1 /* Single entry single exit control flow regions.
2 Copyright (C) 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Jan Sjodin <jan.sjodin@amd.com> and
5 Sebastian Pop <sebastian.pop@amd.com>.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
26 /* A Single Entry, Single Exit region is a part of the CFG delimited
30 /* Single ENTRY and single EXIT from the SESE region. */
33 /* Parameters used within the SCOP. */
34 VEC (tree
, heap
) *params
;
36 /* Loops completely contained in the SCOP. */
38 VEC (loop_p
, heap
) *loop_nest
;
40 /* Are we allowed to add more params? This is for debugging purpose. We
41 can only add new params before generating the bb domains, otherwise they
46 #define SESE_ENTRY(S) (S->entry)
47 #define SESE_ENTRY_BB(S) (S->entry->dest)
48 #define SESE_EXIT(S) (S->exit)
49 #define SESE_EXIT_BB(S) (S->exit->dest)
50 #define SESE_PARAMS(S) (S->params)
51 #define SESE_LOOPS(S) (S->loops)
52 #define SESE_LOOP_NEST(S) (S->loop_nest)
53 #define SESE_ADD_PARAMS(S) (S->add_params)
55 extern sese
new_sese (edge
, edge
);
56 extern void free_sese (sese
);
57 extern void sese_insert_phis_for_liveouts (sese
, basic_block
, edge
, edge
);
58 extern void build_sese_loop_nests (sese
);
59 extern edge
copy_bb_and_scalar_dependences (basic_block
, sese
, edge
,
61 extern struct loop
*outermost_loop_in_sese (sese
, basic_block
);
62 extern void insert_loop_close_phis (htab_t
, loop_p
);
63 extern void insert_guard_phis (basic_block
, edge
, edge
, htab_t
, htab_t
);
64 extern tree
scalar_evolution_in_region (sese
, loop_p
, tree
);
66 /* Check that SESE contains LOOP. */
69 sese_contains_loop (sese sese
, struct loop
*loop
)
71 return bitmap_bit_p (SESE_LOOPS (sese
), loop
->num
);
74 /* The number of parameters in REGION. */
76 static inline unsigned
77 sese_nb_params (sese region
)
79 return VEC_length (tree
, SESE_PARAMS (region
));
82 /* Checks whether BB is contained in the region delimited by ENTRY and
86 bb_in_region (basic_block bb
, basic_block entry
, basic_block exit
)
88 #ifdef ENABLE_CHECKING
93 /* Check that there are no edges coming in the region: all the
94 predecessors of EXIT are dominated by ENTRY. */
95 FOR_EACH_EDGE (e
, ei
, exit
->preds
)
96 dominated_by_p (CDI_DOMINATORS
, e
->src
, entry
);
100 return dominated_by_p (CDI_DOMINATORS
, bb
, entry
)
101 && !(dominated_by_p (CDI_DOMINATORS
, bb
, exit
)
102 && !dominated_by_p (CDI_DOMINATORS
, entry
, exit
));
105 /* Checks whether BB is contained in the region delimited by ENTRY and
109 bb_in_sese_p (basic_block bb
, sese region
)
111 basic_block entry
= SESE_ENTRY_BB (region
);
112 basic_block exit
= SESE_EXIT_BB (region
);
114 return bb_in_region (bb
, entry
, exit
);
117 /* Returns true when NAME is defined in REGION. */
120 defined_in_sese_p (tree name
, sese region
)
122 gimple stmt
= SSA_NAME_DEF_STMT (name
);
123 basic_block bb
= gimple_bb (stmt
);
125 return bb
&& bb_in_sese_p (bb
, region
);
128 /* Returns true when LOOP is in REGION. */
131 loop_in_sese_p (struct loop
*loop
, sese region
)
133 return (bb_in_sese_p (loop
->header
, region
)
134 && bb_in_sese_p (loop
->latch
, region
));
137 /* Returns the loop depth of LOOP in REGION. The loop depth
138 is the same as the normal loop depth, but limited by a region.
156 loop_0 does not exist in the region -> invalid
157 loop_1 exists, but is not completely contained in the region -> depth 0
158 loop_2 is completely contained -> depth 1 */
160 static inline unsigned int
161 sese_loop_depth (sese region
, loop_p loop
)
163 unsigned int depth
= 0;
165 gcc_assert ((!loop_in_sese_p (loop
, region
)
166 && (SESE_ENTRY_BB (region
)->loop_father
== loop
167 || SESE_EXIT (region
)->src
->loop_father
== loop
))
168 || loop_in_sese_p (loop
, region
));
170 while (loop_in_sese_p (loop
, region
))
173 loop
= loop_outer (loop
);
179 /* Splits BB to make a single entry single exit region. */
182 split_region_for_bb (basic_block bb
)
186 if (single_pred_p (bb
))
187 entry
= single_pred_edge (bb
);
190 entry
= split_block_after_labels (bb
);
191 bb
= single_succ (bb
);
194 if (single_succ_p (bb
))
195 exit
= single_succ_edge (bb
);
198 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
200 exit
= split_block (bb
, gsi_stmt (gsi
));
203 return new_sese (entry
, exit
);
206 /* Returns the block preceding the entry of a SESE. */
208 static inline basic_block
209 block_before_sese (sese sese
)
211 return SESE_ENTRY (sese
)->src
;
216 /* A single entry single exit specialized for conditions. */
218 typedef struct ifsese_s
{
224 extern void if_region_set_false_region (ifsese
, sese
);
225 extern ifsese
move_sese_in_condition (sese
);
226 extern edge
get_true_edge_from_guard_bb (basic_block
);
227 extern edge
get_false_edge_from_guard_bb (basic_block
);
228 extern void set_ifsese_condition (ifsese
, tree
);
231 if_region_entry (ifsese if_region
)
233 return SESE_ENTRY (if_region
->region
);
237 if_region_exit (ifsese if_region
)
239 return SESE_EXIT (if_region
->region
);
242 static inline basic_block
243 if_region_get_condition_block (ifsese if_region
)
245 return if_region_entry (if_region
)->dest
;
248 /* Structure containing the mapping between the old names and the new
249 names used after block copy in the new loop context. */
250 typedef struct rename_map_elt_s
255 DEF_VEC_P(rename_map_elt
);
256 DEF_VEC_ALLOC_P (rename_map_elt
, heap
);
258 extern void debug_rename_map (htab_t
);
259 extern hashval_t
rename_map_elt_info (const void *);
260 extern int eq_rename_map_elts (const void *, const void *);
262 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
264 static inline rename_map_elt
265 new_rename_map_elt (tree old_name
, tree expr
)
269 res
= XNEW (struct rename_map_elt_s
);
270 res
->old_name
= old_name
;
276 /* Structure containing the mapping between the CLooG's induction
277 variable and the type of the old induction variable. */
278 typedef struct ivtype_map_elt_s
281 const char *cloog_iv
;
284 extern void debug_ivtype_map (htab_t
);
285 extern hashval_t
ivtype_map_elt_info (const void *);
286 extern int eq_ivtype_map_elts (const void *, const void *);
288 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
290 static inline ivtype_map_elt
291 new_ivtype_map_elt (const char *cloog_iv
, tree type
)
295 res
= XNEW (struct ivtype_map_elt_s
);
296 res
->cloog_iv
= cloog_iv
;
302 /* Free and compute again all the dominators information. */
305 recompute_all_dominators (void)
307 mark_irreducible_loops ();
308 free_dominance_info (CDI_DOMINATORS
);
309 calculate_dominance_info (CDI_DOMINATORS
);
312 typedef struct gimple_bb
316 /* Lists containing the restrictions of the conditional statements
317 dominating this bb. This bb can only be executed, if all conditions
322 for (i = 0; i <= 20; i++)
330 So for B there is an additional condition (2i <= 8).
332 List of COND_EXPR and SWITCH_EXPR. A COND_EXPR is true only if the
333 corresponding element in CONDITION_CASES is not NULL_TREE. For a
334 SWITCH_EXPR the corresponding element in CONDITION_CASES is a
336 VEC (gimple
, heap
) *conditions
;
337 VEC (gimple
, heap
) *condition_cases
;
338 VEC (data_reference_p
, heap
) *data_refs
;
341 #define GBB_BB(GBB) GBB->bb
342 #define GBB_DATA_REFS(GBB) GBB->data_refs
343 #define GBB_CONDITIONS(GBB) GBB->conditions
344 #define GBB_CONDITION_CASES(GBB) GBB->condition_cases
346 /* Return the innermost loop that contains the basic block GBB. */
348 static inline struct loop
*
349 gbb_loop (struct gimple_bb
*gbb
)
351 return GBB_BB (gbb
)->loop_father
;
354 /* Returns the gimple loop, that corresponds to the loop_iterator_INDEX.
355 If there is no corresponding gimple loop, we return NULL. */
358 gbb_loop_at_index (gimple_bb_p gbb
, sese region
, int index
)
360 loop_p loop
= gbb_loop (gbb
);
361 int depth
= sese_loop_depth (region
, loop
);
363 while (--depth
> index
)
364 loop
= loop_outer (loop
);
366 gcc_assert (sese_contains_loop (region
, loop
));
371 /* The number of common loops in REGION for GBB1 and GBB2. */
374 nb_common_loops (sese region
, gimple_bb_p gbb1
, gimple_bb_p gbb2
)
376 loop_p l1
= gbb_loop (gbb1
);
377 loop_p l2
= gbb_loop (gbb2
);
378 loop_p common
= find_common_loop (l1
, l2
);
380 return sese_loop_depth (region
, common
);
383 /* Return true when DEF can be analyzed in REGION by the scalar
384 evolution analyzer. */
387 scev_analyzable_p (tree def
, sese region
)
391 tree type
= TREE_TYPE (def
);
393 /* When Graphite generates code for a scev, the code generator
394 expresses the scev in function of a single induction variable.
395 This is unsafe for floating point computations, as it may replace
396 a floating point sum reduction with a multiplication. The
397 following test returns false for non integer types to avoid such
399 if (!INTEGRAL_TYPE_P (type
)
400 && !POINTER_TYPE_P (type
))
403 loop
= loop_containing_stmt (SSA_NAME_DEF_STMT (def
));
404 scev
= scalar_evolution_in_region (region
, loop
, def
);
406 return !chrec_contains_undetermined (scev
)
407 && TREE_CODE (scev
) != SSA_NAME
408 && (tree_does_not_contain_chrecs (scev
)
409 || evolution_function_is_affine_p (scev
));