2010-11-11 Jakub Jelinek <jakub@redhat.com>
[official-gcc.git] / gcc / gimple.c
blob6704456c0cc88b4bca26d05144fc6c46c8739499
1 /* Gimple IR support functions.
3 Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "ggc.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "toplev.h"
33 #include "diagnostic.h"
34 #include "tree-flow.h"
35 #include "value-prof.h"
36 #include "flags.h"
37 #include "alias.h"
38 #include "demangle.h"
39 #include "langhooks.h"
41 /* Global type table. FIXME lto, it should be possible to re-use some
42 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
43 etc), but those assume that types were built with the various
44 build_*_type routines which is not the case with the streamer. */
45 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
46 htab_t gimple_types;
47 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
48 htab_t gimple_canonical_types;
49 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
50 htab_t type_hash_cache;
52 /* Global type comparison cache. This is by TYPE_UID for space efficiency
53 and thus cannot use and does not need GC. */
54 static htab_t gtc_visited;
55 static struct obstack gtc_ob;
57 /* All the tuples have their operand vector (if present) at the very bottom
58 of the structure. Therefore, the offset required to find the
59 operands vector the size of the structure minus the size of the 1
60 element tree array at the end (see gimple_ops). */
61 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
62 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
63 EXPORTED_CONST size_t gimple_ops_offset_[] = {
64 #include "gsstruct.def"
66 #undef DEFGSSTRUCT
68 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
69 static const size_t gsstruct_code_size[] = {
70 #include "gsstruct.def"
72 #undef DEFGSSTRUCT
74 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
75 const char *const gimple_code_name[] = {
76 #include "gimple.def"
78 #undef DEFGSCODE
80 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
81 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
82 #include "gimple.def"
84 #undef DEFGSCODE
86 #ifdef GATHER_STATISTICS
87 /* Gimple stats. */
89 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
90 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
92 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
93 static const char * const gimple_alloc_kind_names[] = {
94 "assignments",
95 "phi nodes",
96 "conditionals",
97 "sequences",
98 "everything else"
101 #endif /* GATHER_STATISTICS */
103 /* A cache of gimple_seq objects. Sequences are created and destroyed
104 fairly often during gimplification. */
105 static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
107 /* Private API manipulation functions shared only with some
108 other files. */
109 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
110 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
112 /* Gimple tuple constructors.
113 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
114 be passed a NULL to start with an empty sequence. */
116 /* Set the code for statement G to CODE. */
118 static inline void
119 gimple_set_code (gimple g, enum gimple_code code)
121 g->gsbase.code = code;
124 /* Return the number of bytes needed to hold a GIMPLE statement with
125 code CODE. */
127 static inline size_t
128 gimple_size (enum gimple_code code)
130 return gsstruct_code_size[gss_for_code (code)];
133 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
134 operands. */
136 gimple
137 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
139 size_t size;
140 gimple stmt;
142 size = gimple_size (code);
143 if (num_ops > 0)
144 size += sizeof (tree) * (num_ops - 1);
146 #ifdef GATHER_STATISTICS
148 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
149 gimple_alloc_counts[(int) kind]++;
150 gimple_alloc_sizes[(int) kind] += size;
152 #endif
154 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
155 gimple_set_code (stmt, code);
156 gimple_set_num_ops (stmt, num_ops);
158 /* Do not call gimple_set_modified here as it has other side
159 effects and this tuple is still not completely built. */
160 stmt->gsbase.modified = 1;
162 return stmt;
165 /* Set SUBCODE to be the code of the expression computed by statement G. */
167 static inline void
168 gimple_set_subcode (gimple g, unsigned subcode)
170 /* We only have 16 bits for the RHS code. Assert that we are not
171 overflowing it. */
172 gcc_assert (subcode < (1 << 16));
173 g->gsbase.subcode = subcode;
178 /* Build a tuple with operands. CODE is the statement to build (which
179 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
180 for the new tuple. NUM_OPS is the number of operands to allocate. */
182 #define gimple_build_with_ops(c, s, n) \
183 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
185 static gimple
186 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
187 unsigned num_ops MEM_STAT_DECL)
189 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
190 gimple_set_subcode (s, subcode);
192 return s;
196 /* Build a GIMPLE_RETURN statement returning RETVAL. */
198 gimple
199 gimple_build_return (tree retval)
201 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
202 if (retval)
203 gimple_return_set_retval (s, retval);
204 return s;
207 /* Reset alias information on call S. */
209 void
210 gimple_call_reset_alias_info (gimple s)
212 if (gimple_call_flags (s) & ECF_CONST)
213 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
214 else
215 pt_solution_reset (gimple_call_use_set (s));
216 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
217 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
218 else
219 pt_solution_reset (gimple_call_clobber_set (s));
222 /* Helper for gimple_build_call, gimple_build_call_vec and
223 gimple_build_call_from_tree. Build the basic components of a
224 GIMPLE_CALL statement to function FN with NARGS arguments. */
226 static inline gimple
227 gimple_build_call_1 (tree fn, unsigned nargs)
229 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
230 if (TREE_CODE (fn) == FUNCTION_DECL)
231 fn = build_fold_addr_expr (fn);
232 gimple_set_op (s, 1, fn);
233 gimple_call_reset_alias_info (s);
234 return s;
238 /* Build a GIMPLE_CALL statement to function FN with the arguments
239 specified in vector ARGS. */
241 gimple
242 gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
244 unsigned i;
245 unsigned nargs = VEC_length (tree, args);
246 gimple call = gimple_build_call_1 (fn, nargs);
248 for (i = 0; i < nargs; i++)
249 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
251 return call;
255 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
256 arguments. The ... are the arguments. */
258 gimple
259 gimple_build_call (tree fn, unsigned nargs, ...)
261 va_list ap;
262 gimple call;
263 unsigned i;
265 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
267 call = gimple_build_call_1 (fn, nargs);
269 va_start (ap, nargs);
270 for (i = 0; i < nargs; i++)
271 gimple_call_set_arg (call, i, va_arg (ap, tree));
272 va_end (ap);
274 return call;
278 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
279 assumed to be in GIMPLE form already. Minimal checking is done of
280 this fact. */
282 gimple
283 gimple_build_call_from_tree (tree t)
285 unsigned i, nargs;
286 gimple call;
287 tree fndecl = get_callee_fndecl (t);
289 gcc_assert (TREE_CODE (t) == CALL_EXPR);
291 nargs = call_expr_nargs (t);
292 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
294 for (i = 0; i < nargs; i++)
295 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
297 gimple_set_block (call, TREE_BLOCK (t));
299 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
300 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
301 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
302 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
303 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
304 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
305 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
306 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
307 gimple_set_no_warning (call, TREE_NO_WARNING (t));
309 return call;
313 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
314 *OP1_P, *OP2_P and *OP3_P respectively. */
316 void
317 extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
318 tree *op2_p, tree *op3_p)
320 enum gimple_rhs_class grhs_class;
322 *subcode_p = TREE_CODE (expr);
323 grhs_class = get_gimple_rhs_class (*subcode_p);
325 if (grhs_class == GIMPLE_TERNARY_RHS)
327 *op1_p = TREE_OPERAND (expr, 0);
328 *op2_p = TREE_OPERAND (expr, 1);
329 *op3_p = TREE_OPERAND (expr, 2);
331 else if (grhs_class == GIMPLE_BINARY_RHS)
333 *op1_p = TREE_OPERAND (expr, 0);
334 *op2_p = TREE_OPERAND (expr, 1);
335 *op3_p = NULL_TREE;
337 else if (grhs_class == GIMPLE_UNARY_RHS)
339 *op1_p = TREE_OPERAND (expr, 0);
340 *op2_p = NULL_TREE;
341 *op3_p = NULL_TREE;
343 else if (grhs_class == GIMPLE_SINGLE_RHS)
345 *op1_p = expr;
346 *op2_p = NULL_TREE;
347 *op3_p = NULL_TREE;
349 else
350 gcc_unreachable ();
354 /* Build a GIMPLE_ASSIGN statement.
356 LHS of the assignment.
357 RHS of the assignment which can be unary or binary. */
359 gimple
360 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
362 enum tree_code subcode;
363 tree op1, op2, op3;
365 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
366 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2, op3
367 PASS_MEM_STAT);
371 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
372 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
373 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
375 gimple
376 gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
377 tree op2, tree op3 MEM_STAT_DECL)
379 unsigned num_ops;
380 gimple p;
382 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
383 code). */
384 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
386 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
387 PASS_MEM_STAT);
388 gimple_assign_set_lhs (p, lhs);
389 gimple_assign_set_rhs1 (p, op1);
390 if (op2)
392 gcc_assert (num_ops > 2);
393 gimple_assign_set_rhs2 (p, op2);
396 if (op3)
398 gcc_assert (num_ops > 3);
399 gimple_assign_set_rhs3 (p, op3);
402 return p;
406 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
408 DST/SRC are the destination and source respectively. You can pass
409 ungimplified trees in DST or SRC, in which case they will be
410 converted to a gimple operand if necessary.
412 This function returns the newly created GIMPLE_ASSIGN tuple. */
414 gimple
415 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
417 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
418 gimplify_and_add (t, seq_p);
419 ggc_free (t);
420 return gimple_seq_last_stmt (*seq_p);
424 /* Build a GIMPLE_COND statement.
426 PRED is the condition used to compare LHS and the RHS.
427 T_LABEL is the label to jump to if the condition is true.
428 F_LABEL is the label to jump to otherwise. */
430 gimple
431 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
432 tree t_label, tree f_label)
434 gimple p;
436 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
437 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
438 gimple_cond_set_lhs (p, lhs);
439 gimple_cond_set_rhs (p, rhs);
440 gimple_cond_set_true_label (p, t_label);
441 gimple_cond_set_false_label (p, f_label);
442 return p;
446 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
448 void
449 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
450 tree *lhs_p, tree *rhs_p)
452 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
453 || TREE_CODE (cond) == TRUTH_NOT_EXPR
454 || is_gimple_min_invariant (cond)
455 || SSA_VAR_P (cond));
457 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
459 /* Canonicalize conditionals of the form 'if (!VAL)'. */
460 if (*code_p == TRUTH_NOT_EXPR)
462 *code_p = EQ_EXPR;
463 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
464 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
466 /* Canonicalize conditionals of the form 'if (VAL)' */
467 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
469 *code_p = NE_EXPR;
470 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
471 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
476 /* Build a GIMPLE_COND statement from the conditional expression tree
477 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
479 gimple
480 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
482 enum tree_code code;
483 tree lhs, rhs;
485 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
486 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
489 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
490 boolean expression tree COND. */
492 void
493 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
495 enum tree_code code;
496 tree lhs, rhs;
498 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
499 gimple_cond_set_condition (stmt, code, lhs, rhs);
502 /* Build a GIMPLE_LABEL statement for LABEL. */
504 gimple
505 gimple_build_label (tree label)
507 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
508 gimple_label_set_label (p, label);
509 return p;
512 /* Build a GIMPLE_GOTO statement to label DEST. */
514 gimple
515 gimple_build_goto (tree dest)
517 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
518 gimple_goto_set_dest (p, dest);
519 return p;
523 /* Build a GIMPLE_NOP statement. */
525 gimple
526 gimple_build_nop (void)
528 return gimple_alloc (GIMPLE_NOP, 0);
532 /* Build a GIMPLE_BIND statement.
533 VARS are the variables in BODY.
534 BLOCK is the containing block. */
536 gimple
537 gimple_build_bind (tree vars, gimple_seq body, tree block)
539 gimple p = gimple_alloc (GIMPLE_BIND, 0);
540 gimple_bind_set_vars (p, vars);
541 if (body)
542 gimple_bind_set_body (p, body);
543 if (block)
544 gimple_bind_set_block (p, block);
545 return p;
548 /* Helper function to set the simple fields of a asm stmt.
550 STRING is a pointer to a string that is the asm blocks assembly code.
551 NINPUT is the number of register inputs.
552 NOUTPUT is the number of register outputs.
553 NCLOBBERS is the number of clobbered registers.
556 static inline gimple
557 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
558 unsigned nclobbers, unsigned nlabels)
560 gimple p;
561 int size = strlen (string);
563 /* ASMs with labels cannot have outputs. This should have been
564 enforced by the front end. */
565 gcc_assert (nlabels == 0 || noutputs == 0);
567 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
568 ninputs + noutputs + nclobbers + nlabels);
570 p->gimple_asm.ni = ninputs;
571 p->gimple_asm.no = noutputs;
572 p->gimple_asm.nc = nclobbers;
573 p->gimple_asm.nl = nlabels;
574 p->gimple_asm.string = ggc_alloc_string (string, size);
576 #ifdef GATHER_STATISTICS
577 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
578 #endif
580 return p;
583 /* Build a GIMPLE_ASM statement.
585 STRING is the assembly code.
586 NINPUT is the number of register inputs.
587 NOUTPUT is the number of register outputs.
588 NCLOBBERS is the number of clobbered registers.
589 INPUTS is a vector of the input register parameters.
590 OUTPUTS is a vector of the output register parameters.
591 CLOBBERS is a vector of the clobbered register parameters.
592 LABELS is a vector of destination labels. */
594 gimple
595 gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
596 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
597 VEC(tree,gc)* labels)
599 gimple p;
600 unsigned i;
602 p = gimple_build_asm_1 (string,
603 VEC_length (tree, inputs),
604 VEC_length (tree, outputs),
605 VEC_length (tree, clobbers),
606 VEC_length (tree, labels));
608 for (i = 0; i < VEC_length (tree, inputs); i++)
609 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
611 for (i = 0; i < VEC_length (tree, outputs); i++)
612 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
614 for (i = 0; i < VEC_length (tree, clobbers); i++)
615 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
617 for (i = 0; i < VEC_length (tree, labels); i++)
618 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
620 return p;
623 /* Build a GIMPLE_CATCH statement.
625 TYPES are the catch types.
626 HANDLER is the exception handler. */
628 gimple
629 gimple_build_catch (tree types, gimple_seq handler)
631 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
632 gimple_catch_set_types (p, types);
633 if (handler)
634 gimple_catch_set_handler (p, handler);
636 return p;
639 /* Build a GIMPLE_EH_FILTER statement.
641 TYPES are the filter's types.
642 FAILURE is the filter's failure action. */
644 gimple
645 gimple_build_eh_filter (tree types, gimple_seq failure)
647 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
648 gimple_eh_filter_set_types (p, types);
649 if (failure)
650 gimple_eh_filter_set_failure (p, failure);
652 return p;
655 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
657 gimple
658 gimple_build_eh_must_not_throw (tree decl)
660 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
662 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
663 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
664 gimple_eh_must_not_throw_set_fndecl (p, decl);
666 return p;
669 /* Build a GIMPLE_TRY statement.
671 EVAL is the expression to evaluate.
672 CLEANUP is the cleanup expression.
673 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
674 whether this is a try/catch or a try/finally respectively. */
676 gimple
677 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
678 enum gimple_try_flags kind)
680 gimple p;
682 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
683 p = gimple_alloc (GIMPLE_TRY, 0);
684 gimple_set_subcode (p, kind);
685 if (eval)
686 gimple_try_set_eval (p, eval);
687 if (cleanup)
688 gimple_try_set_cleanup (p, cleanup);
690 return p;
693 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
695 CLEANUP is the cleanup expression. */
697 gimple
698 gimple_build_wce (gimple_seq cleanup)
700 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
701 if (cleanup)
702 gimple_wce_set_cleanup (p, cleanup);
704 return p;
708 /* Build a GIMPLE_RESX statement. */
710 gimple
711 gimple_build_resx (int region)
713 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
714 p->gimple_eh_ctrl.region = region;
715 return p;
719 /* The helper for constructing a gimple switch statement.
720 INDEX is the switch's index.
721 NLABELS is the number of labels in the switch excluding the default.
722 DEFAULT_LABEL is the default label for the switch statement. */
724 gimple
725 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
727 /* nlabels + 1 default label + 1 index. */
728 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
729 1 + (default_label != NULL) + nlabels);
730 gimple_switch_set_index (p, index);
731 if (default_label)
732 gimple_switch_set_default_label (p, default_label);
733 return p;
737 /* Build a GIMPLE_SWITCH statement.
739 INDEX is the switch's index.
740 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
741 ... are the labels excluding the default. */
743 gimple
744 gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
746 va_list al;
747 unsigned i, offset;
748 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
750 /* Store the rest of the labels. */
751 va_start (al, default_label);
752 offset = (default_label != NULL);
753 for (i = 0; i < nlabels; i++)
754 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
755 va_end (al);
757 return p;
761 /* Build a GIMPLE_SWITCH statement.
763 INDEX is the switch's index.
764 DEFAULT_LABEL is the default label
765 ARGS is a vector of labels excluding the default. */
767 gimple
768 gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
770 unsigned i, offset, nlabels = VEC_length (tree, args);
771 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
773 /* Copy the labels from the vector to the switch statement. */
774 offset = (default_label != NULL);
775 for (i = 0; i < nlabels; i++)
776 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
778 return p;
781 /* Build a GIMPLE_EH_DISPATCH statement. */
783 gimple
784 gimple_build_eh_dispatch (int region)
786 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
787 p->gimple_eh_ctrl.region = region;
788 return p;
791 /* Build a new GIMPLE_DEBUG_BIND statement.
793 VAR is bound to VALUE; block and location are taken from STMT. */
795 gimple
796 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
798 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
799 (unsigned)GIMPLE_DEBUG_BIND, 2
800 PASS_MEM_STAT);
802 gimple_debug_bind_set_var (p, var);
803 gimple_debug_bind_set_value (p, value);
804 if (stmt)
806 gimple_set_block (p, gimple_block (stmt));
807 gimple_set_location (p, gimple_location (stmt));
810 return p;
814 /* Build a GIMPLE_OMP_CRITICAL statement.
816 BODY is the sequence of statements for which only one thread can execute.
817 NAME is optional identifier for this critical block. */
819 gimple
820 gimple_build_omp_critical (gimple_seq body, tree name)
822 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
823 gimple_omp_critical_set_name (p, name);
824 if (body)
825 gimple_omp_set_body (p, body);
827 return p;
830 /* Build a GIMPLE_OMP_FOR statement.
832 BODY is sequence of statements inside the for loop.
833 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
834 lastprivate, reductions, ordered, schedule, and nowait.
835 COLLAPSE is the collapse count.
836 PRE_BODY is the sequence of statements that are loop invariant. */
838 gimple
839 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
840 gimple_seq pre_body)
842 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
843 if (body)
844 gimple_omp_set_body (p, body);
845 gimple_omp_for_set_clauses (p, clauses);
846 p->gimple_omp_for.collapse = collapse;
847 p->gimple_omp_for.iter
848 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
849 if (pre_body)
850 gimple_omp_for_set_pre_body (p, pre_body);
852 return p;
856 /* Build a GIMPLE_OMP_PARALLEL statement.
858 BODY is sequence of statements which are executed in parallel.
859 CLAUSES, are the OMP parallel construct's clauses.
860 CHILD_FN is the function created for the parallel threads to execute.
861 DATA_ARG are the shared data argument(s). */
863 gimple
864 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
865 tree data_arg)
867 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
868 if (body)
869 gimple_omp_set_body (p, body);
870 gimple_omp_parallel_set_clauses (p, clauses);
871 gimple_omp_parallel_set_child_fn (p, child_fn);
872 gimple_omp_parallel_set_data_arg (p, data_arg);
874 return p;
878 /* Build a GIMPLE_OMP_TASK statement.
880 BODY is sequence of statements which are executed by the explicit task.
881 CLAUSES, are the OMP parallel construct's clauses.
882 CHILD_FN is the function created for the parallel threads to execute.
883 DATA_ARG are the shared data argument(s).
884 COPY_FN is the optional function for firstprivate initialization.
885 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
887 gimple
888 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
889 tree data_arg, tree copy_fn, tree arg_size,
890 tree arg_align)
892 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
893 if (body)
894 gimple_omp_set_body (p, body);
895 gimple_omp_task_set_clauses (p, clauses);
896 gimple_omp_task_set_child_fn (p, child_fn);
897 gimple_omp_task_set_data_arg (p, data_arg);
898 gimple_omp_task_set_copy_fn (p, copy_fn);
899 gimple_omp_task_set_arg_size (p, arg_size);
900 gimple_omp_task_set_arg_align (p, arg_align);
902 return p;
906 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
908 BODY is the sequence of statements in the section. */
910 gimple
911 gimple_build_omp_section (gimple_seq body)
913 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
914 if (body)
915 gimple_omp_set_body (p, body);
917 return p;
921 /* Build a GIMPLE_OMP_MASTER statement.
923 BODY is the sequence of statements to be executed by just the master. */
925 gimple
926 gimple_build_omp_master (gimple_seq body)
928 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
929 if (body)
930 gimple_omp_set_body (p, body);
932 return p;
936 /* Build a GIMPLE_OMP_CONTINUE statement.
938 CONTROL_DEF is the definition of the control variable.
939 CONTROL_USE is the use of the control variable. */
941 gimple
942 gimple_build_omp_continue (tree control_def, tree control_use)
944 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
945 gimple_omp_continue_set_control_def (p, control_def);
946 gimple_omp_continue_set_control_use (p, control_use);
947 return p;
950 /* Build a GIMPLE_OMP_ORDERED statement.
952 BODY is the sequence of statements inside a loop that will executed in
953 sequence. */
955 gimple
956 gimple_build_omp_ordered (gimple_seq body)
958 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
959 if (body)
960 gimple_omp_set_body (p, body);
962 return p;
966 /* Build a GIMPLE_OMP_RETURN statement.
967 WAIT_P is true if this is a non-waiting return. */
969 gimple
970 gimple_build_omp_return (bool wait_p)
972 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
973 if (wait_p)
974 gimple_omp_return_set_nowait (p);
976 return p;
980 /* Build a GIMPLE_OMP_SECTIONS statement.
982 BODY is a sequence of section statements.
983 CLAUSES are any of the OMP sections contsruct's clauses: private,
984 firstprivate, lastprivate, reduction, and nowait. */
986 gimple
987 gimple_build_omp_sections (gimple_seq body, tree clauses)
989 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
990 if (body)
991 gimple_omp_set_body (p, body);
992 gimple_omp_sections_set_clauses (p, clauses);
994 return p;
998 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1000 gimple
1001 gimple_build_omp_sections_switch (void)
1003 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1007 /* Build a GIMPLE_OMP_SINGLE statement.
1009 BODY is the sequence of statements that will be executed once.
1010 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1011 copyprivate, nowait. */
1013 gimple
1014 gimple_build_omp_single (gimple_seq body, tree clauses)
1016 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1017 if (body)
1018 gimple_omp_set_body (p, body);
1019 gimple_omp_single_set_clauses (p, clauses);
1021 return p;
1025 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1027 gimple
1028 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1030 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1031 gimple_omp_atomic_load_set_lhs (p, lhs);
1032 gimple_omp_atomic_load_set_rhs (p, rhs);
1033 return p;
1036 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1038 VAL is the value we are storing. */
1040 gimple
1041 gimple_build_omp_atomic_store (tree val)
1043 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1044 gimple_omp_atomic_store_set_val (p, val);
1045 return p;
1048 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1049 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1051 gimple
1052 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1054 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1055 /* Ensure all the predictors fit into the lower bits of the subcode. */
1056 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1057 gimple_predict_set_predictor (p, predictor);
1058 gimple_predict_set_outcome (p, outcome);
1059 return p;
1062 #if defined ENABLE_GIMPLE_CHECKING
1063 /* Complain of a gimple type mismatch and die. */
1065 void
1066 gimple_check_failed (const_gimple gs, const char *file, int line,
1067 const char *function, enum gimple_code code,
1068 enum tree_code subcode)
1070 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1071 gimple_code_name[code],
1072 tree_code_name[subcode],
1073 gimple_code_name[gimple_code (gs)],
1074 gs->gsbase.subcode > 0
1075 ? tree_code_name[gs->gsbase.subcode]
1076 : "",
1077 function, trim_filename (file), line);
1079 #endif /* ENABLE_GIMPLE_CHECKING */
1082 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1083 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1084 instead. */
1086 gimple_seq
1087 gimple_seq_alloc (void)
1089 gimple_seq seq = gimple_seq_cache;
1090 if (seq)
1092 gimple_seq_cache = gimple_seq_cache->next_free;
1093 gcc_assert (gimple_seq_cache != seq);
1094 memset (seq, 0, sizeof (*seq));
1096 else
1098 seq = ggc_alloc_cleared_gimple_seq_d ();
1099 #ifdef GATHER_STATISTICS
1100 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1101 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1102 #endif
1105 return seq;
1108 /* Return SEQ to the free pool of GIMPLE sequences. */
1110 void
1111 gimple_seq_free (gimple_seq seq)
1113 if (seq == NULL)
1114 return;
1116 gcc_assert (gimple_seq_first (seq) == NULL);
1117 gcc_assert (gimple_seq_last (seq) == NULL);
1119 /* If this triggers, it's a sign that the same list is being freed
1120 twice. */
1121 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1123 /* Add SEQ to the pool of free sequences. */
1124 seq->next_free = gimple_seq_cache;
1125 gimple_seq_cache = seq;
1129 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1130 *SEQ_P is NULL, a new sequence is allocated. */
1132 void
1133 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1135 gimple_stmt_iterator si;
1137 if (gs == NULL)
1138 return;
1140 if (*seq_p == NULL)
1141 *seq_p = gimple_seq_alloc ();
1143 si = gsi_last (*seq_p);
1144 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1148 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1149 NULL, a new sequence is allocated. */
1151 void
1152 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1154 gimple_stmt_iterator si;
1156 if (src == NULL)
1157 return;
1159 if (*dst_p == NULL)
1160 *dst_p = gimple_seq_alloc ();
1162 si = gsi_last (*dst_p);
1163 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1167 /* Helper function of empty_body_p. Return true if STMT is an empty
1168 statement. */
1170 static bool
1171 empty_stmt_p (gimple stmt)
1173 if (gimple_code (stmt) == GIMPLE_NOP)
1174 return true;
1175 if (gimple_code (stmt) == GIMPLE_BIND)
1176 return empty_body_p (gimple_bind_body (stmt));
1177 return false;
1181 /* Return true if BODY contains nothing but empty statements. */
1183 bool
1184 empty_body_p (gimple_seq body)
1186 gimple_stmt_iterator i;
1188 if (gimple_seq_empty_p (body))
1189 return true;
1190 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1191 if (!empty_stmt_p (gsi_stmt (i))
1192 && !is_gimple_debug (gsi_stmt (i)))
1193 return false;
1195 return true;
1199 /* Perform a deep copy of sequence SRC and return the result. */
1201 gimple_seq
1202 gimple_seq_copy (gimple_seq src)
1204 gimple_stmt_iterator gsi;
1205 gimple_seq new_seq = gimple_seq_alloc ();
1206 gimple stmt;
1208 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1210 stmt = gimple_copy (gsi_stmt (gsi));
1211 gimple_seq_add_stmt (&new_seq, stmt);
1214 return new_seq;
1218 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1219 on each one. WI is as in walk_gimple_stmt.
1221 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1222 value is stored in WI->CALLBACK_RESULT and the statement that
1223 produced the value is returned.
1225 Otherwise, all the statements are walked and NULL returned. */
1227 gimple
1228 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1229 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1231 gimple_stmt_iterator gsi;
1233 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1235 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1236 if (ret)
1238 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1239 to hold it. */
1240 gcc_assert (wi);
1241 wi->callback_result = ret;
1242 return gsi_stmt (gsi);
1246 if (wi)
1247 wi->callback_result = NULL_TREE;
1249 return NULL;
1253 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1255 static tree
1256 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1257 struct walk_stmt_info *wi)
1259 tree ret, op;
1260 unsigned noutputs;
1261 const char **oconstraints;
1262 unsigned i, n;
1263 const char *constraint;
1264 bool allows_mem, allows_reg, is_inout;
1266 noutputs = gimple_asm_noutputs (stmt);
1267 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1269 if (wi)
1270 wi->is_lhs = true;
1272 for (i = 0; i < noutputs; i++)
1274 op = gimple_asm_output_op (stmt, i);
1275 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1276 oconstraints[i] = constraint;
1277 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1278 &is_inout);
1279 if (wi)
1280 wi->val_only = (allows_reg || !allows_mem);
1281 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1282 if (ret)
1283 return ret;
1286 n = gimple_asm_ninputs (stmt);
1287 for (i = 0; i < n; i++)
1289 op = gimple_asm_input_op (stmt, i);
1290 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1291 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1292 oconstraints, &allows_mem, &allows_reg);
1293 if (wi)
1295 wi->val_only = (allows_reg || !allows_mem);
1296 /* Although input "m" is not really a LHS, we need a lvalue. */
1297 wi->is_lhs = !wi->val_only;
1299 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1300 if (ret)
1301 return ret;
1304 if (wi)
1306 wi->is_lhs = false;
1307 wi->val_only = true;
1310 n = gimple_asm_nlabels (stmt);
1311 for (i = 0; i < n; i++)
1313 op = gimple_asm_label_op (stmt, i);
1314 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1315 if (ret)
1316 return ret;
1319 return NULL_TREE;
1323 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1324 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1326 CALLBACK_OP is called on each operand of STMT via walk_tree.
1327 Additional parameters to walk_tree must be stored in WI. For each operand
1328 OP, walk_tree is called as:
1330 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1332 If CALLBACK_OP returns non-NULL for an operand, the remaining
1333 operands are not scanned.
1335 The return value is that returned by the last call to walk_tree, or
1336 NULL_TREE if no CALLBACK_OP is specified. */
1338 tree
1339 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1340 struct walk_stmt_info *wi)
1342 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1343 unsigned i;
1344 tree ret = NULL_TREE;
1346 switch (gimple_code (stmt))
1348 case GIMPLE_ASSIGN:
1349 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1350 is a register variable, we may use a COMPONENT_REF on the RHS. */
1351 if (wi)
1353 tree lhs = gimple_assign_lhs (stmt);
1354 wi->val_only
1355 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
1356 || !gimple_assign_single_p (stmt);
1359 for (i = 1; i < gimple_num_ops (stmt); i++)
1361 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1362 pset);
1363 if (ret)
1364 return ret;
1367 /* Walk the LHS. If the RHS is appropriate for a memory, we
1368 may use a COMPONENT_REF on the LHS. */
1369 if (wi)
1371 /* If the RHS has more than 1 operand, it is not appropriate
1372 for the memory. */
1373 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1374 || !gimple_assign_single_p (stmt);
1375 wi->is_lhs = true;
1378 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1379 if (ret)
1380 return ret;
1382 if (wi)
1384 wi->val_only = true;
1385 wi->is_lhs = false;
1387 break;
1389 case GIMPLE_CALL:
1390 if (wi)
1392 wi->is_lhs = false;
1393 wi->val_only = true;
1396 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1397 if (ret)
1398 return ret;
1400 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1401 if (ret)
1402 return ret;
1404 for (i = 0; i < gimple_call_num_args (stmt); i++)
1406 if (wi)
1407 wi->val_only = is_gimple_reg_type (gimple_call_arg (stmt, i));
1408 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1409 pset);
1410 if (ret)
1411 return ret;
1414 if (gimple_call_lhs (stmt))
1416 if (wi)
1418 wi->is_lhs = true;
1419 wi->val_only = is_gimple_reg_type (gimple_call_lhs (stmt));
1422 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1423 if (ret)
1424 return ret;
1427 if (wi)
1429 wi->is_lhs = false;
1430 wi->val_only = true;
1432 break;
1434 case GIMPLE_CATCH:
1435 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1436 pset);
1437 if (ret)
1438 return ret;
1439 break;
1441 case GIMPLE_EH_FILTER:
1442 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1443 pset);
1444 if (ret)
1445 return ret;
1446 break;
1448 case GIMPLE_ASM:
1449 ret = walk_gimple_asm (stmt, callback_op, wi);
1450 if (ret)
1451 return ret;
1452 break;
1454 case GIMPLE_OMP_CONTINUE:
1455 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1456 callback_op, wi, pset);
1457 if (ret)
1458 return ret;
1460 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1461 callback_op, wi, pset);
1462 if (ret)
1463 return ret;
1464 break;
1466 case GIMPLE_OMP_CRITICAL:
1467 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1468 pset);
1469 if (ret)
1470 return ret;
1471 break;
1473 case GIMPLE_OMP_FOR:
1474 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1475 pset);
1476 if (ret)
1477 return ret;
1478 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1480 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1481 wi, pset);
1482 if (ret)
1483 return ret;
1484 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1485 wi, pset);
1486 if (ret)
1487 return ret;
1488 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1489 wi, pset);
1490 if (ret)
1491 return ret;
1492 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1493 wi, pset);
1495 if (ret)
1496 return ret;
1497 break;
1499 case GIMPLE_OMP_PARALLEL:
1500 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1501 wi, pset);
1502 if (ret)
1503 return ret;
1504 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1505 wi, pset);
1506 if (ret)
1507 return ret;
1508 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1509 wi, pset);
1510 if (ret)
1511 return ret;
1512 break;
1514 case GIMPLE_OMP_TASK:
1515 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1516 wi, pset);
1517 if (ret)
1518 return ret;
1519 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1520 wi, pset);
1521 if (ret)
1522 return ret;
1523 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1524 wi, pset);
1525 if (ret)
1526 return ret;
1527 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1528 wi, pset);
1529 if (ret)
1530 return ret;
1531 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1532 wi, pset);
1533 if (ret)
1534 return ret;
1535 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1536 wi, pset);
1537 if (ret)
1538 return ret;
1539 break;
1541 case GIMPLE_OMP_SECTIONS:
1542 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1543 wi, pset);
1544 if (ret)
1545 return ret;
1547 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1548 wi, pset);
1549 if (ret)
1550 return ret;
1552 break;
1554 case GIMPLE_OMP_SINGLE:
1555 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1556 pset);
1557 if (ret)
1558 return ret;
1559 break;
1561 case GIMPLE_OMP_ATOMIC_LOAD:
1562 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1563 pset);
1564 if (ret)
1565 return ret;
1567 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1568 pset);
1569 if (ret)
1570 return ret;
1571 break;
1573 case GIMPLE_OMP_ATOMIC_STORE:
1574 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1575 wi, pset);
1576 if (ret)
1577 return ret;
1578 break;
1580 /* Tuples that do not have operands. */
1581 case GIMPLE_NOP:
1582 case GIMPLE_RESX:
1583 case GIMPLE_OMP_RETURN:
1584 case GIMPLE_PREDICT:
1585 break;
1587 default:
1589 enum gimple_statement_structure_enum gss;
1590 gss = gimple_statement_structure (stmt);
1591 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1592 for (i = 0; i < gimple_num_ops (stmt); i++)
1594 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1595 if (ret)
1596 return ret;
1599 break;
1602 return NULL_TREE;
1606 /* Walk the current statement in GSI (optionally using traversal state
1607 stored in WI). If WI is NULL, no state is kept during traversal.
1608 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1609 that it has handled all the operands of the statement, its return
1610 value is returned. Otherwise, the return value from CALLBACK_STMT
1611 is discarded and its operands are scanned.
1613 If CALLBACK_STMT is NULL or it didn't handle the operands,
1614 CALLBACK_OP is called on each operand of the statement via
1615 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1616 operand, the remaining operands are not scanned. In this case, the
1617 return value from CALLBACK_OP is returned.
1619 In any other case, NULL_TREE is returned. */
1621 tree
1622 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1623 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1625 gimple ret;
1626 tree tree_ret;
1627 gimple stmt = gsi_stmt (*gsi);
1629 if (wi)
1630 wi->gsi = *gsi;
1632 if (wi && wi->want_locations && gimple_has_location (stmt))
1633 input_location = gimple_location (stmt);
1635 ret = NULL;
1637 /* Invoke the statement callback. Return if the callback handled
1638 all of STMT operands by itself. */
1639 if (callback_stmt)
1641 bool handled_ops = false;
1642 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1643 if (handled_ops)
1644 return tree_ret;
1646 /* If CALLBACK_STMT did not handle operands, it should not have
1647 a value to return. */
1648 gcc_assert (tree_ret == NULL);
1650 /* Re-read stmt in case the callback changed it. */
1651 stmt = gsi_stmt (*gsi);
1654 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1655 if (callback_op)
1657 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1658 if (tree_ret)
1659 return tree_ret;
1662 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1663 switch (gimple_code (stmt))
1665 case GIMPLE_BIND:
1666 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1667 callback_op, wi);
1668 if (ret)
1669 return wi->callback_result;
1670 break;
1672 case GIMPLE_CATCH:
1673 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1674 callback_op, wi);
1675 if (ret)
1676 return wi->callback_result;
1677 break;
1679 case GIMPLE_EH_FILTER:
1680 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1681 callback_op, wi);
1682 if (ret)
1683 return wi->callback_result;
1684 break;
1686 case GIMPLE_TRY:
1687 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1688 wi);
1689 if (ret)
1690 return wi->callback_result;
1692 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1693 callback_op, wi);
1694 if (ret)
1695 return wi->callback_result;
1696 break;
1698 case GIMPLE_OMP_FOR:
1699 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1700 callback_op, wi);
1701 if (ret)
1702 return wi->callback_result;
1704 /* FALL THROUGH. */
1705 case GIMPLE_OMP_CRITICAL:
1706 case GIMPLE_OMP_MASTER:
1707 case GIMPLE_OMP_ORDERED:
1708 case GIMPLE_OMP_SECTION:
1709 case GIMPLE_OMP_PARALLEL:
1710 case GIMPLE_OMP_TASK:
1711 case GIMPLE_OMP_SECTIONS:
1712 case GIMPLE_OMP_SINGLE:
1713 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1714 wi);
1715 if (ret)
1716 return wi->callback_result;
1717 break;
1719 case GIMPLE_WITH_CLEANUP_EXPR:
1720 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1721 callback_op, wi);
1722 if (ret)
1723 return wi->callback_result;
1724 break;
1726 default:
1727 gcc_assert (!gimple_has_substatements (stmt));
1728 break;
1731 return NULL;
1735 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1737 void
1738 gimple_set_body (tree fndecl, gimple_seq seq)
1740 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1741 if (fn == NULL)
1743 /* If FNDECL still does not have a function structure associated
1744 with it, then it does not make sense for it to receive a
1745 GIMPLE body. */
1746 gcc_assert (seq == NULL);
1748 else
1749 fn->gimple_body = seq;
1753 /* Return the body of GIMPLE statements for function FN. After the
1754 CFG pass, the function body doesn't exist anymore because it has
1755 been split up into basic blocks. In this case, it returns
1756 NULL. */
1758 gimple_seq
1759 gimple_body (tree fndecl)
1761 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1762 return fn ? fn->gimple_body : NULL;
1765 /* Return true when FNDECL has Gimple body either in unlowered
1766 or CFG form. */
1767 bool
1768 gimple_has_body_p (tree fndecl)
1770 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1771 return (gimple_body (fndecl) || (fn && fn->cfg));
1774 /* Detect flags from a GIMPLE_CALL. This is just like
1775 call_expr_flags, but for gimple tuples. */
1778 gimple_call_flags (const_gimple stmt)
1780 int flags;
1781 tree decl = gimple_call_fndecl (stmt);
1782 tree t;
1784 if (decl)
1785 flags = flags_from_decl_or_type (decl);
1786 else
1788 t = TREE_TYPE (gimple_call_fn (stmt));
1789 if (t && TREE_CODE (t) == POINTER_TYPE)
1790 flags = flags_from_decl_or_type (TREE_TYPE (t));
1791 else
1792 flags = 0;
1795 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1796 flags |= ECF_NOTHROW;
1798 return flags;
1801 /* Detects argument flags for argument number ARG on call STMT. */
1804 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1806 tree type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)));
1807 tree attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1808 if (!attr)
1809 return 0;
1811 attr = TREE_VALUE (TREE_VALUE (attr));
1812 if (1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1813 return 0;
1815 switch (TREE_STRING_POINTER (attr)[1 + arg])
1817 case 'x':
1818 case 'X':
1819 return EAF_UNUSED;
1821 case 'R':
1822 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1824 case 'r':
1825 return EAF_NOCLOBBER | EAF_NOESCAPE;
1827 case 'W':
1828 return EAF_DIRECT | EAF_NOESCAPE;
1830 case 'w':
1831 return EAF_NOESCAPE;
1833 case '.':
1834 default:
1835 return 0;
1839 /* Detects return flags for the call STMT. */
1842 gimple_call_return_flags (const_gimple stmt)
1844 tree type;
1845 tree attr = NULL_TREE;
1847 if (gimple_call_flags (stmt) & ECF_MALLOC)
1848 return ERF_NOALIAS;
1850 type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)));
1851 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1852 if (!attr)
1853 return 0;
1855 attr = TREE_VALUE (TREE_VALUE (attr));
1856 if (TREE_STRING_LENGTH (attr) < 1)
1857 return 0;
1859 switch (TREE_STRING_POINTER (attr)[0])
1861 case '1':
1862 case '2':
1863 case '3':
1864 case '4':
1865 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1867 case 'm':
1868 return ERF_NOALIAS;
1870 case '.':
1871 default:
1872 return 0;
1876 /* Return true if GS is a copy assignment. */
1878 bool
1879 gimple_assign_copy_p (gimple gs)
1881 return gimple_code (gs) == GIMPLE_ASSIGN
1882 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1883 == GIMPLE_SINGLE_RHS
1884 && is_gimple_val (gimple_op (gs, 1));
1888 /* Return true if GS is a SSA_NAME copy assignment. */
1890 bool
1891 gimple_assign_ssa_name_copy_p (gimple gs)
1893 return (gimple_code (gs) == GIMPLE_ASSIGN
1894 && (get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1895 == GIMPLE_SINGLE_RHS)
1896 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1897 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1901 /* Return true if GS is an assignment with a singleton RHS, i.e.,
1902 there is no operator associated with the assignment itself.
1903 Unlike gimple_assign_copy_p, this predicate returns true for
1904 any RHS operand, including those that perform an operation
1905 and do not have the semantics of a copy, such as COND_EXPR. */
1907 bool
1908 gimple_assign_single_p (gimple gs)
1910 return (gimple_code (gs) == GIMPLE_ASSIGN
1911 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1912 == GIMPLE_SINGLE_RHS);
1915 /* Return true if GS is an assignment with a unary RHS, but the
1916 operator has no effect on the assigned value. The logic is adapted
1917 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1918 instances in which STRIP_NOPS was previously applied to the RHS of
1919 an assignment.
1921 NOTE: In the use cases that led to the creation of this function
1922 and of gimple_assign_single_p, it is typical to test for either
1923 condition and to proceed in the same manner. In each case, the
1924 assigned value is represented by the single RHS operand of the
1925 assignment. I suspect there may be cases where gimple_assign_copy_p,
1926 gimple_assign_single_p, or equivalent logic is used where a similar
1927 treatment of unary NOPs is appropriate. */
1929 bool
1930 gimple_assign_unary_nop_p (gimple gs)
1932 return (gimple_code (gs) == GIMPLE_ASSIGN
1933 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1934 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1935 && gimple_assign_rhs1 (gs) != error_mark_node
1936 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1937 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1940 /* Set BB to be the basic block holding G. */
1942 void
1943 gimple_set_bb (gimple stmt, basic_block bb)
1945 stmt->gsbase.bb = bb;
1947 /* If the statement is a label, add the label to block-to-labels map
1948 so that we can speed up edge creation for GIMPLE_GOTOs. */
1949 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
1951 tree t;
1952 int uid;
1954 t = gimple_label_label (stmt);
1955 uid = LABEL_DECL_UID (t);
1956 if (uid == -1)
1958 unsigned old_len = VEC_length (basic_block, label_to_block_map);
1959 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1960 if (old_len <= (unsigned) uid)
1962 unsigned new_len = 3 * uid / 2 + 1;
1964 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
1965 new_len);
1969 VEC_replace (basic_block, label_to_block_map, uid, bb);
1974 /* Modify the RHS of the assignment pointed-to by GSI using the
1975 operands in the expression tree EXPR.
1977 NOTE: The statement pointed-to by GSI may be reallocated if it
1978 did not have enough operand slots.
1980 This function is useful to convert an existing tree expression into
1981 the flat representation used for the RHS of a GIMPLE assignment.
1982 It will reallocate memory as needed to expand or shrink the number
1983 of operand slots needed to represent EXPR.
1985 NOTE: If you find yourself building a tree and then calling this
1986 function, you are most certainly doing it the slow way. It is much
1987 better to build a new assignment or to use the function
1988 gimple_assign_set_rhs_with_ops, which does not require an
1989 expression tree to be built. */
1991 void
1992 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1994 enum tree_code subcode;
1995 tree op1, op2, op3;
1997 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1998 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
2002 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
2003 operands OP1, OP2 and OP3.
2005 NOTE: The statement pointed-to by GSI may be reallocated if it
2006 did not have enough operand slots. */
2008 void
2009 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
2010 tree op1, tree op2, tree op3)
2012 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
2013 gimple stmt = gsi_stmt (*gsi);
2015 /* If the new CODE needs more operands, allocate a new statement. */
2016 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
2018 tree lhs = gimple_assign_lhs (stmt);
2019 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2020 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2021 gsi_replace (gsi, new_stmt, true);
2022 stmt = new_stmt;
2024 /* The LHS needs to be reset as this also changes the SSA name
2025 on the LHS. */
2026 gimple_assign_set_lhs (stmt, lhs);
2029 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2030 gimple_set_subcode (stmt, code);
2031 gimple_assign_set_rhs1 (stmt, op1);
2032 if (new_rhs_ops > 1)
2033 gimple_assign_set_rhs2 (stmt, op2);
2034 if (new_rhs_ops > 2)
2035 gimple_assign_set_rhs3 (stmt, op3);
2039 /* Return the LHS of a statement that performs an assignment,
2040 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2041 for a call to a function that returns no value, or for a
2042 statement other than an assignment or a call. */
2044 tree
2045 gimple_get_lhs (const_gimple stmt)
2047 enum gimple_code code = gimple_code (stmt);
2049 if (code == GIMPLE_ASSIGN)
2050 return gimple_assign_lhs (stmt);
2051 else if (code == GIMPLE_CALL)
2052 return gimple_call_lhs (stmt);
2053 else
2054 return NULL_TREE;
2058 /* Set the LHS of a statement that performs an assignment,
2059 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2061 void
2062 gimple_set_lhs (gimple stmt, tree lhs)
2064 enum gimple_code code = gimple_code (stmt);
2066 if (code == GIMPLE_ASSIGN)
2067 gimple_assign_set_lhs (stmt, lhs);
2068 else if (code == GIMPLE_CALL)
2069 gimple_call_set_lhs (stmt, lhs);
2070 else
2071 gcc_unreachable();
2074 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2075 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2076 expression with a different value.
2078 This will update any annotations (say debug bind stmts) referring
2079 to the original LHS, so that they use the RHS instead. This is
2080 done even if NLHS and LHS are the same, for it is understood that
2081 the RHS will be modified afterwards, and NLHS will not be assigned
2082 an equivalent value.
2084 Adjusting any non-annotation uses of the LHS, if needed, is a
2085 responsibility of the caller.
2087 The effect of this call should be pretty much the same as that of
2088 inserting a copy of STMT before STMT, and then removing the
2089 original stmt, at which time gsi_remove() would have update
2090 annotations, but using this function saves all the inserting,
2091 copying and removing. */
2093 void
2094 gimple_replace_lhs (gimple stmt, tree nlhs)
2096 if (MAY_HAVE_DEBUG_STMTS)
2098 tree lhs = gimple_get_lhs (stmt);
2100 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
2102 insert_debug_temp_for_var_def (NULL, lhs);
2105 gimple_set_lhs (stmt, nlhs);
2108 /* Return a deep copy of statement STMT. All the operands from STMT
2109 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2110 and VUSE operand arrays are set to empty in the new copy. */
2112 gimple
2113 gimple_copy (gimple stmt)
2115 enum gimple_code code = gimple_code (stmt);
2116 unsigned num_ops = gimple_num_ops (stmt);
2117 gimple copy = gimple_alloc (code, num_ops);
2118 unsigned i;
2120 /* Shallow copy all the fields from STMT. */
2121 memcpy (copy, stmt, gimple_size (code));
2123 /* If STMT has sub-statements, deep-copy them as well. */
2124 if (gimple_has_substatements (stmt))
2126 gimple_seq new_seq;
2127 tree t;
2129 switch (gimple_code (stmt))
2131 case GIMPLE_BIND:
2132 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2133 gimple_bind_set_body (copy, new_seq);
2134 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2135 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2136 break;
2138 case GIMPLE_CATCH:
2139 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2140 gimple_catch_set_handler (copy, new_seq);
2141 t = unshare_expr (gimple_catch_types (stmt));
2142 gimple_catch_set_types (copy, t);
2143 break;
2145 case GIMPLE_EH_FILTER:
2146 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2147 gimple_eh_filter_set_failure (copy, new_seq);
2148 t = unshare_expr (gimple_eh_filter_types (stmt));
2149 gimple_eh_filter_set_types (copy, t);
2150 break;
2152 case GIMPLE_TRY:
2153 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2154 gimple_try_set_eval (copy, new_seq);
2155 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2156 gimple_try_set_cleanup (copy, new_seq);
2157 break;
2159 case GIMPLE_OMP_FOR:
2160 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2161 gimple_omp_for_set_pre_body (copy, new_seq);
2162 t = unshare_expr (gimple_omp_for_clauses (stmt));
2163 gimple_omp_for_set_clauses (copy, t);
2164 copy->gimple_omp_for.iter
2165 = ggc_alloc_vec_gimple_omp_for_iter
2166 (gimple_omp_for_collapse (stmt));
2167 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2169 gimple_omp_for_set_cond (copy, i,
2170 gimple_omp_for_cond (stmt, i));
2171 gimple_omp_for_set_index (copy, i,
2172 gimple_omp_for_index (stmt, i));
2173 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2174 gimple_omp_for_set_initial (copy, i, t);
2175 t = unshare_expr (gimple_omp_for_final (stmt, i));
2176 gimple_omp_for_set_final (copy, i, t);
2177 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2178 gimple_omp_for_set_incr (copy, i, t);
2180 goto copy_omp_body;
2182 case GIMPLE_OMP_PARALLEL:
2183 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2184 gimple_omp_parallel_set_clauses (copy, t);
2185 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2186 gimple_omp_parallel_set_child_fn (copy, t);
2187 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2188 gimple_omp_parallel_set_data_arg (copy, t);
2189 goto copy_omp_body;
2191 case GIMPLE_OMP_TASK:
2192 t = unshare_expr (gimple_omp_task_clauses (stmt));
2193 gimple_omp_task_set_clauses (copy, t);
2194 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2195 gimple_omp_task_set_child_fn (copy, t);
2196 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2197 gimple_omp_task_set_data_arg (copy, t);
2198 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2199 gimple_omp_task_set_copy_fn (copy, t);
2200 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2201 gimple_omp_task_set_arg_size (copy, t);
2202 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2203 gimple_omp_task_set_arg_align (copy, t);
2204 goto copy_omp_body;
2206 case GIMPLE_OMP_CRITICAL:
2207 t = unshare_expr (gimple_omp_critical_name (stmt));
2208 gimple_omp_critical_set_name (copy, t);
2209 goto copy_omp_body;
2211 case GIMPLE_OMP_SECTIONS:
2212 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2213 gimple_omp_sections_set_clauses (copy, t);
2214 t = unshare_expr (gimple_omp_sections_control (stmt));
2215 gimple_omp_sections_set_control (copy, t);
2216 /* FALLTHRU */
2218 case GIMPLE_OMP_SINGLE:
2219 case GIMPLE_OMP_SECTION:
2220 case GIMPLE_OMP_MASTER:
2221 case GIMPLE_OMP_ORDERED:
2222 copy_omp_body:
2223 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2224 gimple_omp_set_body (copy, new_seq);
2225 break;
2227 case GIMPLE_WITH_CLEANUP_EXPR:
2228 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2229 gimple_wce_set_cleanup (copy, new_seq);
2230 break;
2232 default:
2233 gcc_unreachable ();
2237 /* Make copy of operands. */
2238 if (num_ops > 0)
2240 for (i = 0; i < num_ops; i++)
2241 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2243 /* Clear out SSA operand vectors on COPY. */
2244 if (gimple_has_ops (stmt))
2246 gimple_set_def_ops (copy, NULL);
2247 gimple_set_use_ops (copy, NULL);
2250 if (gimple_has_mem_ops (stmt))
2252 gimple_set_vdef (copy, gimple_vdef (stmt));
2253 gimple_set_vuse (copy, gimple_vuse (stmt));
2256 /* SSA operands need to be updated. */
2257 gimple_set_modified (copy, true);
2260 return copy;
2264 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2265 a MODIFIED field. */
2267 void
2268 gimple_set_modified (gimple s, bool modifiedp)
2270 if (gimple_has_ops (s))
2272 s->gsbase.modified = (unsigned) modifiedp;
2274 if (modifiedp
2275 && cfun->gimple_df
2276 && is_gimple_call (s)
2277 && gimple_call_noreturn_p (s))
2278 VEC_safe_push (gimple, gc, MODIFIED_NORETURN_CALLS (cfun), s);
2283 /* Return true if statement S has side-effects. We consider a
2284 statement to have side effects if:
2286 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2287 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2289 bool
2290 gimple_has_side_effects (const_gimple s)
2292 unsigned i;
2294 if (is_gimple_debug (s))
2295 return false;
2297 /* We don't have to scan the arguments to check for
2298 volatile arguments, though, at present, we still
2299 do a scan to check for TREE_SIDE_EFFECTS. */
2300 if (gimple_has_volatile_ops (s))
2301 return true;
2303 if (is_gimple_call (s))
2305 unsigned nargs = gimple_call_num_args (s);
2307 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2308 return true;
2309 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2310 /* An infinite loop is considered a side effect. */
2311 return true;
2313 if (gimple_call_lhs (s)
2314 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2316 gcc_assert (gimple_has_volatile_ops (s));
2317 return true;
2320 if (TREE_SIDE_EFFECTS (gimple_call_fn (s)))
2321 return true;
2323 for (i = 0; i < nargs; i++)
2324 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2326 gcc_assert (gimple_has_volatile_ops (s));
2327 return true;
2330 return false;
2332 else
2334 for (i = 0; i < gimple_num_ops (s); i++)
2335 if (TREE_SIDE_EFFECTS (gimple_op (s, i)))
2337 gcc_assert (gimple_has_volatile_ops (s));
2338 return true;
2342 return false;
2345 /* Return true if the RHS of statement S has side effects.
2346 We may use it to determine if it is admissable to replace
2347 an assignment or call with a copy of a previously-computed
2348 value. In such cases, side-effects due the the LHS are
2349 preserved. */
2351 bool
2352 gimple_rhs_has_side_effects (const_gimple s)
2354 unsigned i;
2356 if (is_gimple_call (s))
2358 unsigned nargs = gimple_call_num_args (s);
2360 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2361 return true;
2363 /* We cannot use gimple_has_volatile_ops here,
2364 because we must ignore a volatile LHS. */
2365 if (TREE_SIDE_EFFECTS (gimple_call_fn (s))
2366 || TREE_THIS_VOLATILE (gimple_call_fn (s)))
2368 gcc_assert (gimple_has_volatile_ops (s));
2369 return true;
2372 for (i = 0; i < nargs; i++)
2373 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2374 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2375 return true;
2377 return false;
2379 else if (is_gimple_assign (s))
2381 /* Skip the first operand, the LHS. */
2382 for (i = 1; i < gimple_num_ops (s); i++)
2383 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2384 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2386 gcc_assert (gimple_has_volatile_ops (s));
2387 return true;
2390 else if (is_gimple_debug (s))
2391 return false;
2392 else
2394 /* For statements without an LHS, examine all arguments. */
2395 for (i = 0; i < gimple_num_ops (s); i++)
2396 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2397 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2399 gcc_assert (gimple_has_volatile_ops (s));
2400 return true;
2404 return false;
2407 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2408 Return true if S can trap. When INCLUDE_MEM is true, check whether
2409 the memory operations could trap. When INCLUDE_STORES is true and
2410 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2412 bool
2413 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
2415 tree t, div = NULL_TREE;
2416 enum tree_code op;
2418 if (include_mem)
2420 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2422 for (i = start; i < gimple_num_ops (s); i++)
2423 if (tree_could_trap_p (gimple_op (s, i)))
2424 return true;
2427 switch (gimple_code (s))
2429 case GIMPLE_ASM:
2430 return gimple_asm_volatile_p (s);
2432 case GIMPLE_CALL:
2433 t = gimple_call_fndecl (s);
2434 /* Assume that calls to weak functions may trap. */
2435 if (!t || !DECL_P (t) || DECL_WEAK (t))
2436 return true;
2437 return false;
2439 case GIMPLE_ASSIGN:
2440 t = gimple_expr_type (s);
2441 op = gimple_assign_rhs_code (s);
2442 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2443 div = gimple_assign_rhs2 (s);
2444 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2445 (INTEGRAL_TYPE_P (t)
2446 && TYPE_OVERFLOW_TRAPS (t)),
2447 div));
2449 default:
2450 break;
2453 return false;
2456 /* Return true if statement S can trap. */
2458 bool
2459 gimple_could_trap_p (gimple s)
2461 return gimple_could_trap_p_1 (s, true, true);
2464 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2466 bool
2467 gimple_assign_rhs_could_trap_p (gimple s)
2469 gcc_assert (is_gimple_assign (s));
2470 return gimple_could_trap_p_1 (s, true, false);
2474 /* Print debugging information for gimple stmts generated. */
2476 void
2477 dump_gimple_statistics (void)
2479 #ifdef GATHER_STATISTICS
2480 int i, total_tuples = 0, total_bytes = 0;
2482 fprintf (stderr, "\nGIMPLE statements\n");
2483 fprintf (stderr, "Kind Stmts Bytes\n");
2484 fprintf (stderr, "---------------------------------------\n");
2485 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2487 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2488 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2489 total_tuples += gimple_alloc_counts[i];
2490 total_bytes += gimple_alloc_sizes[i];
2492 fprintf (stderr, "---------------------------------------\n");
2493 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2494 fprintf (stderr, "---------------------------------------\n");
2495 #else
2496 fprintf (stderr, "No gimple statistics\n");
2497 #endif
2501 /* Return the number of operands needed on the RHS of a GIMPLE
2502 assignment for an expression with tree code CODE. */
2504 unsigned
2505 get_gimple_rhs_num_ops (enum tree_code code)
2507 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2509 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2510 return 1;
2511 else if (rhs_class == GIMPLE_BINARY_RHS)
2512 return 2;
2513 else if (rhs_class == GIMPLE_TERNARY_RHS)
2514 return 3;
2515 else
2516 gcc_unreachable ();
2519 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2520 (unsigned char) \
2521 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2522 : ((TYPE) == tcc_binary \
2523 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2524 : ((TYPE) == tcc_constant \
2525 || (TYPE) == tcc_declaration \
2526 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2527 : ((SYM) == TRUTH_AND_EXPR \
2528 || (SYM) == TRUTH_OR_EXPR \
2529 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2530 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2531 : ((SYM) == WIDEN_MULT_PLUS_EXPR \
2532 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2533 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2534 : ((SYM) == COND_EXPR \
2535 || (SYM) == CONSTRUCTOR \
2536 || (SYM) == OBJ_TYPE_REF \
2537 || (SYM) == ASSERT_EXPR \
2538 || (SYM) == ADDR_EXPR \
2539 || (SYM) == WITH_SIZE_EXPR \
2540 || (SYM) == SSA_NAME \
2541 || (SYM) == POLYNOMIAL_CHREC \
2542 || (SYM) == DOT_PROD_EXPR \
2543 || (SYM) == VEC_COND_EXPR \
2544 || (SYM) == REALIGN_LOAD_EXPR) ? GIMPLE_SINGLE_RHS \
2545 : GIMPLE_INVALID_RHS),
2546 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2548 const unsigned char gimple_rhs_class_table[] = {
2549 #include "all-tree.def"
2552 #undef DEFTREECODE
2553 #undef END_OF_BASE_TREE_CODES
2555 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2557 /* Validation of GIMPLE expressions. */
2559 /* Returns true iff T is a valid RHS for an assignment to a renamed
2560 user -- or front-end generated artificial -- variable. */
2562 bool
2563 is_gimple_reg_rhs (tree t)
2565 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2568 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2569 LHS, or for a call argument. */
2571 bool
2572 is_gimple_mem_rhs (tree t)
2574 /* If we're dealing with a renamable type, either source or dest must be
2575 a renamed variable. */
2576 if (is_gimple_reg_type (TREE_TYPE (t)))
2577 return is_gimple_val (t);
2578 else
2579 return is_gimple_val (t) || is_gimple_lvalue (t);
2582 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2584 bool
2585 is_gimple_lvalue (tree t)
2587 return (is_gimple_addressable (t)
2588 || TREE_CODE (t) == WITH_SIZE_EXPR
2589 /* These are complex lvalues, but don't have addresses, so they
2590 go here. */
2591 || TREE_CODE (t) == BIT_FIELD_REF);
2594 /* Return true if T is a GIMPLE condition. */
2596 bool
2597 is_gimple_condexpr (tree t)
2599 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2600 && !tree_could_trap_p (t)
2601 && is_gimple_val (TREE_OPERAND (t, 0))
2602 && is_gimple_val (TREE_OPERAND (t, 1))));
2605 /* Return true if T is something whose address can be taken. */
2607 bool
2608 is_gimple_addressable (tree t)
2610 return (is_gimple_id (t) || handled_component_p (t)
2611 || TREE_CODE (t) == MEM_REF);
2614 /* Return true if T is a valid gimple constant. */
2616 bool
2617 is_gimple_constant (const_tree t)
2619 switch (TREE_CODE (t))
2621 case INTEGER_CST:
2622 case REAL_CST:
2623 case FIXED_CST:
2624 case STRING_CST:
2625 case COMPLEX_CST:
2626 case VECTOR_CST:
2627 return true;
2629 /* Vector constant constructors are gimple invariant. */
2630 case CONSTRUCTOR:
2631 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2632 return TREE_CONSTANT (t);
2633 else
2634 return false;
2636 default:
2637 return false;
2641 /* Return true if T is a gimple address. */
2643 bool
2644 is_gimple_address (const_tree t)
2646 tree op;
2648 if (TREE_CODE (t) != ADDR_EXPR)
2649 return false;
2651 op = TREE_OPERAND (t, 0);
2652 while (handled_component_p (op))
2654 if ((TREE_CODE (op) == ARRAY_REF
2655 || TREE_CODE (op) == ARRAY_RANGE_REF)
2656 && !is_gimple_val (TREE_OPERAND (op, 1)))
2657 return false;
2659 op = TREE_OPERAND (op, 0);
2662 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
2663 return true;
2665 switch (TREE_CODE (op))
2667 case PARM_DECL:
2668 case RESULT_DECL:
2669 case LABEL_DECL:
2670 case FUNCTION_DECL:
2671 case VAR_DECL:
2672 case CONST_DECL:
2673 return true;
2675 default:
2676 return false;
2680 /* Strip out all handled components that produce invariant
2681 offsets. */
2683 static const_tree
2684 strip_invariant_refs (const_tree op)
2686 while (handled_component_p (op))
2688 switch (TREE_CODE (op))
2690 case ARRAY_REF:
2691 case ARRAY_RANGE_REF:
2692 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2693 || TREE_OPERAND (op, 2) != NULL_TREE
2694 || TREE_OPERAND (op, 3) != NULL_TREE)
2695 return NULL;
2696 break;
2698 case COMPONENT_REF:
2699 if (TREE_OPERAND (op, 2) != NULL_TREE)
2700 return NULL;
2701 break;
2703 default:;
2705 op = TREE_OPERAND (op, 0);
2708 return op;
2711 /* Return true if T is a gimple invariant address. */
2713 bool
2714 is_gimple_invariant_address (const_tree t)
2716 const_tree op;
2718 if (TREE_CODE (t) != ADDR_EXPR)
2719 return false;
2721 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2722 if (!op)
2723 return false;
2725 if (TREE_CODE (op) == MEM_REF)
2727 const_tree op0 = TREE_OPERAND (op, 0);
2728 return (TREE_CODE (op0) == ADDR_EXPR
2729 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2730 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
2733 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2736 /* Return true if T is a gimple invariant address at IPA level
2737 (so addresses of variables on stack are not allowed). */
2739 bool
2740 is_gimple_ip_invariant_address (const_tree t)
2742 const_tree op;
2744 if (TREE_CODE (t) != ADDR_EXPR)
2745 return false;
2747 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2749 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
2752 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2753 form of function invariant. */
2755 bool
2756 is_gimple_min_invariant (const_tree t)
2758 if (TREE_CODE (t) == ADDR_EXPR)
2759 return is_gimple_invariant_address (t);
2761 return is_gimple_constant (t);
2764 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2765 form of gimple minimal invariant. */
2767 bool
2768 is_gimple_ip_invariant (const_tree t)
2770 if (TREE_CODE (t) == ADDR_EXPR)
2771 return is_gimple_ip_invariant_address (t);
2773 return is_gimple_constant (t);
2776 /* Return true if T looks like a valid GIMPLE statement. */
2778 bool
2779 is_gimple_stmt (tree t)
2781 const enum tree_code code = TREE_CODE (t);
2783 switch (code)
2785 case NOP_EXPR:
2786 /* The only valid NOP_EXPR is the empty statement. */
2787 return IS_EMPTY_STMT (t);
2789 case BIND_EXPR:
2790 case COND_EXPR:
2791 /* These are only valid if they're void. */
2792 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2794 case SWITCH_EXPR:
2795 case GOTO_EXPR:
2796 case RETURN_EXPR:
2797 case LABEL_EXPR:
2798 case CASE_LABEL_EXPR:
2799 case TRY_CATCH_EXPR:
2800 case TRY_FINALLY_EXPR:
2801 case EH_FILTER_EXPR:
2802 case CATCH_EXPR:
2803 case ASM_EXPR:
2804 case STATEMENT_LIST:
2805 case OMP_PARALLEL:
2806 case OMP_FOR:
2807 case OMP_SECTIONS:
2808 case OMP_SECTION:
2809 case OMP_SINGLE:
2810 case OMP_MASTER:
2811 case OMP_ORDERED:
2812 case OMP_CRITICAL:
2813 case OMP_TASK:
2814 /* These are always void. */
2815 return true;
2817 case CALL_EXPR:
2818 case MODIFY_EXPR:
2819 case PREDICT_EXPR:
2820 /* These are valid regardless of their type. */
2821 return true;
2823 default:
2824 return false;
2828 /* Return true if T is a variable. */
2830 bool
2831 is_gimple_variable (tree t)
2833 return (TREE_CODE (t) == VAR_DECL
2834 || TREE_CODE (t) == PARM_DECL
2835 || TREE_CODE (t) == RESULT_DECL
2836 || TREE_CODE (t) == SSA_NAME);
2839 /* Return true if T is a GIMPLE identifier (something with an address). */
2841 bool
2842 is_gimple_id (tree t)
2844 return (is_gimple_variable (t)
2845 || TREE_CODE (t) == FUNCTION_DECL
2846 || TREE_CODE (t) == LABEL_DECL
2847 || TREE_CODE (t) == CONST_DECL
2848 /* Allow string constants, since they are addressable. */
2849 || TREE_CODE (t) == STRING_CST);
2852 /* Return true if TYPE is a suitable type for a scalar register variable. */
2854 bool
2855 is_gimple_reg_type (tree type)
2857 return !AGGREGATE_TYPE_P (type);
2860 /* Return true if T is a non-aggregate register variable. */
2862 bool
2863 is_gimple_reg (tree t)
2865 if (TREE_CODE (t) == SSA_NAME)
2866 t = SSA_NAME_VAR (t);
2868 if (!is_gimple_variable (t))
2869 return false;
2871 if (!is_gimple_reg_type (TREE_TYPE (t)))
2872 return false;
2874 /* A volatile decl is not acceptable because we can't reuse it as
2875 needed. We need to copy it into a temp first. */
2876 if (TREE_THIS_VOLATILE (t))
2877 return false;
2879 /* We define "registers" as things that can be renamed as needed,
2880 which with our infrastructure does not apply to memory. */
2881 if (needs_to_live_in_memory (t))
2882 return false;
2884 /* Hard register variables are an interesting case. For those that
2885 are call-clobbered, we don't know where all the calls are, since
2886 we don't (want to) take into account which operations will turn
2887 into libcalls at the rtl level. For those that are call-saved,
2888 we don't currently model the fact that calls may in fact change
2889 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2890 level, and so miss variable changes that might imply. All around,
2891 it seems safest to not do too much optimization with these at the
2892 tree level at all. We'll have to rely on the rtl optimizers to
2893 clean this up, as there we've got all the appropriate bits exposed. */
2894 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2895 return false;
2897 /* Complex and vector values must have been put into SSA-like form.
2898 That is, no assignments to the individual components. */
2899 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2900 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2901 return DECL_GIMPLE_REG_P (t);
2903 return true;
2907 /* Return true if T is a GIMPLE variable whose address is not needed. */
2909 bool
2910 is_gimple_non_addressable (tree t)
2912 if (TREE_CODE (t) == SSA_NAME)
2913 t = SSA_NAME_VAR (t);
2915 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2918 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2920 bool
2921 is_gimple_val (tree t)
2923 /* Make loads from volatiles and memory vars explicit. */
2924 if (is_gimple_variable (t)
2925 && is_gimple_reg_type (TREE_TYPE (t))
2926 && !is_gimple_reg (t))
2927 return false;
2929 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2932 /* Similarly, but accept hard registers as inputs to asm statements. */
2934 bool
2935 is_gimple_asm_val (tree t)
2937 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2938 return true;
2940 return is_gimple_val (t);
2943 /* Return true if T is a GIMPLE minimal lvalue. */
2945 bool
2946 is_gimple_min_lval (tree t)
2948 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
2949 return false;
2950 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
2953 /* Return true if T is a typecast operation. */
2955 bool
2956 is_gimple_cast (tree t)
2958 return (CONVERT_EXPR_P (t)
2959 || TREE_CODE (t) == FIX_TRUNC_EXPR);
2962 /* Return true if T is a valid function operand of a CALL_EXPR. */
2964 bool
2965 is_gimple_call_addr (tree t)
2967 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
2970 /* Return true if T is a valid address operand of a MEM_REF. */
2972 bool
2973 is_gimple_mem_ref_addr (tree t)
2975 return (is_gimple_reg (t)
2976 || TREE_CODE (t) == INTEGER_CST
2977 || (TREE_CODE (t) == ADDR_EXPR
2978 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
2979 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
2982 /* If T makes a function call, return the corresponding CALL_EXPR operand.
2983 Otherwise, return NULL_TREE. */
2985 tree
2986 get_call_expr_in (tree t)
2988 if (TREE_CODE (t) == MODIFY_EXPR)
2989 t = TREE_OPERAND (t, 1);
2990 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2991 t = TREE_OPERAND (t, 0);
2992 if (TREE_CODE (t) == CALL_EXPR)
2993 return t;
2994 return NULL_TREE;
2998 /* Given a memory reference expression T, return its base address.
2999 The base address of a memory reference expression is the main
3000 object being referenced. For instance, the base address for
3001 'array[i].fld[j]' is 'array'. You can think of this as stripping
3002 away the offset part from a memory address.
3004 This function calls handled_component_p to strip away all the inner
3005 parts of the memory reference until it reaches the base object. */
3007 tree
3008 get_base_address (tree t)
3010 while (handled_component_p (t))
3011 t = TREE_OPERAND (t, 0);
3013 if ((TREE_CODE (t) == MEM_REF
3014 || TREE_CODE (t) == TARGET_MEM_REF)
3015 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
3016 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
3018 if (TREE_CODE (t) == SSA_NAME
3019 || DECL_P (t)
3020 || TREE_CODE (t) == STRING_CST
3021 || TREE_CODE (t) == CONSTRUCTOR
3022 || INDIRECT_REF_P (t)
3023 || TREE_CODE (t) == MEM_REF
3024 || TREE_CODE (t) == TARGET_MEM_REF)
3025 return t;
3026 else
3027 return NULL_TREE;
3030 void
3031 recalculate_side_effects (tree t)
3033 enum tree_code code = TREE_CODE (t);
3034 int len = TREE_OPERAND_LENGTH (t);
3035 int i;
3037 switch (TREE_CODE_CLASS (code))
3039 case tcc_expression:
3040 switch (code)
3042 case INIT_EXPR:
3043 case MODIFY_EXPR:
3044 case VA_ARG_EXPR:
3045 case PREDECREMENT_EXPR:
3046 case PREINCREMENT_EXPR:
3047 case POSTDECREMENT_EXPR:
3048 case POSTINCREMENT_EXPR:
3049 /* All of these have side-effects, no matter what their
3050 operands are. */
3051 return;
3053 default:
3054 break;
3056 /* Fall through. */
3058 case tcc_comparison: /* a comparison expression */
3059 case tcc_unary: /* a unary arithmetic expression */
3060 case tcc_binary: /* a binary arithmetic expression */
3061 case tcc_reference: /* a reference */
3062 case tcc_vl_exp: /* a function call */
3063 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3064 for (i = 0; i < len; ++i)
3066 tree op = TREE_OPERAND (t, i);
3067 if (op && TREE_SIDE_EFFECTS (op))
3068 TREE_SIDE_EFFECTS (t) = 1;
3070 break;
3072 case tcc_constant:
3073 /* No side-effects. */
3074 return;
3076 default:
3077 gcc_unreachable ();
3081 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3082 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3083 we failed to create one. */
3085 tree
3086 canonicalize_cond_expr_cond (tree t)
3088 /* Strip conversions around boolean operations. */
3089 if (CONVERT_EXPR_P (t)
3090 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 0))))
3091 t = TREE_OPERAND (t, 0);
3093 /* For (bool)x use x != 0. */
3094 if (CONVERT_EXPR_P (t)
3095 && TREE_CODE (TREE_TYPE (t)) == BOOLEAN_TYPE)
3097 tree top0 = TREE_OPERAND (t, 0);
3098 t = build2 (NE_EXPR, TREE_TYPE (t),
3099 top0, build_int_cst (TREE_TYPE (top0), 0));
3101 /* For !x use x == 0. */
3102 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
3104 tree top0 = TREE_OPERAND (t, 0);
3105 t = build2 (EQ_EXPR, TREE_TYPE (t),
3106 top0, build_int_cst (TREE_TYPE (top0), 0));
3108 /* For cmp ? 1 : 0 use cmp. */
3109 else if (TREE_CODE (t) == COND_EXPR
3110 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3111 && integer_onep (TREE_OPERAND (t, 1))
3112 && integer_zerop (TREE_OPERAND (t, 2)))
3114 tree top0 = TREE_OPERAND (t, 0);
3115 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3116 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3119 if (is_gimple_condexpr (t))
3120 return t;
3122 return NULL_TREE;
3125 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3126 the positions marked by the set ARGS_TO_SKIP. */
3128 gimple
3129 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
3131 int i;
3132 tree fn = gimple_call_fn (stmt);
3133 int nargs = gimple_call_num_args (stmt);
3134 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
3135 gimple new_stmt;
3137 for (i = 0; i < nargs; i++)
3138 if (!bitmap_bit_p (args_to_skip, i))
3139 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
3141 new_stmt = gimple_build_call_vec (fn, vargs);
3142 VEC_free (tree, heap, vargs);
3143 if (gimple_call_lhs (stmt))
3144 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3146 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
3147 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
3149 gimple_set_block (new_stmt, gimple_block (stmt));
3150 if (gimple_has_location (stmt))
3151 gimple_set_location (new_stmt, gimple_location (stmt));
3152 gimple_call_copy_flags (new_stmt, stmt);
3153 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3155 gimple_set_modified (new_stmt, true);
3157 return new_stmt;
3161 static hashval_t gimple_type_hash (const void *);
3163 /* Structure used to maintain a cache of some type pairs compared by
3164 gimple_types_compatible_p when comparing aggregate types. There are
3165 three possible values for SAME_P:
3167 -2: The pair (T1, T2) has just been inserted in the table.
3168 0: T1 and T2 are different types.
3169 1: T1 and T2 are the same type.
3171 The two elements in the SAME_P array are indexed by the comparison
3172 mode gtc_mode. */
3174 struct type_pair_d
3176 unsigned int uid1;
3177 unsigned int uid2;
3178 signed char same_p[2];
3180 typedef struct type_pair_d *type_pair_t;
3182 DEF_VEC_P(type_pair_t);
3183 DEF_VEC_ALLOC_P(type_pair_t,heap);
3185 /* Return a hash value for the type pair pointed-to by P. */
3187 static hashval_t
3188 type_pair_hash (const void *p)
3190 const struct type_pair_d *pair = (const struct type_pair_d *) p;
3191 hashval_t val1 = pair->uid1;
3192 hashval_t val2 = pair->uid2;
3193 return (iterative_hash_hashval_t (val2, val1)
3194 ^ iterative_hash_hashval_t (val1, val2));
3197 /* Compare two type pairs pointed-to by P1 and P2. */
3199 static int
3200 type_pair_eq (const void *p1, const void *p2)
3202 const struct type_pair_d *pair1 = (const struct type_pair_d *) p1;
3203 const struct type_pair_d *pair2 = (const struct type_pair_d *) p2;
3204 return ((pair1->uid1 == pair2->uid1 && pair1->uid2 == pair2->uid2)
3205 || (pair1->uid1 == pair2->uid2 && pair1->uid2 == pair2->uid1));
3208 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3209 entry if none existed. */
3211 static type_pair_t
3212 lookup_type_pair (tree t1, tree t2, htab_t *visited_p, struct obstack *ob_p)
3214 struct type_pair_d pair;
3215 type_pair_t p;
3216 void **slot;
3218 if (*visited_p == NULL)
3220 *visited_p = htab_create (251, type_pair_hash, type_pair_eq, NULL);
3221 gcc_obstack_init (ob_p);
3224 pair.uid1 = TYPE_UID (t1);
3225 pair.uid2 = TYPE_UID (t2);
3226 slot = htab_find_slot (*visited_p, &pair, INSERT);
3228 if (*slot)
3229 p = *((type_pair_t *) slot);
3230 else
3232 p = XOBNEW (ob_p, struct type_pair_d);
3233 p->uid1 = TYPE_UID (t1);
3234 p->uid2 = TYPE_UID (t2);
3235 p->same_p[0] = -2;
3236 p->same_p[1] = -2;
3237 *slot = (void *) p;
3240 return p;
3243 /* Per pointer state for the SCC finding. The on_sccstack flag
3244 is not strictly required, it is true when there is no hash value
3245 recorded for the type and false otherwise. But querying that
3246 is slower. */
3248 struct sccs
3250 unsigned int dfsnum;
3251 unsigned int low;
3252 bool on_sccstack;
3253 union {
3254 hashval_t hash;
3255 signed char same_p;
3256 } u;
3259 static unsigned int next_dfs_num;
3260 static unsigned int gtc_next_dfs_num;
3263 /* GIMPLE type merging cache. A direct-mapped cache based on TYPE_UID. */
3265 typedef struct GTY(()) gimple_type_leader_entry_s {
3266 tree type;
3267 tree leader;
3268 } gimple_type_leader_entry;
3270 #define GIMPLE_TYPE_LEADER_SIZE 16381
3271 static GTY((length("GIMPLE_TYPE_LEADER_SIZE"))) gimple_type_leader_entry
3272 *gimple_type_leader;
3274 /* Lookup an existing leader for T and return it or NULL_TREE, if
3275 there is none in the cache. */
3277 static tree
3278 gimple_lookup_type_leader (tree t)
3280 gimple_type_leader_entry *leader;
3282 if (!gimple_type_leader)
3283 return NULL_TREE;
3285 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
3286 if (leader->type != t)
3287 return NULL_TREE;
3289 return leader->leader;
3292 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3293 true then if any type has no name return false, otherwise return
3294 true if both types have no names. */
3296 static bool
3297 compare_type_names_p (tree t1, tree t2, bool for_completion_p)
3299 tree name1 = TYPE_NAME (t1);
3300 tree name2 = TYPE_NAME (t2);
3302 /* Consider anonymous types all unique for completion. */
3303 if (for_completion_p
3304 && (!name1 || !name2))
3305 return false;
3307 if (name1 && TREE_CODE (name1) == TYPE_DECL)
3309 name1 = DECL_NAME (name1);
3310 if (for_completion_p
3311 && !name1)
3312 return false;
3314 gcc_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
3316 if (name2 && TREE_CODE (name2) == TYPE_DECL)
3318 name2 = DECL_NAME (name2);
3319 if (for_completion_p
3320 && !name2)
3321 return false;
3323 gcc_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
3325 /* Identifiers can be compared with pointer equality rather
3326 than a string comparison. */
3327 if (name1 == name2)
3328 return true;
3330 return false;
3333 /* Return true if the field decls F1 and F2 are at the same offset.
3335 This is intended to be used on GIMPLE types only. In order to
3336 compare GENERIC types, use fields_compatible_p instead. */
3338 bool
3339 gimple_compare_field_offset (tree f1, tree f2)
3341 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3343 tree offset1 = DECL_FIELD_OFFSET (f1);
3344 tree offset2 = DECL_FIELD_OFFSET (f2);
3345 return ((offset1 == offset2
3346 /* Once gimplification is done, self-referential offsets are
3347 instantiated as operand #2 of the COMPONENT_REF built for
3348 each access and reset. Therefore, they are not relevant
3349 anymore and fields are interchangeable provided that they
3350 represent the same access. */
3351 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
3352 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
3353 && (DECL_SIZE (f1) == DECL_SIZE (f2)
3354 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
3355 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
3356 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
3357 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
3358 || operand_equal_p (offset1, offset2, 0))
3359 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3360 DECL_FIELD_BIT_OFFSET (f2)));
3363 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3364 should be, so handle differing ones specially by decomposing
3365 the offset into a byte and bit offset manually. */
3366 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3367 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3369 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3370 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3371 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3372 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3373 + bit_offset1 / BITS_PER_UNIT);
3374 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3375 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3376 + bit_offset2 / BITS_PER_UNIT);
3377 if (byte_offset1 != byte_offset2)
3378 return false;
3379 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3382 return false;
3385 /* If the type T1 and the type T2 are a complete and an incomplete
3386 variant of the same type return true. */
3388 static bool
3389 gimple_compatible_complete_and_incomplete_subtype_p (tree t1, tree t2)
3391 /* If one pointer points to an incomplete type variant of
3392 the other pointed-to type they are the same. */
3393 if (TREE_CODE (t1) == TREE_CODE (t2)
3394 && RECORD_OR_UNION_TYPE_P (t1)
3395 && (!COMPLETE_TYPE_P (t1)
3396 || !COMPLETE_TYPE_P (t2))
3397 && TYPE_QUALS (t1) == TYPE_QUALS (t2)
3398 && compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3399 TYPE_MAIN_VARIANT (t2), true))
3400 return true;
3401 return false;
3404 static bool
3405 gimple_types_compatible_p_1 (tree, tree, enum gtc_mode, type_pair_t,
3406 VEC(type_pair_t, heap) **,
3407 struct pointer_map_t *, struct obstack *);
3409 /* DFS visit the edge from the callers type pair with state *STATE to
3410 the pair T1, T2 while operating in FOR_MERGING_P mode.
3411 Update the merging status if it is not part of the SCC containing the
3412 callers pair and return it.
3413 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3415 static bool
3416 gtc_visit (tree t1, tree t2, enum gtc_mode mode,
3417 struct sccs *state,
3418 VEC(type_pair_t, heap) **sccstack,
3419 struct pointer_map_t *sccstate,
3420 struct obstack *sccstate_obstack)
3422 struct sccs *cstate = NULL;
3423 type_pair_t p;
3424 void **slot;
3426 /* Check first for the obvious case of pointer identity. */
3427 if (t1 == t2)
3428 return true;
3430 /* Check that we have two types to compare. */
3431 if (t1 == NULL_TREE || t2 == NULL_TREE)
3432 return false;
3434 /* If the types have been previously registered and found equal
3435 they still are. */
3436 if (mode == GTC_MERGE)
3438 tree leader1 = gimple_lookup_type_leader (t1);
3439 tree leader2 = gimple_lookup_type_leader (t2);
3440 if (leader1 == t2
3441 || t1 == leader2
3442 || (leader1 && leader1 == leader2))
3443 return true;
3445 else if (mode == GTC_DIAG)
3447 if (TYPE_CANONICAL (t1)
3448 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3449 return true;
3452 /* Can't be the same type if the types don't have the same code. */
3453 if (TREE_CODE (t1) != TREE_CODE (t2))
3454 return false;
3456 /* Can't be the same type if they have different CV qualifiers. */
3457 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3458 return false;
3460 /* Void types are always the same. */
3461 if (TREE_CODE (t1) == VOID_TYPE)
3462 return true;
3464 /* Do some simple checks before doing three hashtable queries. */
3465 if (INTEGRAL_TYPE_P (t1)
3466 || SCALAR_FLOAT_TYPE_P (t1)
3467 || FIXED_POINT_TYPE_P (t1)
3468 || TREE_CODE (t1) == VECTOR_TYPE
3469 || TREE_CODE (t1) == COMPLEX_TYPE
3470 || TREE_CODE (t1) == OFFSET_TYPE)
3472 /* Can't be the same type if they have different alignment,
3473 sign, precision or mode. */
3474 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3475 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3476 || TYPE_MODE (t1) != TYPE_MODE (t2)
3477 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3478 return false;
3480 if (TREE_CODE (t1) == INTEGER_TYPE
3481 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3482 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3483 return false;
3485 /* That's all we need to check for float and fixed-point types. */
3486 if (SCALAR_FLOAT_TYPE_P (t1)
3487 || FIXED_POINT_TYPE_P (t1))
3488 return true;
3490 /* For integral types fall thru to more complex checks. */
3493 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3495 /* Can't be the same type if they have different alignment or mode. */
3496 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3497 || TYPE_MODE (t1) != TYPE_MODE (t2))
3498 return false;
3501 /* If the hash values of t1 and t2 are different the types can't
3502 possibly be the same. This helps keeping the type-pair hashtable
3503 small, only tracking comparisons for hash collisions. */
3504 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3505 return false;
3507 /* Allocate a new cache entry for this comparison. */
3508 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3509 if (p->same_p[mode] == 0 || p->same_p[mode] == 1)
3511 /* We have already decided whether T1 and T2 are the
3512 same, return the cached result. */
3513 return p->same_p[mode] == 1;
3516 if ((slot = pointer_map_contains (sccstate, p)) != NULL)
3517 cstate = (struct sccs *)*slot;
3518 if (!cstate)
3520 bool res;
3521 /* Not yet visited. DFS recurse. */
3522 res = gimple_types_compatible_p_1 (t1, t2, mode, p,
3523 sccstack, sccstate, sccstate_obstack);
3524 if (!cstate)
3525 cstate = (struct sccs *)* pointer_map_contains (sccstate, p);
3526 state->low = MIN (state->low, cstate->low);
3527 /* If the type is no longer on the SCC stack and thus is not part
3528 of the parents SCC, return its state. Otherwise we will
3529 ignore this pair and assume equality. */
3530 if (!cstate->on_sccstack)
3531 return res;
3533 if (cstate->dfsnum < state->dfsnum
3534 && cstate->on_sccstack)
3535 state->low = MIN (cstate->dfsnum, state->low);
3537 /* We are part of our parents SCC, skip this entry and return true. */
3538 return true;
3541 /* Worker for gimple_types_compatible.
3542 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3544 static bool
3545 gimple_types_compatible_p_1 (tree t1, tree t2, enum gtc_mode mode,
3546 type_pair_t p,
3547 VEC(type_pair_t, heap) **sccstack,
3548 struct pointer_map_t *sccstate,
3549 struct obstack *sccstate_obstack)
3551 struct sccs *state;
3553 gcc_assert (p->same_p[mode] == -2);
3555 state = XOBNEW (sccstate_obstack, struct sccs);
3556 *pointer_map_insert (sccstate, p) = state;
3558 VEC_safe_push (type_pair_t, heap, *sccstack, p);
3559 state->dfsnum = gtc_next_dfs_num++;
3560 state->low = state->dfsnum;
3561 state->on_sccstack = true;
3563 /* If their attributes are not the same they can't be the same type. */
3564 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3565 goto different_types;
3567 /* Do type-specific comparisons. */
3568 switch (TREE_CODE (t1))
3570 case VECTOR_TYPE:
3571 case COMPLEX_TYPE:
3572 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3573 state, sccstack, sccstate, sccstate_obstack))
3574 goto different_types;
3575 goto same_types;
3577 case ARRAY_TYPE:
3578 /* Array types are the same if the element types are the same and
3579 the number of elements are the same. */
3580 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3581 state, sccstack, sccstate, sccstate_obstack)
3582 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3583 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
3584 goto different_types;
3585 else
3587 tree i1 = TYPE_DOMAIN (t1);
3588 tree i2 = TYPE_DOMAIN (t2);
3590 /* For an incomplete external array, the type domain can be
3591 NULL_TREE. Check this condition also. */
3592 if (i1 == NULL_TREE && i2 == NULL_TREE)
3593 goto same_types;
3594 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3595 goto different_types;
3596 /* If for a complete array type the possibly gimplified sizes
3597 are different the types are different. */
3598 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3599 || (TYPE_SIZE (i1)
3600 && TYPE_SIZE (i2)
3601 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3602 goto different_types;
3603 else
3605 tree min1 = TYPE_MIN_VALUE (i1);
3606 tree min2 = TYPE_MIN_VALUE (i2);
3607 tree max1 = TYPE_MAX_VALUE (i1);
3608 tree max2 = TYPE_MAX_VALUE (i2);
3610 /* The minimum/maximum values have to be the same. */
3611 if ((min1 == min2
3612 || (min1 && min2
3613 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
3614 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
3615 || operand_equal_p (min1, min2, 0))))
3616 && (max1 == max2
3617 || (max1 && max2
3618 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
3619 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
3620 || operand_equal_p (max1, max2, 0)))))
3621 goto same_types;
3622 else
3623 goto different_types;
3627 case METHOD_TYPE:
3628 /* Method types should belong to the same class. */
3629 if (!gtc_visit (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2),
3630 mode, state, sccstack, sccstate, sccstate_obstack))
3631 goto different_types;
3633 /* Fallthru */
3635 case FUNCTION_TYPE:
3636 /* Function types are the same if the return type and arguments types
3637 are the same. */
3638 if ((mode != GTC_DIAG
3639 || !gimple_compatible_complete_and_incomplete_subtype_p
3640 (TREE_TYPE (t1), TREE_TYPE (t2)))
3641 && !gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3642 state, sccstack, sccstate, sccstate_obstack))
3643 goto different_types;
3645 if (!targetm.comp_type_attributes (t1, t2))
3646 goto different_types;
3648 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3649 goto same_types;
3650 else
3652 tree parms1, parms2;
3654 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3655 parms1 && parms2;
3656 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3658 if ((mode == GTC_MERGE
3659 || !gimple_compatible_complete_and_incomplete_subtype_p
3660 (TREE_VALUE (parms1), TREE_VALUE (parms2)))
3661 && !gtc_visit (TREE_VALUE (parms1), TREE_VALUE (parms2), mode,
3662 state, sccstack, sccstate, sccstate_obstack))
3663 goto different_types;
3666 if (parms1 || parms2)
3667 goto different_types;
3669 goto same_types;
3672 case OFFSET_TYPE:
3674 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3675 state, sccstack, sccstate, sccstate_obstack)
3676 || !gtc_visit (TYPE_OFFSET_BASETYPE (t1),
3677 TYPE_OFFSET_BASETYPE (t2), mode,
3678 state, sccstack, sccstate, sccstate_obstack))
3679 goto different_types;
3681 goto same_types;
3684 case POINTER_TYPE:
3685 case REFERENCE_TYPE:
3687 /* If the two pointers have different ref-all attributes,
3688 they can't be the same type. */
3689 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3690 goto different_types;
3692 /* If one pointer points to an incomplete type variant of
3693 the other pointed-to type they are the same. */
3694 if (mode == GTC_DIAG
3695 && gimple_compatible_complete_and_incomplete_subtype_p
3696 (TREE_TYPE (t1), TREE_TYPE (t2)))
3697 goto same_types;
3699 /* Otherwise, pointer and reference types are the same if the
3700 pointed-to types are the same. */
3701 if (gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3702 state, sccstack, sccstate, sccstate_obstack))
3703 goto same_types;
3705 goto different_types;
3708 case NULLPTR_TYPE:
3709 /* There is only one decltype(nullptr). */
3710 goto same_types;
3712 case INTEGER_TYPE:
3713 case BOOLEAN_TYPE:
3715 tree min1 = TYPE_MIN_VALUE (t1);
3716 tree max1 = TYPE_MAX_VALUE (t1);
3717 tree min2 = TYPE_MIN_VALUE (t2);
3718 tree max2 = TYPE_MAX_VALUE (t2);
3719 bool min_equal_p = false;
3720 bool max_equal_p = false;
3722 /* If either type has a minimum value, the other type must
3723 have the same. */
3724 if (min1 == NULL_TREE && min2 == NULL_TREE)
3725 min_equal_p = true;
3726 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3727 min_equal_p = true;
3729 /* Likewise, if either type has a maximum value, the other
3730 type must have the same. */
3731 if (max1 == NULL_TREE && max2 == NULL_TREE)
3732 max_equal_p = true;
3733 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3734 max_equal_p = true;
3736 if (!min_equal_p || !max_equal_p)
3737 goto different_types;
3739 goto same_types;
3742 case ENUMERAL_TYPE:
3744 /* FIXME lto, we cannot check bounds on enumeral types because
3745 different front ends will produce different values.
3746 In C, enumeral types are integers, while in C++ each element
3747 will have its own symbolic value. We should decide how enums
3748 are to be represented in GIMPLE and have each front end lower
3749 to that. */
3750 tree v1, v2;
3752 /* For enumeral types, all the values must be the same. */
3753 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3754 goto same_types;
3756 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3757 v1 && v2;
3758 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3760 tree c1 = TREE_VALUE (v1);
3761 tree c2 = TREE_VALUE (v2);
3763 if (TREE_CODE (c1) == CONST_DECL)
3764 c1 = DECL_INITIAL (c1);
3766 if (TREE_CODE (c2) == CONST_DECL)
3767 c2 = DECL_INITIAL (c2);
3769 if (tree_int_cst_equal (c1, c2) != 1)
3770 goto different_types;
3773 /* If one enumeration has more values than the other, they
3774 are not the same. */
3775 if (v1 || v2)
3776 goto different_types;
3778 goto same_types;
3781 case RECORD_TYPE:
3782 case UNION_TYPE:
3783 case QUAL_UNION_TYPE:
3785 tree f1, f2;
3787 /* The struct tags shall compare equal. */
3788 if (!compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3789 TYPE_MAIN_VARIANT (t2), false))
3790 goto different_types;
3792 /* For aggregate types, all the fields must be the same. */
3793 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3794 f1 && f2;
3795 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3797 /* The fields must have the same name, offset and type. */
3798 if (DECL_NAME (f1) != DECL_NAME (f2)
3799 || DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
3800 || !gimple_compare_field_offset (f1, f2)
3801 || !gtc_visit (TREE_TYPE (f1), TREE_TYPE (f2), mode,
3802 state, sccstack, sccstate, sccstate_obstack))
3803 goto different_types;
3806 /* If one aggregate has more fields than the other, they
3807 are not the same. */
3808 if (f1 || f2)
3809 goto different_types;
3811 goto same_types;
3814 default:
3815 gcc_unreachable ();
3818 /* Common exit path for types that are not compatible. */
3819 different_types:
3820 state->u.same_p = 0;
3821 goto pop;
3823 /* Common exit path for types that are compatible. */
3824 same_types:
3825 state->u.same_p = 1;
3826 goto pop;
3828 pop:
3829 if (state->low == state->dfsnum)
3831 type_pair_t x;
3833 /* Pop off the SCC and set its cache values. */
3836 struct sccs *cstate;
3837 x = VEC_pop (type_pair_t, *sccstack);
3838 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3839 cstate->on_sccstack = false;
3840 x->same_p[mode] = cstate->u.same_p;
3842 while (x != p);
3845 return state->u.same_p;
3848 /* Return true iff T1 and T2 are structurally identical. When
3849 FOR_MERGING_P is true the an incomplete type and a complete type
3850 are considered different, otherwise they are considered compatible. */
3852 bool
3853 gimple_types_compatible_p (tree t1, tree t2, enum gtc_mode mode)
3855 VEC(type_pair_t, heap) *sccstack = NULL;
3856 struct pointer_map_t *sccstate;
3857 struct obstack sccstate_obstack;
3858 type_pair_t p = NULL;
3859 bool res;
3861 /* Before starting to set up the SCC machinery handle simple cases. */
3863 /* Check first for the obvious case of pointer identity. */
3864 if (t1 == t2)
3865 return true;
3867 /* Check that we have two types to compare. */
3868 if (t1 == NULL_TREE || t2 == NULL_TREE)
3869 return false;
3871 /* If the types have been previously registered and found equal
3872 they still are. */
3873 if (mode == GTC_MERGE)
3875 tree leader1 = gimple_lookup_type_leader (t1);
3876 tree leader2 = gimple_lookup_type_leader (t2);
3877 if (leader1 == t2
3878 || t1 == leader2
3879 || (leader1 && leader1 == leader2))
3880 return true;
3882 else if (mode == GTC_DIAG)
3884 if (TYPE_CANONICAL (t1)
3885 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3886 return true;
3889 /* Can't be the same type if the types don't have the same code. */
3890 if (TREE_CODE (t1) != TREE_CODE (t2))
3891 return false;
3893 /* Can't be the same type if they have different CV qualifiers. */
3894 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3895 return false;
3897 /* Void types are always the same. */
3898 if (TREE_CODE (t1) == VOID_TYPE)
3899 return true;
3901 /* Do some simple checks before doing three hashtable queries. */
3902 if (INTEGRAL_TYPE_P (t1)
3903 || SCALAR_FLOAT_TYPE_P (t1)
3904 || FIXED_POINT_TYPE_P (t1)
3905 || TREE_CODE (t1) == VECTOR_TYPE
3906 || TREE_CODE (t1) == COMPLEX_TYPE
3907 || TREE_CODE (t1) == OFFSET_TYPE)
3909 /* Can't be the same type if they have different alignment,
3910 sign, precision or mode. */
3911 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3912 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3913 || TYPE_MODE (t1) != TYPE_MODE (t2)
3914 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3915 return false;
3917 if (TREE_CODE (t1) == INTEGER_TYPE
3918 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3919 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3920 return false;
3922 /* That's all we need to check for float and fixed-point types. */
3923 if (SCALAR_FLOAT_TYPE_P (t1)
3924 || FIXED_POINT_TYPE_P (t1))
3925 return true;
3927 /* For integral types fall thru to more complex checks. */
3930 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3932 /* Can't be the same type if they have different alignment or mode. */
3933 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3934 || TYPE_MODE (t1) != TYPE_MODE (t2))
3935 return false;
3938 /* If the hash values of t1 and t2 are different the types can't
3939 possibly be the same. This helps keeping the type-pair hashtable
3940 small, only tracking comparisons for hash collisions. */
3941 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3942 return false;
3944 /* If we've visited this type pair before (in the case of aggregates
3945 with self-referential types), and we made a decision, return it. */
3946 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3947 if (p->same_p[mode] == 0 || p->same_p[mode] == 1)
3949 /* We have already decided whether T1 and T2 are the
3950 same, return the cached result. */
3951 return p->same_p[mode] == 1;
3954 /* Now set up the SCC machinery for the comparison. */
3955 gtc_next_dfs_num = 1;
3956 sccstate = pointer_map_create ();
3957 gcc_obstack_init (&sccstate_obstack);
3958 res = gimple_types_compatible_p_1 (t1, t2, mode, p,
3959 &sccstack, sccstate, &sccstate_obstack);
3960 VEC_free (type_pair_t, heap, sccstack);
3961 pointer_map_destroy (sccstate);
3962 obstack_free (&sccstate_obstack, NULL);
3964 return res;
3968 static hashval_t
3969 iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
3970 struct pointer_map_t *, struct obstack *);
3972 /* DFS visit the edge from the callers type with state *STATE to T.
3973 Update the callers type hash V with the hash for T if it is not part
3974 of the SCC containing the callers type and return it.
3975 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3977 static hashval_t
3978 visit (tree t, struct sccs *state, hashval_t v,
3979 VEC (tree, heap) **sccstack,
3980 struct pointer_map_t *sccstate,
3981 struct obstack *sccstate_obstack)
3983 struct sccs *cstate = NULL;
3984 struct tree_int_map m;
3985 void **slot;
3987 /* If there is a hash value recorded for this type then it can't
3988 possibly be part of our parent SCC. Simply mix in its hash. */
3989 m.base.from = t;
3990 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
3991 && *slot)
3992 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, v);
3994 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
3995 cstate = (struct sccs *)*slot;
3996 if (!cstate)
3998 hashval_t tem;
3999 /* Not yet visited. DFS recurse. */
4000 tem = iterative_hash_gimple_type (t, v,
4001 sccstack, sccstate, sccstate_obstack);
4002 if (!cstate)
4003 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
4004 state->low = MIN (state->low, cstate->low);
4005 /* If the type is no longer on the SCC stack and thus is not part
4006 of the parents SCC mix in its hash value. Otherwise we will
4007 ignore the type for hashing purposes and return the unaltered
4008 hash value. */
4009 if (!cstate->on_sccstack)
4010 return tem;
4012 if (cstate->dfsnum < state->dfsnum
4013 && cstate->on_sccstack)
4014 state->low = MIN (cstate->dfsnum, state->low);
4016 /* We are part of our parents SCC, skip this type during hashing
4017 and return the unaltered hash value. */
4018 return v;
4021 /* Hash NAME with the previous hash value V and return it. */
4023 static hashval_t
4024 iterative_hash_name (tree name, hashval_t v)
4026 if (!name)
4027 return v;
4028 if (TREE_CODE (name) == TYPE_DECL)
4029 name = DECL_NAME (name);
4030 if (!name)
4031 return v;
4032 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
4033 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
4036 /* Returning a hash value for gimple type TYPE combined with VAL.
4037 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
4039 To hash a type we end up hashing in types that are reachable.
4040 Through pointers we can end up with cycles which messes up the
4041 required property that we need to compute the same hash value
4042 for structurally equivalent types. To avoid this we have to
4043 hash all types in a cycle (the SCC) in a commutative way. The
4044 easiest way is to not mix in the hashes of the SCC members at
4045 all. To make this work we have to delay setting the hash
4046 values of the SCC until it is complete. */
4048 static hashval_t
4049 iterative_hash_gimple_type (tree type, hashval_t val,
4050 VEC(tree, heap) **sccstack,
4051 struct pointer_map_t *sccstate,
4052 struct obstack *sccstate_obstack)
4054 hashval_t v;
4055 void **slot;
4056 struct sccs *state;
4058 /* Not visited during this DFS walk. */
4059 gcc_checking_assert (!pointer_map_contains (sccstate, type));
4060 state = XOBNEW (sccstate_obstack, struct sccs);
4061 *pointer_map_insert (sccstate, type) = state;
4063 VEC_safe_push (tree, heap, *sccstack, type);
4064 state->dfsnum = next_dfs_num++;
4065 state->low = state->dfsnum;
4066 state->on_sccstack = true;
4068 /* Combine a few common features of types so that types are grouped into
4069 smaller sets; when searching for existing matching types to merge,
4070 only existing types having the same features as the new type will be
4071 checked. */
4072 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
4073 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
4074 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4076 /* Do not hash the types size as this will cause differences in
4077 hash values for the complete vs. the incomplete type variant. */
4079 /* Incorporate common features of numerical types. */
4080 if (INTEGRAL_TYPE_P (type)
4081 || SCALAR_FLOAT_TYPE_P (type)
4082 || FIXED_POINT_TYPE_P (type))
4084 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4085 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4086 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4089 /* For pointer and reference types, fold in information about the type
4090 pointed to but do not recurse into possibly incomplete types to
4091 avoid hash differences for complete vs. incomplete types. */
4092 if (POINTER_TYPE_P (type))
4094 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4096 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4097 v = iterative_hash_name
4098 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4100 else
4101 v = visit (TREE_TYPE (type), state, v,
4102 sccstack, sccstate, sccstate_obstack);
4105 /* For integer types hash the types min/max values and the string flag. */
4106 if (TREE_CODE (type) == INTEGER_TYPE)
4108 /* OMP lowering can introduce error_mark_node in place of
4109 random local decls in types. */
4110 if (TYPE_MIN_VALUE (type) != error_mark_node)
4111 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
4112 if (TYPE_MAX_VALUE (type) != error_mark_node)
4113 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
4114 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4117 /* For array types hash their domain and the string flag. */
4118 if (TREE_CODE (type) == ARRAY_TYPE
4119 && TYPE_DOMAIN (type))
4121 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4122 v = visit (TYPE_DOMAIN (type), state, v,
4123 sccstack, sccstate, sccstate_obstack);
4126 /* Recurse for aggregates with a single element type. */
4127 if (TREE_CODE (type) == ARRAY_TYPE
4128 || TREE_CODE (type) == COMPLEX_TYPE
4129 || TREE_CODE (type) == VECTOR_TYPE)
4130 v = visit (TREE_TYPE (type), state, v,
4131 sccstack, sccstate, sccstate_obstack);
4133 /* Incorporate function return and argument types. */
4134 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4136 unsigned na;
4137 tree p;
4139 /* For method types also incorporate their parent class. */
4140 if (TREE_CODE (type) == METHOD_TYPE)
4141 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
4142 sccstack, sccstate, sccstate_obstack);
4144 /* For result types allow mismatch in completeness. */
4145 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4147 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4148 v = iterative_hash_name
4149 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4151 else
4152 v = visit (TREE_TYPE (type), state, v,
4153 sccstack, sccstate, sccstate_obstack);
4155 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4157 /* For argument types allow mismatch in completeness. */
4158 if (RECORD_OR_UNION_TYPE_P (TREE_VALUE (p)))
4160 v = iterative_hash_hashval_t (TREE_CODE (TREE_VALUE (p)), v);
4161 v = iterative_hash_name
4162 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_VALUE (p))), v);
4164 else
4165 v = visit (TREE_VALUE (p), state, v,
4166 sccstack, sccstate, sccstate_obstack);
4167 na++;
4170 v = iterative_hash_hashval_t (na, v);
4173 if (TREE_CODE (type) == RECORD_TYPE
4174 || TREE_CODE (type) == UNION_TYPE
4175 || TREE_CODE (type) == QUAL_UNION_TYPE)
4177 unsigned nf;
4178 tree f;
4180 v = iterative_hash_name (TYPE_NAME (TYPE_MAIN_VARIANT (type)), v);
4182 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4184 v = iterative_hash_name (DECL_NAME (f), v);
4185 v = visit (TREE_TYPE (f), state, v,
4186 sccstack, sccstate, sccstate_obstack);
4187 nf++;
4190 v = iterative_hash_hashval_t (nf, v);
4193 /* Record hash for us. */
4194 state->u.hash = v;
4196 /* See if we found an SCC. */
4197 if (state->low == state->dfsnum)
4199 tree x;
4201 /* Pop off the SCC and set its hash values. */
4204 struct sccs *cstate;
4205 struct tree_int_map *m = ggc_alloc_cleared_tree_int_map ();
4206 x = VEC_pop (tree, *sccstack);
4207 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4208 cstate->on_sccstack = false;
4209 m->base.from = x;
4210 m->to = cstate->u.hash;
4211 slot = htab_find_slot (type_hash_cache, m, INSERT);
4212 gcc_assert (!*slot);
4213 *slot = (void *) m;
4215 while (x != type);
4218 return iterative_hash_hashval_t (v, val);
4222 /* Returns a hash value for P (assumed to be a type). The hash value
4223 is computed using some distinguishing features of the type. Note
4224 that we cannot use pointer hashing here as we may be dealing with
4225 two distinct instances of the same type.
4227 This function should produce the same hash value for two compatible
4228 types according to gimple_types_compatible_p. */
4230 static hashval_t
4231 gimple_type_hash (const void *p)
4233 const_tree t = (const_tree) p;
4234 VEC(tree, heap) *sccstack = NULL;
4235 struct pointer_map_t *sccstate;
4236 struct obstack sccstate_obstack;
4237 hashval_t val;
4238 void **slot;
4239 struct tree_int_map m;
4241 if (type_hash_cache == NULL)
4242 type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4243 tree_int_map_eq, NULL);
4245 m.base.from = CONST_CAST_TREE (t);
4246 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
4247 && *slot)
4248 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, 0);
4250 /* Perform a DFS walk and pre-hash all reachable types. */
4251 next_dfs_num = 1;
4252 sccstate = pointer_map_create ();
4253 gcc_obstack_init (&sccstate_obstack);
4254 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
4255 &sccstack, sccstate, &sccstate_obstack);
4256 VEC_free (tree, heap, sccstack);
4257 pointer_map_destroy (sccstate);
4258 obstack_free (&sccstate_obstack, NULL);
4260 return val;
4264 /* Returns nonzero if P1 and P2 are equal. */
4266 static int
4267 gimple_type_eq (const void *p1, const void *p2)
4269 const_tree t1 = (const_tree) p1;
4270 const_tree t2 = (const_tree) p2;
4271 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4272 CONST_CAST_TREE (t2), GTC_MERGE);
4276 /* Register type T in the global type table gimple_types.
4277 If another type T', compatible with T, already existed in
4278 gimple_types then return T', otherwise return T. This is used by
4279 LTO to merge identical types read from different TUs. */
4281 tree
4282 gimple_register_type (tree t)
4284 void **slot;
4285 gimple_type_leader_entry *leader;
4287 gcc_assert (TYPE_P (t));
4289 if (!gimple_type_leader)
4290 gimple_type_leader = ggc_alloc_cleared_vec_gimple_type_leader_entry_s
4291 (GIMPLE_TYPE_LEADER_SIZE);
4292 /* If we registered this type before return the cached result. */
4293 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
4294 if (leader->type == t)
4295 return leader->leader;
4297 /* Always register the main variant first. This is important so we
4298 pick up the non-typedef variants as canonical, otherwise we'll end
4299 up taking typedef ids for structure tags during comparison. */
4300 if (TYPE_MAIN_VARIANT (t) != t)
4301 gimple_register_type (TYPE_MAIN_VARIANT (t));
4303 if (gimple_types == NULL)
4304 gimple_types = htab_create_ggc (16381, gimple_type_hash, gimple_type_eq, 0);
4306 slot = htab_find_slot (gimple_types, t, INSERT);
4307 if (*slot
4308 && *(tree *)slot != t)
4310 tree new_type = (tree) *((tree *) slot);
4312 /* Do not merge types with different addressability. */
4313 gcc_assert (TREE_ADDRESSABLE (t) == TREE_ADDRESSABLE (new_type));
4315 /* If t is not its main variant then make t unreachable from its
4316 main variant list. Otherwise we'd queue up a lot of duplicates
4317 there. */
4318 if (t != TYPE_MAIN_VARIANT (t))
4320 tree tem = TYPE_MAIN_VARIANT (t);
4321 while (tem && TYPE_NEXT_VARIANT (tem) != t)
4322 tem = TYPE_NEXT_VARIANT (tem);
4323 if (tem)
4324 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
4325 TYPE_NEXT_VARIANT (t) = NULL_TREE;
4328 /* If we are a pointer then remove us from the pointer-to or
4329 reference-to chain. Otherwise we'd queue up a lot of duplicates
4330 there. */
4331 if (TREE_CODE (t) == POINTER_TYPE)
4333 if (TYPE_POINTER_TO (TREE_TYPE (t)) == t)
4334 TYPE_POINTER_TO (TREE_TYPE (t)) = TYPE_NEXT_PTR_TO (t);
4335 else
4337 tree tem = TYPE_POINTER_TO (TREE_TYPE (t));
4338 while (tem && TYPE_NEXT_PTR_TO (tem) != t)
4339 tem = TYPE_NEXT_PTR_TO (tem);
4340 if (tem)
4341 TYPE_NEXT_PTR_TO (tem) = TYPE_NEXT_PTR_TO (t);
4343 TYPE_NEXT_PTR_TO (t) = NULL_TREE;
4345 else if (TREE_CODE (t) == REFERENCE_TYPE)
4347 if (TYPE_REFERENCE_TO (TREE_TYPE (t)) == t)
4348 TYPE_REFERENCE_TO (TREE_TYPE (t)) = TYPE_NEXT_REF_TO (t);
4349 else
4351 tree tem = TYPE_REFERENCE_TO (TREE_TYPE (t));
4352 while (tem && TYPE_NEXT_REF_TO (tem) != t)
4353 tem = TYPE_NEXT_REF_TO (tem);
4354 if (tem)
4355 TYPE_NEXT_REF_TO (tem) = TYPE_NEXT_REF_TO (t);
4357 TYPE_NEXT_REF_TO (t) = NULL_TREE;
4360 leader->type = t;
4361 leader->leader = new_type;
4362 t = new_type;
4364 else
4366 leader->type = t;
4367 leader->leader = t;
4368 *slot = (void *) t;
4371 return t;
4375 /* Returns nonzero if P1 and P2 are equal. */
4377 static int
4378 gimple_canonical_type_eq (const void *p1, const void *p2)
4380 const_tree t1 = (const_tree) p1;
4381 const_tree t2 = (const_tree) p2;
4382 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4383 CONST_CAST_TREE (t2), GTC_DIAG);
4386 /* Register type T in the global type table gimple_types.
4387 If another type T', compatible with T, already existed in
4388 gimple_types then return T', otherwise return T. This is used by
4389 LTO to merge identical types read from different TUs. */
4391 tree
4392 gimple_register_canonical_type (tree t)
4394 void **slot;
4396 gcc_assert (TYPE_P (t));
4398 if (TYPE_CANONICAL (t))
4399 return TYPE_CANONICAL (t);
4401 /* Always register the main variant first. This is important so we
4402 pick up the non-typedef variants as canonical, otherwise we'll end
4403 up taking typedef ids for structure tags during comparison. */
4404 if (TYPE_MAIN_VARIANT (t) != t)
4405 gimple_register_canonical_type (TYPE_MAIN_VARIANT (t));
4407 if (gimple_canonical_types == NULL)
4408 gimple_canonical_types = htab_create_ggc (16381, gimple_type_hash,
4409 gimple_canonical_type_eq, 0);
4411 slot = htab_find_slot (gimple_canonical_types, t, INSERT);
4412 if (*slot
4413 && *(tree *)slot != t)
4415 tree new_type = (tree) *((tree *) slot);
4417 TYPE_CANONICAL (t) = new_type;
4418 t = new_type;
4420 else
4422 TYPE_CANONICAL (t) = t;
4423 *slot = (void *) t;
4426 return t;
4430 /* Show statistics on references to the global type table gimple_types. */
4432 void
4433 print_gimple_types_stats (void)
4435 if (gimple_types)
4436 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
4437 "%ld searches, %ld collisions (ratio: %f)\n",
4438 (long) htab_size (gimple_types),
4439 (long) htab_elements (gimple_types),
4440 (long) gimple_types->searches,
4441 (long) gimple_types->collisions,
4442 htab_collisions (gimple_types));
4443 else
4444 fprintf (stderr, "GIMPLE type table is empty\n");
4445 if (gimple_canonical_types)
4446 fprintf (stderr, "GIMPLE canonical type table: size %ld, %ld elements, "
4447 "%ld searches, %ld collisions (ratio: %f)\n",
4448 (long) htab_size (gimple_canonical_types),
4449 (long) htab_elements (gimple_canonical_types),
4450 (long) gimple_canonical_types->searches,
4451 (long) gimple_canonical_types->collisions,
4452 htab_collisions (gimple_canonical_types));
4453 else
4454 fprintf (stderr, "GIMPLE canonical type table is empty\n");
4455 if (type_hash_cache)
4456 fprintf (stderr, "GIMPLE type hash table: size %ld, %ld elements, "
4457 "%ld searches, %ld collisions (ratio: %f)\n",
4458 (long) htab_size (type_hash_cache),
4459 (long) htab_elements (type_hash_cache),
4460 (long) type_hash_cache->searches,
4461 (long) type_hash_cache->collisions,
4462 htab_collisions (type_hash_cache));
4463 else
4464 fprintf (stderr, "GIMPLE type hash table is empty\n");
4465 if (gtc_visited)
4466 fprintf (stderr, "GIMPLE type comparison table: size %ld, %ld "
4467 "elements, %ld searches, %ld collisions (ratio: %f)\n",
4468 (long) htab_size (gtc_visited),
4469 (long) htab_elements (gtc_visited),
4470 (long) gtc_visited->searches,
4471 (long) gtc_visited->collisions,
4472 htab_collisions (gtc_visited));
4473 else
4474 fprintf (stderr, "GIMPLE type comparison table is empty\n");
4477 /* Free the gimple type hashtables used for LTO type merging. */
4479 void
4480 free_gimple_type_tables (void)
4482 /* Last chance to print stats for the tables. */
4483 if (flag_lto_report)
4484 print_gimple_types_stats ();
4486 if (gimple_types)
4488 htab_delete (gimple_types);
4489 gimple_types = NULL;
4491 if (gimple_canonical_types)
4493 htab_delete (gimple_canonical_types);
4494 gimple_canonical_types = NULL;
4496 if (type_hash_cache)
4498 htab_delete (type_hash_cache);
4499 type_hash_cache = NULL;
4501 if (gtc_visited)
4503 htab_delete (gtc_visited);
4504 obstack_free (&gtc_ob, NULL);
4505 gtc_visited = NULL;
4507 gimple_type_leader = NULL;
4511 /* Return a type the same as TYPE except unsigned or
4512 signed according to UNSIGNEDP. */
4514 static tree
4515 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
4517 tree type1;
4519 type1 = TYPE_MAIN_VARIANT (type);
4520 if (type1 == signed_char_type_node
4521 || type1 == char_type_node
4522 || type1 == unsigned_char_type_node)
4523 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4524 if (type1 == integer_type_node || type1 == unsigned_type_node)
4525 return unsignedp ? unsigned_type_node : integer_type_node;
4526 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
4527 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4528 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
4529 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4530 if (type1 == long_long_integer_type_node
4531 || type1 == long_long_unsigned_type_node)
4532 return unsignedp
4533 ? long_long_unsigned_type_node
4534 : long_long_integer_type_node;
4535 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
4536 return unsignedp
4537 ? int128_unsigned_type_node
4538 : int128_integer_type_node;
4539 #if HOST_BITS_PER_WIDE_INT >= 64
4540 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
4541 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4542 #endif
4543 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
4544 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4545 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
4546 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4547 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
4548 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4549 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
4550 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4552 #define GIMPLE_FIXED_TYPES(NAME) \
4553 if (type1 == short_ ## NAME ## _type_node \
4554 || type1 == unsigned_short_ ## NAME ## _type_node) \
4555 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
4556 : short_ ## NAME ## _type_node; \
4557 if (type1 == NAME ## _type_node \
4558 || type1 == unsigned_ ## NAME ## _type_node) \
4559 return unsignedp ? unsigned_ ## NAME ## _type_node \
4560 : NAME ## _type_node; \
4561 if (type1 == long_ ## NAME ## _type_node \
4562 || type1 == unsigned_long_ ## NAME ## _type_node) \
4563 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
4564 : long_ ## NAME ## _type_node; \
4565 if (type1 == long_long_ ## NAME ## _type_node \
4566 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
4567 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
4568 : long_long_ ## NAME ## _type_node;
4570 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
4571 if (type1 == NAME ## _type_node \
4572 || type1 == u ## NAME ## _type_node) \
4573 return unsignedp ? u ## NAME ## _type_node \
4574 : NAME ## _type_node;
4576 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
4577 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4578 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4579 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4580 : sat_ ## short_ ## NAME ## _type_node; \
4581 if (type1 == sat_ ## NAME ## _type_node \
4582 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4583 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4584 : sat_ ## NAME ## _type_node; \
4585 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4586 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4587 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4588 : sat_ ## long_ ## NAME ## _type_node; \
4589 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4590 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4591 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4592 : sat_ ## long_long_ ## NAME ## _type_node;
4594 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4595 if (type1 == sat_ ## NAME ## _type_node \
4596 || type1 == sat_ ## u ## NAME ## _type_node) \
4597 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4598 : sat_ ## NAME ## _type_node;
4600 GIMPLE_FIXED_TYPES (fract);
4601 GIMPLE_FIXED_TYPES_SAT (fract);
4602 GIMPLE_FIXED_TYPES (accum);
4603 GIMPLE_FIXED_TYPES_SAT (accum);
4605 GIMPLE_FIXED_MODE_TYPES (qq);
4606 GIMPLE_FIXED_MODE_TYPES (hq);
4607 GIMPLE_FIXED_MODE_TYPES (sq);
4608 GIMPLE_FIXED_MODE_TYPES (dq);
4609 GIMPLE_FIXED_MODE_TYPES (tq);
4610 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
4611 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
4612 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
4613 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
4614 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
4615 GIMPLE_FIXED_MODE_TYPES (ha);
4616 GIMPLE_FIXED_MODE_TYPES (sa);
4617 GIMPLE_FIXED_MODE_TYPES (da);
4618 GIMPLE_FIXED_MODE_TYPES (ta);
4619 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
4620 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
4621 GIMPLE_FIXED_MODE_TYPES_SAT (da);
4622 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
4624 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4625 the precision; they have precision set to match their range, but
4626 may use a wider mode to match an ABI. If we change modes, we may
4627 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4628 the precision as well, so as to yield correct results for
4629 bit-field types. C++ does not have these separate bit-field
4630 types, and producing a signed or unsigned variant of an
4631 ENUMERAL_TYPE may cause other problems as well. */
4632 if (!INTEGRAL_TYPE_P (type)
4633 || TYPE_UNSIGNED (type) == unsignedp)
4634 return type;
4636 #define TYPE_OK(node) \
4637 (TYPE_MODE (type) == TYPE_MODE (node) \
4638 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
4639 if (TYPE_OK (signed_char_type_node))
4640 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4641 if (TYPE_OK (integer_type_node))
4642 return unsignedp ? unsigned_type_node : integer_type_node;
4643 if (TYPE_OK (short_integer_type_node))
4644 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4645 if (TYPE_OK (long_integer_type_node))
4646 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4647 if (TYPE_OK (long_long_integer_type_node))
4648 return (unsignedp
4649 ? long_long_unsigned_type_node
4650 : long_long_integer_type_node);
4651 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
4652 return (unsignedp
4653 ? int128_unsigned_type_node
4654 : int128_integer_type_node);
4656 #if HOST_BITS_PER_WIDE_INT >= 64
4657 if (TYPE_OK (intTI_type_node))
4658 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4659 #endif
4660 if (TYPE_OK (intDI_type_node))
4661 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4662 if (TYPE_OK (intSI_type_node))
4663 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4664 if (TYPE_OK (intHI_type_node))
4665 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4666 if (TYPE_OK (intQI_type_node))
4667 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4669 #undef GIMPLE_FIXED_TYPES
4670 #undef GIMPLE_FIXED_MODE_TYPES
4671 #undef GIMPLE_FIXED_TYPES_SAT
4672 #undef GIMPLE_FIXED_MODE_TYPES_SAT
4673 #undef TYPE_OK
4675 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
4679 /* Return an unsigned type the same as TYPE in other respects. */
4681 tree
4682 gimple_unsigned_type (tree type)
4684 return gimple_signed_or_unsigned_type (true, type);
4688 /* Return a signed type the same as TYPE in other respects. */
4690 tree
4691 gimple_signed_type (tree type)
4693 return gimple_signed_or_unsigned_type (false, type);
4697 /* Return the typed-based alias set for T, which may be an expression
4698 or a type. Return -1 if we don't do anything special. */
4700 alias_set_type
4701 gimple_get_alias_set (tree t)
4703 tree u;
4705 /* Permit type-punning when accessing a union, provided the access
4706 is directly through the union. For example, this code does not
4707 permit taking the address of a union member and then storing
4708 through it. Even the type-punning allowed here is a GCC
4709 extension, albeit a common and useful one; the C standard says
4710 that such accesses have implementation-defined behavior. */
4711 for (u = t;
4712 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
4713 u = TREE_OPERAND (u, 0))
4714 if (TREE_CODE (u) == COMPONENT_REF
4715 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
4716 return 0;
4718 /* That's all the expressions we handle specially. */
4719 if (!TYPE_P (t))
4720 return -1;
4722 /* For convenience, follow the C standard when dealing with
4723 character types. Any object may be accessed via an lvalue that
4724 has character type. */
4725 if (t == char_type_node
4726 || t == signed_char_type_node
4727 || t == unsigned_char_type_node)
4728 return 0;
4730 /* Allow aliasing between signed and unsigned variants of the same
4731 type. We treat the signed variant as canonical. */
4732 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
4734 tree t1 = gimple_signed_type (t);
4736 /* t1 == t can happen for boolean nodes which are always unsigned. */
4737 if (t1 != t)
4738 return get_alias_set (t1);
4741 return -1;
4745 /* Data structure used to count the number of dereferences to PTR
4746 inside an expression. */
4747 struct count_ptr_d
4749 tree ptr;
4750 unsigned num_stores;
4751 unsigned num_loads;
4754 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
4755 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
4757 static tree
4758 count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
4760 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
4761 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
4763 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
4764 pointer 'ptr' is *not* dereferenced, it is simply used to compute
4765 the address of 'fld' as 'ptr + offsetof(fld)'. */
4766 if (TREE_CODE (*tp) == ADDR_EXPR)
4768 *walk_subtrees = 0;
4769 return NULL_TREE;
4772 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
4774 if (wi_p->is_lhs)
4775 count_p->num_stores++;
4776 else
4777 count_p->num_loads++;
4780 return NULL_TREE;
4783 /* Count the number of direct and indirect uses for pointer PTR in
4784 statement STMT. The number of direct uses is stored in
4785 *NUM_USES_P. Indirect references are counted separately depending
4786 on whether they are store or load operations. The counts are
4787 stored in *NUM_STORES_P and *NUM_LOADS_P. */
4789 void
4790 count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
4791 unsigned *num_loads_p, unsigned *num_stores_p)
4793 ssa_op_iter i;
4794 tree use;
4796 *num_uses_p = 0;
4797 *num_loads_p = 0;
4798 *num_stores_p = 0;
4800 /* Find out the total number of uses of PTR in STMT. */
4801 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4802 if (use == ptr)
4803 (*num_uses_p)++;
4805 /* Now count the number of indirect references to PTR. This is
4806 truly awful, but we don't have much choice. There are no parent
4807 pointers inside INDIRECT_REFs, so an expression like
4808 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
4809 find all the indirect and direct uses of x_1 inside. The only
4810 shortcut we can take is the fact that GIMPLE only allows
4811 INDIRECT_REFs inside the expressions below. */
4812 if (is_gimple_assign (stmt)
4813 || gimple_code (stmt) == GIMPLE_RETURN
4814 || gimple_code (stmt) == GIMPLE_ASM
4815 || is_gimple_call (stmt))
4817 struct walk_stmt_info wi;
4818 struct count_ptr_d count;
4820 count.ptr = ptr;
4821 count.num_stores = 0;
4822 count.num_loads = 0;
4824 memset (&wi, 0, sizeof (wi));
4825 wi.info = &count;
4826 walk_gimple_op (stmt, count_ptr_derefs, &wi);
4828 *num_stores_p = count.num_stores;
4829 *num_loads_p = count.num_loads;
4832 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
4835 /* From a tree operand OP return the base of a load or store operation
4836 or NULL_TREE if OP is not a load or a store. */
4838 static tree
4839 get_base_loadstore (tree op)
4841 while (handled_component_p (op))
4842 op = TREE_OPERAND (op, 0);
4843 if (DECL_P (op)
4844 || INDIRECT_REF_P (op)
4845 || TREE_CODE (op) == MEM_REF
4846 || TREE_CODE (op) == TARGET_MEM_REF)
4847 return op;
4848 return NULL_TREE;
4851 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
4852 VISIT_ADDR if non-NULL on loads, store and address-taken operands
4853 passing the STMT, the base of the operand and DATA to it. The base
4854 will be either a decl, an indirect reference (including TARGET_MEM_REF)
4855 or the argument of an address expression.
4856 Returns the results of these callbacks or'ed. */
4858 bool
4859 walk_stmt_load_store_addr_ops (gimple stmt, void *data,
4860 bool (*visit_load)(gimple, tree, void *),
4861 bool (*visit_store)(gimple, tree, void *),
4862 bool (*visit_addr)(gimple, tree, void *))
4864 bool ret = false;
4865 unsigned i;
4866 if (gimple_assign_single_p (stmt))
4868 tree lhs, rhs;
4869 if (visit_store)
4871 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
4872 if (lhs)
4873 ret |= visit_store (stmt, lhs, data);
4875 rhs = gimple_assign_rhs1 (stmt);
4876 while (handled_component_p (rhs))
4877 rhs = TREE_OPERAND (rhs, 0);
4878 if (visit_addr)
4880 if (TREE_CODE (rhs) == ADDR_EXPR)
4881 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4882 else if (TREE_CODE (rhs) == TARGET_MEM_REF
4883 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
4884 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
4885 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
4886 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
4887 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
4888 0), data);
4889 lhs = gimple_assign_lhs (stmt);
4890 if (TREE_CODE (lhs) == TARGET_MEM_REF
4891 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
4892 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
4894 if (visit_load)
4896 rhs = get_base_loadstore (rhs);
4897 if (rhs)
4898 ret |= visit_load (stmt, rhs, data);
4901 else if (visit_addr
4902 && (is_gimple_assign (stmt)
4903 || gimple_code (stmt) == GIMPLE_COND))
4905 for (i = 0; i < gimple_num_ops (stmt); ++i)
4906 if (gimple_op (stmt, i)
4907 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
4908 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
4910 else if (is_gimple_call (stmt))
4912 if (visit_store)
4914 tree lhs = gimple_call_lhs (stmt);
4915 if (lhs)
4917 lhs = get_base_loadstore (lhs);
4918 if (lhs)
4919 ret |= visit_store (stmt, lhs, data);
4922 if (visit_load || visit_addr)
4923 for (i = 0; i < gimple_call_num_args (stmt); ++i)
4925 tree rhs = gimple_call_arg (stmt, i);
4926 if (visit_addr
4927 && TREE_CODE (rhs) == ADDR_EXPR)
4928 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4929 else if (visit_load)
4931 rhs = get_base_loadstore (rhs);
4932 if (rhs)
4933 ret |= visit_load (stmt, rhs, data);
4936 if (visit_addr
4937 && gimple_call_chain (stmt)
4938 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
4939 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
4940 data);
4941 if (visit_addr
4942 && gimple_call_return_slot_opt_p (stmt)
4943 && gimple_call_lhs (stmt) != NULL_TREE
4944 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
4945 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
4947 else if (gimple_code (stmt) == GIMPLE_ASM)
4949 unsigned noutputs;
4950 const char *constraint;
4951 const char **oconstraints;
4952 bool allows_mem, allows_reg, is_inout;
4953 noutputs = gimple_asm_noutputs (stmt);
4954 oconstraints = XALLOCAVEC (const char *, noutputs);
4955 if (visit_store || visit_addr)
4956 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
4958 tree link = gimple_asm_output_op (stmt, i);
4959 tree op = get_base_loadstore (TREE_VALUE (link));
4960 if (op && visit_store)
4961 ret |= visit_store (stmt, op, data);
4962 if (visit_addr)
4964 constraint = TREE_STRING_POINTER
4965 (TREE_VALUE (TREE_PURPOSE (link)));
4966 oconstraints[i] = constraint;
4967 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4968 &allows_reg, &is_inout);
4969 if (op && !allows_reg && allows_mem)
4970 ret |= visit_addr (stmt, op, data);
4973 if (visit_load || visit_addr)
4974 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
4976 tree link = gimple_asm_input_op (stmt, i);
4977 tree op = TREE_VALUE (link);
4978 if (visit_addr
4979 && TREE_CODE (op) == ADDR_EXPR)
4980 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4981 else if (visit_load || visit_addr)
4983 op = get_base_loadstore (op);
4984 if (op)
4986 if (visit_load)
4987 ret |= visit_load (stmt, op, data);
4988 if (visit_addr)
4990 constraint = TREE_STRING_POINTER
4991 (TREE_VALUE (TREE_PURPOSE (link)));
4992 parse_input_constraint (&constraint, 0, 0, noutputs,
4993 0, oconstraints,
4994 &allows_mem, &allows_reg);
4995 if (!allows_reg && allows_mem)
4996 ret |= visit_addr (stmt, op, data);
5002 else if (gimple_code (stmt) == GIMPLE_RETURN)
5004 tree op = gimple_return_retval (stmt);
5005 if (op)
5007 if (visit_addr
5008 && TREE_CODE (op) == ADDR_EXPR)
5009 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5010 else if (visit_load)
5012 op = get_base_loadstore (op);
5013 if (op)
5014 ret |= visit_load (stmt, op, data);
5018 else if (visit_addr
5019 && gimple_code (stmt) == GIMPLE_PHI)
5021 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
5023 tree op = PHI_ARG_DEF (stmt, i);
5024 if (TREE_CODE (op) == ADDR_EXPR)
5025 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5029 return ret;
5032 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
5033 should make a faster clone for this case. */
5035 bool
5036 walk_stmt_load_store_ops (gimple stmt, void *data,
5037 bool (*visit_load)(gimple, tree, void *),
5038 bool (*visit_store)(gimple, tree, void *))
5040 return walk_stmt_load_store_addr_ops (stmt, data,
5041 visit_load, visit_store, NULL);
5044 /* Helper for gimple_ior_addresses_taken_1. */
5046 static bool
5047 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
5048 tree addr, void *data)
5050 bitmap addresses_taken = (bitmap)data;
5051 addr = get_base_address (addr);
5052 if (addr
5053 && DECL_P (addr))
5055 bitmap_set_bit (addresses_taken, DECL_UID (addr));
5056 return true;
5058 return false;
5061 /* Set the bit for the uid of all decls that have their address taken
5062 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
5063 were any in this stmt. */
5065 bool
5066 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
5068 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
5069 gimple_ior_addresses_taken_1);
5073 /* Return a printable name for symbol DECL. */
5075 const char *
5076 gimple_decl_printable_name (tree decl, int verbosity)
5078 if (!DECL_NAME (decl))
5079 return NULL;
5081 if (DECL_ASSEMBLER_NAME_SET_P (decl))
5083 const char *str, *mangled_str;
5084 int dmgl_opts = DMGL_NO_OPTS;
5086 if (verbosity >= 2)
5088 dmgl_opts = DMGL_VERBOSE
5089 | DMGL_ANSI
5090 | DMGL_GNU_V3
5091 | DMGL_RET_POSTFIX;
5092 if (TREE_CODE (decl) == FUNCTION_DECL)
5093 dmgl_opts |= DMGL_PARAMS;
5096 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
5097 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
5098 return (str) ? str : mangled_str;
5101 return IDENTIFIER_POINTER (DECL_NAME (decl));
5104 /* Return true when STMT is builtins call to CODE. */
5106 bool
5107 gimple_call_builtin_p (gimple stmt, enum built_in_function code)
5109 tree fndecl;
5110 return (is_gimple_call (stmt)
5111 && (fndecl = gimple_call_fndecl (stmt)) != NULL
5112 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
5113 && DECL_FUNCTION_CODE (fndecl) == code);
5116 #include "gt-gimple.h"