2010-11-11 Jakub Jelinek <jakub@redhat.com>
[official-gcc.git] / gcc / ada / s-tassta.adb
blob1663b89c62c417c4660f22b89780e21b2a895e26
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K I N G . S T A G E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 pragma Polling (Off);
33 -- Turn off polling, we do not want ATC polling to take place during tasking
34 -- operations. It causes infinite loops and other problems.
36 with Ada.Exceptions;
37 with Ada.Unchecked_Deallocation;
39 with System.Interrupt_Management;
40 with System.Tasking.Debug;
41 with System.Address_Image;
42 with System.Task_Primitives;
43 with System.Task_Primitives.Operations;
44 with System.Tasking.Utilities;
45 with System.Tasking.Queuing;
46 with System.Tasking.Rendezvous;
47 with System.OS_Primitives;
48 with System.Secondary_Stack;
49 with System.Storage_Elements;
50 with System.Restrictions;
51 with System.Standard_Library;
52 with System.Traces.Tasking;
53 with System.Stack_Usage;
55 with System.Soft_Links;
56 -- These are procedure pointers to non-tasking routines that use task
57 -- specific data. In the absence of tasking, these routines refer to global
58 -- data. In the presence of tasking, they must be replaced with pointers to
59 -- task-specific versions. Also used for Create_TSD, Destroy_TSD,
60 -- Get_Current_Excep, Finalize_Global_List, Task_Termination, Handler.
62 with System.Tasking.Initialization;
63 pragma Elaborate_All (System.Tasking.Initialization);
64 -- This insures that tasking is initialized if any tasks are created
66 package body System.Tasking.Stages is
68 package STPO renames System.Task_Primitives.Operations;
69 package SSL renames System.Soft_Links;
70 package SSE renames System.Storage_Elements;
71 package SST renames System.Secondary_Stack;
73 use Ada.Exceptions;
75 use Parameters;
76 use Task_Primitives;
77 use Task_Primitives.Operations;
78 use Task_Info;
80 use System.Traces;
81 use System.Traces.Tasking;
83 -----------------------
84 -- Local Subprograms --
85 -----------------------
87 procedure Free is new
88 Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
90 procedure Free_Entry_Names (T : Task_Id);
91 -- Deallocate all string names associated with task entries
93 procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id);
94 -- This procedure outputs the task specific message for exception
95 -- tracing purposes.
97 procedure Task_Wrapper (Self_ID : Task_Id);
98 pragma Convention (C, Task_Wrapper);
99 -- This is the procedure that is called by the GNULL from the new context
100 -- when a task is created. It waits for activation and then calls the task
101 -- body procedure. When the task body procedure completes, it terminates
102 -- the task.
104 -- The Task_Wrapper's address will be provided to the underlying threads
105 -- library as the task entry point. Convention C is what makes most sense
106 -- for that purpose (Export C would make the function globally visible,
107 -- and affect the link name on which GDB depends). This will in addition
108 -- trigger an automatic stack alignment suitable for GCC's assumptions if
109 -- need be.
111 -- "Vulnerable_..." in the procedure names below means they must be called
112 -- with abort deferred.
114 procedure Vulnerable_Complete_Task (Self_ID : Task_Id);
115 -- Complete the calling task. This procedure must be called with
116 -- abort deferred. It should only be called by Complete_Task and
117 -- Finalize_Global_Tasks (for the environment task).
119 procedure Vulnerable_Complete_Master (Self_ID : Task_Id);
120 -- Complete the current master of the calling task. This procedure
121 -- must be called with abort deferred. It should only be called by
122 -- Vulnerable_Complete_Task and Complete_Master.
124 procedure Vulnerable_Complete_Activation (Self_ID : Task_Id);
125 -- Signal to Self_ID's activator that Self_ID has completed activation.
126 -- This procedure must be called with abort deferred.
128 procedure Abort_Dependents (Self_ID : Task_Id);
129 -- Abort all the direct dependents of Self at its current master nesting
130 -- level, plus all of their dependents, transitively. RTS_Lock should be
131 -- locked by the caller.
133 procedure Vulnerable_Free_Task (T : Task_Id);
134 -- Recover all runtime system storage associated with the task T. This
135 -- should only be called after T has terminated and will no longer be
136 -- referenced.
138 -- For tasks created by an allocator that fails, due to an exception, it is
139 -- called from Expunge_Unactivated_Tasks.
141 -- Different code is used at master completion, in Terminate_Dependents,
142 -- due to a need for tighter synchronization with the master.
144 ----------------------
145 -- Abort_Dependents --
146 ----------------------
148 procedure Abort_Dependents (Self_ID : Task_Id) is
149 C : Task_Id;
150 P : Task_Id;
152 begin
153 C := All_Tasks_List;
154 while C /= null loop
155 P := C.Common.Parent;
156 while P /= null loop
157 if P = Self_ID then
159 -- ??? C is supposed to take care of its own dependents, so
160 -- there should be no need to worry about them. Need to double
161 -- check this.
163 if C.Master_of_Task = Self_ID.Master_Within then
164 Utilities.Abort_One_Task (Self_ID, C);
165 C.Dependents_Aborted := True;
166 end if;
168 exit;
169 end if;
171 P := P.Common.Parent;
172 end loop;
174 C := C.Common.All_Tasks_Link;
175 end loop;
177 Self_ID.Dependents_Aborted := True;
178 end Abort_Dependents;
180 -----------------
181 -- Abort_Tasks --
182 -----------------
184 procedure Abort_Tasks (Tasks : Task_List) is
185 begin
186 Utilities.Abort_Tasks (Tasks);
187 end Abort_Tasks;
189 --------------------
190 -- Activate_Tasks --
191 --------------------
193 -- Note that locks of activator and activated task are both locked here.
194 -- This is necessary because C.Common.State and Self.Common.Wait_Count have
195 -- to be synchronized. This is safe from deadlock because the activator is
196 -- always created before the activated task. That satisfies our
197 -- in-order-of-creation ATCB locking policy.
199 -- At one point, we may also lock the parent, if the parent is different
200 -- from the activator. That is also consistent with the lock ordering
201 -- policy, since the activator cannot be created before the parent.
203 -- Since we are holding both the activator's lock, and Task_Wrapper locks
204 -- that before it does anything more than initialize the low-level ATCB
205 -- components, it should be safe to wait to update the counts until we see
206 -- that the thread creation is successful.
208 -- If the thread creation fails, we do need to close the entries of the
209 -- task. The first phase, of dequeuing calls, only requires locking the
210 -- acceptor's ATCB, but the waking up of the callers requires locking the
211 -- caller's ATCB. We cannot safely do this while we are holding other
212 -- locks. Therefore, the queue-clearing operation is done in a separate
213 -- pass over the activation chain.
215 procedure Activate_Tasks (Chain_Access : Activation_Chain_Access) is
216 Self_ID : constant Task_Id := STPO.Self;
217 P : Task_Id;
218 C : Task_Id;
219 Next_C, Last_C : Task_Id;
220 Activate_Prio : System.Any_Priority;
221 Success : Boolean;
222 All_Elaborated : Boolean := True;
224 begin
225 -- If pragma Detect_Blocking is active, then we must check whether this
226 -- potentially blocking operation is called from a protected action.
228 if System.Tasking.Detect_Blocking
229 and then Self_ID.Common.Protected_Action_Nesting > 0
230 then
231 raise Program_Error with "potentially blocking operation";
232 end if;
234 pragma Debug
235 (Debug.Trace (Self_ID, "Activate_Tasks", 'C'));
237 Initialization.Defer_Abort_Nestable (Self_ID);
239 pragma Assert (Self_ID.Common.Wait_Count = 0);
241 -- Lock RTS_Lock, to prevent activated tasks from racing ahead before
242 -- we finish activating the chain.
244 Lock_RTS;
246 -- Check that all task bodies have been elaborated
248 C := Chain_Access.T_ID;
249 Last_C := null;
250 while C /= null loop
251 if C.Common.Elaborated /= null
252 and then not C.Common.Elaborated.all
253 then
254 All_Elaborated := False;
255 end if;
257 -- Reverse the activation chain so that tasks are activated in the
258 -- same order they're declared.
260 Next_C := C.Common.Activation_Link;
261 C.Common.Activation_Link := Last_C;
262 Last_C := C;
263 C := Next_C;
264 end loop;
266 Chain_Access.T_ID := Last_C;
268 if not All_Elaborated then
269 Unlock_RTS;
270 Initialization.Undefer_Abort_Nestable (Self_ID);
271 raise Program_Error with "Some tasks have not been elaborated";
272 end if;
274 -- Activate all the tasks in the chain. Creation of the thread of
275 -- control was deferred until activation. So create it now.
277 C := Chain_Access.T_ID;
278 while C /= null loop
279 if C.Common.State /= Terminated then
280 pragma Assert (C.Common.State = Unactivated);
282 P := C.Common.Parent;
283 Write_Lock (P);
284 Write_Lock (C);
286 Activate_Prio :=
287 (if C.Common.Base_Priority < Get_Priority (Self_ID)
288 then Get_Priority (Self_ID)
289 else C.Common.Base_Priority);
291 System.Task_Primitives.Operations.Create_Task
292 (C, Task_Wrapper'Address,
293 Parameters.Size_Type
294 (C.Common.Compiler_Data.Pri_Stack_Info.Size),
295 Activate_Prio, Success);
297 -- There would be a race between the created task and the creator
298 -- to do the following initialization, if we did not have a
299 -- Lock/Unlock_RTS pair in the task wrapper to prevent it from
300 -- racing ahead.
302 if Success then
303 C.Common.State := Activating;
304 C.Awake_Count := 1;
305 C.Alive_Count := 1;
306 P.Awake_Count := P.Awake_Count + 1;
307 P.Alive_Count := P.Alive_Count + 1;
309 if P.Common.State = Master_Completion_Sleep and then
310 C.Master_of_Task = P.Master_Within
311 then
312 pragma Assert (Self_ID /= P);
313 P.Common.Wait_Count := P.Common.Wait_Count + 1;
314 end if;
316 for J in System.Tasking.Debug.Known_Tasks'Range loop
317 if System.Tasking.Debug.Known_Tasks (J) = null then
318 System.Tasking.Debug.Known_Tasks (J) := C;
319 C.Known_Tasks_Index := J;
320 exit;
321 end if;
322 end loop;
324 if Global_Task_Debug_Event_Set then
325 Debug.Signal_Debug_Event
326 (Debug.Debug_Event_Activating, C);
327 end if;
329 C.Common.State := Runnable;
331 Unlock (C);
332 Unlock (P);
334 else
335 -- No need to set Awake_Count, State, etc. here since the loop
336 -- below will do that for any Unactivated tasks.
338 Unlock (C);
339 Unlock (P);
340 Self_ID.Common.Activation_Failed := True;
341 end if;
342 end if;
344 C := C.Common.Activation_Link;
345 end loop;
347 if not Single_Lock then
348 Unlock_RTS;
349 end if;
351 -- Close the entries of any tasks that failed thread creation, and count
352 -- those that have not finished activation.
354 Write_Lock (Self_ID);
355 Self_ID.Common.State := Activator_Sleep;
357 C := Chain_Access.T_ID;
358 while C /= null loop
359 Write_Lock (C);
361 if C.Common.State = Unactivated then
362 C.Common.Activator := null;
363 C.Common.State := Terminated;
364 C.Callable := False;
365 Utilities.Cancel_Queued_Entry_Calls (C);
367 elsif C.Common.Activator /= null then
368 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
369 end if;
371 Unlock (C);
372 P := C.Common.Activation_Link;
373 C.Common.Activation_Link := null;
374 C := P;
375 end loop;
377 -- Wait for the activated tasks to complete activation. It is
378 -- unsafe to abort any of these tasks until the count goes to zero.
380 loop
381 exit when Self_ID.Common.Wait_Count = 0;
382 Sleep (Self_ID, Activator_Sleep);
383 end loop;
385 Self_ID.Common.State := Runnable;
386 Unlock (Self_ID);
388 if Single_Lock then
389 Unlock_RTS;
390 end if;
392 -- Remove the tasks from the chain
394 Chain_Access.T_ID := null;
395 Initialization.Undefer_Abort_Nestable (Self_ID);
397 if Self_ID.Common.Activation_Failed then
398 Self_ID.Common.Activation_Failed := False;
399 raise Tasking_Error with "Failure during activation";
400 end if;
401 end Activate_Tasks;
403 -------------------------
404 -- Complete_Activation --
405 -------------------------
407 procedure Complete_Activation is
408 Self_ID : constant Task_Id := STPO.Self;
410 begin
411 Initialization.Defer_Abort_Nestable (Self_ID);
413 if Single_Lock then
414 Lock_RTS;
415 end if;
417 Vulnerable_Complete_Activation (Self_ID);
419 if Single_Lock then
420 Unlock_RTS;
421 end if;
423 Initialization.Undefer_Abort_Nestable (Self_ID);
425 -- ??? Why do we need to allow for nested deferral here?
427 if Runtime_Traces then
428 Send_Trace_Info (T_Activate);
429 end if;
430 end Complete_Activation;
432 ---------------------
433 -- Complete_Master --
434 ---------------------
436 procedure Complete_Master is
437 Self_ID : constant Task_Id := STPO.Self;
438 begin
439 pragma Assert
440 (Self_ID.Deferral_Level > 0
441 or else not System.Restrictions.Abort_Allowed);
442 Vulnerable_Complete_Master (Self_ID);
443 end Complete_Master;
445 -------------------
446 -- Complete_Task --
447 -------------------
449 -- See comments on Vulnerable_Complete_Task for details
451 procedure Complete_Task is
452 Self_ID : constant Task_Id := STPO.Self;
454 begin
455 pragma Assert
456 (Self_ID.Deferral_Level > 0
457 or else not System.Restrictions.Abort_Allowed);
459 Vulnerable_Complete_Task (Self_ID);
461 -- All of our dependents have terminated. Never undefer abort again!
463 end Complete_Task;
465 -----------------
466 -- Create_Task --
467 -----------------
469 -- Compiler interface only. Do not call from within the RTS. This must be
470 -- called to create a new task.
472 procedure Create_Task
473 (Priority : Integer;
474 Size : System.Parameters.Size_Type;
475 Task_Info : System.Task_Info.Task_Info_Type;
476 CPU : Integer;
477 Relative_Deadline : Ada.Real_Time.Time_Span;
478 Num_Entries : Task_Entry_Index;
479 Master : Master_Level;
480 State : Task_Procedure_Access;
481 Discriminants : System.Address;
482 Elaborated : Access_Boolean;
483 Chain : in out Activation_Chain;
484 Task_Image : String;
485 Created_Task : out Task_Id;
486 Build_Entry_Names : Boolean)
488 T, P : Task_Id;
489 Self_ID : constant Task_Id := STPO.Self;
490 Success : Boolean;
491 Base_Priority : System.Any_Priority;
492 Len : Natural;
493 Base_CPU : System.Multiprocessors.CPU_Range;
495 pragma Unreferenced (Relative_Deadline);
496 -- EDF scheduling is not supported by any of the target platforms so
497 -- this parameter is not passed any further.
499 begin
500 -- If Master is greater than the current master, it means that Master
501 -- has already awaited its dependent tasks. This raises Program_Error,
502 -- by 4.8(10.3/2). See AI-280. Ignore this check for foreign threads.
504 if Self_ID.Master_of_Task /= Foreign_Task_Level
505 and then Master > Self_ID.Master_Within
506 then
507 raise Program_Error with
508 "create task after awaiting termination";
509 end if;
511 -- If pragma Detect_Blocking is active must be checked whether this
512 -- potentially blocking operation is called from a protected action.
514 if System.Tasking.Detect_Blocking
515 and then Self_ID.Common.Protected_Action_Nesting > 0
516 then
517 raise Program_Error with "potentially blocking operation";
518 end if;
520 pragma Debug (Debug.Trace (Self_ID, "Create_Task", 'C'));
522 Base_Priority :=
523 (if Priority = Unspecified_Priority
524 then Self_ID.Common.Base_Priority
525 else System.Any_Priority (Priority));
527 if CPU /= Unspecified_CPU
528 and then (CPU < Integer (System.Multiprocessors.CPU_Range'First)
529 or else CPU > Integer (System.Multiprocessors.CPU_Range'Last)
530 or else CPU > Integer (System.Multiprocessors.Number_Of_CPUs))
531 then
532 raise Tasking_Error with "CPU not in range";
534 -- Normal CPU affinity
535 else
536 Base_CPU :=
537 (if CPU = Unspecified_CPU
538 then Self_ID.Common.Base_CPU
539 else System.Multiprocessors.CPU_Range (CPU));
540 end if;
542 -- Find parent P of new Task, via master level number
544 P := Self_ID;
546 if P /= null then
547 while P.Master_of_Task >= Master loop
548 P := P.Common.Parent;
549 exit when P = null;
550 end loop;
551 end if;
553 Initialization.Defer_Abort_Nestable (Self_ID);
555 begin
556 T := New_ATCB (Num_Entries);
557 exception
558 when others =>
559 Initialization.Undefer_Abort_Nestable (Self_ID);
560 raise Storage_Error with "Cannot allocate task";
561 end;
563 -- RTS_Lock is used by Abort_Dependents and Abort_Tasks. Up to this
564 -- point, it is possible that we may be part of a family of tasks that
565 -- is being aborted.
567 Lock_RTS;
568 Write_Lock (Self_ID);
570 -- Now, we must check that we have not been aborted. If so, we should
571 -- give up on creating this task, and simply return.
573 if not Self_ID.Callable then
574 pragma Assert (Self_ID.Pending_ATC_Level = 0);
575 pragma Assert (Self_ID.Pending_Action);
576 pragma Assert
577 (Chain.T_ID = null or else Chain.T_ID.Common.State = Unactivated);
579 Unlock (Self_ID);
580 Unlock_RTS;
581 Initialization.Undefer_Abort_Nestable (Self_ID);
583 -- ??? Should never get here
585 pragma Assert (False);
586 raise Standard'Abort_Signal;
587 end if;
589 Initialize_ATCB (Self_ID, State, Discriminants, P, Elaborated,
590 Base_Priority, Base_CPU, Task_Info, Size, T, Success);
592 if not Success then
593 Free (T);
594 Unlock (Self_ID);
595 Unlock_RTS;
596 Initialization.Undefer_Abort_Nestable (Self_ID);
597 raise Storage_Error with "Failed to initialize task";
598 end if;
600 if Master = Foreign_Task_Level + 2 then
602 -- This should not happen, except when a foreign task creates non
603 -- library-level Ada tasks. In this case, we pretend the master is
604 -- a regular library level task, otherwise the run-time will get
605 -- confused when waiting for these tasks to terminate.
607 T.Master_of_Task := Library_Task_Level;
609 else
610 T.Master_of_Task := Master;
611 end if;
613 T.Master_Within := T.Master_of_Task + 1;
615 for L in T.Entry_Calls'Range loop
616 T.Entry_Calls (L).Self := T;
617 T.Entry_Calls (L).Level := L;
618 end loop;
620 if Task_Image'Length = 0 then
621 T.Common.Task_Image_Len := 0;
622 else
623 Len := 1;
624 T.Common.Task_Image (1) := Task_Image (Task_Image'First);
626 -- Remove unwanted blank space generated by 'Image
628 for J in Task_Image'First + 1 .. Task_Image'Last loop
629 if Task_Image (J) /= ' '
630 or else Task_Image (J - 1) /= '('
631 then
632 Len := Len + 1;
633 T.Common.Task_Image (Len) := Task_Image (J);
634 exit when Len = T.Common.Task_Image'Last;
635 end if;
636 end loop;
638 T.Common.Task_Image_Len := Len;
639 end if;
641 Unlock (Self_ID);
642 Unlock_RTS;
644 -- Note: we should not call 'new' while holding locks since new
645 -- may use locks (e.g. RTS_Lock under Windows) itself and cause a
646 -- deadlock.
648 if Build_Entry_Names then
649 T.Entry_Names :=
650 new Entry_Names_Array (1 .. Entry_Index (Num_Entries));
651 end if;
653 -- Create TSD as early as possible in the creation of a task, since it
654 -- may be used by the operation of Ada code within the task.
656 SSL.Create_TSD (T.Common.Compiler_Data);
657 T.Common.Activation_Link := Chain.T_ID;
658 Chain.T_ID := T;
659 Initialization.Initialize_Attributes_Link.all (T);
660 Created_Task := T;
661 Initialization.Undefer_Abort_Nestable (Self_ID);
663 if Runtime_Traces then
664 Send_Trace_Info (T_Create, T);
665 end if;
666 end Create_Task;
668 --------------------
669 -- Current_Master --
670 --------------------
672 function Current_Master return Master_Level is
673 begin
674 return STPO.Self.Master_Within;
675 end Current_Master;
677 ------------------
678 -- Enter_Master --
679 ------------------
681 procedure Enter_Master is
682 Self_ID : constant Task_Id := STPO.Self;
683 begin
684 Self_ID.Master_Within := Self_ID.Master_Within + 1;
685 end Enter_Master;
687 -------------------------------
688 -- Expunge_Unactivated_Tasks --
689 -------------------------------
691 -- See procedure Close_Entries for the general case
693 procedure Expunge_Unactivated_Tasks (Chain : in out Activation_Chain) is
694 Self_ID : constant Task_Id := STPO.Self;
695 C : Task_Id;
696 Call : Entry_Call_Link;
697 Temp : Task_Id;
699 begin
700 pragma Debug
701 (Debug.Trace (Self_ID, "Expunge_Unactivated_Tasks", 'C'));
703 Initialization.Defer_Abort_Nestable (Self_ID);
705 -- ???
706 -- Experimentation has shown that abort is sometimes (but not always)
707 -- already deferred when this is called.
709 -- That may indicate an error. Find out what is going on
711 C := Chain.T_ID;
712 while C /= null loop
713 pragma Assert (C.Common.State = Unactivated);
715 Temp := C.Common.Activation_Link;
717 if C.Common.State = Unactivated then
718 Lock_RTS;
719 Write_Lock (C);
721 for J in 1 .. C.Entry_Num loop
722 Queuing.Dequeue_Head (C.Entry_Queues (J), Call);
723 pragma Assert (Call = null);
724 end loop;
726 Unlock (C);
728 Initialization.Remove_From_All_Tasks_List (C);
729 Unlock_RTS;
731 Vulnerable_Free_Task (C);
732 C := Temp;
733 end if;
734 end loop;
736 Chain.T_ID := null;
737 Initialization.Undefer_Abort_Nestable (Self_ID);
738 end Expunge_Unactivated_Tasks;
740 ---------------------------
741 -- Finalize_Global_Tasks --
742 ---------------------------
744 -- ???
745 -- We have a potential problem here if finalization of global objects does
746 -- anything with signals or the timer server, since by that time those
747 -- servers have terminated.
749 -- It is hard to see how that would occur
751 -- However, a better solution might be to do all this finalization
752 -- using the global finalization chain.
754 procedure Finalize_Global_Tasks is
755 Self_ID : constant Task_Id := STPO.Self;
757 Ignore : Boolean;
758 pragma Unreferenced (Ignore);
760 function State
761 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
762 pragma Import (C, State, "__gnat_get_interrupt_state");
763 -- Get interrupt state for interrupt number Int. Defined in init.c
765 Default : constant Character := 's';
766 -- 's' Interrupt_State pragma set state to System (use "default"
767 -- system handler)
769 begin
770 if Self_ID.Deferral_Level = 0 then
771 -- ???
772 -- In principle, we should be able to predict whether abort is
773 -- already deferred here (and it should not be deferred yet but in
774 -- practice it seems Finalize_Global_Tasks is being called sometimes,
775 -- from RTS code for exceptions, with abort already deferred.
777 Initialization.Defer_Abort_Nestable (Self_ID);
779 -- Never undefer again!!!
780 end if;
782 -- This code is only executed by the environment task
784 pragma Assert (Self_ID = Environment_Task);
786 -- Set Environment_Task'Callable to false to notify library-level tasks
787 -- that it is waiting for them.
789 Self_ID.Callable := False;
791 -- Exit level 2 master, for normal tasks in library-level packages
793 Complete_Master;
795 -- Force termination of "independent" library-level server tasks
797 Lock_RTS;
799 Abort_Dependents (Self_ID);
801 if not Single_Lock then
802 Unlock_RTS;
803 end if;
805 -- We need to explicitly wait for the task to be terminated here
806 -- because on true concurrent system, we may end this procedure before
807 -- the tasks are really terminated.
809 Write_Lock (Self_ID);
811 -- If the Abort_Task signal is set to system, it means that we may not
812 -- have been able to abort all independent tasks (in particular
813 -- Server_Task may be blocked, waiting for a signal), in which case,
814 -- do not wait for Independent_Task_Count to go down to 0.
816 if State
817 (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
818 then
819 loop
820 exit when Utilities.Independent_Task_Count = 0;
822 -- We used to yield here, but this did not take into account low
823 -- priority tasks that would cause dead lock in some cases (true
824 -- FIFO scheduling).
826 Timed_Sleep
827 (Self_ID, 0.01, System.OS_Primitives.Relative,
828 Self_ID.Common.State, Ignore, Ignore);
829 end loop;
830 end if;
832 -- ??? On multi-processor environments, it seems that the above loop
833 -- isn't sufficient, so we need to add an additional delay.
835 Timed_Sleep
836 (Self_ID, 0.01, System.OS_Primitives.Relative,
837 Self_ID.Common.State, Ignore, Ignore);
839 Unlock (Self_ID);
841 if Single_Lock then
842 Unlock_RTS;
843 end if;
845 -- Complete the environment task
847 Vulnerable_Complete_Task (Self_ID);
849 -- Handle normal task termination by the environment task, but only
850 -- for the normal task termination. In the case of Abnormal and
851 -- Unhandled_Exception they must have been handled before, and the
852 -- task termination soft link must have been changed so the task
853 -- termination routine is not executed twice.
855 SSL.Task_Termination_Handler.all (Ada.Exceptions.Null_Occurrence);
857 -- Finalize the global list for controlled objects if needed
859 SSL.Finalize_Global_List.all;
861 -- Reset the soft links to non-tasking
863 SSL.Abort_Defer := SSL.Abort_Defer_NT'Access;
864 SSL.Abort_Undefer := SSL.Abort_Undefer_NT'Access;
865 SSL.Lock_Task := SSL.Task_Lock_NT'Access;
866 SSL.Unlock_Task := SSL.Task_Unlock_NT'Access;
867 SSL.Get_Jmpbuf_Address := SSL.Get_Jmpbuf_Address_NT'Access;
868 SSL.Set_Jmpbuf_Address := SSL.Set_Jmpbuf_Address_NT'Access;
869 SSL.Get_Sec_Stack_Addr := SSL.Get_Sec_Stack_Addr_NT'Access;
870 SSL.Set_Sec_Stack_Addr := SSL.Set_Sec_Stack_Addr_NT'Access;
871 SSL.Check_Abort_Status := SSL.Check_Abort_Status_NT'Access;
872 SSL.Get_Stack_Info := SSL.Get_Stack_Info_NT'Access;
874 -- Don't bother trying to finalize Initialization.Global_Task_Lock
875 -- and System.Task_Primitives.RTS_Lock.
877 end Finalize_Global_Tasks;
879 ----------------------
880 -- Free_Entry_Names --
881 ----------------------
883 procedure Free_Entry_Names (T : Task_Id) is
884 Names : Entry_Names_Array_Access := T.Entry_Names;
886 procedure Free_Entry_Names_Array_Access is new
887 Ada.Unchecked_Deallocation
888 (Entry_Names_Array, Entry_Names_Array_Access);
890 begin
891 if Names = null then
892 return;
893 end if;
895 Free_Entry_Names_Array (Names.all);
896 Free_Entry_Names_Array_Access (Names);
897 end Free_Entry_Names;
899 ---------------
900 -- Free_Task --
901 ---------------
903 procedure Free_Task (T : Task_Id) is
904 Self_Id : constant Task_Id := Self;
906 begin
907 if T.Common.State = Terminated then
909 -- It is not safe to call Abort_Defer or Write_Lock at this stage
911 Initialization.Task_Lock (Self_Id);
913 Lock_RTS;
914 Initialization.Finalize_Attributes_Link.all (T);
915 Initialization.Remove_From_All_Tasks_List (T);
916 Unlock_RTS;
918 Initialization.Task_Unlock (Self_Id);
920 Free_Entry_Names (T);
921 System.Task_Primitives.Operations.Finalize_TCB (T);
923 -- If the task is not terminated, then we simply ignore the call. This
924 -- happens when a user program attempts an unchecked deallocation on
925 -- a non-terminated task.
927 else
928 null;
929 end if;
930 end Free_Task;
932 ---------------------------
933 -- Move_Activation_Chain --
934 ---------------------------
936 procedure Move_Activation_Chain
937 (From, To : Activation_Chain_Access;
938 New_Master : Master_ID)
940 Self_ID : constant Task_Id := STPO.Self;
941 C : Task_Id;
943 begin
944 pragma Debug
945 (Debug.Trace (Self_ID, "Move_Activation_Chain", 'C'));
947 -- Nothing to do if From is empty, and we can check that without
948 -- deferring aborts.
950 C := From.all.T_ID;
952 if C = null then
953 return;
954 end if;
956 Initialization.Defer_Abort (Self_ID);
958 -- Loop through the From chain, changing their Master_of_Task
959 -- fields, and to find the end of the chain.
961 loop
962 C.Master_of_Task := New_Master;
963 exit when C.Common.Activation_Link = null;
964 C := C.Common.Activation_Link;
965 end loop;
967 -- Hook From in at the start of To
969 C.Common.Activation_Link := To.all.T_ID;
970 To.all.T_ID := From.all.T_ID;
972 -- Set From to empty
974 From.all.T_ID := null;
976 Initialization.Undefer_Abort (Self_ID);
977 end Move_Activation_Chain;
979 -- Compiler interface only. Do not call from within the RTS
981 --------------------
982 -- Set_Entry_Name --
983 --------------------
985 procedure Set_Entry_Name
986 (T : Task_Id;
987 Pos : Task_Entry_Index;
988 Val : String_Access)
990 begin
991 pragma Assert (T.Entry_Names /= null);
993 T.Entry_Names (Entry_Index (Pos)) := Val;
994 end Set_Entry_Name;
996 ------------------
997 -- Task_Wrapper --
998 ------------------
1000 -- The task wrapper is a procedure that is called first for each task body
1001 -- and which in turn calls the compiler-generated task body procedure.
1002 -- The wrapper's main job is to do initialization for the task. It also
1003 -- has some locally declared objects that serve as per-task local data.
1004 -- Task finalization is done by Complete_Task, which is called from an
1005 -- at-end handler that the compiler generates.
1007 procedure Task_Wrapper (Self_ID : Task_Id) is
1008 use type SSE.Storage_Offset;
1009 use System.Standard_Library;
1010 use System.Stack_Usage;
1012 Bottom_Of_Stack : aliased Integer;
1014 Task_Alternate_Stack :
1015 aliased SSE.Storage_Array (1 .. Alternate_Stack_Size);
1016 -- The alternate signal stack for this task, if any
1018 Use_Alternate_Stack : constant Boolean := Alternate_Stack_Size /= 0;
1019 -- Whether to use above alternate signal stack for stack overflows
1021 Secondary_Stack_Size :
1022 constant SSE.Storage_Offset :=
1023 Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size *
1024 SSE.Storage_Offset (Parameters.Sec_Stack_Ratio) / 100;
1026 Secondary_Stack : aliased SSE.Storage_Array (1 .. Secondary_Stack_Size);
1028 pragma Warnings (Off);
1029 -- Why are warnings being turned off here???
1031 Secondary_Stack_Address : System.Address := Secondary_Stack'Address;
1032 -- Address of secondary stack. In the fixed secondary stack case, this
1033 -- value is not modified, causing a warning, hence the bracketing with
1034 -- Warnings (Off/On). But why is so much *more* bracketed???
1036 Small_Overflow_Guard : constant := 12 * 1024;
1037 -- Note: this used to be 4K, but was changed to 12K, since smaller
1038 -- values resulted in segmentation faults from dynamic stack analysis.
1040 Big_Overflow_Guard : constant := 16 * 1024;
1041 Small_Stack_Limit : constant := 64 * 1024;
1042 -- ??? These three values are experimental, and seems to work on most
1043 -- platforms. They still need to be analyzed further. They also need
1044 -- documentation, what are they???
1046 Size : Natural :=
1047 Natural (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size);
1049 Overflow_Guard : Natural;
1050 -- Size of the overflow guard, used by dynamic stack usage analysis
1052 pragma Warnings (On);
1054 SEH_Table : aliased SSE.Storage_Array (1 .. 8);
1055 -- Structured Exception Registration table (2 words)
1057 procedure Install_SEH_Handler (Addr : System.Address);
1058 pragma Import (C, Install_SEH_Handler, "__gnat_install_SEH_handler");
1059 -- Install the SEH (Structured Exception Handling) handler
1061 Cause : Cause_Of_Termination := Normal;
1062 -- Indicates the reason why this task terminates. Normal corresponds to
1063 -- a task terminating due to completing the last statement of its body,
1064 -- or as a result of waiting on a terminate alternative. If the task
1065 -- terminates because it is being aborted then Cause will be set to
1066 -- Abnormal. If the task terminates because of an exception raised by
1067 -- the execution of its task body, then Cause is set to
1068 -- Unhandled_Exception.
1070 EO : Exception_Occurrence;
1071 -- If the task terminates because of an exception raised by the
1072 -- execution of its task body, then EO will contain the associated
1073 -- exception occurrence. Otherwise, it will contain Null_Occurrence.
1075 TH : Termination_Handler := null;
1076 -- Pointer to the protected procedure to be executed upon task
1077 -- termination.
1079 procedure Search_Fall_Back_Handler (ID : Task_Id);
1080 -- Procedure that searches recursively a fall-back handler through the
1081 -- master relationship. If the handler is found, its pointer is stored
1082 -- in TH.
1084 ------------------------------
1085 -- Search_Fall_Back_Handler --
1086 ------------------------------
1088 procedure Search_Fall_Back_Handler (ID : Task_Id) is
1089 begin
1090 -- If there is a fall back handler, store its pointer for later
1091 -- execution.
1093 if ID.Common.Fall_Back_Handler /= null then
1094 TH := ID.Common.Fall_Back_Handler;
1096 -- Otherwise look for a fall back handler in the parent
1098 elsif ID.Common.Parent /= null then
1099 Search_Fall_Back_Handler (ID.Common.Parent);
1101 -- Otherwise, do nothing
1103 else
1104 return;
1105 end if;
1106 end Search_Fall_Back_Handler;
1108 begin
1109 pragma Assert (Self_ID.Deferral_Level = 1);
1111 -- Assume a size of the stack taken at this stage
1113 if not Parameters.Sec_Stack_Dynamic then
1114 Self_ID.Common.Compiler_Data.Sec_Stack_Addr :=
1115 Secondary_Stack'Address;
1116 SST.SS_Init (Secondary_Stack_Address, Integer (Secondary_Stack'Last));
1117 Size := Size - Natural (Secondary_Stack_Size);
1118 end if;
1120 if Use_Alternate_Stack then
1121 Self_ID.Common.Task_Alternate_Stack := Task_Alternate_Stack'Address;
1122 end if;
1124 -- Set the guard page at the bottom of the stack. The call to unprotect
1125 -- the page is done in Terminate_Task
1127 Stack_Guard (Self_ID, True);
1129 -- Initialize low-level TCB components, that cannot be initialized by
1130 -- the creator. Enter_Task sets Self_ID.LL.Thread
1132 Enter_Task (Self_ID);
1134 -- Initialize dynamic stack usage
1136 if System.Stack_Usage.Is_Enabled then
1137 Overflow_Guard :=
1138 (if Size < Small_Stack_Limit
1139 then Small_Overflow_Guard
1140 else Big_Overflow_Guard);
1142 STPO.Lock_RTS;
1143 Initialize_Analyzer
1144 (Self_ID.Common.Analyzer,
1145 Self_ID.Common.Task_Image
1146 (1 .. Self_ID.Common.Task_Image_Len),
1147 Natural
1148 (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size),
1149 Size - Overflow_Guard,
1150 SSE.To_Integer (Bottom_Of_Stack'Address),
1151 SSE.To_Integer
1152 (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Limit));
1153 STPO.Unlock_RTS;
1154 Fill_Stack (Self_ID.Common.Analyzer);
1155 end if;
1157 -- We setup the SEH (Structured Exception Handling) handler if supported
1158 -- on the target.
1160 Install_SEH_Handler (SEH_Table'Address);
1162 -- Initialize exception occurrence
1164 Save_Occurrence (EO, Ada.Exceptions.Null_Occurrence);
1166 -- We lock RTS_Lock to wait for activator to finish activating the rest
1167 -- of the chain, so that everyone in the chain comes out in priority
1168 -- order.
1170 -- This also protects the value of
1171 -- Self_ID.Common.Activator.Common.Wait_Count.
1173 Lock_RTS;
1174 Unlock_RTS;
1176 if not System.Restrictions.Abort_Allowed then
1178 -- If Abort is not allowed, reset the deferral level since it will
1179 -- not get changed by the generated code. Keeping a default value
1180 -- of one would prevent some operations (e.g. select or delay) to
1181 -- proceed successfully.
1183 Self_ID.Deferral_Level := 0;
1184 end if;
1186 if Global_Task_Debug_Event_Set then
1187 Debug.Signal_Debug_Event
1188 (Debug.Debug_Event_Run, Self_ID);
1189 end if;
1191 begin
1192 -- We are separating the following portion of the code in order to
1193 -- place the exception handlers in a different block. In this way,
1194 -- we do not call Set_Jmpbuf_Address (which needs Self) before we
1195 -- set Self in Enter_Task
1197 -- Call the task body procedure
1199 -- The task body is called with abort still deferred. That
1200 -- eliminates a dangerous window, for which we had to patch-up in
1201 -- Terminate_Task.
1203 -- During the expansion of the task body, we insert an RTS-call
1204 -- to Abort_Undefer, at the first point where abort should be
1205 -- allowed.
1207 Self_ID.Common.Task_Entry_Point (Self_ID.Common.Task_Arg);
1208 Initialization.Defer_Abort_Nestable (Self_ID);
1210 exception
1211 -- We can't call Terminate_Task in the exception handlers below,
1212 -- since there may be (e.g. in the case of GCC exception handling)
1213 -- clean ups associated with the exception handler that need to
1214 -- access task specific data.
1216 -- Defer abort so that this task can't be aborted while exiting
1218 when Standard'Abort_Signal =>
1219 Initialization.Defer_Abort_Nestable (Self_ID);
1221 -- Update the cause that motivated the task termination so that
1222 -- the appropriate information is passed to the task termination
1223 -- procedure. Task termination as a result of waiting on a
1224 -- terminate alternative is a normal termination, although it is
1225 -- implemented using the abort mechanisms.
1227 if Self_ID.Terminate_Alternative then
1228 Cause := Normal;
1230 if Global_Task_Debug_Event_Set then
1231 Debug.Signal_Debug_Event
1232 (Debug.Debug_Event_Terminated, Self_ID);
1233 end if;
1234 else
1235 Cause := Abnormal;
1237 if Global_Task_Debug_Event_Set then
1238 Debug.Signal_Debug_Event
1239 (Debug.Debug_Event_Abort_Terminated, Self_ID);
1240 end if;
1241 end if;
1242 when others =>
1243 -- ??? Using an E : others here causes CD2C11A to fail on Tru64
1245 Initialization.Defer_Abort_Nestable (Self_ID);
1247 -- Perform the task specific exception tracing duty. We handle
1248 -- these outputs here and not in the common notification routine
1249 -- because we need access to tasking related data and we don't
1250 -- want to drag dependencies against tasking related units in the
1251 -- the common notification units. Additionally, no trace is ever
1252 -- triggered from the common routine for the Unhandled_Raise case
1253 -- in tasks, since an exception never appears unhandled in this
1254 -- context because of this handler.
1256 if Exception_Trace = Unhandled_Raise then
1257 Trace_Unhandled_Exception_In_Task (Self_ID);
1258 end if;
1260 -- Update the cause that motivated the task termination so that
1261 -- the appropriate information is passed to the task termination
1262 -- procedure, as well as the associated Exception_Occurrence.
1264 Cause := Unhandled_Exception;
1266 Save_Occurrence (EO, SSL.Get_Current_Excep.all.all);
1268 if Global_Task_Debug_Event_Set then
1269 Debug.Signal_Debug_Event
1270 (Debug.Debug_Event_Exception_Terminated, Self_ID);
1271 end if;
1272 end;
1274 -- Look for a task termination handler. This code is for all tasks but
1275 -- the environment task. The task termination code for the environment
1276 -- task is executed by SSL.Task_Termination_Handler.
1278 if Single_Lock then
1279 Lock_RTS;
1280 end if;
1282 Write_Lock (Self_ID);
1284 if Self_ID.Common.Specific_Handler /= null then
1285 TH := Self_ID.Common.Specific_Handler;
1286 else
1287 -- Look for a fall-back handler following the master relationship
1288 -- for the task.
1290 Search_Fall_Back_Handler (Self_ID);
1291 end if;
1293 Unlock (Self_ID);
1295 if Single_Lock then
1296 Unlock_RTS;
1297 end if;
1299 -- Execute the task termination handler if we found it
1301 if TH /= null then
1302 TH.all (Cause, Self_ID, EO);
1303 end if;
1305 if System.Stack_Usage.Is_Enabled then
1306 Compute_Result (Self_ID.Common.Analyzer);
1307 Report_Result (Self_ID.Common.Analyzer);
1308 end if;
1310 Terminate_Task (Self_ID);
1311 end Task_Wrapper;
1313 --------------------
1314 -- Terminate_Task --
1315 --------------------
1317 -- Before we allow the thread to exit, we must clean up. This is a
1318 -- delicate job. We must wake up the task's master, who may immediately try
1319 -- to deallocate the ATCB out from under the current task WHILE IT IS STILL
1320 -- EXECUTING.
1322 -- To avoid this, the parent task must be blocked up to the latest
1323 -- statement executed. The trouble is that we have another step that we
1324 -- also want to postpone to the very end, i.e., calling SSL.Destroy_TSD.
1325 -- We have to postpone that until the end because compiler-generated code
1326 -- is likely to try to access that data at just about any point.
1328 -- We can't call Destroy_TSD while we are holding any other locks, because
1329 -- it locks Global_Task_Lock, and our deadlock prevention rules require
1330 -- that to be the outermost lock. Our first "solution" was to just lock
1331 -- Global_Task_Lock in addition to the other locks, and force the parent to
1332 -- also lock this lock between its wakeup and its freeing of the ATCB. See
1333 -- Complete_Task for the parent-side of the code that has the matching
1334 -- calls to Task_Lock and Task_Unlock. That was not really a solution,
1335 -- since the operation Task_Unlock continued to access the ATCB after
1336 -- unlocking, after which the parent was observed to race ahead, deallocate
1337 -- the ATCB, and then reallocate it to another task. The call to
1338 -- Undefer_Abort in Task_Unlock by the "terminated" task was overwriting
1339 -- the data of the new task that reused the ATCB! To solve this problem, we
1340 -- introduced the new operation Final_Task_Unlock.
1342 procedure Terminate_Task (Self_ID : Task_Id) is
1343 Environment_Task : constant Task_Id := STPO.Environment_Task;
1344 Master_of_Task : Integer;
1346 begin
1347 Debug.Task_Termination_Hook;
1349 if Runtime_Traces then
1350 Send_Trace_Info (T_Terminate);
1351 end if;
1353 -- Since GCC cannot allocate stack chunks efficiently without reordering
1354 -- some of the allocations, we have to handle this unexpected situation
1355 -- here. We should normally never have to call Vulnerable_Complete_Task
1356 -- here.
1358 if Self_ID.Common.Activator /= null then
1359 Vulnerable_Complete_Task (Self_ID);
1360 end if;
1362 Initialization.Task_Lock (Self_ID);
1364 if Single_Lock then
1365 Lock_RTS;
1366 end if;
1368 Master_of_Task := Self_ID.Master_of_Task;
1370 -- Check if the current task is an independent task If so, decrement
1371 -- the Independent_Task_Count value.
1373 if Master_of_Task = Independent_Task_Level then
1374 if Single_Lock then
1375 Utilities.Independent_Task_Count :=
1376 Utilities.Independent_Task_Count - 1;
1377 else
1378 Write_Lock (Environment_Task);
1379 Utilities.Independent_Task_Count :=
1380 Utilities.Independent_Task_Count - 1;
1381 Unlock (Environment_Task);
1382 end if;
1383 end if;
1385 -- Unprotect the guard page if needed
1387 Stack_Guard (Self_ID, False);
1389 Utilities.Make_Passive (Self_ID, Task_Completed => True);
1391 if Single_Lock then
1392 Unlock_RTS;
1393 end if;
1395 pragma Assert (Check_Exit (Self_ID));
1397 SSL.Destroy_TSD (Self_ID.Common.Compiler_Data);
1398 Initialization.Final_Task_Unlock (Self_ID);
1400 -- WARNING: past this point, this thread must assume that the ATCB has
1401 -- been deallocated. It should not be accessed again.
1403 if Master_of_Task > 0 then
1404 STPO.Exit_Task;
1405 end if;
1406 end Terminate_Task;
1408 ----------------
1409 -- Terminated --
1410 ----------------
1412 function Terminated (T : Task_Id) return Boolean is
1413 Self_ID : constant Task_Id := STPO.Self;
1414 Result : Boolean;
1416 begin
1417 Initialization.Defer_Abort_Nestable (Self_ID);
1419 if Single_Lock then
1420 Lock_RTS;
1421 end if;
1423 Write_Lock (T);
1424 Result := T.Common.State = Terminated;
1425 Unlock (T);
1427 if Single_Lock then
1428 Unlock_RTS;
1429 end if;
1431 Initialization.Undefer_Abort_Nestable (Self_ID);
1432 return Result;
1433 end Terminated;
1435 ----------------------------------------
1436 -- Trace_Unhandled_Exception_In_Task --
1437 ----------------------------------------
1439 procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id) is
1440 procedure To_Stderr (S : String);
1441 pragma Import (Ada, To_Stderr, "__gnat_to_stderr");
1443 use System.Soft_Links;
1444 use System.Standard_Library;
1446 function To_Address is new
1447 Ada.Unchecked_Conversion
1448 (Task_Id, System.Task_Primitives.Task_Address);
1450 function Tailored_Exception_Information
1451 (E : Exception_Occurrence) return String;
1452 pragma Import
1453 (Ada, Tailored_Exception_Information,
1454 "__gnat_tailored_exception_information");
1456 Excep : constant Exception_Occurrence_Access :=
1457 SSL.Get_Current_Excep.all;
1459 begin
1460 -- This procedure is called by the task outermost handler in
1461 -- Task_Wrapper below, so only once the task stack has been fully
1462 -- unwound. The common notification routine has been called at the
1463 -- raise point already.
1465 -- Lock to prevent unsynchronized output
1467 Initialization.Task_Lock (Self_Id);
1468 To_Stderr ("task ");
1470 if Self_Id.Common.Task_Image_Len /= 0 then
1471 To_Stderr
1472 (Self_Id.Common.Task_Image (1 .. Self_Id.Common.Task_Image_Len));
1473 To_Stderr ("_");
1474 end if;
1476 To_Stderr (System.Address_Image (To_Address (Self_Id)));
1477 To_Stderr (" terminated by unhandled exception");
1478 To_Stderr ((1 => ASCII.LF));
1479 To_Stderr (Tailored_Exception_Information (Excep.all));
1480 Initialization.Task_Unlock (Self_Id);
1481 end Trace_Unhandled_Exception_In_Task;
1483 ------------------------------------
1484 -- Vulnerable_Complete_Activation --
1485 ------------------------------------
1487 -- As in several other places, the locks of the activator and activated
1488 -- task are both locked here. This follows our deadlock prevention lock
1489 -- ordering policy, since the activated task must be created after the
1490 -- activator.
1492 procedure Vulnerable_Complete_Activation (Self_ID : Task_Id) is
1493 Activator : constant Task_Id := Self_ID.Common.Activator;
1495 begin
1496 pragma Debug (Debug.Trace (Self_ID, "V_Complete_Activation", 'C'));
1498 Write_Lock (Activator);
1499 Write_Lock (Self_ID);
1501 pragma Assert (Self_ID.Common.Activator /= null);
1503 -- Remove dangling reference to Activator, since a task may
1504 -- outlive its activator.
1506 Self_ID.Common.Activator := null;
1508 -- Wake up the activator, if it is waiting for a chain of tasks to
1509 -- activate, and we are the last in the chain to complete activation.
1511 if Activator.Common.State = Activator_Sleep then
1512 Activator.Common.Wait_Count := Activator.Common.Wait_Count - 1;
1514 if Activator.Common.Wait_Count = 0 then
1515 Wakeup (Activator, Activator_Sleep);
1516 end if;
1517 end if;
1519 -- The activator raises a Tasking_Error if any task it is activating
1520 -- is completed before the activation is done. However, if the reason
1521 -- for the task completion is an abort, we do not raise an exception.
1522 -- See RM 9.2(5).
1524 if not Self_ID.Callable and then Self_ID.Pending_ATC_Level /= 0 then
1525 Activator.Common.Activation_Failed := True;
1526 end if;
1528 Unlock (Self_ID);
1529 Unlock (Activator);
1531 -- After the activation, active priority should be the same as base
1532 -- priority. We must unlock the Activator first, though, since it
1533 -- should not wait if we have lower priority.
1535 if Get_Priority (Self_ID) /= Self_ID.Common.Base_Priority then
1536 Write_Lock (Self_ID);
1537 Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
1538 Unlock (Self_ID);
1539 end if;
1540 end Vulnerable_Complete_Activation;
1542 --------------------------------
1543 -- Vulnerable_Complete_Master --
1544 --------------------------------
1546 procedure Vulnerable_Complete_Master (Self_ID : Task_Id) is
1547 C : Task_Id;
1548 P : Task_Id;
1549 CM : constant Master_Level := Self_ID.Master_Within;
1550 T : aliased Task_Id;
1552 To_Be_Freed : Task_Id;
1553 -- This is a list of ATCBs to be freed, after we have released all RTS
1554 -- locks. This is necessary because of the locking order rules, since
1555 -- the storage manager uses Global_Task_Lock.
1557 pragma Warnings (Off);
1558 function Check_Unactivated_Tasks return Boolean;
1559 pragma Warnings (On);
1560 -- Temporary error-checking code below. This is part of the checks
1561 -- added in the new run time. Call it only inside a pragma Assert.
1563 -----------------------------
1564 -- Check_Unactivated_Tasks --
1565 -----------------------------
1567 function Check_Unactivated_Tasks return Boolean is
1568 begin
1569 if not Single_Lock then
1570 Lock_RTS;
1571 end if;
1573 Write_Lock (Self_ID);
1575 C := All_Tasks_List;
1576 while C /= null loop
1577 if C.Common.Activator = Self_ID and then C.Master_of_Task = CM then
1578 return False;
1579 end if;
1581 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1582 Write_Lock (C);
1584 if C.Common.State = Unactivated then
1585 return False;
1586 end if;
1588 Unlock (C);
1589 end if;
1591 C := C.Common.All_Tasks_Link;
1592 end loop;
1594 Unlock (Self_ID);
1596 if not Single_Lock then
1597 Unlock_RTS;
1598 end if;
1600 return True;
1601 end Check_Unactivated_Tasks;
1603 -- Start of processing for Vulnerable_Complete_Master
1605 begin
1606 pragma Debug
1607 (Debug.Trace (Self_ID, "V_Complete_Master", 'C'));
1609 pragma Assert (Self_ID.Common.Wait_Count = 0);
1610 pragma Assert
1611 (Self_ID.Deferral_Level > 0
1612 or else not System.Restrictions.Abort_Allowed);
1614 -- Count how many active dependent tasks this master currently has, and
1615 -- record this in Wait_Count.
1617 -- This count should start at zero, since it is initialized to zero for
1618 -- new tasks, and the task should not exit the sleep-loops that use this
1619 -- count until the count reaches zero.
1621 -- While we're counting, if we run across any unactivated tasks that
1622 -- belong to this master, we summarily terminate them as required by
1623 -- RM-9.2(6).
1625 Lock_RTS;
1626 Write_Lock (Self_ID);
1628 C := All_Tasks_List;
1629 while C /= null loop
1631 -- Terminate unactivated (never-to-be activated) tasks
1633 if C.Common.Activator = Self_ID and then C.Master_of_Task = CM then
1635 pragma Assert (C.Common.State = Unactivated);
1636 -- Usually, C.Common.Activator = Self_ID implies C.Master_of_Task
1637 -- = CM. The only case where C is pending activation by this
1638 -- task, but the master of C is not CM is in Ada 2005, when C is
1639 -- part of a return object of a build-in-place function.
1641 Write_Lock (C);
1642 C.Common.Activator := null;
1643 C.Common.State := Terminated;
1644 C.Callable := False;
1645 Utilities.Cancel_Queued_Entry_Calls (C);
1646 Unlock (C);
1647 end if;
1649 -- Count it if dependent on this master
1651 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1652 Write_Lock (C);
1654 if C.Awake_Count /= 0 then
1655 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
1656 end if;
1658 Unlock (C);
1659 end if;
1661 C := C.Common.All_Tasks_Link;
1662 end loop;
1664 Self_ID.Common.State := Master_Completion_Sleep;
1665 Unlock (Self_ID);
1667 if not Single_Lock then
1668 Unlock_RTS;
1669 end if;
1671 -- Wait until dependent tasks are all terminated or ready to terminate.
1672 -- While waiting, the task may be awakened if the task's priority needs
1673 -- changing, or this master is aborted. In the latter case, we abort the
1674 -- dependents, and resume waiting until Wait_Count goes to zero.
1676 Write_Lock (Self_ID);
1678 loop
1679 exit when Self_ID.Common.Wait_Count = 0;
1681 -- Here is a difference as compared to Complete_Master
1683 if Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
1684 and then not Self_ID.Dependents_Aborted
1685 then
1686 if Single_Lock then
1687 Abort_Dependents (Self_ID);
1688 else
1689 Unlock (Self_ID);
1690 Lock_RTS;
1691 Abort_Dependents (Self_ID);
1692 Unlock_RTS;
1693 Write_Lock (Self_ID);
1694 end if;
1695 else
1696 Sleep (Self_ID, Master_Completion_Sleep);
1697 end if;
1698 end loop;
1700 Self_ID.Common.State := Runnable;
1701 Unlock (Self_ID);
1703 -- Dependents are all terminated or on terminate alternatives. Now,
1704 -- force those on terminate alternatives to terminate, by aborting them.
1706 pragma Assert (Check_Unactivated_Tasks);
1708 if Self_ID.Alive_Count > 1 then
1709 -- ???
1710 -- Consider finding a way to skip the following extra steps if there
1711 -- are no dependents with terminate alternatives. This could be done
1712 -- by adding another count to the ATCB, similar to Awake_Count, but
1713 -- keeping track of tasks that are on terminate alternatives.
1715 pragma Assert (Self_ID.Common.Wait_Count = 0);
1717 -- Force any remaining dependents to terminate by aborting them
1719 if not Single_Lock then
1720 Lock_RTS;
1721 end if;
1723 Abort_Dependents (Self_ID);
1725 -- Above, when we "abort" the dependents we are simply using this
1726 -- operation for convenience. We are not required to support the full
1727 -- abort-statement semantics; in particular, we are not required to
1728 -- immediately cancel any queued or in-service entry calls. That is
1729 -- good, because if we tried to cancel a call we would need to lock
1730 -- the caller, in order to wake the caller up. Our anti-deadlock
1731 -- rules prevent us from doing that without releasing the locks on C
1732 -- and Self_ID. Releasing and retaking those locks would be wasteful
1733 -- at best, and should not be considered further without more
1734 -- detailed analysis of potential concurrent accesses to the ATCBs
1735 -- of C and Self_ID.
1737 -- Count how many "alive" dependent tasks this master currently has,
1738 -- and record this in Wait_Count. This count should start at zero,
1739 -- since it is initialized to zero for new tasks, and the task should
1740 -- not exit the sleep-loops that use this count until the count
1741 -- reaches zero.
1743 pragma Assert (Self_ID.Common.Wait_Count = 0);
1745 Write_Lock (Self_ID);
1747 C := All_Tasks_List;
1748 while C /= null loop
1749 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1750 Write_Lock (C);
1752 pragma Assert (C.Awake_Count = 0);
1754 if C.Alive_Count > 0 then
1755 pragma Assert (C.Terminate_Alternative);
1756 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
1757 end if;
1759 Unlock (C);
1760 end if;
1762 C := C.Common.All_Tasks_Link;
1763 end loop;
1765 Self_ID.Common.State := Master_Phase_2_Sleep;
1766 Unlock (Self_ID);
1768 if not Single_Lock then
1769 Unlock_RTS;
1770 end if;
1772 -- Wait for all counted tasks to finish terminating themselves
1774 Write_Lock (Self_ID);
1776 loop
1777 exit when Self_ID.Common.Wait_Count = 0;
1778 Sleep (Self_ID, Master_Phase_2_Sleep);
1779 end loop;
1781 Self_ID.Common.State := Runnable;
1782 Unlock (Self_ID);
1783 end if;
1785 -- We don't wake up for abort here. We are already terminating just as
1786 -- fast as we can, so there is no point.
1788 -- Remove terminated tasks from the list of Self_ID's dependents, but
1789 -- don't free their ATCBs yet, because of lock order restrictions, which
1790 -- don't allow us to call "free" or "malloc" while holding any other
1791 -- locks. Instead, we put those ATCBs to be freed onto a temporary list,
1792 -- called To_Be_Freed.
1794 if not Single_Lock then
1795 Lock_RTS;
1796 end if;
1798 C := All_Tasks_List;
1799 P := null;
1800 while C /= null loop
1801 if C.Common.Parent = Self_ID and then C.Master_of_Task >= CM then
1802 if P /= null then
1803 P.Common.All_Tasks_Link := C.Common.All_Tasks_Link;
1804 else
1805 All_Tasks_List := C.Common.All_Tasks_Link;
1806 end if;
1808 T := C.Common.All_Tasks_Link;
1809 C.Common.All_Tasks_Link := To_Be_Freed;
1810 To_Be_Freed := C;
1811 C := T;
1813 else
1814 P := C;
1815 C := C.Common.All_Tasks_Link;
1816 end if;
1817 end loop;
1819 Unlock_RTS;
1821 -- Free all the ATCBs on the list To_Be_Freed
1823 -- The ATCBs in the list are no longer in All_Tasks_List, and after
1824 -- any interrupt entries are detached from them they should no longer
1825 -- be referenced.
1827 -- Global_Task_Lock (Task_Lock/Unlock) is locked in the loop below to
1828 -- avoid a race between a terminating task and its parent. The parent
1829 -- might try to deallocate the ACTB out from underneath the exiting
1830 -- task. Note that Free will also lock Global_Task_Lock, but that is
1831 -- OK, since this is the *one* lock for which we have a mechanism to
1832 -- support nested locking. See Task_Wrapper and its finalizer for more
1833 -- explanation.
1835 -- ???
1836 -- The check "T.Common.Parent /= null ..." below is to prevent dangling
1837 -- references to terminated library-level tasks, which could otherwise
1838 -- occur during finalization of library-level objects. A better solution
1839 -- might be to hook task objects into the finalization chain and
1840 -- deallocate the ATCB when the task object is deallocated. However,
1841 -- this change is not likely to gain anything significant, since all
1842 -- this storage should be recovered en-masse when the process exits.
1844 while To_Be_Freed /= null loop
1845 T := To_Be_Freed;
1846 To_Be_Freed := T.Common.All_Tasks_Link;
1848 -- ??? On SGI there is currently no Interrupt_Manager, that's why we
1849 -- need to check if the Interrupt_Manager_ID is null.
1851 if T.Interrupt_Entry and then Interrupt_Manager_ID /= null then
1852 declare
1853 Detach_Interrupt_Entries_Index : constant Task_Entry_Index := 1;
1854 -- Corresponds to the entry index of System.Interrupts.
1855 -- Interrupt_Manager.Detach_Interrupt_Entries.
1856 -- Be sure to update this value when changing
1857 -- Interrupt_Manager specs.
1859 type Param_Type is access all Task_Id;
1861 Param : aliased Param_Type := T'Access;
1863 begin
1864 System.Tasking.Rendezvous.Call_Simple
1865 (Interrupt_Manager_ID, Detach_Interrupt_Entries_Index,
1866 Param'Address);
1867 end;
1868 end if;
1870 if (T.Common.Parent /= null
1871 and then T.Common.Parent.Common.Parent /= null)
1872 or else T.Master_of_Task > Library_Task_Level
1873 then
1874 Initialization.Task_Lock (Self_ID);
1876 -- If Sec_Stack_Addr is not null, it means that Destroy_TSD
1877 -- has not been called yet (case of an unactivated task).
1879 if T.Common.Compiler_Data.Sec_Stack_Addr /= Null_Address then
1880 SSL.Destroy_TSD (T.Common.Compiler_Data);
1881 end if;
1883 Vulnerable_Free_Task (T);
1884 Initialization.Task_Unlock (Self_ID);
1885 end if;
1886 end loop;
1888 -- It might seem nice to let the terminated task deallocate its own
1889 -- ATCB. That would not cover the case of unactivated tasks. It also
1890 -- would force us to keep the underlying thread around past termination,
1891 -- since references to the ATCB are possible past termination.
1893 -- Currently, we get rid of the thread as soon as the task terminates,
1894 -- and let the parent recover the ATCB later.
1896 -- Some day, if we want to recover the ATCB earlier, at task
1897 -- termination, we could consider using "fat task IDs", that include the
1898 -- serial number with the ATCB pointer, to catch references to tasks
1899 -- that no longer have ATCBs. It is not clear how much this would gain,
1900 -- since the user-level task object would still be occupying storage.
1902 -- Make next master level up active. We don't need to lock the ATCB,
1903 -- since the value is only updated by each task for itself.
1905 Self_ID.Master_Within := CM - 1;
1906 end Vulnerable_Complete_Master;
1908 ------------------------------
1909 -- Vulnerable_Complete_Task --
1910 ------------------------------
1912 -- Complete the calling task
1914 -- This procedure must be called with abort deferred. It should only be
1915 -- called by Complete_Task and Finalize_Global_Tasks (for the environment
1916 -- task).
1918 -- The effect is similar to that of Complete_Master. Differences include
1919 -- the closing of entries here, and computation of the number of active
1920 -- dependent tasks in Complete_Master.
1922 -- We don't lock Self_ID before the call to Vulnerable_Complete_Activation,
1923 -- because that does its own locking, and because we do not need the lock
1924 -- to test Self_ID.Common.Activator. That value should only be read and
1925 -- modified by Self.
1927 procedure Vulnerable_Complete_Task (Self_ID : Task_Id) is
1928 begin
1929 pragma Assert
1930 (Self_ID.Deferral_Level > 0
1931 or else not System.Restrictions.Abort_Allowed);
1932 pragma Assert (Self_ID = Self);
1933 pragma Assert (Self_ID.Master_Within = Self_ID.Master_of_Task + 1
1934 or else
1935 Self_ID.Master_Within = Self_ID.Master_of_Task + 2);
1936 pragma Assert (Self_ID.Common.Wait_Count = 0);
1937 pragma Assert (Self_ID.Open_Accepts = null);
1938 pragma Assert (Self_ID.ATC_Nesting_Level = 1);
1940 pragma Debug (Debug.Trace (Self_ID, "V_Complete_Task", 'C'));
1942 if Single_Lock then
1943 Lock_RTS;
1944 end if;
1946 Write_Lock (Self_ID);
1947 Self_ID.Callable := False;
1949 -- In theory, Self should have no pending entry calls left on its
1950 -- call-stack. Each async. select statement should clean its own call,
1951 -- and blocking entry calls should defer abort until the calls are
1952 -- cancelled, then clean up.
1954 Utilities.Cancel_Queued_Entry_Calls (Self_ID);
1955 Unlock (Self_ID);
1957 if Self_ID.Common.Activator /= null then
1958 Vulnerable_Complete_Activation (Self_ID);
1959 end if;
1961 if Single_Lock then
1962 Unlock_RTS;
1963 end if;
1965 -- If Self_ID.Master_Within = Self_ID.Master_of_Task + 2 we may have
1966 -- dependent tasks for which we need to wait. Otherwise we just exit.
1968 if Self_ID.Master_Within = Self_ID.Master_of_Task + 2 then
1969 Vulnerable_Complete_Master (Self_ID);
1970 end if;
1971 end Vulnerable_Complete_Task;
1973 --------------------------
1974 -- Vulnerable_Free_Task --
1975 --------------------------
1977 -- Recover all runtime system storage associated with the task T. This
1978 -- should only be called after T has terminated and will no longer be
1979 -- referenced.
1981 -- For tasks created by an allocator that fails, due to an exception, it
1982 -- is called from Expunge_Unactivated_Tasks.
1984 -- For tasks created by elaboration of task object declarations it is
1985 -- called from the finalization code of the Task_Wrapper procedure. It is
1986 -- also called from Ada.Unchecked_Deallocation, for objects that are or
1987 -- contain tasks.
1989 procedure Vulnerable_Free_Task (T : Task_Id) is
1990 begin
1991 pragma Debug (Debug.Trace (Self, "Vulnerable_Free_Task", 'C', T));
1993 if Single_Lock then
1994 Lock_RTS;
1995 end if;
1997 Write_Lock (T);
1998 Initialization.Finalize_Attributes_Link.all (T);
1999 Unlock (T);
2001 if Single_Lock then
2002 Unlock_RTS;
2003 end if;
2005 Free_Entry_Names (T);
2006 System.Task_Primitives.Operations.Finalize_TCB (T);
2007 end Vulnerable_Free_Task;
2009 -- Package elaboration code
2011 begin
2012 -- Establish the Adafinal oftlink
2014 -- This is not done inside the central RTS initialization routine
2015 -- to avoid with-ing this package from System.Tasking.Initialization.
2017 SSL.Adafinal := Finalize_Global_Tasks'Access;
2019 -- Establish soft links for subprograms that manipulate master_id's.
2020 -- This cannot be done when the RTS is initialized, because of various
2021 -- elaboration constraints.
2023 SSL.Current_Master := Stages.Current_Master'Access;
2024 SSL.Enter_Master := Stages.Enter_Master'Access;
2025 SSL.Complete_Master := Stages.Complete_Master'Access;
2026 end System.Tasking.Stages;