_gimple_omp (stmt))
4120 /* OpenMP directives are validated by the FE and never operated
4121 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4122 non-gimple expressions when the main index variable has had
4123 its address taken. This does not affect the loop itself
4124 because the header of an GIMPLE_OMP_FOR is merely used to determine
4125 how to setup the parallel iteration. */
4126 return false;
4129 /* FIXME. The C frontend passes unpromoted arguments in case it
4130 didn't see a function declaration before the call. */
4131 if (is_gimple_call (stmt))
4133 tree decl;
4135 if (!is_gimple_call_addr (gimple_call_fn (stmt)))
4137 error ("invalid function in call statement");
4138 return true;
4141 decl = gimple_call_fndecl (stmt);
4142 if (decl
4143 && TREE_CODE (decl) == FUNCTION_DECL
4144 && DECL_LOOPING_CONST_OR_PURE_P (decl)
4145 && (!DECL_PURE_P (decl))
4146 && (!TREE_READONLY (decl)))
4148 error ("invalid pure const state for function");
4149 return true;
4153 if (is_gimple_debug (stmt))
4154 return false;
4156 memset (&wi, 0, sizeof (wi));
4157 addr = walk_gimple_op (gsi_stmt (*gsi), verify_expr, &wi);
4158 if (addr)
4160 debug_generic_expr (addr);
4161 inform (gimple_location (gsi_stmt (*gsi)), "in statement");
4162 debug_gimple_stmt (stmt);
4163 return true;
4166 /* If the statement is marked as part of an EH region, then it is
4167 expected that the statement could throw. Verify that when we
4168 have optimizations that simplify statements such that we prove
4169 that they cannot throw, that we update other data structures
4170 to match. */
4171 lp_nr = lookup_stmt_eh_lp (stmt);
4172 if (lp_nr != 0)
4174 if (!stmt_could_throw_p (stmt))
4176 error ("statement marked for throw, but doesn%'t");
4177 goto fail;
4179 else if (lp_nr > 0 && !last_in_block && stmt_can_throw_internal (stmt))
4181 error ("statement marked for throw in middle of block");
4182 goto fail;
4186 return false;
4188 fail:
4189 debug_gimple_stmt (stmt);
4190 return true;
4194 /* Return true when the T can be shared. */
4196 bool
4197 tree_node_can_be_shared (tree t)
4199 if (IS_TYPE_OR_DECL_P (t)
4200 || is_gimple_min_invariant (t)
4201 || TREE_CODE (t) == SSA_NAME
4202 || t == error_mark_node
4203 || TREE_CODE (t) == IDENTIFIER_NODE)
4204 return true;
4206 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4207 return true;
4209 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4210 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4211 || TREE_CODE (t) == COMPONENT_REF
4212 || TREE_CODE (t) == REALPART_EXPR
4213 || TREE_CODE (t) == IMAGPART_EXPR)
4214 t = TREE_OPERAND (t, 0);
4216 if (DECL_P (t))
4217 return true;
4219 return false;
4223 /* Called via walk_gimple_stmt. Verify tree sharing. */
4225 static tree
4226 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4228 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4229 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4231 if (tree_node_can_be_shared (*tp))
4233 *walk_subtrees = false;
4234 return NULL;
4237 if (pointer_set_insert (visited, *tp))
4238 return *tp;
4240 return NULL;
4244 static bool eh_error_found;
4245 static int
4246 verify_eh_throw_stmt_node (void **slot, void *data)
4248 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4249 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4251 if (!pointer_set_contains (visited, node->stmt))
4253 error ("dead STMT in EH table");
4254 debug_gimple_stmt (node->stmt);
4255 eh_error_found = true;
4257 return 1;
4261 /* Verify the GIMPLE statements in every basic block. */
4263 DEBUG_FUNCTION void
4264 verify_stmts (void)
4266 basic_block bb;
4267 gimple_stmt_iterator gsi;
4268 bool err = false;
4269 struct pointer_set_t *visited, *visited_stmts;
4270 tree addr;
4271 struct walk_stmt_info wi;
4273 timevar_push (TV_TREE_STMT_VERIFY);
4274 visited = pointer_set_create ();
4275 visited_stmts = pointer_set_create ();
4277 memset (&wi, 0, sizeof (wi));
4278 wi.info = (void *) visited;
4280 FOR_EACH_BB (bb)
4282 gimple phi;
4283 size_t i;
4285 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4287 phi = gsi_stmt (gsi);
4288 pointer_set_insert (visited_stmts, phi);
4289 if (gimple_bb (phi) != bb)
4291 error ("gimple_bb (phi) is set to a wrong basic block");
4292 err |= true;
4295 for (i = 0; i < gimple_phi_num_args (phi); i++)
4297 tree t = gimple_phi_arg_def (phi, i);
4298 tree addr;
4300 if (!t)
4302 error ("missing PHI def");
4303 debug_gimple_stmt (phi);
4304 err |= true;
4305 continue;
4307 /* Addressable variables do have SSA_NAMEs but they
4308 are not considered gimple values. */
4309 else if (TREE_CODE (t) != SSA_NAME
4310 && TREE_CODE (t) != FUNCTION_DECL
4311 && !is_gimple_min_invariant (t))
4313 error ("PHI argument is not a GIMPLE value");
4314 debug_gimple_stmt (phi);
4315 debug_generic_expr (t);
4316 err |= true;
4319 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
4320 if (addr)
4322 error ("incorrect sharing of tree nodes");
4323 debug_gimple_stmt (phi);
4324 debug_generic_expr (addr);
4325 err |= true;
4329 #ifdef ENABLE_TYPES_CHECKING
4330 if (verify_gimple_phi (phi))
4332 debug_gimple_stmt (phi);
4333 err |= true;
4335 #endif
4338 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
4340 gimple stmt = gsi_stmt (gsi);
4342 if (gimple_code (stmt) == GIMPLE_WITH_CLEANUP_EXPR
4343 || gimple_code (stmt) == GIMPLE_BIND)
4345 error ("invalid GIMPLE statement");
4346 debug_gimple_stmt (stmt);
4347 err |= true;
4350 pointer_set_insert (visited_stmts, stmt);
4352 if (gimple_bb (stmt) != bb)
4354 error ("gimple_bb (stmt) is set to a wrong basic block");
4355 debug_gimple_stmt (stmt);
4356 err |= true;
4359 if (gimple_code (stmt) == GIMPLE_LABEL)
4361 tree decl = gimple_label_label (stmt);
4362 int uid = LABEL_DECL_UID (decl);
4364 if (uid == -1
4365 || VEC_index (basic_block, label_to_block_map, uid) != bb)
4367 error ("incorrect entry in label_to_block_map");
4368 err |= true;
4371 uid = EH_LANDING_PAD_NR (decl);
4372 if (uid)
4374 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4375 if (decl != lp->post_landing_pad)
4377 error ("incorrect setting of landing pad number");
4378 err |= true;
4383 err |= verify_stmt (&gsi);
4385 #ifdef ENABLE_TYPES_CHECKING
4386 if (verify_types_in_gimple_stmt (gsi_stmt (gsi)))
4388 debug_gimple_stmt (stmt);
4389 err |= true;
4391 #endif
4392 addr = walk_gimple_op (gsi_stmt (gsi), verify_node_sharing, &wi);
4393 if (addr)
4395 error ("incorrect sharing of tree nodes");
4396 debug_gimple_stmt (stmt);
4397 debug_generic_expr (addr);
4398 err |= true;
4400 gsi_next (&gsi);
4404 eh_error_found = false;
4405 if (get_eh_throw_stmt_table (cfun))
4406 htab_traverse (get_eh_throw_stmt_table (cfun),
4407 verify_eh_throw_stmt_node,
4408 visited_stmts);
4410 if (err | eh_error_found)
4411 internal_error ("verify_stmts failed");
4413 pointer_set_destroy (visited);
4414 pointer_set_destroy (visited_stmts);
4415 verify_histograms ();
4416 timevar_pop (TV_TREE_STMT_VERIFY);
4420 /* Verifies that the flow information is OK. */
4422 static int
4423 gimple_verify_flow_info (void)
4425 int err = 0;
4426 basic_block bb;
4427 gimple_stmt_iterator gsi;
4428 gimple stmt;
4429 edge e;
4430 edge_iterator ei;
4432 if (ENTRY_BLOCK_PTR->il.gimple)
4434 error ("ENTRY_BLOCK has IL associated with it");
4435 err = 1;
4438 if (EXIT_BLOCK_PTR->il.gimple)
4440 error ("EXIT_BLOCK has IL associated with it");
4441 err = 1;
4444 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4445 if (e->flags & EDGE_FALLTHRU)
4447 error ("fallthru to exit from bb %d", e->src->index);
4448 err = 1;
4451 FOR_EACH_BB (bb)
4453 bool found_ctrl_stmt = false;
4455 stmt = NULL;
4457 /* Skip labels on the start of basic block. */
4458 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4460 tree label;
4461 gimple prev_stmt = stmt;
4463 stmt = gsi_stmt (gsi);
4465 if (gimple_code (stmt) != GIMPLE_LABEL)
4466 break;
4468 label = gimple_label_label (stmt);
4469 if (prev_stmt && DECL_NONLOCAL (label))
4471 error ("nonlocal label ");
4472 print_generic_expr (stderr, label, 0);
4473 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4474 bb->index);
4475 err = 1;
4478 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4480 error ("EH landing pad label ");
4481 print_generic_expr (stderr, label, 0);
4482 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4483 bb->index);
4484 err = 1;
4487 if (label_to_block (label) != bb)
4489 error ("label ");
4490 print_generic_expr (stderr, label, 0);
4491 fprintf (stderr, " to block does not match in bb %d",
4492 bb->index);
4493 err = 1;
4496 if (decl_function_context (label) != current_function_decl)
4498 error ("label ");
4499 print_generic_expr (stderr, label, 0);
4500 fprintf (stderr, " has incorrect context in bb %d",
4501 bb->index);
4502 err = 1;
4506 /* Verify that body of basic block BB is free of control flow. */
4507 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4509 gimple stmt = gsi_stmt (gsi);
4511 if (found_ctrl_stmt)
4513 error ("control flow in the middle of basic block %d",
4514 bb->index);
4515 err = 1;
4518 if (stmt_ends_bb_p (stmt))
4519 found_ctrl_stmt = true;
4521 if (gimple_code (stmt) == GIMPLE_LABEL)
4523 error ("label ");
4524 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4525 fprintf (stderr, " in the middle of basic block %d", bb->index);
4526 err = 1;
4530 gsi = gsi_last_bb (bb);
4531 if (gsi_end_p (gsi))
4532 continue;
4534 stmt = gsi_stmt (gsi);
4536 if (gimple_code (stmt) == GIMPLE_LABEL)
4537 continue;
4539 err |= verify_eh_edges (stmt);
4541 if (is_ctrl_stmt (stmt))
4543 FOR_EACH_EDGE (e, ei, bb->succs)
4544 if (e->flags & EDGE_FALLTHRU)
4546 error ("fallthru edge after a control statement in bb %d",
4547 bb->index);
4548 err = 1;
4552 if (gimple_code (stmt) != GIMPLE_COND)
4554 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4555 after anything else but if statement. */
4556 FOR_EACH_EDGE (e, ei, bb->succs)
4557 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4559 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4560 bb->index);
4561 err = 1;
4565 switch (gimple_code (stmt))
4567 case GIMPLE_COND:
4569 edge true_edge;
4570 edge false_edge;
4572 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4574 if (!true_edge
4575 || !false_edge
4576 || !(true_edge->flags & EDGE_TRUE_VALUE)
4577 || !(false_edge->flags & EDGE_FALSE_VALUE)
4578 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4579 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4580 || EDGE_COUNT (bb->succs) >= 3)
4582 error ("wrong outgoing edge flags at end of bb %d",
4583 bb->index);
4584 err = 1;
4587 break;
4589 case GIMPLE_GOTO:
4590 if (simple_goto_p (stmt))
4592 error ("explicit goto at end of bb %d", bb->index);
4593 err = 1;
4595 else
4597 /* FIXME. We should double check that the labels in the
4598 destination blocks have their address taken. */
4599 FOR_EACH_EDGE (e, ei, bb->succs)
4600 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4601 | EDGE_FALSE_VALUE))
4602 || !(e->flags & EDGE_ABNORMAL))
4604 error ("wrong outgoing edge flags at end of bb %d",
4605 bb->index);
4606 err = 1;
4609 break;
4611 case GIMPLE_CALL:
4612 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4613 break;
4614 /* ... fallthru ... */
4615 case GIMPLE_RETURN:
4616 if (!single_succ_p (bb)
4617 || (single_succ_edge (bb)->flags
4618 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4619 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4621 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4622 err = 1;
4624 if (single_succ (bb) != EXIT_BLOCK_PTR)
4626 error ("return edge does not point to exit in bb %d",
4627 bb->index);
4628 err = 1;
4630 break;
4632 case GIMPLE_SWITCH:
4634 tree prev;
4635 edge e;
4636 size_t i, n;
4638 n = gimple_switch_num_labels (stmt);
4640 /* Mark all the destination basic blocks. */
4641 for (i = 0; i < n; ++i)
4643 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4644 basic_block label_bb = label_to_block (lab);
4645 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4646 label_bb->aux = (void *)1;
4649 /* Verify that the case labels are sorted. */
4650 prev = gimple_switch_label (stmt, 0);
4651 for (i = 1; i < n; ++i)
4653 tree c = gimple_switch_label (stmt, i);
4654 if (!CASE_LOW (c))
4656 error ("found default case not at the start of "
4657 "case vector");
4658 err = 1;
4659 continue;
4661 if (CASE_LOW (prev)
4662 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4664 error ("case labels not sorted: ");
4665 print_generic_expr (stderr, prev, 0);
4666 fprintf (stderr," is greater than ");
4667 print_generic_expr (stderr, c, 0);
4668 fprintf (stderr," but comes before it.\n");
4669 err = 1;
4671 prev = c;
4673 /* VRP will remove the default case if it can prove it will
4674 never be executed. So do not verify there always exists
4675 a default case here. */
4677 FOR_EACH_EDGE (e, ei, bb->succs)
4679 if (!e->dest->aux)
4681 error ("extra outgoing edge %d->%d",
4682 bb->index, e->dest->index);
4683 err = 1;
4686 e->dest->aux = (void *)2;
4687 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4688 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4690 error ("wrong outgoing edge flags at end of bb %d",
4691 bb->index);
4692 err = 1;
4696 /* Check that we have all of them. */
4697 for (i = 0; i < n; ++i)
4699 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4700 basic_block label_bb = label_to_block (lab);
4702 if (label_bb->aux != (void *)2)
4704 error ("missing edge %i->%i", bb->index, label_bb->index);
4705 err = 1;
4709 FOR_EACH_EDGE (e, ei, bb->succs)
4710 e->dest->aux = (void *)0;
4712 break;
4714 case GIMPLE_EH_DISPATCH:
4715 err |= verify_eh_dispatch_edge (stmt);
4716 break;
4718 default:
4719 break;
4723 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4724 verify_dominators (CDI_DOMINATORS);
4726 return err;
4730 /* Updates phi nodes after creating a forwarder block joined
4731 by edge FALLTHRU. */
4733 static void
4734 gimple_make_forwarder_block (edge fallthru)
4736 edge e;
4737 edge_iterator ei;
4738 basic_block dummy, bb;
4739 tree var;
4740 gimple_stmt_iterator gsi;
4742 dummy = fallthru->src;
4743 bb = fallthru->dest;
4745 if (single_pred_p (bb))
4746 return;
4748 /* If we redirected a branch we must create new PHI nodes at the
4749 start of BB. */
4750 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4752 gimple phi, new_phi;
4754 phi = gsi_stmt (gsi);
4755 var = gimple_phi_result (phi);
4756 new_phi = create_phi_node (var, bb);
4757 SSA_NAME_DEF_STMT (var) = new_phi;
4758 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4759 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4760 UNKNOWN_LOCATION);
4763 /* Add the arguments we have stored on edges. */
4764 FOR_EACH_EDGE (e, ei, bb->preds)
4766 if (e == fallthru)
4767 continue;
4769 flush_pending_stmts (e);
4774 /* Return a non-special label in the head of basic block BLOCK.
4775 Create one if it doesn't exist. */
4777 tree
4778 gimple_block_label (basic_block bb)
4780 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4781 bool first = true;
4782 tree label;
4783 gimple stmt;
4785 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4787 stmt = gsi_stmt (i);
4788 if (gimple_code (stmt) != GIMPLE_LABEL)
4789 break;
4790 label = gimple_label_label (stmt);
4791 if (!DECL_NONLOCAL (label))
4793 if (!first)
4794 gsi_move_before (&i, &s);
4795 return label;
4799 label = create_artificial_label (UNKNOWN_LOCATION);
4800 stmt = gimple_build_label (label);
4801 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4802 return label;
4806 /* Attempt to perform edge redirection by replacing a possibly complex
4807 jump instruction by a goto or by removing the jump completely.
4808 This can apply only if all edges now point to the same block. The
4809 parameters and return values are equivalent to
4810 redirect_edge_and_branch. */
4812 static edge
4813 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4815 basic_block src = e->src;
4816 gimple_stmt_iterator i;
4817 gimple stmt;
4819 /* We can replace or remove a complex jump only when we have exactly
4820 two edges. */
4821 if (EDGE_COUNT (src->succs) != 2
4822 /* Verify that all targets will be TARGET. Specifically, the
4823 edge that is not E must also go to TARGET. */
4824 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4825 return NULL;
4827 i = gsi_last_bb (src);
4828 if (gsi_end_p (i))
4829 return NULL;
4831 stmt = gsi_stmt (i);
4833 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4835 gsi_remove (&i, true);
4836 e = ssa_redirect_edge (e, target);
4837 e->flags = EDGE_FALLTHRU;
4838 return e;
4841 return NULL;
4845 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4846 edge representing the redirected branch. */
4848 static edge
4849 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4851 basic_block bb = e->src;
4852 gimple_stmt_iterator gsi;
4853 edge ret;
4854 gimple stmt;
4856 if (e->flags & EDGE_ABNORMAL)
4857 return NULL;
4859 if (e->dest == dest)
4860 return NULL;
4862 if (e->flags & EDGE_EH)
4863 return redirect_eh_edge (e, dest);
4865 if (e->src != ENTRY_BLOCK_PTR)
4867 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4868 if (ret)
4869 return ret;
4872 gsi = gsi_last_bb (bb);
4873 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4875 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4877 case GIMPLE_COND:
4878 /* For COND_EXPR, we only need to redirect the edge. */
4879 break;
4881 case GIMPLE_GOTO:
4882 /* No non-abnormal edges should lead from a non-simple goto, and
4883 simple ones should be represented implicitly. */
4884 gcc_unreachable ();
4886 case GIMPLE_SWITCH:
4888 tree label = gimple_block_label (dest);
4889 tree cases = get_cases_for_edge (e, stmt);
4891 /* If we have a list of cases associated with E, then use it
4892 as it's a lot faster than walking the entire case vector. */
4893 if (cases)
4895 edge e2 = find_edge (e->src, dest);
4896 tree last, first;
4898 first = cases;
4899 while (cases)
4901 last = cases;
4902 CASE_LABEL (cases) = label;
4903 cases = TREE_CHAIN (cases);
4906 /* If there was already an edge in the CFG, then we need
4907 to move all the cases associated with E to E2. */
4908 if (e2)
4910 tree cases2 = get_cases_for_edge (e2, stmt);
4912 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4913 TREE_CHAIN (cases2) = first;
4915 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4917 else
4919 size_t i, n = gimple_switch_num_labels (stmt);
4921 for (i = 0; i < n; i++)
4923 tree elt = gimple_switch_label (stmt, i);
4924 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4925 CASE_LABEL (elt) = label;
4929 break;
4931 case GIMPLE_ASM:
4933 int i, n = gimple_asm_nlabels (stmt);
4934 tree label = NULL;
4936 for (i = 0; i < n; ++i)
4938 tree cons = gimple_asm_label_op (stmt, i);
4939 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4941 if (!label)
4942 label = gimple_block_label (dest);
4943 TREE_VALUE (cons) = label;
4947 /* If we didn't find any label matching the former edge in the
4948 asm labels, we must be redirecting the fallthrough
4949 edge. */
4950 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4952 break;
4954 case GIMPLE_RETURN:
4955 gsi_remove (&gsi, true);
4956 e->flags |= EDGE_FALLTHRU;
4957 break;
4959 case GIMPLE_OMP_RETURN:
4960 case GIMPLE_OMP_CONTINUE:
4961 case GIMPLE_OMP_SECTIONS_SWITCH:
4962 case GIMPLE_OMP_FOR:
4963 /* The edges from OMP constructs can be simply redirected. */
4964 break;
4966 case GIMPLE_EH_DISPATCH:
4967 if (!(e->flags & EDGE_FALLTHRU))
4968 redirect_eh_dispatch_edge (stmt, e, dest);
4969 break;
4971 default:
4972 /* Otherwise it must be a fallthru edge, and we don't need to
4973 do anything besides redirecting it. */
4974 gcc_assert (e->flags & EDGE_FALLTHRU);
4975 break;
4978 /* Update/insert PHI nodes as necessary. */
4980 /* Now update the edges in the CFG. */
4981 e = ssa_redirect_edge (e, dest);
4983 return e;
4986 /* Returns true if it is possible to remove edge E by redirecting
4987 it to the destination of the other edge from E->src. */
4989 static bool
4990 gimple_can_remove_branch_p (const_edge e)
4992 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4993 return false;
4995 return true;
4998 /* Simple wrapper, as we can always redirect fallthru edges. */
5000 static basic_block
5001 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5003 e = gimple_redirect_edge_and_branch (e, dest);
5004 gcc_assert (e);
5006 return NULL;
5010 /* Splits basic block BB after statement STMT (but at least after the
5011 labels). If STMT is NULL, BB is split just after the labels. */
5013 static basic_block
5014 gimple_split_block (basic_block bb, void *stmt)
5016 gimple_stmt_iterator gsi;
5017 gimple_stmt_iterator gsi_tgt;
5018 gimple act;
5019 gimple_seq list;
5020 basic_block new_bb;
5021 edge e;
5022 edge_iterator ei;
5024 new_bb = create_empty_bb (bb);
5026 /* Redirect the outgoing edges. */
5027 new_bb->succs = bb->succs;
5028 bb->succs = NULL;
5029 FOR_EACH_EDGE (e, ei, new_bb->succs)
5030 e->src = new_bb;
5032 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5033 stmt = NULL;
5035 /* Move everything from GSI to the new basic block. */
5036 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5038 act = gsi_stmt (gsi);
5039 if (gimple_code (act) == GIMPLE_LABEL)
5040 continue;
5042 if (!stmt)
5043 break;
5045 if (stmt == act)
5047 gsi_next (&gsi);
5048 break;
5052 if (gsi_end_p (gsi))
5053 return new_bb;
5055 /* Split the statement list - avoid re-creating new containers as this
5056 brings ugly quadratic memory consumption in the inliner.
5057 (We are still quadratic since we need to update stmt BB pointers,
5058 sadly.) */
5059 list = gsi_split_seq_before (&gsi);
5060 set_bb_seq (new_bb, list);
5061 for (gsi_tgt = gsi_start (list);
5062 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5063 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5065 return new_bb;
5069 /* Moves basic block BB after block AFTER. */
5071 static bool
5072 gimple_move_block_after (basic_block bb, basic_block after)
5074 if (bb->prev_bb == after)
5075 return true;
5077 unlink_block (bb);
5078 link_block (bb, after);
5080 return true;
5084 /* Return true if basic_block can be duplicated. */
5086 static bool
5087 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5089 return true;
5092 /* Create a duplicate of the basic block BB. NOTE: This does not
5093 preserve SSA form. */
5095 static basic_block
5096 gimple_duplicate_bb (basic_block bb)
5098 basic_block new_bb;
5099 gimple_stmt_iterator gsi, gsi_tgt;
5100 gimple_seq phis = phi_nodes (bb);
5101 gimple phi, stmt, copy;
5103 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5105 /* Copy the PHI nodes. We ignore PHI node arguments here because
5106 the incoming edges have not been setup yet. */
5107 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5109 phi = gsi_stmt (gsi);
5110 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5111 create_new_def_for (gimple_phi_result (copy), copy,
5112 gimple_phi_result_ptr (copy));
5115 gsi_tgt = gsi_start_bb (new_bb);
5116 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5118 def_operand_p def_p;
5119 ssa_op_iter op_iter;
5121 stmt = gsi_stmt (gsi);
5122 if (gimple_code (stmt) == GIMPLE_LABEL)
5123 continue;
5125 /* Create a new copy of STMT and duplicate STMT's virtual
5126 operands. */
5127 copy = gimple_copy (stmt);
5128 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5130 maybe_duplicate_eh_stmt (copy, stmt);
5131 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5133 /* Create new names for all the definitions created by COPY and
5134 add replacement mappings for each new name. */
5135 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5136 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5139 return new_bb;
5142 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5144 static void
5145 add_phi_args_after_copy_edge (edge e_copy)
5147 basic_block bb, bb_copy = e_copy->src, dest;
5148 edge e;
5149 edge_iterator ei;
5150 gimple phi, phi_copy;
5151 tree def;
5152 gimple_stmt_iterator psi, psi_copy;
5154 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5155 return;
5157 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5159 if (e_copy->dest->flags & BB_DUPLICATED)
5160 dest = get_bb_original (e_copy->dest);
5161 else
5162 dest = e_copy->dest;
5164 e = find_edge (bb, dest);
5165 if (!e)
5167 /* During loop unrolling the target of the latch edge is copied.
5168 In this case we are not looking for edge to dest, but to
5169 duplicated block whose original was dest. */
5170 FOR_EACH_EDGE (e, ei, bb->succs)
5172 if ((e->dest->flags & BB_DUPLICATED)
5173 && get_bb_original (e->dest) == dest)
5174 break;
5177 gcc_assert (e != NULL);
5180 for (psi = gsi_start_phis (e->dest),
5181 psi_copy = gsi_start_phis (e_copy->dest);
5182 !gsi_end_p (psi);
5183 gsi_next (&psi), gsi_next (&psi_copy))
5185 phi = gsi_stmt (psi);
5186 phi_copy = gsi_stmt (psi_copy);
5187 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5188 add_phi_arg (phi_copy, def, e_copy,
5189 gimple_phi_arg_location_from_edge (phi, e));
5194 /* Basic block BB_COPY was created by code duplication. Add phi node
5195 arguments for edges going out of BB_COPY. The blocks that were
5196 duplicated have BB_DUPLICATED set. */
5198 void
5199 add_phi_args_after_copy_bb (basic_block bb_copy)
5201 edge e_copy;
5202 edge_iterator ei;
5204 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5206 add_phi_args_after_copy_edge (e_copy);
5210 /* Blocks in REGION_COPY array of length N_REGION were created by
5211 duplication of basic blocks. Add phi node arguments for edges
5212 going from these blocks. If E_COPY is not NULL, also add
5213 phi node arguments for its destination.*/
5215 void
5216 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5217 edge e_copy)
5219 unsigned i;
5221 for (i = 0; i < n_region; i++)
5222 region_copy[i]->flags |= BB_DUPLICATED;
5224 for (i = 0; i < n_region; i++)
5225 add_phi_args_after_copy_bb (region_copy[i]);
5226 if (e_copy)
5227 add_phi_args_after_copy_edge (e_copy);
5229 for (i = 0; i < n_region; i++)
5230 region_copy[i]->flags &= ~BB_DUPLICATED;
5233 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5234 important exit edge EXIT. By important we mean that no SSA name defined
5235 inside region is live over the other exit edges of the region. All entry
5236 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5237 to the duplicate of the region. SSA form, dominance and loop information
5238 is updated. The new basic blocks are stored to REGION_COPY in the same
5239 order as they had in REGION, provided that REGION_COPY is not NULL.
5240 The function returns false if it is unable to copy the region,
5241 true otherwise. */
5243 bool
5244 gimple_duplicate_sese_region (edge entry, edge exit,
5245 basic_block *region, unsigned n_region,
5246 basic_block *region_copy)
5248 unsigned i;
5249 bool free_region_copy = false, copying_header = false;
5250 struct loop *loop = entry->dest->loop_father;
5251 edge exit_copy;
5252 VEC (basic_block, heap) *doms;
5253 edge redirected;
5254 int total_freq = 0, entry_freq = 0;
5255 gcov_type total_count = 0, entry_count = 0;
5257 if (!can_copy_bbs_p (region, n_region))
5258 return false;
5260 /* Some sanity checking. Note that we do not check for all possible
5261 missuses of the functions. I.e. if you ask to copy something weird,
5262 it will work, but the state of structures probably will not be
5263 correct. */
5264 for (i = 0; i < n_region; i++)
5266 /* We do not handle subloops, i.e. all the blocks must belong to the
5267 same loop. */
5268 if (region[i]->loop_father != loop)
5269 return false;
5271 if (region[i] != entry->dest
5272 && region[i] == loop->header)
5273 return false;
5276 set_loop_copy (loop, loop);
5278 /* In case the function is used for loop header copying (which is the primary
5279 use), ensure that EXIT and its copy will be new latch and entry edges. */
5280 if (loop->header == entry->dest)
5282 copying_header = true;
5283 set_loop_copy (loop, loop_outer (loop));
5285 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5286 return false;
5288 for (i = 0; i < n_region; i++)
5289 if (region[i] != exit->src
5290 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5291 return false;
5294 if (!region_copy)
5296 region_copy = XNEWVEC (basic_block, n_region);
5297 free_region_copy = true;
5300 gcc_assert (!need_ssa_update_p (cfun));
5302 /* Record blocks outside the region that are dominated by something
5303 inside. */
5304 doms = NULL;
5305 initialize_original_copy_tables ();
5307 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5309 if (entry->dest->count)
5311 total_count = entry->dest->count;
5312 entry_count = entry->count;
5313 /* Fix up corner cases, to avoid division by zero or creation of negative
5314 frequencies. */
5315 if (entry_count > total_count)
5316 entry_count = total_count;
5318 else
5320 total_freq = entry->dest->frequency;
5321 entry_freq = EDGE_FREQUENCY (entry);
5322 /* Fix up corner cases, to avoid division by zero or creation of negative
5323 frequencies. */
5324 if (total_freq == 0)
5325 total_freq = 1;
5326 else if (entry_freq > total_freq)
5327 entry_freq = total_freq;
5330 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5331 split_edge_bb_loc (entry));
5332 if (total_count)
5334 scale_bbs_frequencies_gcov_type (region, n_region,
5335 total_count - entry_count,
5336 total_count);
5337 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5338 total_count);
5340 else
5342 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5343 total_freq);
5344 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5347 if (copying_header)
5349 loop->header = exit->dest;
5350 loop->latch = exit->src;
5353 /* Redirect the entry and add the phi node arguments. */
5354 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5355 gcc_assert (redirected != NULL);
5356 flush_pending_stmts (entry);
5358 /* Concerning updating of dominators: We must recount dominators
5359 for entry block and its copy. Anything that is outside of the
5360 region, but was dominated by something inside needs recounting as
5361 well. */
5362 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5363 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5364 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5365 VEC_free (basic_block, heap, doms);
5367 /* Add the other PHI node arguments. */
5368 add_phi_args_after_copy (region_copy, n_region, NULL);
5370 /* Update the SSA web. */
5371 update_ssa (TODO_update_ssa);
5373 if (free_region_copy)
5374 free (region_copy);
5376 free_original_copy_tables ();
5377 return true;
5380 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5381 are stored to REGION_COPY in the same order in that they appear
5382 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5383 the region, EXIT an exit from it. The condition guarding EXIT
5384 is moved to ENTRY. Returns true if duplication succeeds, false
5385 otherwise.
5387 For example,
5389 some_code;
5390 if (cond)
5392 else
5395 is transformed to
5397 if (cond)
5399 some_code;
5402 else
5404 some_code;
5409 bool
5410 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5411 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5412 basic_block *region_copy ATTRIBUTE_UNUSED)
5414 unsigned i;
5415 bool free_region_copy = false;
5416 struct loop *loop = exit->dest->loop_father;
5417 struct loop *orig_loop = entry->dest->loop_father;
5418 basic_block switch_bb, entry_bb, nentry_bb;
5419 VEC (basic_block, heap) *doms;
5420 int total_freq = 0, exit_freq = 0;
5421 gcov_type total_count = 0, exit_count = 0;
5422 edge exits[2], nexits[2], e;
5423 gimple_stmt_iterator gsi,gsi1;
5424 gimple cond_stmt;
5425 edge sorig, snew;
5426 basic_block exit_bb;
5427 basic_block iters_bb;
5428 tree new_rhs;
5429 gimple_stmt_iterator psi;
5430 gimple phi;
5431 tree def;
5433 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5434 exits[0] = exit;
5435 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5437 if (!can_copy_bbs_p (region, n_region))
5438 return false;
5440 initialize_original_copy_tables ();
5441 set_loop_copy (orig_loop, loop);
5442 duplicate_subloops (orig_loop, loop);
5444 if (!region_copy)
5446 region_copy = XNEWVEC (basic_block, n_region);
5447 free_region_copy = true;
5450 gcc_assert (!need_ssa_update_p (cfun));
5452 /* Record blocks outside the region that are dominated by something
5453 inside. */
5454 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5456 if (exit->src->count)
5458 total_count = exit->src->count;
5459 exit_count = exit->count;
5460 /* Fix up corner cases, to avoid division by zero or creation of negative
5461 frequencies. */
5462 if (exit_count > total_count)
5463 exit_count = total_count;
5465 else
5467 total_freq = exit->src->frequency;
5468 exit_freq = EDGE_FREQUENCY (exit);
5469 /* Fix up corner cases, to avoid division by zero or creation of negative
5470 frequencies. */
5471 if (total_freq == 0)
5472 total_freq = 1;
5473 if (exit_freq > total_freq)
5474 exit_freq = total_freq;
5477 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5478 split_edge_bb_loc (exit));
5479 if (total_count)
5481 scale_bbs_frequencies_gcov_type (region, n_region,
5482 total_count - exit_count,
5483 total_count);
5484 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5485 total_count);
5487 else
5489 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5490 total_freq);
5491 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5494 /* Create the switch block, and put the exit condition to it. */
5495 entry_bb = entry->dest;
5496 nentry_bb = get_bb_copy (entry_bb);
5497 if (!last_stmt (entry->src)
5498 || !stmt_ends_bb_p (last_stmt (entry->src)))
5499 switch_bb = entry->src;
5500 else
5501 switch_bb = split_edge (entry);
5502 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5504 gsi = gsi_last_bb (switch_bb);
5505 cond_stmt = last_stmt (exit->src);
5506 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5507 cond_stmt = gimple_copy (cond_stmt);
5509 /* If the block consisting of the exit condition has the latch as
5510 successor, then the body of the loop is executed before
5511 the exit condition is tested. In such case, moving the
5512 condition to the entry, causes that the loop will iterate
5513 one less iteration (which is the wanted outcome, since we
5514 peel out the last iteration). If the body is executed after
5515 the condition, moving the condition to the entry requires
5516 decrementing one iteration. */
5517 if (exits[1]->dest == orig_loop->latch)
5518 new_rhs = gimple_cond_rhs (cond_stmt);
5519 else
5521 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
5522 gimple_cond_rhs (cond_stmt),
5523 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
5525 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
5527 iters_bb = gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)));
5528 for (gsi1 = gsi_start_bb (iters_bb); !gsi_end_p (gsi1); gsi_next (&gsi1))
5529 if (gsi_stmt (gsi1) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)))
5530 break;
5532 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
5533 NULL_TREE,false,GSI_CONTINUE_LINKING);
5536 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
5537 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5538 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5540 sorig = single_succ_edge (switch_bb);
5541 sorig->flags = exits[1]->flags;
5542 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5544 /* Register the new edge from SWITCH_BB in loop exit lists. */
5545 rescan_loop_exit (snew, true, false);
5547 /* Add the PHI node arguments. */
5548 add_phi_args_after_copy (region_copy, n_region, snew);
5550 /* Get rid of now superfluous conditions and associated edges (and phi node
5551 arguments). */
5552 exit_bb = exit->dest;
5554 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5555 PENDING_STMT (e) = NULL;
5557 /* The latch of ORIG_LOOP was copied, and so was the backedge
5558 to the original header. We redirect this backedge to EXIT_BB. */
5559 for (i = 0; i < n_region; i++)
5560 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5562 gcc_assert (single_succ_edge (region_copy[i]));
5563 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5564 PENDING_STMT (e) = NULL;
5565 for (psi = gsi_start_phis (exit_bb);
5566 !gsi_end_p (psi);
5567 gsi_next (&psi))
5569 phi = gsi_stmt (psi);
5570 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5571 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5574 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5575 PENDING_STMT (e) = NULL;
5577 /* Anything that is outside of the region, but was dominated by something
5578 inside needs to update dominance info. */
5579 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5580 VEC_free (basic_block, heap, doms);
5581 /* Update the SSA web. */
5582 update_ssa (TODO_update_ssa);
5584 if (free_region_copy)
5585 free (region_copy);
5587 free_original_copy_tables ();
5588 return true;
5591 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5592 adding blocks when the dominator traversal reaches EXIT. This
5593 function silently assumes that ENTRY strictly dominates EXIT. */
5595 void
5596 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5597 VEC(basic_block,heap) **bbs_p)
5599 basic_block son;
5601 for (son = first_dom_son (CDI_DOMINATORS, entry);
5602 son;
5603 son = next_dom_son (CDI_DOMINATORS, son))
5605 VEC_safe_push (basic_block, heap, *bbs_p, son);
5606 if (son != exit)
5607 gather_blocks_in_sese_region (son, exit, bbs_p);
5611 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5612 The duplicates are recorded in VARS_MAP. */
5614 static void
5615 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5616 tree to_context)
5618 tree t = *tp, new_t;
5619 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5620 void **loc;
5622 if (DECL_CONTEXT (t) == to_context)
5623 return;
5625 loc = pointer_map_contains (vars_map, t);
5627 if (!loc)
5629 loc = pointer_map_insert (vars_map, t);
5631 if (SSA_VAR_P (t))
5633 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5634 add_local_decl (f, new_t);
5636 else
5638 gcc_assert (TREE_CODE (t) == CONST_DECL);
5639 new_t = copy_node (t);
5641 DECL_CONTEXT (new_t) = to_context;
5643 *loc = new_t;
5645 else
5646 new_t = (tree) *loc;
5648 *tp = new_t;
5652 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5653 VARS_MAP maps old ssa names and var_decls to the new ones. */
5655 static tree
5656 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5657 tree to_context)
5659 void **loc;
5660 tree new_name, decl = SSA_NAME_VAR (name);
5662 gcc_assert (is_gimple_reg (name));
5664 loc = pointer_map_contains (vars_map, name);
5666 if (!loc)
5668 replace_by_duplicate_decl (&decl, vars_map, to_context);
5670 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5671 if (gimple_in_ssa_p (cfun))
5672 add_referenced_var (decl);
5674 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5675 if (SSA_NAME_IS_DEFAULT_DEF (name))
5676 set_default_def (decl, new_name);
5677 pop_cfun ();
5679 loc = pointer_map_insert (vars_map, name);
5680 *loc = new_name;
5682 else
5683 new_name = (tree) *loc;
5685 return new_name;
5688 struct move_stmt_d
5690 tree orig_block;
5691 tree new_block;
5692 tree from_context;
5693 tree to_context;
5694 struct pointer_map_t *vars_map;
5695 htab_t new_label_map;
5696 struct pointer_map_t *eh_map;
5697 bool remap_decls_p;
5700 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5701 contained in *TP if it has been ORIG_BLOCK previously and change the
5702 DECL_CONTEXT of every local variable referenced in *TP. */
5704 static tree
5705 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5707 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5708 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5709 tree t = *tp;
5711 if (EXPR_P (t))
5712 /* We should never have TREE_BLOCK set on non-statements. */
5713 gcc_assert (!TREE_BLOCK (t));
5715 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5717 if (TREE_CODE (t) == SSA_NAME)
5718 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5719 else if (TREE_CODE (t) == LABEL_DECL)
5721 if (p->new_label_map)
5723 struct tree_map in, *out;
5724 in.base.from = t;
5725 out = (struct tree_map *)
5726 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5727 if (out)
5728 *tp = t = out->to;
5731 DECL_CONTEXT (t) = p->to_context;
5733 else if (p->remap_decls_p)
5735 /* Replace T with its duplicate. T should no longer appear in the
5736 parent function, so this looks wasteful; however, it may appear
5737 in referenced_vars, and more importantly, as virtual operands of
5738 statements, and in alias lists of other variables. It would be
5739 quite difficult to expunge it from all those places. ??? It might
5740 suffice to do this for addressable variables. */
5741 if ((TREE_CODE (t) == VAR_DECL
5742 && !is_global_var (t))
5743 || TREE_CODE (t) == CONST_DECL)
5744 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5746 if (SSA_VAR_P (t)
5747 && gimple_in_ssa_p (cfun))
5749 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5750 add_referenced_var (*tp);
5751 pop_cfun ();
5754 *walk_subtrees = 0;
5756 else if (TYPE_P (t))
5757 *walk_subtrees = 0;
5759 return NULL_TREE;
5762 /* Helper for move_stmt_r. Given an EH region number for the source
5763 function, map that to the duplicate EH regio number in the dest. */
5765 static int
5766 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5768 eh_region old_r, new_r;
5769 void **slot;
5771 old_r = get_eh_region_from_number (old_nr);
5772 slot = pointer_map_contains (p->eh_map, old_r);
5773 new_r = (eh_region) *slot;
5775 return new_r->index;
5778 /* Similar, but operate on INTEGER_CSTs. */
5780 static tree
5781 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5783 int old_nr, new_nr;
5785 old_nr = tree_low_cst (old_t_nr, 0);
5786 new_nr = move_stmt_eh_region_nr (old_nr, p);
5788 return build_int_cst (NULL, new_nr);
5791 /* Like move_stmt_op, but for gimple statements.
5793 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5794 contained in the current statement in *GSI_P and change the
5795 DECL_CONTEXT of every local variable referenced in the current
5796 statement. */
5798 static tree
5799 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5800 struct walk_stmt_info *wi)
5802 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5803 gimple stmt = gsi_stmt (*gsi_p);
5804 tree block = gimple_block (stmt);
5806 if (p->orig_block == NULL_TREE
5807 || block == p->orig_block
5808 || block == NULL_TREE)
5809 gimple_set_block (stmt, p->new_block);
5810 #ifdef ENABLE_CHECKING
5811 else if (block != p->new_block)
5813 while (block && block != p->orig_block)
5814 block = BLOCK_SUPERCONTEXT (block);
5815 gcc_assert (block);
5817 #endif
5819 switch (gimple_code (stmt))
5821 case GIMPLE_CALL:
5822 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5824 tree r, fndecl = gimple_call_fndecl (stmt);
5825 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5826 switch (DECL_FUNCTION_CODE (fndecl))
5828 case BUILT_IN_EH_COPY_VALUES:
5829 r = gimple_call_arg (stmt, 1);
5830 r = move_stmt_eh_region_tree_nr (r, p);
5831 gimple_call_set_arg (stmt, 1, r);
5832 /* FALLTHRU */
5834 case BUILT_IN_EH_POINTER:
5835 case BUILT_IN_EH_FILTER:
5836 r = gimple_call_arg (stmt, 0);
5837 r = move_stmt_eh_region_tree_nr (r, p);
5838 gimple_call_set_arg (stmt, 0, r);
5839 break;
5841 default:
5842 break;
5845 break;
5847 case GIMPLE_RESX:
5849 int r = gimple_resx_region (stmt);
5850 r = move_stmt_eh_region_nr (r, p);
5851 gimple_resx_set_region (stmt, r);
5853 break;
5855 case GIMPLE_EH_DISPATCH:
5857 int r = gimple_eh_dispatch_region (stmt);
5858 r = move_stmt_eh_region_nr (r, p);
5859 gimple_eh_dispatch_set_region (stmt, r);
5861 break;
5863 case GIMPLE_OMP_RETURN:
5864 case GIMPLE_OMP_CONTINUE:
5865 break;
5866 default:
5867 if (is_gimple_omp (stmt))
5869 /* Do not remap variables inside OMP directives. Variables
5870 referenced in clauses and directive header belong to the
5871 parent function and should not be moved into the child
5872 function. */
5873 bool save_remap_decls_p = p->remap_decls_p;
5874 p->remap_decls_p = false;
5875 *handled_ops_p = true;
5877 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5878 move_stmt_op, wi);
5880 p->remap_decls_p = save_remap_decls_p;
5882 break;
5885 return NULL_TREE;
5888 /* Move basic block BB from function CFUN to function DEST_FN. The
5889 block is moved out of the original linked list and placed after
5890 block AFTER in the new list. Also, the block is removed from the
5891 original array of blocks and placed in DEST_FN's array of blocks.
5892 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5893 updated to reflect the moved edges.
5895 The local variables are remapped to new instances, VARS_MAP is used
5896 to record the mapping. */
5898 static void
5899 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5900 basic_block after, bool update_edge_count_p,
5901 struct move_stmt_d *d)
5903 struct control_flow_graph *cfg;
5904 edge_iterator ei;
5905 edge e;
5906 gimple_stmt_iterator si;
5907 unsigned old_len, new_len;
5909 /* Remove BB from dominance structures. */
5910 delete_from_dominance_info (CDI_DOMINATORS, bb);
5911 if (current_loops)
5912 remove_bb_from_loops (bb);
5914 /* Link BB to the new linked list. */
5915 move_block_after (bb, after);
5917 /* Update the edge count in the corresponding flowgraphs. */
5918 if (update_edge_count_p)
5919 FOR_EACH_EDGE (e, ei, bb->succs)
5921 cfun->cfg->x_n_edges--;
5922 dest_cfun->cfg->x_n_edges++;
5925 /* Remove BB from the original basic block array. */
5926 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5927 cfun->cfg->x_n_basic_blocks--;
5929 /* Grow DEST_CFUN's basic block array if needed. */
5930 cfg = dest_cfun->cfg;
5931 cfg->x_n_basic_blocks++;
5932 if (bb->index >= cfg->x_last_basic_block)
5933 cfg->x_last_basic_block = bb->index + 1;
5935 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5936 if ((unsigned) cfg->x_last_basic_block >= old_len)
5938 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5939 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5940 new_len);
5943 VEC_replace (basic_block, cfg->x_basic_block_info,
5944 bb->index, bb);
5946 /* Remap the variables in phi nodes. */
5947 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5949 gimple phi = gsi_stmt (si);
5950 use_operand_p use;
5951 tree op = PHI_RESULT (phi);
5952 ssa_op_iter oi;
5954 if (!is_gimple_reg (op))
5956 /* Remove the phi nodes for virtual operands (alias analysis will be
5957 run for the new function, anyway). */
5958 remove_phi_node (&si, true);
5959 continue;
5962 SET_PHI_RESULT (phi,
5963 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5964 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5966 op = USE_FROM_PTR (use);
5967 if (TREE_CODE (op) == SSA_NAME)
5968 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5971 gsi_next (&si);
5974 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5976 gimple stmt = gsi_stmt (si);
5977 struct walk_stmt_info wi;
5979 memset (&wi, 0, sizeof (wi));
5980 wi.info = d;
5981 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5983 if (gimple_code (stmt) == GIMPLE_LABEL)
5985 tree label = gimple_label_label (stmt);
5986 int uid = LABEL_DECL_UID (label);
5988 gcc_assert (uid > -1);
5990 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5991 if (old_len <= (unsigned) uid)
5993 new_len = 3 * uid / 2 + 1;
5994 VEC_safe_grow_cleared (basic_block, gc,
5995 cfg->x_label_to_block_map, new_len);
5998 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5999 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
6001 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6003 if (uid >= dest_cfun->cfg->last_label_uid)
6004 dest_cfun->cfg->last_label_uid = uid + 1;
6007 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6008 remove_stmt_from_eh_lp_fn (cfun, stmt);
6010 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6011 gimple_remove_stmt_histograms (cfun, stmt);
6013 /* We cannot leave any operands allocated from the operand caches of
6014 the current function. */
6015 free_stmt_operands (stmt);
6016 push_cfun (dest_cfun);
6017 update_stmt (stmt);
6018 pop_cfun ();
6021 FOR_EACH_EDGE (e, ei, bb->succs)
6022 if (e->goto_locus)
6024 tree block = e->goto_block;
6025 if (d->orig_block == NULL_TREE
6026 || block == d->orig_block)
6027 e->goto_block = d->new_block;
6028 #ifdef ENABLE_CHECKING
6029 else if (block != d->new_block)
6031 while (block && block != d->orig_block)
6032 block = BLOCK_SUPERCONTEXT (block);
6033 gcc_assert (block);
6035 #endif
6039 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6040 the outermost EH region. Use REGION as the incoming base EH region. */
6042 static eh_region
6043 find_outermost_region_in_block (struct function *src_cfun,
6044 basic_block bb, eh_region region)
6046 gimple_stmt_iterator si;
6048 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6050 gimple stmt = gsi_stmt (si);
6051 eh_region stmt_region;
6052 int lp_nr;
6054 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6055 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6056 if (stmt_region)
6058 if (region == NULL)
6059 region = stmt_region;
6060 else if (stmt_region != region)
6062 region = eh_region_outermost (src_cfun, stmt_region, region);
6063 gcc_assert (region != NULL);
6068 return region;
6071 static tree
6072 new_label_mapper (tree decl, void *data)
6074 htab_t hash = (htab_t) data;
6075 struct tree_map *m;
6076 void **slot;
6078 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6080 m = XNEW (struct tree_map);
6081 m->hash = DECL_UID (decl);
6082 m->base.from = decl;
6083 m->to = create_artificial_label (UNKNOWN_LOCATION);
6084 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6085 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6086 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6088 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6089 gcc_assert (*slot == NULL);
6091 *slot = m;
6093 return m->to;
6096 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6097 subblocks. */
6099 static void
6100 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6101 tree to_context)
6103 tree *tp, t;
6105 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6107 t = *tp;
6108 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6109 continue;
6110 replace_by_duplicate_decl (&t, vars_map, to_context);
6111 if (t != *tp)
6113 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6115 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6116 DECL_HAS_VALUE_EXPR_P (t) = 1;
6118 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6119 *tp = t;
6123 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6124 replace_block_vars_by_duplicates (block, vars_map, to_context);
6127 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6128 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6129 single basic block in the original CFG and the new basic block is
6130 returned. DEST_CFUN must not have a CFG yet.
6132 Note that the region need not be a pure SESE region. Blocks inside
6133 the region may contain calls to abort/exit. The only restriction
6134 is that ENTRY_BB should be the only entry point and it must
6135 dominate EXIT_BB.
6137 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6138 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6139 to the new function.
6141 All local variables referenced in the region are assumed to be in
6142 the corresponding BLOCK_VARS and unexpanded variable lists
6143 associated with DEST_CFUN. */
6145 basic_block
6146 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6147 basic_block exit_bb, tree orig_block)
6149 VEC(basic_block,heap) *bbs, *dom_bbs;
6150 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6151 basic_block after, bb, *entry_pred, *exit_succ, abb;
6152 struct function *saved_cfun = cfun;
6153 int *entry_flag, *exit_flag;
6154 unsigned *entry_prob, *exit_prob;
6155 unsigned i, num_entry_edges, num_exit_edges;
6156 edge e;
6157 edge_iterator ei;
6158 htab_t new_label_map;
6159 struct pointer_map_t *vars_map, *eh_map;
6160 struct loop *loop = entry_bb->loop_father;
6161 struct move_stmt_d d;
6163 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6164 region. */
6165 gcc_assert (entry_bb != exit_bb
6166 && (!exit_bb
6167 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6169 /* Collect all the blocks in the region. Manually add ENTRY_BB
6170 because it won't be added by dfs_enumerate_from. */
6171 bbs = NULL;
6172 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6173 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6175 /* The blocks that used to be dominated by something in BBS will now be
6176 dominated by the new block. */
6177 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6178 VEC_address (basic_block, bbs),
6179 VEC_length (basic_block, bbs));
6181 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6182 the predecessor edges to ENTRY_BB and the successor edges to
6183 EXIT_BB so that we can re-attach them to the new basic block that
6184 will replace the region. */
6185 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6186 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6187 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6188 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6189 i = 0;
6190 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6192 entry_prob[i] = e->probability;
6193 entry_flag[i] = e->flags;
6194 entry_pred[i++] = e->src;
6195 remove_edge (e);
6198 if (exit_bb)
6200 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6201 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6202 sizeof (basic_block));
6203 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6204 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6205 i = 0;
6206 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6208 exit_prob[i] = e->probability;
6209 exit_flag[i] = e->flags;
6210 exit_succ[i++] = e->dest;
6211 remove_edge (e);
6214 else
6216 num_exit_edges = 0;
6217 exit_succ = NULL;
6218 exit_flag = NULL;
6219 exit_prob = NULL;
6222 /* Switch context to the child function to initialize DEST_FN's CFG. */
6223 gcc_assert (dest_cfun->cfg == NULL);
6224 push_cfun (dest_cfun);
6226 init_empty_tree_cfg ();
6228 /* Initialize EH information for the new function. */
6229 eh_map = NULL;
6230 new_label_map = NULL;
6231 if (saved_cfun->eh)
6233 eh_region region = NULL;
6235 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6236 region = find_outermost_region_in_block (saved_cfun, bb, region);
6238 init_eh_for_function ();
6239 if (region != NULL)
6241 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6242 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6243 new_label_mapper, new_label_map);
6247 pop_cfun ();
6249 /* Move blocks from BBS into DEST_CFUN. */
6250 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6251 after = dest_cfun->cfg->x_entry_block_ptr;
6252 vars_map = pointer_map_create ();
6254 memset (&d, 0, sizeof (d));
6255 d.orig_block = orig_block;
6256 d.new_block = DECL_INITIAL (dest_cfun->decl);
6257 d.from_context = cfun->decl;
6258 d.to_context = dest_cfun->decl;
6259 d.vars_map = vars_map;
6260 d.new_label_map = new_label_map;
6261 d.eh_map = eh_map;
6262 d.remap_decls_p = true;
6264 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6266 /* No need to update edge counts on the last block. It has
6267 already been updated earlier when we detached the region from
6268 the original CFG. */
6269 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6270 after = bb;
6273 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6274 if (orig_block)
6276 tree block;
6277 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6278 == NULL_TREE);
6279 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6280 = BLOCK_SUBBLOCKS (orig_block);
6281 for (block = BLOCK_SUBBLOCKS (orig_block);
6282 block; block = BLOCK_CHAIN (block))
6283 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6284 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6287 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6288 vars_map, dest_cfun->decl);
6290 if (new_label_map)
6291 htab_delete (new_label_map);
6292 if (eh_map)
6293 pointer_map_destroy (eh_map);
6294 pointer_map_destroy (vars_map);
6296 /* Rewire the entry and exit blocks. The successor to the entry
6297 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6298 the child function. Similarly, the predecessor of DEST_FN's
6299 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6300 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6301 various CFG manipulation function get to the right CFG.
6303 FIXME, this is silly. The CFG ought to become a parameter to
6304 these helpers. */
6305 push_cfun (dest_cfun);
6306 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6307 if (exit_bb)
6308 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6309 pop_cfun ();
6311 /* Back in the original function, the SESE region has disappeared,
6312 create a new basic block in its place. */
6313 bb = create_empty_bb (entry_pred[0]);
6314 if (current_loops)
6315 add_bb_to_loop (bb, loop);
6316 for (i = 0; i < num_entry_edges; i++)
6318 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6319 e->probability = entry_prob[i];
6322 for (i = 0; i < num_exit_edges; i++)
6324 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6325 e->probability = exit_prob[i];
6328 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6329 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6330 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6331 VEC_free (basic_block, heap, dom_bbs);
6333 if (exit_bb)
6335 free (exit_prob);
6336 free (exit_flag);
6337 free (exit_succ);
6339 free (entry_prob);
6340 free (entry_flag);
6341 free (entry_pred);
6342 VEC_free (basic_block, heap, bbs);
6344 return bb;
6348 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6351 void
6352 dump_function_to_file (tree fn, FILE *file, int flags)
6354 tree arg, var;
6355 struct function *dsf;
6356 bool ignore_topmost_bind = false, any_var = false;
6357 basic_block bb;
6358 tree chain;
6360 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6362 arg = DECL_ARGUMENTS (fn);
6363 while (arg)
6365 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6366 fprintf (file, " ");
6367 print_generic_expr (file, arg, dump_flags);
6368 if (flags & TDF_VERBOSE)
6369 print_node (file, "", arg, 4);
6370 if (DECL_CHAIN (arg))
6371 fprintf (file, ", ");
6372 arg = DECL_CHAIN (arg);
6374 fprintf (file, ")\n");
6376 if (flags & TDF_VERBOSE)
6377 print_node (file, "", fn, 2);
6379 dsf = DECL_STRUCT_FUNCTION (fn);
6380 if (dsf && (flags & TDF_EH))
6381 dump_eh_tree (file, dsf);
6383 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6385 dump_node (fn, TDF_SLIM | flags, file);
6386 return;
6389 /* Switch CFUN to point to FN. */
6390 push_cfun (DECL_STRUCT_FUNCTION (fn));
6392 /* When GIMPLE is lowered, the variables are no longer available in
6393 BIND_EXPRs, so display them separately. */
6394 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6396 unsigned ix;
6397 ignore_topmost_bind = true;
6399 fprintf (file, "{\n");
6400 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6402 print_generic_decl (file, var, flags);
6403 if (flags & TDF_VERBOSE)
6404 print_node (file, "", var, 4);
6405 fprintf (file, "\n");
6407 any_var = true;
6411 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6413 /* If the CFG has been built, emit a CFG-based dump. */
6414 check_bb_profile (ENTRY_BLOCK_PTR, file);
6415 if (!ignore_topmost_bind)
6416 fprintf (file, "{\n");
6418 if (any_var && n_basic_blocks)
6419 fprintf (file, "\n");
6421 FOR_EACH_BB (bb)
6422 gimple_dump_bb (bb, file, 2, flags);
6424 fprintf (file, "}\n");
6425 check_bb_profile (EXIT_BLOCK_PTR, file);
6427 else if (DECL_SAVED_TREE (fn) == NULL)
6429 /* The function is now in GIMPLE form but the CFG has not been
6430 built yet. Emit the single sequence of GIMPLE statements
6431 that make up its body. */
6432 gimple_seq body = gimple_body (fn);
6434 if (gimple_seq_first_stmt (body)
6435 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6436 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6437 print_gimple_seq (file, body, 0, flags);
6438 else
6440 if (!ignore_topmost_bind)
6441 fprintf (file, "{\n");
6443 if (any_var)
6444 fprintf (file, "\n");
6446 print_gimple_seq (file, body, 2, flags);
6447 fprintf (file, "}\n");
6450 else
6452 int indent;
6454 /* Make a tree based dump. */
6455 chain = DECL_SAVED_TREE (fn);
6457 if (chain && TREE_CODE (chain) == BIND_EXPR)
6459 if (ignore_topmost_bind)
6461 chain = BIND_EXPR_BODY (chain);
6462 indent = 2;
6464 else
6465 indent = 0;
6467 else
6469 if (!ignore_topmost_bind)
6470 fprintf (file, "{\n");
6471 indent = 2;
6474 if (any_var)
6475 fprintf (file, "\n");
6477 print_generic_stmt_indented (file, chain, flags, indent);
6478 if (ignore_topmost_bind)
6479 fprintf (file, "}\n");
6482 if (flags & TDF_ENUMERATE_LOCALS)
6483 dump_enumerated_decls (file, flags);
6484 fprintf (file, "\n\n");
6486 /* Restore CFUN. */
6487 pop_cfun ();
6491 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6493 DEBUG_FUNCTION void
6494 debug_function (tree fn, int flags)
6496 dump_function_to_file (fn, stderr, flags);
6500 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6502 static void
6503 print_pred_bbs (FILE *file, basic_block bb)
6505 edge e;
6506 edge_iterator ei;
6508 FOR_EACH_EDGE (e, ei, bb->preds)
6509 fprintf (file, "bb_%d ", e->src->index);
6513 /* Print on FILE the indexes for the successors of basic_block BB. */
6515 static void
6516 print_succ_bbs (FILE *file, basic_block bb)
6518 edge e;
6519 edge_iterator ei;
6521 FOR_EACH_EDGE (e, ei, bb->succs)
6522 fprintf (file, "bb_%d ", e->dest->index);
6525 /* Print to FILE the basic block BB following the VERBOSITY level. */
6527 void
6528 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6530 char *s_indent = (char *) alloca ((size_t) indent + 1);
6531 memset ((void *) s_indent, ' ', (size_t) indent);
6532 s_indent[indent] = '\0';
6534 /* Print basic_block's header. */
6535 if (verbosity >= 2)
6537 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6538 print_pred_bbs (file, bb);
6539 fprintf (file, "}, succs = {");
6540 print_succ_bbs (file, bb);
6541 fprintf (file, "})\n");
6544 /* Print basic_block's body. */
6545 if (verbosity >= 3)
6547 fprintf (file, "%s {\n", s_indent);
6548 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6549 fprintf (file, "%s }\n", s_indent);
6553 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6555 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6556 VERBOSITY level this outputs the contents of the loop, or just its
6557 structure. */
6559 static void
6560 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6562 char *s_indent;
6563 basic_block bb;
6565 if (loop == NULL)
6566 return;
6568 s_indent = (char *) alloca ((size_t) indent + 1);
6569 memset ((void *) s_indent, ' ', (size_t) indent);
6570 s_indent[indent] = '\0';
6572 /* Print loop's header. */
6573 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6574 loop->num, loop->header->index, loop->latch->index);
6575 fprintf (file, ", niter = ");
6576 print_generic_expr (file, loop->nb_iterations, 0);
6578 if (loop->any_upper_bound)
6580 fprintf (file, ", upper_bound = ");
6581 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6584 if (loop->any_estimate)
6586 fprintf (file, ", estimate = ");
6587 dump_double_int (file, loop->nb_iterations_estimate, true);
6589 fprintf (file, ")\n");
6591 /* Print loop's body. */
6592 if (verbosity >= 1)
6594 fprintf (file, "%s{\n", s_indent);
6595 FOR_EACH_BB (bb)
6596 if (bb->loop_father == loop)
6597 print_loops_bb (file, bb, indent, verbosity);
6599 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6600 fprintf (file, "%s}\n", s_indent);
6604 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6605 spaces. Following VERBOSITY level this outputs the contents of the
6606 loop, or just its structure. */
6608 static void
6609 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6611 if (loop == NULL)
6612 return;
6614 print_loop (file, loop, indent, verbosity);
6615 print_loop_and_siblings (file, loop->next, indent, verbosity);
6618 /* Follow a CFG edge from the entry point of the program, and on entry
6619 of a loop, pretty print the loop structure on FILE. */
6621 void
6622 print_loops (FILE *file, int verbosity)
6624 basic_block bb;
6626 bb = ENTRY_BLOCK_PTR;
6627 if (bb && bb->loop_father)
6628 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6632 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6634 DEBUG_FUNCTION void
6635 debug_loops (int verbosity)
6637 print_loops (stderr, verbosity);
6640 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6642 DEBUG_FUNCTION void
6643 debug_loop (struct loop *loop, int verbosity)
6645 print_loop (stderr, loop, 0, verbosity);
6648 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6649 level. */
6651 DEBUG_FUNCTION void
6652 debug_loop_num (unsigned num, int verbosity)
6654 debug_loop (get_loop (num), verbosity);
6657 /* Return true if BB ends with a call, possibly followed by some
6658 instructions that must stay with the call. Return false,
6659 otherwise. */
6661 static bool
6662 gimple_block_ends_with_call_p (basic_block bb)
6664 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6665 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6669 /* Return true if BB ends with a conditional branch. Return false,
6670 otherwise. */
6672 static bool
6673 gimple_block_ends_with_condjump_p (const_basic_block bb)
6675 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6676 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6680 /* Return true if we need to add fake edge to exit at statement T.
6681 Helper function for gimple_flow_call_edges_add. */
6683 static bool
6684 need_fake_edge_p (gimple t)
6686 tree fndecl = NULL_TREE;
6687 int call_flags = 0;
6689 /* NORETURN and LONGJMP calls already have an edge to exit.
6690 CONST and PURE calls do not need one.
6691 We don't currently check for CONST and PURE here, although
6692 it would be a good idea, because those attributes are
6693 figured out from the RTL in mark_constant_function, and
6694 the counter incrementation code from -fprofile-arcs
6695 leads to different results from -fbranch-probabilities. */
6696 if (is_gimple_call (t))
6698 fndecl = gimple_call_fndecl (t);
6699 call_flags = gimple_call_flags (t);
6702 if (is_gimple_call (t)
6703 && fndecl
6704 && DECL_BUILT_IN (fndecl)
6705 && (call_flags & ECF_NOTHROW)
6706 && !(call_flags & ECF_RETURNS_TWICE)
6707 /* fork() doesn't really return twice, but the effect of
6708 wrapping it in __gcov_fork() which calls __gcov_flush()
6709 and clears the counters before forking has the same
6710 effect as returning twice. Force a fake edge. */
6711 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6712 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6713 return false;
6715 if (is_gimple_call (t)
6716 && !(call_flags & ECF_NORETURN))
6717 return true;
6719 if (gimple_code (t) == GIMPLE_ASM
6720 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6721 return true;
6723 return false;
6727 /* Add fake edges to the function exit for any non constant and non
6728 noreturn calls, volatile inline assembly in the bitmap of blocks
6729 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6730 the number of blocks that were split.
6732 The goal is to expose cases in which entering a basic block does
6733 not imply that all subsequent instructions must be executed. */
6735 static int
6736 gimple_flow_call_edges_add (sbitmap blocks)
6738 int i;
6739 int blocks_split = 0;
6740 int last_bb = last_basic_block;
6741 bool check_last_block = false;
6743 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6744 return 0;
6746 if (! blocks)
6747 check_last_block = true;
6748 else
6749 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6751 /* In the last basic block, before epilogue generation, there will be
6752 a fallthru edge to EXIT. Special care is required if the last insn
6753 of the last basic block is a call because make_edge folds duplicate
6754 edges, which would result in the fallthru edge also being marked
6755 fake, which would result in the fallthru edge being removed by
6756 remove_fake_edges, which would result in an invalid CFG.
6758 Moreover, we can't elide the outgoing fake edge, since the block
6759 profiler needs to take this into account in order to solve the minimal
6760 spanning tree in the case that the call doesn't return.
6762 Handle this by adding a dummy instruction in a new last basic block. */
6763 if (check_last_block)
6765 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6766 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6767 gimple t = NULL;
6769 if (!gsi_end_p (gsi))
6770 t = gsi_stmt (gsi);
6772 if (t && need_fake_edge_p (t))
6774 edge e;
6776 e = find_edge (bb, EXIT_BLOCK_PTR);
6777 if (e)
6779 gsi_insert_on_edge (e, gimple_build_nop ());
6780 gsi_commit_edge_inserts ();
6785 /* Now add fake edges to the function exit for any non constant
6786 calls since there is no way that we can determine if they will
6787 return or not... */
6788 for (i = 0; i < last_bb; i++)
6790 basic_block bb = BASIC_BLOCK (i);
6791 gimple_stmt_iterator gsi;
6792 gimple stmt, last_stmt;
6794 if (!bb)
6795 continue;
6797 if (blocks && !TEST_BIT (blocks, i))
6798 continue;
6800 gsi = gsi_last_nondebug_bb (bb);
6801 if (!gsi_end_p (gsi))
6803 last_stmt = gsi_stmt (gsi);
6806 stmt = gsi_stmt (gsi);
6807 if (need_fake_edge_p (stmt))
6809 edge e;
6811 /* The handling above of the final block before the
6812 epilogue should be enough to verify that there is
6813 no edge to the exit block in CFG already.
6814 Calling make_edge in such case would cause us to
6815 mark that edge as fake and remove it later. */
6816 #ifdef ENABLE_CHECKING
6817 if (stmt == last_stmt)
6819 e = find_edge (bb, EXIT_BLOCK_PTR);
6820 gcc_assert (e == NULL);
6822 #endif
6824 /* Note that the following may create a new basic block
6825 and renumber the existing basic blocks. */
6826 if (stmt != last_stmt)
6828 e = split_block (bb, stmt);
6829 if (e)
6830 blocks_split++;
6832 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6834 gsi_prev (&gsi);
6836 while (!gsi_end_p (gsi));
6840 if (blocks_split)
6841 verify_flow_info ();
6843 return blocks_split;
6846 /* Removes edge E and all the blocks dominated by it, and updates dominance
6847 information. The IL in E->src needs to be updated separately.
6848 If dominance info is not available, only the edge E is removed.*/
6850 void
6851 remove_edge_and_dominated_blocks (edge e)
6853 VEC (basic_block, heap) *bbs_to_remove = NULL;
6854 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6855 bitmap df, df_idom;
6856 edge f;
6857 edge_iterator ei;
6858 bool none_removed = false;
6859 unsigned i;
6860 basic_block bb, dbb;
6861 bitmap_iterator bi;
6863 if (!dom_info_available_p (CDI_DOMINATORS))
6865 remove_edge (e);
6866 return;
6869 /* No updating is needed for edges to exit. */
6870 if (e->dest == EXIT_BLOCK_PTR)
6872 if (cfgcleanup_altered_bbs)
6873 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6874 remove_edge (e);
6875 return;
6878 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6879 that is not dominated by E->dest, then this set is empty. Otherwise,
6880 all the basic blocks dominated by E->dest are removed.
6882 Also, to DF_IDOM we store the immediate dominators of the blocks in
6883 the dominance frontier of E (i.e., of the successors of the
6884 removed blocks, if there are any, and of E->dest otherwise). */
6885 FOR_EACH_EDGE (f, ei, e->dest->preds)
6887 if (f == e)
6888 continue;
6890 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6892 none_removed = true;
6893 break;
6897 df = BITMAP_ALLOC (NULL);
6898 df_idom = BITMAP_ALLOC (NULL);
6900 if (none_removed)
6901 bitmap_set_bit (df_idom,
6902 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6903 else
6905 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6906 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6908 FOR_EACH_EDGE (f, ei, bb->succs)
6910 if (f->dest != EXIT_BLOCK_PTR)
6911 bitmap_set_bit (df, f->dest->index);
6914 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6915 bitmap_clear_bit (df, bb->index);
6917 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6919 bb = BASIC_BLOCK (i);
6920 bitmap_set_bit (df_idom,
6921 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6925 if (cfgcleanup_altered_bbs)
6927 /* Record the set of the altered basic blocks. */
6928 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6929 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6932 /* Remove E and the cancelled blocks. */
6933 if (none_removed)
6934 remove_edge (e);
6935 else
6937 /* Walk backwards so as to get a chance to substitute all
6938 released DEFs into debug stmts. See
6939 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6940 details. */
6941 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6942 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6945 /* Update the dominance information. The immediate dominator may change only
6946 for blocks whose immediate dominator belongs to DF_IDOM:
6948 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6949 removal. Let Z the arbitrary block such that idom(Z) = Y and
6950 Z dominates X after the removal. Before removal, there exists a path P
6951 from Y to X that avoids Z. Let F be the last edge on P that is
6952 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6953 dominates W, and because of P, Z does not dominate W), and W belongs to
6954 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6955 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6957 bb = BASIC_BLOCK (i);
6958 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6959 dbb;
6960 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6961 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6964 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6966 BITMAP_FREE (df);
6967 BITMAP_FREE (df_idom);
6968 VEC_free (basic_block, heap, bbs_to_remove);
6969 VEC_free (basic_block, heap, bbs_to_fix_dom);
6972 /* Purge dead EH edges from basic block BB. */
6974 bool
6975 gimple_purge_dead_eh_edges (basic_block bb)
6977 bool changed = false;
6978 edge e;
6979 edge_iterator ei;
6980 gimple stmt = last_stmt (bb);
6982 if (stmt && stmt_can_throw_internal (stmt))
6983 return false;
6985 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6987 if (e->flags & EDGE_EH)
6989 remove_edge_and_dominated_blocks (e);
6990 changed = true;
6992 else
6993 ei_next (&ei);
6996 return changed;
6999 /* Purge dead EH edges from basic block listed in BLOCKS. */
7001 bool
7002 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7004 bool changed = false;
7005 unsigned i;
7006 bitmap_iterator bi;
7008 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7010 basic_block bb = BASIC_BLOCK (i);
7012 /* Earlier gimple_purge_dead_eh_edges could have removed
7013 this basic block already. */
7014 gcc_assert (bb || changed);
7015 if (bb != NULL)
7016 changed |= gimple_purge_dead_eh_edges (bb);
7019 return changed;
7022 /* Purge dead abnormal call edges from basic block BB. */
7024 bool
7025 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7027 bool changed = false;
7028 edge e;
7029 edge_iterator ei;
7030 gimple stmt = last_stmt (bb);
7032 if (!cfun->has_nonlocal_label)
7033 return false;
7035 if (stmt && stmt_can_make_abnormal_goto (stmt))
7036 return false;
7038 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7040 if (e->flags & EDGE_ABNORMAL)
7042 remove_edge_and_dominated_blocks (e);
7043 changed = true;
7045 else
7046 ei_next (&ei);
7049 return changed;
7052 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7054 bool
7055 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7057 bool changed = false;
7058 unsigned i;
7059 bitmap_iterator bi;
7061 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7063 basic_block bb = BASIC_BLOCK (i);
7065 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7066 this basic block already. */
7067 gcc_assert (bb || changed);
7068 if (bb != NULL)
7069 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7072 return changed;
7075 /* This function is called whenever a new edge is created or
7076 redirected. */
7078 static void
7079 gimple_execute_on_growing_pred (edge e)
7081 basic_block bb = e->dest;
7083 if (!gimple_seq_empty_p (phi_nodes (bb)))
7084 reserve_phi_args_for_new_edge (bb);
7087 /* This function is called immediately before edge E is removed from
7088 the edge vector E->dest->preds. */
7090 static void
7091 gimple_execute_on_shrinking_pred (edge e)
7093 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7094 remove_phi_args (e);
7097 /*---------------------------------------------------------------------------
7098 Helper functions for Loop versioning
7099 ---------------------------------------------------------------------------*/
7101 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7102 of 'first'. Both of them are dominated by 'new_head' basic block. When
7103 'new_head' was created by 'second's incoming edge it received phi arguments
7104 on the edge by split_edge(). Later, additional edge 'e' was created to
7105 connect 'new_head' and 'first'. Now this routine adds phi args on this
7106 additional edge 'e' that new_head to second edge received as part of edge
7107 splitting. */
7109 static void
7110 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7111 basic_block new_head, edge e)
7113 gimple phi1, phi2;
7114 gimple_stmt_iterator psi1, psi2;
7115 tree def;
7116 edge e2 = find_edge (new_head, second);
7118 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7119 edge, we should always have an edge from NEW_HEAD to SECOND. */
7120 gcc_assert (e2 != NULL);
7122 /* Browse all 'second' basic block phi nodes and add phi args to
7123 edge 'e' for 'first' head. PHI args are always in correct order. */
7125 for (psi2 = gsi_start_phis (second),
7126 psi1 = gsi_start_phis (first);
7127 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7128 gsi_next (&psi2), gsi_next (&psi1))
7130 phi1 = gsi_stmt (psi1);
7131 phi2 = gsi_stmt (psi2);
7132 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7133 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7138 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7139 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7140 the destination of the ELSE part. */
7142 static void
7143 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7144 basic_block second_head ATTRIBUTE_UNUSED,
7145 basic_block cond_bb, void *cond_e)
7147 gimple_stmt_iterator gsi;
7148 gimple new_cond_expr;
7149 tree cond_expr = (tree) cond_e;
7150 edge e0;
7152 /* Build new conditional expr */
7153 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7154 NULL_TREE, NULL_TREE);
7156 /* Add new cond in cond_bb. */
7157 gsi = gsi_last_bb (cond_bb);
7158 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7160 /* Adjust edges appropriately to connect new head with first head
7161 as well as second head. */
7162 e0 = single_succ_edge (cond_bb);
7163 e0->flags &= ~EDGE_FALLTHRU;
7164 e0->flags |= EDGE_FALSE_VALUE;
7167 struct cfg_hooks gimple_cfg_hooks = {
7168 "gimple",
7169 gimple_verify_flow_info,
7170 gimple_dump_bb, /* dump_bb */
7171 create_bb, /* create_basic_block */
7172 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7173 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7174 gimple_can_remove_branch_p, /* can_remove_branch_p */
7175 remove_bb, /* delete_basic_block */
7176 gimple_split_block, /* split_block */
7177 gimple_move_block_after, /* move_block_after */
7178 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7179 gimple_merge_blocks, /* merge_blocks */
7180 gimple_predict_edge, /* predict_edge */
7181 gimple_predicted_by_p, /* predicted_by_p */
7182 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7183 gimple_duplicate_bb, /* duplicate_block */
7184 gimple_split_edge, /* split_edge */
7185 gimple_make_forwarder_block, /* make_forward_block */
7186 NULL, /* tidy_fallthru_edge */
7187 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7188 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7189 gimple_flow_call_edges_add, /* flow_call_edges_add */
7190 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7191 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7192 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7193 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7194 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7195 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7196 flush_pending_stmts /* flush_pending_stmts */
7200 /* Split all critical edges. */
7202 static unsigned int
7203 split_critical_edges (void)
7205 basic_block bb;
7206 edge e;
7207 edge_iterator ei;
7209 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7210 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7211 mappings around the calls to split_edge. */
7212 start_recording_case_labels ();
7213 FOR_ALL_BB (bb)
7215 FOR_EACH_EDGE (e, ei, bb->succs)
7217 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7218 split_edge (e);
7219 /* PRE inserts statements to edges and expects that
7220 since split_critical_edges was done beforehand, committing edge
7221 insertions will not split more edges. In addition to critical
7222 edges we must split edges that have multiple successors and
7223 end by control flow statements, such as RESX.
7224 Go ahead and split them too. This matches the logic in
7225 gimple_find_edge_insert_loc. */
7226 else if ((!single_pred_p (e->dest)
7227 || !gimple_seq_empty_p (phi_nodes (e->dest))
7228 || e->dest == EXIT_BLOCK_PTR)
7229 && e->src != ENTRY_BLOCK_PTR
7230 && !(e->flags & EDGE_ABNORMAL))
7232 gimple_stmt_iterator gsi;
7234 gsi = gsi_last_bb (e->src);
7235 if (!gsi_end_p (gsi)
7236 && stmt_ends_bb_p (gsi_stmt (gsi))
7237 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7238 && !gimple_call_builtin_p (gsi_stmt (gsi),
7239 BUILT_IN_RETURN)))
7240 split_edge (e);
7244 end_recording_case_labels ();
7245 return 0;
7248 struct gimple_opt_pass pass_split_crit_edges =
7251 GIMPLE_PASS,
7252 "crited", /* name */
7253 NULL, /* gate */
7254 split_critical_edges, /* execute */
7255 NULL, /* sub */
7256 NULL, /* next */
7257 0, /* static_pass_number */
7258 TV_TREE_SPLIT_EDGES, /* tv_id */
7259 PROP_cfg, /* properties required */
7260 PROP_no_crit_edges, /* properties_provided */
7261 0, /* properties_destroyed */
7262 0, /* todo_flags_start */
7263 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7268 /* Build a ternary operation and gimplify it. Emit code before GSI.
7269 Return the gimple_val holding the result. */
7271 tree
7272 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7273 tree type, tree a, tree b, tree c)
7275 tree ret;
7276 location_t loc = gimple_location (gsi_stmt (*gsi));
7278 ret = fold_build3_loc (loc, code, type, a, b, c);
7279 STRIP_NOPS (ret);
7281 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7282 GSI_SAME_STMT);
7285 /* Build a binary operation and gimplify it. Emit code before GSI.
7286 Return the gimple_val holding the result. */
7288 tree
7289 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7290 tree type, tree a, tree b)
7292 tree ret;
7294 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7295 STRIP_NOPS (ret);
7297 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7298 GSI_SAME_STMT);
7301 /* Build a unary operation and gimplify it. Emit code before GSI.
7302 Return the gimple_val holding the result. */
7304 tree
7305 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7306 tree a)
7308 tree ret;
7310 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7311 STRIP_NOPS (ret);
7313 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7314 GSI_SAME_STMT);
7319 /* Emit return warnings. */
7321 static unsigned int
7322 execute_warn_function_return (void)
7324 source_location location;
7325 gimple last;
7326 edge e;
7327 edge_iterator ei;
7329 /* If we have a path to EXIT, then we do return. */
7330 if (TREE_THIS_VOLATILE (cfun->decl)
7331 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7333 location = UNKNOWN_LOCATION;
7334 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7336 last = last_stmt (e->src);
7337 if ((gimple_code (last) == GIMPLE_RETURN
7338 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7339 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7340 break;
7342 if (location == UNKNOWN_LOCATION)
7343 location = cfun->function_end_locus;
7344 warning_at (location, 0, "%<noreturn%> function does return");
7347 /* If we see "return;" in some basic block, then we do reach the end
7348 without returning a value. */
7349 else if (warn_return_type
7350 && !TREE_NO_WARNING (cfun->decl)
7351 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7352 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7354 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7356 gimple last = last_stmt (e->src);
7357 if (gimple_code (last) == GIMPLE_RETURN
7358 && gimple_return_retval (last) == NULL
7359 && !gimple_no_warning_p (last))
7361 location = gimple_location (last);
7362 if (location == UNKNOWN_LOCATION)
7363 location = cfun->function_end_locus;
7364 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7365 TREE_NO_WARNING (cfun->decl) = 1;
7366 break;
7370 return 0;
7374 /* Given a basic block B which ends with a conditional and has
7375 precisely two successors, determine which of the edges is taken if
7376 the conditional is true and which is taken if the conditional is
7377 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7379 void
7380 extract_true_false_edges_from_block (basic_block b,
7381 edge *true_edge,
7382 edge *false_edge)
7384 edge e = EDGE_SUCC (b, 0);
7386 if (e->flags & EDGE_TRUE_VALUE)
7388 *true_edge = e;
7389 *false_edge = EDGE_SUCC (b, 1);
7391 else
7393 *false_edge = e;
7394 *true_edge = EDGE_SUCC (b, 1);
7398 struct gimple_opt_pass pass_warn_function_return =
7401 GIMPLE_PASS,
7402 "*warn_function_return", /* name */
7403 NULL, /* gate */
7404 execute_warn_function_return, /* execute */
7405 NULL, /* sub */
7406 NULL, /* next */
7407 0, /* static_pass_number */
7408 TV_NONE, /* tv_id */
7409 PROP_cfg, /* properties_required */
7410 0, /* properties_provided */
7411 0, /* properties_destroyed */
7412 0, /* todo_flags_start */
7413 0 /* todo_flags_finish */
7417 /* Emit noreturn warnings. */
7419 static unsigned int
7420 execute_warn_function_noreturn (void)
7422 if (!TREE_THIS_VOLATILE (current_function_decl)
7423 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7424 warn_function_noreturn (current_function_decl);
7425 return 0;
7428 static bool
7429 gate_warn_function_noreturn (void)
7431 return warn_suggest_attribute_noreturn;
7434 struct gimple_opt_pass pass_warn_function_noreturn =
7437 GIMPLE_PASS,
7438 "*warn_function_noreturn", /* name */
7439 gate_warn_function_noreturn, /* gate */
7440 execute_warn_function_noreturn, /* execute */
7441 NULL, /* sub */
7442 NULL, /* next */
7443 0, /* static_pass_number */
7444 TV_NONE, /* tv_id */
7445 PROP_cfg, /* properties_required */
7446 0, /* properties_provided */
7447 0, /* properties_destroyed */
7448 0, /* todo_flags_start */
7449 0 /* todo_flags_finish */
7454 /* Walk a gimplified function and warn for functions whose return value is
7455 ignored and attribute((warn_unused_result)) is set. This is done before
7456 inlining, so we don't have to worry about that. */
7458 static void
7459 do_warn_unused_result (gimple_seq seq)
7461 tree fdecl, ftype;
7462 gimple_stmt_iterator i;
7464 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7466 gimple g = gsi_stmt (i);
7468 switch (gimple_code (g))
7470 case GIMPLE_BIND:
7471 do_warn_unused_result (gimple_bind_body (g));
7472 break;
7473 case GIMPLE_TRY:
7474 do_warn_unused_result (gimple_try_eval (g));
7475 do_warn_unused_result (gimple_try_cleanup (g));
7476 break;
7477 case GIMPLE_CATCH:
7478 do_warn_unused_result (gimple_catch_handler (g));
7479 break;
7480 case GIMPLE_EH_FILTER:
7481 do_warn_unused_result (gimple_eh_filter_failure (g));
7482 break;
7484 case GIMPLE_CALL:
7485 if (gimple_call_lhs (g))
7486 break;
7488 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7489 LHS. All calls whose value is ignored should be
7490 represented like this. Look for the attribute. */
7491 fdecl = gimple_call_fndecl (g);
7492 ftype = TREE_TYPE (TREE_TYPE (gimple_call_fn (g)));
7494 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7496 location_t loc = gimple_location (g);
7498 if (fdecl)
7499 warning_at (loc, OPT_Wunused_result,
7500 "ignoring return value of %qD, "
7501 "declared with attribute warn_unused_result",
7502 fdecl);
7503 else
7504 warning_at (loc, OPT_Wunused_result,
7505 "ignoring return value of function "
7506 "declared with attribute warn_unused_result");
7508 break;
7510 default:
7511 /* Not a container, not a call, or a call whose value is used. */
7512 break;
7517 static unsigned int
7518 run_warn_unused_result (void)
7520 do_warn_unused_result (gimple_body (current_function_decl));
7521 return 0;
7524 static bool
7525 gate_warn_unused_result (void)
7527 return flag_warn_unused_result;
7530 struct gimple_opt_pass pass_warn_unused_result =
7533 GIMPLE_PASS,
7534 "*warn_unused_result", /* name */
7535 gate_warn_unused_result, /* gate */
7536 run_warn_unused_result, /* execute */
7537 NULL, /* sub */
7538 NULL, /* next */
7539 0, /* static_pass_number */
7540 TV_NONE, /* tv_id */
7541 PROP_gimple_any, /* properties_required */
7542 0, /* properties_provided */
7543 0, /* properties_destroyed */
7544 0, /* todo_flags_start */
7545 0, /* todo_flags_finish */