2010-11-11 Jakub Jelinek <jakub@redhat.com>
[official-gcc.git] / gcc / emit-rtl.c
blob60fe39b1ebf5458c21894a0ceead36fe9fa54320
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 /* Middle-to-low level generation of rtx code and insns.
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "diagnostic-core.h"
42 #include "toplev.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "tm_p.h"
46 #include "flags.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
61 #include "params.h"
62 #include "target.h"
64 struct target_rtl default_target_rtl;
65 #if SWITCHABLE_TARGET
66 struct target_rtl *this_target_rtl = &default_target_rtl;
67 #endif
69 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
71 /* Commonly used modes. */
73 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
74 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
75 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
76 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
78 /* Datastructures maintained for currently processed function in RTL form. */
80 struct rtl_data x_rtl;
82 /* Indexed by pseudo register number, gives the rtx for that pseudo.
83 Allocated in parallel with regno_pointer_align.
84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
85 with length attribute nested in top level structures. */
87 rtx * regno_reg_rtx;
89 /* This is *not* reset after each function. It gives each CODE_LABEL
90 in the entire compilation a unique label number. */
92 static GTY(()) int label_num = 1;
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx. */
98 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
100 rtx const_true_rtx;
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconsthalf;
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
117 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
119 /* A hash table storing CONST_INTs whose absolute value is greater
120 than MAX_SAVED_CONST_INT. */
122 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
123 htab_t const_int_htab;
125 /* A hash table storing memory attribute structures. */
126 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
127 htab_t mem_attrs_htab;
129 /* A hash table storing register attribute structures. */
130 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
131 htab_t reg_attrs_htab;
133 /* A hash table storing all CONST_DOUBLEs. */
134 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
135 htab_t const_double_htab;
137 /* A hash table storing all CONST_FIXEDs. */
138 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
139 htab_t const_fixed_htab;
141 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
142 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
143 #define last_location (crtl->emit.x_last_location)
144 #define first_label_num (crtl->emit.x_first_label_num)
146 static rtx make_call_insn_raw (rtx);
147 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
148 static void set_used_decls (tree);
149 static void mark_label_nuses (rtx);
150 static hashval_t const_int_htab_hash (const void *);
151 static int const_int_htab_eq (const void *, const void *);
152 static hashval_t const_double_htab_hash (const void *);
153 static int const_double_htab_eq (const void *, const void *);
154 static rtx lookup_const_double (rtx);
155 static hashval_t const_fixed_htab_hash (const void *);
156 static int const_fixed_htab_eq (const void *, const void *);
157 static rtx lookup_const_fixed (rtx);
158 static hashval_t mem_attrs_htab_hash (const void *);
159 static int mem_attrs_htab_eq (const void *, const void *);
160 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
161 addr_space_t, enum machine_mode);
162 static hashval_t reg_attrs_htab_hash (const void *);
163 static int reg_attrs_htab_eq (const void *, const void *);
164 static reg_attrs *get_reg_attrs (tree, int);
165 static rtx gen_const_vector (enum machine_mode, int);
166 static void copy_rtx_if_shared_1 (rtx *orig);
168 /* Probability of the conditional branch currently proceeded by try_split.
169 Set to -1 otherwise. */
170 int split_branch_probability = -1;
172 /* Returns a hash code for X (which is a really a CONST_INT). */
174 static hashval_t
175 const_int_htab_hash (const void *x)
177 return (hashval_t) INTVAL ((const_rtx) x);
180 /* Returns nonzero if the value represented by X (which is really a
181 CONST_INT) is the same as that given by Y (which is really a
182 HOST_WIDE_INT *). */
184 static int
185 const_int_htab_eq (const void *x, const void *y)
187 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
190 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
191 static hashval_t
192 const_double_htab_hash (const void *x)
194 const_rtx const value = (const_rtx) x;
195 hashval_t h;
197 if (GET_MODE (value) == VOIDmode)
198 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
199 else
201 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
202 /* MODE is used in the comparison, so it should be in the hash. */
203 h ^= GET_MODE (value);
205 return h;
208 /* Returns nonzero if the value represented by X (really a ...)
209 is the same as that represented by Y (really a ...) */
210 static int
211 const_double_htab_eq (const void *x, const void *y)
213 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
215 if (GET_MODE (a) != GET_MODE (b))
216 return 0;
217 if (GET_MODE (a) == VOIDmode)
218 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
219 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
220 else
221 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
222 CONST_DOUBLE_REAL_VALUE (b));
225 /* Returns a hash code for X (which is really a CONST_FIXED). */
227 static hashval_t
228 const_fixed_htab_hash (const void *x)
230 const_rtx const value = (const_rtx) x;
231 hashval_t h;
233 h = fixed_hash (CONST_FIXED_VALUE (value));
234 /* MODE is used in the comparison, so it should be in the hash. */
235 h ^= GET_MODE (value);
236 return h;
239 /* Returns nonzero if the value represented by X (really a ...)
240 is the same as that represented by Y (really a ...). */
242 static int
243 const_fixed_htab_eq (const void *x, const void *y)
245 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
247 if (GET_MODE (a) != GET_MODE (b))
248 return 0;
249 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
252 /* Returns a hash code for X (which is a really a mem_attrs *). */
254 static hashval_t
255 mem_attrs_htab_hash (const void *x)
257 const mem_attrs *const p = (const mem_attrs *) x;
259 return (p->alias ^ (p->align * 1000)
260 ^ (p->addrspace * 4000)
261 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
262 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
263 ^ (size_t) iterative_hash_expr (p->expr, 0));
266 /* Returns nonzero if the value represented by X (which is really a
267 mem_attrs *) is the same as that given by Y (which is also really a
268 mem_attrs *). */
270 static int
271 mem_attrs_htab_eq (const void *x, const void *y)
273 const mem_attrs *const p = (const mem_attrs *) x;
274 const mem_attrs *const q = (const mem_attrs *) y;
276 return (p->alias == q->alias && p->offset == q->offset
277 && p->size == q->size && p->align == q->align
278 && p->addrspace == q->addrspace
279 && (p->expr == q->expr
280 || (p->expr != NULL_TREE && q->expr != NULL_TREE
281 && operand_equal_p (p->expr, q->expr, 0))));
284 /* Allocate a new mem_attrs structure and insert it into the hash table if
285 one identical to it is not already in the table. We are doing this for
286 MEM of mode MODE. */
288 static mem_attrs *
289 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
290 unsigned int align, addr_space_t addrspace, enum machine_mode mode)
292 mem_attrs attrs;
293 void **slot;
295 /* If everything is the default, we can just return zero.
296 This must match what the corresponding MEM_* macros return when the
297 field is not present. */
298 if (alias == 0 && expr == 0 && offset == 0 && addrspace == 0
299 && (size == 0
300 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
301 && (STRICT_ALIGNMENT && mode != BLKmode
302 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
303 return 0;
305 attrs.alias = alias;
306 attrs.expr = expr;
307 attrs.offset = offset;
308 attrs.size = size;
309 attrs.align = align;
310 attrs.addrspace = addrspace;
312 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
313 if (*slot == 0)
315 *slot = ggc_alloc_mem_attrs ();
316 memcpy (*slot, &attrs, sizeof (mem_attrs));
319 return (mem_attrs *) *slot;
322 /* Returns a hash code for X (which is a really a reg_attrs *). */
324 static hashval_t
325 reg_attrs_htab_hash (const void *x)
327 const reg_attrs *const p = (const reg_attrs *) x;
329 return ((p->offset * 1000) ^ (long) p->decl);
332 /* Returns nonzero if the value represented by X (which is really a
333 reg_attrs *) is the same as that given by Y (which is also really a
334 reg_attrs *). */
336 static int
337 reg_attrs_htab_eq (const void *x, const void *y)
339 const reg_attrs *const p = (const reg_attrs *) x;
340 const reg_attrs *const q = (const reg_attrs *) y;
342 return (p->decl == q->decl && p->offset == q->offset);
344 /* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
346 MEM of mode MODE. */
348 static reg_attrs *
349 get_reg_attrs (tree decl, int offset)
351 reg_attrs attrs;
352 void **slot;
354 /* If everything is the default, we can just return zero. */
355 if (decl == 0 && offset == 0)
356 return 0;
358 attrs.decl = decl;
359 attrs.offset = offset;
361 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
362 if (*slot == 0)
364 *slot = ggc_alloc_reg_attrs ();
365 memcpy (*slot, &attrs, sizeof (reg_attrs));
368 return (reg_attrs *) *slot;
372 #if !HAVE_blockage
373 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
374 across this insn. */
377 gen_blockage (void)
379 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
380 MEM_VOLATILE_P (x) = true;
381 return x;
383 #endif
386 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
387 don't attempt to share with the various global pieces of rtl (such as
388 frame_pointer_rtx). */
391 gen_raw_REG (enum machine_mode mode, int regno)
393 rtx x = gen_rtx_raw_REG (mode, regno);
394 ORIGINAL_REGNO (x) = regno;
395 return x;
398 /* There are some RTL codes that require special attention; the generation
399 functions do the raw handling. If you add to this list, modify
400 special_rtx in gengenrtl.c as well. */
403 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
405 void **slot;
407 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
408 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
410 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
411 if (const_true_rtx && arg == STORE_FLAG_VALUE)
412 return const_true_rtx;
413 #endif
415 /* Look up the CONST_INT in the hash table. */
416 slot = htab_find_slot_with_hash (const_int_htab, &arg,
417 (hashval_t) arg, INSERT);
418 if (*slot == 0)
419 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
421 return (rtx) *slot;
425 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
427 return GEN_INT (trunc_int_for_mode (c, mode));
430 /* CONST_DOUBLEs might be created from pairs of integers, or from
431 REAL_VALUE_TYPEs. Also, their length is known only at run time,
432 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
434 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
435 hash table. If so, return its counterpart; otherwise add it
436 to the hash table and return it. */
437 static rtx
438 lookup_const_double (rtx real)
440 void **slot = htab_find_slot (const_double_htab, real, INSERT);
441 if (*slot == 0)
442 *slot = real;
444 return (rtx) *slot;
447 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
448 VALUE in mode MODE. */
450 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
452 rtx real = rtx_alloc (CONST_DOUBLE);
453 PUT_MODE (real, mode);
455 real->u.rv = value;
457 return lookup_const_double (real);
460 /* Determine whether FIXED, a CONST_FIXED, already exists in the
461 hash table. If so, return its counterpart; otherwise add it
462 to the hash table and return it. */
464 static rtx
465 lookup_const_fixed (rtx fixed)
467 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
468 if (*slot == 0)
469 *slot = fixed;
471 return (rtx) *slot;
474 /* Return a CONST_FIXED rtx for a fixed-point value specified by
475 VALUE in mode MODE. */
478 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
480 rtx fixed = rtx_alloc (CONST_FIXED);
481 PUT_MODE (fixed, mode);
483 fixed->u.fv = value;
485 return lookup_const_fixed (fixed);
488 /* Constructs double_int from rtx CST. */
490 double_int
491 rtx_to_double_int (const_rtx cst)
493 double_int r;
495 if (CONST_INT_P (cst))
496 r = shwi_to_double_int (INTVAL (cst));
497 else if (CONST_DOUBLE_P (cst) && GET_MODE (cst) == VOIDmode)
499 r.low = CONST_DOUBLE_LOW (cst);
500 r.high = CONST_DOUBLE_HIGH (cst);
502 else
503 gcc_unreachable ();
505 return r;
509 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
510 a double_int. */
513 immed_double_int_const (double_int i, enum machine_mode mode)
515 return immed_double_const (i.low, i.high, mode);
518 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
519 of ints: I0 is the low-order word and I1 is the high-order word.
520 Do not use this routine for non-integer modes; convert to
521 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
524 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
526 rtx value;
527 unsigned int i;
529 /* There are the following cases (note that there are no modes with
530 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
532 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
533 gen_int_mode.
534 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
535 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
536 from copies of the sign bit, and sign of i0 and i1 are the same), then
537 we return a CONST_INT for i0.
538 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
539 if (mode != VOIDmode)
541 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
542 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
543 /* We can get a 0 for an error mark. */
544 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
545 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
547 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
548 return gen_int_mode (i0, mode);
550 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
553 /* If this integer fits in one word, return a CONST_INT. */
554 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
555 return GEN_INT (i0);
557 /* We use VOIDmode for integers. */
558 value = rtx_alloc (CONST_DOUBLE);
559 PUT_MODE (value, VOIDmode);
561 CONST_DOUBLE_LOW (value) = i0;
562 CONST_DOUBLE_HIGH (value) = i1;
564 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
565 XWINT (value, i) = 0;
567 return lookup_const_double (value);
571 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
573 /* In case the MD file explicitly references the frame pointer, have
574 all such references point to the same frame pointer. This is
575 used during frame pointer elimination to distinguish the explicit
576 references to these registers from pseudos that happened to be
577 assigned to them.
579 If we have eliminated the frame pointer or arg pointer, we will
580 be using it as a normal register, for example as a spill
581 register. In such cases, we might be accessing it in a mode that
582 is not Pmode and therefore cannot use the pre-allocated rtx.
584 Also don't do this when we are making new REGs in reload, since
585 we don't want to get confused with the real pointers. */
587 if (mode == Pmode && !reload_in_progress)
589 if (regno == FRAME_POINTER_REGNUM
590 && (!reload_completed || frame_pointer_needed))
591 return frame_pointer_rtx;
592 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
593 if (regno == HARD_FRAME_POINTER_REGNUM
594 && (!reload_completed || frame_pointer_needed))
595 return hard_frame_pointer_rtx;
596 #endif
597 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
598 if (regno == ARG_POINTER_REGNUM)
599 return arg_pointer_rtx;
600 #endif
601 #ifdef RETURN_ADDRESS_POINTER_REGNUM
602 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
603 return return_address_pointer_rtx;
604 #endif
605 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
606 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
607 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
608 return pic_offset_table_rtx;
609 if (regno == STACK_POINTER_REGNUM)
610 return stack_pointer_rtx;
613 #if 0
614 /* If the per-function register table has been set up, try to re-use
615 an existing entry in that table to avoid useless generation of RTL.
617 This code is disabled for now until we can fix the various backends
618 which depend on having non-shared hard registers in some cases. Long
619 term we want to re-enable this code as it can significantly cut down
620 on the amount of useless RTL that gets generated.
622 We'll also need to fix some code that runs after reload that wants to
623 set ORIGINAL_REGNO. */
625 if (cfun
626 && cfun->emit
627 && regno_reg_rtx
628 && regno < FIRST_PSEUDO_REGISTER
629 && reg_raw_mode[regno] == mode)
630 return regno_reg_rtx[regno];
631 #endif
633 return gen_raw_REG (mode, regno);
637 gen_rtx_MEM (enum machine_mode mode, rtx addr)
639 rtx rt = gen_rtx_raw_MEM (mode, addr);
641 /* This field is not cleared by the mere allocation of the rtx, so
642 we clear it here. */
643 MEM_ATTRS (rt) = 0;
645 return rt;
648 /* Generate a memory referring to non-trapping constant memory. */
651 gen_const_mem (enum machine_mode mode, rtx addr)
653 rtx mem = gen_rtx_MEM (mode, addr);
654 MEM_READONLY_P (mem) = 1;
655 MEM_NOTRAP_P (mem) = 1;
656 return mem;
659 /* Generate a MEM referring to fixed portions of the frame, e.g., register
660 save areas. */
663 gen_frame_mem (enum machine_mode mode, rtx addr)
665 rtx mem = gen_rtx_MEM (mode, addr);
666 MEM_NOTRAP_P (mem) = 1;
667 set_mem_alias_set (mem, get_frame_alias_set ());
668 return mem;
671 /* Generate a MEM referring to a temporary use of the stack, not part
672 of the fixed stack frame. For example, something which is pushed
673 by a target splitter. */
675 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
677 rtx mem = gen_rtx_MEM (mode, addr);
678 MEM_NOTRAP_P (mem) = 1;
679 if (!cfun->calls_alloca)
680 set_mem_alias_set (mem, get_frame_alias_set ());
681 return mem;
684 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
685 this construct would be valid, and false otherwise. */
687 bool
688 validate_subreg (enum machine_mode omode, enum machine_mode imode,
689 const_rtx reg, unsigned int offset)
691 unsigned int isize = GET_MODE_SIZE (imode);
692 unsigned int osize = GET_MODE_SIZE (omode);
694 /* All subregs must be aligned. */
695 if (offset % osize != 0)
696 return false;
698 /* The subreg offset cannot be outside the inner object. */
699 if (offset >= isize)
700 return false;
702 /* ??? This should not be here. Temporarily continue to allow word_mode
703 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
704 Generally, backends are doing something sketchy but it'll take time to
705 fix them all. */
706 if (omode == word_mode)
708 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
709 is the culprit here, and not the backends. */
710 else if (osize >= UNITS_PER_WORD && isize >= osize)
712 /* Allow component subregs of complex and vector. Though given the below
713 extraction rules, it's not always clear what that means. */
714 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
715 && GET_MODE_INNER (imode) == omode)
717 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
718 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
719 represent this. It's questionable if this ought to be represented at
720 all -- why can't this all be hidden in post-reload splitters that make
721 arbitrarily mode changes to the registers themselves. */
722 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
724 /* Subregs involving floating point modes are not allowed to
725 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
726 (subreg:SI (reg:DF) 0) isn't. */
727 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
729 if (isize != osize)
730 return false;
733 /* Paradoxical subregs must have offset zero. */
734 if (osize > isize)
735 return offset == 0;
737 /* This is a normal subreg. Verify that the offset is representable. */
739 /* For hard registers, we already have most of these rules collected in
740 subreg_offset_representable_p. */
741 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
743 unsigned int regno = REGNO (reg);
745 #ifdef CANNOT_CHANGE_MODE_CLASS
746 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
747 && GET_MODE_INNER (imode) == omode)
749 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
750 return false;
751 #endif
753 return subreg_offset_representable_p (regno, imode, offset, omode);
756 /* For pseudo registers, we want most of the same checks. Namely:
757 If the register no larger than a word, the subreg must be lowpart.
758 If the register is larger than a word, the subreg must be the lowpart
759 of a subword. A subreg does *not* perform arbitrary bit extraction.
760 Given that we've already checked mode/offset alignment, we only have
761 to check subword subregs here. */
762 if (osize < UNITS_PER_WORD)
764 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
765 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
766 if (offset % UNITS_PER_WORD != low_off)
767 return false;
769 return true;
773 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
775 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
776 return gen_rtx_raw_SUBREG (mode, reg, offset);
779 /* Generate a SUBREG representing the least-significant part of REG if MODE
780 is smaller than mode of REG, otherwise paradoxical SUBREG. */
783 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
785 enum machine_mode inmode;
787 inmode = GET_MODE (reg);
788 if (inmode == VOIDmode)
789 inmode = mode;
790 return gen_rtx_SUBREG (mode, reg,
791 subreg_lowpart_offset (mode, inmode));
795 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
797 rtvec
798 gen_rtvec (int n, ...)
800 int i;
801 rtvec rt_val;
802 va_list p;
804 va_start (p, n);
806 /* Don't allocate an empty rtvec... */
807 if (n == 0)
808 return NULL_RTVEC;
810 rt_val = rtvec_alloc (n);
812 for (i = 0; i < n; i++)
813 rt_val->elem[i] = va_arg (p, rtx);
815 va_end (p);
816 return rt_val;
819 rtvec
820 gen_rtvec_v (int n, rtx *argp)
822 int i;
823 rtvec rt_val;
825 /* Don't allocate an empty rtvec... */
826 if (n == 0)
827 return NULL_RTVEC;
829 rt_val = rtvec_alloc (n);
831 for (i = 0; i < n; i++)
832 rt_val->elem[i] = *argp++;
834 return rt_val;
837 /* Return the number of bytes between the start of an OUTER_MODE
838 in-memory value and the start of an INNER_MODE in-memory value,
839 given that the former is a lowpart of the latter. It may be a
840 paradoxical lowpart, in which case the offset will be negative
841 on big-endian targets. */
844 byte_lowpart_offset (enum machine_mode outer_mode,
845 enum machine_mode inner_mode)
847 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
848 return subreg_lowpart_offset (outer_mode, inner_mode);
849 else
850 return -subreg_lowpart_offset (inner_mode, outer_mode);
853 /* Generate a REG rtx for a new pseudo register of mode MODE.
854 This pseudo is assigned the next sequential register number. */
857 gen_reg_rtx (enum machine_mode mode)
859 rtx val;
860 unsigned int align = GET_MODE_ALIGNMENT (mode);
862 gcc_assert (can_create_pseudo_p ());
864 /* If a virtual register with bigger mode alignment is generated,
865 increase stack alignment estimation because it might be spilled
866 to stack later. */
867 if (SUPPORTS_STACK_ALIGNMENT
868 && crtl->stack_alignment_estimated < align
869 && !crtl->stack_realign_processed)
871 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
872 if (crtl->stack_alignment_estimated < min_align)
873 crtl->stack_alignment_estimated = min_align;
876 if (generating_concat_p
877 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
878 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
880 /* For complex modes, don't make a single pseudo.
881 Instead, make a CONCAT of two pseudos.
882 This allows noncontiguous allocation of the real and imaginary parts,
883 which makes much better code. Besides, allocating DCmode
884 pseudos overstrains reload on some machines like the 386. */
885 rtx realpart, imagpart;
886 enum machine_mode partmode = GET_MODE_INNER (mode);
888 realpart = gen_reg_rtx (partmode);
889 imagpart = gen_reg_rtx (partmode);
890 return gen_rtx_CONCAT (mode, realpart, imagpart);
893 /* Make sure regno_pointer_align, and regno_reg_rtx are large
894 enough to have an element for this pseudo reg number. */
896 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
898 int old_size = crtl->emit.regno_pointer_align_length;
899 char *tmp;
900 rtx *new1;
902 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
903 memset (tmp + old_size, 0, old_size);
904 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
906 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
907 memset (new1 + old_size, 0, old_size * sizeof (rtx));
908 regno_reg_rtx = new1;
910 crtl->emit.regno_pointer_align_length = old_size * 2;
913 val = gen_raw_REG (mode, reg_rtx_no);
914 regno_reg_rtx[reg_rtx_no++] = val;
915 return val;
918 /* Update NEW with the same attributes as REG, but with OFFSET added
919 to the REG_OFFSET. */
921 static void
922 update_reg_offset (rtx new_rtx, rtx reg, int offset)
924 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
925 REG_OFFSET (reg) + offset);
928 /* Generate a register with same attributes as REG, but with OFFSET
929 added to the REG_OFFSET. */
932 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
933 int offset)
935 rtx new_rtx = gen_rtx_REG (mode, regno);
937 update_reg_offset (new_rtx, reg, offset);
938 return new_rtx;
941 /* Generate a new pseudo-register with the same attributes as REG, but
942 with OFFSET added to the REG_OFFSET. */
945 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
947 rtx new_rtx = gen_reg_rtx (mode);
949 update_reg_offset (new_rtx, reg, offset);
950 return new_rtx;
953 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
954 new register is a (possibly paradoxical) lowpart of the old one. */
956 void
957 adjust_reg_mode (rtx reg, enum machine_mode mode)
959 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
960 PUT_MODE (reg, mode);
963 /* Copy REG's attributes from X, if X has any attributes. If REG and X
964 have different modes, REG is a (possibly paradoxical) lowpart of X. */
966 void
967 set_reg_attrs_from_value (rtx reg, rtx x)
969 int offset;
971 /* Hard registers can be reused for multiple purposes within the same
972 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
973 on them is wrong. */
974 if (HARD_REGISTER_P (reg))
975 return;
977 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
978 if (MEM_P (x))
980 if (MEM_OFFSET (x) && CONST_INT_P (MEM_OFFSET (x)))
981 REG_ATTRS (reg)
982 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
983 if (MEM_POINTER (x))
984 mark_reg_pointer (reg, 0);
986 else if (REG_P (x))
988 if (REG_ATTRS (x))
989 update_reg_offset (reg, x, offset);
990 if (REG_POINTER (x))
991 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
995 /* Generate a REG rtx for a new pseudo register, copying the mode
996 and attributes from X. */
999 gen_reg_rtx_and_attrs (rtx x)
1001 rtx reg = gen_reg_rtx (GET_MODE (x));
1002 set_reg_attrs_from_value (reg, x);
1003 return reg;
1006 /* Set the register attributes for registers contained in PARM_RTX.
1007 Use needed values from memory attributes of MEM. */
1009 void
1010 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1012 if (REG_P (parm_rtx))
1013 set_reg_attrs_from_value (parm_rtx, mem);
1014 else if (GET_CODE (parm_rtx) == PARALLEL)
1016 /* Check for a NULL entry in the first slot, used to indicate that the
1017 parameter goes both on the stack and in registers. */
1018 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1019 for (; i < XVECLEN (parm_rtx, 0); i++)
1021 rtx x = XVECEXP (parm_rtx, 0, i);
1022 if (REG_P (XEXP (x, 0)))
1023 REG_ATTRS (XEXP (x, 0))
1024 = get_reg_attrs (MEM_EXPR (mem),
1025 INTVAL (XEXP (x, 1)));
1030 /* Set the REG_ATTRS for registers in value X, given that X represents
1031 decl T. */
1033 void
1034 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1036 if (GET_CODE (x) == SUBREG)
1038 gcc_assert (subreg_lowpart_p (x));
1039 x = SUBREG_REG (x);
1041 if (REG_P (x))
1042 REG_ATTRS (x)
1043 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1044 DECL_MODE (t)));
1045 if (GET_CODE (x) == CONCAT)
1047 if (REG_P (XEXP (x, 0)))
1048 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1049 if (REG_P (XEXP (x, 1)))
1050 REG_ATTRS (XEXP (x, 1))
1051 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1053 if (GET_CODE (x) == PARALLEL)
1055 int i, start;
1057 /* Check for a NULL entry, used to indicate that the parameter goes
1058 both on the stack and in registers. */
1059 if (XEXP (XVECEXP (x, 0, 0), 0))
1060 start = 0;
1061 else
1062 start = 1;
1064 for (i = start; i < XVECLEN (x, 0); i++)
1066 rtx y = XVECEXP (x, 0, i);
1067 if (REG_P (XEXP (y, 0)))
1068 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1073 /* Assign the RTX X to declaration T. */
1075 void
1076 set_decl_rtl (tree t, rtx x)
1078 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1079 if (x)
1080 set_reg_attrs_for_decl_rtl (t, x);
1083 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1084 if the ABI requires the parameter to be passed by reference. */
1086 void
1087 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1089 DECL_INCOMING_RTL (t) = x;
1090 if (x && !by_reference_p)
1091 set_reg_attrs_for_decl_rtl (t, x);
1094 /* Identify REG (which may be a CONCAT) as a user register. */
1096 void
1097 mark_user_reg (rtx reg)
1099 if (GET_CODE (reg) == CONCAT)
1101 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1102 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1104 else
1106 gcc_assert (REG_P (reg));
1107 REG_USERVAR_P (reg) = 1;
1111 /* Identify REG as a probable pointer register and show its alignment
1112 as ALIGN, if nonzero. */
1114 void
1115 mark_reg_pointer (rtx reg, int align)
1117 if (! REG_POINTER (reg))
1119 REG_POINTER (reg) = 1;
1121 if (align)
1122 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1124 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1125 /* We can no-longer be sure just how aligned this pointer is. */
1126 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1129 /* Return 1 plus largest pseudo reg number used in the current function. */
1132 max_reg_num (void)
1134 return reg_rtx_no;
1137 /* Return 1 + the largest label number used so far in the current function. */
1140 max_label_num (void)
1142 return label_num;
1145 /* Return first label number used in this function (if any were used). */
1148 get_first_label_num (void)
1150 return first_label_num;
1153 /* If the rtx for label was created during the expansion of a nested
1154 function, then first_label_num won't include this label number.
1155 Fix this now so that array indices work later. */
1157 void
1158 maybe_set_first_label_num (rtx x)
1160 if (CODE_LABEL_NUMBER (x) < first_label_num)
1161 first_label_num = CODE_LABEL_NUMBER (x);
1164 /* Return a value representing some low-order bits of X, where the number
1165 of low-order bits is given by MODE. Note that no conversion is done
1166 between floating-point and fixed-point values, rather, the bit
1167 representation is returned.
1169 This function handles the cases in common between gen_lowpart, below,
1170 and two variants in cse.c and combine.c. These are the cases that can
1171 be safely handled at all points in the compilation.
1173 If this is not a case we can handle, return 0. */
1176 gen_lowpart_common (enum machine_mode mode, rtx x)
1178 int msize = GET_MODE_SIZE (mode);
1179 int xsize;
1180 int offset = 0;
1181 enum machine_mode innermode;
1183 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1184 so we have to make one up. Yuk. */
1185 innermode = GET_MODE (x);
1186 if (CONST_INT_P (x)
1187 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1188 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1189 else if (innermode == VOIDmode)
1190 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1192 xsize = GET_MODE_SIZE (innermode);
1194 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1196 if (innermode == mode)
1197 return x;
1199 /* MODE must occupy no more words than the mode of X. */
1200 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1201 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1202 return 0;
1204 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1205 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1206 return 0;
1208 offset = subreg_lowpart_offset (mode, innermode);
1210 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1211 && (GET_MODE_CLASS (mode) == MODE_INT
1212 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1214 /* If we are getting the low-order part of something that has been
1215 sign- or zero-extended, we can either just use the object being
1216 extended or make a narrower extension. If we want an even smaller
1217 piece than the size of the object being extended, call ourselves
1218 recursively.
1220 This case is used mostly by combine and cse. */
1222 if (GET_MODE (XEXP (x, 0)) == mode)
1223 return XEXP (x, 0);
1224 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1225 return gen_lowpart_common (mode, XEXP (x, 0));
1226 else if (msize < xsize)
1227 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1229 else if (GET_CODE (x) == SUBREG || REG_P (x)
1230 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1231 || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1232 return simplify_gen_subreg (mode, x, innermode, offset);
1234 /* Otherwise, we can't do this. */
1235 return 0;
1239 gen_highpart (enum machine_mode mode, rtx x)
1241 unsigned int msize = GET_MODE_SIZE (mode);
1242 rtx result;
1244 /* This case loses if X is a subreg. To catch bugs early,
1245 complain if an invalid MODE is used even in other cases. */
1246 gcc_assert (msize <= UNITS_PER_WORD
1247 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1249 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1250 subreg_highpart_offset (mode, GET_MODE (x)));
1251 gcc_assert (result);
1253 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1254 the target if we have a MEM. gen_highpart must return a valid operand,
1255 emitting code if necessary to do so. */
1256 if (MEM_P (result))
1258 result = validize_mem (result);
1259 gcc_assert (result);
1262 return result;
1265 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1266 be VOIDmode constant. */
1268 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1270 if (GET_MODE (exp) != VOIDmode)
1272 gcc_assert (GET_MODE (exp) == innermode);
1273 return gen_highpart (outermode, exp);
1275 return simplify_gen_subreg (outermode, exp, innermode,
1276 subreg_highpart_offset (outermode, innermode));
1279 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1281 unsigned int
1282 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1284 unsigned int offset = 0;
1285 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1287 if (difference > 0)
1289 if (WORDS_BIG_ENDIAN)
1290 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1291 if (BYTES_BIG_ENDIAN)
1292 offset += difference % UNITS_PER_WORD;
1295 return offset;
1298 /* Return offset in bytes to get OUTERMODE high part
1299 of the value in mode INNERMODE stored in memory in target format. */
1300 unsigned int
1301 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1303 unsigned int offset = 0;
1304 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1306 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1308 if (difference > 0)
1310 if (! WORDS_BIG_ENDIAN)
1311 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1312 if (! BYTES_BIG_ENDIAN)
1313 offset += difference % UNITS_PER_WORD;
1316 return offset;
1319 /* Return 1 iff X, assumed to be a SUBREG,
1320 refers to the least significant part of its containing reg.
1321 If X is not a SUBREG, always return 1 (it is its own low part!). */
1324 subreg_lowpart_p (const_rtx x)
1326 if (GET_CODE (x) != SUBREG)
1327 return 1;
1328 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1329 return 0;
1331 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1332 == SUBREG_BYTE (x));
1335 /* Return subword OFFSET of operand OP.
1336 The word number, OFFSET, is interpreted as the word number starting
1337 at the low-order address. OFFSET 0 is the low-order word if not
1338 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1340 If we cannot extract the required word, we return zero. Otherwise,
1341 an rtx corresponding to the requested word will be returned.
1343 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1344 reload has completed, a valid address will always be returned. After
1345 reload, if a valid address cannot be returned, we return zero.
1347 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1348 it is the responsibility of the caller.
1350 MODE is the mode of OP in case it is a CONST_INT.
1352 ??? This is still rather broken for some cases. The problem for the
1353 moment is that all callers of this thing provide no 'goal mode' to
1354 tell us to work with. This exists because all callers were written
1355 in a word based SUBREG world.
1356 Now use of this function can be deprecated by simplify_subreg in most
1357 cases.
1361 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1363 if (mode == VOIDmode)
1364 mode = GET_MODE (op);
1366 gcc_assert (mode != VOIDmode);
1368 /* If OP is narrower than a word, fail. */
1369 if (mode != BLKmode
1370 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1371 return 0;
1373 /* If we want a word outside OP, return zero. */
1374 if (mode != BLKmode
1375 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1376 return const0_rtx;
1378 /* Form a new MEM at the requested address. */
1379 if (MEM_P (op))
1381 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1383 if (! validate_address)
1384 return new_rtx;
1386 else if (reload_completed)
1388 if (! strict_memory_address_addr_space_p (word_mode,
1389 XEXP (new_rtx, 0),
1390 MEM_ADDR_SPACE (op)))
1391 return 0;
1393 else
1394 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1397 /* Rest can be handled by simplify_subreg. */
1398 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1401 /* Similar to `operand_subword', but never return 0. If we can't
1402 extract the required subword, put OP into a register and try again.
1403 The second attempt must succeed. We always validate the address in
1404 this case.
1406 MODE is the mode of OP, in case it is CONST_INT. */
1409 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1411 rtx result = operand_subword (op, offset, 1, mode);
1413 if (result)
1414 return result;
1416 if (mode != BLKmode && mode != VOIDmode)
1418 /* If this is a register which can not be accessed by words, copy it
1419 to a pseudo register. */
1420 if (REG_P (op))
1421 op = copy_to_reg (op);
1422 else
1423 op = force_reg (mode, op);
1426 result = operand_subword (op, offset, 1, mode);
1427 gcc_assert (result);
1429 return result;
1432 /* Returns 1 if both MEM_EXPR can be considered equal
1433 and 0 otherwise. */
1436 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1438 if (expr1 == expr2)
1439 return 1;
1441 if (! expr1 || ! expr2)
1442 return 0;
1444 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1445 return 0;
1447 return operand_equal_p (expr1, expr2, 0);
1450 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1451 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1452 -1 if not known. */
1455 get_mem_align_offset (rtx mem, unsigned int align)
1457 tree expr;
1458 unsigned HOST_WIDE_INT offset;
1460 /* This function can't use
1461 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1462 || !CONST_INT_P (MEM_OFFSET (mem))
1463 || (MAX (MEM_ALIGN (mem),
1464 get_object_alignment (MEM_EXPR (mem), align))
1465 < align))
1466 return -1;
1467 else
1468 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1469 for two reasons:
1470 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1471 for <variable>. get_inner_reference doesn't handle it and
1472 even if it did, the alignment in that case needs to be determined
1473 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1474 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1475 isn't sufficiently aligned, the object it is in might be. */
1476 gcc_assert (MEM_P (mem));
1477 expr = MEM_EXPR (mem);
1478 if (expr == NULL_TREE
1479 || MEM_OFFSET (mem) == NULL_RTX
1480 || !CONST_INT_P (MEM_OFFSET (mem)))
1481 return -1;
1483 offset = INTVAL (MEM_OFFSET (mem));
1484 if (DECL_P (expr))
1486 if (DECL_ALIGN (expr) < align)
1487 return -1;
1489 else if (INDIRECT_REF_P (expr))
1491 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1492 return -1;
1494 else if (TREE_CODE (expr) == COMPONENT_REF)
1496 while (1)
1498 tree inner = TREE_OPERAND (expr, 0);
1499 tree field = TREE_OPERAND (expr, 1);
1500 tree byte_offset = component_ref_field_offset (expr);
1501 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1503 if (!byte_offset
1504 || !host_integerp (byte_offset, 1)
1505 || !host_integerp (bit_offset, 1))
1506 return -1;
1508 offset += tree_low_cst (byte_offset, 1);
1509 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1511 if (inner == NULL_TREE)
1513 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1514 < (unsigned int) align)
1515 return -1;
1516 break;
1518 else if (DECL_P (inner))
1520 if (DECL_ALIGN (inner) < align)
1521 return -1;
1522 break;
1524 else if (TREE_CODE (inner) != COMPONENT_REF)
1525 return -1;
1526 expr = inner;
1529 else
1530 return -1;
1532 return offset & ((align / BITS_PER_UNIT) - 1);
1535 /* Given REF (a MEM) and T, either the type of X or the expression
1536 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1537 if we are making a new object of this type. BITPOS is nonzero if
1538 there is an offset outstanding on T that will be applied later. */
1540 void
1541 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1542 HOST_WIDE_INT bitpos)
1544 alias_set_type alias = MEM_ALIAS_SET (ref);
1545 tree expr = MEM_EXPR (ref);
1546 rtx offset = MEM_OFFSET (ref);
1547 rtx size = MEM_SIZE (ref);
1548 unsigned int align = MEM_ALIGN (ref);
1549 HOST_WIDE_INT apply_bitpos = 0;
1550 tree type;
1552 /* It can happen that type_for_mode was given a mode for which there
1553 is no language-level type. In which case it returns NULL, which
1554 we can see here. */
1555 if (t == NULL_TREE)
1556 return;
1558 type = TYPE_P (t) ? t : TREE_TYPE (t);
1559 if (type == error_mark_node)
1560 return;
1562 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1563 wrong answer, as it assumes that DECL_RTL already has the right alias
1564 info. Callers should not set DECL_RTL until after the call to
1565 set_mem_attributes. */
1566 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1568 /* Get the alias set from the expression or type (perhaps using a
1569 front-end routine) and use it. */
1570 alias = get_alias_set (t);
1572 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1573 MEM_IN_STRUCT_P (ref)
1574 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1575 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1577 /* If we are making an object of this type, or if this is a DECL, we know
1578 that it is a scalar if the type is not an aggregate. */
1579 if ((objectp || DECL_P (t))
1580 && ! AGGREGATE_TYPE_P (type)
1581 && TREE_CODE (type) != COMPLEX_TYPE)
1582 MEM_SCALAR_P (ref) = 1;
1584 /* We can set the alignment from the type if we are making an object,
1585 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1586 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1587 align = MAX (align, TYPE_ALIGN (type));
1589 else if (TREE_CODE (t) == MEM_REF)
1591 tree op0 = TREE_OPERAND (t, 0);
1592 if (TREE_CODE (op0) == ADDR_EXPR
1593 && (DECL_P (TREE_OPERAND (op0, 0))
1594 || CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))))
1596 if (DECL_P (TREE_OPERAND (op0, 0)))
1597 align = DECL_ALIGN (TREE_OPERAND (op0, 0));
1598 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))
1600 align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0)));
1601 #ifdef CONSTANT_ALIGNMENT
1602 align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0), align);
1603 #endif
1605 if (TREE_INT_CST_LOW (TREE_OPERAND (t, 1)) != 0)
1607 unsigned HOST_WIDE_INT ioff
1608 = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
1609 unsigned HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1610 align = MIN (aoff, align);
1613 else
1614 /* ??? This isn't fully correct, we can't set the alignment from the
1615 type in all cases. */
1616 align = MAX (align, TYPE_ALIGN (type));
1619 else if (TREE_CODE (t) == TARGET_MEM_REF)
1620 /* ??? This isn't fully correct, we can't set the alignment from the
1621 type in all cases. */
1622 align = MAX (align, TYPE_ALIGN (type));
1624 /* If the size is known, we can set that. */
1625 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1626 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1628 /* If T is not a type, we may be able to deduce some more information about
1629 the expression. */
1630 if (! TYPE_P (t))
1632 tree base;
1633 bool align_computed = false;
1635 if (TREE_THIS_VOLATILE (t))
1636 MEM_VOLATILE_P (ref) = 1;
1638 /* Now remove any conversions: they don't change what the underlying
1639 object is. Likewise for SAVE_EXPR. */
1640 while (CONVERT_EXPR_P (t)
1641 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1642 || TREE_CODE (t) == SAVE_EXPR)
1643 t = TREE_OPERAND (t, 0);
1645 /* We may look through structure-like accesses for the purposes of
1646 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1647 base = t;
1648 while (TREE_CODE (base) == COMPONENT_REF
1649 || TREE_CODE (base) == REALPART_EXPR
1650 || TREE_CODE (base) == IMAGPART_EXPR
1651 || TREE_CODE (base) == BIT_FIELD_REF)
1652 base = TREE_OPERAND (base, 0);
1654 if (TREE_CODE (base) == MEM_REF
1655 && TREE_CODE (TREE_OPERAND (base, 0)) == ADDR_EXPR)
1656 base = TREE_OPERAND (TREE_OPERAND (base, 0), 0);
1657 if (DECL_P (base))
1659 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1660 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1661 else
1662 MEM_NOTRAP_P (ref) = 1;
1664 else if (TREE_CODE (base) == INDIRECT_REF
1665 || TREE_CODE (base) == MEM_REF
1666 || TREE_CODE (base) == TARGET_MEM_REF
1667 || TREE_CODE (base) == ARRAY_REF
1668 || TREE_CODE (base) == ARRAY_RANGE_REF)
1669 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1671 base = get_base_address (base);
1672 if (base && DECL_P (base)
1673 && TREE_READONLY (base)
1674 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1675 MEM_READONLY_P (ref) = 1;
1677 /* If this expression uses it's parent's alias set, mark it such
1678 that we won't change it. */
1679 if (component_uses_parent_alias_set (t))
1680 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1682 /* If this is a decl, set the attributes of the MEM from it. */
1683 if (DECL_P (t))
1685 expr = t;
1686 offset = const0_rtx;
1687 apply_bitpos = bitpos;
1688 size = (DECL_SIZE_UNIT (t)
1689 && host_integerp (DECL_SIZE_UNIT (t), 1)
1690 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1691 align = DECL_ALIGN (t);
1692 align_computed = true;
1695 /* If this is a constant, we know the alignment. */
1696 else if (CONSTANT_CLASS_P (t))
1698 align = TYPE_ALIGN (type);
1699 #ifdef CONSTANT_ALIGNMENT
1700 align = CONSTANT_ALIGNMENT (t, align);
1701 #endif
1702 align_computed = true;
1705 /* If this is a field reference and not a bit-field, record it. */
1706 /* ??? There is some information that can be gleaned from bit-fields,
1707 such as the word offset in the structure that might be modified.
1708 But skip it for now. */
1709 else if (TREE_CODE (t) == COMPONENT_REF
1710 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1712 expr = t;
1713 offset = const0_rtx;
1714 apply_bitpos = bitpos;
1715 /* ??? Any reason the field size would be different than
1716 the size we got from the type? */
1719 /* If this is an array reference, look for an outer field reference. */
1720 else if (TREE_CODE (t) == ARRAY_REF)
1722 tree off_tree = size_zero_node;
1723 /* We can't modify t, because we use it at the end of the
1724 function. */
1725 tree t2 = t;
1729 tree index = TREE_OPERAND (t2, 1);
1730 tree low_bound = array_ref_low_bound (t2);
1731 tree unit_size = array_ref_element_size (t2);
1733 /* We assume all arrays have sizes that are a multiple of a byte.
1734 First subtract the lower bound, if any, in the type of the
1735 index, then convert to sizetype and multiply by the size of
1736 the array element. */
1737 if (! integer_zerop (low_bound))
1738 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1739 index, low_bound);
1741 off_tree = size_binop (PLUS_EXPR,
1742 size_binop (MULT_EXPR,
1743 fold_convert (sizetype,
1744 index),
1745 unit_size),
1746 off_tree);
1747 t2 = TREE_OPERAND (t2, 0);
1749 while (TREE_CODE (t2) == ARRAY_REF);
1751 if (DECL_P (t2))
1753 expr = t2;
1754 offset = NULL;
1755 if (host_integerp (off_tree, 1))
1757 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1758 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1759 align = DECL_ALIGN (t2);
1760 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1761 align = aoff;
1762 align_computed = true;
1763 offset = GEN_INT (ioff);
1764 apply_bitpos = bitpos;
1767 else if (TREE_CODE (t2) == COMPONENT_REF)
1769 expr = t2;
1770 offset = NULL;
1771 if (host_integerp (off_tree, 1))
1773 offset = GEN_INT (tree_low_cst (off_tree, 1));
1774 apply_bitpos = bitpos;
1776 /* ??? Any reason the field size would be different than
1777 the size we got from the type? */
1780 /* If this is an indirect reference, record it. */
1781 else if (TREE_CODE (t) == MEM_REF)
1783 expr = t;
1784 offset = const0_rtx;
1785 apply_bitpos = bitpos;
1789 /* If this is an indirect reference, record it. */
1790 else if (TREE_CODE (t) == MEM_REF
1791 || TREE_CODE (t) == TARGET_MEM_REF)
1793 expr = t;
1794 offset = const0_rtx;
1795 apply_bitpos = bitpos;
1798 if (!align_computed && !INDIRECT_REF_P (t))
1800 unsigned int obj_align = get_object_alignment (t, BIGGEST_ALIGNMENT);
1801 align = MAX (align, obj_align);
1805 /* If we modified OFFSET based on T, then subtract the outstanding
1806 bit position offset. Similarly, increase the size of the accessed
1807 object to contain the negative offset. */
1808 if (apply_bitpos)
1810 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1811 if (size)
1812 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1815 /* Now set the attributes we computed above. */
1816 MEM_ATTRS (ref)
1817 = get_mem_attrs (alias, expr, offset, size, align,
1818 TYPE_ADDR_SPACE (type), GET_MODE (ref));
1820 /* If this is already known to be a scalar or aggregate, we are done. */
1821 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1822 return;
1824 /* If it is a reference into an aggregate, this is part of an aggregate.
1825 Otherwise we don't know. */
1826 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1827 || TREE_CODE (t) == ARRAY_RANGE_REF
1828 || TREE_CODE (t) == BIT_FIELD_REF)
1829 MEM_IN_STRUCT_P (ref) = 1;
1832 void
1833 set_mem_attributes (rtx ref, tree t, int objectp)
1835 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1838 /* Set the alias set of MEM to SET. */
1840 void
1841 set_mem_alias_set (rtx mem, alias_set_type set)
1843 /* If the new and old alias sets don't conflict, something is wrong. */
1844 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1846 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1847 MEM_SIZE (mem), MEM_ALIGN (mem),
1848 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1851 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1853 void
1854 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1856 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1857 MEM_OFFSET (mem), MEM_SIZE (mem),
1858 MEM_ALIGN (mem), addrspace, GET_MODE (mem));
1861 /* Set the alignment of MEM to ALIGN bits. */
1863 void
1864 set_mem_align (rtx mem, unsigned int align)
1866 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1867 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1868 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1871 /* Set the expr for MEM to EXPR. */
1873 void
1874 set_mem_expr (rtx mem, tree expr)
1876 MEM_ATTRS (mem)
1877 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1878 MEM_SIZE (mem), MEM_ALIGN (mem),
1879 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1882 /* Set the offset of MEM to OFFSET. */
1884 void
1885 set_mem_offset (rtx mem, rtx offset)
1887 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1888 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1889 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1892 /* Set the size of MEM to SIZE. */
1894 void
1895 set_mem_size (rtx mem, rtx size)
1897 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1898 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1899 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1902 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1903 and its address changed to ADDR. (VOIDmode means don't change the mode.
1904 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1905 returned memory location is required to be valid. The memory
1906 attributes are not changed. */
1908 static rtx
1909 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1911 addr_space_t as;
1912 rtx new_rtx;
1914 gcc_assert (MEM_P (memref));
1915 as = MEM_ADDR_SPACE (memref);
1916 if (mode == VOIDmode)
1917 mode = GET_MODE (memref);
1918 if (addr == 0)
1919 addr = XEXP (memref, 0);
1920 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1921 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1922 return memref;
1924 if (validate)
1926 if (reload_in_progress || reload_completed)
1927 gcc_assert (memory_address_addr_space_p (mode, addr, as));
1928 else
1929 addr = memory_address_addr_space (mode, addr, as);
1932 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1933 return memref;
1935 new_rtx = gen_rtx_MEM (mode, addr);
1936 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1937 return new_rtx;
1940 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1941 way we are changing MEMREF, so we only preserve the alias set. */
1944 change_address (rtx memref, enum machine_mode mode, rtx addr)
1946 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1947 enum machine_mode mmode = GET_MODE (new_rtx);
1948 unsigned int align;
1950 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1951 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1953 /* If there are no changes, just return the original memory reference. */
1954 if (new_rtx == memref)
1956 if (MEM_ATTRS (memref) == 0
1957 || (MEM_EXPR (memref) == NULL
1958 && MEM_OFFSET (memref) == NULL
1959 && MEM_SIZE (memref) == size
1960 && MEM_ALIGN (memref) == align))
1961 return new_rtx;
1963 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1964 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1967 MEM_ATTRS (new_rtx)
1968 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align,
1969 MEM_ADDR_SPACE (memref), mmode);
1971 return new_rtx;
1974 /* Return a memory reference like MEMREF, but with its mode changed
1975 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1976 nonzero, the memory address is forced to be valid.
1977 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1978 and caller is responsible for adjusting MEMREF base register. */
1981 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1982 int validate, int adjust)
1984 rtx addr = XEXP (memref, 0);
1985 rtx new_rtx;
1986 rtx memoffset = MEM_OFFSET (memref);
1987 rtx size = 0;
1988 unsigned int memalign = MEM_ALIGN (memref);
1989 addr_space_t as = MEM_ADDR_SPACE (memref);
1990 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
1991 int pbits;
1993 /* If there are no changes, just return the original memory reference. */
1994 if (mode == GET_MODE (memref) && !offset
1995 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1996 return memref;
1998 /* ??? Prefer to create garbage instead of creating shared rtl.
1999 This may happen even if offset is nonzero -- consider
2000 (plus (plus reg reg) const_int) -- so do this always. */
2001 addr = copy_rtx (addr);
2003 /* Convert a possibly large offset to a signed value within the
2004 range of the target address space. */
2005 pbits = GET_MODE_BITSIZE (address_mode);
2006 if (HOST_BITS_PER_WIDE_INT > pbits)
2008 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2009 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2010 >> shift);
2013 if (adjust)
2015 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2016 object, we can merge it into the LO_SUM. */
2017 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2018 && offset >= 0
2019 && (unsigned HOST_WIDE_INT) offset
2020 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2021 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2022 plus_constant (XEXP (addr, 1), offset));
2023 else
2024 addr = plus_constant (addr, offset);
2027 new_rtx = change_address_1 (memref, mode, addr, validate);
2029 /* If the address is a REG, change_address_1 rightfully returns memref,
2030 but this would destroy memref's MEM_ATTRS. */
2031 if (new_rtx == memref && offset != 0)
2032 new_rtx = copy_rtx (new_rtx);
2034 /* Compute the new values of the memory attributes due to this adjustment.
2035 We add the offsets and update the alignment. */
2036 if (memoffset)
2037 memoffset = GEN_INT (offset + INTVAL (memoffset));
2039 /* Compute the new alignment by taking the MIN of the alignment and the
2040 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2041 if zero. */
2042 if (offset != 0)
2043 memalign
2044 = MIN (memalign,
2045 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2047 /* We can compute the size in a number of ways. */
2048 if (GET_MODE (new_rtx) != BLKmode)
2049 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2050 else if (MEM_SIZE (memref))
2051 size = plus_constant (MEM_SIZE (memref), -offset);
2053 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2054 memoffset, size, memalign, as,
2055 GET_MODE (new_rtx));
2057 /* At some point, we should validate that this offset is within the object,
2058 if all the appropriate values are known. */
2059 return new_rtx;
2062 /* Return a memory reference like MEMREF, but with its mode changed
2063 to MODE and its address changed to ADDR, which is assumed to be
2064 MEMREF offset by OFFSET bytes. If VALIDATE is
2065 nonzero, the memory address is forced to be valid. */
2068 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2069 HOST_WIDE_INT offset, int validate)
2071 memref = change_address_1 (memref, VOIDmode, addr, validate);
2072 return adjust_address_1 (memref, mode, offset, validate, 0);
2075 /* Return a memory reference like MEMREF, but whose address is changed by
2076 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2077 known to be in OFFSET (possibly 1). */
2080 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2082 rtx new_rtx, addr = XEXP (memref, 0);
2083 addr_space_t as = MEM_ADDR_SPACE (memref);
2084 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
2086 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2088 /* At this point we don't know _why_ the address is invalid. It
2089 could have secondary memory references, multiplies or anything.
2091 However, if we did go and rearrange things, we can wind up not
2092 being able to recognize the magic around pic_offset_table_rtx.
2093 This stuff is fragile, and is yet another example of why it is
2094 bad to expose PIC machinery too early. */
2095 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx, as)
2096 && GET_CODE (addr) == PLUS
2097 && XEXP (addr, 0) == pic_offset_table_rtx)
2099 addr = force_reg (GET_MODE (addr), addr);
2100 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2103 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2104 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2106 /* If there are no changes, just return the original memory reference. */
2107 if (new_rtx == memref)
2108 return new_rtx;
2110 /* Update the alignment to reflect the offset. Reset the offset, which
2111 we don't know. */
2112 MEM_ATTRS (new_rtx)
2113 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2114 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2115 as, GET_MODE (new_rtx));
2116 return new_rtx;
2119 /* Return a memory reference like MEMREF, but with its address changed to
2120 ADDR. The caller is asserting that the actual piece of memory pointed
2121 to is the same, just the form of the address is being changed, such as
2122 by putting something into a register. */
2125 replace_equiv_address (rtx memref, rtx addr)
2127 /* change_address_1 copies the memory attribute structure without change
2128 and that's exactly what we want here. */
2129 update_temp_slot_address (XEXP (memref, 0), addr);
2130 return change_address_1 (memref, VOIDmode, addr, 1);
2133 /* Likewise, but the reference is not required to be valid. */
2136 replace_equiv_address_nv (rtx memref, rtx addr)
2138 return change_address_1 (memref, VOIDmode, addr, 0);
2141 /* Return a memory reference like MEMREF, but with its mode widened to
2142 MODE and offset by OFFSET. This would be used by targets that e.g.
2143 cannot issue QImode memory operations and have to use SImode memory
2144 operations plus masking logic. */
2147 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2149 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2150 tree expr = MEM_EXPR (new_rtx);
2151 rtx memoffset = MEM_OFFSET (new_rtx);
2152 unsigned int size = GET_MODE_SIZE (mode);
2154 /* If there are no changes, just return the original memory reference. */
2155 if (new_rtx == memref)
2156 return new_rtx;
2158 /* If we don't know what offset we were at within the expression, then
2159 we can't know if we've overstepped the bounds. */
2160 if (! memoffset)
2161 expr = NULL_TREE;
2163 while (expr)
2165 if (TREE_CODE (expr) == COMPONENT_REF)
2167 tree field = TREE_OPERAND (expr, 1);
2168 tree offset = component_ref_field_offset (expr);
2170 if (! DECL_SIZE_UNIT (field))
2172 expr = NULL_TREE;
2173 break;
2176 /* Is the field at least as large as the access? If so, ok,
2177 otherwise strip back to the containing structure. */
2178 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2179 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2180 && INTVAL (memoffset) >= 0)
2181 break;
2183 if (! host_integerp (offset, 1))
2185 expr = NULL_TREE;
2186 break;
2189 expr = TREE_OPERAND (expr, 0);
2190 memoffset
2191 = (GEN_INT (INTVAL (memoffset)
2192 + tree_low_cst (offset, 1)
2193 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2194 / BITS_PER_UNIT)));
2196 /* Similarly for the decl. */
2197 else if (DECL_P (expr)
2198 && DECL_SIZE_UNIT (expr)
2199 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2200 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2201 && (! memoffset || INTVAL (memoffset) >= 0))
2202 break;
2203 else
2205 /* The widened memory access overflows the expression, which means
2206 that it could alias another expression. Zap it. */
2207 expr = NULL_TREE;
2208 break;
2212 if (! expr)
2213 memoffset = NULL_RTX;
2215 /* The widened memory may alias other stuff, so zap the alias set. */
2216 /* ??? Maybe use get_alias_set on any remaining expression. */
2218 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2219 MEM_ALIGN (new_rtx),
2220 MEM_ADDR_SPACE (new_rtx), mode);
2222 return new_rtx;
2225 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2226 static GTY(()) tree spill_slot_decl;
2228 tree
2229 get_spill_slot_decl (bool force_build_p)
2231 tree d = spill_slot_decl;
2232 rtx rd;
2234 if (d || !force_build_p)
2235 return d;
2237 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2238 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2239 DECL_ARTIFICIAL (d) = 1;
2240 DECL_IGNORED_P (d) = 1;
2241 TREE_USED (d) = 1;
2242 spill_slot_decl = d;
2244 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2245 MEM_NOTRAP_P (rd) = 1;
2246 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2247 NULL_RTX, 0, ADDR_SPACE_GENERIC, BLKmode);
2248 SET_DECL_RTL (d, rd);
2250 return d;
2253 /* Given MEM, a result from assign_stack_local, fill in the memory
2254 attributes as appropriate for a register allocator spill slot.
2255 These slots are not aliasable by other memory. We arrange for
2256 them all to use a single MEM_EXPR, so that the aliasing code can
2257 work properly in the case of shared spill slots. */
2259 void
2260 set_mem_attrs_for_spill (rtx mem)
2262 alias_set_type alias;
2263 rtx addr, offset;
2264 tree expr;
2266 expr = get_spill_slot_decl (true);
2267 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2269 /* We expect the incoming memory to be of the form:
2270 (mem:MODE (plus (reg sfp) (const_int offset)))
2271 with perhaps the plus missing for offset = 0. */
2272 addr = XEXP (mem, 0);
2273 offset = const0_rtx;
2274 if (GET_CODE (addr) == PLUS
2275 && CONST_INT_P (XEXP (addr, 1)))
2276 offset = XEXP (addr, 1);
2278 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2279 MEM_SIZE (mem), MEM_ALIGN (mem),
2280 ADDR_SPACE_GENERIC, GET_MODE (mem));
2281 MEM_NOTRAP_P (mem) = 1;
2284 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2287 gen_label_rtx (void)
2289 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2290 NULL, label_num++, NULL);
2293 /* For procedure integration. */
2295 /* Install new pointers to the first and last insns in the chain.
2296 Also, set cur_insn_uid to one higher than the last in use.
2297 Used for an inline-procedure after copying the insn chain. */
2299 void
2300 set_new_first_and_last_insn (rtx first, rtx last)
2302 rtx insn;
2304 set_first_insn (first);
2305 set_last_insn (last);
2306 cur_insn_uid = 0;
2308 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2310 int debug_count = 0;
2312 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2313 cur_debug_insn_uid = 0;
2315 for (insn = first; insn; insn = NEXT_INSN (insn))
2316 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2317 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2318 else
2320 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2321 if (DEBUG_INSN_P (insn))
2322 debug_count++;
2325 if (debug_count)
2326 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2327 else
2328 cur_debug_insn_uid++;
2330 else
2331 for (insn = first; insn; insn = NEXT_INSN (insn))
2332 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2334 cur_insn_uid++;
2337 /* Go through all the RTL insn bodies and copy any invalid shared
2338 structure. This routine should only be called once. */
2340 static void
2341 unshare_all_rtl_1 (rtx insn)
2343 /* Unshare just about everything else. */
2344 unshare_all_rtl_in_chain (insn);
2346 /* Make sure the addresses of stack slots found outside the insn chain
2347 (such as, in DECL_RTL of a variable) are not shared
2348 with the insn chain.
2350 This special care is necessary when the stack slot MEM does not
2351 actually appear in the insn chain. If it does appear, its address
2352 is unshared from all else at that point. */
2353 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2356 /* Go through all the RTL insn bodies and copy any invalid shared
2357 structure, again. This is a fairly expensive thing to do so it
2358 should be done sparingly. */
2360 void
2361 unshare_all_rtl_again (rtx insn)
2363 rtx p;
2364 tree decl;
2366 for (p = insn; p; p = NEXT_INSN (p))
2367 if (INSN_P (p))
2369 reset_used_flags (PATTERN (p));
2370 reset_used_flags (REG_NOTES (p));
2373 /* Make sure that virtual stack slots are not shared. */
2374 set_used_decls (DECL_INITIAL (cfun->decl));
2376 /* Make sure that virtual parameters are not shared. */
2377 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2378 set_used_flags (DECL_RTL (decl));
2380 reset_used_flags (stack_slot_list);
2382 unshare_all_rtl_1 (insn);
2385 unsigned int
2386 unshare_all_rtl (void)
2388 unshare_all_rtl_1 (get_insns ());
2389 return 0;
2392 struct rtl_opt_pass pass_unshare_all_rtl =
2395 RTL_PASS,
2396 "unshare", /* name */
2397 NULL, /* gate */
2398 unshare_all_rtl, /* execute */
2399 NULL, /* sub */
2400 NULL, /* next */
2401 0, /* static_pass_number */
2402 TV_NONE, /* tv_id */
2403 0, /* properties_required */
2404 0, /* properties_provided */
2405 0, /* properties_destroyed */
2406 0, /* todo_flags_start */
2407 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2412 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2413 Recursively does the same for subexpressions. */
2415 static void
2416 verify_rtx_sharing (rtx orig, rtx insn)
2418 rtx x = orig;
2419 int i;
2420 enum rtx_code code;
2421 const char *format_ptr;
2423 if (x == 0)
2424 return;
2426 code = GET_CODE (x);
2428 /* These types may be freely shared. */
2430 switch (code)
2432 case REG:
2433 case DEBUG_EXPR:
2434 case VALUE:
2435 case CONST_INT:
2436 case CONST_DOUBLE:
2437 case CONST_FIXED:
2438 case CONST_VECTOR:
2439 case SYMBOL_REF:
2440 case LABEL_REF:
2441 case CODE_LABEL:
2442 case PC:
2443 case CC0:
2444 case SCRATCH:
2445 return;
2446 /* SCRATCH must be shared because they represent distinct values. */
2447 case CLOBBER:
2448 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2449 return;
2450 break;
2452 case CONST:
2453 if (shared_const_p (orig))
2454 return;
2455 break;
2457 case MEM:
2458 /* A MEM is allowed to be shared if its address is constant. */
2459 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2460 || reload_completed || reload_in_progress)
2461 return;
2463 break;
2465 default:
2466 break;
2469 /* This rtx may not be shared. If it has already been seen,
2470 replace it with a copy of itself. */
2471 #ifdef ENABLE_CHECKING
2472 if (RTX_FLAG (x, used))
2474 error ("invalid rtl sharing found in the insn");
2475 debug_rtx (insn);
2476 error ("shared rtx");
2477 debug_rtx (x);
2478 internal_error ("internal consistency failure");
2480 #endif
2481 gcc_assert (!RTX_FLAG (x, used));
2483 RTX_FLAG (x, used) = 1;
2485 /* Now scan the subexpressions recursively. */
2487 format_ptr = GET_RTX_FORMAT (code);
2489 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2491 switch (*format_ptr++)
2493 case 'e':
2494 verify_rtx_sharing (XEXP (x, i), insn);
2495 break;
2497 case 'E':
2498 if (XVEC (x, i) != NULL)
2500 int j;
2501 int len = XVECLEN (x, i);
2503 for (j = 0; j < len; j++)
2505 /* We allow sharing of ASM_OPERANDS inside single
2506 instruction. */
2507 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2508 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2509 == ASM_OPERANDS))
2510 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2511 else
2512 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2515 break;
2518 return;
2521 /* Go through all the RTL insn bodies and check that there is no unexpected
2522 sharing in between the subexpressions. */
2524 DEBUG_FUNCTION void
2525 verify_rtl_sharing (void)
2527 rtx p;
2529 for (p = get_insns (); p; p = NEXT_INSN (p))
2530 if (INSN_P (p))
2532 reset_used_flags (PATTERN (p));
2533 reset_used_flags (REG_NOTES (p));
2534 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2536 int i;
2537 rtx q, sequence = PATTERN (p);
2539 for (i = 0; i < XVECLEN (sequence, 0); i++)
2541 q = XVECEXP (sequence, 0, i);
2542 gcc_assert (INSN_P (q));
2543 reset_used_flags (PATTERN (q));
2544 reset_used_flags (REG_NOTES (q));
2549 for (p = get_insns (); p; p = NEXT_INSN (p))
2550 if (INSN_P (p))
2552 verify_rtx_sharing (PATTERN (p), p);
2553 verify_rtx_sharing (REG_NOTES (p), p);
2557 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2558 Assumes the mark bits are cleared at entry. */
2560 void
2561 unshare_all_rtl_in_chain (rtx insn)
2563 for (; insn; insn = NEXT_INSN (insn))
2564 if (INSN_P (insn))
2566 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2567 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2571 /* Go through all virtual stack slots of a function and mark them as
2572 shared. We never replace the DECL_RTLs themselves with a copy,
2573 but expressions mentioned into a DECL_RTL cannot be shared with
2574 expressions in the instruction stream.
2576 Note that reload may convert pseudo registers into memories in-place.
2577 Pseudo registers are always shared, but MEMs never are. Thus if we
2578 reset the used flags on MEMs in the instruction stream, we must set
2579 them again on MEMs that appear in DECL_RTLs. */
2581 static void
2582 set_used_decls (tree blk)
2584 tree t;
2586 /* Mark decls. */
2587 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2588 if (DECL_RTL_SET_P (t))
2589 set_used_flags (DECL_RTL (t));
2591 /* Now process sub-blocks. */
2592 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2593 set_used_decls (t);
2596 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2597 Recursively does the same for subexpressions. Uses
2598 copy_rtx_if_shared_1 to reduce stack space. */
2601 copy_rtx_if_shared (rtx orig)
2603 copy_rtx_if_shared_1 (&orig);
2604 return orig;
2607 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2608 use. Recursively does the same for subexpressions. */
2610 static void
2611 copy_rtx_if_shared_1 (rtx *orig1)
2613 rtx x;
2614 int i;
2615 enum rtx_code code;
2616 rtx *last_ptr;
2617 const char *format_ptr;
2618 int copied = 0;
2619 int length;
2621 /* Repeat is used to turn tail-recursion into iteration. */
2622 repeat:
2623 x = *orig1;
2625 if (x == 0)
2626 return;
2628 code = GET_CODE (x);
2630 /* These types may be freely shared. */
2632 switch (code)
2634 case REG:
2635 case DEBUG_EXPR:
2636 case VALUE:
2637 case CONST_INT:
2638 case CONST_DOUBLE:
2639 case CONST_FIXED:
2640 case CONST_VECTOR:
2641 case SYMBOL_REF:
2642 case LABEL_REF:
2643 case CODE_LABEL:
2644 case PC:
2645 case CC0:
2646 case SCRATCH:
2647 /* SCRATCH must be shared because they represent distinct values. */
2648 return;
2649 case CLOBBER:
2650 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2651 return;
2652 break;
2654 case CONST:
2655 if (shared_const_p (x))
2656 return;
2657 break;
2659 case DEBUG_INSN:
2660 case INSN:
2661 case JUMP_INSN:
2662 case CALL_INSN:
2663 case NOTE:
2664 case BARRIER:
2665 /* The chain of insns is not being copied. */
2666 return;
2668 default:
2669 break;
2672 /* This rtx may not be shared. If it has already been seen,
2673 replace it with a copy of itself. */
2675 if (RTX_FLAG (x, used))
2677 x = shallow_copy_rtx (x);
2678 copied = 1;
2680 RTX_FLAG (x, used) = 1;
2682 /* Now scan the subexpressions recursively.
2683 We can store any replaced subexpressions directly into X
2684 since we know X is not shared! Any vectors in X
2685 must be copied if X was copied. */
2687 format_ptr = GET_RTX_FORMAT (code);
2688 length = GET_RTX_LENGTH (code);
2689 last_ptr = NULL;
2691 for (i = 0; i < length; i++)
2693 switch (*format_ptr++)
2695 case 'e':
2696 if (last_ptr)
2697 copy_rtx_if_shared_1 (last_ptr);
2698 last_ptr = &XEXP (x, i);
2699 break;
2701 case 'E':
2702 if (XVEC (x, i) != NULL)
2704 int j;
2705 int len = XVECLEN (x, i);
2707 /* Copy the vector iff I copied the rtx and the length
2708 is nonzero. */
2709 if (copied && len > 0)
2710 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2712 /* Call recursively on all inside the vector. */
2713 for (j = 0; j < len; j++)
2715 if (last_ptr)
2716 copy_rtx_if_shared_1 (last_ptr);
2717 last_ptr = &XVECEXP (x, i, j);
2720 break;
2723 *orig1 = x;
2724 if (last_ptr)
2726 orig1 = last_ptr;
2727 goto repeat;
2729 return;
2732 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2734 static void
2735 mark_used_flags (rtx x, int flag)
2737 int i, j;
2738 enum rtx_code code;
2739 const char *format_ptr;
2740 int length;
2742 /* Repeat is used to turn tail-recursion into iteration. */
2743 repeat:
2744 if (x == 0)
2745 return;
2747 code = GET_CODE (x);
2749 /* These types may be freely shared so we needn't do any resetting
2750 for them. */
2752 switch (code)
2754 case REG:
2755 case DEBUG_EXPR:
2756 case VALUE:
2757 case CONST_INT:
2758 case CONST_DOUBLE:
2759 case CONST_FIXED:
2760 case CONST_VECTOR:
2761 case SYMBOL_REF:
2762 case CODE_LABEL:
2763 case PC:
2764 case CC0:
2765 return;
2767 case DEBUG_INSN:
2768 case INSN:
2769 case JUMP_INSN:
2770 case CALL_INSN:
2771 case NOTE:
2772 case LABEL_REF:
2773 case BARRIER:
2774 /* The chain of insns is not being copied. */
2775 return;
2777 default:
2778 break;
2781 RTX_FLAG (x, used) = flag;
2783 format_ptr = GET_RTX_FORMAT (code);
2784 length = GET_RTX_LENGTH (code);
2786 for (i = 0; i < length; i++)
2788 switch (*format_ptr++)
2790 case 'e':
2791 if (i == length-1)
2793 x = XEXP (x, i);
2794 goto repeat;
2796 mark_used_flags (XEXP (x, i), flag);
2797 break;
2799 case 'E':
2800 for (j = 0; j < XVECLEN (x, i); j++)
2801 mark_used_flags (XVECEXP (x, i, j), flag);
2802 break;
2807 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2808 to look for shared sub-parts. */
2810 void
2811 reset_used_flags (rtx x)
2813 mark_used_flags (x, 0);
2816 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2817 to look for shared sub-parts. */
2819 void
2820 set_used_flags (rtx x)
2822 mark_used_flags (x, 1);
2825 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2826 Return X or the rtx for the pseudo reg the value of X was copied into.
2827 OTHER must be valid as a SET_DEST. */
2830 make_safe_from (rtx x, rtx other)
2832 while (1)
2833 switch (GET_CODE (other))
2835 case SUBREG:
2836 other = SUBREG_REG (other);
2837 break;
2838 case STRICT_LOW_PART:
2839 case SIGN_EXTEND:
2840 case ZERO_EXTEND:
2841 other = XEXP (other, 0);
2842 break;
2843 default:
2844 goto done;
2846 done:
2847 if ((MEM_P (other)
2848 && ! CONSTANT_P (x)
2849 && !REG_P (x)
2850 && GET_CODE (x) != SUBREG)
2851 || (REG_P (other)
2852 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2853 || reg_mentioned_p (other, x))))
2855 rtx temp = gen_reg_rtx (GET_MODE (x));
2856 emit_move_insn (temp, x);
2857 return temp;
2859 return x;
2862 /* Emission of insns (adding them to the doubly-linked list). */
2864 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2867 get_last_insn_anywhere (void)
2869 struct sequence_stack *stack;
2870 if (get_last_insn ())
2871 return get_last_insn ();
2872 for (stack = seq_stack; stack; stack = stack->next)
2873 if (stack->last != 0)
2874 return stack->last;
2875 return 0;
2878 /* Return the first nonnote insn emitted in current sequence or current
2879 function. This routine looks inside SEQUENCEs. */
2882 get_first_nonnote_insn (void)
2884 rtx insn = get_insns ();
2886 if (insn)
2888 if (NOTE_P (insn))
2889 for (insn = next_insn (insn);
2890 insn && NOTE_P (insn);
2891 insn = next_insn (insn))
2892 continue;
2893 else
2895 if (NONJUMP_INSN_P (insn)
2896 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2897 insn = XVECEXP (PATTERN (insn), 0, 0);
2901 return insn;
2904 /* Return the last nonnote insn emitted in current sequence or current
2905 function. This routine looks inside SEQUENCEs. */
2908 get_last_nonnote_insn (void)
2910 rtx insn = get_last_insn ();
2912 if (insn)
2914 if (NOTE_P (insn))
2915 for (insn = previous_insn (insn);
2916 insn && NOTE_P (insn);
2917 insn = previous_insn (insn))
2918 continue;
2919 else
2921 if (NONJUMP_INSN_P (insn)
2922 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2923 insn = XVECEXP (PATTERN (insn), 0,
2924 XVECLEN (PATTERN (insn), 0) - 1);
2928 return insn;
2931 /* Return the number of actual (non-debug) insns emitted in this
2932 function. */
2935 get_max_insn_count (void)
2937 int n = cur_insn_uid;
2939 /* The table size must be stable across -g, to avoid codegen
2940 differences due to debug insns, and not be affected by
2941 -fmin-insn-uid, to avoid excessive table size and to simplify
2942 debugging of -fcompare-debug failures. */
2943 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
2944 n -= cur_debug_insn_uid;
2945 else
2946 n -= MIN_NONDEBUG_INSN_UID;
2948 return n;
2952 /* Return the next insn. If it is a SEQUENCE, return the first insn
2953 of the sequence. */
2956 next_insn (rtx insn)
2958 if (insn)
2960 insn = NEXT_INSN (insn);
2961 if (insn && NONJUMP_INSN_P (insn)
2962 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2963 insn = XVECEXP (PATTERN (insn), 0, 0);
2966 return insn;
2969 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2970 of the sequence. */
2973 previous_insn (rtx insn)
2975 if (insn)
2977 insn = PREV_INSN (insn);
2978 if (insn && NONJUMP_INSN_P (insn)
2979 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2980 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2983 return insn;
2986 /* Return the next insn after INSN that is not a NOTE. This routine does not
2987 look inside SEQUENCEs. */
2990 next_nonnote_insn (rtx insn)
2992 while (insn)
2994 insn = NEXT_INSN (insn);
2995 if (insn == 0 || !NOTE_P (insn))
2996 break;
2999 return insn;
3002 /* Return the next insn after INSN that is not a NOTE, but stop the
3003 search before we enter another basic block. This routine does not
3004 look inside SEQUENCEs. */
3007 next_nonnote_insn_bb (rtx insn)
3009 while (insn)
3011 insn = NEXT_INSN (insn);
3012 if (insn == 0 || !NOTE_P (insn))
3013 break;
3014 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3015 return NULL_RTX;
3018 return insn;
3021 /* Return the previous insn before INSN that is not a NOTE. This routine does
3022 not look inside SEQUENCEs. */
3025 prev_nonnote_insn (rtx insn)
3027 while (insn)
3029 insn = PREV_INSN (insn);
3030 if (insn == 0 || !NOTE_P (insn))
3031 break;
3034 return insn;
3037 /* Return the previous insn before INSN that is not a NOTE, but stop
3038 the search before we enter another basic block. This routine does
3039 not look inside SEQUENCEs. */
3042 prev_nonnote_insn_bb (rtx insn)
3044 while (insn)
3046 insn = PREV_INSN (insn);
3047 if (insn == 0 || !NOTE_P (insn))
3048 break;
3049 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3050 return NULL_RTX;
3053 return insn;
3056 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3057 routine does not look inside SEQUENCEs. */
3060 next_nondebug_insn (rtx insn)
3062 while (insn)
3064 insn = NEXT_INSN (insn);
3065 if (insn == 0 || !DEBUG_INSN_P (insn))
3066 break;
3069 return insn;
3072 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3073 This routine does not look inside SEQUENCEs. */
3076 prev_nondebug_insn (rtx insn)
3078 while (insn)
3080 insn = PREV_INSN (insn);
3081 if (insn == 0 || !DEBUG_INSN_P (insn))
3082 break;
3085 return insn;
3088 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3089 This routine does not look inside SEQUENCEs. */
3092 next_nonnote_nondebug_insn (rtx insn)
3094 while (insn)
3096 insn = NEXT_INSN (insn);
3097 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3098 break;
3101 return insn;
3104 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3105 This routine does not look inside SEQUENCEs. */
3108 prev_nonnote_nondebug_insn (rtx insn)
3110 while (insn)
3112 insn = PREV_INSN (insn);
3113 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3114 break;
3117 return insn;
3120 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3121 or 0, if there is none. This routine does not look inside
3122 SEQUENCEs. */
3125 next_real_insn (rtx insn)
3127 while (insn)
3129 insn = NEXT_INSN (insn);
3130 if (insn == 0 || INSN_P (insn))
3131 break;
3134 return insn;
3137 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3138 or 0, if there is none. This routine does not look inside
3139 SEQUENCEs. */
3142 prev_real_insn (rtx insn)
3144 while (insn)
3146 insn = PREV_INSN (insn);
3147 if (insn == 0 || INSN_P (insn))
3148 break;
3151 return insn;
3154 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3155 This routine does not look inside SEQUENCEs. */
3158 last_call_insn (void)
3160 rtx insn;
3162 for (insn = get_last_insn ();
3163 insn && !CALL_P (insn);
3164 insn = PREV_INSN (insn))
3167 return insn;
3170 /* Find the next insn after INSN that really does something. This routine
3171 does not look inside SEQUENCEs. After reload this also skips over
3172 standalone USE and CLOBBER insn. */
3175 active_insn_p (const_rtx insn)
3177 return (CALL_P (insn) || JUMP_P (insn)
3178 || (NONJUMP_INSN_P (insn)
3179 && (! reload_completed
3180 || (GET_CODE (PATTERN (insn)) != USE
3181 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3185 next_active_insn (rtx insn)
3187 while (insn)
3189 insn = NEXT_INSN (insn);
3190 if (insn == 0 || active_insn_p (insn))
3191 break;
3194 return insn;
3197 /* Find the last insn before INSN that really does something. This routine
3198 does not look inside SEQUENCEs. After reload this also skips over
3199 standalone USE and CLOBBER insn. */
3202 prev_active_insn (rtx insn)
3204 while (insn)
3206 insn = PREV_INSN (insn);
3207 if (insn == 0 || active_insn_p (insn))
3208 break;
3211 return insn;
3214 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3217 next_label (rtx insn)
3219 while (insn)
3221 insn = NEXT_INSN (insn);
3222 if (insn == 0 || LABEL_P (insn))
3223 break;
3226 return insn;
3229 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3232 prev_label (rtx insn)
3234 while (insn)
3236 insn = PREV_INSN (insn);
3237 if (insn == 0 || LABEL_P (insn))
3238 break;
3241 return insn;
3244 /* Return the last label to mark the same position as LABEL. Return null
3245 if LABEL itself is null. */
3248 skip_consecutive_labels (rtx label)
3250 rtx insn;
3252 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3253 if (LABEL_P (insn))
3254 label = insn;
3256 return label;
3259 #ifdef HAVE_cc0
3260 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3261 and REG_CC_USER notes so we can find it. */
3263 void
3264 link_cc0_insns (rtx insn)
3266 rtx user = next_nonnote_insn (insn);
3268 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3269 user = XVECEXP (PATTERN (user), 0, 0);
3271 add_reg_note (user, REG_CC_SETTER, insn);
3272 add_reg_note (insn, REG_CC_USER, user);
3275 /* Return the next insn that uses CC0 after INSN, which is assumed to
3276 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3277 applied to the result of this function should yield INSN).
3279 Normally, this is simply the next insn. However, if a REG_CC_USER note
3280 is present, it contains the insn that uses CC0.
3282 Return 0 if we can't find the insn. */
3285 next_cc0_user (rtx insn)
3287 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3289 if (note)
3290 return XEXP (note, 0);
3292 insn = next_nonnote_insn (insn);
3293 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3294 insn = XVECEXP (PATTERN (insn), 0, 0);
3296 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3297 return insn;
3299 return 0;
3302 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3303 note, it is the previous insn. */
3306 prev_cc0_setter (rtx insn)
3308 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3310 if (note)
3311 return XEXP (note, 0);
3313 insn = prev_nonnote_insn (insn);
3314 gcc_assert (sets_cc0_p (PATTERN (insn)));
3316 return insn;
3318 #endif
3320 #ifdef AUTO_INC_DEC
3321 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3323 static int
3324 find_auto_inc (rtx *xp, void *data)
3326 rtx x = *xp;
3327 rtx reg = (rtx) data;
3329 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3330 return 0;
3332 switch (GET_CODE (x))
3334 case PRE_DEC:
3335 case PRE_INC:
3336 case POST_DEC:
3337 case POST_INC:
3338 case PRE_MODIFY:
3339 case POST_MODIFY:
3340 if (rtx_equal_p (reg, XEXP (x, 0)))
3341 return 1;
3342 break;
3344 default:
3345 gcc_unreachable ();
3347 return -1;
3349 #endif
3351 /* Increment the label uses for all labels present in rtx. */
3353 static void
3354 mark_label_nuses (rtx x)
3356 enum rtx_code code;
3357 int i, j;
3358 const char *fmt;
3360 code = GET_CODE (x);
3361 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3362 LABEL_NUSES (XEXP (x, 0))++;
3364 fmt = GET_RTX_FORMAT (code);
3365 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3367 if (fmt[i] == 'e')
3368 mark_label_nuses (XEXP (x, i));
3369 else if (fmt[i] == 'E')
3370 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3371 mark_label_nuses (XVECEXP (x, i, j));
3376 /* Try splitting insns that can be split for better scheduling.
3377 PAT is the pattern which might split.
3378 TRIAL is the insn providing PAT.
3379 LAST is nonzero if we should return the last insn of the sequence produced.
3381 If this routine succeeds in splitting, it returns the first or last
3382 replacement insn depending on the value of LAST. Otherwise, it
3383 returns TRIAL. If the insn to be returned can be split, it will be. */
3386 try_split (rtx pat, rtx trial, int last)
3388 rtx before = PREV_INSN (trial);
3389 rtx after = NEXT_INSN (trial);
3390 int has_barrier = 0;
3391 rtx note, seq, tem;
3392 int probability;
3393 rtx insn_last, insn;
3394 int njumps = 0;
3396 /* We're not good at redistributing frame information. */
3397 if (RTX_FRAME_RELATED_P (trial))
3398 return trial;
3400 if (any_condjump_p (trial)
3401 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3402 split_branch_probability = INTVAL (XEXP (note, 0));
3403 probability = split_branch_probability;
3405 seq = split_insns (pat, trial);
3407 split_branch_probability = -1;
3409 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3410 We may need to handle this specially. */
3411 if (after && BARRIER_P (after))
3413 has_barrier = 1;
3414 after = NEXT_INSN (after);
3417 if (!seq)
3418 return trial;
3420 /* Avoid infinite loop if any insn of the result matches
3421 the original pattern. */
3422 insn_last = seq;
3423 while (1)
3425 if (INSN_P (insn_last)
3426 && rtx_equal_p (PATTERN (insn_last), pat))
3427 return trial;
3428 if (!NEXT_INSN (insn_last))
3429 break;
3430 insn_last = NEXT_INSN (insn_last);
3433 /* We will be adding the new sequence to the function. The splitters
3434 may have introduced invalid RTL sharing, so unshare the sequence now. */
3435 unshare_all_rtl_in_chain (seq);
3437 /* Mark labels. */
3438 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3440 if (JUMP_P (insn))
3442 mark_jump_label (PATTERN (insn), insn, 0);
3443 njumps++;
3444 if (probability != -1
3445 && any_condjump_p (insn)
3446 && !find_reg_note (insn, REG_BR_PROB, 0))
3448 /* We can preserve the REG_BR_PROB notes only if exactly
3449 one jump is created, otherwise the machine description
3450 is responsible for this step using
3451 split_branch_probability variable. */
3452 gcc_assert (njumps == 1);
3453 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3458 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3459 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3460 if (CALL_P (trial))
3462 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3463 if (CALL_P (insn))
3465 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3466 while (*p)
3467 p = &XEXP (*p, 1);
3468 *p = CALL_INSN_FUNCTION_USAGE (trial);
3469 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3471 /* Update the debug information for the CALL_INSN. */
3472 if (flag_enable_icf_debug)
3473 (*debug_hooks->copy_call_info) (trial, insn);
3477 /* Copy notes, particularly those related to the CFG. */
3478 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3480 switch (REG_NOTE_KIND (note))
3482 case REG_EH_REGION:
3483 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3484 break;
3486 case REG_NORETURN:
3487 case REG_SETJMP:
3488 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3490 if (CALL_P (insn))
3491 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3493 break;
3495 case REG_NON_LOCAL_GOTO:
3496 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3498 if (JUMP_P (insn))
3499 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3501 break;
3503 #ifdef AUTO_INC_DEC
3504 case REG_INC:
3505 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3507 rtx reg = XEXP (note, 0);
3508 if (!FIND_REG_INC_NOTE (insn, reg)
3509 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3510 add_reg_note (insn, REG_INC, reg);
3512 break;
3513 #endif
3515 default:
3516 break;
3520 /* If there are LABELS inside the split insns increment the
3521 usage count so we don't delete the label. */
3522 if (INSN_P (trial))
3524 insn = insn_last;
3525 while (insn != NULL_RTX)
3527 /* JUMP_P insns have already been "marked" above. */
3528 if (NONJUMP_INSN_P (insn))
3529 mark_label_nuses (PATTERN (insn));
3531 insn = PREV_INSN (insn);
3535 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3537 delete_insn (trial);
3538 if (has_barrier)
3539 emit_barrier_after (tem);
3541 /* Recursively call try_split for each new insn created; by the
3542 time control returns here that insn will be fully split, so
3543 set LAST and continue from the insn after the one returned.
3544 We can't use next_active_insn here since AFTER may be a note.
3545 Ignore deleted insns, which can be occur if not optimizing. */
3546 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3547 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3548 tem = try_split (PATTERN (tem), tem, 1);
3550 /* Return either the first or the last insn, depending on which was
3551 requested. */
3552 return last
3553 ? (after ? PREV_INSN (after) : get_last_insn ())
3554 : NEXT_INSN (before);
3557 /* Make and return an INSN rtx, initializing all its slots.
3558 Store PATTERN in the pattern slots. */
3561 make_insn_raw (rtx pattern)
3563 rtx insn;
3565 insn = rtx_alloc (INSN);
3567 INSN_UID (insn) = cur_insn_uid++;
3568 PATTERN (insn) = pattern;
3569 INSN_CODE (insn) = -1;
3570 REG_NOTES (insn) = NULL;
3571 INSN_LOCATOR (insn) = curr_insn_locator ();
3572 BLOCK_FOR_INSN (insn) = NULL;
3574 #ifdef ENABLE_RTL_CHECKING
3575 if (insn
3576 && INSN_P (insn)
3577 && (returnjump_p (insn)
3578 || (GET_CODE (insn) == SET
3579 && SET_DEST (insn) == pc_rtx)))
3581 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3582 debug_rtx (insn);
3584 #endif
3586 return insn;
3589 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3592 make_debug_insn_raw (rtx pattern)
3594 rtx insn;
3596 insn = rtx_alloc (DEBUG_INSN);
3597 INSN_UID (insn) = cur_debug_insn_uid++;
3598 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3599 INSN_UID (insn) = cur_insn_uid++;
3601 PATTERN (insn) = pattern;
3602 INSN_CODE (insn) = -1;
3603 REG_NOTES (insn) = NULL;
3604 INSN_LOCATOR (insn) = curr_insn_locator ();
3605 BLOCK_FOR_INSN (insn) = NULL;
3607 return insn;
3610 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3613 make_jump_insn_raw (rtx pattern)
3615 rtx insn;
3617 insn = rtx_alloc (JUMP_INSN);
3618 INSN_UID (insn) = cur_insn_uid++;
3620 PATTERN (insn) = pattern;
3621 INSN_CODE (insn) = -1;
3622 REG_NOTES (insn) = NULL;
3623 JUMP_LABEL (insn) = NULL;
3624 INSN_LOCATOR (insn) = curr_insn_locator ();
3625 BLOCK_FOR_INSN (insn) = NULL;
3627 return insn;
3630 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3632 static rtx
3633 make_call_insn_raw (rtx pattern)
3635 rtx insn;
3637 insn = rtx_alloc (CALL_INSN);
3638 INSN_UID (insn) = cur_insn_uid++;
3640 PATTERN (insn) = pattern;
3641 INSN_CODE (insn) = -1;
3642 REG_NOTES (insn) = NULL;
3643 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3644 INSN_LOCATOR (insn) = curr_insn_locator ();
3645 BLOCK_FOR_INSN (insn) = NULL;
3647 return insn;
3650 /* Add INSN to the end of the doubly-linked list.
3651 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3653 void
3654 add_insn (rtx insn)
3656 PREV_INSN (insn) = get_last_insn();
3657 NEXT_INSN (insn) = 0;
3659 if (NULL != get_last_insn())
3660 NEXT_INSN (get_last_insn ()) = insn;
3662 if (NULL == get_insns ())
3663 set_first_insn (insn);
3665 set_last_insn (insn);
3668 /* Add INSN into the doubly-linked list after insn AFTER. This and
3669 the next should be the only functions called to insert an insn once
3670 delay slots have been filled since only they know how to update a
3671 SEQUENCE. */
3673 void
3674 add_insn_after (rtx insn, rtx after, basic_block bb)
3676 rtx next = NEXT_INSN (after);
3678 gcc_assert (!optimize || !INSN_DELETED_P (after));
3680 NEXT_INSN (insn) = next;
3681 PREV_INSN (insn) = after;
3683 if (next)
3685 PREV_INSN (next) = insn;
3686 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3687 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3689 else if (get_last_insn () == after)
3690 set_last_insn (insn);
3691 else
3693 struct sequence_stack *stack = seq_stack;
3694 /* Scan all pending sequences too. */
3695 for (; stack; stack = stack->next)
3696 if (after == stack->last)
3698 stack->last = insn;
3699 break;
3702 gcc_assert (stack);
3705 if (!BARRIER_P (after)
3706 && !BARRIER_P (insn)
3707 && (bb = BLOCK_FOR_INSN (after)))
3709 set_block_for_insn (insn, bb);
3710 if (INSN_P (insn))
3711 df_insn_rescan (insn);
3712 /* Should not happen as first in the BB is always
3713 either NOTE or LABEL. */
3714 if (BB_END (bb) == after
3715 /* Avoid clobbering of structure when creating new BB. */
3716 && !BARRIER_P (insn)
3717 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3718 BB_END (bb) = insn;
3721 NEXT_INSN (after) = insn;
3722 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3724 rtx sequence = PATTERN (after);
3725 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3729 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3730 the previous should be the only functions called to insert an insn
3731 once delay slots have been filled since only they know how to
3732 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3733 bb from before. */
3735 void
3736 add_insn_before (rtx insn, rtx before, basic_block bb)
3738 rtx prev = PREV_INSN (before);
3740 gcc_assert (!optimize || !INSN_DELETED_P (before));
3742 PREV_INSN (insn) = prev;
3743 NEXT_INSN (insn) = before;
3745 if (prev)
3747 NEXT_INSN (prev) = insn;
3748 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3750 rtx sequence = PATTERN (prev);
3751 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3754 else if (get_insns () == before)
3755 set_first_insn (insn);
3756 else
3758 struct sequence_stack *stack = seq_stack;
3759 /* Scan all pending sequences too. */
3760 for (; stack; stack = stack->next)
3761 if (before == stack->first)
3763 stack->first = insn;
3764 break;
3767 gcc_assert (stack);
3770 if (!bb
3771 && !BARRIER_P (before)
3772 && !BARRIER_P (insn))
3773 bb = BLOCK_FOR_INSN (before);
3775 if (bb)
3777 set_block_for_insn (insn, bb);
3778 if (INSN_P (insn))
3779 df_insn_rescan (insn);
3780 /* Should not happen as first in the BB is always either NOTE or
3781 LABEL. */
3782 gcc_assert (BB_HEAD (bb) != insn
3783 /* Avoid clobbering of structure when creating new BB. */
3784 || BARRIER_P (insn)
3785 || NOTE_INSN_BASIC_BLOCK_P (insn));
3788 PREV_INSN (before) = insn;
3789 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3790 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3794 /* Replace insn with an deleted instruction note. */
3796 void
3797 set_insn_deleted (rtx insn)
3799 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3800 PUT_CODE (insn, NOTE);
3801 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3805 /* Remove an insn from its doubly-linked list. This function knows how
3806 to handle sequences. */
3807 void
3808 remove_insn (rtx insn)
3810 rtx next = NEXT_INSN (insn);
3811 rtx prev = PREV_INSN (insn);
3812 basic_block bb;
3814 /* Later in the code, the block will be marked dirty. */
3815 df_insn_delete (NULL, INSN_UID (insn));
3817 if (prev)
3819 NEXT_INSN (prev) = next;
3820 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3822 rtx sequence = PATTERN (prev);
3823 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3826 else if (get_insns () == insn)
3828 if (next)
3829 PREV_INSN (next) = NULL;
3830 set_first_insn (next);
3832 else
3834 struct sequence_stack *stack = seq_stack;
3835 /* Scan all pending sequences too. */
3836 for (; stack; stack = stack->next)
3837 if (insn == stack->first)
3839 stack->first = next;
3840 break;
3843 gcc_assert (stack);
3846 if (next)
3848 PREV_INSN (next) = prev;
3849 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3850 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3852 else if (get_last_insn () == insn)
3853 set_last_insn (prev);
3854 else
3856 struct sequence_stack *stack = seq_stack;
3857 /* Scan all pending sequences too. */
3858 for (; stack; stack = stack->next)
3859 if (insn == stack->last)
3861 stack->last = prev;
3862 break;
3865 gcc_assert (stack);
3867 if (!BARRIER_P (insn)
3868 && (bb = BLOCK_FOR_INSN (insn)))
3870 if (INSN_P (insn))
3871 df_set_bb_dirty (bb);
3872 if (BB_HEAD (bb) == insn)
3874 /* Never ever delete the basic block note without deleting whole
3875 basic block. */
3876 gcc_assert (!NOTE_P (insn));
3877 BB_HEAD (bb) = next;
3879 if (BB_END (bb) == insn)
3880 BB_END (bb) = prev;
3884 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3886 void
3887 add_function_usage_to (rtx call_insn, rtx call_fusage)
3889 gcc_assert (call_insn && CALL_P (call_insn));
3891 /* Put the register usage information on the CALL. If there is already
3892 some usage information, put ours at the end. */
3893 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3895 rtx link;
3897 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3898 link = XEXP (link, 1))
3901 XEXP (link, 1) = call_fusage;
3903 else
3904 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3907 /* Delete all insns made since FROM.
3908 FROM becomes the new last instruction. */
3910 void
3911 delete_insns_since (rtx from)
3913 if (from == 0)
3914 set_first_insn (0);
3915 else
3916 NEXT_INSN (from) = 0;
3917 set_last_insn (from);
3920 /* This function is deprecated, please use sequences instead.
3922 Move a consecutive bunch of insns to a different place in the chain.
3923 The insns to be moved are those between FROM and TO.
3924 They are moved to a new position after the insn AFTER.
3925 AFTER must not be FROM or TO or any insn in between.
3927 This function does not know about SEQUENCEs and hence should not be
3928 called after delay-slot filling has been done. */
3930 void
3931 reorder_insns_nobb (rtx from, rtx to, rtx after)
3933 #ifdef ENABLE_CHECKING
3934 rtx x;
3935 for (x = from; x != to; x = NEXT_INSN (x))
3936 gcc_assert (after != x);
3937 gcc_assert (after != to);
3938 #endif
3940 /* Splice this bunch out of where it is now. */
3941 if (PREV_INSN (from))
3942 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3943 if (NEXT_INSN (to))
3944 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3945 if (get_last_insn () == to)
3946 set_last_insn (PREV_INSN (from));
3947 if (get_insns () == from)
3948 set_first_insn (NEXT_INSN (to));
3950 /* Make the new neighbors point to it and it to them. */
3951 if (NEXT_INSN (after))
3952 PREV_INSN (NEXT_INSN (after)) = to;
3954 NEXT_INSN (to) = NEXT_INSN (after);
3955 PREV_INSN (from) = after;
3956 NEXT_INSN (after) = from;
3957 if (after == get_last_insn())
3958 set_last_insn (to);
3961 /* Same as function above, but take care to update BB boundaries. */
3962 void
3963 reorder_insns (rtx from, rtx to, rtx after)
3965 rtx prev = PREV_INSN (from);
3966 basic_block bb, bb2;
3968 reorder_insns_nobb (from, to, after);
3970 if (!BARRIER_P (after)
3971 && (bb = BLOCK_FOR_INSN (after)))
3973 rtx x;
3974 df_set_bb_dirty (bb);
3976 if (!BARRIER_P (from)
3977 && (bb2 = BLOCK_FOR_INSN (from)))
3979 if (BB_END (bb2) == to)
3980 BB_END (bb2) = prev;
3981 df_set_bb_dirty (bb2);
3984 if (BB_END (bb) == after)
3985 BB_END (bb) = to;
3987 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3988 if (!BARRIER_P (x))
3989 df_insn_change_bb (x, bb);
3994 /* Emit insn(s) of given code and pattern
3995 at a specified place within the doubly-linked list.
3997 All of the emit_foo global entry points accept an object
3998 X which is either an insn list or a PATTERN of a single
3999 instruction.
4001 There are thus a few canonical ways to generate code and
4002 emit it at a specific place in the instruction stream. For
4003 example, consider the instruction named SPOT and the fact that
4004 we would like to emit some instructions before SPOT. We might
4005 do it like this:
4007 start_sequence ();
4008 ... emit the new instructions ...
4009 insns_head = get_insns ();
4010 end_sequence ();
4012 emit_insn_before (insns_head, SPOT);
4014 It used to be common to generate SEQUENCE rtl instead, but that
4015 is a relic of the past which no longer occurs. The reason is that
4016 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4017 generated would almost certainly die right after it was created. */
4019 /* Make X be output before the instruction BEFORE. */
4022 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4024 rtx last = before;
4025 rtx insn;
4027 gcc_assert (before);
4029 if (x == NULL_RTX)
4030 return last;
4032 switch (GET_CODE (x))
4034 case DEBUG_INSN:
4035 case INSN:
4036 case JUMP_INSN:
4037 case CALL_INSN:
4038 case CODE_LABEL:
4039 case BARRIER:
4040 case NOTE:
4041 insn = x;
4042 while (insn)
4044 rtx next = NEXT_INSN (insn);
4045 add_insn_before (insn, before, bb);
4046 last = insn;
4047 insn = next;
4049 break;
4051 #ifdef ENABLE_RTL_CHECKING
4052 case SEQUENCE:
4053 gcc_unreachable ();
4054 break;
4055 #endif
4057 default:
4058 last = make_insn_raw (x);
4059 add_insn_before (last, before, bb);
4060 break;
4063 return last;
4066 /* Make an instruction with body X and code JUMP_INSN
4067 and output it before the instruction BEFORE. */
4070 emit_jump_insn_before_noloc (rtx x, rtx before)
4072 rtx insn, last = NULL_RTX;
4074 gcc_assert (before);
4076 switch (GET_CODE (x))
4078 case DEBUG_INSN:
4079 case INSN:
4080 case JUMP_INSN:
4081 case CALL_INSN:
4082 case CODE_LABEL:
4083 case BARRIER:
4084 case NOTE:
4085 insn = x;
4086 while (insn)
4088 rtx next = NEXT_INSN (insn);
4089 add_insn_before (insn, before, NULL);
4090 last = insn;
4091 insn = next;
4093 break;
4095 #ifdef ENABLE_RTL_CHECKING
4096 case SEQUENCE:
4097 gcc_unreachable ();
4098 break;
4099 #endif
4101 default:
4102 last = make_jump_insn_raw (x);
4103 add_insn_before (last, before, NULL);
4104 break;
4107 return last;
4110 /* Make an instruction with body X and code CALL_INSN
4111 and output it before the instruction BEFORE. */
4114 emit_call_insn_before_noloc (rtx x, rtx before)
4116 rtx last = NULL_RTX, insn;
4118 gcc_assert (before);
4120 switch (GET_CODE (x))
4122 case DEBUG_INSN:
4123 case INSN:
4124 case JUMP_INSN:
4125 case CALL_INSN:
4126 case CODE_LABEL:
4127 case BARRIER:
4128 case NOTE:
4129 insn = x;
4130 while (insn)
4132 rtx next = NEXT_INSN (insn);
4133 add_insn_before (insn, before, NULL);
4134 last = insn;
4135 insn = next;
4137 break;
4139 #ifdef ENABLE_RTL_CHECKING
4140 case SEQUENCE:
4141 gcc_unreachable ();
4142 break;
4143 #endif
4145 default:
4146 last = make_call_insn_raw (x);
4147 add_insn_before (last, before, NULL);
4148 break;
4151 return last;
4154 /* Make an instruction with body X and code DEBUG_INSN
4155 and output it before the instruction BEFORE. */
4158 emit_debug_insn_before_noloc (rtx x, rtx before)
4160 rtx last = NULL_RTX, insn;
4162 gcc_assert (before);
4164 switch (GET_CODE (x))
4166 case DEBUG_INSN:
4167 case INSN:
4168 case JUMP_INSN:
4169 case CALL_INSN:
4170 case CODE_LABEL:
4171 case BARRIER:
4172 case NOTE:
4173 insn = x;
4174 while (insn)
4176 rtx next = NEXT_INSN (insn);
4177 add_insn_before (insn, before, NULL);
4178 last = insn;
4179 insn = next;
4181 break;
4183 #ifdef ENABLE_RTL_CHECKING
4184 case SEQUENCE:
4185 gcc_unreachable ();
4186 break;
4187 #endif
4189 default:
4190 last = make_debug_insn_raw (x);
4191 add_insn_before (last, before, NULL);
4192 break;
4195 return last;
4198 /* Make an insn of code BARRIER
4199 and output it before the insn BEFORE. */
4202 emit_barrier_before (rtx before)
4204 rtx insn = rtx_alloc (BARRIER);
4206 INSN_UID (insn) = cur_insn_uid++;
4208 add_insn_before (insn, before, NULL);
4209 return insn;
4212 /* Emit the label LABEL before the insn BEFORE. */
4215 emit_label_before (rtx label, rtx before)
4217 /* This can be called twice for the same label as a result of the
4218 confusion that follows a syntax error! So make it harmless. */
4219 if (INSN_UID (label) == 0)
4221 INSN_UID (label) = cur_insn_uid++;
4222 add_insn_before (label, before, NULL);
4225 return label;
4228 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4231 emit_note_before (enum insn_note subtype, rtx before)
4233 rtx note = rtx_alloc (NOTE);
4234 INSN_UID (note) = cur_insn_uid++;
4235 NOTE_KIND (note) = subtype;
4236 BLOCK_FOR_INSN (note) = NULL;
4237 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4239 add_insn_before (note, before, NULL);
4240 return note;
4243 /* Helper for emit_insn_after, handles lists of instructions
4244 efficiently. */
4246 static rtx
4247 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4249 rtx last;
4250 rtx after_after;
4251 if (!bb && !BARRIER_P (after))
4252 bb = BLOCK_FOR_INSN (after);
4254 if (bb)
4256 df_set_bb_dirty (bb);
4257 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4258 if (!BARRIER_P (last))
4260 set_block_for_insn (last, bb);
4261 df_insn_rescan (last);
4263 if (!BARRIER_P (last))
4265 set_block_for_insn (last, bb);
4266 df_insn_rescan (last);
4268 if (BB_END (bb) == after)
4269 BB_END (bb) = last;
4271 else
4272 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4273 continue;
4275 after_after = NEXT_INSN (after);
4277 NEXT_INSN (after) = first;
4278 PREV_INSN (first) = after;
4279 NEXT_INSN (last) = after_after;
4280 if (after_after)
4281 PREV_INSN (after_after) = last;
4283 if (after == get_last_insn())
4284 set_last_insn (last);
4286 return last;
4289 /* Make X be output after the insn AFTER and set the BB of insn. If
4290 BB is NULL, an attempt is made to infer the BB from AFTER. */
4293 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4295 rtx last = after;
4297 gcc_assert (after);
4299 if (x == NULL_RTX)
4300 return last;
4302 switch (GET_CODE (x))
4304 case DEBUG_INSN:
4305 case INSN:
4306 case JUMP_INSN:
4307 case CALL_INSN:
4308 case CODE_LABEL:
4309 case BARRIER:
4310 case NOTE:
4311 last = emit_insn_after_1 (x, after, bb);
4312 break;
4314 #ifdef ENABLE_RTL_CHECKING
4315 case SEQUENCE:
4316 gcc_unreachable ();
4317 break;
4318 #endif
4320 default:
4321 last = make_insn_raw (x);
4322 add_insn_after (last, after, bb);
4323 break;
4326 return last;
4330 /* Make an insn of code JUMP_INSN with body X
4331 and output it after the insn AFTER. */
4334 emit_jump_insn_after_noloc (rtx x, rtx after)
4336 rtx last;
4338 gcc_assert (after);
4340 switch (GET_CODE (x))
4342 case DEBUG_INSN:
4343 case INSN:
4344 case JUMP_INSN:
4345 case CALL_INSN:
4346 case CODE_LABEL:
4347 case BARRIER:
4348 case NOTE:
4349 last = emit_insn_after_1 (x, after, NULL);
4350 break;
4352 #ifdef ENABLE_RTL_CHECKING
4353 case SEQUENCE:
4354 gcc_unreachable ();
4355 break;
4356 #endif
4358 default:
4359 last = make_jump_insn_raw (x);
4360 add_insn_after (last, after, NULL);
4361 break;
4364 return last;
4367 /* Make an instruction with body X and code CALL_INSN
4368 and output it after the instruction AFTER. */
4371 emit_call_insn_after_noloc (rtx x, rtx after)
4373 rtx last;
4375 gcc_assert (after);
4377 switch (GET_CODE (x))
4379 case DEBUG_INSN:
4380 case INSN:
4381 case JUMP_INSN:
4382 case CALL_INSN:
4383 case CODE_LABEL:
4384 case BARRIER:
4385 case NOTE:
4386 last = emit_insn_after_1 (x, after, NULL);
4387 break;
4389 #ifdef ENABLE_RTL_CHECKING
4390 case SEQUENCE:
4391 gcc_unreachable ();
4392 break;
4393 #endif
4395 default:
4396 last = make_call_insn_raw (x);
4397 add_insn_after (last, after, NULL);
4398 break;
4401 return last;
4404 /* Make an instruction with body X and code CALL_INSN
4405 and output it after the instruction AFTER. */
4408 emit_debug_insn_after_noloc (rtx x, rtx after)
4410 rtx last;
4412 gcc_assert (after);
4414 switch (GET_CODE (x))
4416 case DEBUG_INSN:
4417 case INSN:
4418 case JUMP_INSN:
4419 case CALL_INSN:
4420 case CODE_LABEL:
4421 case BARRIER:
4422 case NOTE:
4423 last = emit_insn_after_1 (x, after, NULL);
4424 break;
4426 #ifdef ENABLE_RTL_CHECKING
4427 case SEQUENCE:
4428 gcc_unreachable ();
4429 break;
4430 #endif
4432 default:
4433 last = make_debug_insn_raw (x);
4434 add_insn_after (last, after, NULL);
4435 break;
4438 return last;
4441 /* Make an insn of code BARRIER
4442 and output it after the insn AFTER. */
4445 emit_barrier_after (rtx after)
4447 rtx insn = rtx_alloc (BARRIER);
4449 INSN_UID (insn) = cur_insn_uid++;
4451 add_insn_after (insn, after, NULL);
4452 return insn;
4455 /* Emit the label LABEL after the insn AFTER. */
4458 emit_label_after (rtx label, rtx after)
4460 /* This can be called twice for the same label
4461 as a result of the confusion that follows a syntax error!
4462 So make it harmless. */
4463 if (INSN_UID (label) == 0)
4465 INSN_UID (label) = cur_insn_uid++;
4466 add_insn_after (label, after, NULL);
4469 return label;
4472 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4475 emit_note_after (enum insn_note subtype, rtx after)
4477 rtx note = rtx_alloc (NOTE);
4478 INSN_UID (note) = cur_insn_uid++;
4479 NOTE_KIND (note) = subtype;
4480 BLOCK_FOR_INSN (note) = NULL;
4481 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4482 add_insn_after (note, after, NULL);
4483 return note;
4486 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4488 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4490 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4492 if (pattern == NULL_RTX || !loc)
4493 return last;
4495 after = NEXT_INSN (after);
4496 while (1)
4498 if (active_insn_p (after) && !INSN_LOCATOR (after))
4499 INSN_LOCATOR (after) = loc;
4500 if (after == last)
4501 break;
4502 after = NEXT_INSN (after);
4504 return last;
4507 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4509 emit_insn_after (rtx pattern, rtx after)
4511 rtx prev = after;
4513 while (DEBUG_INSN_P (prev))
4514 prev = PREV_INSN (prev);
4516 if (INSN_P (prev))
4517 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4518 else
4519 return emit_insn_after_noloc (pattern, after, NULL);
4522 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4524 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4526 rtx last = emit_jump_insn_after_noloc (pattern, after);
4528 if (pattern == NULL_RTX || !loc)
4529 return last;
4531 after = NEXT_INSN (after);
4532 while (1)
4534 if (active_insn_p (after) && !INSN_LOCATOR (after))
4535 INSN_LOCATOR (after) = loc;
4536 if (after == last)
4537 break;
4538 after = NEXT_INSN (after);
4540 return last;
4543 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4545 emit_jump_insn_after (rtx pattern, rtx after)
4547 rtx prev = after;
4549 while (DEBUG_INSN_P (prev))
4550 prev = PREV_INSN (prev);
4552 if (INSN_P (prev))
4553 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4554 else
4555 return emit_jump_insn_after_noloc (pattern, after);
4558 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4560 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4562 rtx last = emit_call_insn_after_noloc (pattern, after);
4564 if (pattern == NULL_RTX || !loc)
4565 return last;
4567 after = NEXT_INSN (after);
4568 while (1)
4570 if (active_insn_p (after) && !INSN_LOCATOR (after))
4571 INSN_LOCATOR (after) = loc;
4572 if (after == last)
4573 break;
4574 after = NEXT_INSN (after);
4576 return last;
4579 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4581 emit_call_insn_after (rtx pattern, rtx after)
4583 rtx prev = after;
4585 while (DEBUG_INSN_P (prev))
4586 prev = PREV_INSN (prev);
4588 if (INSN_P (prev))
4589 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4590 else
4591 return emit_call_insn_after_noloc (pattern, after);
4594 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4596 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4598 rtx last = emit_debug_insn_after_noloc (pattern, after);
4600 if (pattern == NULL_RTX || !loc)
4601 return last;
4603 after = NEXT_INSN (after);
4604 while (1)
4606 if (active_insn_p (after) && !INSN_LOCATOR (after))
4607 INSN_LOCATOR (after) = loc;
4608 if (after == last)
4609 break;
4610 after = NEXT_INSN (after);
4612 return last;
4615 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4617 emit_debug_insn_after (rtx pattern, rtx after)
4619 if (INSN_P (after))
4620 return emit_debug_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4621 else
4622 return emit_debug_insn_after_noloc (pattern, after);
4625 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4627 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4629 rtx first = PREV_INSN (before);
4630 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4632 if (pattern == NULL_RTX || !loc)
4633 return last;
4635 if (!first)
4636 first = get_insns ();
4637 else
4638 first = NEXT_INSN (first);
4639 while (1)
4641 if (active_insn_p (first) && !INSN_LOCATOR (first))
4642 INSN_LOCATOR (first) = loc;
4643 if (first == last)
4644 break;
4645 first = NEXT_INSN (first);
4647 return last;
4650 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4652 emit_insn_before (rtx pattern, rtx before)
4654 rtx next = before;
4656 while (DEBUG_INSN_P (next))
4657 next = PREV_INSN (next);
4659 if (INSN_P (next))
4660 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4661 else
4662 return emit_insn_before_noloc (pattern, before, NULL);
4665 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4667 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4669 rtx first = PREV_INSN (before);
4670 rtx last = emit_jump_insn_before_noloc (pattern, before);
4672 if (pattern == NULL_RTX)
4673 return last;
4675 first = NEXT_INSN (first);
4676 while (1)
4678 if (active_insn_p (first) && !INSN_LOCATOR (first))
4679 INSN_LOCATOR (first) = loc;
4680 if (first == last)
4681 break;
4682 first = NEXT_INSN (first);
4684 return last;
4687 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4689 emit_jump_insn_before (rtx pattern, rtx before)
4691 rtx next = before;
4693 while (DEBUG_INSN_P (next))
4694 next = PREV_INSN (next);
4696 if (INSN_P (next))
4697 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4698 else
4699 return emit_jump_insn_before_noloc (pattern, before);
4702 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4704 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4706 rtx first = PREV_INSN (before);
4707 rtx last = emit_call_insn_before_noloc (pattern, before);
4709 if (pattern == NULL_RTX)
4710 return last;
4712 first = NEXT_INSN (first);
4713 while (1)
4715 if (active_insn_p (first) && !INSN_LOCATOR (first))
4716 INSN_LOCATOR (first) = loc;
4717 if (first == last)
4718 break;
4719 first = NEXT_INSN (first);
4721 return last;
4724 /* like emit_call_insn_before_noloc,
4725 but set insn_locator according to before. */
4727 emit_call_insn_before (rtx pattern, rtx before)
4729 rtx next = before;
4731 while (DEBUG_INSN_P (next))
4732 next = PREV_INSN (next);
4734 if (INSN_P (next))
4735 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4736 else
4737 return emit_call_insn_before_noloc (pattern, before);
4740 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4742 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4744 rtx first = PREV_INSN (before);
4745 rtx last = emit_debug_insn_before_noloc (pattern, before);
4747 if (pattern == NULL_RTX)
4748 return last;
4750 first = NEXT_INSN (first);
4751 while (1)
4753 if (active_insn_p (first) && !INSN_LOCATOR (first))
4754 INSN_LOCATOR (first) = loc;
4755 if (first == last)
4756 break;
4757 first = NEXT_INSN (first);
4759 return last;
4762 /* like emit_debug_insn_before_noloc,
4763 but set insn_locator according to before. */
4765 emit_debug_insn_before (rtx pattern, rtx before)
4767 if (INSN_P (before))
4768 return emit_debug_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4769 else
4770 return emit_debug_insn_before_noloc (pattern, before);
4773 /* Take X and emit it at the end of the doubly-linked
4774 INSN list.
4776 Returns the last insn emitted. */
4779 emit_insn (rtx x)
4781 rtx last = get_last_insn();
4782 rtx insn;
4784 if (x == NULL_RTX)
4785 return last;
4787 switch (GET_CODE (x))
4789 case DEBUG_INSN:
4790 case INSN:
4791 case JUMP_INSN:
4792 case CALL_INSN:
4793 case CODE_LABEL:
4794 case BARRIER:
4795 case NOTE:
4796 insn = x;
4797 while (insn)
4799 rtx next = NEXT_INSN (insn);
4800 add_insn (insn);
4801 last = insn;
4802 insn = next;
4804 break;
4806 #ifdef ENABLE_RTL_CHECKING
4807 case SEQUENCE:
4808 gcc_unreachable ();
4809 break;
4810 #endif
4812 default:
4813 last = make_insn_raw (x);
4814 add_insn (last);
4815 break;
4818 return last;
4821 /* Make an insn of code DEBUG_INSN with pattern X
4822 and add it to the end of the doubly-linked list. */
4825 emit_debug_insn (rtx x)
4827 rtx last = get_last_insn();
4828 rtx insn;
4830 if (x == NULL_RTX)
4831 return last;
4833 switch (GET_CODE (x))
4835 case DEBUG_INSN:
4836 case INSN:
4837 case JUMP_INSN:
4838 case CALL_INSN:
4839 case CODE_LABEL:
4840 case BARRIER:
4841 case NOTE:
4842 insn = x;
4843 while (insn)
4845 rtx next = NEXT_INSN (insn);
4846 add_insn (insn);
4847 last = insn;
4848 insn = next;
4850 break;
4852 #ifdef ENABLE_RTL_CHECKING
4853 case SEQUENCE:
4854 gcc_unreachable ();
4855 break;
4856 #endif
4858 default:
4859 last = make_debug_insn_raw (x);
4860 add_insn (last);
4861 break;
4864 return last;
4867 /* Make an insn of code JUMP_INSN with pattern X
4868 and add it to the end of the doubly-linked list. */
4871 emit_jump_insn (rtx x)
4873 rtx last = NULL_RTX, insn;
4875 switch (GET_CODE (x))
4877 case DEBUG_INSN:
4878 case INSN:
4879 case JUMP_INSN:
4880 case CALL_INSN:
4881 case CODE_LABEL:
4882 case BARRIER:
4883 case NOTE:
4884 insn = x;
4885 while (insn)
4887 rtx next = NEXT_INSN (insn);
4888 add_insn (insn);
4889 last = insn;
4890 insn = next;
4892 break;
4894 #ifdef ENABLE_RTL_CHECKING
4895 case SEQUENCE:
4896 gcc_unreachable ();
4897 break;
4898 #endif
4900 default:
4901 last = make_jump_insn_raw (x);
4902 add_insn (last);
4903 break;
4906 return last;
4909 /* Make an insn of code CALL_INSN with pattern X
4910 and add it to the end of the doubly-linked list. */
4913 emit_call_insn (rtx x)
4915 rtx insn;
4917 switch (GET_CODE (x))
4919 case DEBUG_INSN:
4920 case INSN:
4921 case JUMP_INSN:
4922 case CALL_INSN:
4923 case CODE_LABEL:
4924 case BARRIER:
4925 case NOTE:
4926 insn = emit_insn (x);
4927 break;
4929 #ifdef ENABLE_RTL_CHECKING
4930 case SEQUENCE:
4931 gcc_unreachable ();
4932 break;
4933 #endif
4935 default:
4936 insn = make_call_insn_raw (x);
4937 add_insn (insn);
4938 break;
4941 return insn;
4944 /* Add the label LABEL to the end of the doubly-linked list. */
4947 emit_label (rtx label)
4949 /* This can be called twice for the same label
4950 as a result of the confusion that follows a syntax error!
4951 So make it harmless. */
4952 if (INSN_UID (label) == 0)
4954 INSN_UID (label) = cur_insn_uid++;
4955 add_insn (label);
4957 return label;
4960 /* Make an insn of code BARRIER
4961 and add it to the end of the doubly-linked list. */
4964 emit_barrier (void)
4966 rtx barrier = rtx_alloc (BARRIER);
4967 INSN_UID (barrier) = cur_insn_uid++;
4968 add_insn (barrier);
4969 return barrier;
4972 /* Emit a copy of note ORIG. */
4975 emit_note_copy (rtx orig)
4977 rtx note;
4979 note = rtx_alloc (NOTE);
4981 INSN_UID (note) = cur_insn_uid++;
4982 NOTE_DATA (note) = NOTE_DATA (orig);
4983 NOTE_KIND (note) = NOTE_KIND (orig);
4984 BLOCK_FOR_INSN (note) = NULL;
4985 add_insn (note);
4987 return note;
4990 /* Make an insn of code NOTE or type NOTE_NO
4991 and add it to the end of the doubly-linked list. */
4994 emit_note (enum insn_note kind)
4996 rtx note;
4998 note = rtx_alloc (NOTE);
4999 INSN_UID (note) = cur_insn_uid++;
5000 NOTE_KIND (note) = kind;
5001 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
5002 BLOCK_FOR_INSN (note) = NULL;
5003 add_insn (note);
5004 return note;
5007 /* Emit a clobber of lvalue X. */
5010 emit_clobber (rtx x)
5012 /* CONCATs should not appear in the insn stream. */
5013 if (GET_CODE (x) == CONCAT)
5015 emit_clobber (XEXP (x, 0));
5016 return emit_clobber (XEXP (x, 1));
5018 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5021 /* Return a sequence of insns to clobber lvalue X. */
5024 gen_clobber (rtx x)
5026 rtx seq;
5028 start_sequence ();
5029 emit_clobber (x);
5030 seq = get_insns ();
5031 end_sequence ();
5032 return seq;
5035 /* Emit a use of rvalue X. */
5038 emit_use (rtx x)
5040 /* CONCATs should not appear in the insn stream. */
5041 if (GET_CODE (x) == CONCAT)
5043 emit_use (XEXP (x, 0));
5044 return emit_use (XEXP (x, 1));
5046 return emit_insn (gen_rtx_USE (VOIDmode, x));
5049 /* Return a sequence of insns to use rvalue X. */
5052 gen_use (rtx x)
5054 rtx seq;
5056 start_sequence ();
5057 emit_use (x);
5058 seq = get_insns ();
5059 end_sequence ();
5060 return seq;
5063 /* Cause next statement to emit a line note even if the line number
5064 has not changed. */
5066 void
5067 force_next_line_note (void)
5069 last_location = -1;
5072 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5073 note of this type already exists, remove it first. */
5076 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5078 rtx note = find_reg_note (insn, kind, NULL_RTX);
5080 switch (kind)
5082 case REG_EQUAL:
5083 case REG_EQUIV:
5084 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5085 has multiple sets (some callers assume single_set
5086 means the insn only has one set, when in fact it
5087 means the insn only has one * useful * set). */
5088 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
5090 gcc_assert (!note);
5091 return NULL_RTX;
5094 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5095 It serves no useful purpose and breaks eliminate_regs. */
5096 if (GET_CODE (datum) == ASM_OPERANDS)
5097 return NULL_RTX;
5099 if (note)
5101 XEXP (note, 0) = datum;
5102 df_notes_rescan (insn);
5103 return note;
5105 break;
5107 default:
5108 if (note)
5110 XEXP (note, 0) = datum;
5111 return note;
5113 break;
5116 add_reg_note (insn, kind, datum);
5118 switch (kind)
5120 case REG_EQUAL:
5121 case REG_EQUIV:
5122 df_notes_rescan (insn);
5123 break;
5124 default:
5125 break;
5128 return REG_NOTES (insn);
5131 /* Return an indication of which type of insn should have X as a body.
5132 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5134 static enum rtx_code
5135 classify_insn (rtx x)
5137 if (LABEL_P (x))
5138 return CODE_LABEL;
5139 if (GET_CODE (x) == CALL)
5140 return CALL_INSN;
5141 if (GET_CODE (x) == RETURN)
5142 return JUMP_INSN;
5143 if (GET_CODE (x) == SET)
5145 if (SET_DEST (x) == pc_rtx)
5146 return JUMP_INSN;
5147 else if (GET_CODE (SET_SRC (x)) == CALL)
5148 return CALL_INSN;
5149 else
5150 return INSN;
5152 if (GET_CODE (x) == PARALLEL)
5154 int j;
5155 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5156 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5157 return CALL_INSN;
5158 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5159 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5160 return JUMP_INSN;
5161 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5162 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5163 return CALL_INSN;
5165 return INSN;
5168 /* Emit the rtl pattern X as an appropriate kind of insn.
5169 If X is a label, it is simply added into the insn chain. */
5172 emit (rtx x)
5174 enum rtx_code code = classify_insn (x);
5176 switch (code)
5178 case CODE_LABEL:
5179 return emit_label (x);
5180 case INSN:
5181 return emit_insn (x);
5182 case JUMP_INSN:
5184 rtx insn = emit_jump_insn (x);
5185 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5186 return emit_barrier ();
5187 return insn;
5189 case CALL_INSN:
5190 return emit_call_insn (x);
5191 case DEBUG_INSN:
5192 return emit_debug_insn (x);
5193 default:
5194 gcc_unreachable ();
5198 /* Space for free sequence stack entries. */
5199 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5201 /* Begin emitting insns to a sequence. If this sequence will contain
5202 something that might cause the compiler to pop arguments to function
5203 calls (because those pops have previously been deferred; see
5204 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5205 before calling this function. That will ensure that the deferred
5206 pops are not accidentally emitted in the middle of this sequence. */
5208 void
5209 start_sequence (void)
5211 struct sequence_stack *tem;
5213 if (free_sequence_stack != NULL)
5215 tem = free_sequence_stack;
5216 free_sequence_stack = tem->next;
5218 else
5219 tem = ggc_alloc_sequence_stack ();
5221 tem->next = seq_stack;
5222 tem->first = get_insns ();
5223 tem->last = get_last_insn ();
5225 seq_stack = tem;
5227 set_first_insn (0);
5228 set_last_insn (0);
5231 /* Set up the insn chain starting with FIRST as the current sequence,
5232 saving the previously current one. See the documentation for
5233 start_sequence for more information about how to use this function. */
5235 void
5236 push_to_sequence (rtx first)
5238 rtx last;
5240 start_sequence ();
5242 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5244 set_first_insn (first);
5245 set_last_insn (last);
5248 /* Like push_to_sequence, but take the last insn as an argument to avoid
5249 looping through the list. */
5251 void
5252 push_to_sequence2 (rtx first, rtx last)
5254 start_sequence ();
5256 set_first_insn (first);
5257 set_last_insn (last);
5260 /* Set up the outer-level insn chain
5261 as the current sequence, saving the previously current one. */
5263 void
5264 push_topmost_sequence (void)
5266 struct sequence_stack *stack, *top = NULL;
5268 start_sequence ();
5270 for (stack = seq_stack; stack; stack = stack->next)
5271 top = stack;
5273 set_first_insn (top->first);
5274 set_last_insn (top->last);
5277 /* After emitting to the outer-level insn chain, update the outer-level
5278 insn chain, and restore the previous saved state. */
5280 void
5281 pop_topmost_sequence (void)
5283 struct sequence_stack *stack, *top = NULL;
5285 for (stack = seq_stack; stack; stack = stack->next)
5286 top = stack;
5288 top->first = get_insns ();
5289 top->last = get_last_insn ();
5291 end_sequence ();
5294 /* After emitting to a sequence, restore previous saved state.
5296 To get the contents of the sequence just made, you must call
5297 `get_insns' *before* calling here.
5299 If the compiler might have deferred popping arguments while
5300 generating this sequence, and this sequence will not be immediately
5301 inserted into the instruction stream, use do_pending_stack_adjust
5302 before calling get_insns. That will ensure that the deferred
5303 pops are inserted into this sequence, and not into some random
5304 location in the instruction stream. See INHIBIT_DEFER_POP for more
5305 information about deferred popping of arguments. */
5307 void
5308 end_sequence (void)
5310 struct sequence_stack *tem = seq_stack;
5312 set_first_insn (tem->first);
5313 set_last_insn (tem->last);
5314 seq_stack = tem->next;
5316 memset (tem, 0, sizeof (*tem));
5317 tem->next = free_sequence_stack;
5318 free_sequence_stack = tem;
5321 /* Return 1 if currently emitting into a sequence. */
5324 in_sequence_p (void)
5326 return seq_stack != 0;
5329 /* Put the various virtual registers into REGNO_REG_RTX. */
5331 static void
5332 init_virtual_regs (void)
5334 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5335 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5336 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5337 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5338 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5339 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5340 = virtual_preferred_stack_boundary_rtx;
5344 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5345 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5346 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5347 static int copy_insn_n_scratches;
5349 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5350 copied an ASM_OPERANDS.
5351 In that case, it is the original input-operand vector. */
5352 static rtvec orig_asm_operands_vector;
5354 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5355 copied an ASM_OPERANDS.
5356 In that case, it is the copied input-operand vector. */
5357 static rtvec copy_asm_operands_vector;
5359 /* Likewise for the constraints vector. */
5360 static rtvec orig_asm_constraints_vector;
5361 static rtvec copy_asm_constraints_vector;
5363 /* Recursively create a new copy of an rtx for copy_insn.
5364 This function differs from copy_rtx in that it handles SCRATCHes and
5365 ASM_OPERANDs properly.
5366 Normally, this function is not used directly; use copy_insn as front end.
5367 However, you could first copy an insn pattern with copy_insn and then use
5368 this function afterwards to properly copy any REG_NOTEs containing
5369 SCRATCHes. */
5372 copy_insn_1 (rtx orig)
5374 rtx copy;
5375 int i, j;
5376 RTX_CODE code;
5377 const char *format_ptr;
5379 if (orig == NULL)
5380 return NULL;
5382 code = GET_CODE (orig);
5384 switch (code)
5386 case REG:
5387 case CONST_INT:
5388 case CONST_DOUBLE:
5389 case CONST_FIXED:
5390 case CONST_VECTOR:
5391 case SYMBOL_REF:
5392 case CODE_LABEL:
5393 case PC:
5394 case CC0:
5395 return orig;
5396 case CLOBBER:
5397 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5398 return orig;
5399 break;
5401 case SCRATCH:
5402 for (i = 0; i < copy_insn_n_scratches; i++)
5403 if (copy_insn_scratch_in[i] == orig)
5404 return copy_insn_scratch_out[i];
5405 break;
5407 case CONST:
5408 if (shared_const_p (orig))
5409 return orig;
5410 break;
5412 /* A MEM with a constant address is not sharable. The problem is that
5413 the constant address may need to be reloaded. If the mem is shared,
5414 then reloading one copy of this mem will cause all copies to appear
5415 to have been reloaded. */
5417 default:
5418 break;
5421 /* Copy the various flags, fields, and other information. We assume
5422 that all fields need copying, and then clear the fields that should
5423 not be copied. That is the sensible default behavior, and forces
5424 us to explicitly document why we are *not* copying a flag. */
5425 copy = shallow_copy_rtx (orig);
5427 /* We do not copy the USED flag, which is used as a mark bit during
5428 walks over the RTL. */
5429 RTX_FLAG (copy, used) = 0;
5431 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5432 if (INSN_P (orig))
5434 RTX_FLAG (copy, jump) = 0;
5435 RTX_FLAG (copy, call) = 0;
5436 RTX_FLAG (copy, frame_related) = 0;
5439 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5441 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5442 switch (*format_ptr++)
5444 case 'e':
5445 if (XEXP (orig, i) != NULL)
5446 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5447 break;
5449 case 'E':
5450 case 'V':
5451 if (XVEC (orig, i) == orig_asm_constraints_vector)
5452 XVEC (copy, i) = copy_asm_constraints_vector;
5453 else if (XVEC (orig, i) == orig_asm_operands_vector)
5454 XVEC (copy, i) = copy_asm_operands_vector;
5455 else if (XVEC (orig, i) != NULL)
5457 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5458 for (j = 0; j < XVECLEN (copy, i); j++)
5459 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5461 break;
5463 case 't':
5464 case 'w':
5465 case 'i':
5466 case 's':
5467 case 'S':
5468 case 'u':
5469 case '0':
5470 /* These are left unchanged. */
5471 break;
5473 default:
5474 gcc_unreachable ();
5477 if (code == SCRATCH)
5479 i = copy_insn_n_scratches++;
5480 gcc_assert (i < MAX_RECOG_OPERANDS);
5481 copy_insn_scratch_in[i] = orig;
5482 copy_insn_scratch_out[i] = copy;
5484 else if (code == ASM_OPERANDS)
5486 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5487 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5488 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5489 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5492 return copy;
5495 /* Create a new copy of an rtx.
5496 This function differs from copy_rtx in that it handles SCRATCHes and
5497 ASM_OPERANDs properly.
5498 INSN doesn't really have to be a full INSN; it could be just the
5499 pattern. */
5501 copy_insn (rtx insn)
5503 copy_insn_n_scratches = 0;
5504 orig_asm_operands_vector = 0;
5505 orig_asm_constraints_vector = 0;
5506 copy_asm_operands_vector = 0;
5507 copy_asm_constraints_vector = 0;
5508 return copy_insn_1 (insn);
5511 /* Initialize data structures and variables in this file
5512 before generating rtl for each function. */
5514 void
5515 init_emit (void)
5517 set_first_insn (NULL);
5518 set_last_insn (NULL);
5519 if (MIN_NONDEBUG_INSN_UID)
5520 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5521 else
5522 cur_insn_uid = 1;
5523 cur_debug_insn_uid = 1;
5524 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5525 last_location = UNKNOWN_LOCATION;
5526 first_label_num = label_num;
5527 seq_stack = NULL;
5529 /* Init the tables that describe all the pseudo regs. */
5531 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5533 crtl->emit.regno_pointer_align
5534 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5536 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5538 /* Put copies of all the hard registers into regno_reg_rtx. */
5539 memcpy (regno_reg_rtx,
5540 initial_regno_reg_rtx,
5541 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5543 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5544 init_virtual_regs ();
5546 /* Indicate that the virtual registers and stack locations are
5547 all pointers. */
5548 REG_POINTER (stack_pointer_rtx) = 1;
5549 REG_POINTER (frame_pointer_rtx) = 1;
5550 REG_POINTER (hard_frame_pointer_rtx) = 1;
5551 REG_POINTER (arg_pointer_rtx) = 1;
5553 REG_POINTER (virtual_incoming_args_rtx) = 1;
5554 REG_POINTER (virtual_stack_vars_rtx) = 1;
5555 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5556 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5557 REG_POINTER (virtual_cfa_rtx) = 1;
5559 #ifdef STACK_BOUNDARY
5560 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5561 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5562 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5563 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5565 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5566 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5567 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5568 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5569 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5570 #endif
5572 #ifdef INIT_EXPANDERS
5573 INIT_EXPANDERS;
5574 #endif
5577 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5579 static rtx
5580 gen_const_vector (enum machine_mode mode, int constant)
5582 rtx tem;
5583 rtvec v;
5584 int units, i;
5585 enum machine_mode inner;
5587 units = GET_MODE_NUNITS (mode);
5588 inner = GET_MODE_INNER (mode);
5590 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5592 v = rtvec_alloc (units);
5594 /* We need to call this function after we set the scalar const_tiny_rtx
5595 entries. */
5596 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5598 for (i = 0; i < units; ++i)
5599 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5601 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5602 return tem;
5605 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5606 all elements are zero, and the one vector when all elements are one. */
5608 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5610 enum machine_mode inner = GET_MODE_INNER (mode);
5611 int nunits = GET_MODE_NUNITS (mode);
5612 rtx x;
5613 int i;
5615 /* Check to see if all of the elements have the same value. */
5616 x = RTVEC_ELT (v, nunits - 1);
5617 for (i = nunits - 2; i >= 0; i--)
5618 if (RTVEC_ELT (v, i) != x)
5619 break;
5621 /* If the values are all the same, check to see if we can use one of the
5622 standard constant vectors. */
5623 if (i == -1)
5625 if (x == CONST0_RTX (inner))
5626 return CONST0_RTX (mode);
5627 else if (x == CONST1_RTX (inner))
5628 return CONST1_RTX (mode);
5631 return gen_rtx_raw_CONST_VECTOR (mode, v);
5634 /* Initialise global register information required by all functions. */
5636 void
5637 init_emit_regs (void)
5639 int i;
5641 /* Reset register attributes */
5642 htab_empty (reg_attrs_htab);
5644 /* We need reg_raw_mode, so initialize the modes now. */
5645 init_reg_modes_target ();
5647 /* Assign register numbers to the globally defined register rtx. */
5648 pc_rtx = gen_rtx_PC (VOIDmode);
5649 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5650 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5651 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5652 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5653 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5654 virtual_incoming_args_rtx =
5655 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5656 virtual_stack_vars_rtx =
5657 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5658 virtual_stack_dynamic_rtx =
5659 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5660 virtual_outgoing_args_rtx =
5661 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5662 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5663 virtual_preferred_stack_boundary_rtx =
5664 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5666 /* Initialize RTL for commonly used hard registers. These are
5667 copied into regno_reg_rtx as we begin to compile each function. */
5668 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5669 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5671 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5672 return_address_pointer_rtx
5673 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5674 #endif
5676 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5677 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5678 else
5679 pic_offset_table_rtx = NULL_RTX;
5682 /* Create some permanent unique rtl objects shared between all functions. */
5684 void
5685 init_emit_once (void)
5687 int i;
5688 enum machine_mode mode;
5689 enum machine_mode double_mode;
5691 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5692 hash tables. */
5693 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5694 const_int_htab_eq, NULL);
5696 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5697 const_double_htab_eq, NULL);
5699 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5700 const_fixed_htab_eq, NULL);
5702 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5703 mem_attrs_htab_eq, NULL);
5704 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5705 reg_attrs_htab_eq, NULL);
5707 /* Compute the word and byte modes. */
5709 byte_mode = VOIDmode;
5710 word_mode = VOIDmode;
5711 double_mode = VOIDmode;
5713 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5714 mode != VOIDmode;
5715 mode = GET_MODE_WIDER_MODE (mode))
5717 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5718 && byte_mode == VOIDmode)
5719 byte_mode = mode;
5721 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5722 && word_mode == VOIDmode)
5723 word_mode = mode;
5726 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5727 mode != VOIDmode;
5728 mode = GET_MODE_WIDER_MODE (mode))
5730 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5731 && double_mode == VOIDmode)
5732 double_mode = mode;
5735 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5737 #ifdef INIT_EXPANDERS
5738 /* This is to initialize {init|mark|free}_machine_status before the first
5739 call to push_function_context_to. This is needed by the Chill front
5740 end which calls push_function_context_to before the first call to
5741 init_function_start. */
5742 INIT_EXPANDERS;
5743 #endif
5745 /* Create the unique rtx's for certain rtx codes and operand values. */
5747 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5748 tries to use these variables. */
5749 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5750 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5751 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5753 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5754 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5755 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5756 else
5757 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5759 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5760 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5761 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5763 dconstm1 = dconst1;
5764 dconstm1.sign = 1;
5766 dconsthalf = dconst1;
5767 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5769 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5771 const REAL_VALUE_TYPE *const r =
5772 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5774 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5775 mode != VOIDmode;
5776 mode = GET_MODE_WIDER_MODE (mode))
5777 const_tiny_rtx[i][(int) mode] =
5778 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5780 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5781 mode != VOIDmode;
5782 mode = GET_MODE_WIDER_MODE (mode))
5783 const_tiny_rtx[i][(int) mode] =
5784 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5786 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5788 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5789 mode != VOIDmode;
5790 mode = GET_MODE_WIDER_MODE (mode))
5791 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5793 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5794 mode != VOIDmode;
5795 mode = GET_MODE_WIDER_MODE (mode))
5796 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5799 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5800 mode != VOIDmode;
5801 mode = GET_MODE_WIDER_MODE (mode))
5803 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5804 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5807 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5808 mode != VOIDmode;
5809 mode = GET_MODE_WIDER_MODE (mode))
5811 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5812 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5815 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5816 mode != VOIDmode;
5817 mode = GET_MODE_WIDER_MODE (mode))
5819 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5820 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5823 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5824 mode != VOIDmode;
5825 mode = GET_MODE_WIDER_MODE (mode))
5827 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5828 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5831 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5832 mode != VOIDmode;
5833 mode = GET_MODE_WIDER_MODE (mode))
5835 FCONST0(mode).data.high = 0;
5836 FCONST0(mode).data.low = 0;
5837 FCONST0(mode).mode = mode;
5838 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5839 FCONST0 (mode), mode);
5842 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5843 mode != VOIDmode;
5844 mode = GET_MODE_WIDER_MODE (mode))
5846 FCONST0(mode).data.high = 0;
5847 FCONST0(mode).data.low = 0;
5848 FCONST0(mode).mode = mode;
5849 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5850 FCONST0 (mode), mode);
5853 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5854 mode != VOIDmode;
5855 mode = GET_MODE_WIDER_MODE (mode))
5857 FCONST0(mode).data.high = 0;
5858 FCONST0(mode).data.low = 0;
5859 FCONST0(mode).mode = mode;
5860 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5861 FCONST0 (mode), mode);
5863 /* We store the value 1. */
5864 FCONST1(mode).data.high = 0;
5865 FCONST1(mode).data.low = 0;
5866 FCONST1(mode).mode = mode;
5867 lshift_double (1, 0, GET_MODE_FBIT (mode),
5868 2 * HOST_BITS_PER_WIDE_INT,
5869 &FCONST1(mode).data.low,
5870 &FCONST1(mode).data.high,
5871 SIGNED_FIXED_POINT_MODE_P (mode));
5872 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5873 FCONST1 (mode), mode);
5876 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5877 mode != VOIDmode;
5878 mode = GET_MODE_WIDER_MODE (mode))
5880 FCONST0(mode).data.high = 0;
5881 FCONST0(mode).data.low = 0;
5882 FCONST0(mode).mode = mode;
5883 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5884 FCONST0 (mode), mode);
5886 /* We store the value 1. */
5887 FCONST1(mode).data.high = 0;
5888 FCONST1(mode).data.low = 0;
5889 FCONST1(mode).mode = mode;
5890 lshift_double (1, 0, GET_MODE_FBIT (mode),
5891 2 * HOST_BITS_PER_WIDE_INT,
5892 &FCONST1(mode).data.low,
5893 &FCONST1(mode).data.high,
5894 SIGNED_FIXED_POINT_MODE_P (mode));
5895 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5896 FCONST1 (mode), mode);
5899 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5900 mode != VOIDmode;
5901 mode = GET_MODE_WIDER_MODE (mode))
5903 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5906 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5907 mode != VOIDmode;
5908 mode = GET_MODE_WIDER_MODE (mode))
5910 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5913 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5914 mode != VOIDmode;
5915 mode = GET_MODE_WIDER_MODE (mode))
5917 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5918 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5921 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5922 mode != VOIDmode;
5923 mode = GET_MODE_WIDER_MODE (mode))
5925 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5926 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5929 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5930 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5931 const_tiny_rtx[0][i] = const0_rtx;
5933 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5934 if (STORE_FLAG_VALUE == 1)
5935 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5938 /* Produce exact duplicate of insn INSN after AFTER.
5939 Care updating of libcall regions if present. */
5942 emit_copy_of_insn_after (rtx insn, rtx after)
5944 rtx new_rtx, link;
5946 switch (GET_CODE (insn))
5948 case INSN:
5949 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5950 break;
5952 case JUMP_INSN:
5953 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5954 break;
5956 case DEBUG_INSN:
5957 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5958 break;
5960 case CALL_INSN:
5961 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5962 if (CALL_INSN_FUNCTION_USAGE (insn))
5963 CALL_INSN_FUNCTION_USAGE (new_rtx)
5964 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5965 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5966 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5967 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5968 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5969 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5970 break;
5972 default:
5973 gcc_unreachable ();
5976 /* Update LABEL_NUSES. */
5977 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5979 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5981 /* If the old insn is frame related, then so is the new one. This is
5982 primarily needed for IA-64 unwind info which marks epilogue insns,
5983 which may be duplicated by the basic block reordering code. */
5984 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5986 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5987 will make them. REG_LABEL_TARGETs are created there too, but are
5988 supposed to be sticky, so we copy them. */
5989 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5990 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5992 if (GET_CODE (link) == EXPR_LIST)
5993 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5994 copy_insn_1 (XEXP (link, 0)));
5995 else
5996 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5999 INSN_CODE (new_rtx) = INSN_CODE (insn);
6000 return new_rtx;
6003 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6005 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6007 if (hard_reg_clobbers[mode][regno])
6008 return hard_reg_clobbers[mode][regno];
6009 else
6010 return (hard_reg_clobbers[mode][regno] =
6011 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6014 #include "gt-emit-rtl.h"