1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 /* Middle-to-low level generation of rtx code and insns.
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
39 #include "coretypes.h"
41 #include "diagnostic-core.h"
50 #include "hard-reg-set.h"
52 #include "insn-config.h"
55 #include "basic-block.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
64 struct target_rtl default_target_rtl
;
66 struct target_rtl
*this_target_rtl
= &default_target_rtl
;
69 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
71 /* Commonly used modes. */
73 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
74 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
75 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
76 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
78 /* Datastructures maintained for currently processed function in RTL form. */
80 struct rtl_data x_rtl
;
82 /* Indexed by pseudo register number, gives the rtx for that pseudo.
83 Allocated in parallel with regno_pointer_align.
84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
85 with length attribute nested in top level structures. */
89 /* This is *not* reset after each function. It gives each CODE_LABEL
90 in the entire compilation a unique label number. */
92 static GTY(()) int label_num
= 1;
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx. */
98 rtx const_tiny_rtx
[3][(int) MAX_MACHINE_MODE
];
102 REAL_VALUE_TYPE dconst0
;
103 REAL_VALUE_TYPE dconst1
;
104 REAL_VALUE_TYPE dconst2
;
105 REAL_VALUE_TYPE dconstm1
;
106 REAL_VALUE_TYPE dconsthalf
;
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
110 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
117 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
119 /* A hash table storing CONST_INTs whose absolute value is greater
120 than MAX_SAVED_CONST_INT. */
122 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
123 htab_t const_int_htab
;
125 /* A hash table storing memory attribute structures. */
126 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
127 htab_t mem_attrs_htab
;
129 /* A hash table storing register attribute structures. */
130 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
131 htab_t reg_attrs_htab
;
133 /* A hash table storing all CONST_DOUBLEs. */
134 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
135 htab_t const_double_htab
;
137 /* A hash table storing all CONST_FIXEDs. */
138 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
139 htab_t const_fixed_htab
;
141 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
142 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
143 #define last_location (crtl->emit.x_last_location)
144 #define first_label_num (crtl->emit.x_first_label_num)
146 static rtx
make_call_insn_raw (rtx
);
147 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
148 static void set_used_decls (tree
);
149 static void mark_label_nuses (rtx
);
150 static hashval_t
const_int_htab_hash (const void *);
151 static int const_int_htab_eq (const void *, const void *);
152 static hashval_t
const_double_htab_hash (const void *);
153 static int const_double_htab_eq (const void *, const void *);
154 static rtx
lookup_const_double (rtx
);
155 static hashval_t
const_fixed_htab_hash (const void *);
156 static int const_fixed_htab_eq (const void *, const void *);
157 static rtx
lookup_const_fixed (rtx
);
158 static hashval_t
mem_attrs_htab_hash (const void *);
159 static int mem_attrs_htab_eq (const void *, const void *);
160 static mem_attrs
*get_mem_attrs (alias_set_type
, tree
, rtx
, rtx
, unsigned int,
161 addr_space_t
, enum machine_mode
);
162 static hashval_t
reg_attrs_htab_hash (const void *);
163 static int reg_attrs_htab_eq (const void *, const void *);
164 static reg_attrs
*get_reg_attrs (tree
, int);
165 static rtx
gen_const_vector (enum machine_mode
, int);
166 static void copy_rtx_if_shared_1 (rtx
*orig
);
168 /* Probability of the conditional branch currently proceeded by try_split.
169 Set to -1 otherwise. */
170 int split_branch_probability
= -1;
172 /* Returns a hash code for X (which is a really a CONST_INT). */
175 const_int_htab_hash (const void *x
)
177 return (hashval_t
) INTVAL ((const_rtx
) x
);
180 /* Returns nonzero if the value represented by X (which is really a
181 CONST_INT) is the same as that given by Y (which is really a
185 const_int_htab_eq (const void *x
, const void *y
)
187 return (INTVAL ((const_rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
190 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
192 const_double_htab_hash (const void *x
)
194 const_rtx
const value
= (const_rtx
) x
;
197 if (GET_MODE (value
) == VOIDmode
)
198 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
201 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
202 /* MODE is used in the comparison, so it should be in the hash. */
203 h
^= GET_MODE (value
);
208 /* Returns nonzero if the value represented by X (really a ...)
209 is the same as that represented by Y (really a ...) */
211 const_double_htab_eq (const void *x
, const void *y
)
213 const_rtx
const a
= (const_rtx
)x
, b
= (const_rtx
)y
;
215 if (GET_MODE (a
) != GET_MODE (b
))
217 if (GET_MODE (a
) == VOIDmode
)
218 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
219 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
221 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
222 CONST_DOUBLE_REAL_VALUE (b
));
225 /* Returns a hash code for X (which is really a CONST_FIXED). */
228 const_fixed_htab_hash (const void *x
)
230 const_rtx
const value
= (const_rtx
) x
;
233 h
= fixed_hash (CONST_FIXED_VALUE (value
));
234 /* MODE is used in the comparison, so it should be in the hash. */
235 h
^= GET_MODE (value
);
239 /* Returns nonzero if the value represented by X (really a ...)
240 is the same as that represented by Y (really a ...). */
243 const_fixed_htab_eq (const void *x
, const void *y
)
245 const_rtx
const a
= (const_rtx
) x
, b
= (const_rtx
) y
;
247 if (GET_MODE (a
) != GET_MODE (b
))
249 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
252 /* Returns a hash code for X (which is a really a mem_attrs *). */
255 mem_attrs_htab_hash (const void *x
)
257 const mem_attrs
*const p
= (const mem_attrs
*) x
;
259 return (p
->alias
^ (p
->align
* 1000)
260 ^ (p
->addrspace
* 4000)
261 ^ ((p
->offset
? INTVAL (p
->offset
) : 0) * 50000)
262 ^ ((p
->size
? INTVAL (p
->size
) : 0) * 2500000)
263 ^ (size_t) iterative_hash_expr (p
->expr
, 0));
266 /* Returns nonzero if the value represented by X (which is really a
267 mem_attrs *) is the same as that given by Y (which is also really a
271 mem_attrs_htab_eq (const void *x
, const void *y
)
273 const mem_attrs
*const p
= (const mem_attrs
*) x
;
274 const mem_attrs
*const q
= (const mem_attrs
*) y
;
276 return (p
->alias
== q
->alias
&& p
->offset
== q
->offset
277 && p
->size
== q
->size
&& p
->align
== q
->align
278 && p
->addrspace
== q
->addrspace
279 && (p
->expr
== q
->expr
280 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
281 && operand_equal_p (p
->expr
, q
->expr
, 0))));
284 /* Allocate a new mem_attrs structure and insert it into the hash table if
285 one identical to it is not already in the table. We are doing this for
289 get_mem_attrs (alias_set_type alias
, tree expr
, rtx offset
, rtx size
,
290 unsigned int align
, addr_space_t addrspace
, enum machine_mode mode
)
295 /* If everything is the default, we can just return zero.
296 This must match what the corresponding MEM_* macros return when the
297 field is not present. */
298 if (alias
== 0 && expr
== 0 && offset
== 0 && addrspace
== 0
300 || (mode
!= BLKmode
&& GET_MODE_SIZE (mode
) == INTVAL (size
)))
301 && (STRICT_ALIGNMENT
&& mode
!= BLKmode
302 ? align
== GET_MODE_ALIGNMENT (mode
) : align
== BITS_PER_UNIT
))
307 attrs
.offset
= offset
;
310 attrs
.addrspace
= addrspace
;
312 slot
= htab_find_slot (mem_attrs_htab
, &attrs
, INSERT
);
315 *slot
= ggc_alloc_mem_attrs ();
316 memcpy (*slot
, &attrs
, sizeof (mem_attrs
));
319 return (mem_attrs
*) *slot
;
322 /* Returns a hash code for X (which is a really a reg_attrs *). */
325 reg_attrs_htab_hash (const void *x
)
327 const reg_attrs
*const p
= (const reg_attrs
*) x
;
329 return ((p
->offset
* 1000) ^ (long) p
->decl
);
332 /* Returns nonzero if the value represented by X (which is really a
333 reg_attrs *) is the same as that given by Y (which is also really a
337 reg_attrs_htab_eq (const void *x
, const void *y
)
339 const reg_attrs
*const p
= (const reg_attrs
*) x
;
340 const reg_attrs
*const q
= (const reg_attrs
*) y
;
342 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
344 /* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
349 get_reg_attrs (tree decl
, int offset
)
354 /* If everything is the default, we can just return zero. */
355 if (decl
== 0 && offset
== 0)
359 attrs
.offset
= offset
;
361 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
364 *slot
= ggc_alloc_reg_attrs ();
365 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
368 return (reg_attrs
*) *slot
;
373 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
379 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
380 MEM_VOLATILE_P (x
) = true;
386 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
387 don't attempt to share with the various global pieces of rtl (such as
388 frame_pointer_rtx). */
391 gen_raw_REG (enum machine_mode mode
, int regno
)
393 rtx x
= gen_rtx_raw_REG (mode
, regno
);
394 ORIGINAL_REGNO (x
) = regno
;
398 /* There are some RTL codes that require special attention; the generation
399 functions do the raw handling. If you add to this list, modify
400 special_rtx in gengenrtl.c as well. */
403 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
407 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
408 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
410 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
411 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
412 return const_true_rtx
;
415 /* Look up the CONST_INT in the hash table. */
416 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
417 (hashval_t
) arg
, INSERT
);
419 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
425 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
427 return GEN_INT (trunc_int_for_mode (c
, mode
));
430 /* CONST_DOUBLEs might be created from pairs of integers, or from
431 REAL_VALUE_TYPEs. Also, their length is known only at run time,
432 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
434 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
435 hash table. If so, return its counterpart; otherwise add it
436 to the hash table and return it. */
438 lookup_const_double (rtx real
)
440 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
447 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
448 VALUE in mode MODE. */
450 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
452 rtx real
= rtx_alloc (CONST_DOUBLE
);
453 PUT_MODE (real
, mode
);
457 return lookup_const_double (real
);
460 /* Determine whether FIXED, a CONST_FIXED, already exists in the
461 hash table. If so, return its counterpart; otherwise add it
462 to the hash table and return it. */
465 lookup_const_fixed (rtx fixed
)
467 void **slot
= htab_find_slot (const_fixed_htab
, fixed
, INSERT
);
474 /* Return a CONST_FIXED rtx for a fixed-point value specified by
475 VALUE in mode MODE. */
478 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, enum machine_mode mode
)
480 rtx fixed
= rtx_alloc (CONST_FIXED
);
481 PUT_MODE (fixed
, mode
);
485 return lookup_const_fixed (fixed
);
488 /* Constructs double_int from rtx CST. */
491 rtx_to_double_int (const_rtx cst
)
495 if (CONST_INT_P (cst
))
496 r
= shwi_to_double_int (INTVAL (cst
));
497 else if (CONST_DOUBLE_P (cst
) && GET_MODE (cst
) == VOIDmode
)
499 r
.low
= CONST_DOUBLE_LOW (cst
);
500 r
.high
= CONST_DOUBLE_HIGH (cst
);
509 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
513 immed_double_int_const (double_int i
, enum machine_mode mode
)
515 return immed_double_const (i
.low
, i
.high
, mode
);
518 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
519 of ints: I0 is the low-order word and I1 is the high-order word.
520 Do not use this routine for non-integer modes; convert to
521 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
524 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
529 /* There are the following cases (note that there are no modes with
530 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
532 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
534 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
535 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
536 from copies of the sign bit, and sign of i0 and i1 are the same), then
537 we return a CONST_INT for i0.
538 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
539 if (mode
!= VOIDmode
)
541 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
542 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
543 /* We can get a 0 for an error mark. */
544 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
545 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
547 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
548 return gen_int_mode (i0
, mode
);
550 gcc_assert (GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
);
553 /* If this integer fits in one word, return a CONST_INT. */
554 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
557 /* We use VOIDmode for integers. */
558 value
= rtx_alloc (CONST_DOUBLE
);
559 PUT_MODE (value
, VOIDmode
);
561 CONST_DOUBLE_LOW (value
) = i0
;
562 CONST_DOUBLE_HIGH (value
) = i1
;
564 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
565 XWINT (value
, i
) = 0;
567 return lookup_const_double (value
);
571 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
573 /* In case the MD file explicitly references the frame pointer, have
574 all such references point to the same frame pointer. This is
575 used during frame pointer elimination to distinguish the explicit
576 references to these registers from pseudos that happened to be
579 If we have eliminated the frame pointer or arg pointer, we will
580 be using it as a normal register, for example as a spill
581 register. In such cases, we might be accessing it in a mode that
582 is not Pmode and therefore cannot use the pre-allocated rtx.
584 Also don't do this when we are making new REGs in reload, since
585 we don't want to get confused with the real pointers. */
587 if (mode
== Pmode
&& !reload_in_progress
)
589 if (regno
== FRAME_POINTER_REGNUM
590 && (!reload_completed
|| frame_pointer_needed
))
591 return frame_pointer_rtx
;
592 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
593 if (regno
== HARD_FRAME_POINTER_REGNUM
594 && (!reload_completed
|| frame_pointer_needed
))
595 return hard_frame_pointer_rtx
;
597 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
598 if (regno
== ARG_POINTER_REGNUM
)
599 return arg_pointer_rtx
;
601 #ifdef RETURN_ADDRESS_POINTER_REGNUM
602 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
603 return return_address_pointer_rtx
;
605 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
606 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
607 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
608 return pic_offset_table_rtx
;
609 if (regno
== STACK_POINTER_REGNUM
)
610 return stack_pointer_rtx
;
614 /* If the per-function register table has been set up, try to re-use
615 an existing entry in that table to avoid useless generation of RTL.
617 This code is disabled for now until we can fix the various backends
618 which depend on having non-shared hard registers in some cases. Long
619 term we want to re-enable this code as it can significantly cut down
620 on the amount of useless RTL that gets generated.
622 We'll also need to fix some code that runs after reload that wants to
623 set ORIGINAL_REGNO. */
628 && regno
< FIRST_PSEUDO_REGISTER
629 && reg_raw_mode
[regno
] == mode
)
630 return regno_reg_rtx
[regno
];
633 return gen_raw_REG (mode
, regno
);
637 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
639 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
641 /* This field is not cleared by the mere allocation of the rtx, so
648 /* Generate a memory referring to non-trapping constant memory. */
651 gen_const_mem (enum machine_mode mode
, rtx addr
)
653 rtx mem
= gen_rtx_MEM (mode
, addr
);
654 MEM_READONLY_P (mem
) = 1;
655 MEM_NOTRAP_P (mem
) = 1;
659 /* Generate a MEM referring to fixed portions of the frame, e.g., register
663 gen_frame_mem (enum machine_mode mode
, rtx addr
)
665 rtx mem
= gen_rtx_MEM (mode
, addr
);
666 MEM_NOTRAP_P (mem
) = 1;
667 set_mem_alias_set (mem
, get_frame_alias_set ());
671 /* Generate a MEM referring to a temporary use of the stack, not part
672 of the fixed stack frame. For example, something which is pushed
673 by a target splitter. */
675 gen_tmp_stack_mem (enum machine_mode mode
, rtx addr
)
677 rtx mem
= gen_rtx_MEM (mode
, addr
);
678 MEM_NOTRAP_P (mem
) = 1;
679 if (!cfun
->calls_alloca
)
680 set_mem_alias_set (mem
, get_frame_alias_set ());
684 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
685 this construct would be valid, and false otherwise. */
688 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
689 const_rtx reg
, unsigned int offset
)
691 unsigned int isize
= GET_MODE_SIZE (imode
);
692 unsigned int osize
= GET_MODE_SIZE (omode
);
694 /* All subregs must be aligned. */
695 if (offset
% osize
!= 0)
698 /* The subreg offset cannot be outside the inner object. */
702 /* ??? This should not be here. Temporarily continue to allow word_mode
703 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
704 Generally, backends are doing something sketchy but it'll take time to
706 if (omode
== word_mode
)
708 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
709 is the culprit here, and not the backends. */
710 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
712 /* Allow component subregs of complex and vector. Though given the below
713 extraction rules, it's not always clear what that means. */
714 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
715 && GET_MODE_INNER (imode
) == omode
)
717 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
718 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
719 represent this. It's questionable if this ought to be represented at
720 all -- why can't this all be hidden in post-reload splitters that make
721 arbitrarily mode changes to the registers themselves. */
722 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
724 /* Subregs involving floating point modes are not allowed to
725 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
726 (subreg:SI (reg:DF) 0) isn't. */
727 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
733 /* Paradoxical subregs must have offset zero. */
737 /* This is a normal subreg. Verify that the offset is representable. */
739 /* For hard registers, we already have most of these rules collected in
740 subreg_offset_representable_p. */
741 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
743 unsigned int regno
= REGNO (reg
);
745 #ifdef CANNOT_CHANGE_MODE_CLASS
746 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
747 && GET_MODE_INNER (imode
) == omode
)
749 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
753 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
756 /* For pseudo registers, we want most of the same checks. Namely:
757 If the register no larger than a word, the subreg must be lowpart.
758 If the register is larger than a word, the subreg must be the lowpart
759 of a subword. A subreg does *not* perform arbitrary bit extraction.
760 Given that we've already checked mode/offset alignment, we only have
761 to check subword subregs here. */
762 if (osize
< UNITS_PER_WORD
)
764 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
765 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
766 if (offset
% UNITS_PER_WORD
!= low_off
)
773 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
775 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
776 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
779 /* Generate a SUBREG representing the least-significant part of REG if MODE
780 is smaller than mode of REG, otherwise paradoxical SUBREG. */
783 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
785 enum machine_mode inmode
;
787 inmode
= GET_MODE (reg
);
788 if (inmode
== VOIDmode
)
790 return gen_rtx_SUBREG (mode
, reg
,
791 subreg_lowpart_offset (mode
, inmode
));
795 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
798 gen_rtvec (int n
, ...)
806 /* Don't allocate an empty rtvec... */
810 rt_val
= rtvec_alloc (n
);
812 for (i
= 0; i
< n
; i
++)
813 rt_val
->elem
[i
] = va_arg (p
, rtx
);
820 gen_rtvec_v (int n
, rtx
*argp
)
825 /* Don't allocate an empty rtvec... */
829 rt_val
= rtvec_alloc (n
);
831 for (i
= 0; i
< n
; i
++)
832 rt_val
->elem
[i
] = *argp
++;
837 /* Return the number of bytes between the start of an OUTER_MODE
838 in-memory value and the start of an INNER_MODE in-memory value,
839 given that the former is a lowpart of the latter. It may be a
840 paradoxical lowpart, in which case the offset will be negative
841 on big-endian targets. */
844 byte_lowpart_offset (enum machine_mode outer_mode
,
845 enum machine_mode inner_mode
)
847 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
848 return subreg_lowpart_offset (outer_mode
, inner_mode
);
850 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
853 /* Generate a REG rtx for a new pseudo register of mode MODE.
854 This pseudo is assigned the next sequential register number. */
857 gen_reg_rtx (enum machine_mode mode
)
860 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
862 gcc_assert (can_create_pseudo_p ());
864 /* If a virtual register with bigger mode alignment is generated,
865 increase stack alignment estimation because it might be spilled
867 if (SUPPORTS_STACK_ALIGNMENT
868 && crtl
->stack_alignment_estimated
< align
869 && !crtl
->stack_realign_processed
)
871 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
872 if (crtl
->stack_alignment_estimated
< min_align
)
873 crtl
->stack_alignment_estimated
= min_align
;
876 if (generating_concat_p
877 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
878 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
880 /* For complex modes, don't make a single pseudo.
881 Instead, make a CONCAT of two pseudos.
882 This allows noncontiguous allocation of the real and imaginary parts,
883 which makes much better code. Besides, allocating DCmode
884 pseudos overstrains reload on some machines like the 386. */
885 rtx realpart
, imagpart
;
886 enum machine_mode partmode
= GET_MODE_INNER (mode
);
888 realpart
= gen_reg_rtx (partmode
);
889 imagpart
= gen_reg_rtx (partmode
);
890 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
893 /* Make sure regno_pointer_align, and regno_reg_rtx are large
894 enough to have an element for this pseudo reg number. */
896 if (reg_rtx_no
== crtl
->emit
.regno_pointer_align_length
)
898 int old_size
= crtl
->emit
.regno_pointer_align_length
;
902 tmp
= XRESIZEVEC (char, crtl
->emit
.regno_pointer_align
, old_size
* 2);
903 memset (tmp
+ old_size
, 0, old_size
);
904 crtl
->emit
.regno_pointer_align
= (unsigned char *) tmp
;
906 new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, old_size
* 2);
907 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
908 regno_reg_rtx
= new1
;
910 crtl
->emit
.regno_pointer_align_length
= old_size
* 2;
913 val
= gen_raw_REG (mode
, reg_rtx_no
);
914 regno_reg_rtx
[reg_rtx_no
++] = val
;
918 /* Update NEW with the same attributes as REG, but with OFFSET added
919 to the REG_OFFSET. */
922 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
924 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
925 REG_OFFSET (reg
) + offset
);
928 /* Generate a register with same attributes as REG, but with OFFSET
929 added to the REG_OFFSET. */
932 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
,
935 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
937 update_reg_offset (new_rtx
, reg
, offset
);
941 /* Generate a new pseudo-register with the same attributes as REG, but
942 with OFFSET added to the REG_OFFSET. */
945 gen_reg_rtx_offset (rtx reg
, enum machine_mode mode
, int offset
)
947 rtx new_rtx
= gen_reg_rtx (mode
);
949 update_reg_offset (new_rtx
, reg
, offset
);
953 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
954 new register is a (possibly paradoxical) lowpart of the old one. */
957 adjust_reg_mode (rtx reg
, enum machine_mode mode
)
959 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
960 PUT_MODE (reg
, mode
);
963 /* Copy REG's attributes from X, if X has any attributes. If REG and X
964 have different modes, REG is a (possibly paradoxical) lowpart of X. */
967 set_reg_attrs_from_value (rtx reg
, rtx x
)
971 /* Hard registers can be reused for multiple purposes within the same
972 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
974 if (HARD_REGISTER_P (reg
))
977 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
980 if (MEM_OFFSET (x
) && CONST_INT_P (MEM_OFFSET (x
)))
982 = get_reg_attrs (MEM_EXPR (x
), INTVAL (MEM_OFFSET (x
)) + offset
);
984 mark_reg_pointer (reg
, 0);
989 update_reg_offset (reg
, x
, offset
);
991 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
995 /* Generate a REG rtx for a new pseudo register, copying the mode
996 and attributes from X. */
999 gen_reg_rtx_and_attrs (rtx x
)
1001 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1002 set_reg_attrs_from_value (reg
, x
);
1006 /* Set the register attributes for registers contained in PARM_RTX.
1007 Use needed values from memory attributes of MEM. */
1010 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1012 if (REG_P (parm_rtx
))
1013 set_reg_attrs_from_value (parm_rtx
, mem
);
1014 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1016 /* Check for a NULL entry in the first slot, used to indicate that the
1017 parameter goes both on the stack and in registers. */
1018 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1019 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1021 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1022 if (REG_P (XEXP (x
, 0)))
1023 REG_ATTRS (XEXP (x
, 0))
1024 = get_reg_attrs (MEM_EXPR (mem
),
1025 INTVAL (XEXP (x
, 1)));
1030 /* Set the REG_ATTRS for registers in value X, given that X represents
1034 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1036 if (GET_CODE (x
) == SUBREG
)
1038 gcc_assert (subreg_lowpart_p (x
));
1043 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1045 if (GET_CODE (x
) == CONCAT
)
1047 if (REG_P (XEXP (x
, 0)))
1048 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1049 if (REG_P (XEXP (x
, 1)))
1050 REG_ATTRS (XEXP (x
, 1))
1051 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1053 if (GET_CODE (x
) == PARALLEL
)
1057 /* Check for a NULL entry, used to indicate that the parameter goes
1058 both on the stack and in registers. */
1059 if (XEXP (XVECEXP (x
, 0, 0), 0))
1064 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1066 rtx y
= XVECEXP (x
, 0, i
);
1067 if (REG_P (XEXP (y
, 0)))
1068 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1073 /* Assign the RTX X to declaration T. */
1076 set_decl_rtl (tree t
, rtx x
)
1078 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1080 set_reg_attrs_for_decl_rtl (t
, x
);
1083 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1084 if the ABI requires the parameter to be passed by reference. */
1087 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1089 DECL_INCOMING_RTL (t
) = x
;
1090 if (x
&& !by_reference_p
)
1091 set_reg_attrs_for_decl_rtl (t
, x
);
1094 /* Identify REG (which may be a CONCAT) as a user register. */
1097 mark_user_reg (rtx reg
)
1099 if (GET_CODE (reg
) == CONCAT
)
1101 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1102 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1106 gcc_assert (REG_P (reg
));
1107 REG_USERVAR_P (reg
) = 1;
1111 /* Identify REG as a probable pointer register and show its alignment
1112 as ALIGN, if nonzero. */
1115 mark_reg_pointer (rtx reg
, int align
)
1117 if (! REG_POINTER (reg
))
1119 REG_POINTER (reg
) = 1;
1122 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1124 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1125 /* We can no-longer be sure just how aligned this pointer is. */
1126 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1129 /* Return 1 plus largest pseudo reg number used in the current function. */
1137 /* Return 1 + the largest label number used so far in the current function. */
1140 max_label_num (void)
1145 /* Return first label number used in this function (if any were used). */
1148 get_first_label_num (void)
1150 return first_label_num
;
1153 /* If the rtx for label was created during the expansion of a nested
1154 function, then first_label_num won't include this label number.
1155 Fix this now so that array indices work later. */
1158 maybe_set_first_label_num (rtx x
)
1160 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1161 first_label_num
= CODE_LABEL_NUMBER (x
);
1164 /* Return a value representing some low-order bits of X, where the number
1165 of low-order bits is given by MODE. Note that no conversion is done
1166 between floating-point and fixed-point values, rather, the bit
1167 representation is returned.
1169 This function handles the cases in common between gen_lowpart, below,
1170 and two variants in cse.c and combine.c. These are the cases that can
1171 be safely handled at all points in the compilation.
1173 If this is not a case we can handle, return 0. */
1176 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1178 int msize
= GET_MODE_SIZE (mode
);
1181 enum machine_mode innermode
;
1183 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1184 so we have to make one up. Yuk. */
1185 innermode
= GET_MODE (x
);
1187 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1188 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1189 else if (innermode
== VOIDmode
)
1190 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
* 2, MODE_INT
, 0);
1192 xsize
= GET_MODE_SIZE (innermode
);
1194 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1196 if (innermode
== mode
)
1199 /* MODE must occupy no more words than the mode of X. */
1200 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1201 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1204 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1205 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1208 offset
= subreg_lowpart_offset (mode
, innermode
);
1210 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1211 && (GET_MODE_CLASS (mode
) == MODE_INT
1212 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1214 /* If we are getting the low-order part of something that has been
1215 sign- or zero-extended, we can either just use the object being
1216 extended or make a narrower extension. If we want an even smaller
1217 piece than the size of the object being extended, call ourselves
1220 This case is used mostly by combine and cse. */
1222 if (GET_MODE (XEXP (x
, 0)) == mode
)
1224 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1225 return gen_lowpart_common (mode
, XEXP (x
, 0));
1226 else if (msize
< xsize
)
1227 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1229 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1230 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1231 || GET_CODE (x
) == CONST_DOUBLE
|| CONST_INT_P (x
))
1232 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1234 /* Otherwise, we can't do this. */
1239 gen_highpart (enum machine_mode mode
, rtx x
)
1241 unsigned int msize
= GET_MODE_SIZE (mode
);
1244 /* This case loses if X is a subreg. To catch bugs early,
1245 complain if an invalid MODE is used even in other cases. */
1246 gcc_assert (msize
<= UNITS_PER_WORD
1247 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1249 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1250 subreg_highpart_offset (mode
, GET_MODE (x
)));
1251 gcc_assert (result
);
1253 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1254 the target if we have a MEM. gen_highpart must return a valid operand,
1255 emitting code if necessary to do so. */
1258 result
= validize_mem (result
);
1259 gcc_assert (result
);
1265 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1266 be VOIDmode constant. */
1268 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1270 if (GET_MODE (exp
) != VOIDmode
)
1272 gcc_assert (GET_MODE (exp
) == innermode
);
1273 return gen_highpart (outermode
, exp
);
1275 return simplify_gen_subreg (outermode
, exp
, innermode
,
1276 subreg_highpart_offset (outermode
, innermode
));
1279 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1282 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1284 unsigned int offset
= 0;
1285 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1289 if (WORDS_BIG_ENDIAN
)
1290 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1291 if (BYTES_BIG_ENDIAN
)
1292 offset
+= difference
% UNITS_PER_WORD
;
1298 /* Return offset in bytes to get OUTERMODE high part
1299 of the value in mode INNERMODE stored in memory in target format. */
1301 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1303 unsigned int offset
= 0;
1304 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1306 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1310 if (! WORDS_BIG_ENDIAN
)
1311 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1312 if (! BYTES_BIG_ENDIAN
)
1313 offset
+= difference
% UNITS_PER_WORD
;
1319 /* Return 1 iff X, assumed to be a SUBREG,
1320 refers to the least significant part of its containing reg.
1321 If X is not a SUBREG, always return 1 (it is its own low part!). */
1324 subreg_lowpart_p (const_rtx x
)
1326 if (GET_CODE (x
) != SUBREG
)
1328 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1331 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1332 == SUBREG_BYTE (x
));
1335 /* Return subword OFFSET of operand OP.
1336 The word number, OFFSET, is interpreted as the word number starting
1337 at the low-order address. OFFSET 0 is the low-order word if not
1338 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1340 If we cannot extract the required word, we return zero. Otherwise,
1341 an rtx corresponding to the requested word will be returned.
1343 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1344 reload has completed, a valid address will always be returned. After
1345 reload, if a valid address cannot be returned, we return zero.
1347 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1348 it is the responsibility of the caller.
1350 MODE is the mode of OP in case it is a CONST_INT.
1352 ??? This is still rather broken for some cases. The problem for the
1353 moment is that all callers of this thing provide no 'goal mode' to
1354 tell us to work with. This exists because all callers were written
1355 in a word based SUBREG world.
1356 Now use of this function can be deprecated by simplify_subreg in most
1361 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1363 if (mode
== VOIDmode
)
1364 mode
= GET_MODE (op
);
1366 gcc_assert (mode
!= VOIDmode
);
1368 /* If OP is narrower than a word, fail. */
1370 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1373 /* If we want a word outside OP, return zero. */
1375 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1378 /* Form a new MEM at the requested address. */
1381 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1383 if (! validate_address
)
1386 else if (reload_completed
)
1388 if (! strict_memory_address_addr_space_p (word_mode
,
1390 MEM_ADDR_SPACE (op
)))
1394 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1397 /* Rest can be handled by simplify_subreg. */
1398 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1401 /* Similar to `operand_subword', but never return 0. If we can't
1402 extract the required subword, put OP into a register and try again.
1403 The second attempt must succeed. We always validate the address in
1406 MODE is the mode of OP, in case it is CONST_INT. */
1409 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1411 rtx result
= operand_subword (op
, offset
, 1, mode
);
1416 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1418 /* If this is a register which can not be accessed by words, copy it
1419 to a pseudo register. */
1421 op
= copy_to_reg (op
);
1423 op
= force_reg (mode
, op
);
1426 result
= operand_subword (op
, offset
, 1, mode
);
1427 gcc_assert (result
);
1432 /* Returns 1 if both MEM_EXPR can be considered equal
1436 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1441 if (! expr1
|| ! expr2
)
1444 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1447 return operand_equal_p (expr1
, expr2
, 0);
1450 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1451 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1455 get_mem_align_offset (rtx mem
, unsigned int align
)
1458 unsigned HOST_WIDE_INT offset
;
1460 /* This function can't use
1461 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1462 || !CONST_INT_P (MEM_OFFSET (mem))
1463 || (MAX (MEM_ALIGN (mem),
1464 get_object_alignment (MEM_EXPR (mem), align))
1468 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1470 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1471 for <variable>. get_inner_reference doesn't handle it and
1472 even if it did, the alignment in that case needs to be determined
1473 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1474 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1475 isn't sufficiently aligned, the object it is in might be. */
1476 gcc_assert (MEM_P (mem
));
1477 expr
= MEM_EXPR (mem
);
1478 if (expr
== NULL_TREE
1479 || MEM_OFFSET (mem
) == NULL_RTX
1480 || !CONST_INT_P (MEM_OFFSET (mem
)))
1483 offset
= INTVAL (MEM_OFFSET (mem
));
1486 if (DECL_ALIGN (expr
) < align
)
1489 else if (INDIRECT_REF_P (expr
))
1491 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1494 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1498 tree inner
= TREE_OPERAND (expr
, 0);
1499 tree field
= TREE_OPERAND (expr
, 1);
1500 tree byte_offset
= component_ref_field_offset (expr
);
1501 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1504 || !host_integerp (byte_offset
, 1)
1505 || !host_integerp (bit_offset
, 1))
1508 offset
+= tree_low_cst (byte_offset
, 1);
1509 offset
+= tree_low_cst (bit_offset
, 1) / BITS_PER_UNIT
;
1511 if (inner
== NULL_TREE
)
1513 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1514 < (unsigned int) align
)
1518 else if (DECL_P (inner
))
1520 if (DECL_ALIGN (inner
) < align
)
1524 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1532 return offset
& ((align
/ BITS_PER_UNIT
) - 1);
1535 /* Given REF (a MEM) and T, either the type of X or the expression
1536 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1537 if we are making a new object of this type. BITPOS is nonzero if
1538 there is an offset outstanding on T that will be applied later. */
1541 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1542 HOST_WIDE_INT bitpos
)
1544 alias_set_type alias
= MEM_ALIAS_SET (ref
);
1545 tree expr
= MEM_EXPR (ref
);
1546 rtx offset
= MEM_OFFSET (ref
);
1547 rtx size
= MEM_SIZE (ref
);
1548 unsigned int align
= MEM_ALIGN (ref
);
1549 HOST_WIDE_INT apply_bitpos
= 0;
1552 /* It can happen that type_for_mode was given a mode for which there
1553 is no language-level type. In which case it returns NULL, which
1558 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1559 if (type
== error_mark_node
)
1562 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1563 wrong answer, as it assumes that DECL_RTL already has the right alias
1564 info. Callers should not set DECL_RTL until after the call to
1565 set_mem_attributes. */
1566 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1568 /* Get the alias set from the expression or type (perhaps using a
1569 front-end routine) and use it. */
1570 alias
= get_alias_set (t
);
1572 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1573 MEM_IN_STRUCT_P (ref
)
1574 = AGGREGATE_TYPE_P (type
) || TREE_CODE (type
) == COMPLEX_TYPE
;
1575 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1577 /* If we are making an object of this type, or if this is a DECL, we know
1578 that it is a scalar if the type is not an aggregate. */
1579 if ((objectp
|| DECL_P (t
))
1580 && ! AGGREGATE_TYPE_P (type
)
1581 && TREE_CODE (type
) != COMPLEX_TYPE
)
1582 MEM_SCALAR_P (ref
) = 1;
1584 /* We can set the alignment from the type if we are making an object,
1585 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1586 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
|| TYPE_ALIGN_OK (type
))
1587 align
= MAX (align
, TYPE_ALIGN (type
));
1589 else if (TREE_CODE (t
) == MEM_REF
)
1591 tree op0
= TREE_OPERAND (t
, 0);
1592 if (TREE_CODE (op0
) == ADDR_EXPR
1593 && (DECL_P (TREE_OPERAND (op0
, 0))
1594 || CONSTANT_CLASS_P (TREE_OPERAND (op0
, 0))))
1596 if (DECL_P (TREE_OPERAND (op0
, 0)))
1597 align
= DECL_ALIGN (TREE_OPERAND (op0
, 0));
1598 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0
, 0)))
1600 align
= TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0
, 0)));
1601 #ifdef CONSTANT_ALIGNMENT
1602 align
= CONSTANT_ALIGNMENT (TREE_OPERAND (op0
, 0), align
);
1605 if (TREE_INT_CST_LOW (TREE_OPERAND (t
, 1)) != 0)
1607 unsigned HOST_WIDE_INT ioff
1608 = TREE_INT_CST_LOW (TREE_OPERAND (t
, 1));
1609 unsigned HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1610 align
= MIN (aoff
, align
);
1614 /* ??? This isn't fully correct, we can't set the alignment from the
1615 type in all cases. */
1616 align
= MAX (align
, TYPE_ALIGN (type
));
1619 else if (TREE_CODE (t
) == TARGET_MEM_REF
)
1620 /* ??? This isn't fully correct, we can't set the alignment from the
1621 type in all cases. */
1622 align
= MAX (align
, TYPE_ALIGN (type
));
1624 /* If the size is known, we can set that. */
1625 if (TYPE_SIZE_UNIT (type
) && host_integerp (TYPE_SIZE_UNIT (type
), 1))
1626 size
= GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type
), 1));
1628 /* If T is not a type, we may be able to deduce some more information about
1633 bool align_computed
= false;
1635 if (TREE_THIS_VOLATILE (t
))
1636 MEM_VOLATILE_P (ref
) = 1;
1638 /* Now remove any conversions: they don't change what the underlying
1639 object is. Likewise for SAVE_EXPR. */
1640 while (CONVERT_EXPR_P (t
)
1641 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1642 || TREE_CODE (t
) == SAVE_EXPR
)
1643 t
= TREE_OPERAND (t
, 0);
1645 /* We may look through structure-like accesses for the purposes of
1646 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1648 while (TREE_CODE (base
) == COMPONENT_REF
1649 || TREE_CODE (base
) == REALPART_EXPR
1650 || TREE_CODE (base
) == IMAGPART_EXPR
1651 || TREE_CODE (base
) == BIT_FIELD_REF
)
1652 base
= TREE_OPERAND (base
, 0);
1654 if (TREE_CODE (base
) == MEM_REF
1655 && TREE_CODE (TREE_OPERAND (base
, 0)) == ADDR_EXPR
)
1656 base
= TREE_OPERAND (TREE_OPERAND (base
, 0), 0);
1659 if (CODE_CONTAINS_STRUCT (TREE_CODE (base
), TS_DECL_WITH_VIS
))
1660 MEM_NOTRAP_P (ref
) = !DECL_WEAK (base
);
1662 MEM_NOTRAP_P (ref
) = 1;
1664 else if (TREE_CODE (base
) == INDIRECT_REF
1665 || TREE_CODE (base
) == MEM_REF
1666 || TREE_CODE (base
) == TARGET_MEM_REF
1667 || TREE_CODE (base
) == ARRAY_REF
1668 || TREE_CODE (base
) == ARRAY_RANGE_REF
)
1669 MEM_NOTRAP_P (ref
) = TREE_THIS_NOTRAP (base
);
1671 base
= get_base_address (base
);
1672 if (base
&& DECL_P (base
)
1673 && TREE_READONLY (base
)
1674 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
)))
1675 MEM_READONLY_P (ref
) = 1;
1677 /* If this expression uses it's parent's alias set, mark it such
1678 that we won't change it. */
1679 if (component_uses_parent_alias_set (t
))
1680 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1682 /* If this is a decl, set the attributes of the MEM from it. */
1686 offset
= const0_rtx
;
1687 apply_bitpos
= bitpos
;
1688 size
= (DECL_SIZE_UNIT (t
)
1689 && host_integerp (DECL_SIZE_UNIT (t
), 1)
1690 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t
), 1)) : 0);
1691 align
= DECL_ALIGN (t
);
1692 align_computed
= true;
1695 /* If this is a constant, we know the alignment. */
1696 else if (CONSTANT_CLASS_P (t
))
1698 align
= TYPE_ALIGN (type
);
1699 #ifdef CONSTANT_ALIGNMENT
1700 align
= CONSTANT_ALIGNMENT (t
, align
);
1702 align_computed
= true;
1705 /* If this is a field reference and not a bit-field, record it. */
1706 /* ??? There is some information that can be gleaned from bit-fields,
1707 such as the word offset in the structure that might be modified.
1708 But skip it for now. */
1709 else if (TREE_CODE (t
) == COMPONENT_REF
1710 && ! DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1713 offset
= const0_rtx
;
1714 apply_bitpos
= bitpos
;
1715 /* ??? Any reason the field size would be different than
1716 the size we got from the type? */
1719 /* If this is an array reference, look for an outer field reference. */
1720 else if (TREE_CODE (t
) == ARRAY_REF
)
1722 tree off_tree
= size_zero_node
;
1723 /* We can't modify t, because we use it at the end of the
1729 tree index
= TREE_OPERAND (t2
, 1);
1730 tree low_bound
= array_ref_low_bound (t2
);
1731 tree unit_size
= array_ref_element_size (t2
);
1733 /* We assume all arrays have sizes that are a multiple of a byte.
1734 First subtract the lower bound, if any, in the type of the
1735 index, then convert to sizetype and multiply by the size of
1736 the array element. */
1737 if (! integer_zerop (low_bound
))
1738 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1741 off_tree
= size_binop (PLUS_EXPR
,
1742 size_binop (MULT_EXPR
,
1743 fold_convert (sizetype
,
1747 t2
= TREE_OPERAND (t2
, 0);
1749 while (TREE_CODE (t2
) == ARRAY_REF
);
1755 if (host_integerp (off_tree
, 1))
1757 HOST_WIDE_INT ioff
= tree_low_cst (off_tree
, 1);
1758 HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1759 align
= DECL_ALIGN (t2
);
1760 if (aoff
&& (unsigned HOST_WIDE_INT
) aoff
< align
)
1762 align_computed
= true;
1763 offset
= GEN_INT (ioff
);
1764 apply_bitpos
= bitpos
;
1767 else if (TREE_CODE (t2
) == COMPONENT_REF
)
1771 if (host_integerp (off_tree
, 1))
1773 offset
= GEN_INT (tree_low_cst (off_tree
, 1));
1774 apply_bitpos
= bitpos
;
1776 /* ??? Any reason the field size would be different than
1777 the size we got from the type? */
1780 /* If this is an indirect reference, record it. */
1781 else if (TREE_CODE (t
) == MEM_REF
)
1784 offset
= const0_rtx
;
1785 apply_bitpos
= bitpos
;
1789 /* If this is an indirect reference, record it. */
1790 else if (TREE_CODE (t
) == MEM_REF
1791 || TREE_CODE (t
) == TARGET_MEM_REF
)
1794 offset
= const0_rtx
;
1795 apply_bitpos
= bitpos
;
1798 if (!align_computed
&& !INDIRECT_REF_P (t
))
1800 unsigned int obj_align
= get_object_alignment (t
, BIGGEST_ALIGNMENT
);
1801 align
= MAX (align
, obj_align
);
1805 /* If we modified OFFSET based on T, then subtract the outstanding
1806 bit position offset. Similarly, increase the size of the accessed
1807 object to contain the negative offset. */
1810 offset
= plus_constant (offset
, -(apply_bitpos
/ BITS_PER_UNIT
));
1812 size
= plus_constant (size
, apply_bitpos
/ BITS_PER_UNIT
);
1815 /* Now set the attributes we computed above. */
1817 = get_mem_attrs (alias
, expr
, offset
, size
, align
,
1818 TYPE_ADDR_SPACE (type
), GET_MODE (ref
));
1820 /* If this is already known to be a scalar or aggregate, we are done. */
1821 if (MEM_IN_STRUCT_P (ref
) || MEM_SCALAR_P (ref
))
1824 /* If it is a reference into an aggregate, this is part of an aggregate.
1825 Otherwise we don't know. */
1826 else if (TREE_CODE (t
) == COMPONENT_REF
|| TREE_CODE (t
) == ARRAY_REF
1827 || TREE_CODE (t
) == ARRAY_RANGE_REF
1828 || TREE_CODE (t
) == BIT_FIELD_REF
)
1829 MEM_IN_STRUCT_P (ref
) = 1;
1833 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1835 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1838 /* Set the alias set of MEM to SET. */
1841 set_mem_alias_set (rtx mem
, alias_set_type set
)
1843 /* If the new and old alias sets don't conflict, something is wrong. */
1844 gcc_checking_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1846 MEM_ATTRS (mem
) = get_mem_attrs (set
, MEM_EXPR (mem
), MEM_OFFSET (mem
),
1847 MEM_SIZE (mem
), MEM_ALIGN (mem
),
1848 MEM_ADDR_SPACE (mem
), GET_MODE (mem
));
1851 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1854 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
1856 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1857 MEM_OFFSET (mem
), MEM_SIZE (mem
),
1858 MEM_ALIGN (mem
), addrspace
, GET_MODE (mem
));
1861 /* Set the alignment of MEM to ALIGN bits. */
1864 set_mem_align (rtx mem
, unsigned int align
)
1866 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1867 MEM_OFFSET (mem
), MEM_SIZE (mem
), align
,
1868 MEM_ADDR_SPACE (mem
), GET_MODE (mem
));
1871 /* Set the expr for MEM to EXPR. */
1874 set_mem_expr (rtx mem
, tree expr
)
1877 = get_mem_attrs (MEM_ALIAS_SET (mem
), expr
, MEM_OFFSET (mem
),
1878 MEM_SIZE (mem
), MEM_ALIGN (mem
),
1879 MEM_ADDR_SPACE (mem
), GET_MODE (mem
));
1882 /* Set the offset of MEM to OFFSET. */
1885 set_mem_offset (rtx mem
, rtx offset
)
1887 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1888 offset
, MEM_SIZE (mem
), MEM_ALIGN (mem
),
1889 MEM_ADDR_SPACE (mem
), GET_MODE (mem
));
1892 /* Set the size of MEM to SIZE. */
1895 set_mem_size (rtx mem
, rtx size
)
1897 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1898 MEM_OFFSET (mem
), size
, MEM_ALIGN (mem
),
1899 MEM_ADDR_SPACE (mem
), GET_MODE (mem
));
1902 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1903 and its address changed to ADDR. (VOIDmode means don't change the mode.
1904 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1905 returned memory location is required to be valid. The memory
1906 attributes are not changed. */
1909 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1914 gcc_assert (MEM_P (memref
));
1915 as
= MEM_ADDR_SPACE (memref
);
1916 if (mode
== VOIDmode
)
1917 mode
= GET_MODE (memref
);
1919 addr
= XEXP (memref
, 0);
1920 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1921 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
1926 if (reload_in_progress
|| reload_completed
)
1927 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
1929 addr
= memory_address_addr_space (mode
, addr
, as
);
1932 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1935 new_rtx
= gen_rtx_MEM (mode
, addr
);
1936 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1940 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1941 way we are changing MEMREF, so we only preserve the alias set. */
1944 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
1946 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1), size
;
1947 enum machine_mode mmode
= GET_MODE (new_rtx
);
1950 size
= mmode
== BLKmode
? 0 : GEN_INT (GET_MODE_SIZE (mmode
));
1951 align
= mmode
== BLKmode
? BITS_PER_UNIT
: GET_MODE_ALIGNMENT (mmode
);
1953 /* If there are no changes, just return the original memory reference. */
1954 if (new_rtx
== memref
)
1956 if (MEM_ATTRS (memref
) == 0
1957 || (MEM_EXPR (memref
) == NULL
1958 && MEM_OFFSET (memref
) == NULL
1959 && MEM_SIZE (memref
) == size
1960 && MEM_ALIGN (memref
) == align
))
1963 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
1964 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1968 = get_mem_attrs (MEM_ALIAS_SET (memref
), 0, 0, size
, align
,
1969 MEM_ADDR_SPACE (memref
), mmode
);
1974 /* Return a memory reference like MEMREF, but with its mode changed
1975 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1976 nonzero, the memory address is forced to be valid.
1977 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1978 and caller is responsible for adjusting MEMREF base register. */
1981 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
1982 int validate
, int adjust
)
1984 rtx addr
= XEXP (memref
, 0);
1986 rtx memoffset
= MEM_OFFSET (memref
);
1988 unsigned int memalign
= MEM_ALIGN (memref
);
1989 addr_space_t as
= MEM_ADDR_SPACE (memref
);
1990 enum machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
1993 /* If there are no changes, just return the original memory reference. */
1994 if (mode
== GET_MODE (memref
) && !offset
1995 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
1998 /* ??? Prefer to create garbage instead of creating shared rtl.
1999 This may happen even if offset is nonzero -- consider
2000 (plus (plus reg reg) const_int) -- so do this always. */
2001 addr
= copy_rtx (addr
);
2003 /* Convert a possibly large offset to a signed value within the
2004 range of the target address space. */
2005 pbits
= GET_MODE_BITSIZE (address_mode
);
2006 if (HOST_BITS_PER_WIDE_INT
> pbits
)
2008 int shift
= HOST_BITS_PER_WIDE_INT
- pbits
;
2009 offset
= (((HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) offset
<< shift
))
2015 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2016 object, we can merge it into the LO_SUM. */
2017 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2019 && (unsigned HOST_WIDE_INT
) offset
2020 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2021 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2022 plus_constant (XEXP (addr
, 1), offset
));
2024 addr
= plus_constant (addr
, offset
);
2027 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
);
2029 /* If the address is a REG, change_address_1 rightfully returns memref,
2030 but this would destroy memref's MEM_ATTRS. */
2031 if (new_rtx
== memref
&& offset
!= 0)
2032 new_rtx
= copy_rtx (new_rtx
);
2034 /* Compute the new values of the memory attributes due to this adjustment.
2035 We add the offsets and update the alignment. */
2037 memoffset
= GEN_INT (offset
+ INTVAL (memoffset
));
2039 /* Compute the new alignment by taking the MIN of the alignment and the
2040 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2045 (unsigned HOST_WIDE_INT
) (offset
& -offset
) * BITS_PER_UNIT
);
2047 /* We can compute the size in a number of ways. */
2048 if (GET_MODE (new_rtx
) != BLKmode
)
2049 size
= GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx
)));
2050 else if (MEM_SIZE (memref
))
2051 size
= plus_constant (MEM_SIZE (memref
), -offset
);
2053 MEM_ATTRS (new_rtx
) = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
),
2054 memoffset
, size
, memalign
, as
,
2055 GET_MODE (new_rtx
));
2057 /* At some point, we should validate that this offset is within the object,
2058 if all the appropriate values are known. */
2062 /* Return a memory reference like MEMREF, but with its mode changed
2063 to MODE and its address changed to ADDR, which is assumed to be
2064 MEMREF offset by OFFSET bytes. If VALIDATE is
2065 nonzero, the memory address is forced to be valid. */
2068 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
2069 HOST_WIDE_INT offset
, int validate
)
2071 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
2072 return adjust_address_1 (memref
, mode
, offset
, validate
, 0);
2075 /* Return a memory reference like MEMREF, but whose address is changed by
2076 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2077 known to be in OFFSET (possibly 1). */
2080 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2082 rtx new_rtx
, addr
= XEXP (memref
, 0);
2083 addr_space_t as
= MEM_ADDR_SPACE (memref
);
2084 enum machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
2086 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2088 /* At this point we don't know _why_ the address is invalid. It
2089 could have secondary memory references, multiplies or anything.
2091 However, if we did go and rearrange things, we can wind up not
2092 being able to recognize the magic around pic_offset_table_rtx.
2093 This stuff is fragile, and is yet another example of why it is
2094 bad to expose PIC machinery too early. */
2095 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
, as
)
2096 && GET_CODE (addr
) == PLUS
2097 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2099 addr
= force_reg (GET_MODE (addr
), addr
);
2100 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2103 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2104 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1);
2106 /* If there are no changes, just return the original memory reference. */
2107 if (new_rtx
== memref
)
2110 /* Update the alignment to reflect the offset. Reset the offset, which
2113 = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
), 0, 0,
2114 MIN (MEM_ALIGN (memref
), pow2
* BITS_PER_UNIT
),
2115 as
, GET_MODE (new_rtx
));
2119 /* Return a memory reference like MEMREF, but with its address changed to
2120 ADDR. The caller is asserting that the actual piece of memory pointed
2121 to is the same, just the form of the address is being changed, such as
2122 by putting something into a register. */
2125 replace_equiv_address (rtx memref
, rtx addr
)
2127 /* change_address_1 copies the memory attribute structure without change
2128 and that's exactly what we want here. */
2129 update_temp_slot_address (XEXP (memref
, 0), addr
);
2130 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2133 /* Likewise, but the reference is not required to be valid. */
2136 replace_equiv_address_nv (rtx memref
, rtx addr
)
2138 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2141 /* Return a memory reference like MEMREF, but with its mode widened to
2142 MODE and offset by OFFSET. This would be used by targets that e.g.
2143 cannot issue QImode memory operations and have to use SImode memory
2144 operations plus masking logic. */
2147 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
2149 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1);
2150 tree expr
= MEM_EXPR (new_rtx
);
2151 rtx memoffset
= MEM_OFFSET (new_rtx
);
2152 unsigned int size
= GET_MODE_SIZE (mode
);
2154 /* If there are no changes, just return the original memory reference. */
2155 if (new_rtx
== memref
)
2158 /* If we don't know what offset we were at within the expression, then
2159 we can't know if we've overstepped the bounds. */
2165 if (TREE_CODE (expr
) == COMPONENT_REF
)
2167 tree field
= TREE_OPERAND (expr
, 1);
2168 tree offset
= component_ref_field_offset (expr
);
2170 if (! DECL_SIZE_UNIT (field
))
2176 /* Is the field at least as large as the access? If so, ok,
2177 otherwise strip back to the containing structure. */
2178 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2179 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2180 && INTVAL (memoffset
) >= 0)
2183 if (! host_integerp (offset
, 1))
2189 expr
= TREE_OPERAND (expr
, 0);
2191 = (GEN_INT (INTVAL (memoffset
)
2192 + tree_low_cst (offset
, 1)
2193 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2196 /* Similarly for the decl. */
2197 else if (DECL_P (expr
)
2198 && DECL_SIZE_UNIT (expr
)
2199 && TREE_CODE (DECL_SIZE_UNIT (expr
)) == INTEGER_CST
2200 && compare_tree_int (DECL_SIZE_UNIT (expr
), size
) >= 0
2201 && (! memoffset
|| INTVAL (memoffset
) >= 0))
2205 /* The widened memory access overflows the expression, which means
2206 that it could alias another expression. Zap it. */
2213 memoffset
= NULL_RTX
;
2215 /* The widened memory may alias other stuff, so zap the alias set. */
2216 /* ??? Maybe use get_alias_set on any remaining expression. */
2218 MEM_ATTRS (new_rtx
) = get_mem_attrs (0, expr
, memoffset
, GEN_INT (size
),
2219 MEM_ALIGN (new_rtx
),
2220 MEM_ADDR_SPACE (new_rtx
), mode
);
2225 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2226 static GTY(()) tree spill_slot_decl
;
2229 get_spill_slot_decl (bool force_build_p
)
2231 tree d
= spill_slot_decl
;
2234 if (d
|| !force_build_p
)
2237 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2238 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2239 DECL_ARTIFICIAL (d
) = 1;
2240 DECL_IGNORED_P (d
) = 1;
2242 spill_slot_decl
= d
;
2244 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2245 MEM_NOTRAP_P (rd
) = 1;
2246 MEM_ATTRS (rd
) = get_mem_attrs (new_alias_set (), d
, const0_rtx
,
2247 NULL_RTX
, 0, ADDR_SPACE_GENERIC
, BLKmode
);
2248 SET_DECL_RTL (d
, rd
);
2253 /* Given MEM, a result from assign_stack_local, fill in the memory
2254 attributes as appropriate for a register allocator spill slot.
2255 These slots are not aliasable by other memory. We arrange for
2256 them all to use a single MEM_EXPR, so that the aliasing code can
2257 work properly in the case of shared spill slots. */
2260 set_mem_attrs_for_spill (rtx mem
)
2262 alias_set_type alias
;
2266 expr
= get_spill_slot_decl (true);
2267 alias
= MEM_ALIAS_SET (DECL_RTL (expr
));
2269 /* We expect the incoming memory to be of the form:
2270 (mem:MODE (plus (reg sfp) (const_int offset)))
2271 with perhaps the plus missing for offset = 0. */
2272 addr
= XEXP (mem
, 0);
2273 offset
= const0_rtx
;
2274 if (GET_CODE (addr
) == PLUS
2275 && CONST_INT_P (XEXP (addr
, 1)))
2276 offset
= XEXP (addr
, 1);
2278 MEM_ATTRS (mem
) = get_mem_attrs (alias
, expr
, offset
,
2279 MEM_SIZE (mem
), MEM_ALIGN (mem
),
2280 ADDR_SPACE_GENERIC
, GET_MODE (mem
));
2281 MEM_NOTRAP_P (mem
) = 1;
2284 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2287 gen_label_rtx (void)
2289 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2290 NULL
, label_num
++, NULL
);
2293 /* For procedure integration. */
2295 /* Install new pointers to the first and last insns in the chain.
2296 Also, set cur_insn_uid to one higher than the last in use.
2297 Used for an inline-procedure after copying the insn chain. */
2300 set_new_first_and_last_insn (rtx first
, rtx last
)
2304 set_first_insn (first
);
2305 set_last_insn (last
);
2308 if (MIN_NONDEBUG_INSN_UID
|| MAY_HAVE_DEBUG_INSNS
)
2310 int debug_count
= 0;
2312 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
- 1;
2313 cur_debug_insn_uid
= 0;
2315 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2316 if (INSN_UID (insn
) < MIN_NONDEBUG_INSN_UID
)
2317 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2320 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2321 if (DEBUG_INSN_P (insn
))
2326 cur_debug_insn_uid
= MIN_NONDEBUG_INSN_UID
+ debug_count
;
2328 cur_debug_insn_uid
++;
2331 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2332 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2337 /* Go through all the RTL insn bodies and copy any invalid shared
2338 structure. This routine should only be called once. */
2341 unshare_all_rtl_1 (rtx insn
)
2343 /* Unshare just about everything else. */
2344 unshare_all_rtl_in_chain (insn
);
2346 /* Make sure the addresses of stack slots found outside the insn chain
2347 (such as, in DECL_RTL of a variable) are not shared
2348 with the insn chain.
2350 This special care is necessary when the stack slot MEM does not
2351 actually appear in the insn chain. If it does appear, its address
2352 is unshared from all else at that point. */
2353 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2356 /* Go through all the RTL insn bodies and copy any invalid shared
2357 structure, again. This is a fairly expensive thing to do so it
2358 should be done sparingly. */
2361 unshare_all_rtl_again (rtx insn
)
2366 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2369 reset_used_flags (PATTERN (p
));
2370 reset_used_flags (REG_NOTES (p
));
2373 /* Make sure that virtual stack slots are not shared. */
2374 set_used_decls (DECL_INITIAL (cfun
->decl
));
2376 /* Make sure that virtual parameters are not shared. */
2377 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2378 set_used_flags (DECL_RTL (decl
));
2380 reset_used_flags (stack_slot_list
);
2382 unshare_all_rtl_1 (insn
);
2386 unshare_all_rtl (void)
2388 unshare_all_rtl_1 (get_insns ());
2392 struct rtl_opt_pass pass_unshare_all_rtl
=
2396 "unshare", /* name */
2398 unshare_all_rtl
, /* execute */
2401 0, /* static_pass_number */
2402 TV_NONE
, /* tv_id */
2403 0, /* properties_required */
2404 0, /* properties_provided */
2405 0, /* properties_destroyed */
2406 0, /* todo_flags_start */
2407 TODO_dump_func
| TODO_verify_rtl_sharing
/* todo_flags_finish */
2412 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2413 Recursively does the same for subexpressions. */
2416 verify_rtx_sharing (rtx orig
, rtx insn
)
2421 const char *format_ptr
;
2426 code
= GET_CODE (x
);
2428 /* These types may be freely shared. */
2446 /* SCRATCH must be shared because they represent distinct values. */
2448 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2453 if (shared_const_p (orig
))
2458 /* A MEM is allowed to be shared if its address is constant. */
2459 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2460 || reload_completed
|| reload_in_progress
)
2469 /* This rtx may not be shared. If it has already been seen,
2470 replace it with a copy of itself. */
2471 #ifdef ENABLE_CHECKING
2472 if (RTX_FLAG (x
, used
))
2474 error ("invalid rtl sharing found in the insn");
2476 error ("shared rtx");
2478 internal_error ("internal consistency failure");
2481 gcc_assert (!RTX_FLAG (x
, used
));
2483 RTX_FLAG (x
, used
) = 1;
2485 /* Now scan the subexpressions recursively. */
2487 format_ptr
= GET_RTX_FORMAT (code
);
2489 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2491 switch (*format_ptr
++)
2494 verify_rtx_sharing (XEXP (x
, i
), insn
);
2498 if (XVEC (x
, i
) != NULL
)
2501 int len
= XVECLEN (x
, i
);
2503 for (j
= 0; j
< len
; j
++)
2505 /* We allow sharing of ASM_OPERANDS inside single
2507 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2508 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2510 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2512 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2521 /* Go through all the RTL insn bodies and check that there is no unexpected
2522 sharing in between the subexpressions. */
2525 verify_rtl_sharing (void)
2529 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2532 reset_used_flags (PATTERN (p
));
2533 reset_used_flags (REG_NOTES (p
));
2534 if (GET_CODE (PATTERN (p
)) == SEQUENCE
)
2537 rtx q
, sequence
= PATTERN (p
);
2539 for (i
= 0; i
< XVECLEN (sequence
, 0); i
++)
2541 q
= XVECEXP (sequence
, 0, i
);
2542 gcc_assert (INSN_P (q
));
2543 reset_used_flags (PATTERN (q
));
2544 reset_used_flags (REG_NOTES (q
));
2549 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2552 verify_rtx_sharing (PATTERN (p
), p
);
2553 verify_rtx_sharing (REG_NOTES (p
), p
);
2557 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2558 Assumes the mark bits are cleared at entry. */
2561 unshare_all_rtl_in_chain (rtx insn
)
2563 for (; insn
; insn
= NEXT_INSN (insn
))
2566 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2567 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2571 /* Go through all virtual stack slots of a function and mark them as
2572 shared. We never replace the DECL_RTLs themselves with a copy,
2573 but expressions mentioned into a DECL_RTL cannot be shared with
2574 expressions in the instruction stream.
2576 Note that reload may convert pseudo registers into memories in-place.
2577 Pseudo registers are always shared, but MEMs never are. Thus if we
2578 reset the used flags on MEMs in the instruction stream, we must set
2579 them again on MEMs that appear in DECL_RTLs. */
2582 set_used_decls (tree blk
)
2587 for (t
= BLOCK_VARS (blk
); t
; t
= DECL_CHAIN (t
))
2588 if (DECL_RTL_SET_P (t
))
2589 set_used_flags (DECL_RTL (t
));
2591 /* Now process sub-blocks. */
2592 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2596 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2597 Recursively does the same for subexpressions. Uses
2598 copy_rtx_if_shared_1 to reduce stack space. */
2601 copy_rtx_if_shared (rtx orig
)
2603 copy_rtx_if_shared_1 (&orig
);
2607 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2608 use. Recursively does the same for subexpressions. */
2611 copy_rtx_if_shared_1 (rtx
*orig1
)
2617 const char *format_ptr
;
2621 /* Repeat is used to turn tail-recursion into iteration. */
2628 code
= GET_CODE (x
);
2630 /* These types may be freely shared. */
2647 /* SCRATCH must be shared because they represent distinct values. */
2650 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2655 if (shared_const_p (x
))
2665 /* The chain of insns is not being copied. */
2672 /* This rtx may not be shared. If it has already been seen,
2673 replace it with a copy of itself. */
2675 if (RTX_FLAG (x
, used
))
2677 x
= shallow_copy_rtx (x
);
2680 RTX_FLAG (x
, used
) = 1;
2682 /* Now scan the subexpressions recursively.
2683 We can store any replaced subexpressions directly into X
2684 since we know X is not shared! Any vectors in X
2685 must be copied if X was copied. */
2687 format_ptr
= GET_RTX_FORMAT (code
);
2688 length
= GET_RTX_LENGTH (code
);
2691 for (i
= 0; i
< length
; i
++)
2693 switch (*format_ptr
++)
2697 copy_rtx_if_shared_1 (last_ptr
);
2698 last_ptr
= &XEXP (x
, i
);
2702 if (XVEC (x
, i
) != NULL
)
2705 int len
= XVECLEN (x
, i
);
2707 /* Copy the vector iff I copied the rtx and the length
2709 if (copied
&& len
> 0)
2710 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2712 /* Call recursively on all inside the vector. */
2713 for (j
= 0; j
< len
; j
++)
2716 copy_rtx_if_shared_1 (last_ptr
);
2717 last_ptr
= &XVECEXP (x
, i
, j
);
2732 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2735 mark_used_flags (rtx x
, int flag
)
2739 const char *format_ptr
;
2742 /* Repeat is used to turn tail-recursion into iteration. */
2747 code
= GET_CODE (x
);
2749 /* These types may be freely shared so we needn't do any resetting
2774 /* The chain of insns is not being copied. */
2781 RTX_FLAG (x
, used
) = flag
;
2783 format_ptr
= GET_RTX_FORMAT (code
);
2784 length
= GET_RTX_LENGTH (code
);
2786 for (i
= 0; i
< length
; i
++)
2788 switch (*format_ptr
++)
2796 mark_used_flags (XEXP (x
, i
), flag
);
2800 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2801 mark_used_flags (XVECEXP (x
, i
, j
), flag
);
2807 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2808 to look for shared sub-parts. */
2811 reset_used_flags (rtx x
)
2813 mark_used_flags (x
, 0);
2816 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2817 to look for shared sub-parts. */
2820 set_used_flags (rtx x
)
2822 mark_used_flags (x
, 1);
2825 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2826 Return X or the rtx for the pseudo reg the value of X was copied into.
2827 OTHER must be valid as a SET_DEST. */
2830 make_safe_from (rtx x
, rtx other
)
2833 switch (GET_CODE (other
))
2836 other
= SUBREG_REG (other
);
2838 case STRICT_LOW_PART
:
2841 other
= XEXP (other
, 0);
2850 && GET_CODE (x
) != SUBREG
)
2852 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2853 || reg_mentioned_p (other
, x
))))
2855 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2856 emit_move_insn (temp
, x
);
2862 /* Emission of insns (adding them to the doubly-linked list). */
2864 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2867 get_last_insn_anywhere (void)
2869 struct sequence_stack
*stack
;
2870 if (get_last_insn ())
2871 return get_last_insn ();
2872 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2873 if (stack
->last
!= 0)
2878 /* Return the first nonnote insn emitted in current sequence or current
2879 function. This routine looks inside SEQUENCEs. */
2882 get_first_nonnote_insn (void)
2884 rtx insn
= get_insns ();
2889 for (insn
= next_insn (insn
);
2890 insn
&& NOTE_P (insn
);
2891 insn
= next_insn (insn
))
2895 if (NONJUMP_INSN_P (insn
)
2896 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2897 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2904 /* Return the last nonnote insn emitted in current sequence or current
2905 function. This routine looks inside SEQUENCEs. */
2908 get_last_nonnote_insn (void)
2910 rtx insn
= get_last_insn ();
2915 for (insn
= previous_insn (insn
);
2916 insn
&& NOTE_P (insn
);
2917 insn
= previous_insn (insn
))
2921 if (NONJUMP_INSN_P (insn
)
2922 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2923 insn
= XVECEXP (PATTERN (insn
), 0,
2924 XVECLEN (PATTERN (insn
), 0) - 1);
2931 /* Return the number of actual (non-debug) insns emitted in this
2935 get_max_insn_count (void)
2937 int n
= cur_insn_uid
;
2939 /* The table size must be stable across -g, to avoid codegen
2940 differences due to debug insns, and not be affected by
2941 -fmin-insn-uid, to avoid excessive table size and to simplify
2942 debugging of -fcompare-debug failures. */
2943 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
2944 n
-= cur_debug_insn_uid
;
2946 n
-= MIN_NONDEBUG_INSN_UID
;
2952 /* Return the next insn. If it is a SEQUENCE, return the first insn
2956 next_insn (rtx insn
)
2960 insn
= NEXT_INSN (insn
);
2961 if (insn
&& NONJUMP_INSN_P (insn
)
2962 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2963 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2969 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2973 previous_insn (rtx insn
)
2977 insn
= PREV_INSN (insn
);
2978 if (insn
&& NONJUMP_INSN_P (insn
)
2979 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2980 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
2986 /* Return the next insn after INSN that is not a NOTE. This routine does not
2987 look inside SEQUENCEs. */
2990 next_nonnote_insn (rtx insn
)
2994 insn
= NEXT_INSN (insn
);
2995 if (insn
== 0 || !NOTE_P (insn
))
3002 /* Return the next insn after INSN that is not a NOTE, but stop the
3003 search before we enter another basic block. This routine does not
3004 look inside SEQUENCEs. */
3007 next_nonnote_insn_bb (rtx insn
)
3011 insn
= NEXT_INSN (insn
);
3012 if (insn
== 0 || !NOTE_P (insn
))
3014 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3021 /* Return the previous insn before INSN that is not a NOTE. This routine does
3022 not look inside SEQUENCEs. */
3025 prev_nonnote_insn (rtx insn
)
3029 insn
= PREV_INSN (insn
);
3030 if (insn
== 0 || !NOTE_P (insn
))
3037 /* Return the previous insn before INSN that is not a NOTE, but stop
3038 the search before we enter another basic block. This routine does
3039 not look inside SEQUENCEs. */
3042 prev_nonnote_insn_bb (rtx insn
)
3046 insn
= PREV_INSN (insn
);
3047 if (insn
== 0 || !NOTE_P (insn
))
3049 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3056 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3057 routine does not look inside SEQUENCEs. */
3060 next_nondebug_insn (rtx insn
)
3064 insn
= NEXT_INSN (insn
);
3065 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3072 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3073 This routine does not look inside SEQUENCEs. */
3076 prev_nondebug_insn (rtx insn
)
3080 insn
= PREV_INSN (insn
);
3081 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3088 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3089 This routine does not look inside SEQUENCEs. */
3092 next_nonnote_nondebug_insn (rtx insn
)
3096 insn
= NEXT_INSN (insn
);
3097 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3104 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3105 This routine does not look inside SEQUENCEs. */
3108 prev_nonnote_nondebug_insn (rtx insn
)
3112 insn
= PREV_INSN (insn
);
3113 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3120 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3121 or 0, if there is none. This routine does not look inside
3125 next_real_insn (rtx insn
)
3129 insn
= NEXT_INSN (insn
);
3130 if (insn
== 0 || INSN_P (insn
))
3137 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3138 or 0, if there is none. This routine does not look inside
3142 prev_real_insn (rtx insn
)
3146 insn
= PREV_INSN (insn
);
3147 if (insn
== 0 || INSN_P (insn
))
3154 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3155 This routine does not look inside SEQUENCEs. */
3158 last_call_insn (void)
3162 for (insn
= get_last_insn ();
3163 insn
&& !CALL_P (insn
);
3164 insn
= PREV_INSN (insn
))
3170 /* Find the next insn after INSN that really does something. This routine
3171 does not look inside SEQUENCEs. After reload this also skips over
3172 standalone USE and CLOBBER insn. */
3175 active_insn_p (const_rtx insn
)
3177 return (CALL_P (insn
) || JUMP_P (insn
)
3178 || (NONJUMP_INSN_P (insn
)
3179 && (! reload_completed
3180 || (GET_CODE (PATTERN (insn
)) != USE
3181 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3185 next_active_insn (rtx insn
)
3189 insn
= NEXT_INSN (insn
);
3190 if (insn
== 0 || active_insn_p (insn
))
3197 /* Find the last insn before INSN that really does something. This routine
3198 does not look inside SEQUENCEs. After reload this also skips over
3199 standalone USE and CLOBBER insn. */
3202 prev_active_insn (rtx insn
)
3206 insn
= PREV_INSN (insn
);
3207 if (insn
== 0 || active_insn_p (insn
))
3214 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3217 next_label (rtx insn
)
3221 insn
= NEXT_INSN (insn
);
3222 if (insn
== 0 || LABEL_P (insn
))
3229 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3232 prev_label (rtx insn
)
3236 insn
= PREV_INSN (insn
);
3237 if (insn
== 0 || LABEL_P (insn
))
3244 /* Return the last label to mark the same position as LABEL. Return null
3245 if LABEL itself is null. */
3248 skip_consecutive_labels (rtx label
)
3252 for (insn
= label
; insn
!= 0 && !INSN_P (insn
); insn
= NEXT_INSN (insn
))
3260 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3261 and REG_CC_USER notes so we can find it. */
3264 link_cc0_insns (rtx insn
)
3266 rtx user
= next_nonnote_insn (insn
);
3268 if (NONJUMP_INSN_P (user
) && GET_CODE (PATTERN (user
)) == SEQUENCE
)
3269 user
= XVECEXP (PATTERN (user
), 0, 0);
3271 add_reg_note (user
, REG_CC_SETTER
, insn
);
3272 add_reg_note (insn
, REG_CC_USER
, user
);
3275 /* Return the next insn that uses CC0 after INSN, which is assumed to
3276 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3277 applied to the result of this function should yield INSN).
3279 Normally, this is simply the next insn. However, if a REG_CC_USER note
3280 is present, it contains the insn that uses CC0.
3282 Return 0 if we can't find the insn. */
3285 next_cc0_user (rtx insn
)
3287 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3290 return XEXP (note
, 0);
3292 insn
= next_nonnote_insn (insn
);
3293 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3294 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3296 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3302 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3303 note, it is the previous insn. */
3306 prev_cc0_setter (rtx insn
)
3308 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3311 return XEXP (note
, 0);
3313 insn
= prev_nonnote_insn (insn
);
3314 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3321 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3324 find_auto_inc (rtx
*xp
, void *data
)
3327 rtx reg
= (rtx
) data
;
3329 if (GET_RTX_CLASS (GET_CODE (x
)) != RTX_AUTOINC
)
3332 switch (GET_CODE (x
))
3340 if (rtx_equal_p (reg
, XEXP (x
, 0)))
3351 /* Increment the label uses for all labels present in rtx. */
3354 mark_label_nuses (rtx x
)
3360 code
= GET_CODE (x
);
3361 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3362 LABEL_NUSES (XEXP (x
, 0))++;
3364 fmt
= GET_RTX_FORMAT (code
);
3365 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3368 mark_label_nuses (XEXP (x
, i
));
3369 else if (fmt
[i
] == 'E')
3370 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3371 mark_label_nuses (XVECEXP (x
, i
, j
));
3376 /* Try splitting insns that can be split for better scheduling.
3377 PAT is the pattern which might split.
3378 TRIAL is the insn providing PAT.
3379 LAST is nonzero if we should return the last insn of the sequence produced.
3381 If this routine succeeds in splitting, it returns the first or last
3382 replacement insn depending on the value of LAST. Otherwise, it
3383 returns TRIAL. If the insn to be returned can be split, it will be. */
3386 try_split (rtx pat
, rtx trial
, int last
)
3388 rtx before
= PREV_INSN (trial
);
3389 rtx after
= NEXT_INSN (trial
);
3390 int has_barrier
= 0;
3393 rtx insn_last
, insn
;
3396 /* We're not good at redistributing frame information. */
3397 if (RTX_FRAME_RELATED_P (trial
))
3400 if (any_condjump_p (trial
)
3401 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3402 split_branch_probability
= INTVAL (XEXP (note
, 0));
3403 probability
= split_branch_probability
;
3405 seq
= split_insns (pat
, trial
);
3407 split_branch_probability
= -1;
3409 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3410 We may need to handle this specially. */
3411 if (after
&& BARRIER_P (after
))
3414 after
= NEXT_INSN (after
);
3420 /* Avoid infinite loop if any insn of the result matches
3421 the original pattern. */
3425 if (INSN_P (insn_last
)
3426 && rtx_equal_p (PATTERN (insn_last
), pat
))
3428 if (!NEXT_INSN (insn_last
))
3430 insn_last
= NEXT_INSN (insn_last
);
3433 /* We will be adding the new sequence to the function. The splitters
3434 may have introduced invalid RTL sharing, so unshare the sequence now. */
3435 unshare_all_rtl_in_chain (seq
);
3438 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3442 mark_jump_label (PATTERN (insn
), insn
, 0);
3444 if (probability
!= -1
3445 && any_condjump_p (insn
)
3446 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3448 /* We can preserve the REG_BR_PROB notes only if exactly
3449 one jump is created, otherwise the machine description
3450 is responsible for this step using
3451 split_branch_probability variable. */
3452 gcc_assert (njumps
== 1);
3453 add_reg_note (insn
, REG_BR_PROB
, GEN_INT (probability
));
3458 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3459 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3462 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3465 rtx
*p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3468 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3469 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3471 /* Update the debug information for the CALL_INSN. */
3472 if (flag_enable_icf_debug
)
3473 (*debug_hooks
->copy_call_info
) (trial
, insn
);
3477 /* Copy notes, particularly those related to the CFG. */
3478 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3480 switch (REG_NOTE_KIND (note
))
3483 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3488 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3491 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3495 case REG_NON_LOCAL_GOTO
:
3496 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3499 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3505 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3507 rtx reg
= XEXP (note
, 0);
3508 if (!FIND_REG_INC_NOTE (insn
, reg
)
3509 && for_each_rtx (&PATTERN (insn
), find_auto_inc
, reg
) > 0)
3510 add_reg_note (insn
, REG_INC
, reg
);
3520 /* If there are LABELS inside the split insns increment the
3521 usage count so we don't delete the label. */
3525 while (insn
!= NULL_RTX
)
3527 /* JUMP_P insns have already been "marked" above. */
3528 if (NONJUMP_INSN_P (insn
))
3529 mark_label_nuses (PATTERN (insn
));
3531 insn
= PREV_INSN (insn
);
3535 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATOR (trial
));
3537 delete_insn (trial
);
3539 emit_barrier_after (tem
);
3541 /* Recursively call try_split for each new insn created; by the
3542 time control returns here that insn will be fully split, so
3543 set LAST and continue from the insn after the one returned.
3544 We can't use next_active_insn here since AFTER may be a note.
3545 Ignore deleted insns, which can be occur if not optimizing. */
3546 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3547 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3548 tem
= try_split (PATTERN (tem
), tem
, 1);
3550 /* Return either the first or the last insn, depending on which was
3553 ? (after
? PREV_INSN (after
) : get_last_insn ())
3554 : NEXT_INSN (before
);
3557 /* Make and return an INSN rtx, initializing all its slots.
3558 Store PATTERN in the pattern slots. */
3561 make_insn_raw (rtx pattern
)
3565 insn
= rtx_alloc (INSN
);
3567 INSN_UID (insn
) = cur_insn_uid
++;
3568 PATTERN (insn
) = pattern
;
3569 INSN_CODE (insn
) = -1;
3570 REG_NOTES (insn
) = NULL
;
3571 INSN_LOCATOR (insn
) = curr_insn_locator ();
3572 BLOCK_FOR_INSN (insn
) = NULL
;
3574 #ifdef ENABLE_RTL_CHECKING
3577 && (returnjump_p (insn
)
3578 || (GET_CODE (insn
) == SET
3579 && SET_DEST (insn
) == pc_rtx
)))
3581 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3589 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3592 make_debug_insn_raw (rtx pattern
)
3596 insn
= rtx_alloc (DEBUG_INSN
);
3597 INSN_UID (insn
) = cur_debug_insn_uid
++;
3598 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3599 INSN_UID (insn
) = cur_insn_uid
++;
3601 PATTERN (insn
) = pattern
;
3602 INSN_CODE (insn
) = -1;
3603 REG_NOTES (insn
) = NULL
;
3604 INSN_LOCATOR (insn
) = curr_insn_locator ();
3605 BLOCK_FOR_INSN (insn
) = NULL
;
3610 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3613 make_jump_insn_raw (rtx pattern
)
3617 insn
= rtx_alloc (JUMP_INSN
);
3618 INSN_UID (insn
) = cur_insn_uid
++;
3620 PATTERN (insn
) = pattern
;
3621 INSN_CODE (insn
) = -1;
3622 REG_NOTES (insn
) = NULL
;
3623 JUMP_LABEL (insn
) = NULL
;
3624 INSN_LOCATOR (insn
) = curr_insn_locator ();
3625 BLOCK_FOR_INSN (insn
) = NULL
;
3630 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3633 make_call_insn_raw (rtx pattern
)
3637 insn
= rtx_alloc (CALL_INSN
);
3638 INSN_UID (insn
) = cur_insn_uid
++;
3640 PATTERN (insn
) = pattern
;
3641 INSN_CODE (insn
) = -1;
3642 REG_NOTES (insn
) = NULL
;
3643 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3644 INSN_LOCATOR (insn
) = curr_insn_locator ();
3645 BLOCK_FOR_INSN (insn
) = NULL
;
3650 /* Add INSN to the end of the doubly-linked list.
3651 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3656 PREV_INSN (insn
) = get_last_insn();
3657 NEXT_INSN (insn
) = 0;
3659 if (NULL
!= get_last_insn())
3660 NEXT_INSN (get_last_insn ()) = insn
;
3662 if (NULL
== get_insns ())
3663 set_first_insn (insn
);
3665 set_last_insn (insn
);
3668 /* Add INSN into the doubly-linked list after insn AFTER. This and
3669 the next should be the only functions called to insert an insn once
3670 delay slots have been filled since only they know how to update a
3674 add_insn_after (rtx insn
, rtx after
, basic_block bb
)
3676 rtx next
= NEXT_INSN (after
);
3678 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3680 NEXT_INSN (insn
) = next
;
3681 PREV_INSN (insn
) = after
;
3685 PREV_INSN (next
) = insn
;
3686 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3687 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3689 else if (get_last_insn () == after
)
3690 set_last_insn (insn
);
3693 struct sequence_stack
*stack
= seq_stack
;
3694 /* Scan all pending sequences too. */
3695 for (; stack
; stack
= stack
->next
)
3696 if (after
== stack
->last
)
3705 if (!BARRIER_P (after
)
3706 && !BARRIER_P (insn
)
3707 && (bb
= BLOCK_FOR_INSN (after
)))
3709 set_block_for_insn (insn
, bb
);
3711 df_insn_rescan (insn
);
3712 /* Should not happen as first in the BB is always
3713 either NOTE or LABEL. */
3714 if (BB_END (bb
) == after
3715 /* Avoid clobbering of structure when creating new BB. */
3716 && !BARRIER_P (insn
)
3717 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
3721 NEXT_INSN (after
) = insn
;
3722 if (NONJUMP_INSN_P (after
) && GET_CODE (PATTERN (after
)) == SEQUENCE
)
3724 rtx sequence
= PATTERN (after
);
3725 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3729 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3730 the previous should be the only functions called to insert an insn
3731 once delay slots have been filled since only they know how to
3732 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3736 add_insn_before (rtx insn
, rtx before
, basic_block bb
)
3738 rtx prev
= PREV_INSN (before
);
3740 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3742 PREV_INSN (insn
) = prev
;
3743 NEXT_INSN (insn
) = before
;
3747 NEXT_INSN (prev
) = insn
;
3748 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3750 rtx sequence
= PATTERN (prev
);
3751 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3754 else if (get_insns () == before
)
3755 set_first_insn (insn
);
3758 struct sequence_stack
*stack
= seq_stack
;
3759 /* Scan all pending sequences too. */
3760 for (; stack
; stack
= stack
->next
)
3761 if (before
== stack
->first
)
3763 stack
->first
= insn
;
3771 && !BARRIER_P (before
)
3772 && !BARRIER_P (insn
))
3773 bb
= BLOCK_FOR_INSN (before
);
3777 set_block_for_insn (insn
, bb
);
3779 df_insn_rescan (insn
);
3780 /* Should not happen as first in the BB is always either NOTE or
3782 gcc_assert (BB_HEAD (bb
) != insn
3783 /* Avoid clobbering of structure when creating new BB. */
3785 || NOTE_INSN_BASIC_BLOCK_P (insn
));
3788 PREV_INSN (before
) = insn
;
3789 if (NONJUMP_INSN_P (before
) && GET_CODE (PATTERN (before
)) == SEQUENCE
)
3790 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
3794 /* Replace insn with an deleted instruction note. */
3797 set_insn_deleted (rtx insn
)
3799 df_insn_delete (BLOCK_FOR_INSN (insn
), INSN_UID (insn
));
3800 PUT_CODE (insn
, NOTE
);
3801 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
3805 /* Remove an insn from its doubly-linked list. This function knows how
3806 to handle sequences. */
3808 remove_insn (rtx insn
)
3810 rtx next
= NEXT_INSN (insn
);
3811 rtx prev
= PREV_INSN (insn
);
3814 /* Later in the code, the block will be marked dirty. */
3815 df_insn_delete (NULL
, INSN_UID (insn
));
3819 NEXT_INSN (prev
) = next
;
3820 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3822 rtx sequence
= PATTERN (prev
);
3823 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3826 else if (get_insns () == insn
)
3829 PREV_INSN (next
) = NULL
;
3830 set_first_insn (next
);
3834 struct sequence_stack
*stack
= seq_stack
;
3835 /* Scan all pending sequences too. */
3836 for (; stack
; stack
= stack
->next
)
3837 if (insn
== stack
->first
)
3839 stack
->first
= next
;
3848 PREV_INSN (next
) = prev
;
3849 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3850 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3852 else if (get_last_insn () == insn
)
3853 set_last_insn (prev
);
3856 struct sequence_stack
*stack
= seq_stack
;
3857 /* Scan all pending sequences too. */
3858 for (; stack
; stack
= stack
->next
)
3859 if (insn
== stack
->last
)
3867 if (!BARRIER_P (insn
)
3868 && (bb
= BLOCK_FOR_INSN (insn
)))
3871 df_set_bb_dirty (bb
);
3872 if (BB_HEAD (bb
) == insn
)
3874 /* Never ever delete the basic block note without deleting whole
3876 gcc_assert (!NOTE_P (insn
));
3877 BB_HEAD (bb
) = next
;
3879 if (BB_END (bb
) == insn
)
3884 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3887 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
3889 gcc_assert (call_insn
&& CALL_P (call_insn
));
3891 /* Put the register usage information on the CALL. If there is already
3892 some usage information, put ours at the end. */
3893 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
3897 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
3898 link
= XEXP (link
, 1))
3901 XEXP (link
, 1) = call_fusage
;
3904 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
3907 /* Delete all insns made since FROM.
3908 FROM becomes the new last instruction. */
3911 delete_insns_since (rtx from
)
3916 NEXT_INSN (from
) = 0;
3917 set_last_insn (from
);
3920 /* This function is deprecated, please use sequences instead.
3922 Move a consecutive bunch of insns to a different place in the chain.
3923 The insns to be moved are those between FROM and TO.
3924 They are moved to a new position after the insn AFTER.
3925 AFTER must not be FROM or TO or any insn in between.
3927 This function does not know about SEQUENCEs and hence should not be
3928 called after delay-slot filling has been done. */
3931 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
3933 #ifdef ENABLE_CHECKING
3935 for (x
= from
; x
!= to
; x
= NEXT_INSN (x
))
3936 gcc_assert (after
!= x
);
3937 gcc_assert (after
!= to
);
3940 /* Splice this bunch out of where it is now. */
3941 if (PREV_INSN (from
))
3942 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
3944 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
3945 if (get_last_insn () == to
)
3946 set_last_insn (PREV_INSN (from
));
3947 if (get_insns () == from
)
3948 set_first_insn (NEXT_INSN (to
));
3950 /* Make the new neighbors point to it and it to them. */
3951 if (NEXT_INSN (after
))
3952 PREV_INSN (NEXT_INSN (after
)) = to
;
3954 NEXT_INSN (to
) = NEXT_INSN (after
);
3955 PREV_INSN (from
) = after
;
3956 NEXT_INSN (after
) = from
;
3957 if (after
== get_last_insn())
3961 /* Same as function above, but take care to update BB boundaries. */
3963 reorder_insns (rtx from
, rtx to
, rtx after
)
3965 rtx prev
= PREV_INSN (from
);
3966 basic_block bb
, bb2
;
3968 reorder_insns_nobb (from
, to
, after
);
3970 if (!BARRIER_P (after
)
3971 && (bb
= BLOCK_FOR_INSN (after
)))
3974 df_set_bb_dirty (bb
);
3976 if (!BARRIER_P (from
)
3977 && (bb2
= BLOCK_FOR_INSN (from
)))
3979 if (BB_END (bb2
) == to
)
3980 BB_END (bb2
) = prev
;
3981 df_set_bb_dirty (bb2
);
3984 if (BB_END (bb
) == after
)
3987 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
3989 df_insn_change_bb (x
, bb
);
3994 /* Emit insn(s) of given code and pattern
3995 at a specified place within the doubly-linked list.
3997 All of the emit_foo global entry points accept an object
3998 X which is either an insn list or a PATTERN of a single
4001 There are thus a few canonical ways to generate code and
4002 emit it at a specific place in the instruction stream. For
4003 example, consider the instruction named SPOT and the fact that
4004 we would like to emit some instructions before SPOT. We might
4008 ... emit the new instructions ...
4009 insns_head = get_insns ();
4012 emit_insn_before (insns_head, SPOT);
4014 It used to be common to generate SEQUENCE rtl instead, but that
4015 is a relic of the past which no longer occurs. The reason is that
4016 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4017 generated would almost certainly die right after it was created. */
4019 /* Make X be output before the instruction BEFORE. */
4022 emit_insn_before_noloc (rtx x
, rtx before
, basic_block bb
)
4027 gcc_assert (before
);
4032 switch (GET_CODE (x
))
4044 rtx next
= NEXT_INSN (insn
);
4045 add_insn_before (insn
, before
, bb
);
4051 #ifdef ENABLE_RTL_CHECKING
4058 last
= make_insn_raw (x
);
4059 add_insn_before (last
, before
, bb
);
4066 /* Make an instruction with body X and code JUMP_INSN
4067 and output it before the instruction BEFORE. */
4070 emit_jump_insn_before_noloc (rtx x
, rtx before
)
4072 rtx insn
, last
= NULL_RTX
;
4074 gcc_assert (before
);
4076 switch (GET_CODE (x
))
4088 rtx next
= NEXT_INSN (insn
);
4089 add_insn_before (insn
, before
, NULL
);
4095 #ifdef ENABLE_RTL_CHECKING
4102 last
= make_jump_insn_raw (x
);
4103 add_insn_before (last
, before
, NULL
);
4110 /* Make an instruction with body X and code CALL_INSN
4111 and output it before the instruction BEFORE. */
4114 emit_call_insn_before_noloc (rtx x
, rtx before
)
4116 rtx last
= NULL_RTX
, insn
;
4118 gcc_assert (before
);
4120 switch (GET_CODE (x
))
4132 rtx next
= NEXT_INSN (insn
);
4133 add_insn_before (insn
, before
, NULL
);
4139 #ifdef ENABLE_RTL_CHECKING
4146 last
= make_call_insn_raw (x
);
4147 add_insn_before (last
, before
, NULL
);
4154 /* Make an instruction with body X and code DEBUG_INSN
4155 and output it before the instruction BEFORE. */
4158 emit_debug_insn_before_noloc (rtx x
, rtx before
)
4160 rtx last
= NULL_RTX
, insn
;
4162 gcc_assert (before
);
4164 switch (GET_CODE (x
))
4176 rtx next
= NEXT_INSN (insn
);
4177 add_insn_before (insn
, before
, NULL
);
4183 #ifdef ENABLE_RTL_CHECKING
4190 last
= make_debug_insn_raw (x
);
4191 add_insn_before (last
, before
, NULL
);
4198 /* Make an insn of code BARRIER
4199 and output it before the insn BEFORE. */
4202 emit_barrier_before (rtx before
)
4204 rtx insn
= rtx_alloc (BARRIER
);
4206 INSN_UID (insn
) = cur_insn_uid
++;
4208 add_insn_before (insn
, before
, NULL
);
4212 /* Emit the label LABEL before the insn BEFORE. */
4215 emit_label_before (rtx label
, rtx before
)
4217 /* This can be called twice for the same label as a result of the
4218 confusion that follows a syntax error! So make it harmless. */
4219 if (INSN_UID (label
) == 0)
4221 INSN_UID (label
) = cur_insn_uid
++;
4222 add_insn_before (label
, before
, NULL
);
4228 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4231 emit_note_before (enum insn_note subtype
, rtx before
)
4233 rtx note
= rtx_alloc (NOTE
);
4234 INSN_UID (note
) = cur_insn_uid
++;
4235 NOTE_KIND (note
) = subtype
;
4236 BLOCK_FOR_INSN (note
) = NULL
;
4237 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4239 add_insn_before (note
, before
, NULL
);
4243 /* Helper for emit_insn_after, handles lists of instructions
4247 emit_insn_after_1 (rtx first
, rtx after
, basic_block bb
)
4251 if (!bb
&& !BARRIER_P (after
))
4252 bb
= BLOCK_FOR_INSN (after
);
4256 df_set_bb_dirty (bb
);
4257 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4258 if (!BARRIER_P (last
))
4260 set_block_for_insn (last
, bb
);
4261 df_insn_rescan (last
);
4263 if (!BARRIER_P (last
))
4265 set_block_for_insn (last
, bb
);
4266 df_insn_rescan (last
);
4268 if (BB_END (bb
) == after
)
4272 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4275 after_after
= NEXT_INSN (after
);
4277 NEXT_INSN (after
) = first
;
4278 PREV_INSN (first
) = after
;
4279 NEXT_INSN (last
) = after_after
;
4281 PREV_INSN (after_after
) = last
;
4283 if (after
== get_last_insn())
4284 set_last_insn (last
);
4289 /* Make X be output after the insn AFTER and set the BB of insn. If
4290 BB is NULL, an attempt is made to infer the BB from AFTER. */
4293 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4302 switch (GET_CODE (x
))
4311 last
= emit_insn_after_1 (x
, after
, bb
);
4314 #ifdef ENABLE_RTL_CHECKING
4321 last
= make_insn_raw (x
);
4322 add_insn_after (last
, after
, bb
);
4330 /* Make an insn of code JUMP_INSN with body X
4331 and output it after the insn AFTER. */
4334 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4340 switch (GET_CODE (x
))
4349 last
= emit_insn_after_1 (x
, after
, NULL
);
4352 #ifdef ENABLE_RTL_CHECKING
4359 last
= make_jump_insn_raw (x
);
4360 add_insn_after (last
, after
, NULL
);
4367 /* Make an instruction with body X and code CALL_INSN
4368 and output it after the instruction AFTER. */
4371 emit_call_insn_after_noloc (rtx x
, rtx after
)
4377 switch (GET_CODE (x
))
4386 last
= emit_insn_after_1 (x
, after
, NULL
);
4389 #ifdef ENABLE_RTL_CHECKING
4396 last
= make_call_insn_raw (x
);
4397 add_insn_after (last
, after
, NULL
);
4404 /* Make an instruction with body X and code CALL_INSN
4405 and output it after the instruction AFTER. */
4408 emit_debug_insn_after_noloc (rtx x
, rtx after
)
4414 switch (GET_CODE (x
))
4423 last
= emit_insn_after_1 (x
, after
, NULL
);
4426 #ifdef ENABLE_RTL_CHECKING
4433 last
= make_debug_insn_raw (x
);
4434 add_insn_after (last
, after
, NULL
);
4441 /* Make an insn of code BARRIER
4442 and output it after the insn AFTER. */
4445 emit_barrier_after (rtx after
)
4447 rtx insn
= rtx_alloc (BARRIER
);
4449 INSN_UID (insn
) = cur_insn_uid
++;
4451 add_insn_after (insn
, after
, NULL
);
4455 /* Emit the label LABEL after the insn AFTER. */
4458 emit_label_after (rtx label
, rtx after
)
4460 /* This can be called twice for the same label
4461 as a result of the confusion that follows a syntax error!
4462 So make it harmless. */
4463 if (INSN_UID (label
) == 0)
4465 INSN_UID (label
) = cur_insn_uid
++;
4466 add_insn_after (label
, after
, NULL
);
4472 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4475 emit_note_after (enum insn_note subtype
, rtx after
)
4477 rtx note
= rtx_alloc (NOTE
);
4478 INSN_UID (note
) = cur_insn_uid
++;
4479 NOTE_KIND (note
) = subtype
;
4480 BLOCK_FOR_INSN (note
) = NULL
;
4481 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4482 add_insn_after (note
, after
, NULL
);
4486 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4488 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4490 rtx last
= emit_insn_after_noloc (pattern
, after
, NULL
);
4492 if (pattern
== NULL_RTX
|| !loc
)
4495 after
= NEXT_INSN (after
);
4498 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4499 INSN_LOCATOR (after
) = loc
;
4502 after
= NEXT_INSN (after
);
4507 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4509 emit_insn_after (rtx pattern
, rtx after
)
4513 while (DEBUG_INSN_P (prev
))
4514 prev
= PREV_INSN (prev
);
4517 return emit_insn_after_setloc (pattern
, after
, INSN_LOCATOR (prev
));
4519 return emit_insn_after_noloc (pattern
, after
, NULL
);
4522 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4524 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4526 rtx last
= emit_jump_insn_after_noloc (pattern
, after
);
4528 if (pattern
== NULL_RTX
|| !loc
)
4531 after
= NEXT_INSN (after
);
4534 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4535 INSN_LOCATOR (after
) = loc
;
4538 after
= NEXT_INSN (after
);
4543 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4545 emit_jump_insn_after (rtx pattern
, rtx after
)
4549 while (DEBUG_INSN_P (prev
))
4550 prev
= PREV_INSN (prev
);
4553 return emit_jump_insn_after_setloc (pattern
, after
, INSN_LOCATOR (prev
));
4555 return emit_jump_insn_after_noloc (pattern
, after
);
4558 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4560 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4562 rtx last
= emit_call_insn_after_noloc (pattern
, after
);
4564 if (pattern
== NULL_RTX
|| !loc
)
4567 after
= NEXT_INSN (after
);
4570 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4571 INSN_LOCATOR (after
) = loc
;
4574 after
= NEXT_INSN (after
);
4579 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4581 emit_call_insn_after (rtx pattern
, rtx after
)
4585 while (DEBUG_INSN_P (prev
))
4586 prev
= PREV_INSN (prev
);
4589 return emit_call_insn_after_setloc (pattern
, after
, INSN_LOCATOR (prev
));
4591 return emit_call_insn_after_noloc (pattern
, after
);
4594 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4596 emit_debug_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4598 rtx last
= emit_debug_insn_after_noloc (pattern
, after
);
4600 if (pattern
== NULL_RTX
|| !loc
)
4603 after
= NEXT_INSN (after
);
4606 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4607 INSN_LOCATOR (after
) = loc
;
4610 after
= NEXT_INSN (after
);
4615 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4617 emit_debug_insn_after (rtx pattern
, rtx after
)
4620 return emit_debug_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4622 return emit_debug_insn_after_noloc (pattern
, after
);
4625 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4627 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4629 rtx first
= PREV_INSN (before
);
4630 rtx last
= emit_insn_before_noloc (pattern
, before
, NULL
);
4632 if (pattern
== NULL_RTX
|| !loc
)
4636 first
= get_insns ();
4638 first
= NEXT_INSN (first
);
4641 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4642 INSN_LOCATOR (first
) = loc
;
4645 first
= NEXT_INSN (first
);
4650 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4652 emit_insn_before (rtx pattern
, rtx before
)
4656 while (DEBUG_INSN_P (next
))
4657 next
= PREV_INSN (next
);
4660 return emit_insn_before_setloc (pattern
, before
, INSN_LOCATOR (next
));
4662 return emit_insn_before_noloc (pattern
, before
, NULL
);
4665 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4667 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4669 rtx first
= PREV_INSN (before
);
4670 rtx last
= emit_jump_insn_before_noloc (pattern
, before
);
4672 if (pattern
== NULL_RTX
)
4675 first
= NEXT_INSN (first
);
4678 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4679 INSN_LOCATOR (first
) = loc
;
4682 first
= NEXT_INSN (first
);
4687 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4689 emit_jump_insn_before (rtx pattern
, rtx before
)
4693 while (DEBUG_INSN_P (next
))
4694 next
= PREV_INSN (next
);
4697 return emit_jump_insn_before_setloc (pattern
, before
, INSN_LOCATOR (next
));
4699 return emit_jump_insn_before_noloc (pattern
, before
);
4702 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4704 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4706 rtx first
= PREV_INSN (before
);
4707 rtx last
= emit_call_insn_before_noloc (pattern
, before
);
4709 if (pattern
== NULL_RTX
)
4712 first
= NEXT_INSN (first
);
4715 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4716 INSN_LOCATOR (first
) = loc
;
4719 first
= NEXT_INSN (first
);
4724 /* like emit_call_insn_before_noloc,
4725 but set insn_locator according to before. */
4727 emit_call_insn_before (rtx pattern
, rtx before
)
4731 while (DEBUG_INSN_P (next
))
4732 next
= PREV_INSN (next
);
4735 return emit_call_insn_before_setloc (pattern
, before
, INSN_LOCATOR (next
));
4737 return emit_call_insn_before_noloc (pattern
, before
);
4740 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4742 emit_debug_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4744 rtx first
= PREV_INSN (before
);
4745 rtx last
= emit_debug_insn_before_noloc (pattern
, before
);
4747 if (pattern
== NULL_RTX
)
4750 first
= NEXT_INSN (first
);
4753 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4754 INSN_LOCATOR (first
) = loc
;
4757 first
= NEXT_INSN (first
);
4762 /* like emit_debug_insn_before_noloc,
4763 but set insn_locator according to before. */
4765 emit_debug_insn_before (rtx pattern
, rtx before
)
4767 if (INSN_P (before
))
4768 return emit_debug_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4770 return emit_debug_insn_before_noloc (pattern
, before
);
4773 /* Take X and emit it at the end of the doubly-linked
4776 Returns the last insn emitted. */
4781 rtx last
= get_last_insn();
4787 switch (GET_CODE (x
))
4799 rtx next
= NEXT_INSN (insn
);
4806 #ifdef ENABLE_RTL_CHECKING
4813 last
= make_insn_raw (x
);
4821 /* Make an insn of code DEBUG_INSN with pattern X
4822 and add it to the end of the doubly-linked list. */
4825 emit_debug_insn (rtx x
)
4827 rtx last
= get_last_insn();
4833 switch (GET_CODE (x
))
4845 rtx next
= NEXT_INSN (insn
);
4852 #ifdef ENABLE_RTL_CHECKING
4859 last
= make_debug_insn_raw (x
);
4867 /* Make an insn of code JUMP_INSN with pattern X
4868 and add it to the end of the doubly-linked list. */
4871 emit_jump_insn (rtx x
)
4873 rtx last
= NULL_RTX
, insn
;
4875 switch (GET_CODE (x
))
4887 rtx next
= NEXT_INSN (insn
);
4894 #ifdef ENABLE_RTL_CHECKING
4901 last
= make_jump_insn_raw (x
);
4909 /* Make an insn of code CALL_INSN with pattern X
4910 and add it to the end of the doubly-linked list. */
4913 emit_call_insn (rtx x
)
4917 switch (GET_CODE (x
))
4926 insn
= emit_insn (x
);
4929 #ifdef ENABLE_RTL_CHECKING
4936 insn
= make_call_insn_raw (x
);
4944 /* Add the label LABEL to the end of the doubly-linked list. */
4947 emit_label (rtx label
)
4949 /* This can be called twice for the same label
4950 as a result of the confusion that follows a syntax error!
4951 So make it harmless. */
4952 if (INSN_UID (label
) == 0)
4954 INSN_UID (label
) = cur_insn_uid
++;
4960 /* Make an insn of code BARRIER
4961 and add it to the end of the doubly-linked list. */
4966 rtx barrier
= rtx_alloc (BARRIER
);
4967 INSN_UID (barrier
) = cur_insn_uid
++;
4972 /* Emit a copy of note ORIG. */
4975 emit_note_copy (rtx orig
)
4979 note
= rtx_alloc (NOTE
);
4981 INSN_UID (note
) = cur_insn_uid
++;
4982 NOTE_DATA (note
) = NOTE_DATA (orig
);
4983 NOTE_KIND (note
) = NOTE_KIND (orig
);
4984 BLOCK_FOR_INSN (note
) = NULL
;
4990 /* Make an insn of code NOTE or type NOTE_NO
4991 and add it to the end of the doubly-linked list. */
4994 emit_note (enum insn_note kind
)
4998 note
= rtx_alloc (NOTE
);
4999 INSN_UID (note
) = cur_insn_uid
++;
5000 NOTE_KIND (note
) = kind
;
5001 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
5002 BLOCK_FOR_INSN (note
) = NULL
;
5007 /* Emit a clobber of lvalue X. */
5010 emit_clobber (rtx x
)
5012 /* CONCATs should not appear in the insn stream. */
5013 if (GET_CODE (x
) == CONCAT
)
5015 emit_clobber (XEXP (x
, 0));
5016 return emit_clobber (XEXP (x
, 1));
5018 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
5021 /* Return a sequence of insns to clobber lvalue X. */
5035 /* Emit a use of rvalue X. */
5040 /* CONCATs should not appear in the insn stream. */
5041 if (GET_CODE (x
) == CONCAT
)
5043 emit_use (XEXP (x
, 0));
5044 return emit_use (XEXP (x
, 1));
5046 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
5049 /* Return a sequence of insns to use rvalue X. */
5063 /* Cause next statement to emit a line note even if the line number
5067 force_next_line_note (void)
5072 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5073 note of this type already exists, remove it first. */
5076 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
5078 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
5084 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5085 has multiple sets (some callers assume single_set
5086 means the insn only has one set, when in fact it
5087 means the insn only has one * useful * set). */
5088 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
5094 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5095 It serves no useful purpose and breaks eliminate_regs. */
5096 if (GET_CODE (datum
) == ASM_OPERANDS
)
5101 XEXP (note
, 0) = datum
;
5102 df_notes_rescan (insn
);
5110 XEXP (note
, 0) = datum
;
5116 add_reg_note (insn
, kind
, datum
);
5122 df_notes_rescan (insn
);
5128 return REG_NOTES (insn
);
5131 /* Return an indication of which type of insn should have X as a body.
5132 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5134 static enum rtx_code
5135 classify_insn (rtx x
)
5139 if (GET_CODE (x
) == CALL
)
5141 if (GET_CODE (x
) == RETURN
)
5143 if (GET_CODE (x
) == SET
)
5145 if (SET_DEST (x
) == pc_rtx
)
5147 else if (GET_CODE (SET_SRC (x
)) == CALL
)
5152 if (GET_CODE (x
) == PARALLEL
)
5155 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
5156 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
5158 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5159 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
5161 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5162 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
5168 /* Emit the rtl pattern X as an appropriate kind of insn.
5169 If X is a label, it is simply added into the insn chain. */
5174 enum rtx_code code
= classify_insn (x
);
5179 return emit_label (x
);
5181 return emit_insn (x
);
5184 rtx insn
= emit_jump_insn (x
);
5185 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
5186 return emit_barrier ();
5190 return emit_call_insn (x
);
5192 return emit_debug_insn (x
);
5198 /* Space for free sequence stack entries. */
5199 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
5201 /* Begin emitting insns to a sequence. If this sequence will contain
5202 something that might cause the compiler to pop arguments to function
5203 calls (because those pops have previously been deferred; see
5204 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5205 before calling this function. That will ensure that the deferred
5206 pops are not accidentally emitted in the middle of this sequence. */
5209 start_sequence (void)
5211 struct sequence_stack
*tem
;
5213 if (free_sequence_stack
!= NULL
)
5215 tem
= free_sequence_stack
;
5216 free_sequence_stack
= tem
->next
;
5219 tem
= ggc_alloc_sequence_stack ();
5221 tem
->next
= seq_stack
;
5222 tem
->first
= get_insns ();
5223 tem
->last
= get_last_insn ();
5231 /* Set up the insn chain starting with FIRST as the current sequence,
5232 saving the previously current one. See the documentation for
5233 start_sequence for more information about how to use this function. */
5236 push_to_sequence (rtx first
)
5242 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
));
5244 set_first_insn (first
);
5245 set_last_insn (last
);
5248 /* Like push_to_sequence, but take the last insn as an argument to avoid
5249 looping through the list. */
5252 push_to_sequence2 (rtx first
, rtx last
)
5256 set_first_insn (first
);
5257 set_last_insn (last
);
5260 /* Set up the outer-level insn chain
5261 as the current sequence, saving the previously current one. */
5264 push_topmost_sequence (void)
5266 struct sequence_stack
*stack
, *top
= NULL
;
5270 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5273 set_first_insn (top
->first
);
5274 set_last_insn (top
->last
);
5277 /* After emitting to the outer-level insn chain, update the outer-level
5278 insn chain, and restore the previous saved state. */
5281 pop_topmost_sequence (void)
5283 struct sequence_stack
*stack
, *top
= NULL
;
5285 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5288 top
->first
= get_insns ();
5289 top
->last
= get_last_insn ();
5294 /* After emitting to a sequence, restore previous saved state.
5296 To get the contents of the sequence just made, you must call
5297 `get_insns' *before* calling here.
5299 If the compiler might have deferred popping arguments while
5300 generating this sequence, and this sequence will not be immediately
5301 inserted into the instruction stream, use do_pending_stack_adjust
5302 before calling get_insns. That will ensure that the deferred
5303 pops are inserted into this sequence, and not into some random
5304 location in the instruction stream. See INHIBIT_DEFER_POP for more
5305 information about deferred popping of arguments. */
5310 struct sequence_stack
*tem
= seq_stack
;
5312 set_first_insn (tem
->first
);
5313 set_last_insn (tem
->last
);
5314 seq_stack
= tem
->next
;
5316 memset (tem
, 0, sizeof (*tem
));
5317 tem
->next
= free_sequence_stack
;
5318 free_sequence_stack
= tem
;
5321 /* Return 1 if currently emitting into a sequence. */
5324 in_sequence_p (void)
5326 return seq_stack
!= 0;
5329 /* Put the various virtual registers into REGNO_REG_RTX. */
5332 init_virtual_regs (void)
5334 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5335 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5336 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5337 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5338 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5339 regno_reg_rtx
[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
]
5340 = virtual_preferred_stack_boundary_rtx
;
5344 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5345 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5346 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5347 static int copy_insn_n_scratches
;
5349 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5350 copied an ASM_OPERANDS.
5351 In that case, it is the original input-operand vector. */
5352 static rtvec orig_asm_operands_vector
;
5354 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5355 copied an ASM_OPERANDS.
5356 In that case, it is the copied input-operand vector. */
5357 static rtvec copy_asm_operands_vector
;
5359 /* Likewise for the constraints vector. */
5360 static rtvec orig_asm_constraints_vector
;
5361 static rtvec copy_asm_constraints_vector
;
5363 /* Recursively create a new copy of an rtx for copy_insn.
5364 This function differs from copy_rtx in that it handles SCRATCHes and
5365 ASM_OPERANDs properly.
5366 Normally, this function is not used directly; use copy_insn as front end.
5367 However, you could first copy an insn pattern with copy_insn and then use
5368 this function afterwards to properly copy any REG_NOTEs containing
5372 copy_insn_1 (rtx orig
)
5377 const char *format_ptr
;
5382 code
= GET_CODE (orig
);
5397 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
)
5402 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5403 if (copy_insn_scratch_in
[i
] == orig
)
5404 return copy_insn_scratch_out
[i
];
5408 if (shared_const_p (orig
))
5412 /* A MEM with a constant address is not sharable. The problem is that
5413 the constant address may need to be reloaded. If the mem is shared,
5414 then reloading one copy of this mem will cause all copies to appear
5415 to have been reloaded. */
5421 /* Copy the various flags, fields, and other information. We assume
5422 that all fields need copying, and then clear the fields that should
5423 not be copied. That is the sensible default behavior, and forces
5424 us to explicitly document why we are *not* copying a flag. */
5425 copy
= shallow_copy_rtx (orig
);
5427 /* We do not copy the USED flag, which is used as a mark bit during
5428 walks over the RTL. */
5429 RTX_FLAG (copy
, used
) = 0;
5431 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5434 RTX_FLAG (copy
, jump
) = 0;
5435 RTX_FLAG (copy
, call
) = 0;
5436 RTX_FLAG (copy
, frame_related
) = 0;
5439 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5441 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5442 switch (*format_ptr
++)
5445 if (XEXP (orig
, i
) != NULL
)
5446 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5451 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5452 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5453 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5454 XVEC (copy
, i
) = copy_asm_operands_vector
;
5455 else if (XVEC (orig
, i
) != NULL
)
5457 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5458 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5459 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5470 /* These are left unchanged. */
5477 if (code
== SCRATCH
)
5479 i
= copy_insn_n_scratches
++;
5480 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5481 copy_insn_scratch_in
[i
] = orig
;
5482 copy_insn_scratch_out
[i
] = copy
;
5484 else if (code
== ASM_OPERANDS
)
5486 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5487 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5488 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5489 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5495 /* Create a new copy of an rtx.
5496 This function differs from copy_rtx in that it handles SCRATCHes and
5497 ASM_OPERANDs properly.
5498 INSN doesn't really have to be a full INSN; it could be just the
5501 copy_insn (rtx insn
)
5503 copy_insn_n_scratches
= 0;
5504 orig_asm_operands_vector
= 0;
5505 orig_asm_constraints_vector
= 0;
5506 copy_asm_operands_vector
= 0;
5507 copy_asm_constraints_vector
= 0;
5508 return copy_insn_1 (insn
);
5511 /* Initialize data structures and variables in this file
5512 before generating rtl for each function. */
5517 set_first_insn (NULL
);
5518 set_last_insn (NULL
);
5519 if (MIN_NONDEBUG_INSN_UID
)
5520 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
;
5523 cur_debug_insn_uid
= 1;
5524 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5525 last_location
= UNKNOWN_LOCATION
;
5526 first_label_num
= label_num
;
5529 /* Init the tables that describe all the pseudo regs. */
5531 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5533 crtl
->emit
.regno_pointer_align
5534 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5536 regno_reg_rtx
= ggc_alloc_vec_rtx (crtl
->emit
.regno_pointer_align_length
);
5538 /* Put copies of all the hard registers into regno_reg_rtx. */
5539 memcpy (regno_reg_rtx
,
5540 initial_regno_reg_rtx
,
5541 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5543 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5544 init_virtual_regs ();
5546 /* Indicate that the virtual registers and stack locations are
5548 REG_POINTER (stack_pointer_rtx
) = 1;
5549 REG_POINTER (frame_pointer_rtx
) = 1;
5550 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5551 REG_POINTER (arg_pointer_rtx
) = 1;
5553 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5554 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5555 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5556 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5557 REG_POINTER (virtual_cfa_rtx
) = 1;
5559 #ifdef STACK_BOUNDARY
5560 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5561 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5562 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5563 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5565 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5566 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5567 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5568 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5569 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5572 #ifdef INIT_EXPANDERS
5577 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5580 gen_const_vector (enum machine_mode mode
, int constant
)
5585 enum machine_mode inner
;
5587 units
= GET_MODE_NUNITS (mode
);
5588 inner
= GET_MODE_INNER (mode
);
5590 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5592 v
= rtvec_alloc (units
);
5594 /* We need to call this function after we set the scalar const_tiny_rtx
5596 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5598 for (i
= 0; i
< units
; ++i
)
5599 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5601 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5605 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5606 all elements are zero, and the one vector when all elements are one. */
5608 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5610 enum machine_mode inner
= GET_MODE_INNER (mode
);
5611 int nunits
= GET_MODE_NUNITS (mode
);
5615 /* Check to see if all of the elements have the same value. */
5616 x
= RTVEC_ELT (v
, nunits
- 1);
5617 for (i
= nunits
- 2; i
>= 0; i
--)
5618 if (RTVEC_ELT (v
, i
) != x
)
5621 /* If the values are all the same, check to see if we can use one of the
5622 standard constant vectors. */
5625 if (x
== CONST0_RTX (inner
))
5626 return CONST0_RTX (mode
);
5627 else if (x
== CONST1_RTX (inner
))
5628 return CONST1_RTX (mode
);
5631 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5634 /* Initialise global register information required by all functions. */
5637 init_emit_regs (void)
5641 /* Reset register attributes */
5642 htab_empty (reg_attrs_htab
);
5644 /* We need reg_raw_mode, so initialize the modes now. */
5645 init_reg_modes_target ();
5647 /* Assign register numbers to the globally defined register rtx. */
5648 pc_rtx
= gen_rtx_PC (VOIDmode
);
5649 cc0_rtx
= gen_rtx_CC0 (VOIDmode
);
5650 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5651 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5652 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5653 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5654 virtual_incoming_args_rtx
=
5655 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5656 virtual_stack_vars_rtx
=
5657 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5658 virtual_stack_dynamic_rtx
=
5659 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5660 virtual_outgoing_args_rtx
=
5661 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5662 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5663 virtual_preferred_stack_boundary_rtx
=
5664 gen_raw_REG (Pmode
, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
);
5666 /* Initialize RTL for commonly used hard registers. These are
5667 copied into regno_reg_rtx as we begin to compile each function. */
5668 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5669 initial_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5671 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5672 return_address_pointer_rtx
5673 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5676 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5677 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5679 pic_offset_table_rtx
= NULL_RTX
;
5682 /* Create some permanent unique rtl objects shared between all functions. */
5685 init_emit_once (void)
5688 enum machine_mode mode
;
5689 enum machine_mode double_mode
;
5691 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5693 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5694 const_int_htab_eq
, NULL
);
5696 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5697 const_double_htab_eq
, NULL
);
5699 const_fixed_htab
= htab_create_ggc (37, const_fixed_htab_hash
,
5700 const_fixed_htab_eq
, NULL
);
5702 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5703 mem_attrs_htab_eq
, NULL
);
5704 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5705 reg_attrs_htab_eq
, NULL
);
5707 /* Compute the word and byte modes. */
5709 byte_mode
= VOIDmode
;
5710 word_mode
= VOIDmode
;
5711 double_mode
= VOIDmode
;
5713 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5715 mode
= GET_MODE_WIDER_MODE (mode
))
5717 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5718 && byte_mode
== VOIDmode
)
5721 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5722 && word_mode
== VOIDmode
)
5726 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5728 mode
= GET_MODE_WIDER_MODE (mode
))
5730 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5731 && double_mode
== VOIDmode
)
5735 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5737 #ifdef INIT_EXPANDERS
5738 /* This is to initialize {init|mark|free}_machine_status before the first
5739 call to push_function_context_to. This is needed by the Chill front
5740 end which calls push_function_context_to before the first call to
5741 init_function_start. */
5745 /* Create the unique rtx's for certain rtx codes and operand values. */
5747 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5748 tries to use these variables. */
5749 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5750 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5751 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5753 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5754 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5755 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5757 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5759 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5760 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5761 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5766 dconsthalf
= dconst1
;
5767 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5769 for (i
= 0; i
< (int) ARRAY_SIZE (const_tiny_rtx
); i
++)
5771 const REAL_VALUE_TYPE
*const r
=
5772 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5774 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5776 mode
= GET_MODE_WIDER_MODE (mode
))
5777 const_tiny_rtx
[i
][(int) mode
] =
5778 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5780 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5782 mode
= GET_MODE_WIDER_MODE (mode
))
5783 const_tiny_rtx
[i
][(int) mode
] =
5784 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5786 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5788 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5790 mode
= GET_MODE_WIDER_MODE (mode
))
5791 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5793 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT
);
5795 mode
= GET_MODE_WIDER_MODE (mode
))
5796 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5799 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5801 mode
= GET_MODE_WIDER_MODE (mode
))
5803 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5804 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5807 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
5809 mode
= GET_MODE_WIDER_MODE (mode
))
5811 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5812 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5815 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5817 mode
= GET_MODE_WIDER_MODE (mode
))
5819 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5820 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5823 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5825 mode
= GET_MODE_WIDER_MODE (mode
))
5827 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5828 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5831 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
5833 mode
= GET_MODE_WIDER_MODE (mode
))
5835 FCONST0(mode
).data
.high
= 0;
5836 FCONST0(mode
).data
.low
= 0;
5837 FCONST0(mode
).mode
= mode
;
5838 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5839 FCONST0 (mode
), mode
);
5842 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
5844 mode
= GET_MODE_WIDER_MODE (mode
))
5846 FCONST0(mode
).data
.high
= 0;
5847 FCONST0(mode
).data
.low
= 0;
5848 FCONST0(mode
).mode
= mode
;
5849 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5850 FCONST0 (mode
), mode
);
5853 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
5855 mode
= GET_MODE_WIDER_MODE (mode
))
5857 FCONST0(mode
).data
.high
= 0;
5858 FCONST0(mode
).data
.low
= 0;
5859 FCONST0(mode
).mode
= mode
;
5860 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5861 FCONST0 (mode
), mode
);
5863 /* We store the value 1. */
5864 FCONST1(mode
).data
.high
= 0;
5865 FCONST1(mode
).data
.low
= 0;
5866 FCONST1(mode
).mode
= mode
;
5867 lshift_double (1, 0, GET_MODE_FBIT (mode
),
5868 2 * HOST_BITS_PER_WIDE_INT
,
5869 &FCONST1(mode
).data
.low
,
5870 &FCONST1(mode
).data
.high
,
5871 SIGNED_FIXED_POINT_MODE_P (mode
));
5872 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5873 FCONST1 (mode
), mode
);
5876 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
5878 mode
= GET_MODE_WIDER_MODE (mode
))
5880 FCONST0(mode
).data
.high
= 0;
5881 FCONST0(mode
).data
.low
= 0;
5882 FCONST0(mode
).mode
= mode
;
5883 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5884 FCONST0 (mode
), mode
);
5886 /* We store the value 1. */
5887 FCONST1(mode
).data
.high
= 0;
5888 FCONST1(mode
).data
.low
= 0;
5889 FCONST1(mode
).mode
= mode
;
5890 lshift_double (1, 0, GET_MODE_FBIT (mode
),
5891 2 * HOST_BITS_PER_WIDE_INT
,
5892 &FCONST1(mode
).data
.low
,
5893 &FCONST1(mode
).data
.high
,
5894 SIGNED_FIXED_POINT_MODE_P (mode
));
5895 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5896 FCONST1 (mode
), mode
);
5899 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
5901 mode
= GET_MODE_WIDER_MODE (mode
))
5903 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5906 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
5908 mode
= GET_MODE_WIDER_MODE (mode
))
5910 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5913 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
5915 mode
= GET_MODE_WIDER_MODE (mode
))
5917 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5918 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5921 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
5923 mode
= GET_MODE_WIDER_MODE (mode
))
5925 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5926 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5929 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5930 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5931 const_tiny_rtx
[0][i
] = const0_rtx
;
5933 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5934 if (STORE_FLAG_VALUE
== 1)
5935 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5938 /* Produce exact duplicate of insn INSN after AFTER.
5939 Care updating of libcall regions if present. */
5942 emit_copy_of_insn_after (rtx insn
, rtx after
)
5946 switch (GET_CODE (insn
))
5949 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5953 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5957 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
5961 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5962 if (CALL_INSN_FUNCTION_USAGE (insn
))
5963 CALL_INSN_FUNCTION_USAGE (new_rtx
)
5964 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5965 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
5966 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
5967 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
5968 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
5969 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
5976 /* Update LABEL_NUSES. */
5977 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
5979 INSN_LOCATOR (new_rtx
) = INSN_LOCATOR (insn
);
5981 /* If the old insn is frame related, then so is the new one. This is
5982 primarily needed for IA-64 unwind info which marks epilogue insns,
5983 which may be duplicated by the basic block reordering code. */
5984 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
5986 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5987 will make them. REG_LABEL_TARGETs are created there too, but are
5988 supposed to be sticky, so we copy them. */
5989 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5990 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
5992 if (GET_CODE (link
) == EXPR_LIST
)
5993 add_reg_note (new_rtx
, REG_NOTE_KIND (link
),
5994 copy_insn_1 (XEXP (link
, 0)));
5996 add_reg_note (new_rtx
, REG_NOTE_KIND (link
), XEXP (link
, 0));
5999 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
6003 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
6005 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
6007 if (hard_reg_clobbers
[mode
][regno
])
6008 return hard_reg_clobbers
[mode
][regno
];
6010 return (hard_reg_clobbers
[mode
][regno
] =
6011 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
6014 #include "gt-emit-rtl.h"