2010-11-11 Jakub Jelinek <jakub@redhat.com>
[official-gcc.git] / gcc / graphite-scop-detection.c
blob7110efe0a08367648bcfccb97b06310d42c4693d
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "basic-block.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "toplev.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "cfgloop.h"
36 #include "tree-chrec.h"
37 #include "tree-data-ref.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-pass.h"
40 #include "domwalk.h"
41 #include "value-prof.h"
42 #include "pointer-set.h"
43 #include "gimple.h"
44 #include "sese.h"
46 #ifdef HAVE_cloog
47 #include "ppl_c.h"
48 #include "graphite-ppl.h"
49 #include "graphite.h"
50 #include "graphite-poly.h"
51 #include "graphite-scop-detection.h"
53 /* The type of the analyzed basic block. */
55 typedef enum gbb_type {
56 GBB_UNKNOWN,
57 GBB_LOOP_SING_EXIT_HEADER,
58 GBB_LOOP_MULT_EXIT_HEADER,
59 GBB_LOOP_EXIT,
60 GBB_COND_HEADER,
61 GBB_SIMPLE,
62 GBB_LAST
63 } gbb_type;
65 /* Detect the type of BB. Loop headers are only marked, if they are
66 new. This means their loop_father is different to LAST_LOOP.
67 Otherwise they are treated like any other bb and their type can be
68 any other type. */
70 static gbb_type
71 get_bb_type (basic_block bb, struct loop *last_loop)
73 VEC (basic_block, heap) *dom;
74 int nb_dom, nb_suc;
75 struct loop *loop = bb->loop_father;
77 /* Check, if we entry into a new loop. */
78 if (loop != last_loop)
80 if (single_exit (loop) != NULL)
81 return GBB_LOOP_SING_EXIT_HEADER;
82 else if (loop->num != 0)
83 return GBB_LOOP_MULT_EXIT_HEADER;
84 else
85 return GBB_COND_HEADER;
88 dom = get_dominated_by (CDI_DOMINATORS, bb);
89 nb_dom = VEC_length (basic_block, dom);
90 VEC_free (basic_block, heap, dom);
92 if (nb_dom == 0)
93 return GBB_LAST;
95 nb_suc = VEC_length (edge, bb->succs);
97 if (nb_dom == 1 && nb_suc == 1)
98 return GBB_SIMPLE;
100 return GBB_COND_HEADER;
103 /* A SCoP detection region, defined using bbs as borders.
105 All control flow touching this region, comes in passing basic_block
106 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
107 edges for the borders we are able to represent also regions that do
108 not have a single entry or exit edge.
110 But as they have a single entry basic_block and a single exit
111 basic_block, we are able to generate for every sd_region a single
112 entry and exit edge.
116 3 <- entry
119 / \ This region contains: {3, 4, 5, 6, 7, 8}
124 9 <- exit */
127 typedef struct sd_region_p
129 /* The entry bb dominates all bbs in the sd_region. It is part of
130 the region. */
131 basic_block entry;
133 /* The exit bb postdominates all bbs in the sd_region, but is not
134 part of the region. */
135 basic_block exit;
136 } sd_region;
138 DEF_VEC_O(sd_region);
139 DEF_VEC_ALLOC_O(sd_region, heap);
142 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
144 static void
145 move_sd_regions (VEC (sd_region, heap) **source,
146 VEC (sd_region, heap) **target)
148 sd_region *s;
149 int i;
151 FOR_EACH_VEC_ELT (sd_region, *source, i, s)
152 VEC_safe_push (sd_region, heap, *target, s);
154 VEC_free (sd_region, heap, *source);
157 /* Something like "n * m" is not allowed. */
159 static bool
160 graphite_can_represent_init (tree e)
162 switch (TREE_CODE (e))
164 case POLYNOMIAL_CHREC:
165 return graphite_can_represent_init (CHREC_LEFT (e))
166 && graphite_can_represent_init (CHREC_RIGHT (e));
168 case MULT_EXPR:
169 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
170 return graphite_can_represent_init (TREE_OPERAND (e, 0))
171 && host_integerp (TREE_OPERAND (e, 1), 0);
172 else
173 return graphite_can_represent_init (TREE_OPERAND (e, 1))
174 && host_integerp (TREE_OPERAND (e, 0), 0);
176 case PLUS_EXPR:
177 case POINTER_PLUS_EXPR:
178 case MINUS_EXPR:
179 return graphite_can_represent_init (TREE_OPERAND (e, 0))
180 && graphite_can_represent_init (TREE_OPERAND (e, 1));
182 case NEGATE_EXPR:
183 case BIT_NOT_EXPR:
184 CASE_CONVERT:
185 case NON_LVALUE_EXPR:
186 return graphite_can_represent_init (TREE_OPERAND (e, 0));
188 default:
189 break;
192 return true;
195 /* Return true when SCEV can be represented in the polyhedral model.
197 An expression can be represented, if it can be expressed as an
198 affine expression. For loops (i, j) and parameters (m, n) all
199 affine expressions are of the form:
201 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
203 1 i + 20 j + (-2) m + 25
205 Something like "i * n" or "n * m" is not allowed. */
207 static bool
208 graphite_can_represent_scev (tree scev)
210 if (chrec_contains_undetermined (scev))
211 return false;
213 switch (TREE_CODE (scev))
215 case PLUS_EXPR:
216 case MINUS_EXPR:
217 return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
218 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
220 case MULT_EXPR:
221 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
222 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
223 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
224 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
225 && graphite_can_represent_init (scev)
226 && graphite_can_represent_scev (TREE_OPERAND (scev, 0))
227 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
229 case POLYNOMIAL_CHREC:
230 /* Check for constant strides. With a non constant stride of
231 'n' we would have a value of 'iv * n'. Also check that the
232 initial value can represented: for example 'n * m' cannot be
233 represented. */
234 if (!evolution_function_right_is_integer_cst (scev)
235 || !graphite_can_represent_init (scev))
236 return false;
238 default:
239 break;
242 /* Only affine functions can be represented. */
243 if (!scev_is_linear_expression (scev))
244 return false;
246 return true;
250 /* Return true when EXPR can be represented in the polyhedral model.
252 This means an expression can be represented, if it is linear with
253 respect to the loops and the strides are non parametric.
254 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
255 entry of the region we analyse. */
257 static bool
258 graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
259 tree expr)
261 tree scev = analyze_scalar_evolution (loop, expr);
263 scev = instantiate_scev (scop_entry, loop, scev);
265 return graphite_can_represent_scev (scev);
268 /* Return true if the data references of STMT can be represented by
269 Graphite. */
271 static bool
272 stmt_has_simple_data_refs_p (loop_p outermost_loop, gimple stmt)
274 data_reference_p dr;
275 unsigned i;
276 int j;
277 bool res = true;
278 VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 5);
280 graphite_find_data_references_in_stmt (outermost_loop, stmt, &drs);
282 FOR_EACH_VEC_ELT (data_reference_p, drs, j, dr)
283 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
284 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
286 res = false;
287 goto done;
290 done:
291 free_data_refs (drs);
292 return res;
295 /* Return true only when STMT is simple enough for being handled by
296 Graphite. This depends on SCOP_ENTRY, as the parameters are
297 initialized relatively to this basic block, the linear functions
298 are initialized to OUTERMOST_LOOP and BB is the place where we try
299 to evaluate the STMT. */
301 static bool
302 stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
303 gimple stmt, basic_block bb)
305 loop_p loop = bb->loop_father;
307 gcc_assert (scop_entry);
309 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
310 Calls have side-effects, except those to const or pure
311 functions. */
312 if (gimple_has_volatile_ops (stmt)
313 || (gimple_code (stmt) == GIMPLE_CALL
314 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
315 || (gimple_code (stmt) == GIMPLE_ASM))
316 return false;
318 if (is_gimple_debug (stmt))
319 return true;
321 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
322 return false;
324 switch (gimple_code (stmt))
326 case GIMPLE_RETURN:
327 case GIMPLE_LABEL:
328 return true;
330 case GIMPLE_COND:
332 tree op;
333 ssa_op_iter op_iter;
334 enum tree_code code = gimple_cond_code (stmt);
336 /* We can handle all binary comparisons. Inequalities are
337 also supported as they can be represented with union of
338 polyhedra. */
339 if (!(code == LT_EXPR
340 || code == GT_EXPR
341 || code == LE_EXPR
342 || code == GE_EXPR
343 || code == EQ_EXPR
344 || code == NE_EXPR))
345 return false;
347 FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
348 if (!graphite_can_represent_expr (scop_entry, loop, op)
349 /* We can not handle REAL_TYPE. Failed for pr39260. */
350 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
351 return false;
353 return true;
356 case GIMPLE_ASSIGN:
357 case GIMPLE_CALL:
358 return true;
360 default:
361 /* These nodes cut a new scope. */
362 return false;
365 return false;
368 /* Returns the statement of BB that contains a harmful operation: that
369 can be a function call with side effects, the induction variables
370 are not linear with respect to SCOP_ENTRY, etc. The current open
371 scop should end before this statement. The evaluation is limited using
372 OUTERMOST_LOOP as outermost loop that may change. */
374 static gimple
375 harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
377 gimple_stmt_iterator gsi;
379 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
380 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
381 return gsi_stmt (gsi);
383 return NULL;
386 /* Return true if LOOP can be represented in the polyhedral
387 representation. This is evaluated taking SCOP_ENTRY and
388 OUTERMOST_LOOP in mind. */
390 static bool
391 graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
393 tree niter = number_of_latch_executions (loop);
395 /* Number of iterations unknown. */
396 if (chrec_contains_undetermined (niter))
397 return false;
399 /* Number of iterations not affine. */
400 if (!graphite_can_represent_expr (scop_entry, loop, niter))
401 return false;
403 return true;
406 /* Store information needed by scopdet_* functions. */
408 struct scopdet_info
410 /* Exit of the open scop would stop if the current BB is harmful. */
411 basic_block exit;
413 /* Where the next scop would start if the current BB is harmful. */
414 basic_block next;
416 /* The bb or one of its children contains open loop exits. That means
417 loop exit nodes that are not surrounded by a loop dominated by bb. */
418 bool exits;
420 /* The bb or one of its children contains only structures we can handle. */
421 bool difficult;
424 static struct scopdet_info build_scops_1 (basic_block, loop_p,
425 VEC (sd_region, heap) **, loop_p);
427 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
428 to SCOPS. TYPE is the gbb_type of BB. */
430 static struct scopdet_info
431 scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
432 VEC (sd_region, heap) **scops, gbb_type type)
434 loop_p loop = bb->loop_father;
435 struct scopdet_info result;
436 gimple stmt;
438 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
439 basic_block entry_block = ENTRY_BLOCK_PTR;
440 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
441 result.difficult = (stmt != NULL);
442 result.exit = NULL;
444 switch (type)
446 case GBB_LAST:
447 result.next = NULL;
448 result.exits = false;
450 /* Mark bbs terminating a SESE region difficult, if they start
451 a condition. */
452 if (!single_succ_p (bb))
453 result.difficult = true;
454 else
455 result.exit = single_succ (bb);
457 break;
459 case GBB_SIMPLE:
460 result.next = single_succ (bb);
461 result.exits = false;
462 result.exit = single_succ (bb);
463 break;
465 case GBB_LOOP_SING_EXIT_HEADER:
467 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
468 struct scopdet_info sinfo;
469 edge exit_e = single_exit (loop);
471 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
473 if (!graphite_can_represent_loop (entry_block, loop))
474 result.difficult = true;
476 result.difficult |= sinfo.difficult;
478 /* Try again with another loop level. */
479 if (result.difficult
480 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
482 outermost_loop = loop;
484 VEC_free (sd_region, heap, regions);
485 regions = VEC_alloc (sd_region, heap, 3);
487 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
489 result = sinfo;
490 result.difficult = true;
492 if (sinfo.difficult)
493 move_sd_regions (&regions, scops);
494 else
496 sd_region open_scop;
497 open_scop.entry = bb;
498 open_scop.exit = exit_e->dest;
499 VEC_safe_push (sd_region, heap, *scops, &open_scop);
500 VEC_free (sd_region, heap, regions);
503 else
505 result.exit = exit_e->dest;
506 result.next = exit_e->dest;
508 /* If we do not dominate result.next, remove it. It's either
509 the EXIT_BLOCK_PTR, or another bb dominates it and will
510 call the scop detection for this bb. */
511 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
512 result.next = NULL;
514 if (exit_e->src->loop_father != loop)
515 result.next = NULL;
517 result.exits = false;
519 if (result.difficult)
520 move_sd_regions (&regions, scops);
521 else
522 VEC_free (sd_region, heap, regions);
525 break;
528 case GBB_LOOP_MULT_EXIT_HEADER:
530 /* XXX: For now we just do not join loops with multiple exits. If the
531 exits lead to the same bb it may be possible to join the loop. */
532 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
533 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
534 edge e;
535 int i;
536 build_scops_1 (bb, loop, &regions, loop);
538 /* Scan the code dominated by this loop. This means all bbs, that are
539 are dominated by a bb in this loop, but are not part of this loop.
541 The easiest case:
542 - The loop exit destination is dominated by the exit sources.
544 TODO: We miss here the more complex cases:
545 - The exit destinations are dominated by another bb inside
546 the loop.
547 - The loop dominates bbs, that are not exit destinations. */
548 FOR_EACH_VEC_ELT (edge, exits, i, e)
549 if (e->src->loop_father == loop
550 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
552 if (loop_outer (outermost_loop))
553 outermost_loop = loop_outer (outermost_loop);
555 /* Pass loop_outer to recognize e->dest as loop header in
556 build_scops_1. */
557 if (e->dest->loop_father->header == e->dest)
558 build_scops_1 (e->dest, outermost_loop, &regions,
559 loop_outer (e->dest->loop_father));
560 else
561 build_scops_1 (e->dest, outermost_loop, &regions,
562 e->dest->loop_father);
565 result.next = NULL;
566 result.exit = NULL;
567 result.difficult = true;
568 result.exits = false;
569 move_sd_regions (&regions, scops);
570 VEC_free (edge, heap, exits);
571 break;
573 case GBB_COND_HEADER:
575 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
576 struct scopdet_info sinfo;
577 VEC (basic_block, heap) *dominated;
578 int i;
579 basic_block dom_bb;
580 basic_block last_exit = NULL;
581 edge e;
582 result.exits = false;
584 /* First check the successors of BB, and check if it is
585 possible to join the different branches. */
586 FOR_EACH_VEC_ELT (edge, bb->succs, i, e)
588 /* Ignore loop exits. They will be handled after the loop
589 body. */
590 if (loop_exits_to_bb_p (loop, e->dest))
592 result.exits = true;
593 continue;
596 /* Do not follow edges that lead to the end of the
597 conditions block. For example, in
600 | /|\
601 | 1 2 |
602 | | | |
603 | 3 4 |
604 | \|/
607 the edge from 0 => 6. Only check if all paths lead to
608 the same node 6. */
610 if (!single_pred_p (e->dest))
612 /* Check, if edge leads directly to the end of this
613 condition. */
614 if (!last_exit)
615 last_exit = e->dest;
617 if (e->dest != last_exit)
618 result.difficult = true;
620 continue;
623 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
625 result.difficult = true;
626 continue;
629 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
631 result.exits |= sinfo.exits;
632 result.difficult |= sinfo.difficult;
634 /* Checks, if all branches end at the same point.
635 If that is true, the condition stays joinable.
636 Have a look at the example above. */
637 if (sinfo.exit)
639 if (!last_exit)
640 last_exit = sinfo.exit;
642 if (sinfo.exit != last_exit)
643 result.difficult = true;
645 else
646 result.difficult = true;
649 if (!last_exit)
650 result.difficult = true;
652 /* Join the branches of the condition if possible. */
653 if (!result.exits && !result.difficult)
655 /* Only return a next pointer if we dominate this pointer.
656 Otherwise it will be handled by the bb dominating it. */
657 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
658 && last_exit != bb)
659 result.next = last_exit;
660 else
661 result.next = NULL;
663 result.exit = last_exit;
665 VEC_free (sd_region, heap, regions);
666 break;
669 /* Scan remaining bbs dominated by BB. */
670 dominated = get_dominated_by (CDI_DOMINATORS, bb);
672 FOR_EACH_VEC_ELT (basic_block, dominated, i, dom_bb)
674 /* Ignore loop exits: they will be handled after the loop body. */
675 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
676 < loop_depth (loop))
678 result.exits = true;
679 continue;
682 /* Ignore the bbs processed above. */
683 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
684 continue;
686 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
687 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
688 loop_outer (loop));
689 else
690 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
692 result.exits |= sinfo.exits;
693 result.difficult = true;
694 result.exit = NULL;
697 VEC_free (basic_block, heap, dominated);
699 result.next = NULL;
700 move_sd_regions (&regions, scops);
702 break;
705 default:
706 gcc_unreachable ();
709 return result;
712 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
713 SCOPS. The analyse if a sd_region can be handled is based on the value
714 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
715 is the loop in which CURRENT is handled.
717 TODO: These functions got a little bit big. They definitely should be cleaned
718 up. */
720 static struct scopdet_info
721 build_scops_1 (basic_block current, loop_p outermost_loop,
722 VEC (sd_region, heap) **scops, loop_p loop)
724 bool in_scop = false;
725 sd_region open_scop;
726 struct scopdet_info sinfo;
728 /* Initialize result. */
729 struct scopdet_info result;
730 result.exits = false;
731 result.difficult = false;
732 result.next = NULL;
733 result.exit = NULL;
734 open_scop.entry = NULL;
735 open_scop.exit = NULL;
736 sinfo.exit = NULL;
738 /* Loop over the dominance tree. If we meet a difficult bb, close
739 the current SCoP. Loop and condition header start a new layer,
740 and can only be added if all bbs in deeper layers are simple. */
741 while (current != NULL)
743 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
744 get_bb_type (current, loop));
746 if (!in_scop && !(sinfo.exits || sinfo.difficult))
748 open_scop.entry = current;
749 open_scop.exit = NULL;
750 in_scop = true;
752 else if (in_scop && (sinfo.exits || sinfo.difficult))
754 open_scop.exit = current;
755 VEC_safe_push (sd_region, heap, *scops, &open_scop);
756 in_scop = false;
759 result.difficult |= sinfo.difficult;
760 result.exits |= sinfo.exits;
762 current = sinfo.next;
765 /* Try to close open_scop, if we are still in an open SCoP. */
766 if (in_scop)
768 open_scop.exit = sinfo.exit;
769 gcc_assert (open_scop.exit);
770 VEC_safe_push (sd_region, heap, *scops, &open_scop);
773 result.exit = sinfo.exit;
774 return result;
777 /* Checks if a bb is contained in REGION. */
779 static bool
780 bb_in_sd_region (basic_block bb, sd_region *region)
782 return bb_in_region (bb, region->entry, region->exit);
785 /* Returns the single entry edge of REGION, if it does not exits NULL. */
787 static edge
788 find_single_entry_edge (sd_region *region)
790 edge e;
791 edge_iterator ei;
792 edge entry = NULL;
794 FOR_EACH_EDGE (e, ei, region->entry->preds)
795 if (!bb_in_sd_region (e->src, region))
797 if (entry)
799 entry = NULL;
800 break;
803 else
804 entry = e;
807 return entry;
810 /* Returns the single exit edge of REGION, if it does not exits NULL. */
812 static edge
813 find_single_exit_edge (sd_region *region)
815 edge e;
816 edge_iterator ei;
817 edge exit = NULL;
819 FOR_EACH_EDGE (e, ei, region->exit->preds)
820 if (bb_in_sd_region (e->src, region))
822 if (exit)
824 exit = NULL;
825 break;
828 else
829 exit = e;
832 return exit;
835 /* Create a single entry edge for REGION. */
837 static void
838 create_single_entry_edge (sd_region *region)
840 if (find_single_entry_edge (region))
841 return;
843 /* There are multiple predecessors for bb_3
845 | 1 2
846 | | /
847 | |/
848 | 3 <- entry
849 | |\
850 | | |
851 | 4 ^
852 | | |
853 | |/
856 There are two edges (1->3, 2->3), that point from outside into the region,
857 and another one (5->3), a loop latch, lead to bb_3.
859 We split bb_3.
861 | 1 2
862 | | /
863 | |/
864 |3.0
865 | |\ (3.0 -> 3.1) = single entry edge
866 |3.1 | <- entry
867 | | |
868 | | |
869 | 4 ^
870 | | |
871 | |/
874 If the loop is part of the SCoP, we have to redirect the loop latches.
876 | 1 2
877 | | /
878 | |/
879 |3.0
880 | | (3.0 -> 3.1) = entry edge
881 |3.1 <- entry
882 | |\
883 | | |
884 | 4 ^
885 | | |
886 | |/
887 | 5 */
889 if (region->entry->loop_father->header != region->entry
890 || dominated_by_p (CDI_DOMINATORS,
891 loop_latch_edge (region->entry->loop_father)->src,
892 region->exit))
894 edge forwarder = split_block_after_labels (region->entry);
895 region->entry = forwarder->dest;
897 else
898 /* This case is never executed, as the loop headers seem always to have a
899 single edge pointing from outside into the loop. */
900 gcc_unreachable ();
902 gcc_checking_assert (find_single_entry_edge (region));
905 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
907 static bool
908 sd_region_without_exit (edge e)
910 sd_region *r = (sd_region *) e->aux;
912 if (r)
913 return r->exit == NULL;
914 else
915 return false;
918 /* Create a single exit edge for REGION. */
920 static void
921 create_single_exit_edge (sd_region *region)
923 edge e;
924 edge_iterator ei;
925 edge forwarder = NULL;
926 basic_block exit;
928 /* We create a forwarder bb (5) for all edges leaving this region
929 (3->5, 4->5). All other edges leading to the same bb, are moved
930 to a new bb (6). If these edges where part of another region (2->5)
931 we update the region->exit pointer, of this region.
933 To identify which edge belongs to which region we depend on the e->aux
934 pointer in every edge. It points to the region of the edge or to NULL,
935 if the edge is not part of any region.
937 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
938 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
939 5 <- exit
941 changes to
943 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
944 | | \/ 3->5 no region, 4->5 no region,
945 | | 5
946 \| / 5->6 region->exit = 6
949 Now there is only a single exit edge (5->6). */
950 exit = region->exit;
951 region->exit = NULL;
952 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
954 /* Unmark the edges, that are no longer exit edges. */
955 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
956 if (e->aux)
957 e->aux = NULL;
959 /* Mark the new exit edge. */
960 single_succ_edge (forwarder->src)->aux = region;
962 /* Update the exit bb of all regions, where exit edges lead to
963 forwarder->dest. */
964 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
965 if (e->aux)
966 ((sd_region *) e->aux)->exit = forwarder->dest;
968 gcc_checking_assert (find_single_exit_edge (region));
971 /* Unmark the exit edges of all REGIONS.
972 See comment in "create_single_exit_edge". */
974 static void
975 unmark_exit_edges (VEC (sd_region, heap) *regions)
977 int i;
978 sd_region *s;
979 edge e;
980 edge_iterator ei;
982 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
983 FOR_EACH_EDGE (e, ei, s->exit->preds)
984 e->aux = NULL;
988 /* Mark the exit edges of all REGIONS.
989 See comment in "create_single_exit_edge". */
991 static void
992 mark_exit_edges (VEC (sd_region, heap) *regions)
994 int i;
995 sd_region *s;
996 edge e;
997 edge_iterator ei;
999 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1000 FOR_EACH_EDGE (e, ei, s->exit->preds)
1001 if (bb_in_sd_region (e->src, s))
1002 e->aux = s;
1005 /* Create for all scop regions a single entry and a single exit edge. */
1007 static void
1008 create_sese_edges (VEC (sd_region, heap) *regions)
1010 int i;
1011 sd_region *s;
1013 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1014 create_single_entry_edge (s);
1016 mark_exit_edges (regions);
1018 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1019 /* Don't handle multiple edges exiting the function. */
1020 if (!find_single_exit_edge (s)
1021 && s->exit != EXIT_BLOCK_PTR)
1022 create_single_exit_edge (s);
1024 unmark_exit_edges (regions);
1026 fix_loop_structure (NULL);
1028 #ifdef ENABLE_CHECKING
1029 verify_loop_structure ();
1030 verify_dominators (CDI_DOMINATORS);
1031 verify_ssa (false);
1032 #endif
1035 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1037 static void
1038 build_graphite_scops (VEC (sd_region, heap) *regions,
1039 VEC (scop_p, heap) **scops)
1041 int i;
1042 sd_region *s;
1044 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1046 edge entry = find_single_entry_edge (s);
1047 edge exit = find_single_exit_edge (s);
1048 scop_p scop;
1050 if (!exit)
1051 continue;
1053 scop = new_scop (new_sese (entry, exit));
1054 VEC_safe_push (scop_p, heap, *scops, scop);
1056 /* Are there overlapping SCoPs? */
1057 #ifdef ENABLE_CHECKING
1059 int j;
1060 sd_region *s2;
1062 FOR_EACH_VEC_ELT (sd_region, regions, j, s2)
1063 if (s != s2)
1064 gcc_assert (!bb_in_sd_region (s->entry, s2));
1066 #endif
1070 /* Returns true when BB contains only close phi nodes. */
1072 static bool
1073 contains_only_close_phi_nodes (basic_block bb)
1075 gimple_stmt_iterator gsi;
1077 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1078 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1079 return false;
1081 return true;
1084 /* Print statistics for SCOP to FILE. */
1086 static void
1087 print_graphite_scop_statistics (FILE* file, scop_p scop)
1089 long n_bbs = 0;
1090 long n_loops = 0;
1091 long n_stmts = 0;
1092 long n_conditions = 0;
1093 long n_p_bbs = 0;
1094 long n_p_loops = 0;
1095 long n_p_stmts = 0;
1096 long n_p_conditions = 0;
1098 basic_block bb;
1100 FOR_ALL_BB (bb)
1102 gimple_stmt_iterator psi;
1103 loop_p loop = bb->loop_father;
1105 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1106 continue;
1108 n_bbs++;
1109 n_p_bbs += bb->count;
1111 if (VEC_length (edge, bb->succs) > 1)
1113 n_conditions++;
1114 n_p_conditions += bb->count;
1117 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1119 n_stmts++;
1120 n_p_stmts += bb->count;
1123 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1125 n_loops++;
1126 n_p_loops += bb->count;
1131 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1132 fprintf (file, "BBS:%ld, ", n_bbs);
1133 fprintf (file, "LOOPS:%ld, ", n_loops);
1134 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1135 fprintf (file, "STMTS:%ld)\n", n_stmts);
1136 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1137 fprintf (file, "BBS:%ld, ", n_p_bbs);
1138 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1139 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1140 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1143 /* Print statistics for SCOPS to FILE. */
1145 static void
1146 print_graphite_statistics (FILE* file, VEC (scop_p, heap) *scops)
1148 int i;
1149 scop_p scop;
1151 FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
1152 print_graphite_scop_statistics (file, scop);
1155 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1157 Example:
1159 for (i |
1161 for (j | SCoP 1
1162 for (k |
1165 * SCoP frontier, as this line is not surrounded by any loop. *
1167 for (l | SCoP 2
1169 This is necessary as scalar evolution and parameter detection need a
1170 outermost loop to initialize parameters correctly.
1172 TODO: FIX scalar evolution and parameter detection to allow more flexible
1173 SCoP frontiers. */
1175 static void
1176 limit_scops (VEC (scop_p, heap) **scops)
1178 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1180 int i;
1181 scop_p scop;
1183 FOR_EACH_VEC_ELT (scop_p, *scops, i, scop)
1185 int j;
1186 loop_p loop;
1187 sese region = SCOP_REGION (scop);
1188 build_sese_loop_nests (region);
1190 FOR_EACH_VEC_ELT (loop_p, SESE_LOOP_NEST (region), j, loop)
1191 if (!loop_in_sese_p (loop_outer (loop), region)
1192 && single_exit (loop))
1194 sd_region open_scop;
1195 open_scop.entry = loop->header;
1196 open_scop.exit = single_exit (loop)->dest;
1198 /* This is a hack on top of the limit_scops hack. The
1199 limit_scops hack should disappear all together. */
1200 if (single_succ_p (open_scop.exit)
1201 && contains_only_close_phi_nodes (open_scop.exit))
1202 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1204 VEC_safe_push (sd_region, heap, regions, &open_scop);
1208 free_scops (*scops);
1209 *scops = VEC_alloc (scop_p, heap, 3);
1211 create_sese_edges (regions);
1212 build_graphite_scops (regions, scops);
1213 VEC_free (sd_region, heap, regions);
1216 /* Transforms LOOP to the canonical loop closed SSA form. */
1218 static void
1219 canonicalize_loop_closed_ssa (loop_p loop)
1221 edge e = single_exit (loop);
1222 basic_block bb;
1224 if (!e || e->flags & EDGE_ABNORMAL)
1225 return;
1227 bb = e->dest;
1229 if (VEC_length (edge, bb->preds) == 1)
1230 split_block_after_labels (bb);
1231 else
1233 gimple_stmt_iterator psi;
1234 basic_block close = split_edge (e);
1236 e = single_succ_edge (close);
1238 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1240 gimple phi = gsi_stmt (psi);
1241 unsigned i;
1243 for (i = 0; i < gimple_phi_num_args (phi); i++)
1244 if (gimple_phi_arg_edge (phi, i) == e)
1246 tree res, arg = gimple_phi_arg_def (phi, i);
1247 use_operand_p use_p;
1248 gimple close_phi;
1250 if (TREE_CODE (arg) != SSA_NAME)
1251 continue;
1253 close_phi = create_phi_node (arg, close);
1254 res = create_new_def_for (gimple_phi_result (close_phi),
1255 close_phi,
1256 gimple_phi_result_ptr (close_phi));
1257 add_phi_arg (close_phi, arg,
1258 gimple_phi_arg_edge (close_phi, 0),
1259 UNKNOWN_LOCATION);
1260 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1261 replace_exp (use_p, res);
1262 update_stmt (phi);
1268 /* Converts the current loop closed SSA form to a canonical form
1269 expected by the Graphite code generation.
1271 The loop closed SSA form has the following invariant: a variable
1272 defined in a loop that is used outside the loop appears only in the
1273 phi nodes in the destination of the loop exit. These phi nodes are
1274 called close phi nodes.
1276 The canonical loop closed SSA form contains the extra invariants:
1278 - when the loop contains only one exit, the close phi nodes contain
1279 only one argument. That implies that the basic block that contains
1280 the close phi nodes has only one predecessor, that is a basic block
1281 in the loop.
1283 - the basic block containing the close phi nodes does not contain
1284 other statements.
1287 static void
1288 canonicalize_loop_closed_ssa_form (void)
1290 loop_iterator li;
1291 loop_p loop;
1293 #ifdef ENABLE_CHECKING
1294 verify_loop_closed_ssa (true);
1295 #endif
1297 FOR_EACH_LOOP (li, loop, 0)
1298 canonicalize_loop_closed_ssa (loop);
1300 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1301 update_ssa (TODO_update_ssa);
1303 #ifdef ENABLE_CHECKING
1304 verify_loop_closed_ssa (true);
1305 #endif
1308 /* Find Static Control Parts (SCoP) in the current function and pushes
1309 them to SCOPS. */
1311 void
1312 build_scops (VEC (scop_p, heap) **scops)
1314 struct loop *loop = current_loops->tree_root;
1315 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1317 canonicalize_loop_closed_ssa_form ();
1318 build_scops_1 (single_succ (ENTRY_BLOCK_PTR), ENTRY_BLOCK_PTR->loop_father,
1319 &regions, loop);
1320 create_sese_edges (regions);
1321 build_graphite_scops (regions, scops);
1323 if (dump_file && (dump_flags & TDF_DETAILS))
1324 print_graphite_statistics (dump_file, *scops);
1326 limit_scops (scops);
1327 VEC_free (sd_region, heap, regions);
1329 if (dump_file && (dump_flags & TDF_DETAILS))
1330 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1331 VEC_length (scop_p, *scops));
1334 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1335 different colors. If there are not enough colors, paint the
1336 remaining SCoPs in gray.
1338 Special nodes:
1339 - "*" after the node number denotes the entry of a SCoP,
1340 - "#" after the node number denotes the exit of a SCoP,
1341 - "()" around the node number denotes the entry or the
1342 exit nodes of the SCOP. These are not part of SCoP. */
1344 static void
1345 dot_all_scops_1 (FILE *file, VEC (scop_p, heap) *scops)
1347 basic_block bb;
1348 edge e;
1349 edge_iterator ei;
1350 scop_p scop;
1351 const char* color;
1352 int i;
1354 /* Disable debugging while printing graph. */
1355 int tmp_dump_flags = dump_flags;
1356 dump_flags = 0;
1358 fprintf (file, "digraph all {\n");
1360 FOR_ALL_BB (bb)
1362 int part_of_scop = false;
1364 /* Use HTML for every bb label. So we are able to print bbs
1365 which are part of two different SCoPs, with two different
1366 background colors. */
1367 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1368 bb->index);
1369 fprintf (file, "CELLSPACING=\"0\">\n");
1371 /* Select color for SCoP. */
1372 FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
1374 sese region = SCOP_REGION (scop);
1375 if (bb_in_sese_p (bb, region)
1376 || (SESE_EXIT_BB (region) == bb)
1377 || (SESE_ENTRY_BB (region) == bb))
1379 switch (i % 17)
1381 case 0: /* red */
1382 color = "#e41a1c";
1383 break;
1384 case 1: /* blue */
1385 color = "#377eb8";
1386 break;
1387 case 2: /* green */
1388 color = "#4daf4a";
1389 break;
1390 case 3: /* purple */
1391 color = "#984ea3";
1392 break;
1393 case 4: /* orange */
1394 color = "#ff7f00";
1395 break;
1396 case 5: /* yellow */
1397 color = "#ffff33";
1398 break;
1399 case 6: /* brown */
1400 color = "#a65628";
1401 break;
1402 case 7: /* rose */
1403 color = "#f781bf";
1404 break;
1405 case 8:
1406 color = "#8dd3c7";
1407 break;
1408 case 9:
1409 color = "#ffffb3";
1410 break;
1411 case 10:
1412 color = "#bebada";
1413 break;
1414 case 11:
1415 color = "#fb8072";
1416 break;
1417 case 12:
1418 color = "#80b1d3";
1419 break;
1420 case 13:
1421 color = "#fdb462";
1422 break;
1423 case 14:
1424 color = "#b3de69";
1425 break;
1426 case 15:
1427 color = "#fccde5";
1428 break;
1429 case 16:
1430 color = "#bc80bd";
1431 break;
1432 default: /* gray */
1433 color = "#999999";
1436 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1438 if (!bb_in_sese_p (bb, region))
1439 fprintf (file, " (");
1441 if (bb == SESE_ENTRY_BB (region)
1442 && bb == SESE_EXIT_BB (region))
1443 fprintf (file, " %d*# ", bb->index);
1444 else if (bb == SESE_ENTRY_BB (region))
1445 fprintf (file, " %d* ", bb->index);
1446 else if (bb == SESE_EXIT_BB (region))
1447 fprintf (file, " %d# ", bb->index);
1448 else
1449 fprintf (file, " %d ", bb->index);
1451 if (!bb_in_sese_p (bb,region))
1452 fprintf (file, ")");
1454 fprintf (file, "</TD></TR>\n");
1455 part_of_scop = true;
1459 if (!part_of_scop)
1461 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1462 fprintf (file, " %d </TD></TR>\n", bb->index);
1464 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1467 FOR_ALL_BB (bb)
1469 FOR_EACH_EDGE (e, ei, bb->succs)
1470 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1473 fputs ("}\n\n", file);
1475 /* Enable debugging again. */
1476 dump_flags = tmp_dump_flags;
1479 /* Display all SCoPs using dotty. */
1481 DEBUG_FUNCTION void
1482 dot_all_scops (VEC (scop_p, heap) *scops)
1484 /* When debugging, enable the following code. This cannot be used
1485 in production compilers because it calls "system". */
1486 #if 0
1487 int x;
1488 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1489 gcc_assert (stream);
1491 dot_all_scops_1 (stream, scops);
1492 fclose (stream);
1494 x = system ("dotty /tmp/allscops.dot &");
1495 #else
1496 dot_all_scops_1 (stderr, scops);
1497 #endif
1500 /* Display all SCoPs using dotty. */
1502 DEBUG_FUNCTION void
1503 dot_scop (scop_p scop)
1505 VEC (scop_p, heap) *scops = NULL;
1507 if (scop)
1508 VEC_safe_push (scop_p, heap, scops, scop);
1510 /* When debugging, enable the following code. This cannot be used
1511 in production compilers because it calls "system". */
1512 #if 0
1514 int x;
1515 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1516 gcc_assert (stream);
1518 dot_all_scops_1 (stream, scops);
1519 fclose (stream);
1520 x = system ("dotty /tmp/allscops.dot &");
1522 #else
1523 dot_all_scops_1 (stderr, scops);
1524 #endif
1526 VEC_free (scop_p, heap, scops);
1529 #endif