* config.gcc (arm*-*-symbianelf*): New target.
[official-gcc.git] / gcc / unroll.c
blob690200296eb083e40d96a3f4eea34506fc45198b
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003, 2004
4 Free Software Foundation, Inc.
5 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
24 /* Try to unroll a loop, and split induction variables.
26 Loops for which the number of iterations can be calculated exactly are
27 handled specially. If the number of iterations times the insn_count is
28 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
29 Otherwise, we try to unroll the loop a number of times modulo the number
30 of iterations, so that only one exit test will be needed. It is unrolled
31 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
32 the insn count.
34 Otherwise, if the number of iterations can be calculated exactly at
35 run time, and the loop is always entered at the top, then we try to
36 precondition the loop. That is, at run time, calculate how many times
37 the loop will execute, and then execute the loop body a few times so
38 that the remaining iterations will be some multiple of 4 (or 2 if the
39 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
40 with only one exit test needed at the end of the loop.
42 Otherwise, if the number of iterations can not be calculated exactly,
43 not even at run time, then we still unroll the loop a number of times
44 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
45 but there must be an exit test after each copy of the loop body.
47 For each induction variable, which is dead outside the loop (replaceable)
48 or for which we can easily calculate the final value, if we can easily
49 calculate its value at each place where it is set as a function of the
50 current loop unroll count and the variable's value at loop entry, then
51 the induction variable is split into `N' different variables, one for
52 each copy of the loop body. One variable is live across the backward
53 branch, and the others are all calculated as a function of this variable.
54 This helps eliminate data dependencies, and leads to further opportunities
55 for cse. */
57 /* Possible improvements follow: */
59 /* ??? Add an extra pass somewhere to determine whether unrolling will
60 give any benefit. E.g. after generating all unrolled insns, compute the
61 cost of all insns and compare against cost of insns in rolled loop.
63 - On traditional architectures, unrolling a non-constant bound loop
64 is a win if there is a giv whose only use is in memory addresses, the
65 memory addresses can be split, and hence giv increments can be
66 eliminated.
67 - It is also a win if the loop is executed many times, and preconditioning
68 can be performed for the loop.
69 Add code to check for these and similar cases. */
71 /* ??? Improve control of which loops get unrolled. Could use profiling
72 info to only unroll the most commonly executed loops. Perhaps have
73 a user specifiable option to control the amount of code expansion,
74 or the percent of loops to consider for unrolling. Etc. */
76 /* ??? Look at the register copies inside the loop to see if they form a
77 simple permutation. If so, iterate the permutation until it gets back to
78 the start state. This is how many times we should unroll the loop, for
79 best results, because then all register copies can be eliminated.
80 For example, the lisp nreverse function should be unrolled 3 times
81 while (this)
83 next = this->cdr;
84 this->cdr = prev;
85 prev = this;
86 this = next;
89 ??? The number of times to unroll the loop may also be based on data
90 references in the loop. For example, if we have a loop that references
91 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
93 /* ??? Add some simple linear equation solving capability so that we can
94 determine the number of loop iterations for more complex loops.
95 For example, consider this loop from gdb
96 #define SWAP_TARGET_AND_HOST(buffer,len)
98 char tmp;
99 char *p = (char *) buffer;
100 char *q = ((char *) buffer) + len - 1;
101 int iterations = (len + 1) >> 1;
102 int i;
103 for (p; p < q; p++, q--;)
105 tmp = *q;
106 *q = *p;
107 *p = tmp;
110 Note that:
111 start value = p = &buffer + current_iteration
112 end value = q = &buffer + len - 1 - current_iteration
113 Given the loop exit test of "p < q", then there must be "q - p" iterations,
114 set equal to zero and solve for number of iterations:
115 q - p = len - 1 - 2*current_iteration = 0
116 current_iteration = (len - 1) / 2
117 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
118 iterations of this loop. */
120 /* ??? Currently, no labels are marked as loop invariant when doing loop
121 unrolling. This is because an insn inside the loop, that loads the address
122 of a label inside the loop into a register, could be moved outside the loop
123 by the invariant code motion pass if labels were invariant. If the loop
124 is subsequently unrolled, the code will be wrong because each unrolled
125 body of the loop will use the same address, whereas each actually needs a
126 different address. A case where this happens is when a loop containing
127 a switch statement is unrolled.
129 It would be better to let labels be considered invariant. When we
130 unroll loops here, check to see if any insns using a label local to the
131 loop were moved before the loop. If so, then correct the problem, by
132 moving the insn back into the loop, or perhaps replicate the insn before
133 the loop, one copy for each time the loop is unrolled. */
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "rtl.h"
140 #include "tm_p.h"
141 #include "insn-config.h"
142 #include "integrate.h"
143 #include "regs.h"
144 #include "recog.h"
145 #include "flags.h"
146 #include "function.h"
147 #include "expr.h"
148 #include "loop.h"
149 #include "toplev.h"
150 #include "hard-reg-set.h"
151 #include "basic-block.h"
152 #include "predict.h"
153 #include "params.h"
154 #include "cfgloop.h"
156 /* The prime factors looked for when trying to unroll a loop by some
157 number which is modulo the total number of iterations. Just checking
158 for these 4 prime factors will find at least one factor for 75% of
159 all numbers theoretically. Practically speaking, this will succeed
160 almost all of the time since loops are generally a multiple of 2
161 and/or 5. */
163 #define NUM_FACTORS 4
165 static struct _factor { const int factor; int count; }
166 factors[NUM_FACTORS] = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
168 /* Describes the different types of loop unrolling performed. */
170 enum unroll_types
172 UNROLL_COMPLETELY,
173 UNROLL_MODULO,
174 UNROLL_NAIVE
177 /* Indexed by register number, if nonzero, then it contains a pointer
178 to a struct induction for a DEST_REG giv which has been combined with
179 one of more address givs. This is needed because whenever such a DEST_REG
180 giv is modified, we must modify the value of all split address givs
181 that were combined with this DEST_REG giv. */
183 static struct induction **addr_combined_regs;
185 /* Indexed by register number, if this is a splittable induction variable,
186 then this will hold the current value of the register, which depends on the
187 iteration number. */
189 static rtx *splittable_regs;
191 /* Indexed by register number, if this is a splittable induction variable,
192 then this will hold the number of instructions in the loop that modify
193 the induction variable. Used to ensure that only the last insn modifying
194 a split iv will update the original iv of the dest. */
196 static int *splittable_regs_updates;
198 /* Forward declarations. */
200 static rtx simplify_cmp_and_jump_insns (enum rtx_code, enum machine_mode,
201 rtx, rtx, rtx);
202 static void init_reg_map (struct inline_remap *, int);
203 static rtx calculate_giv_inc (rtx, rtx, unsigned int);
204 static rtx initial_reg_note_copy (rtx, struct inline_remap *);
205 static void final_reg_note_copy (rtx *, struct inline_remap *);
206 static void copy_loop_body (struct loop *, rtx, rtx,
207 struct inline_remap *, rtx, int,
208 enum unroll_types, rtx, rtx, rtx, rtx);
209 static int find_splittable_regs (const struct loop *, enum unroll_types,
210 int);
211 static int find_splittable_givs (const struct loop *, struct iv_class *,
212 enum unroll_types, rtx, int);
213 static int reg_dead_after_loop (const struct loop *, rtx);
214 static rtx fold_rtx_mult_add (rtx, rtx, rtx, enum machine_mode);
215 static rtx remap_split_bivs (struct loop *, rtx);
216 static rtx find_common_reg_term (rtx, rtx);
217 static rtx subtract_reg_term (rtx, rtx);
218 static rtx loop_find_equiv_value (const struct loop *, rtx);
219 static rtx ujump_to_loop_cont (rtx, rtx);
221 /* Try to unroll one loop and split induction variables in the loop.
223 The loop is described by the arguments LOOP and INSN_COUNT.
224 STRENGTH_REDUCTION_P indicates whether information generated in the
225 strength reduction pass is available.
227 This function is intended to be called from within `strength_reduce'
228 in loop.c. */
230 void
231 unroll_loop (struct loop *loop, int insn_count, int strength_reduce_p)
233 struct loop_info *loop_info = LOOP_INFO (loop);
234 struct loop_ivs *ivs = LOOP_IVS (loop);
235 int i, j;
236 unsigned int r;
237 unsigned HOST_WIDE_INT temp;
238 int unroll_number = 1;
239 rtx copy_start, copy_end;
240 rtx insn, sequence, pattern, tem;
241 int max_labelno, max_insnno;
242 rtx insert_before;
243 struct inline_remap *map;
244 char *local_label = NULL;
245 char *local_regno;
246 unsigned int max_local_regnum;
247 unsigned int maxregnum;
248 rtx exit_label = 0;
249 rtx start_label;
250 struct iv_class *bl;
251 int splitting_not_safe = 0;
252 enum unroll_types unroll_type = UNROLL_NAIVE;
253 int loop_preconditioned = 0;
254 rtx safety_label;
255 /* This points to the last real insn in the loop, which should be either
256 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
257 jumps). */
258 rtx last_loop_insn;
259 rtx loop_start = loop->start;
260 rtx loop_end = loop->end;
262 /* Don't bother unrolling huge loops. Since the minimum factor is
263 two, loops greater than one half of MAX_UNROLLED_INSNS will never
264 be unrolled. */
265 if (insn_count > MAX_UNROLLED_INSNS / 2)
267 if (loop_dump_stream)
268 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
269 return;
272 /* Determine type of unroll to perform. Depends on the number of iterations
273 and the size of the loop. */
275 /* If there is no strength reduce info, then set
276 loop_info->n_iterations to zero. This can happen if
277 strength_reduce can't find any bivs in the loop. A value of zero
278 indicates that the number of iterations could not be calculated. */
280 if (! strength_reduce_p)
281 loop_info->n_iterations = 0;
283 if (loop_dump_stream && loop_info->n_iterations > 0)
284 fprintf (loop_dump_stream, "Loop unrolling: " HOST_WIDE_INT_PRINT_DEC
285 " iterations.\n", loop_info->n_iterations);
287 /* Find and save a pointer to the last nonnote insn in the loop. */
289 last_loop_insn = prev_nonnote_insn (loop_end);
291 /* Calculate how many times to unroll the loop. Indicate whether or
292 not the loop is being completely unrolled. */
294 if (loop_info->n_iterations == 1)
296 /* Handle the case where the loop begins with an unconditional
297 jump to the loop condition. Make sure to delete the jump
298 insn, otherwise the loop body will never execute. */
300 /* FIXME this actually checks for a jump to the continue point, which
301 is not the same as the condition in a for loop. As a result, this
302 optimization fails for most for loops. We should really use flow
303 information rather than instruction pattern matching. */
304 rtx ujump = ujump_to_loop_cont (loop->start, loop->cont);
306 /* If number of iterations is exactly 1, then eliminate the compare and
307 branch at the end of the loop since they will never be taken.
308 Then return, since no other action is needed here. */
310 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
311 don't do anything. */
313 if (BARRIER_P (last_loop_insn))
315 /* Delete the jump insn. This will delete the barrier also. */
316 last_loop_insn = PREV_INSN (last_loop_insn);
319 if (ujump && JUMP_P (last_loop_insn))
321 #ifdef HAVE_cc0
322 rtx prev = PREV_INSN (last_loop_insn);
323 #endif
324 delete_related_insns (last_loop_insn);
325 #ifdef HAVE_cc0
326 /* The immediately preceding insn may be a compare which must be
327 deleted. */
328 if (only_sets_cc0_p (prev))
329 delete_related_insns (prev);
330 #endif
332 delete_related_insns (ujump);
334 /* Remove the loop notes since this is no longer a loop. */
335 if (loop->vtop)
336 delete_related_insns (loop->vtop);
337 if (loop->cont)
338 delete_related_insns (loop->cont);
339 if (loop_start)
340 delete_related_insns (loop_start);
341 if (loop_end)
342 delete_related_insns (loop_end);
344 return;
348 if (loop_info->n_iterations > 0
349 /* Avoid overflow in the next expression. */
350 && loop_info->n_iterations < (unsigned) MAX_UNROLLED_INSNS
351 && loop_info->n_iterations * insn_count < (unsigned) MAX_UNROLLED_INSNS)
353 unroll_number = loop_info->n_iterations;
354 unroll_type = UNROLL_COMPLETELY;
356 else if (loop_info->n_iterations > 0)
358 /* Try to factor the number of iterations. Don't bother with the
359 general case, only using 2, 3, 5, and 7 will get 75% of all
360 numbers theoretically, and almost all in practice. */
362 for (i = 0; i < NUM_FACTORS; i++)
363 factors[i].count = 0;
365 temp = loop_info->n_iterations;
366 for (i = NUM_FACTORS - 1; i >= 0; i--)
367 while (temp % factors[i].factor == 0)
369 factors[i].count++;
370 temp = temp / factors[i].factor;
373 /* Start with the larger factors first so that we generally
374 get lots of unrolling. */
376 unroll_number = 1;
377 temp = insn_count;
378 for (i = 3; i >= 0; i--)
379 while (factors[i].count--)
381 if (temp * factors[i].factor < (unsigned) MAX_UNROLLED_INSNS)
383 unroll_number *= factors[i].factor;
384 temp *= factors[i].factor;
386 else
387 break;
390 /* If we couldn't find any factors, then unroll as in the normal
391 case. */
392 if (unroll_number == 1)
394 if (loop_dump_stream)
395 fprintf (loop_dump_stream, "Loop unrolling: No factors found.\n");
397 else
398 unroll_type = UNROLL_MODULO;
401 /* Default case, calculate number of times to unroll loop based on its
402 size. */
403 if (unroll_type == UNROLL_NAIVE)
405 if (8 * insn_count < MAX_UNROLLED_INSNS)
406 unroll_number = 8;
407 else if (4 * insn_count < MAX_UNROLLED_INSNS)
408 unroll_number = 4;
409 else
410 unroll_number = 2;
413 /* Now we know how many times to unroll the loop. */
415 if (loop_dump_stream)
416 fprintf (loop_dump_stream, "Unrolling loop %d times.\n", unroll_number);
418 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
420 /* Loops of these types can start with jump down to the exit condition
421 in rare circumstances.
423 Consider a pair of nested loops where the inner loop is part
424 of the exit code for the outer loop.
426 In this case jump.c will not duplicate the exit test for the outer
427 loop, so it will start with a jump to the exit code.
429 Then consider if the inner loop turns out to iterate once and
430 only once. We will end up deleting the jumps associated with
431 the inner loop. However, the loop notes are not removed from
432 the instruction stream.
434 And finally assume that we can compute the number of iterations
435 for the outer loop.
437 In this case unroll may want to unroll the outer loop even though
438 it starts with a jump to the outer loop's exit code.
440 We could try to optimize this case, but it hardly seems worth it.
441 Just return without unrolling the loop in such cases. */
443 insn = loop_start;
444 while (!LABEL_P (insn) && !JUMP_P (insn))
445 insn = NEXT_INSN (insn);
446 if (JUMP_P (insn))
447 return;
450 if (unroll_type == UNROLL_COMPLETELY)
452 /* Completely unrolling the loop: Delete the compare and branch at
453 the end (the last two instructions). This delete must done at the
454 very end of loop unrolling, to avoid problems with calls to
455 back_branch_in_range_p, which is called by find_splittable_regs.
456 All increments of splittable bivs/givs are changed to load constant
457 instructions. */
459 copy_start = loop_start;
461 /* Set insert_before to the instruction immediately after the JUMP_INSN
462 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
463 the loop will be correctly handled by copy_loop_body. */
464 insert_before = NEXT_INSN (last_loop_insn);
466 /* Set copy_end to the insn before the jump at the end of the loop. */
467 if (BARRIER_P (last_loop_insn))
468 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
469 else if (JUMP_P (last_loop_insn))
471 copy_end = PREV_INSN (last_loop_insn);
472 #ifdef HAVE_cc0
473 /* The instruction immediately before the JUMP_INSN may be a compare
474 instruction which we do not want to copy. */
475 if (sets_cc0_p (PREV_INSN (copy_end)))
476 copy_end = PREV_INSN (copy_end);
477 #endif
479 else
481 /* We currently can't unroll a loop if it doesn't end with a
482 JUMP_INSN. There would need to be a mechanism that recognizes
483 this case, and then inserts a jump after each loop body, which
484 jumps to after the last loop body. */
485 if (loop_dump_stream)
486 fprintf (loop_dump_stream,
487 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
488 return;
491 else if (unroll_type == UNROLL_MODULO)
493 /* Partially unrolling the loop: The compare and branch at the end
494 (the last two instructions) must remain. Don't copy the compare
495 and branch instructions at the end of the loop. Insert the unrolled
496 code immediately before the compare/branch at the end so that the
497 code will fall through to them as before. */
499 copy_start = loop_start;
501 /* Set insert_before to the jump insn at the end of the loop.
502 Set copy_end to before the jump insn at the end of the loop. */
503 if (BARRIER_P (last_loop_insn))
505 insert_before = PREV_INSN (last_loop_insn);
506 copy_end = PREV_INSN (insert_before);
508 else if (JUMP_P (last_loop_insn))
510 insert_before = last_loop_insn;
511 #ifdef HAVE_cc0
512 /* The instruction immediately before the JUMP_INSN may be a compare
513 instruction which we do not want to copy or delete. */
514 if (sets_cc0_p (PREV_INSN (insert_before)))
515 insert_before = PREV_INSN (insert_before);
516 #endif
517 copy_end = PREV_INSN (insert_before);
519 else
521 /* We currently can't unroll a loop if it doesn't end with a
522 JUMP_INSN. There would need to be a mechanism that recognizes
523 this case, and then inserts a jump after each loop body, which
524 jumps to after the last loop body. */
525 if (loop_dump_stream)
526 fprintf (loop_dump_stream,
527 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
528 return;
531 else
533 /* Normal case: Must copy the compare and branch instructions at the
534 end of the loop. */
536 if (BARRIER_P (last_loop_insn))
538 /* Loop ends with an unconditional jump and a barrier.
539 Handle this like above, don't copy jump and barrier.
540 This is not strictly necessary, but doing so prevents generating
541 unconditional jumps to an immediately following label.
543 This will be corrected below if the target of this jump is
544 not the start_label. */
546 insert_before = PREV_INSN (last_loop_insn);
547 copy_end = PREV_INSN (insert_before);
549 else if (JUMP_P (last_loop_insn))
551 /* Set insert_before to immediately after the JUMP_INSN, so that
552 NOTEs at the end of the loop will be correctly handled by
553 copy_loop_body. */
554 insert_before = NEXT_INSN (last_loop_insn);
555 copy_end = last_loop_insn;
557 else
559 /* We currently can't unroll a loop if it doesn't end with a
560 JUMP_INSN. There would need to be a mechanism that recognizes
561 this case, and then inserts a jump after each loop body, which
562 jumps to after the last loop body. */
563 if (loop_dump_stream)
564 fprintf (loop_dump_stream,
565 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
566 return;
569 /* If copying exit test branches because they can not be eliminated,
570 then must convert the fall through case of the branch to a jump past
571 the end of the loop. Create a label to emit after the loop and save
572 it for later use. Do not use the label after the loop, if any, since
573 it might be used by insns outside the loop, or there might be insns
574 added before it later by final_[bg]iv_value which must be after
575 the real exit label. */
576 exit_label = gen_label_rtx ();
578 insn = loop_start;
579 while (!LABEL_P (insn) && !JUMP_P (insn))
580 insn = NEXT_INSN (insn);
582 if (JUMP_P (insn))
584 /* The loop starts with a jump down to the exit condition test.
585 Start copying the loop after the barrier following this
586 jump insn. */
587 copy_start = NEXT_INSN (insn);
589 /* Splitting induction variables doesn't work when the loop is
590 entered via a jump to the bottom, because then we end up doing
591 a comparison against a new register for a split variable, but
592 we did not execute the set insn for the new register because
593 it was skipped over. */
594 splitting_not_safe = 1;
595 if (loop_dump_stream)
596 fprintf (loop_dump_stream,
597 "Splitting not safe, because loop not entered at top.\n");
599 else
600 copy_start = loop_start;
603 /* This should always be the first label in the loop. */
604 start_label = NEXT_INSN (copy_start);
605 /* There may be a line number note and/or a loop continue note here. */
606 while (NOTE_P (start_label))
607 start_label = NEXT_INSN (start_label);
608 if (!LABEL_P (start_label))
610 /* This can happen as a result of jump threading. If the first insns in
611 the loop test the same condition as the loop's backward jump, or the
612 opposite condition, then the backward jump will be modified to point
613 to elsewhere, and the loop's start label is deleted.
615 This case currently can not be handled by the loop unrolling code. */
617 if (loop_dump_stream)
618 fprintf (loop_dump_stream,
619 "Unrolling failure: unknown insns between BEG note and loop label.\n");
620 return;
622 if (LABEL_NAME (start_label))
624 /* The jump optimization pass must have combined the original start label
625 with a named label for a goto. We can't unroll this case because
626 jumps which go to the named label must be handled differently than
627 jumps to the loop start, and it is impossible to differentiate them
628 in this case. */
629 if (loop_dump_stream)
630 fprintf (loop_dump_stream,
631 "Unrolling failure: loop start label is gone\n");
632 return;
635 if (unroll_type == UNROLL_NAIVE
636 && BARRIER_P (last_loop_insn)
637 && JUMP_P (PREV_INSN (last_loop_insn))
638 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
640 /* In this case, we must copy the jump and barrier, because they will
641 not be converted to jumps to an immediately following label. */
643 insert_before = NEXT_INSN (last_loop_insn);
644 copy_end = last_loop_insn;
647 if (unroll_type == UNROLL_NAIVE
648 && JUMP_P (last_loop_insn)
649 && start_label != JUMP_LABEL (last_loop_insn))
651 /* ??? The loop ends with a conditional branch that does not branch back
652 to the loop start label. In this case, we must emit an unconditional
653 branch to the loop exit after emitting the final branch.
654 copy_loop_body does not have support for this currently, so we
655 give up. It doesn't seem worthwhile to unroll anyways since
656 unrolling would increase the number of branch instructions
657 executed. */
658 if (loop_dump_stream)
659 fprintf (loop_dump_stream,
660 "Unrolling failure: final conditional branch not to loop start\n");
661 return;
664 /* Allocate a translation table for the labels and insn numbers.
665 They will be filled in as we copy the insns in the loop. */
667 max_labelno = max_label_num ();
668 max_insnno = get_max_uid ();
670 /* Various paths through the unroll code may reach the "egress" label
671 without initializing fields within the map structure.
673 To be safe, we use xcalloc to zero the memory. */
674 map = xcalloc (1, sizeof (struct inline_remap));
676 /* Allocate the label map. */
678 if (max_labelno > 0)
680 map->label_map = xcalloc (max_labelno, sizeof (rtx));
681 local_label = xcalloc (max_labelno, sizeof (char));
684 /* Search the loop and mark all local labels, i.e. the ones which have to
685 be distinct labels when copied. For all labels which might be
686 non-local, set their label_map entries to point to themselves.
687 If they happen to be local their label_map entries will be overwritten
688 before the loop body is copied. The label_map entries for local labels
689 will be set to a different value each time the loop body is copied. */
691 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
693 rtx note;
695 if (LABEL_P (insn))
696 local_label[CODE_LABEL_NUMBER (insn)] = 1;
697 else if (JUMP_P (insn))
699 if (JUMP_LABEL (insn))
700 set_label_in_map (map,
701 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
702 JUMP_LABEL (insn));
703 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
704 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
706 rtx pat = PATTERN (insn);
707 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
708 int len = XVECLEN (pat, diff_vec_p);
709 rtx label;
711 for (i = 0; i < len; i++)
713 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
714 set_label_in_map (map, CODE_LABEL_NUMBER (label), label);
718 if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
719 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
720 XEXP (note, 0));
723 /* Allocate space for the insn map. */
725 map->insn_map = xmalloc (max_insnno * sizeof (rtx));
727 /* The register and constant maps depend on the number of registers
728 present, so the final maps can't be created until after
729 find_splittable_regs is called. However, they are needed for
730 preconditioning, so we create temporary maps when preconditioning
731 is performed. */
733 /* The preconditioning code may allocate two new pseudo registers. */
734 maxregnum = max_reg_num ();
736 /* local_regno is only valid for regnos < max_local_regnum. */
737 max_local_regnum = maxregnum;
739 /* Allocate and zero out the splittable_regs and addr_combined_regs
740 arrays. These must be zeroed here because they will be used if
741 loop preconditioning is performed, and must be zero for that case.
743 It is safe to do this here, since the extra registers created by the
744 preconditioning code and find_splittable_regs will never be used
745 to access the splittable_regs[] and addr_combined_regs[] arrays. */
747 splittable_regs = xcalloc (maxregnum, sizeof (rtx));
748 splittable_regs_updates = xcalloc (maxregnum, sizeof (int));
749 addr_combined_regs = xcalloc (maxregnum, sizeof (struct induction *));
750 local_regno = xcalloc (maxregnum, sizeof (char));
752 /* Mark all local registers, i.e. the ones which are referenced only
753 inside the loop. */
754 if (INSN_UID (copy_end) < max_uid_for_loop)
756 int copy_start_luid = INSN_LUID (copy_start);
757 int copy_end_luid = INSN_LUID (copy_end);
759 /* If a register is used in the jump insn, we must not duplicate it
760 since it will also be used outside the loop. */
761 if (JUMP_P (copy_end))
762 copy_end_luid--;
764 /* If we have a target that uses cc0, then we also must not duplicate
765 the insn that sets cc0 before the jump insn, if one is present. */
766 #ifdef HAVE_cc0
767 if (JUMP_P (copy_end)
768 && sets_cc0_p (PREV_INSN (copy_end)))
769 copy_end_luid--;
770 #endif
772 /* If copy_start points to the NOTE that starts the loop, then we must
773 use the next luid, because invariant pseudo-regs moved out of the loop
774 have their lifetimes modified to start here, but they are not safe
775 to duplicate. */
776 if (copy_start == loop_start)
777 copy_start_luid++;
779 /* If a pseudo's lifetime is entirely contained within this loop, then we
780 can use a different pseudo in each unrolled copy of the loop. This
781 results in better code. */
782 /* We must limit the generic test to max_reg_before_loop, because only
783 these pseudo registers have valid regno_first_uid info. */
784 for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
785 if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) < max_uid_for_loop
786 && REGNO_FIRST_LUID (r) >= copy_start_luid
787 && REGNO_LAST_UID (r) > 0 && REGNO_LAST_UID (r) < max_uid_for_loop
788 && REGNO_LAST_LUID (r) <= copy_end_luid)
790 /* However, we must also check for loop-carried dependencies.
791 If the value the pseudo has at the end of iteration X is
792 used by iteration X+1, then we can not use a different pseudo
793 for each unrolled copy of the loop. */
794 /* A pseudo is safe if regno_first_uid is a set, and this
795 set dominates all instructions from regno_first_uid to
796 regno_last_uid. */
797 /* ??? This check is simplistic. We would get better code if
798 this check was more sophisticated. */
799 if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
800 copy_start, copy_end))
801 local_regno[r] = 1;
803 if (loop_dump_stream)
805 if (local_regno[r])
806 fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
807 else
808 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
814 /* If this loop requires exit tests when unrolled, check to see if we
815 can precondition the loop so as to make the exit tests unnecessary.
816 Just like variable splitting, this is not safe if the loop is entered
817 via a jump to the bottom. Also, can not do this if no strength
818 reduce info, because precondition_loop_p uses this info. */
820 /* Must copy the loop body for preconditioning before the following
821 find_splittable_regs call since that will emit insns which need to
822 be after the preconditioned loop copies, but immediately before the
823 unrolled loop copies. */
825 /* Also, it is not safe to split induction variables for the preconditioned
826 copies of the loop body. If we split induction variables, then the code
827 assumes that each induction variable can be represented as a function
828 of its initial value and the loop iteration number. This is not true
829 in this case, because the last preconditioned copy of the loop body
830 could be any iteration from the first up to the `unroll_number-1'th,
831 depending on the initial value of the iteration variable. Therefore
832 we can not split induction variables here, because we can not calculate
833 their value. Hence, this code must occur before find_splittable_regs
834 is called. */
836 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
838 rtx initial_value, final_value, increment;
839 enum machine_mode mode;
841 if (precondition_loop_p (loop,
842 &initial_value, &final_value, &increment,
843 &mode))
845 rtx diff, insn;
846 rtx *labels;
847 int abs_inc, neg_inc;
848 enum rtx_code cc = loop_info->comparison_code;
849 int less_p = (cc == LE || cc == LEU || cc == LT || cc == LTU);
850 int unsigned_p = (cc == LEU || cc == GEU || cc == LTU || cc == GTU);
852 map->reg_map = xmalloc (maxregnum * sizeof (rtx));
854 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
855 "unroll_loop_precondition");
856 global_const_equiv_varray = map->const_equiv_varray;
858 init_reg_map (map, maxregnum);
860 /* Limit loop unrolling to 4, since this will make 7 copies of
861 the loop body. */
862 if (unroll_number > 4)
863 unroll_number = 4;
865 /* Save the absolute value of the increment, and also whether or
866 not it is negative. */
867 neg_inc = 0;
868 abs_inc = INTVAL (increment);
869 if (abs_inc < 0)
871 abs_inc = -abs_inc;
872 neg_inc = 1;
875 start_sequence ();
877 /* We must copy the final and initial values here to avoid
878 improperly shared rtl. */
879 final_value = copy_rtx (final_value);
880 initial_value = copy_rtx (initial_value);
882 /* Final value may have form of (PLUS val1 const1_rtx). We need
883 to convert it into general operand, so compute the real value. */
885 final_value = force_operand (final_value, NULL_RTX);
886 if (!nonmemory_operand (final_value, VOIDmode))
887 final_value = force_reg (mode, final_value);
889 /* Calculate the difference between the final and initial values.
890 Final value may be a (plus (reg x) (const_int 1)) rtx.
892 We have to deal with for (i = 0; --i < 6;) type loops.
893 For such loops the real final value is the first time the
894 loop variable overflows, so the diff we calculate is the
895 distance from the overflow value. This is 0 or ~0 for
896 unsigned loops depending on the direction, or INT_MAX,
897 INT_MAX+1 for signed loops. We really do not need the
898 exact value, since we are only interested in the diff
899 modulo the increment, and the increment is a power of 2,
900 so we can pretend that the overflow value is 0/~0. */
902 if (cc == NE || less_p != neg_inc)
903 diff = simplify_gen_binary (MINUS, mode, final_value,
904 initial_value);
905 else
906 diff = simplify_gen_unary (neg_inc ? NOT : NEG, mode,
907 initial_value, mode);
908 diff = force_operand (diff, NULL_RTX);
910 /* Now calculate (diff % (unroll * abs (increment))) by using an
911 and instruction. */
912 diff = simplify_gen_binary (AND, mode, diff,
913 GEN_INT (unroll_number*abs_inc - 1));
914 diff = force_operand (diff, NULL_RTX);
916 /* Now emit a sequence of branches to jump to the proper precond
917 loop entry point. */
919 labels = xmalloc (sizeof (rtx) * unroll_number);
920 for (i = 0; i < unroll_number; i++)
921 labels[i] = gen_label_rtx ();
923 /* Check for the case where the initial value is greater than or
924 equal to the final value. In that case, we want to execute
925 exactly one loop iteration. The code below will fail for this
926 case. This check does not apply if the loop has a NE
927 comparison at the end. */
929 if (cc != NE)
931 rtx incremented_initval;
932 enum rtx_code cmp_code;
934 incremented_initval
935 = simplify_gen_binary (PLUS, mode, initial_value, increment);
936 incremented_initval
937 = force_operand (incremented_initval, NULL_RTX);
939 cmp_code = (less_p
940 ? (unsigned_p ? GEU : GE)
941 : (unsigned_p ? LEU : LE));
943 insn = simplify_cmp_and_jump_insns (cmp_code, mode,
944 incremented_initval,
945 final_value, labels[1]);
946 if (insn)
947 predict_insn_def (insn, PRED_LOOP_CONDITION, TAKEN);
950 /* Assuming the unroll_number is 4, and the increment is 2, then
951 for a negative increment: for a positive increment:
952 diff = 0,1 precond 0 diff = 0,7 precond 0
953 diff = 2,3 precond 3 diff = 1,2 precond 1
954 diff = 4,5 precond 2 diff = 3,4 precond 2
955 diff = 6,7 precond 1 diff = 5,6 precond 3 */
957 /* We only need to emit (unroll_number - 1) branches here, the
958 last case just falls through to the following code. */
960 /* ??? This would give better code if we emitted a tree of branches
961 instead of the current linear list of branches. */
963 for (i = 0; i < unroll_number - 1; i++)
965 int cmp_const;
966 enum rtx_code cmp_code;
968 /* For negative increments, must invert the constant compared
969 against, except when comparing against zero. */
970 if (i == 0)
972 cmp_const = 0;
973 cmp_code = EQ;
975 else if (neg_inc)
977 cmp_const = unroll_number - i;
978 cmp_code = GE;
980 else
982 cmp_const = i;
983 cmp_code = LE;
986 insn = simplify_cmp_and_jump_insns (cmp_code, mode, diff,
987 GEN_INT (abs_inc*cmp_const),
988 labels[i]);
989 if (insn)
990 predict_insn (insn, PRED_LOOP_PRECONDITIONING,
991 REG_BR_PROB_BASE / (unroll_number - i));
994 /* If the increment is greater than one, then we need another branch,
995 to handle other cases equivalent to 0. */
997 /* ??? This should be merged into the code above somehow to help
998 simplify the code here, and reduce the number of branches emitted.
999 For the negative increment case, the branch here could easily
1000 be merged with the `0' case branch above. For the positive
1001 increment case, it is not clear how this can be simplified. */
1003 if (abs_inc != 1)
1005 int cmp_const;
1006 enum rtx_code cmp_code;
1008 if (neg_inc)
1010 cmp_const = abs_inc - 1;
1011 cmp_code = LE;
1013 else
1015 cmp_const = abs_inc * (unroll_number - 1) + 1;
1016 cmp_code = GE;
1019 simplify_cmp_and_jump_insns (cmp_code, mode, diff,
1020 GEN_INT (cmp_const), labels[0]);
1023 sequence = get_insns ();
1024 end_sequence ();
1025 loop_insn_hoist (loop, sequence);
1027 /* Only the last copy of the loop body here needs the exit
1028 test, so set copy_end to exclude the compare/branch here,
1029 and then reset it inside the loop when get to the last
1030 copy. */
1032 if (BARRIER_P (last_loop_insn))
1033 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1034 else if (JUMP_P (last_loop_insn))
1036 copy_end = PREV_INSN (last_loop_insn);
1037 #ifdef HAVE_cc0
1038 /* The immediately preceding insn may be a compare which
1039 we do not want to copy. */
1040 if (sets_cc0_p (PREV_INSN (copy_end)))
1041 copy_end = PREV_INSN (copy_end);
1042 #endif
1044 else
1045 abort ();
1047 for (i = 1; i < unroll_number; i++)
1049 emit_label_after (labels[unroll_number - i],
1050 PREV_INSN (loop_start));
1052 memset (map->insn_map, 0, max_insnno * sizeof (rtx));
1053 memset (&VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1054 0, (VARRAY_SIZE (map->const_equiv_varray)
1055 * sizeof (struct const_equiv_data)));
1056 map->const_age = 0;
1058 for (j = 0; j < max_labelno; j++)
1059 if (local_label[j])
1060 set_label_in_map (map, j, gen_label_rtx ());
1062 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1063 if (local_regno[r])
1065 map->reg_map[r]
1066 = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1067 record_base_value (REGNO (map->reg_map[r]),
1068 regno_reg_rtx[r], 0);
1070 /* The last copy needs the compare/branch insns at the end,
1071 so reset copy_end here if the loop ends with a conditional
1072 branch. */
1074 if (i == unroll_number - 1)
1076 if (BARRIER_P (last_loop_insn))
1077 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1078 else
1079 copy_end = last_loop_insn;
1082 /* None of the copies are the `last_iteration', so just
1083 pass zero for that parameter. */
1084 copy_loop_body (loop, copy_start, copy_end, map, exit_label, 0,
1085 unroll_type, start_label, loop_end,
1086 loop_start, copy_end);
1088 emit_label_after (labels[0], PREV_INSN (loop_start));
1090 if (BARRIER_P (last_loop_insn))
1092 insert_before = PREV_INSN (last_loop_insn);
1093 copy_end = PREV_INSN (insert_before);
1095 else
1097 insert_before = last_loop_insn;
1098 #ifdef HAVE_cc0
1099 /* The instruction immediately before the JUMP_INSN may
1100 be a compare instruction which we do not want to copy
1101 or delete. */
1102 if (sets_cc0_p (PREV_INSN (insert_before)))
1103 insert_before = PREV_INSN (insert_before);
1104 #endif
1105 copy_end = PREV_INSN (insert_before);
1108 /* Set unroll type to MODULO now. */
1109 unroll_type = UNROLL_MODULO;
1110 loop_preconditioned = 1;
1112 /* Clean up. */
1113 free (labels);
1117 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1118 the loop unless all loops are being unrolled. */
1119 if (unroll_type == UNROLL_NAIVE && ! flag_old_unroll_all_loops)
1121 if (loop_dump_stream)
1122 fprintf (loop_dump_stream,
1123 "Unrolling failure: Naive unrolling not being done.\n");
1124 goto egress;
1127 /* At this point, we are guaranteed to unroll the loop. */
1129 /* Keep track of the unroll factor for the loop. */
1130 loop_info->unroll_number = unroll_number;
1132 /* And whether the loop has been preconditioned. */
1133 loop_info->preconditioned = loop_preconditioned;
1135 /* Remember whether it was preconditioned for the second loop pass. */
1136 NOTE_PRECONDITIONED (loop->end) = loop_preconditioned;
1138 /* For each biv and giv, determine whether it can be safely split into
1139 a different variable for each unrolled copy of the loop body.
1140 We precalculate and save this info here, since computing it is
1141 expensive.
1143 Do this before deleting any instructions from the loop, so that
1144 back_branch_in_range_p will work correctly. */
1146 if (splitting_not_safe)
1147 temp = 0;
1148 else
1149 temp = find_splittable_regs (loop, unroll_type, unroll_number);
1151 /* find_splittable_regs may have created some new registers, so must
1152 reallocate the reg_map with the new larger size, and must realloc
1153 the constant maps also. */
1155 maxregnum = max_reg_num ();
1156 map->reg_map = xmalloc (maxregnum * sizeof (rtx));
1158 init_reg_map (map, maxregnum);
1160 if (map->const_equiv_varray == 0)
1161 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1162 maxregnum + temp * unroll_number * 2,
1163 "unroll_loop");
1164 global_const_equiv_varray = map->const_equiv_varray;
1166 /* Search the list of bivs and givs to find ones which need to be remapped
1167 when split, and set their reg_map entry appropriately. */
1169 for (bl = ivs->list; bl; bl = bl->next)
1171 if (REGNO (bl->biv->src_reg) != bl->regno)
1172 map->reg_map[bl->regno] = bl->biv->src_reg;
1173 #if 0
1174 /* Currently, non-reduced/final-value givs are never split. */
1175 for (v = bl->giv; v; v = v->next_iv)
1176 if (REGNO (v->src_reg) != bl->regno)
1177 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1178 #endif
1181 /* Use our current register alignment and pointer flags. */
1182 map->regno_pointer_align = cfun->emit->regno_pointer_align;
1183 map->x_regno_reg_rtx = cfun->emit->x_regno_reg_rtx;
1185 /* If the loop is being partially unrolled, and the iteration variables
1186 are being split, and are being renamed for the split, then must fix up
1187 the compare/jump instruction at the end of the loop to refer to the new
1188 registers. This compare isn't copied, so the registers used in it
1189 will never be replaced if it isn't done here. */
1191 if (unroll_type == UNROLL_MODULO)
1193 insn = NEXT_INSN (copy_end);
1194 if (NONJUMP_INSN_P (insn) || JUMP_P (insn))
1195 PATTERN (insn) = remap_split_bivs (loop, PATTERN (insn));
1198 /* For unroll_number times, make a copy of each instruction
1199 between copy_start and copy_end, and insert these new instructions
1200 before the end of the loop. */
1202 for (i = 0; i < unroll_number; i++)
1204 memset (map->insn_map, 0, max_insnno * sizeof (rtx));
1205 memset (&VARRAY_CONST_EQUIV (map->const_equiv_varray, 0), 0,
1206 VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
1207 map->const_age = 0;
1209 for (j = 0; j < max_labelno; j++)
1210 if (local_label[j])
1211 set_label_in_map (map, j, gen_label_rtx ());
1213 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1214 if (local_regno[r])
1216 map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1217 record_base_value (REGNO (map->reg_map[r]),
1218 regno_reg_rtx[r], 0);
1221 /* If loop starts with a branch to the test, then fix it so that
1222 it points to the test of the first unrolled copy of the loop. */
1223 if (i == 0 && loop_start != copy_start)
1225 insn = PREV_INSN (copy_start);
1226 pattern = PATTERN (insn);
1228 tem = get_label_from_map (map,
1229 CODE_LABEL_NUMBER
1230 (XEXP (SET_SRC (pattern), 0)));
1231 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1233 /* Set the jump label so that it can be used by later loop unrolling
1234 passes. */
1235 JUMP_LABEL (insn) = tem;
1236 LABEL_NUSES (tem)++;
1239 copy_loop_body (loop, copy_start, copy_end, map, exit_label,
1240 i == unroll_number - 1, unroll_type, start_label,
1241 loop_end, insert_before, insert_before);
1244 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1245 insn to be deleted. This prevents any runaway delete_insn call from
1246 more insns that it should, as it always stops at a CODE_LABEL. */
1248 /* Delete the compare and branch at the end of the loop if completely
1249 unrolling the loop. Deleting the backward branch at the end also
1250 deletes the code label at the start of the loop. This is done at
1251 the very end to avoid problems with back_branch_in_range_p. */
1253 if (unroll_type == UNROLL_COMPLETELY)
1254 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1255 else
1256 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1258 /* Delete all of the original loop instructions. Don't delete the
1259 LOOP_BEG note, or the first code label in the loop. */
1261 insn = NEXT_INSN (copy_start);
1262 while (insn != safety_label)
1264 /* ??? Don't delete named code labels. They will be deleted when the
1265 jump that references them is deleted. Otherwise, we end up deleting
1266 them twice, which causes them to completely disappear instead of turn
1267 into NOTE_INSN_DELETED_LABEL notes. This in turn causes aborts in
1268 dwarfout.c/dwarf2out.c. We could perhaps fix the dwarf*out.c files
1269 to handle deleted labels instead. Or perhaps fix DECL_RTL of the
1270 associated LABEL_DECL to point to one of the new label instances. */
1271 /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note. */
1272 if (insn != start_label
1273 && ! (LABEL_P (insn) && LABEL_NAME (insn))
1274 && ! (NOTE_P (insn)
1275 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
1276 insn = delete_related_insns (insn);
1277 else
1278 insn = NEXT_INSN (insn);
1281 /* Can now delete the 'safety' label emitted to protect us from runaway
1282 delete_related_insns calls. */
1283 if (INSN_DELETED_P (safety_label))
1284 abort ();
1285 delete_related_insns (safety_label);
1287 /* If exit_label exists, emit it after the loop. Doing the emit here
1288 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1289 This is needed so that mostly_true_jump in reorg.c will treat jumps
1290 to this loop end label correctly, i.e. predict that they are usually
1291 not taken. */
1292 if (exit_label)
1293 emit_label_after (exit_label, loop_end);
1295 egress:
1296 if (unroll_type == UNROLL_COMPLETELY)
1298 /* Remove the loop notes since this is no longer a loop. */
1299 if (loop->vtop)
1300 delete_related_insns (loop->vtop);
1301 if (loop->cont)
1302 delete_related_insns (loop->cont);
1303 if (loop_start)
1304 delete_related_insns (loop_start);
1305 if (loop_end)
1306 delete_related_insns (loop_end);
1309 if (map->const_equiv_varray)
1310 VARRAY_FREE (map->const_equiv_varray);
1311 if (map->label_map)
1313 free (map->label_map);
1314 free (local_label);
1316 free (map->insn_map);
1317 free (splittable_regs);
1318 free (splittable_regs_updates);
1319 free (addr_combined_regs);
1320 free (local_regno);
1321 if (map->reg_map)
1322 free (map->reg_map);
1323 free (map);
1326 /* A helper function for unroll_loop. Emit a compare and branch to
1327 satisfy (CMP OP1 OP2), but pass this through the simplifier first.
1328 If the branch turned out to be conditional, return it, otherwise
1329 return NULL. */
1331 static rtx
1332 simplify_cmp_and_jump_insns (enum rtx_code code, enum machine_mode mode,
1333 rtx op0, rtx op1, rtx label)
1335 rtx t, insn;
1337 t = simplify_const_relational_operation (code, mode, op0, op1);
1338 if (!t)
1340 enum rtx_code scode = signed_condition (code);
1341 emit_cmp_and_jump_insns (op0, op1, scode, NULL_RTX, mode,
1342 code != scode, label);
1343 insn = get_last_insn ();
1345 JUMP_LABEL (insn) = label;
1346 LABEL_NUSES (label) += 1;
1348 return insn;
1350 else if (t == const_true_rtx)
1352 insn = emit_jump_insn (gen_jump (label));
1353 emit_barrier ();
1354 JUMP_LABEL (insn) = label;
1355 LABEL_NUSES (label) += 1;
1358 return NULL_RTX;
1361 /* Return true if the loop can be safely, and profitably, preconditioned
1362 so that the unrolled copies of the loop body don't need exit tests.
1364 This only works if final_value, initial_value and increment can be
1365 determined, and if increment is a constant power of 2.
1366 If increment is not a power of 2, then the preconditioning modulo
1367 operation would require a real modulo instead of a boolean AND, and this
1368 is not considered `profitable'. */
1370 /* ??? If the loop is known to be executed very many times, or the machine
1371 has a very cheap divide instruction, then preconditioning is a win even
1372 when the increment is not a power of 2. Use RTX_COST to compute
1373 whether divide is cheap.
1374 ??? A divide by constant doesn't actually need a divide, look at
1375 expand_divmod. The reduced cost of this optimized modulo is not
1376 reflected in RTX_COST. */
1379 precondition_loop_p (const struct loop *loop, rtx *initial_value,
1380 rtx *final_value, rtx *increment,
1381 enum machine_mode *mode)
1383 rtx loop_start = loop->start;
1384 struct loop_info *loop_info = LOOP_INFO (loop);
1386 if (loop_info->n_iterations > 0)
1388 if (INTVAL (loop_info->increment) > 0)
1390 *initial_value = const0_rtx;
1391 *increment = const1_rtx;
1392 *final_value = GEN_INT (loop_info->n_iterations);
1394 else
1396 *initial_value = GEN_INT (loop_info->n_iterations);
1397 *increment = constm1_rtx;
1398 *final_value = const0_rtx;
1400 *mode = word_mode;
1402 if (loop_dump_stream)
1403 fprintf (loop_dump_stream,
1404 "Preconditioning: Success, number of iterations known, "
1405 HOST_WIDE_INT_PRINT_DEC ".\n",
1406 loop_info->n_iterations);
1407 return 1;
1410 if (loop_info->iteration_var == 0)
1412 if (loop_dump_stream)
1413 fprintf (loop_dump_stream,
1414 "Preconditioning: Could not find iteration variable.\n");
1415 return 0;
1417 else if (loop_info->initial_value == 0)
1419 if (loop_dump_stream)
1420 fprintf (loop_dump_stream,
1421 "Preconditioning: Could not find initial value.\n");
1422 return 0;
1424 else if (loop_info->increment == 0)
1426 if (loop_dump_stream)
1427 fprintf (loop_dump_stream,
1428 "Preconditioning: Could not find increment value.\n");
1429 return 0;
1431 else if (GET_CODE (loop_info->increment) != CONST_INT)
1433 if (loop_dump_stream)
1434 fprintf (loop_dump_stream,
1435 "Preconditioning: Increment not a constant.\n");
1436 return 0;
1438 else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1439 && (exact_log2 (-INTVAL (loop_info->increment)) < 0))
1441 if (loop_dump_stream)
1442 fprintf (loop_dump_stream,
1443 "Preconditioning: Increment not a constant power of 2.\n");
1444 return 0;
1447 /* Unsigned_compare and compare_dir can be ignored here, since they do
1448 not matter for preconditioning. */
1450 if (loop_info->final_value == 0)
1452 if (loop_dump_stream)
1453 fprintf (loop_dump_stream,
1454 "Preconditioning: EQ comparison loop.\n");
1455 return 0;
1458 /* Must ensure that final_value is invariant, so call
1459 loop_invariant_p to check. Before doing so, must check regno
1460 against max_reg_before_loop to make sure that the register is in
1461 the range covered by loop_invariant_p. If it isn't, then it is
1462 most likely a biv/giv which by definition are not invariant. */
1463 if ((REG_P (loop_info->final_value)
1464 && REGNO (loop_info->final_value) >= max_reg_before_loop)
1465 || (GET_CODE (loop_info->final_value) == PLUS
1466 && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1467 || ! loop_invariant_p (loop, loop_info->final_value))
1469 if (loop_dump_stream)
1470 fprintf (loop_dump_stream,
1471 "Preconditioning: Final value not invariant.\n");
1472 return 0;
1475 /* Fail for floating point values, since the caller of this function
1476 does not have code to deal with them. */
1477 if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1478 || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1480 if (loop_dump_stream)
1481 fprintf (loop_dump_stream,
1482 "Preconditioning: Floating point final or initial value.\n");
1483 return 0;
1486 /* Fail if loop_info->iteration_var is not live before loop_start,
1487 since we need to test its value in the preconditioning code. */
1489 if (REGNO_FIRST_LUID (REGNO (loop_info->iteration_var))
1490 > INSN_LUID (loop_start))
1492 if (loop_dump_stream)
1493 fprintf (loop_dump_stream,
1494 "Preconditioning: Iteration var not live before loop start.\n");
1495 return 0;
1498 /* Note that loop_iterations biases the initial value for GIV iterators
1499 such as "while (i-- > 0)" so that we can calculate the number of
1500 iterations just like for BIV iterators.
1502 Also note that the absolute values of initial_value and
1503 final_value are unimportant as only their difference is used for
1504 calculating the number of loop iterations. */
1505 *initial_value = loop_info->initial_value;
1506 *increment = loop_info->increment;
1507 *final_value = loop_info->final_value;
1509 /* Decide what mode to do these calculations in. Choose the larger
1510 of final_value's mode and initial_value's mode, or a full-word if
1511 both are constants. */
1512 *mode = GET_MODE (*final_value);
1513 if (*mode == VOIDmode)
1515 *mode = GET_MODE (*initial_value);
1516 if (*mode == VOIDmode)
1517 *mode = word_mode;
1519 else if (*mode != GET_MODE (*initial_value)
1520 && (GET_MODE_SIZE (*mode)
1521 < GET_MODE_SIZE (GET_MODE (*initial_value))))
1522 *mode = GET_MODE (*initial_value);
1524 /* Success! */
1525 if (loop_dump_stream)
1526 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1527 return 1;
1530 /* All pseudo-registers must be mapped to themselves. Two hard registers
1531 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1532 REGNUM, to avoid function-inlining specific conversions of these
1533 registers. All other hard regs can not be mapped because they may be
1534 used with different
1535 modes. */
1537 static void
1538 init_reg_map (struct inline_remap *map, int maxregnum)
1540 int i;
1542 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1543 map->reg_map[i] = regno_reg_rtx[i];
1544 /* Just clear the rest of the entries. */
1545 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1546 map->reg_map[i] = 0;
1548 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1549 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1550 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1551 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1554 /* Strength-reduction will often emit code for optimized biv/givs which
1555 calculates their value in a temporary register, and then copies the result
1556 to the iv. This procedure reconstructs the pattern computing the iv;
1557 verifying that all operands are of the proper form.
1559 PATTERN must be the result of single_set.
1560 The return value is the amount that the giv is incremented by. */
1562 static rtx
1563 calculate_giv_inc (rtx pattern, rtx src_insn, unsigned int regno)
1565 rtx increment;
1566 rtx increment_total = 0;
1567 int tries = 0;
1569 retry:
1570 /* Verify that we have an increment insn here. First check for a plus
1571 as the set source. */
1572 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1574 /* SR sometimes computes the new giv value in a temp, then copies it
1575 to the new_reg. */
1576 src_insn = PREV_INSN (src_insn);
1577 pattern = single_set (src_insn);
1578 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1579 abort ();
1581 /* The last insn emitted is not needed, so delete it to avoid confusing
1582 the second cse pass. This insn sets the giv unnecessarily. */
1583 delete_related_insns (get_last_insn ());
1586 /* Verify that we have a constant as the second operand of the plus. */
1587 increment = XEXP (SET_SRC (pattern), 1);
1588 if (GET_CODE (increment) != CONST_INT)
1590 /* SR sometimes puts the constant in a register, especially if it is
1591 too big to be an add immed operand. */
1592 increment = find_last_value (increment, &src_insn, NULL_RTX, 0);
1594 /* SR may have used LO_SUM to compute the constant if it is too large
1595 for a load immed operand. In this case, the constant is in operand
1596 one of the LO_SUM rtx. */
1597 if (GET_CODE (increment) == LO_SUM)
1598 increment = XEXP (increment, 1);
1600 /* Some ports store large constants in memory and add a REG_EQUAL
1601 note to the store insn. */
1602 else if (MEM_P (increment))
1604 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1605 if (note)
1606 increment = XEXP (note, 0);
1609 else if (GET_CODE (increment) == IOR
1610 || GET_CODE (increment) == PLUS
1611 || GET_CODE (increment) == ASHIFT
1612 || GET_CODE (increment) == LSHIFTRT)
1614 /* The rs6000 port loads some constants with IOR.
1615 The alpha port loads some constants with ASHIFT and PLUS.
1616 The sparc64 port loads some constants with LSHIFTRT. */
1617 rtx second_part = XEXP (increment, 1);
1618 enum rtx_code code = GET_CODE (increment);
1620 increment = find_last_value (XEXP (increment, 0),
1621 &src_insn, NULL_RTX, 0);
1622 /* Don't need the last insn anymore. */
1623 delete_related_insns (get_last_insn ());
1625 if (GET_CODE (second_part) != CONST_INT
1626 || GET_CODE (increment) != CONST_INT)
1627 abort ();
1629 if (code == IOR)
1630 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1631 else if (code == PLUS)
1632 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1633 else if (code == ASHIFT)
1634 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1635 else
1636 increment = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (increment) >> INTVAL (second_part));
1639 if (GET_CODE (increment) != CONST_INT)
1640 abort ();
1642 /* The insn loading the constant into a register is no longer needed,
1643 so delete it. */
1644 delete_related_insns (get_last_insn ());
1647 if (increment_total)
1648 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1649 else
1650 increment_total = increment;
1652 /* Check that the source register is the same as the register we expected
1653 to see as the source. If not, something is seriously wrong. */
1654 if (!REG_P (XEXP (SET_SRC (pattern), 0))
1655 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1657 /* Some machines (e.g. the romp), may emit two add instructions for
1658 certain constants, so lets try looking for another add immediately
1659 before this one if we have only seen one add insn so far. */
1661 if (tries == 0)
1663 tries++;
1665 src_insn = PREV_INSN (src_insn);
1666 pattern = single_set (src_insn);
1668 delete_related_insns (get_last_insn ());
1670 goto retry;
1673 abort ();
1676 return increment_total;
1679 /* Copy REG_NOTES, except for insn references, because not all insn_map
1680 entries are valid yet. We do need to copy registers now though, because
1681 the reg_map entries can change during copying. */
1683 static rtx
1684 initial_reg_note_copy (rtx notes, struct inline_remap *map)
1686 rtx copy;
1688 if (notes == 0)
1689 return 0;
1691 copy = rtx_alloc (GET_CODE (notes));
1692 PUT_REG_NOTE_KIND (copy, REG_NOTE_KIND (notes));
1694 if (GET_CODE (notes) == EXPR_LIST)
1695 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
1696 else if (GET_CODE (notes) == INSN_LIST)
1697 /* Don't substitute for these yet. */
1698 XEXP (copy, 0) = copy_rtx (XEXP (notes, 0));
1699 else
1700 abort ();
1702 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1704 return copy;
1707 /* Fixup insn references in copied REG_NOTES. */
1709 static void
1710 final_reg_note_copy (rtx *notesp, struct inline_remap *map)
1712 while (*notesp)
1714 rtx note = *notesp;
1716 if (GET_CODE (note) == INSN_LIST)
1718 rtx insn = map->insn_map[INSN_UID (XEXP (note, 0))];
1720 /* If we failed to remap the note, something is awry.
1721 Allow REG_LABEL as it may reference label outside
1722 the unrolled loop. */
1723 if (!insn)
1725 if (REG_NOTE_KIND (note) != REG_LABEL)
1726 abort ();
1728 else
1729 XEXP (note, 0) = insn;
1732 notesp = &XEXP (note, 1);
1736 /* Copy each instruction in the loop, substituting from map as appropriate.
1737 This is very similar to a loop in expand_inline_function. */
1739 static void
1740 copy_loop_body (struct loop *loop, rtx copy_start, rtx copy_end,
1741 struct inline_remap *map, rtx exit_label,
1742 int last_iteration, enum unroll_types unroll_type,
1743 rtx start_label, rtx loop_end, rtx insert_before,
1744 rtx copy_notes_from)
1746 struct loop_ivs *ivs = LOOP_IVS (loop);
1747 rtx insn, pattern;
1748 rtx set, tem, copy = NULL_RTX;
1749 int dest_reg_was_split, i;
1750 #ifdef HAVE_cc0
1751 rtx cc0_insn = 0;
1752 #endif
1753 rtx final_label = 0;
1754 rtx giv_inc, giv_dest_reg, giv_src_reg;
1756 /* If this isn't the last iteration, then map any references to the
1757 start_label to final_label. Final label will then be emitted immediately
1758 after the end of this loop body if it was ever used.
1760 If this is the last iteration, then map references to the start_label
1761 to itself. */
1762 if (! last_iteration)
1764 final_label = gen_label_rtx ();
1765 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), final_label);
1767 else
1768 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1770 start_sequence ();
1772 insn = copy_start;
1775 insn = NEXT_INSN (insn);
1777 map->orig_asm_operands_vector = 0;
1779 switch (GET_CODE (insn))
1781 case INSN:
1782 pattern = PATTERN (insn);
1783 copy = 0;
1784 giv_inc = 0;
1786 /* Check to see if this is a giv that has been combined with
1787 some split address givs. (Combined in the sense that
1788 `combine_givs' in loop.c has put two givs in the same register.)
1789 In this case, we must search all givs based on the same biv to
1790 find the address givs. Then split the address givs.
1791 Do this before splitting the giv, since that may map the
1792 SET_DEST to a new register. */
1794 if ((set = single_set (insn))
1795 && REG_P (SET_DEST (set))
1796 && addr_combined_regs[REGNO (SET_DEST (set))])
1798 struct iv_class *bl;
1799 struct induction *v, *tv;
1800 unsigned int regno = REGNO (SET_DEST (set));
1802 v = addr_combined_regs[REGNO (SET_DEST (set))];
1803 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
1805 /* Although the giv_inc amount is not needed here, we must call
1806 calculate_giv_inc here since it might try to delete the
1807 last insn emitted. If we wait until later to call it,
1808 we might accidentally delete insns generated immediately
1809 below by emit_unrolled_add. */
1811 giv_inc = calculate_giv_inc (set, insn, regno);
1813 /* Now find all address giv's that were combined with this
1814 giv 'v'. */
1815 for (tv = bl->giv; tv; tv = tv->next_iv)
1816 if (tv->giv_type == DEST_ADDR && tv->same == v)
1818 int this_giv_inc;
1820 /* If this DEST_ADDR giv was not split, then ignore it. */
1821 if (*tv->location != tv->dest_reg)
1822 continue;
1824 /* Scale this_giv_inc if the multiplicative factors of
1825 the two givs are different. */
1826 this_giv_inc = INTVAL (giv_inc);
1827 if (tv->mult_val != v->mult_val)
1828 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1829 * INTVAL (tv->mult_val));
1831 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1832 *tv->location = tv->dest_reg;
1834 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1836 /* Must emit an insn to increment the split address
1837 giv. Add in the const_adjust field in case there
1838 was a constant eliminated from the address. */
1839 rtx value, dest_reg;
1841 /* tv->dest_reg will be either a bare register,
1842 or else a register plus a constant. */
1843 if (REG_P (tv->dest_reg))
1844 dest_reg = tv->dest_reg;
1845 else
1846 dest_reg = XEXP (tv->dest_reg, 0);
1848 /* Check for shared address givs, and avoid
1849 incrementing the shared pseudo reg more than
1850 once. */
1851 if (! tv->same_insn && ! tv->shared)
1853 /* tv->dest_reg may actually be a (PLUS (REG)
1854 (CONST)) here, so we must call plus_constant
1855 to add the const_adjust amount before calling
1856 emit_unrolled_add below. */
1857 value = plus_constant (tv->dest_reg,
1858 tv->const_adjust);
1860 if (GET_CODE (value) == PLUS)
1862 /* The constant could be too large for an add
1863 immediate, so can't directly emit an insn
1864 here. */
1865 emit_unrolled_add (dest_reg, XEXP (value, 0),
1866 XEXP (value, 1));
1870 /* Reset the giv to be just the register again, in case
1871 it is used after the set we have just emitted.
1872 We must subtract the const_adjust factor added in
1873 above. */
1874 tv->dest_reg = plus_constant (dest_reg,
1875 -tv->const_adjust);
1876 *tv->location = tv->dest_reg;
1881 /* If this is a setting of a splittable variable, then determine
1882 how to split the variable, create a new set based on this split,
1883 and set up the reg_map so that later uses of the variable will
1884 use the new split variable. */
1886 dest_reg_was_split = 0;
1888 if ((set = single_set (insn))
1889 && REG_P (SET_DEST (set))
1890 && splittable_regs[REGNO (SET_DEST (set))])
1892 unsigned int regno = REGNO (SET_DEST (set));
1893 unsigned int src_regno;
1895 dest_reg_was_split = 1;
1897 giv_dest_reg = SET_DEST (set);
1898 giv_src_reg = giv_dest_reg;
1899 /* Compute the increment value for the giv, if it wasn't
1900 already computed above. */
1901 if (giv_inc == 0)
1902 giv_inc = calculate_giv_inc (set, insn, regno);
1904 src_regno = REGNO (giv_src_reg);
1906 if (unroll_type == UNROLL_COMPLETELY)
1908 /* Completely unrolling the loop. Set the induction
1909 variable to a known constant value. */
1911 /* The value in splittable_regs may be an invariant
1912 value, so we must use plus_constant here. */
1913 splittable_regs[regno]
1914 = plus_constant (splittable_regs[src_regno],
1915 INTVAL (giv_inc));
1917 if (GET_CODE (splittable_regs[regno]) == PLUS)
1919 giv_src_reg = XEXP (splittable_regs[regno], 0);
1920 giv_inc = XEXP (splittable_regs[regno], 1);
1922 else
1924 /* The splittable_regs value must be a REG or a
1925 CONST_INT, so put the entire value in the giv_src_reg
1926 variable. */
1927 giv_src_reg = splittable_regs[regno];
1928 giv_inc = const0_rtx;
1931 else
1933 /* Partially unrolling loop. Create a new pseudo
1934 register for the iteration variable, and set it to
1935 be a constant plus the original register. Except
1936 on the last iteration, when the result has to
1937 go back into the original iteration var register. */
1939 /* Handle bivs which must be mapped to a new register
1940 when split. This happens for bivs which need their
1941 final value set before loop entry. The new register
1942 for the biv was stored in the biv's first struct
1943 induction entry by find_splittable_regs. */
1945 if (regno < ivs->n_regs
1946 && REG_IV_TYPE (ivs, regno) == BASIC_INDUCT)
1948 giv_src_reg = REG_IV_CLASS (ivs, regno)->biv->src_reg;
1949 giv_dest_reg = giv_src_reg;
1952 #if 0
1953 /* If non-reduced/final-value givs were split, then
1954 this would have to remap those givs also. See
1955 find_splittable_regs. */
1956 #endif
1958 splittable_regs[regno]
1959 = simplify_gen_binary (PLUS, GET_MODE (giv_src_reg),
1960 giv_inc,
1961 splittable_regs[src_regno]);
1962 giv_inc = splittable_regs[regno];
1964 /* Now split the induction variable by changing the dest
1965 of this insn to a new register, and setting its
1966 reg_map entry to point to this new register.
1968 If this is the last iteration, and this is the last insn
1969 that will update the iv, then reuse the original dest,
1970 to ensure that the iv will have the proper value when
1971 the loop exits or repeats.
1973 Using splittable_regs_updates here like this is safe,
1974 because it can only be greater than one if all
1975 instructions modifying the iv are always executed in
1976 order. */
1978 if (! last_iteration
1979 || (splittable_regs_updates[regno]-- != 1))
1981 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1982 giv_dest_reg = tem;
1983 map->reg_map[regno] = tem;
1984 record_base_value (REGNO (tem),
1985 giv_inc == const0_rtx
1986 ? giv_src_reg
1987 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
1988 giv_src_reg, giv_inc),
1991 else
1992 map->reg_map[regno] = giv_src_reg;
1995 /* The constant being added could be too large for an add
1996 immediate, so can't directly emit an insn here. */
1997 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1998 copy = get_last_insn ();
1999 pattern = PATTERN (copy);
2001 else
2003 pattern = copy_rtx_and_substitute (pattern, map, 0);
2004 copy = emit_insn (pattern);
2006 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2007 INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
2009 /* If there is a REG_EQUAL note present whose value
2010 is not loop invariant, then delete it, since it
2011 may cause problems with later optimization passes. */
2012 if ((tem = find_reg_note (copy, REG_EQUAL, NULL_RTX))
2013 && !loop_invariant_p (loop, XEXP (tem, 0)))
2014 remove_note (copy, tem);
2016 #ifdef HAVE_cc0
2017 /* If this insn is setting CC0, it may need to look at
2018 the insn that uses CC0 to see what type of insn it is.
2019 In that case, the call to recog via validate_change will
2020 fail. So don't substitute constants here. Instead,
2021 do it when we emit the following insn.
2023 For example, see the pyr.md file. That machine has signed and
2024 unsigned compares. The compare patterns must check the
2025 following branch insn to see which what kind of compare to
2026 emit.
2028 If the previous insn set CC0, substitute constants on it as
2029 well. */
2030 if (sets_cc0_p (PATTERN (copy)) != 0)
2031 cc0_insn = copy;
2032 else
2034 if (cc0_insn)
2035 try_constants (cc0_insn, map);
2036 cc0_insn = 0;
2037 try_constants (copy, map);
2039 #else
2040 try_constants (copy, map);
2041 #endif
2043 /* Make split induction variable constants `permanent' since we
2044 know there are no backward branches across iteration variable
2045 settings which would invalidate this. */
2046 if (dest_reg_was_split)
2048 int regno = REGNO (SET_DEST (set));
2050 if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
2051 && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2052 == map->const_age))
2053 VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
2055 break;
2057 case JUMP_INSN:
2058 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2059 copy = emit_jump_insn (pattern);
2060 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2061 INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
2063 if (JUMP_LABEL (insn))
2065 JUMP_LABEL (copy) = get_label_from_map (map,
2066 CODE_LABEL_NUMBER
2067 (JUMP_LABEL (insn)));
2068 LABEL_NUSES (JUMP_LABEL (copy))++;
2070 if (JUMP_LABEL (insn) == start_label && insn == copy_end
2071 && ! last_iteration)
2074 /* This is a branch to the beginning of the loop; this is the
2075 last insn being copied; and this is not the last iteration.
2076 In this case, we want to change the original fall through
2077 case to be a branch past the end of the loop, and the
2078 original jump label case to fall_through. */
2080 if (!invert_jump (copy, exit_label, 0))
2082 rtx jmp;
2083 rtx lab = gen_label_rtx ();
2084 /* Can't do it by reversing the jump (probably because we
2085 couldn't reverse the conditions), so emit a new
2086 jump_insn after COPY, and redirect the jump around
2087 that. */
2088 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
2089 JUMP_LABEL (jmp) = exit_label;
2090 LABEL_NUSES (exit_label)++;
2091 jmp = emit_barrier_after (jmp);
2092 emit_label_after (lab, jmp);
2093 LABEL_NUSES (lab) = 0;
2094 if (!redirect_jump (copy, lab, 0))
2095 abort ();
2099 #ifdef HAVE_cc0
2100 if (cc0_insn)
2101 try_constants (cc0_insn, map);
2102 cc0_insn = 0;
2103 #endif
2104 try_constants (copy, map);
2106 /* Set the jump label of COPY correctly to avoid problems with
2107 later passes of unroll_loop, if INSN had jump label set. */
2108 if (JUMP_LABEL (insn))
2110 rtx label = 0;
2112 /* Can't use the label_map for every insn, since this may be
2113 the backward branch, and hence the label was not mapped. */
2114 if ((set = single_set (copy)))
2116 tem = SET_SRC (set);
2117 if (GET_CODE (tem) == LABEL_REF)
2118 label = XEXP (tem, 0);
2119 else if (GET_CODE (tem) == IF_THEN_ELSE)
2121 if (XEXP (tem, 1) != pc_rtx)
2122 label = XEXP (XEXP (tem, 1), 0);
2123 else
2124 label = XEXP (XEXP (tem, 2), 0);
2128 if (label && LABEL_P (label))
2129 JUMP_LABEL (copy) = label;
2130 else
2132 /* An unrecognizable jump insn, probably the entry jump
2133 for a switch statement. This label must have been mapped,
2134 so just use the label_map to get the new jump label. */
2135 JUMP_LABEL (copy)
2136 = get_label_from_map (map,
2137 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2140 /* If this is a non-local jump, then must increase the label
2141 use count so that the label will not be deleted when the
2142 original jump is deleted. */
2143 LABEL_NUSES (JUMP_LABEL (copy))++;
2145 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2146 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2148 rtx pat = PATTERN (copy);
2149 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2150 int len = XVECLEN (pat, diff_vec_p);
2151 int i;
2153 for (i = 0; i < len; i++)
2154 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2157 /* If this used to be a conditional jump insn but whose branch
2158 direction is now known, we must do something special. */
2159 if (any_condjump_p (insn) && onlyjump_p (insn) && map->last_pc_value)
2161 #ifdef HAVE_cc0
2162 /* If the previous insn set cc0 for us, delete it. */
2163 if (only_sets_cc0_p (PREV_INSN (copy)))
2164 delete_related_insns (PREV_INSN (copy));
2165 #endif
2167 /* If this is now a no-op, delete it. */
2168 if (map->last_pc_value == pc_rtx)
2170 delete_insn (copy);
2171 copy = 0;
2173 else
2174 /* Otherwise, this is unconditional jump so we must put a
2175 BARRIER after it. We could do some dead code elimination
2176 here, but jump.c will do it just as well. */
2177 emit_barrier ();
2179 break;
2181 case CALL_INSN:
2182 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2183 copy = emit_call_insn (pattern);
2184 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2185 INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
2186 SIBLING_CALL_P (copy) = SIBLING_CALL_P (insn);
2187 CONST_OR_PURE_CALL_P (copy) = CONST_OR_PURE_CALL_P (insn);
2189 /* Because the USAGE information potentially contains objects other
2190 than hard registers, we need to copy it. */
2191 CALL_INSN_FUNCTION_USAGE (copy)
2192 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2193 map, 0);
2195 #ifdef HAVE_cc0
2196 if (cc0_insn)
2197 try_constants (cc0_insn, map);
2198 cc0_insn = 0;
2199 #endif
2200 try_constants (copy, map);
2202 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2203 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2204 VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
2205 break;
2207 case CODE_LABEL:
2208 /* If this is the loop start label, then we don't need to emit a
2209 copy of this label since no one will use it. */
2211 if (insn != start_label)
2213 copy = emit_label (get_label_from_map (map,
2214 CODE_LABEL_NUMBER (insn)));
2215 map->const_age++;
2217 break;
2219 case BARRIER:
2220 copy = emit_barrier ();
2221 break;
2223 case NOTE:
2224 /* VTOP and CONT notes are valid only before the loop exit test.
2225 If placed anywhere else, loop may generate bad code. */
2226 /* BASIC_BLOCK notes exist to stabilize basic block structures with
2227 the associated rtl. We do not want to share the structure in
2228 this new block. */
2230 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2231 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED_LABEL
2232 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2233 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2234 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2235 || (last_iteration
2236 && unroll_type != UNROLL_COMPLETELY)))
2237 copy = emit_note_copy (insn);
2238 else
2239 copy = 0;
2240 break;
2242 default:
2243 abort ();
2246 map->insn_map[INSN_UID (insn)] = copy;
2248 while (insn != copy_end);
2250 /* Now finish coping the REG_NOTES. */
2251 insn = copy_start;
2254 insn = NEXT_INSN (insn);
2255 if (INSN_P (insn)
2256 && map->insn_map[INSN_UID (insn)])
2257 final_reg_note_copy (&REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2259 while (insn != copy_end);
2261 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2262 each of these notes here, since there may be some important ones, such as
2263 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2264 iteration, because the original notes won't be deleted.
2266 We can't use insert_before here, because when from preconditioning,
2267 insert_before points before the loop. We can't use copy_end, because
2268 there may be insns already inserted after it (which we don't want to
2269 copy) when not from preconditioning code. */
2271 if (! last_iteration)
2273 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2275 /* VTOP notes are valid only before the loop exit test.
2276 If placed anywhere else, loop may generate bad code.
2277 Although COPY_NOTES_FROM will be at most one or two (for cc0)
2278 instructions before the last insn in the loop, COPY_NOTES_FROM
2279 can be a NOTE_INSN_LOOP_CONT note if there is no VTOP note,
2280 as in a do .. while loop. */
2281 if (NOTE_P (insn)
2282 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2283 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2284 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2285 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)))
2286 emit_note_copy (insn);
2290 if (final_label && LABEL_NUSES (final_label) > 0)
2291 emit_label (final_label);
2293 tem = get_insns ();
2294 end_sequence ();
2295 loop_insn_emit_before (loop, 0, insert_before, tem);
2298 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2299 emitted. This will correctly handle the case where the increment value
2300 won't fit in the immediate field of a PLUS insns. */
2302 void
2303 emit_unrolled_add (rtx dest_reg, rtx src_reg, rtx increment)
2305 rtx result;
2307 result = expand_simple_binop (GET_MODE (dest_reg), PLUS, src_reg, increment,
2308 dest_reg, 0, OPTAB_LIB_WIDEN);
2310 if (dest_reg != result)
2311 emit_move_insn (dest_reg, result);
2314 /* Searches the insns between INSN and LOOP->END. Returns 1 if there
2315 is a backward branch in that range that branches to somewhere between
2316 LOOP->START and INSN. Returns 0 otherwise. */
2318 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2319 In practice, this is not a problem, because this function is seldom called,
2320 and uses a negligible amount of CPU time on average. */
2323 back_branch_in_range_p (const struct loop *loop, rtx insn)
2325 rtx p, q, target_insn;
2326 rtx loop_start = loop->start;
2327 rtx loop_end = loop->end;
2328 rtx orig_loop_end = loop->end;
2330 /* Stop before we get to the backward branch at the end of the loop. */
2331 loop_end = prev_nonnote_insn (loop_end);
2332 if (BARRIER_P (loop_end))
2333 loop_end = PREV_INSN (loop_end);
2335 /* Check in case insn has been deleted, search forward for first non
2336 deleted insn following it. */
2337 while (INSN_DELETED_P (insn))
2338 insn = NEXT_INSN (insn);
2340 /* Check for the case where insn is the last insn in the loop. Deal
2341 with the case where INSN was a deleted loop test insn, in which case
2342 it will now be the NOTE_LOOP_END. */
2343 if (insn == loop_end || insn == orig_loop_end)
2344 return 0;
2346 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2348 if (JUMP_P (p))
2350 target_insn = JUMP_LABEL (p);
2352 /* Search from loop_start to insn, to see if one of them is
2353 the target_insn. We can't use INSN_LUID comparisons here,
2354 since insn may not have an LUID entry. */
2355 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2356 if (q == target_insn)
2357 return 1;
2361 return 0;
2364 /* Try to generate the simplest rtx for the expression
2365 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2366 value of giv's. */
2368 static rtx
2369 fold_rtx_mult_add (rtx mult1, rtx mult2, rtx add1, enum machine_mode mode)
2371 rtx temp, mult_res;
2372 rtx result;
2374 /* The modes must all be the same. This should always be true. For now,
2375 check to make sure. */
2376 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2377 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2378 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2379 abort ();
2381 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2382 will be a constant. */
2383 if (GET_CODE (mult1) == CONST_INT)
2385 temp = mult2;
2386 mult2 = mult1;
2387 mult1 = temp;
2390 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2391 if (! mult_res)
2392 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2394 /* Again, put the constant second. */
2395 if (GET_CODE (add1) == CONST_INT)
2397 temp = add1;
2398 add1 = mult_res;
2399 mult_res = temp;
2402 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2403 if (! result)
2404 result = gen_rtx_PLUS (mode, add1, mult_res);
2406 return result;
2409 /* Searches the list of induction struct's for the biv BL, to try to calculate
2410 the total increment value for one iteration of the loop as a constant.
2412 Returns the increment value as an rtx, simplified as much as possible,
2413 if it can be calculated. Otherwise, returns 0. */
2416 biv_total_increment (const struct iv_class *bl)
2418 struct induction *v;
2419 rtx result;
2421 /* For increment, must check every instruction that sets it. Each
2422 instruction must be executed only once each time through the loop.
2423 To verify this, we check that the insn is always executed, and that
2424 there are no backward branches after the insn that branch to before it.
2425 Also, the insn must have a mult_val of one (to make sure it really is
2426 an increment). */
2428 result = const0_rtx;
2429 for (v = bl->biv; v; v = v->next_iv)
2431 if (v->always_computable && v->mult_val == const1_rtx
2432 && ! v->maybe_multiple
2433 && SCALAR_INT_MODE_P (v->mode))
2435 /* If we have already counted it, skip it. */
2436 if (v->same)
2437 continue;
2439 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2441 else
2442 return 0;
2445 return result;
2448 /* For each biv and giv, determine whether it can be safely split into
2449 a different variable for each unrolled copy of the loop body. If it
2450 is safe to split, then indicate that by saving some useful info
2451 in the splittable_regs array.
2453 If the loop is being completely unrolled, then splittable_regs will hold
2454 the current value of the induction variable while the loop is unrolled.
2455 It must be set to the initial value of the induction variable here.
2456 Otherwise, splittable_regs will hold the difference between the current
2457 value of the induction variable and the value the induction variable had
2458 at the top of the loop. It must be set to the value 0 here.
2460 Returns the total number of instructions that set registers that are
2461 splittable. */
2463 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2464 constant values are unnecessary, since we can easily calculate increment
2465 values in this case even if nothing is constant. The increment value
2466 should not involve a multiply however. */
2468 /* ?? Even if the biv/giv increment values aren't constant, it may still
2469 be beneficial to split the variable if the loop is only unrolled a few
2470 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2472 static int
2473 find_splittable_regs (const struct loop *loop,
2474 enum unroll_types unroll_type, int unroll_number)
2476 struct loop_ivs *ivs = LOOP_IVS (loop);
2477 struct iv_class *bl;
2478 struct induction *v;
2479 rtx increment, tem;
2480 rtx biv_final_value;
2481 int biv_splittable;
2482 int result = 0;
2484 for (bl = ivs->list; bl; bl = bl->next)
2486 /* Biv_total_increment must return a constant value,
2487 otherwise we can not calculate the split values. */
2489 increment = biv_total_increment (bl);
2490 if (! increment || GET_CODE (increment) != CONST_INT)
2491 continue;
2493 /* The loop must be unrolled completely, or else have a known number
2494 of iterations and only one exit, or else the biv must be dead
2495 outside the loop, or else the final value must be known. Otherwise,
2496 it is unsafe to split the biv since it may not have the proper
2497 value on loop exit. */
2499 /* loop_number_exit_count is nonzero if the loop has an exit other than
2500 a fall through at the end. */
2502 biv_splittable = 1;
2503 biv_final_value = 0;
2504 if (unroll_type != UNROLL_COMPLETELY
2505 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2506 && (REGNO_LAST_LUID (bl->regno) >= INSN_LUID (loop->end)
2507 || ! bl->init_insn
2508 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2509 || (REGNO_FIRST_LUID (bl->regno)
2510 < INSN_LUID (bl->init_insn))
2511 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2512 && ! (biv_final_value = final_biv_value (loop, bl)))
2513 biv_splittable = 0;
2515 /* If any of the insns setting the BIV don't do so with a simple
2516 PLUS, we don't know how to split it. */
2517 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2518 if ((tem = single_set (v->insn)) == 0
2519 || !REG_P (SET_DEST (tem))
2520 || REGNO (SET_DEST (tem)) != bl->regno
2521 || GET_CODE (SET_SRC (tem)) != PLUS)
2522 biv_splittable = 0;
2524 /* If final value is nonzero, then must emit an instruction which sets
2525 the value of the biv to the proper value. This is done after
2526 handling all of the givs, since some of them may need to use the
2527 biv's value in their initialization code. */
2529 /* This biv is splittable. If completely unrolling the loop, save
2530 the biv's initial value. Otherwise, save the constant zero. */
2532 if (biv_splittable == 1)
2534 if (unroll_type == UNROLL_COMPLETELY)
2536 /* If the initial value of the biv is itself (i.e. it is too
2537 complicated for strength_reduce to compute), or is a hard
2538 register, or it isn't invariant, then we must create a new
2539 pseudo reg to hold the initial value of the biv. */
2541 if (REG_P (bl->initial_value)
2542 && (REGNO (bl->initial_value) == bl->regno
2543 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2544 || ! loop_invariant_p (loop, bl->initial_value)))
2546 rtx tem = gen_reg_rtx (bl->biv->mode);
2548 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2549 loop_insn_hoist (loop,
2550 gen_move_insn (tem, bl->biv->src_reg));
2552 if (loop_dump_stream)
2553 fprintf (loop_dump_stream,
2554 "Biv %d initial value remapped to %d.\n",
2555 bl->regno, REGNO (tem));
2557 splittable_regs[bl->regno] = tem;
2559 else
2560 splittable_regs[bl->regno] = bl->initial_value;
2562 else
2563 splittable_regs[bl->regno] = const0_rtx;
2565 /* Save the number of instructions that modify the biv, so that
2566 we can treat the last one specially. */
2568 splittable_regs_updates[bl->regno] = bl->biv_count;
2569 result += bl->biv_count;
2571 if (loop_dump_stream)
2572 fprintf (loop_dump_stream,
2573 "Biv %d safe to split.\n", bl->regno);
2576 /* Check every giv that depends on this biv to see whether it is
2577 splittable also. Even if the biv isn't splittable, givs which
2578 depend on it may be splittable if the biv is live outside the
2579 loop, and the givs aren't. */
2581 result += find_splittable_givs (loop, bl, unroll_type, increment,
2582 unroll_number);
2584 /* If final value is nonzero, then must emit an instruction which sets
2585 the value of the biv to the proper value. This is done after
2586 handling all of the givs, since some of them may need to use the
2587 biv's value in their initialization code. */
2588 if (biv_final_value)
2590 /* If the loop has multiple exits, emit the insns before the
2591 loop to ensure that it will always be executed no matter
2592 how the loop exits. Otherwise emit the insn after the loop,
2593 since this is slightly more efficient. */
2594 if (! loop->exit_count)
2595 loop_insn_sink (loop, gen_move_insn (bl->biv->src_reg,
2596 biv_final_value));
2597 else
2599 /* Create a new register to hold the value of the biv, and then
2600 set the biv to its final value before the loop start. The biv
2601 is set to its final value before loop start to ensure that
2602 this insn will always be executed, no matter how the loop
2603 exits. */
2604 rtx tem = gen_reg_rtx (bl->biv->mode);
2605 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2607 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2608 loop_insn_hoist (loop, gen_move_insn (bl->biv->src_reg,
2609 biv_final_value));
2611 if (loop_dump_stream)
2612 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2613 REGNO (bl->biv->src_reg), REGNO (tem));
2615 /* Set up the mapping from the original biv register to the new
2616 register. */
2617 bl->biv->src_reg = tem;
2621 return result;
2624 /* For every giv based on the biv BL, check to determine whether it is
2625 splittable. This is a subroutine to find_splittable_regs ().
2627 Return the number of instructions that set splittable registers. */
2629 static int
2630 find_splittable_givs (const struct loop *loop, struct iv_class *bl,
2631 enum unroll_types unroll_type, rtx increment,
2632 int unroll_number ATTRIBUTE_UNUSED)
2634 struct loop_ivs *ivs = LOOP_IVS (loop);
2635 struct induction *v, *v2;
2636 rtx final_value;
2637 rtx tem;
2638 int result = 0;
2640 /* Scan the list of givs, and set the same_insn field when there are
2641 multiple identical givs in the same insn. */
2642 for (v = bl->giv; v; v = v->next_iv)
2643 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2644 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2645 && ! v2->same_insn)
2646 v2->same_insn = v;
2648 for (v = bl->giv; v; v = v->next_iv)
2650 rtx giv_inc, value;
2652 /* Only split the giv if it has already been reduced, or if the loop is
2653 being completely unrolled. */
2654 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2655 continue;
2657 /* The giv can be split if the insn that sets the giv is executed once
2658 and only once on every iteration of the loop. */
2659 /* An address giv can always be split. v->insn is just a use not a set,
2660 and hence it does not matter whether it is always executed. All that
2661 matters is that all the biv increments are always executed, and we
2662 won't reach here if they aren't. */
2663 if (v->giv_type != DEST_ADDR
2664 && (! v->always_computable
2665 || back_branch_in_range_p (loop, v->insn)))
2666 continue;
2668 /* The giv increment value must be a constant. */
2669 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2670 v->mode);
2671 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2672 continue;
2674 /* The loop must be unrolled completely, or else have a known number of
2675 iterations and only one exit, or else the giv must be dead outside
2676 the loop, or else the final value of the giv must be known.
2677 Otherwise, it is not safe to split the giv since it may not have the
2678 proper value on loop exit. */
2680 /* The used outside loop test will fail for DEST_ADDR givs. They are
2681 never used outside the loop anyways, so it is always safe to split a
2682 DEST_ADDR giv. */
2684 final_value = 0;
2685 if (unroll_type != UNROLL_COMPLETELY
2686 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2687 && v->giv_type != DEST_ADDR
2688 /* The next part is true if the pseudo is used outside the loop.
2689 We assume that this is true for any pseudo created after loop
2690 starts, because we don't have a reg_n_info entry for them. */
2691 && (REGNO (v->dest_reg) >= max_reg_before_loop
2692 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2693 /* Check for the case where the pseudo is set by a shift/add
2694 sequence, in which case the first insn setting the pseudo
2695 is the first insn of the shift/add sequence. */
2696 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2697 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2698 != INSN_UID (XEXP (tem, 0)))))
2699 /* Line above always fails if INSN was moved by loop opt. */
2700 || (REGNO_LAST_LUID (REGNO (v->dest_reg))
2701 >= INSN_LUID (loop->end)))
2702 && ! (final_value = v->final_value))
2703 continue;
2705 #if 0
2706 /* Currently, non-reduced/final-value givs are never split. */
2707 /* Should emit insns after the loop if possible, as the biv final value
2708 code below does. */
2710 /* If the final value is nonzero, and the giv has not been reduced,
2711 then must emit an instruction to set the final value. */
2712 if (final_value && !v->new_reg)
2714 /* Create a new register to hold the value of the giv, and then set
2715 the giv to its final value before the loop start. The giv is set
2716 to its final value before loop start to ensure that this insn
2717 will always be executed, no matter how we exit. */
2718 tem = gen_reg_rtx (v->mode);
2719 loop_insn_hoist (loop, gen_move_insn (tem, v->dest_reg));
2720 loop_insn_hoist (loop, gen_move_insn (v->dest_reg, final_value));
2722 if (loop_dump_stream)
2723 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2724 REGNO (v->dest_reg), REGNO (tem));
2726 v->src_reg = tem;
2728 #endif
2730 /* This giv is splittable. If completely unrolling the loop, save the
2731 giv's initial value. Otherwise, save the constant zero for it. */
2733 if (unroll_type == UNROLL_COMPLETELY)
2735 /* It is not safe to use bl->initial_value here, because it may not
2736 be invariant. It is safe to use the initial value stored in
2737 the splittable_regs array if it is set. In rare cases, it won't
2738 be set, so then we do exactly the same thing as
2739 find_splittable_regs does to get a safe value. */
2740 rtx biv_initial_value;
2742 if (splittable_regs[bl->regno])
2743 biv_initial_value = splittable_regs[bl->regno];
2744 else if (!REG_P (bl->initial_value)
2745 || (REGNO (bl->initial_value) != bl->regno
2746 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2747 biv_initial_value = bl->initial_value;
2748 else
2750 rtx tem = gen_reg_rtx (bl->biv->mode);
2752 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2753 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2754 biv_initial_value = tem;
2756 biv_initial_value = extend_value_for_giv (v, biv_initial_value);
2757 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2758 v->add_val, v->mode);
2760 else
2761 value = const0_rtx;
2763 if (v->new_reg)
2765 /* If a giv was combined with another giv, then we can only split
2766 this giv if the giv it was combined with was reduced. This
2767 is because the value of v->new_reg is meaningless in this
2768 case. */
2769 if (v->same && ! v->same->new_reg)
2771 if (loop_dump_stream)
2772 fprintf (loop_dump_stream,
2773 "giv combined with unreduced giv not split.\n");
2774 continue;
2776 /* If the giv is an address destination, it could be something other
2777 than a simple register, these have to be treated differently. */
2778 else if (v->giv_type == DEST_REG)
2780 /* If value is not a constant, register, or register plus
2781 constant, then compute its value into a register before
2782 loop start. This prevents invalid rtx sharing, and should
2783 generate better code. We can use bl->initial_value here
2784 instead of splittable_regs[bl->regno] because this code
2785 is going before the loop start. */
2786 if (unroll_type == UNROLL_COMPLETELY
2787 && GET_CODE (value) != CONST_INT
2788 && !REG_P (value)
2789 && (GET_CODE (value) != PLUS
2790 || !REG_P (XEXP (value, 0))
2791 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2793 rtx tem = gen_reg_rtx (v->mode);
2794 record_base_value (REGNO (tem), v->add_val, 0);
2795 loop_iv_add_mult_hoist (loop,
2796 extend_value_for_giv (v, bl->initial_value),
2797 v->mult_val, v->add_val, tem);
2798 value = tem;
2801 splittable_regs[reg_or_subregno (v->new_reg)] = value;
2803 else
2804 continue;
2806 else
2808 #if 0
2809 /* Currently, unreduced giv's can't be split. This is not too much
2810 of a problem since unreduced giv's are not live across loop
2811 iterations anyways. When unrolling a loop completely though,
2812 it makes sense to reduce&split givs when possible, as this will
2813 result in simpler instructions, and will not require that a reg
2814 be live across loop iterations. */
2816 splittable_regs[REGNO (v->dest_reg)] = value;
2817 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2818 REGNO (v->dest_reg), INSN_UID (v->insn));
2819 #else
2820 continue;
2821 #endif
2824 /* Unreduced givs are only updated once by definition. Reduced givs
2825 are updated as many times as their biv is. Mark it so if this is
2826 a splittable register. Don't need to do anything for address givs
2827 where this may not be a register. */
2829 if (REG_P (v->new_reg))
2831 int count = 1;
2832 if (! v->ignore)
2833 count = REG_IV_CLASS (ivs, REGNO (v->src_reg))->biv_count;
2835 splittable_regs_updates[reg_or_subregno (v->new_reg)] = count;
2838 result++;
2840 if (loop_dump_stream)
2842 int regnum;
2844 if (GET_CODE (v->dest_reg) == CONST_INT)
2845 regnum = -1;
2846 else if (!REG_P (v->dest_reg))
2847 regnum = REGNO (XEXP (v->dest_reg, 0));
2848 else
2849 regnum = REGNO (v->dest_reg);
2850 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2851 regnum, INSN_UID (v->insn));
2855 return result;
2858 /* Try to prove that the register is dead after the loop exits. Trace every
2859 loop exit looking for an insn that will always be executed, which sets
2860 the register to some value, and appears before the first use of the register
2861 is found. If successful, then return 1, otherwise return 0. */
2863 /* ?? Could be made more intelligent in the handling of jumps, so that
2864 it can search past if statements and other similar structures. */
2866 static int
2867 reg_dead_after_loop (const struct loop *loop, rtx reg)
2869 rtx insn, label;
2870 int jump_count = 0;
2871 int label_count = 0;
2873 /* In addition to checking all exits of this loop, we must also check
2874 all exits of inner nested loops that would exit this loop. We don't
2875 have any way to identify those, so we just give up if there are any
2876 such inner loop exits. */
2878 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
2879 label_count++;
2881 if (label_count != loop->exit_count)
2882 return 0;
2884 /* HACK: Must also search the loop fall through exit, create a label_ref
2885 here which points to the loop->end, and append the loop_number_exit_labels
2886 list to it. */
2887 label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
2888 LABEL_NEXTREF (label) = loop->exit_labels;
2890 for (; label; label = LABEL_NEXTREF (label))
2892 /* Succeed if find an insn which sets the biv or if reach end of
2893 function. Fail if find an insn that uses the biv, or if come to
2894 a conditional jump. */
2896 insn = NEXT_INSN (XEXP (label, 0));
2897 while (insn)
2899 if (INSN_P (insn))
2901 rtx set, note;
2903 if (reg_referenced_p (reg, PATTERN (insn)))
2904 return 0;
2906 note = find_reg_equal_equiv_note (insn);
2907 if (note && reg_overlap_mentioned_p (reg, XEXP (note, 0)))
2908 return 0;
2910 set = single_set (insn);
2911 if (set && rtx_equal_p (SET_DEST (set), reg))
2912 break;
2914 if (JUMP_P (insn))
2916 if (GET_CODE (PATTERN (insn)) == RETURN)
2917 break;
2918 else if (!any_uncondjump_p (insn)
2919 /* Prevent infinite loop following infinite loops. */
2920 || jump_count++ > 20)
2921 return 0;
2922 else
2923 insn = JUMP_LABEL (insn);
2927 insn = NEXT_INSN (insn);
2931 /* Success, the register is dead on all loop exits. */
2932 return 1;
2935 /* Try to calculate the final value of the biv, the value it will have at
2936 the end of the loop. If we can do it, return that value. */
2939 final_biv_value (const struct loop *loop, struct iv_class *bl)
2941 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
2942 rtx increment, tem;
2944 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
2946 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
2947 return 0;
2949 /* The final value for reversed bivs must be calculated differently than
2950 for ordinary bivs. In this case, there is already an insn after the
2951 loop which sets this biv's final value (if necessary), and there are
2952 no other loop exits, so we can return any value. */
2953 if (bl->reversed)
2955 if (loop_dump_stream)
2956 fprintf (loop_dump_stream,
2957 "Final biv value for %d, reversed biv.\n", bl->regno);
2959 return const0_rtx;
2962 /* Try to calculate the final value as initial value + (number of iterations
2963 * increment). For this to work, increment must be invariant, the only
2964 exit from the loop must be the fall through at the bottom (otherwise
2965 it may not have its final value when the loop exits), and the initial
2966 value of the biv must be invariant. */
2968 if (n_iterations != 0
2969 && ! loop->exit_count
2970 && loop_invariant_p (loop, bl->initial_value))
2972 increment = biv_total_increment (bl);
2974 if (increment && loop_invariant_p (loop, increment))
2976 /* Can calculate the loop exit value, emit insns after loop
2977 end to calculate this value into a temporary register in
2978 case it is needed later. */
2980 tem = gen_reg_rtx (bl->biv->mode);
2981 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2982 loop_iv_add_mult_sink (loop, increment, GEN_INT (n_iterations),
2983 bl->initial_value, tem);
2985 if (loop_dump_stream)
2986 fprintf (loop_dump_stream,
2987 "Final biv value for %d, calculated.\n", bl->regno);
2989 return tem;
2993 /* Check to see if the biv is dead at all loop exits. */
2994 if (reg_dead_after_loop (loop, bl->biv->src_reg))
2996 if (loop_dump_stream)
2997 fprintf (loop_dump_stream,
2998 "Final biv value for %d, biv dead after loop exit.\n",
2999 bl->regno);
3001 return const0_rtx;
3004 return 0;
3007 /* Try to calculate the final value of the giv, the value it will have at
3008 the end of the loop. If we can do it, return that value. */
3011 final_giv_value (const struct loop *loop, struct induction *v)
3013 struct loop_ivs *ivs = LOOP_IVS (loop);
3014 struct iv_class *bl;
3015 rtx insn;
3016 rtx increment, tem;
3017 rtx seq;
3018 rtx loop_end = loop->end;
3019 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3021 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3023 /* The final value for givs which depend on reversed bivs must be calculated
3024 differently than for ordinary givs. In this case, there is already an
3025 insn after the loop which sets this giv's final value (if necessary),
3026 and there are no other loop exits, so we can return any value. */
3027 if (bl->reversed)
3029 if (loop_dump_stream)
3030 fprintf (loop_dump_stream,
3031 "Final giv value for %d, depends on reversed biv\n",
3032 REGNO (v->dest_reg));
3033 return const0_rtx;
3036 /* Try to calculate the final value as a function of the biv it depends
3037 upon. The only exit from the loop must be the fall through at the bottom
3038 and the insn that sets the giv must be executed on every iteration
3039 (otherwise the giv may not have its final value when the loop exits). */
3041 /* ??? Can calculate the final giv value by subtracting off the
3042 extra biv increments times the giv's mult_val. The loop must have
3043 only one exit for this to work, but the loop iterations does not need
3044 to be known. */
3046 if (n_iterations != 0
3047 && ! loop->exit_count
3048 && v->always_executed)
3050 /* ?? It is tempting to use the biv's value here since these insns will
3051 be put after the loop, and hence the biv will have its final value
3052 then. However, this fails if the biv is subsequently eliminated.
3053 Perhaps determine whether biv's are eliminable before trying to
3054 determine whether giv's are replaceable so that we can use the
3055 biv value here if it is not eliminable. */
3057 /* We are emitting code after the end of the loop, so we must make
3058 sure that bl->initial_value is still valid then. It will still
3059 be valid if it is invariant. */
3061 increment = biv_total_increment (bl);
3063 if (increment && loop_invariant_p (loop, increment)
3064 && loop_invariant_p (loop, bl->initial_value))
3066 /* Can calculate the loop exit value of its biv as
3067 (n_iterations * increment) + initial_value */
3069 /* The loop exit value of the giv is then
3070 (final_biv_value - extra increments) * mult_val + add_val.
3071 The extra increments are any increments to the biv which
3072 occur in the loop after the giv's value is calculated.
3073 We must search from the insn that sets the giv to the end
3074 of the loop to calculate this value. */
3076 /* Put the final biv value in tem. */
3077 tem = gen_reg_rtx (v->mode);
3078 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3079 loop_iv_add_mult_sink (loop, extend_value_for_giv (v, increment),
3080 GEN_INT (n_iterations),
3081 extend_value_for_giv (v, bl->initial_value),
3082 tem);
3084 /* Subtract off extra increments as we find them. */
3085 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3086 insn = NEXT_INSN (insn))
3088 struct induction *biv;
3090 for (biv = bl->biv; biv; biv = biv->next_iv)
3091 if (biv->insn == insn)
3093 start_sequence ();
3094 tem = expand_simple_binop (GET_MODE (tem), MINUS, tem,
3095 biv->add_val, NULL_RTX, 0,
3096 OPTAB_LIB_WIDEN);
3097 seq = get_insns ();
3098 end_sequence ();
3099 loop_insn_sink (loop, seq);
3103 /* Now calculate the giv's final value. */
3104 loop_iv_add_mult_sink (loop, tem, v->mult_val, v->add_val, tem);
3106 if (loop_dump_stream)
3107 fprintf (loop_dump_stream,
3108 "Final giv value for %d, calc from biv's value.\n",
3109 REGNO (v->dest_reg));
3111 return tem;
3115 /* Replaceable giv's should never reach here. */
3116 if (v->replaceable)
3117 abort ();
3119 /* Check to see if the biv is dead at all loop exits. */
3120 if (reg_dead_after_loop (loop, v->dest_reg))
3122 if (loop_dump_stream)
3123 fprintf (loop_dump_stream,
3124 "Final giv value for %d, giv dead after loop exit.\n",
3125 REGNO (v->dest_reg));
3127 return const0_rtx;
3130 return 0;
3133 /* Look back before LOOP->START for the insn that sets REG and return
3134 the equivalent constant if there is a REG_EQUAL note otherwise just
3135 the SET_SRC of REG. */
3137 static rtx
3138 loop_find_equiv_value (const struct loop *loop, rtx reg)
3140 rtx loop_start = loop->start;
3141 rtx insn, set;
3142 rtx ret;
3144 ret = reg;
3145 for (insn = PREV_INSN (loop_start); insn; insn = PREV_INSN (insn))
3147 if (LABEL_P (insn))
3148 break;
3150 else if (INSN_P (insn) && reg_set_p (reg, insn))
3152 /* We found the last insn before the loop that sets the register.
3153 If it sets the entire register, and has a REG_EQUAL note,
3154 then use the value of the REG_EQUAL note. */
3155 if ((set = single_set (insn))
3156 && (SET_DEST (set) == reg))
3158 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3160 /* Only use the REG_EQUAL note if it is a constant.
3161 Other things, divide in particular, will cause
3162 problems later if we use them. */
3163 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3164 && CONSTANT_P (XEXP (note, 0)))
3165 ret = XEXP (note, 0);
3166 else
3167 ret = SET_SRC (set);
3169 /* We cannot do this if it changes between the
3170 assignment and loop start though. */
3171 if (modified_between_p (ret, insn, loop_start))
3172 ret = reg;
3174 break;
3177 return ret;
3180 /* Return a simplified rtx for the expression OP - REG.
3182 REG must appear in OP, and OP must be a register or the sum of a register
3183 and a second term.
3185 Thus, the return value must be const0_rtx or the second term.
3187 The caller is responsible for verifying that REG appears in OP and OP has
3188 the proper form. */
3190 static rtx
3191 subtract_reg_term (rtx op, rtx reg)
3193 if (op == reg)
3194 return const0_rtx;
3195 if (GET_CODE (op) == PLUS)
3197 if (XEXP (op, 0) == reg)
3198 return XEXP (op, 1);
3199 else if (XEXP (op, 1) == reg)
3200 return XEXP (op, 0);
3202 /* OP does not contain REG as a term. */
3203 abort ();
3206 /* Find and return register term common to both expressions OP0 and
3207 OP1 or NULL_RTX if no such term exists. Each expression must be a
3208 REG or a PLUS of a REG. */
3210 static rtx
3211 find_common_reg_term (rtx op0, rtx op1)
3213 if ((REG_P (op0) || GET_CODE (op0) == PLUS)
3214 && (REG_P (op1) || GET_CODE (op1) == PLUS))
3216 rtx op00;
3217 rtx op01;
3218 rtx op10;
3219 rtx op11;
3221 if (GET_CODE (op0) == PLUS)
3222 op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3223 else
3224 op01 = const0_rtx, op00 = op0;
3226 if (GET_CODE (op1) == PLUS)
3227 op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3228 else
3229 op11 = const0_rtx, op10 = op1;
3231 /* Find and return common register term if present. */
3232 if (REG_P (op00) && (op00 == op10 || op00 == op11))
3233 return op00;
3234 else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3235 return op01;
3238 /* No common register term found. */
3239 return NULL_RTX;
3242 /* Determine the loop iterator and calculate the number of loop
3243 iterations. Returns the exact number of loop iterations if it can
3244 be calculated, otherwise returns zero. */
3246 unsigned HOST_WIDE_INT
3247 loop_iterations (struct loop *loop)
3249 struct loop_info *loop_info = LOOP_INFO (loop);
3250 struct loop_ivs *ivs = LOOP_IVS (loop);
3251 rtx comparison, comparison_value;
3252 rtx iteration_var, initial_value, increment, final_value;
3253 enum rtx_code comparison_code;
3254 HOST_WIDE_INT inc;
3255 unsigned HOST_WIDE_INT abs_inc;
3256 unsigned HOST_WIDE_INT abs_diff;
3257 int off_by_one;
3258 int increment_dir;
3259 int unsigned_p, compare_dir, final_larger;
3260 rtx last_loop_insn;
3261 rtx reg_term;
3262 struct iv_class *bl;
3264 loop_info->n_iterations = 0;
3265 loop_info->initial_value = 0;
3266 loop_info->initial_equiv_value = 0;
3267 loop_info->comparison_value = 0;
3268 loop_info->final_value = 0;
3269 loop_info->final_equiv_value = 0;
3270 loop_info->increment = 0;
3271 loop_info->iteration_var = 0;
3272 loop_info->unroll_number = 1;
3273 loop_info->iv = 0;
3275 /* We used to use prev_nonnote_insn here, but that fails because it might
3276 accidentally get the branch for a contained loop if the branch for this
3277 loop was deleted. We can only trust branches immediately before the
3278 loop_end. */
3279 last_loop_insn = PREV_INSN (loop->end);
3281 /* ??? We should probably try harder to find the jump insn
3282 at the end of the loop. The following code assumes that
3283 the last loop insn is a jump to the top of the loop. */
3284 if (!JUMP_P (last_loop_insn))
3286 if (loop_dump_stream)
3287 fprintf (loop_dump_stream,
3288 "Loop iterations: No final conditional branch found.\n");
3289 return 0;
3292 /* If there is a more than a single jump to the top of the loop
3293 we cannot (easily) determine the iteration count. */
3294 if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3296 if (loop_dump_stream)
3297 fprintf (loop_dump_stream,
3298 "Loop iterations: Loop has multiple back edges.\n");
3299 return 0;
3302 /* If there are multiple conditionalized loop exit tests, they may jump
3303 back to differing CODE_LABELs. */
3304 if (loop->top && loop->cont)
3306 rtx temp = PREV_INSN (last_loop_insn);
3310 if (JUMP_P (temp))
3312 /* There are some kinds of jumps we can't deal with easily. */
3313 if (JUMP_LABEL (temp) == 0)
3315 if (loop_dump_stream)
3316 fprintf
3317 (loop_dump_stream,
3318 "Loop iterations: Jump insn has null JUMP_LABEL.\n");
3319 return 0;
3322 if (/* Previous unrolling may have generated new insns not
3323 covered by the uid_luid array. */
3324 INSN_UID (JUMP_LABEL (temp)) < max_uid_for_loop
3325 /* Check if we jump back into the loop body. */
3326 && INSN_LUID (JUMP_LABEL (temp)) > INSN_LUID (loop->top)
3327 && INSN_LUID (JUMP_LABEL (temp)) < INSN_LUID (loop->cont))
3329 if (loop_dump_stream)
3330 fprintf
3331 (loop_dump_stream,
3332 "Loop iterations: Loop has multiple back edges.\n");
3333 return 0;
3337 while ((temp = PREV_INSN (temp)) != loop->cont);
3340 /* Find the iteration variable. If the last insn is a conditional
3341 branch, and the insn before tests a register value, make that the
3342 iteration variable. */
3344 comparison = get_condition_for_loop (loop, last_loop_insn);
3345 if (comparison == 0)
3347 if (loop_dump_stream)
3348 fprintf (loop_dump_stream,
3349 "Loop iterations: No final comparison found.\n");
3350 return 0;
3353 /* ??? Get_condition may switch position of induction variable and
3354 invariant register when it canonicalizes the comparison. */
3356 comparison_code = GET_CODE (comparison);
3357 iteration_var = XEXP (comparison, 0);
3358 comparison_value = XEXP (comparison, 1);
3360 if (!REG_P (iteration_var))
3362 if (loop_dump_stream)
3363 fprintf (loop_dump_stream,
3364 "Loop iterations: Comparison not against register.\n");
3365 return 0;
3368 /* The only new registers that are created before loop iterations
3369 are givs made from biv increments or registers created by
3370 load_mems. In the latter case, it is possible that try_copy_prop
3371 will propagate a new pseudo into the old iteration register but
3372 this will be marked by having the REG_USERVAR_P bit set. */
3374 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs
3375 && ! REG_USERVAR_P (iteration_var))
3376 abort ();
3378 /* Determine the initial value of the iteration variable, and the amount
3379 that it is incremented each loop. Use the tables constructed by
3380 the strength reduction pass to calculate these values. */
3382 /* Clear the result values, in case no answer can be found. */
3383 initial_value = 0;
3384 increment = 0;
3386 /* The iteration variable can be either a giv or a biv. Check to see
3387 which it is, and compute the variable's initial value, and increment
3388 value if possible. */
3390 /* If this is a new register, can't handle it since we don't have any
3391 reg_iv_type entry for it. */
3392 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs)
3394 if (loop_dump_stream)
3395 fprintf (loop_dump_stream,
3396 "Loop iterations: No reg_iv_type entry for iteration var.\n");
3397 return 0;
3400 /* Reject iteration variables larger than the host wide int size, since they
3401 could result in a number of iterations greater than the range of our
3402 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
3403 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
3404 > HOST_BITS_PER_WIDE_INT))
3406 if (loop_dump_stream)
3407 fprintf (loop_dump_stream,
3408 "Loop iterations: Iteration var rejected because mode too large.\n");
3409 return 0;
3411 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
3413 if (loop_dump_stream)
3414 fprintf (loop_dump_stream,
3415 "Loop iterations: Iteration var not an integer.\n");
3416 return 0;
3419 /* Try swapping the comparison to identify a suitable iv. */
3420 if (REG_IV_TYPE (ivs, REGNO (iteration_var)) != BASIC_INDUCT
3421 && REG_IV_TYPE (ivs, REGNO (iteration_var)) != GENERAL_INDUCT
3422 && REG_P (comparison_value)
3423 && REGNO (comparison_value) < ivs->n_regs)
3425 rtx temp = comparison_value;
3426 comparison_code = swap_condition (comparison_code);
3427 comparison_value = iteration_var;
3428 iteration_var = temp;
3431 if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
3433 if (REGNO (iteration_var) >= ivs->n_regs)
3434 abort ();
3436 /* Grab initial value, only useful if it is a constant. */
3437 bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
3438 initial_value = bl->initial_value;
3439 if (!bl->biv->always_executed || bl->biv->maybe_multiple)
3441 if (loop_dump_stream)
3442 fprintf (loop_dump_stream,
3443 "Loop iterations: Basic induction var not set once in each iteration.\n");
3444 return 0;
3447 increment = biv_total_increment (bl);
3449 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
3451 HOST_WIDE_INT offset = 0;
3452 struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
3453 rtx biv_initial_value;
3455 if (REGNO (v->src_reg) >= ivs->n_regs)
3456 abort ();
3458 if (!v->always_executed || v->maybe_multiple)
3460 if (loop_dump_stream)
3461 fprintf (loop_dump_stream,
3462 "Loop iterations: General induction var not set once in each iteration.\n");
3463 return 0;
3466 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3468 /* Increment value is mult_val times the increment value of the biv. */
3470 increment = biv_total_increment (bl);
3471 if (increment)
3473 struct induction *biv_inc;
3475 increment = fold_rtx_mult_add (v->mult_val,
3476 extend_value_for_giv (v, increment),
3477 const0_rtx, v->mode);
3478 /* The caller assumes that one full increment has occurred at the
3479 first loop test. But that's not true when the biv is incremented
3480 after the giv is set (which is the usual case), e.g.:
3481 i = 6; do {;} while (i++ < 9) .
3482 Therefore, we bias the initial value by subtracting the amount of
3483 the increment that occurs between the giv set and the giv test. */
3484 for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
3486 if (loop_insn_first_p (v->insn, biv_inc->insn))
3488 if (REG_P (biv_inc->add_val))
3490 if (loop_dump_stream)
3491 fprintf (loop_dump_stream,
3492 "Loop iterations: Basic induction var add_val is REG %d.\n",
3493 REGNO (biv_inc->add_val));
3494 return 0;
3497 /* If we have already counted it, skip it. */
3498 if (biv_inc->same)
3499 continue;
3501 offset -= INTVAL (biv_inc->add_val);
3505 if (loop_dump_stream)
3506 fprintf (loop_dump_stream,
3507 "Loop iterations: Giv iterator, initial value bias %ld.\n",
3508 (long) offset);
3510 /* Initial value is mult_val times the biv's initial value plus
3511 add_val. Only useful if it is a constant. */
3512 biv_initial_value = extend_value_for_giv (v, bl->initial_value);
3513 initial_value
3514 = fold_rtx_mult_add (v->mult_val,
3515 plus_constant (biv_initial_value, offset),
3516 v->add_val, v->mode);
3518 else
3520 if (loop_dump_stream)
3521 fprintf (loop_dump_stream,
3522 "Loop iterations: Not basic or general induction var.\n");
3523 return 0;
3526 if (initial_value == 0)
3527 return 0;
3529 unsigned_p = 0;
3530 off_by_one = 0;
3531 switch (comparison_code)
3533 case LEU:
3534 unsigned_p = 1;
3535 case LE:
3536 compare_dir = 1;
3537 off_by_one = 1;
3538 break;
3539 case GEU:
3540 unsigned_p = 1;
3541 case GE:
3542 compare_dir = -1;
3543 off_by_one = -1;
3544 break;
3545 case EQ:
3546 /* Cannot determine loop iterations with this case. */
3547 compare_dir = 0;
3548 break;
3549 case LTU:
3550 unsigned_p = 1;
3551 case LT:
3552 compare_dir = 1;
3553 break;
3554 case GTU:
3555 unsigned_p = 1;
3556 case GT:
3557 compare_dir = -1;
3558 break;
3559 case NE:
3560 compare_dir = 0;
3561 break;
3562 default:
3563 abort ();
3566 /* If the comparison value is an invariant register, then try to find
3567 its value from the insns before the start of the loop. */
3569 final_value = comparison_value;
3570 if (REG_P (comparison_value)
3571 && loop_invariant_p (loop, comparison_value))
3573 final_value = loop_find_equiv_value (loop, comparison_value);
3575 /* If we don't get an invariant final value, we are better
3576 off with the original register. */
3577 if (! loop_invariant_p (loop, final_value))
3578 final_value = comparison_value;
3581 /* Calculate the approximate final value of the induction variable
3582 (on the last successful iteration). The exact final value
3583 depends on the branch operator, and increment sign. It will be
3584 wrong if the iteration variable is not incremented by one each
3585 time through the loop and (comparison_value + off_by_one -
3586 initial_value) % increment != 0.
3587 ??? Note that the final_value may overflow and thus final_larger
3588 will be bogus. A potentially infinite loop will be classified
3589 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
3590 if (off_by_one)
3591 final_value = plus_constant (final_value, off_by_one);
3593 /* Save the calculated values describing this loop's bounds, in case
3594 precondition_loop_p will need them later. These values can not be
3595 recalculated inside precondition_loop_p because strength reduction
3596 optimizations may obscure the loop's structure.
3598 These values are only required by precondition_loop_p and insert_bct
3599 whenever the number of iterations cannot be computed at compile time.
3600 Only the difference between final_value and initial_value is
3601 important. Note that final_value is only approximate. */
3602 loop_info->initial_value = initial_value;
3603 loop_info->comparison_value = comparison_value;
3604 loop_info->final_value = plus_constant (comparison_value, off_by_one);
3605 loop_info->increment = increment;
3606 loop_info->iteration_var = iteration_var;
3607 loop_info->comparison_code = comparison_code;
3608 loop_info->iv = bl;
3610 /* Try to determine the iteration count for loops such
3611 as (for i = init; i < init + const; i++). When running the
3612 loop optimization twice, the first pass often converts simple
3613 loops into this form. */
3615 if (REG_P (initial_value))
3617 rtx reg1;
3618 rtx reg2;
3619 rtx const2;
3621 reg1 = initial_value;
3622 if (GET_CODE (final_value) == PLUS)
3623 reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
3624 else
3625 reg2 = final_value, const2 = const0_rtx;
3627 /* Check for initial_value = reg1, final_value = reg2 + const2,
3628 where reg1 != reg2. */
3629 if (REG_P (reg2) && reg2 != reg1)
3631 rtx temp;
3633 /* Find what reg1 is equivalent to. Hopefully it will
3634 either be reg2 or reg2 plus a constant. */
3635 temp = loop_find_equiv_value (loop, reg1);
3637 if (find_common_reg_term (temp, reg2))
3638 initial_value = temp;
3639 else if (loop_invariant_p (loop, reg2))
3641 /* Find what reg2 is equivalent to. Hopefully it will
3642 either be reg1 or reg1 plus a constant. Let's ignore
3643 the latter case for now since it is not so common. */
3644 temp = loop_find_equiv_value (loop, reg2);
3646 if (temp == loop_info->iteration_var)
3647 temp = initial_value;
3648 if (temp == reg1)
3649 final_value = (const2 == const0_rtx)
3650 ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3653 else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
3655 rtx temp;
3657 /* When running the loop optimizer twice, check_dbra_loop
3658 further obfuscates reversible loops of the form:
3659 for (i = init; i < init + const; i++). We often end up with
3660 final_value = 0, initial_value = temp, temp = temp2 - init,
3661 where temp2 = init + const. If the loop has a vtop we
3662 can replace initial_value with const. */
3664 temp = loop_find_equiv_value (loop, reg1);
3666 if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3668 rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
3670 if (GET_CODE (temp2) == PLUS
3671 && XEXP (temp2, 0) == XEXP (temp, 1))
3672 initial_value = XEXP (temp2, 1);
3677 /* If have initial_value = reg + const1 and final_value = reg +
3678 const2, then replace initial_value with const1 and final_value
3679 with const2. This should be safe since we are protected by the
3680 initial comparison before entering the loop if we have a vtop.
3681 For example, a + b < a + c is not equivalent to b < c for all a
3682 when using modulo arithmetic.
3684 ??? Without a vtop we could still perform the optimization if we check
3685 the initial and final values carefully. */
3686 if (loop->vtop
3687 && (reg_term = find_common_reg_term (initial_value, final_value)))
3689 initial_value = subtract_reg_term (initial_value, reg_term);
3690 final_value = subtract_reg_term (final_value, reg_term);
3693 loop_info->initial_equiv_value = initial_value;
3694 loop_info->final_equiv_value = final_value;
3696 /* For EQ comparison loops, we don't have a valid final value.
3697 Check this now so that we won't leave an invalid value if we
3698 return early for any other reason. */
3699 if (comparison_code == EQ)
3700 loop_info->final_equiv_value = loop_info->final_value = 0;
3702 if (increment == 0)
3704 if (loop_dump_stream)
3705 fprintf (loop_dump_stream,
3706 "Loop iterations: Increment value can't be calculated.\n");
3707 return 0;
3710 if (GET_CODE (increment) != CONST_INT)
3712 /* If we have a REG, check to see if REG holds a constant value. */
3713 /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3714 clear if it is worthwhile to try to handle such RTL. */
3715 if (REG_P (increment) || GET_CODE (increment) == SUBREG)
3716 increment = loop_find_equiv_value (loop, increment);
3718 if (GET_CODE (increment) != CONST_INT)
3720 if (loop_dump_stream)
3722 fprintf (loop_dump_stream,
3723 "Loop iterations: Increment value not constant ");
3724 print_simple_rtl (loop_dump_stream, increment);
3725 fprintf (loop_dump_stream, ".\n");
3727 return 0;
3729 loop_info->increment = increment;
3732 if (GET_CODE (initial_value) != CONST_INT)
3734 if (loop_dump_stream)
3736 fprintf (loop_dump_stream,
3737 "Loop iterations: Initial value not constant ");
3738 print_simple_rtl (loop_dump_stream, initial_value);
3739 fprintf (loop_dump_stream, ".\n");
3741 return 0;
3743 else if (GET_CODE (final_value) != CONST_INT)
3745 if (loop_dump_stream)
3747 fprintf (loop_dump_stream,
3748 "Loop iterations: Final value not constant ");
3749 print_simple_rtl (loop_dump_stream, final_value);
3750 fprintf (loop_dump_stream, ".\n");
3752 return 0;
3754 else if (comparison_code == EQ)
3756 rtx inc_once;
3758 if (loop_dump_stream)
3759 fprintf (loop_dump_stream, "Loop iterations: EQ comparison loop.\n");
3761 inc_once = gen_int_mode (INTVAL (initial_value) + INTVAL (increment),
3762 GET_MODE (iteration_var));
3764 if (inc_once == final_value)
3766 /* The iterator value once through the loop is equal to the
3767 comparison value. Either we have an infinite loop, or
3768 we'll loop twice. */
3769 if (increment == const0_rtx)
3770 return 0;
3771 loop_info->n_iterations = 2;
3773 else
3774 loop_info->n_iterations = 1;
3776 if (GET_CODE (loop_info->initial_value) == CONST_INT)
3777 loop_info->final_value
3778 = gen_int_mode ((INTVAL (loop_info->initial_value)
3779 + loop_info->n_iterations * INTVAL (increment)),
3780 GET_MODE (iteration_var));
3781 else
3782 loop_info->final_value
3783 = plus_constant (loop_info->initial_value,
3784 loop_info->n_iterations * INTVAL (increment));
3785 loop_info->final_equiv_value
3786 = gen_int_mode ((INTVAL (initial_value)
3787 + loop_info->n_iterations * INTVAL (increment)),
3788 GET_MODE (iteration_var));
3789 return loop_info->n_iterations;
3792 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3793 if (unsigned_p)
3794 final_larger
3795 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3796 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3797 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3798 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3799 else
3800 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3801 - (INTVAL (final_value) < INTVAL (initial_value));
3803 if (INTVAL (increment) > 0)
3804 increment_dir = 1;
3805 else if (INTVAL (increment) == 0)
3806 increment_dir = 0;
3807 else
3808 increment_dir = -1;
3810 /* There are 27 different cases: compare_dir = -1, 0, 1;
3811 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3812 There are 4 normal cases, 4 reverse cases (where the iteration variable
3813 will overflow before the loop exits), 4 infinite loop cases, and 15
3814 immediate exit (0 or 1 iteration depending on loop type) cases.
3815 Only try to optimize the normal cases. */
3817 /* (compare_dir/final_larger/increment_dir)
3818 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3819 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3820 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3821 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3823 /* ?? If the meaning of reverse loops (where the iteration variable
3824 will overflow before the loop exits) is undefined, then could
3825 eliminate all of these special checks, and just always assume
3826 the loops are normal/immediate/infinite. Note that this means
3827 the sign of increment_dir does not have to be known. Also,
3828 since it does not really hurt if immediate exit loops or infinite loops
3829 are optimized, then that case could be ignored also, and hence all
3830 loops can be optimized.
3832 According to ANSI Spec, the reverse loop case result is undefined,
3833 because the action on overflow is undefined.
3835 See also the special test for NE loops below. */
3837 if (final_larger == increment_dir && final_larger != 0
3838 && (final_larger == compare_dir || compare_dir == 0))
3839 /* Normal case. */
3841 else
3843 if (loop_dump_stream)
3844 fprintf (loop_dump_stream, "Loop iterations: Not normal loop.\n");
3845 return 0;
3848 /* Calculate the number of iterations, final_value is only an approximation,
3849 so correct for that. Note that abs_diff and n_iterations are
3850 unsigned, because they can be as large as 2^n - 1. */
3852 inc = INTVAL (increment);
3853 if (inc > 0)
3855 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
3856 abs_inc = inc;
3858 else if (inc < 0)
3860 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
3861 abs_inc = -inc;
3863 else
3864 abort ();
3866 /* Given that iteration_var is going to iterate over its own mode,
3867 not HOST_WIDE_INT, disregard higher bits that might have come
3868 into the picture due to sign extension of initial and final
3869 values. */
3870 abs_diff &= ((unsigned HOST_WIDE_INT) 1
3871 << (GET_MODE_BITSIZE (GET_MODE (iteration_var)) - 1)
3872 << 1) - 1;
3874 /* For NE tests, make sure that the iteration variable won't miss
3875 the final value. If abs_diff mod abs_incr is not zero, then the
3876 iteration variable will overflow before the loop exits, and we
3877 can not calculate the number of iterations. */
3878 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
3879 return 0;
3881 /* Note that the number of iterations could be calculated using
3882 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
3883 handle potential overflow of the summation. */
3884 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
3885 return loop_info->n_iterations;
3888 /* Replace uses of split bivs with their split pseudo register. This is
3889 for original instructions which remain after loop unrolling without
3890 copying. */
3892 static rtx
3893 remap_split_bivs (struct loop *loop, rtx x)
3895 struct loop_ivs *ivs = LOOP_IVS (loop);
3896 enum rtx_code code;
3897 int i;
3898 const char *fmt;
3900 if (x == 0)
3901 return x;
3903 code = GET_CODE (x);
3904 switch (code)
3906 case SCRATCH:
3907 case PC:
3908 case CC0:
3909 case CONST_INT:
3910 case CONST_DOUBLE:
3911 case CONST:
3912 case SYMBOL_REF:
3913 case LABEL_REF:
3914 return x;
3916 case REG:
3917 #if 0
3918 /* If non-reduced/final-value givs were split, then this would also
3919 have to remap those givs also. */
3920 #endif
3921 if (REGNO (x) < ivs->n_regs
3922 && REG_IV_TYPE (ivs, REGNO (x)) == BASIC_INDUCT)
3923 return REG_IV_CLASS (ivs, REGNO (x))->biv->src_reg;
3924 break;
3926 default:
3927 break;
3930 fmt = GET_RTX_FORMAT (code);
3931 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3933 if (fmt[i] == 'e')
3934 XEXP (x, i) = remap_split_bivs (loop, XEXP (x, i));
3935 else if (fmt[i] == 'E')
3937 int j;
3938 for (j = 0; j < XVECLEN (x, i); j++)
3939 XVECEXP (x, i, j) = remap_split_bivs (loop, XVECEXP (x, i, j));
3942 return x;
3945 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3946 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3947 return 0. COPY_START is where we can start looking for the insns
3948 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3949 insns.
3951 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3952 must dominate LAST_UID.
3954 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3955 may not dominate LAST_UID.
3957 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3958 must dominate LAST_UID. */
3961 set_dominates_use (int regno, int first_uid, int last_uid, rtx copy_start,
3962 rtx copy_end)
3964 int passed_jump = 0;
3965 rtx p = NEXT_INSN (copy_start);
3967 while (INSN_UID (p) != first_uid)
3969 if (JUMP_P (p))
3970 passed_jump = 1;
3971 /* Could not find FIRST_UID. */
3972 if (p == copy_end)
3973 return 0;
3974 p = NEXT_INSN (p);
3977 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
3978 if (! INSN_P (p) || ! dead_or_set_regno_p (p, regno))
3979 return 0;
3981 /* FIRST_UID is always executed. */
3982 if (passed_jump == 0)
3983 return 1;
3985 while (INSN_UID (p) != last_uid)
3987 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3988 can not be sure that FIRST_UID dominates LAST_UID. */
3989 if (LABEL_P (p))
3990 return 0;
3991 /* Could not find LAST_UID, but we reached the end of the loop, so
3992 it must be safe. */
3993 else if (p == copy_end)
3994 return 1;
3995 p = NEXT_INSN (p);
3998 /* FIRST_UID is always executed if LAST_UID is executed. */
3999 return 1;
4002 /* This routine is called when the number of iterations for the unrolled
4003 loop is one. The goal is to identify a loop that begins with an
4004 unconditional branch to the loop continuation note (or a label just after).
4005 In this case, the unconditional branch that starts the loop needs to be
4006 deleted so that we execute the single iteration. */
4008 static rtx
4009 ujump_to_loop_cont (rtx loop_start, rtx loop_cont)
4011 rtx x, label, label_ref;
4013 /* See if loop start, or the next insn is an unconditional jump. */
4014 loop_start = next_nonnote_insn (loop_start);
4016 x = pc_set (loop_start);
4017 if (!x)
4018 return NULL_RTX;
4020 label_ref = SET_SRC (x);
4021 if (!label_ref)
4022 return NULL_RTX;
4024 /* Examine insn after loop continuation note. Return if not a label. */
4025 label = next_nonnote_insn (loop_cont);
4026 if (label == 0 || !LABEL_P (label))
4027 return NULL_RTX;
4029 /* Return the loop start if the branch label matches the code label. */
4030 if (CODE_LABEL_NUMBER (label) == CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
4031 return loop_start;
4032 else
4033 return NULL_RTX;