* config.gcc (arm*-*-symbianelf*): New target.
[official-gcc.git] / gcc / cfgcleanup.c
blob517f0eddfb65308167b5f4823af3fffc60edce92
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "toplev.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
51 #include "regs.h"
52 #include "cfglayout.h"
53 #include "emit-rtl.h"
55 /* cleanup_cfg maintains following flags for each basic block. */
57 enum bb_flags
59 /* Set if BB is the forwarder block to avoid too many
60 forwarder_block_p calls. */
61 BB_FORWARDER_BLOCK = 1,
62 BB_NONTHREADABLE_BLOCK = 2
65 #define BB_FLAGS(BB) (enum bb_flags) (BB)->aux
66 #define BB_SET_FLAG(BB, FLAG) \
67 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux | (FLAG))
68 #define BB_CLEAR_FLAG(BB, FLAG) \
69 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux & ~(FLAG))
71 #define FORWARDER_BLOCK_P(BB) (BB_FLAGS (BB) & BB_FORWARDER_BLOCK)
73 /* Set to true when we are running first pass of try_optimize_cfg loop. */
74 static bool first_pass;
75 static bool try_crossjump_to_edge (int, edge, edge);
76 static bool try_crossjump_bb (int, basic_block);
77 static bool outgoing_edges_match (int, basic_block, basic_block);
78 static int flow_find_cross_jump (int, basic_block, basic_block, rtx *, rtx *);
79 static bool insns_match_p (int, rtx, rtx);
81 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
82 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
83 static bool try_optimize_cfg (int);
84 static bool try_simplify_condjump (basic_block);
85 static bool try_forward_edges (int, basic_block);
86 static edge thread_jump (int, edge, basic_block);
87 static bool mark_effect (rtx, bitmap);
88 static void notice_new_block (basic_block);
89 static void update_forwarder_flag (basic_block);
90 static int mentions_nonequal_regs (rtx *, void *);
91 static void merge_memattrs (rtx, rtx);
93 /* Set flags for newly created block. */
95 static void
96 notice_new_block (basic_block bb)
98 if (!bb)
99 return;
101 if (forwarder_block_p (bb))
102 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
105 /* Recompute forwarder flag after block has been modified. */
107 static void
108 update_forwarder_flag (basic_block bb)
110 if (forwarder_block_p (bb))
111 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
112 else
113 BB_CLEAR_FLAG (bb, BB_FORWARDER_BLOCK);
116 /* Simplify a conditional jump around an unconditional jump.
117 Return true if something changed. */
119 static bool
120 try_simplify_condjump (basic_block cbranch_block)
122 basic_block jump_block, jump_dest_block, cbranch_dest_block;
123 edge cbranch_jump_edge, cbranch_fallthru_edge;
124 rtx cbranch_insn;
126 /* Verify that there are exactly two successors. */
127 if (!cbranch_block->succ
128 || !cbranch_block->succ->succ_next
129 || cbranch_block->succ->succ_next->succ_next)
130 return false;
132 /* Verify that we've got a normal conditional branch at the end
133 of the block. */
134 cbranch_insn = BB_END (cbranch_block);
135 if (!any_condjump_p (cbranch_insn))
136 return false;
138 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
139 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
141 /* The next block must not have multiple predecessors, must not
142 be the last block in the function, and must contain just the
143 unconditional jump. */
144 jump_block = cbranch_fallthru_edge->dest;
145 if (jump_block->pred->pred_next
146 || jump_block->next_bb == EXIT_BLOCK_PTR
147 || !FORWARDER_BLOCK_P (jump_block))
148 return false;
149 jump_dest_block = jump_block->succ->dest;
151 /* If we are partitioning hot/cold basic blocks, we don't want to
152 mess up unconditional or indirect jumps that cross between hot
153 and cold sections. */
155 if (flag_reorder_blocks_and_partition
156 && (jump_block->partition != jump_dest_block->partition
157 || cbranch_jump_edge->crossing_edge))
158 return false;
160 /* The conditional branch must target the block after the
161 unconditional branch. */
162 cbranch_dest_block = cbranch_jump_edge->dest;
164 if (cbranch_dest_block == EXIT_BLOCK_PTR
165 || !can_fallthru (jump_block, cbranch_dest_block))
166 return false;
168 /* Invert the conditional branch. */
169 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
170 return false;
172 if (dump_file)
173 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
174 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
176 /* Success. Update the CFG to match. Note that after this point
177 the edge variable names appear backwards; the redirection is done
178 this way to preserve edge profile data. */
179 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
180 cbranch_dest_block);
181 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
182 jump_dest_block);
183 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
184 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
185 update_br_prob_note (cbranch_block);
187 /* Delete the block with the unconditional jump, and clean up the mess. */
188 delete_basic_block (jump_block);
189 tidy_fallthru_edge (cbranch_jump_edge);
190 update_forwarder_flag (cbranch_block);
192 return true;
195 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
196 on register. Used by jump threading. */
198 static bool
199 mark_effect (rtx exp, regset nonequal)
201 int regno;
202 rtx dest;
203 switch (GET_CODE (exp))
205 /* In case we do clobber the register, mark it as equal, as we know the
206 value is dead so it don't have to match. */
207 case CLOBBER:
208 if (REG_P (XEXP (exp, 0)))
210 dest = XEXP (exp, 0);
211 regno = REGNO (dest);
212 CLEAR_REGNO_REG_SET (nonequal, regno);
213 if (regno < FIRST_PSEUDO_REGISTER)
215 int n = hard_regno_nregs[regno][GET_MODE (dest)];
216 while (--n > 0)
217 CLEAR_REGNO_REG_SET (nonequal, regno + n);
220 return false;
222 case SET:
223 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
224 return false;
225 dest = SET_DEST (exp);
226 if (dest == pc_rtx)
227 return false;
228 if (!REG_P (dest))
229 return true;
230 regno = REGNO (dest);
231 SET_REGNO_REG_SET (nonequal, regno);
232 if (regno < FIRST_PSEUDO_REGISTER)
234 int n = hard_regno_nregs[regno][GET_MODE (dest)];
235 while (--n > 0)
236 SET_REGNO_REG_SET (nonequal, regno + n);
238 return false;
240 default:
241 return false;
245 /* Return nonzero if X is a register set in regset DATA.
246 Called via for_each_rtx. */
247 static int
248 mentions_nonequal_regs (rtx *x, void *data)
250 regset nonequal = (regset) data;
251 if (REG_P (*x))
253 int regno;
255 regno = REGNO (*x);
256 if (REGNO_REG_SET_P (nonequal, regno))
257 return 1;
258 if (regno < FIRST_PSEUDO_REGISTER)
260 int n = hard_regno_nregs[regno][GET_MODE (*x)];
261 while (--n > 0)
262 if (REGNO_REG_SET_P (nonequal, regno + n))
263 return 1;
266 return 0;
268 /* Attempt to prove that the basic block B will have no side effects and
269 always continues in the same edge if reached via E. Return the edge
270 if exist, NULL otherwise. */
272 static edge
273 thread_jump (int mode, edge e, basic_block b)
275 rtx set1, set2, cond1, cond2, insn;
276 enum rtx_code code1, code2, reversed_code2;
277 bool reverse1 = false;
278 int i;
279 regset nonequal;
280 bool failed = false;
282 if (BB_FLAGS (b) & BB_NONTHREADABLE_BLOCK)
283 return NULL;
285 /* At the moment, we do handle only conditional jumps, but later we may
286 want to extend this code to tablejumps and others. */
287 if (!e->src->succ->succ_next || e->src->succ->succ_next->succ_next)
288 return NULL;
289 if (!b->succ || !b->succ->succ_next || b->succ->succ_next->succ_next)
291 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
292 return NULL;
295 /* Second branch must end with onlyjump, as we will eliminate the jump. */
296 if (!any_condjump_p (BB_END (e->src)))
297 return NULL;
299 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
301 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
302 return NULL;
305 set1 = pc_set (BB_END (e->src));
306 set2 = pc_set (BB_END (b));
307 if (((e->flags & EDGE_FALLTHRU) != 0)
308 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
309 reverse1 = true;
311 cond1 = XEXP (SET_SRC (set1), 0);
312 cond2 = XEXP (SET_SRC (set2), 0);
313 if (reverse1)
314 code1 = reversed_comparison_code (cond1, BB_END (e->src));
315 else
316 code1 = GET_CODE (cond1);
318 code2 = GET_CODE (cond2);
319 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
321 if (!comparison_dominates_p (code1, code2)
322 && !comparison_dominates_p (code1, reversed_code2))
323 return NULL;
325 /* Ensure that the comparison operators are equivalent.
326 ??? This is far too pessimistic. We should allow swapped operands,
327 different CCmodes, or for example comparisons for interval, that
328 dominate even when operands are not equivalent. */
329 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
330 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
331 return NULL;
333 /* Short circuit cases where block B contains some side effects, as we can't
334 safely bypass it. */
335 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
336 insn = NEXT_INSN (insn))
337 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
339 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
340 return NULL;
343 cselib_init (false);
345 /* First process all values computed in the source basic block. */
346 for (insn = NEXT_INSN (BB_HEAD (e->src)); insn != NEXT_INSN (BB_END (e->src));
347 insn = NEXT_INSN (insn))
348 if (INSN_P (insn))
349 cselib_process_insn (insn);
351 nonequal = BITMAP_XMALLOC();
352 CLEAR_REG_SET (nonequal);
354 /* Now assume that we've continued by the edge E to B and continue
355 processing as if it were same basic block.
356 Our goal is to prove that whole block is an NOOP. */
358 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b)) && !failed;
359 insn = NEXT_INSN (insn))
361 if (INSN_P (insn))
363 rtx pat = PATTERN (insn);
365 if (GET_CODE (pat) == PARALLEL)
367 for (i = 0; i < XVECLEN (pat, 0); i++)
368 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
370 else
371 failed |= mark_effect (pat, nonequal);
374 cselib_process_insn (insn);
377 /* Later we should clear nonequal of dead registers. So far we don't
378 have life information in cfg_cleanup. */
379 if (failed)
381 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
382 goto failed_exit;
385 /* cond2 must not mention any register that is not equal to the
386 former block. */
387 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
388 goto failed_exit;
390 /* In case liveness information is available, we need to prove equivalence
391 only of the live values. */
392 if (mode & CLEANUP_UPDATE_LIFE)
393 AND_REG_SET (nonequal, b->global_live_at_end);
395 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, goto failed_exit;);
397 BITMAP_XFREE (nonequal);
398 cselib_finish ();
399 if ((comparison_dominates_p (code1, code2) != 0)
400 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
401 return BRANCH_EDGE (b);
402 else
403 return FALLTHRU_EDGE (b);
405 failed_exit:
406 BITMAP_XFREE (nonequal);
407 cselib_finish ();
408 return NULL;
411 /* Attempt to forward edges leaving basic block B.
412 Return true if successful. */
414 static bool
415 try_forward_edges (int mode, basic_block b)
417 bool changed = false;
418 edge e, next, *threaded_edges = NULL;
420 /* If we are partitioning hot/cold basic blocks, we don't want to
421 mess up unconditional or indirect jumps that cross between hot
422 and cold sections. */
424 if (flag_reorder_blocks_and_partition
425 && find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
426 return false;
428 for (e = b->succ; e; e = next)
430 basic_block target, first;
431 int counter;
432 bool threaded = false;
433 int nthreaded_edges = 0;
434 bool may_thread = first_pass | (b->flags & BB_DIRTY);
436 next = e->succ_next;
438 /* Skip complex edges because we don't know how to update them.
440 Still handle fallthru edges, as we can succeed to forward fallthru
441 edge to the same place as the branch edge of conditional branch
442 and turn conditional branch to an unconditional branch. */
443 if (e->flags & EDGE_COMPLEX)
444 continue;
446 target = first = e->dest;
447 counter = 0;
449 while (counter < n_basic_blocks)
451 basic_block new_target = NULL;
452 bool new_target_threaded = false;
453 may_thread |= target->flags & BB_DIRTY;
455 if (FORWARDER_BLOCK_P (target)
456 && target->succ->dest != EXIT_BLOCK_PTR)
458 /* Bypass trivial infinite loops. */
459 if (target == target->succ->dest)
460 counter = n_basic_blocks;
461 new_target = target->succ->dest;
464 /* Allow to thread only over one edge at time to simplify updating
465 of probabilities. */
466 else if ((mode & CLEANUP_THREADING) && may_thread)
468 edge t = thread_jump (mode, e, target);
469 if (t)
471 if (!threaded_edges)
472 threaded_edges = xmalloc (sizeof (*threaded_edges)
473 * n_basic_blocks);
474 else
476 int i;
478 /* Detect an infinite loop across blocks not
479 including the start block. */
480 for (i = 0; i < nthreaded_edges; ++i)
481 if (threaded_edges[i] == t)
482 break;
483 if (i < nthreaded_edges)
485 counter = n_basic_blocks;
486 break;
490 /* Detect an infinite loop across the start block. */
491 if (t->dest == b)
492 break;
494 if (nthreaded_edges >= n_basic_blocks)
495 abort ();
496 threaded_edges[nthreaded_edges++] = t;
498 new_target = t->dest;
499 new_target_threaded = true;
503 if (!new_target)
504 break;
506 /* Avoid killing of loop pre-headers, as it is the place loop
507 optimizer wants to hoist code to.
509 For fallthru forwarders, the LOOP_BEG note must appear between
510 the header of block and CODE_LABEL of the loop, for non forwarders
511 it must appear before the JUMP_INSN. */
512 if ((mode & CLEANUP_PRE_LOOP) && optimize)
514 rtx insn = (target->succ->flags & EDGE_FALLTHRU
515 ? BB_HEAD (target) : prev_nonnote_insn (BB_END (target)));
517 if (!NOTE_P (insn))
518 insn = NEXT_INSN (insn);
520 for (; insn && !LABEL_P (insn) && !INSN_P (insn);
521 insn = NEXT_INSN (insn))
522 if (NOTE_P (insn)
523 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
524 break;
526 if (NOTE_P (insn))
527 break;
529 /* Do not clean up branches to just past the end of a loop
530 at this time; it can mess up the loop optimizer's
531 recognition of some patterns. */
533 insn = PREV_INSN (BB_HEAD (target));
534 if (insn && NOTE_P (insn)
535 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
536 break;
539 counter++;
540 target = new_target;
541 threaded |= new_target_threaded;
544 if (counter >= n_basic_blocks)
546 if (dump_file)
547 fprintf (dump_file, "Infinite loop in BB %i.\n",
548 target->index);
550 else if (target == first)
551 ; /* We didn't do anything. */
552 else
554 /* Save the values now, as the edge may get removed. */
555 gcov_type edge_count = e->count;
556 int edge_probability = e->probability;
557 int edge_frequency;
558 int n = 0;
560 /* Don't force if target is exit block. */
561 if (threaded && target != EXIT_BLOCK_PTR)
563 notice_new_block (redirect_edge_and_branch_force (e, target));
564 if (dump_file)
565 fprintf (dump_file, "Conditionals threaded.\n");
567 else if (!redirect_edge_and_branch (e, target))
569 if (dump_file)
570 fprintf (dump_file,
571 "Forwarding edge %i->%i to %i failed.\n",
572 b->index, e->dest->index, target->index);
573 continue;
576 /* We successfully forwarded the edge. Now update profile
577 data: for each edge we traversed in the chain, remove
578 the original edge's execution count. */
579 edge_frequency = ((edge_probability * b->frequency
580 + REG_BR_PROB_BASE / 2)
581 / REG_BR_PROB_BASE);
583 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
584 BB_SET_FLAG (b, BB_FORWARDER_BLOCK);
588 edge t;
590 first->count -= edge_count;
591 if (first->count < 0)
592 first->count = 0;
593 first->frequency -= edge_frequency;
594 if (first->frequency < 0)
595 first->frequency = 0;
596 if (first->succ->succ_next)
598 edge e;
599 int prob;
600 if (n >= nthreaded_edges)
601 abort ();
602 t = threaded_edges [n++];
603 if (t->src != first)
604 abort ();
605 if (first->frequency)
606 prob = edge_frequency * REG_BR_PROB_BASE / first->frequency;
607 else
608 prob = 0;
609 if (prob > t->probability)
610 prob = t->probability;
611 t->probability -= prob;
612 prob = REG_BR_PROB_BASE - prob;
613 if (prob <= 0)
615 first->succ->probability = REG_BR_PROB_BASE;
616 first->succ->succ_next->probability = 0;
618 else
619 for (e = first->succ; e; e = e->succ_next)
620 e->probability = ((e->probability * REG_BR_PROB_BASE)
621 / (double) prob);
622 update_br_prob_note (first);
624 else
626 /* It is possible that as the result of
627 threading we've removed edge as it is
628 threaded to the fallthru edge. Avoid
629 getting out of sync. */
630 if (n < nthreaded_edges
631 && first == threaded_edges [n]->src)
632 n++;
633 t = first->succ;
636 t->count -= edge_count;
637 if (t->count < 0)
638 t->count = 0;
639 first = t->dest;
641 while (first != target);
643 changed = true;
647 if (threaded_edges)
648 free (threaded_edges);
649 return changed;
653 /* Blocks A and B are to be merged into a single block. A has no incoming
654 fallthru edge, so it can be moved before B without adding or modifying
655 any jumps (aside from the jump from A to B). */
657 static void
658 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
660 rtx barrier;
662 /* If we are partitioning hot/cold basic blocks, we don't want to
663 mess up unconditional or indirect jumps that cross between hot
664 and cold sections. */
666 if (flag_reorder_blocks_and_partition
667 && (a->partition != b->partition
668 || find_reg_note (BB_END (a), REG_CROSSING_JUMP, NULL_RTX)))
669 return;
671 barrier = next_nonnote_insn (BB_END (a));
672 if (!BARRIER_P (barrier))
673 abort ();
674 delete_insn (barrier);
676 /* Move block and loop notes out of the chain so that we do not
677 disturb their order.
679 ??? A better solution would be to squeeze out all the non-nested notes
680 and adjust the block trees appropriately. Even better would be to have
681 a tighter connection between block trees and rtl so that this is not
682 necessary. */
683 if (squeeze_notes (&BB_HEAD (a), &BB_END (a)))
684 abort ();
686 /* Scramble the insn chain. */
687 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
688 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
689 a->flags |= BB_DIRTY;
691 if (dump_file)
692 fprintf (dump_file, "Moved block %d before %d and merged.\n",
693 a->index, b->index);
695 /* Swap the records for the two blocks around. */
697 unlink_block (a);
698 link_block (a, b->prev_bb);
700 /* Now blocks A and B are contiguous. Merge them. */
701 merge_blocks (a, b);
704 /* Blocks A and B are to be merged into a single block. B has no outgoing
705 fallthru edge, so it can be moved after A without adding or modifying
706 any jumps (aside from the jump from A to B). */
708 static void
709 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
711 rtx barrier, real_b_end;
712 rtx label, table;
714 /* If we are partitioning hot/cold basic blocks, we don't want to
715 mess up unconditional or indirect jumps that cross between hot
716 and cold sections. */
718 if (flag_reorder_blocks_and_partition
719 && (find_reg_note (BB_END (a), REG_CROSSING_JUMP, NULL_RTX)
720 || a->partition != b->partition))
721 return;
723 real_b_end = BB_END (b);
725 /* If there is a jump table following block B temporarily add the jump table
726 to block B so that it will also be moved to the correct location. */
727 if (tablejump_p (BB_END (b), &label, &table)
728 && prev_active_insn (label) == BB_END (b))
730 BB_END (b) = table;
733 /* There had better have been a barrier there. Delete it. */
734 barrier = NEXT_INSN (BB_END (b));
735 if (barrier && BARRIER_P (barrier))
736 delete_insn (barrier);
738 /* Move block and loop notes out of the chain so that we do not
739 disturb their order.
741 ??? A better solution would be to squeeze out all the non-nested notes
742 and adjust the block trees appropriately. Even better would be to have
743 a tighter connection between block trees and rtl so that this is not
744 necessary. */
745 if (squeeze_notes (&BB_HEAD (b), &BB_END (b)))
746 abort ();
748 /* Scramble the insn chain. */
749 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
751 /* Restore the real end of b. */
752 BB_END (b) = real_b_end;
754 if (dump_file)
755 fprintf (dump_file, "Moved block %d after %d and merged.\n",
756 b->index, a->index);
758 /* Now blocks A and B are contiguous. Merge them. */
759 merge_blocks (a, b);
762 /* Attempt to merge basic blocks that are potentially non-adjacent.
763 Return NULL iff the attempt failed, otherwise return basic block
764 where cleanup_cfg should continue. Because the merging commonly
765 moves basic block away or introduces another optimization
766 possibility, return basic block just before B so cleanup_cfg don't
767 need to iterate.
769 It may be good idea to return basic block before C in the case
770 C has been moved after B and originally appeared earlier in the
771 insn sequence, but we have no information available about the
772 relative ordering of these two. Hopefully it is not too common. */
774 static basic_block
775 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
777 basic_block next;
779 /* If we are partitioning hot/cold basic blocks, we don't want to
780 mess up unconditional or indirect jumps that cross between hot
781 and cold sections. */
783 if (flag_reorder_blocks_and_partition
784 && (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
785 || find_reg_note (BB_END (c), REG_CROSSING_JUMP, NULL_RTX)
786 || b->partition != c->partition))
787 return NULL;
791 /* If B has a fallthru edge to C, no need to move anything. */
792 if (e->flags & EDGE_FALLTHRU)
794 int b_index = b->index, c_index = c->index;
795 merge_blocks (b, c);
796 update_forwarder_flag (b);
798 if (dump_file)
799 fprintf (dump_file, "Merged %d and %d without moving.\n",
800 b_index, c_index);
802 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
805 /* Otherwise we will need to move code around. Do that only if expensive
806 transformations are allowed. */
807 else if (mode & CLEANUP_EXPENSIVE)
809 edge tmp_edge, b_fallthru_edge;
810 bool c_has_outgoing_fallthru;
811 bool b_has_incoming_fallthru;
813 /* Avoid overactive code motion, as the forwarder blocks should be
814 eliminated by edge redirection instead. One exception might have
815 been if B is a forwarder block and C has no fallthru edge, but
816 that should be cleaned up by bb-reorder instead. */
817 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
818 return NULL;
820 /* We must make sure to not munge nesting of lexical blocks,
821 and loop notes. This is done by squeezing out all the notes
822 and leaving them there to lie. Not ideal, but functional. */
824 for (tmp_edge = c->succ; tmp_edge; tmp_edge = tmp_edge->succ_next)
825 if (tmp_edge->flags & EDGE_FALLTHRU)
826 break;
828 c_has_outgoing_fallthru = (tmp_edge != NULL);
830 for (tmp_edge = b->pred; tmp_edge; tmp_edge = tmp_edge->pred_next)
831 if (tmp_edge->flags & EDGE_FALLTHRU)
832 break;
834 b_has_incoming_fallthru = (tmp_edge != NULL);
835 b_fallthru_edge = tmp_edge;
836 next = b->prev_bb;
837 if (next == c)
838 next = next->prev_bb;
840 /* Otherwise, we're going to try to move C after B. If C does
841 not have an outgoing fallthru, then it can be moved
842 immediately after B without introducing or modifying jumps. */
843 if (! c_has_outgoing_fallthru)
845 merge_blocks_move_successor_nojumps (b, c);
846 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
849 /* If B does not have an incoming fallthru, then it can be moved
850 immediately before C without introducing or modifying jumps.
851 C cannot be the first block, so we do not have to worry about
852 accessing a non-existent block. */
854 if (b_has_incoming_fallthru)
856 basic_block bb;
858 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
859 return NULL;
860 bb = force_nonfallthru (b_fallthru_edge);
861 if (bb)
862 notice_new_block (bb);
865 merge_blocks_move_predecessor_nojumps (b, c);
866 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
869 return NULL;
873 /* Removes the memory attributes of MEM expression
874 if they are not equal. */
876 void
877 merge_memattrs (rtx x, rtx y)
879 int i;
880 int j;
881 enum rtx_code code;
882 const char *fmt;
884 if (x == y)
885 return;
886 if (x == 0 || y == 0)
887 return;
889 code = GET_CODE (x);
891 if (code != GET_CODE (y))
892 return;
894 if (GET_MODE (x) != GET_MODE (y))
895 return;
897 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
899 if (! MEM_ATTRS (x))
900 MEM_ATTRS (y) = 0;
901 else if (! MEM_ATTRS (y))
902 MEM_ATTRS (x) = 0;
903 else
905 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
907 set_mem_alias_set (x, 0);
908 set_mem_alias_set (y, 0);
911 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
913 set_mem_expr (x, 0);
914 set_mem_expr (y, 0);
915 set_mem_offset (x, 0);
916 set_mem_offset (y, 0);
918 else if (MEM_OFFSET (x) != MEM_OFFSET (y))
920 set_mem_offset (x, 0);
921 set_mem_offset (y, 0);
924 set_mem_size (x, MAX (MEM_SIZE (x), MEM_SIZE (y)));
925 set_mem_size (y, MEM_SIZE (x));
927 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
928 set_mem_align (y, MEM_ALIGN (x));
932 fmt = GET_RTX_FORMAT (code);
933 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
935 switch (fmt[i])
937 case 'E':
938 /* Two vectors must have the same length. */
939 if (XVECLEN (x, i) != XVECLEN (y, i))
940 return;
942 for (j = 0; j < XVECLEN (x, i); j++)
943 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
945 break;
947 case 'e':
948 merge_memattrs (XEXP (x, i), XEXP (y, i));
951 return;
955 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
957 static bool
958 insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
960 rtx p1, p2;
962 /* Verify that I1 and I2 are equivalent. */
963 if (GET_CODE (i1) != GET_CODE (i2))
964 return false;
966 p1 = PATTERN (i1);
967 p2 = PATTERN (i2);
969 if (GET_CODE (p1) != GET_CODE (p2))
970 return false;
972 /* If this is a CALL_INSN, compare register usage information.
973 If we don't check this on stack register machines, the two
974 CALL_INSNs might be merged leaving reg-stack.c with mismatching
975 numbers of stack registers in the same basic block.
976 If we don't check this on machines with delay slots, a delay slot may
977 be filled that clobbers a parameter expected by the subroutine.
979 ??? We take the simple route for now and assume that if they're
980 equal, they were constructed identically. */
982 if (CALL_P (i1)
983 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
984 CALL_INSN_FUNCTION_USAGE (i2))
985 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)))
986 return false;
988 #ifdef STACK_REGS
989 /* If cross_jump_death_matters is not 0, the insn's mode
990 indicates whether or not the insn contains any stack-like
991 regs. */
993 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
995 /* If register stack conversion has already been done, then
996 death notes must also be compared before it is certain that
997 the two instruction streams match. */
999 rtx note;
1000 HARD_REG_SET i1_regset, i2_regset;
1002 CLEAR_HARD_REG_SET (i1_regset);
1003 CLEAR_HARD_REG_SET (i2_regset);
1005 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1006 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1007 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1009 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1010 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1011 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1013 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
1015 return false;
1017 done:
1020 #endif
1022 if (reload_completed
1023 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
1024 return true;
1026 /* Do not do EQUIV substitution after reload. First, we're undoing the
1027 work of reload_cse. Second, we may be undoing the work of the post-
1028 reload splitting pass. */
1029 /* ??? Possibly add a new phase switch variable that can be used by
1030 targets to disallow the troublesome insns after splitting. */
1031 if (!reload_completed)
1033 /* The following code helps take care of G++ cleanups. */
1034 rtx equiv1 = find_reg_equal_equiv_note (i1);
1035 rtx equiv2 = find_reg_equal_equiv_note (i2);
1037 if (equiv1 && equiv2
1038 /* If the equivalences are not to a constant, they may
1039 reference pseudos that no longer exist, so we can't
1040 use them. */
1041 && (! reload_completed
1042 || (CONSTANT_P (XEXP (equiv1, 0))
1043 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
1045 rtx s1 = single_set (i1);
1046 rtx s2 = single_set (i2);
1047 if (s1 != 0 && s2 != 0
1048 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
1050 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
1051 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
1052 if (! rtx_renumbered_equal_p (p1, p2))
1053 cancel_changes (0);
1054 else if (apply_change_group ())
1055 return true;
1060 return false;
1063 /* Look through the insns at the end of BB1 and BB2 and find the longest
1064 sequence that are equivalent. Store the first insns for that sequence
1065 in *F1 and *F2 and return the sequence length.
1067 To simplify callers of this function, if the blocks match exactly,
1068 store the head of the blocks in *F1 and *F2. */
1070 static int
1071 flow_find_cross_jump (int mode ATTRIBUTE_UNUSED, basic_block bb1,
1072 basic_block bb2, rtx *f1, rtx *f2)
1074 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1075 int ninsns = 0;
1077 /* Skip simple jumps at the end of the blocks. Complex jumps still
1078 need to be compared for equivalence, which we'll do below. */
1080 i1 = BB_END (bb1);
1081 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1082 if (onlyjump_p (i1)
1083 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1085 last1 = i1;
1086 i1 = PREV_INSN (i1);
1089 i2 = BB_END (bb2);
1090 if (onlyjump_p (i2)
1091 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1093 last2 = i2;
1094 /* Count everything except for unconditional jump as insn. */
1095 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1096 ninsns++;
1097 i2 = PREV_INSN (i2);
1100 while (true)
1102 /* Ignore notes. */
1103 while (!INSN_P (i1) && i1 != BB_HEAD (bb1))
1104 i1 = PREV_INSN (i1);
1106 while (!INSN_P (i2) && i2 != BB_HEAD (bb2))
1107 i2 = PREV_INSN (i2);
1109 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1110 break;
1112 if (!insns_match_p (mode, i1, i2))
1113 break;
1115 merge_memattrs (i1, i2);
1117 /* Don't begin a cross-jump with a NOTE insn. */
1118 if (INSN_P (i1))
1120 /* If the merged insns have different REG_EQUAL notes, then
1121 remove them. */
1122 rtx equiv1 = find_reg_equal_equiv_note (i1);
1123 rtx equiv2 = find_reg_equal_equiv_note (i2);
1125 if (equiv1 && !equiv2)
1126 remove_note (i1, equiv1);
1127 else if (!equiv1 && equiv2)
1128 remove_note (i2, equiv2);
1129 else if (equiv1 && equiv2
1130 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1132 remove_note (i1, equiv1);
1133 remove_note (i2, equiv2);
1136 afterlast1 = last1, afterlast2 = last2;
1137 last1 = i1, last2 = i2;
1138 ninsns++;
1141 i1 = PREV_INSN (i1);
1142 i2 = PREV_INSN (i2);
1145 #ifdef HAVE_cc0
1146 /* Don't allow the insn after a compare to be shared by
1147 cross-jumping unless the compare is also shared. */
1148 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1149 last1 = afterlast1, last2 = afterlast2, ninsns--;
1150 #endif
1152 /* Include preceding notes and labels in the cross-jump. One,
1153 this may bring us to the head of the blocks as requested above.
1154 Two, it keeps line number notes as matched as may be. */
1155 if (ninsns)
1157 while (last1 != BB_HEAD (bb1) && !INSN_P (PREV_INSN (last1)))
1158 last1 = PREV_INSN (last1);
1160 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1161 last1 = PREV_INSN (last1);
1163 while (last2 != BB_HEAD (bb2) && !INSN_P (PREV_INSN (last2)))
1164 last2 = PREV_INSN (last2);
1166 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1167 last2 = PREV_INSN (last2);
1169 *f1 = last1;
1170 *f2 = last2;
1173 return ninsns;
1176 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1177 the branch instruction. This means that if we commonize the control
1178 flow before end of the basic block, the semantic remains unchanged.
1180 We may assume that there exists one edge with a common destination. */
1182 static bool
1183 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1185 int nehedges1 = 0, nehedges2 = 0;
1186 edge fallthru1 = 0, fallthru2 = 0;
1187 edge e1, e2;
1189 /* If BB1 has only one successor, we may be looking at either an
1190 unconditional jump, or a fake edge to exit. */
1191 if (bb1->succ && !bb1->succ->succ_next
1192 && (bb1->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1193 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1194 return (bb2->succ && !bb2->succ->succ_next
1195 && (bb2->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1196 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1198 /* Match conditional jumps - this may get tricky when fallthru and branch
1199 edges are crossed. */
1200 if (bb1->succ
1201 && bb1->succ->succ_next
1202 && !bb1->succ->succ_next->succ_next
1203 && any_condjump_p (BB_END (bb1))
1204 && onlyjump_p (BB_END (bb1)))
1206 edge b1, f1, b2, f2;
1207 bool reverse, match;
1208 rtx set1, set2, cond1, cond2;
1209 enum rtx_code code1, code2;
1211 if (!bb2->succ
1212 || !bb2->succ->succ_next
1213 || bb2->succ->succ_next->succ_next
1214 || !any_condjump_p (BB_END (bb2))
1215 || !onlyjump_p (BB_END (bb2)))
1216 return false;
1218 b1 = BRANCH_EDGE (bb1);
1219 b2 = BRANCH_EDGE (bb2);
1220 f1 = FALLTHRU_EDGE (bb1);
1221 f2 = FALLTHRU_EDGE (bb2);
1223 /* Get around possible forwarders on fallthru edges. Other cases
1224 should be optimized out already. */
1225 if (FORWARDER_BLOCK_P (f1->dest))
1226 f1 = f1->dest->succ;
1228 if (FORWARDER_BLOCK_P (f2->dest))
1229 f2 = f2->dest->succ;
1231 /* To simplify use of this function, return false if there are
1232 unneeded forwarder blocks. These will get eliminated later
1233 during cleanup_cfg. */
1234 if (FORWARDER_BLOCK_P (f1->dest)
1235 || FORWARDER_BLOCK_P (f2->dest)
1236 || FORWARDER_BLOCK_P (b1->dest)
1237 || FORWARDER_BLOCK_P (b2->dest))
1238 return false;
1240 if (f1->dest == f2->dest && b1->dest == b2->dest)
1241 reverse = false;
1242 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1243 reverse = true;
1244 else
1245 return false;
1247 set1 = pc_set (BB_END (bb1));
1248 set2 = pc_set (BB_END (bb2));
1249 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1250 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1251 reverse = !reverse;
1253 cond1 = XEXP (SET_SRC (set1), 0);
1254 cond2 = XEXP (SET_SRC (set2), 0);
1255 code1 = GET_CODE (cond1);
1256 if (reverse)
1257 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1258 else
1259 code2 = GET_CODE (cond2);
1261 if (code2 == UNKNOWN)
1262 return false;
1264 /* Verify codes and operands match. */
1265 match = ((code1 == code2
1266 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1267 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1268 || (code1 == swap_condition (code2)
1269 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1270 XEXP (cond2, 0))
1271 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1272 XEXP (cond2, 1))));
1274 /* If we return true, we will join the blocks. Which means that
1275 we will only have one branch prediction bit to work with. Thus
1276 we require the existing branches to have probabilities that are
1277 roughly similar. */
1278 if (match
1279 && !optimize_size
1280 && maybe_hot_bb_p (bb1)
1281 && maybe_hot_bb_p (bb2))
1283 int prob2;
1285 if (b1->dest == b2->dest)
1286 prob2 = b2->probability;
1287 else
1288 /* Do not use f2 probability as f2 may be forwarded. */
1289 prob2 = REG_BR_PROB_BASE - b2->probability;
1291 /* Fail if the difference in probabilities is greater than 50%.
1292 This rules out two well-predicted branches with opposite
1293 outcomes. */
1294 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1296 if (dump_file)
1297 fprintf (dump_file,
1298 "Outcomes of branch in bb %i and %i differs to much (%i %i)\n",
1299 bb1->index, bb2->index, b1->probability, prob2);
1301 return false;
1305 if (dump_file && match)
1306 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1307 bb1->index, bb2->index);
1309 return match;
1312 /* Generic case - we are seeing a computed jump, table jump or trapping
1313 instruction. */
1315 #ifndef CASE_DROPS_THROUGH
1316 /* Check whether there are tablejumps in the end of BB1 and BB2.
1317 Return true if they are identical. */
1319 rtx label1, label2;
1320 rtx table1, table2;
1322 if (tablejump_p (BB_END (bb1), &label1, &table1)
1323 && tablejump_p (BB_END (bb2), &label2, &table2)
1324 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1326 /* The labels should never be the same rtx. If they really are same
1327 the jump tables are same too. So disable crossjumping of blocks BB1
1328 and BB2 because when deleting the common insns in the end of BB1
1329 by delete_basic_block () the jump table would be deleted too. */
1330 /* If LABEL2 is referenced in BB1->END do not do anything
1331 because we would loose information when replacing
1332 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1333 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1335 /* Set IDENTICAL to true when the tables are identical. */
1336 bool identical = false;
1337 rtx p1, p2;
1339 p1 = PATTERN (table1);
1340 p2 = PATTERN (table2);
1341 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1343 identical = true;
1345 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1346 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1347 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1348 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1350 int i;
1352 identical = true;
1353 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1354 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1355 identical = false;
1358 if (identical)
1360 replace_label_data rr;
1361 bool match;
1363 /* Temporarily replace references to LABEL1 with LABEL2
1364 in BB1->END so that we could compare the instructions. */
1365 rr.r1 = label1;
1366 rr.r2 = label2;
1367 rr.update_label_nuses = false;
1368 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1370 match = insns_match_p (mode, BB_END (bb1), BB_END (bb2));
1371 if (dump_file && match)
1372 fprintf (dump_file,
1373 "Tablejumps in bb %i and %i match.\n",
1374 bb1->index, bb2->index);
1376 /* Set the original label in BB1->END because when deleting
1377 a block whose end is a tablejump, the tablejump referenced
1378 from the instruction is deleted too. */
1379 rr.r1 = label2;
1380 rr.r2 = label1;
1381 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1383 return match;
1386 return false;
1389 #endif
1391 /* First ensure that the instructions match. There may be many outgoing
1392 edges so this test is generally cheaper. */
1393 if (!insns_match_p (mode, BB_END (bb1), BB_END (bb2)))
1394 return false;
1396 /* Search the outgoing edges, ensure that the counts do match, find possible
1397 fallthru and exception handling edges since these needs more
1398 validation. */
1399 for (e1 = bb1->succ, e2 = bb2->succ; e1 && e2;
1400 e1 = e1->succ_next, e2 = e2->succ_next)
1402 if (e1->flags & EDGE_EH)
1403 nehedges1++;
1405 if (e2->flags & EDGE_EH)
1406 nehedges2++;
1408 if (e1->flags & EDGE_FALLTHRU)
1409 fallthru1 = e1;
1410 if (e2->flags & EDGE_FALLTHRU)
1411 fallthru2 = e2;
1414 /* If number of edges of various types does not match, fail. */
1415 if (e1 || e2
1416 || nehedges1 != nehedges2
1417 || (fallthru1 != 0) != (fallthru2 != 0))
1418 return false;
1420 /* fallthru edges must be forwarded to the same destination. */
1421 if (fallthru1)
1423 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1424 ? fallthru1->dest->succ->dest: fallthru1->dest);
1425 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1426 ? fallthru2->dest->succ->dest: fallthru2->dest);
1428 if (d1 != d2)
1429 return false;
1432 /* Ensure the same EH region. */
1434 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1435 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1437 if (!n1 && n2)
1438 return false;
1440 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1441 return false;
1444 /* We don't need to match the rest of edges as above checks should be enough
1445 to ensure that they are equivalent. */
1446 return true;
1449 /* E1 and E2 are edges with the same destination block. Search their
1450 predecessors for common code. If found, redirect control flow from
1451 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1453 static bool
1454 try_crossjump_to_edge (int mode, edge e1, edge e2)
1456 int nmatch;
1457 basic_block src1 = e1->src, src2 = e2->src;
1458 basic_block redirect_to, redirect_from, to_remove;
1459 rtx newpos1, newpos2;
1460 edge s;
1462 newpos1 = newpos2 = NULL_RTX;
1464 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1465 to try this optimization. */
1467 if (flag_reorder_blocks_and_partition && no_new_pseudos)
1468 return false;
1470 /* Search backward through forwarder blocks. We don't need to worry
1471 about multiple entry or chained forwarders, as they will be optimized
1472 away. We do this to look past the unconditional jump following a
1473 conditional jump that is required due to the current CFG shape. */
1474 if (src1->pred
1475 && !src1->pred->pred_next
1476 && FORWARDER_BLOCK_P (src1))
1477 e1 = src1->pred, src1 = e1->src;
1479 if (src2->pred
1480 && !src2->pred->pred_next
1481 && FORWARDER_BLOCK_P (src2))
1482 e2 = src2->pred, src2 = e2->src;
1484 /* Nothing to do if we reach ENTRY, or a common source block. */
1485 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1486 return false;
1487 if (src1 == src2)
1488 return false;
1490 /* Seeing more than 1 forwarder blocks would confuse us later... */
1491 if (FORWARDER_BLOCK_P (e1->dest)
1492 && FORWARDER_BLOCK_P (e1->dest->succ->dest))
1493 return false;
1495 if (FORWARDER_BLOCK_P (e2->dest)
1496 && FORWARDER_BLOCK_P (e2->dest->succ->dest))
1497 return false;
1499 /* Likewise with dead code (possibly newly created by the other optimizations
1500 of cfg_cleanup). */
1501 if (!src1->pred || !src2->pred)
1502 return false;
1504 /* Look for the common insn sequence, part the first ... */
1505 if (!outgoing_edges_match (mode, src1, src2))
1506 return false;
1508 /* ... and part the second. */
1509 nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
1510 if (!nmatch)
1511 return false;
1513 #ifndef CASE_DROPS_THROUGH
1514 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1515 will be deleted.
1516 If we have tablejumps in the end of SRC1 and SRC2
1517 they have been already compared for equivalence in outgoing_edges_match ()
1518 so replace the references to TABLE1 by references to TABLE2. */
1520 rtx label1, label2;
1521 rtx table1, table2;
1523 if (tablejump_p (BB_END (src1), &label1, &table1)
1524 && tablejump_p (BB_END (src2), &label2, &table2)
1525 && label1 != label2)
1527 replace_label_data rr;
1528 rtx insn;
1530 /* Replace references to LABEL1 with LABEL2. */
1531 rr.r1 = label1;
1532 rr.r2 = label2;
1533 rr.update_label_nuses = true;
1534 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1536 /* Do not replace the label in SRC1->END because when deleting
1537 a block whose end is a tablejump, the tablejump referenced
1538 from the instruction is deleted too. */
1539 if (insn != BB_END (src1))
1540 for_each_rtx (&insn, replace_label, &rr);
1544 #endif
1546 /* Avoid splitting if possible. */
1547 if (newpos2 == BB_HEAD (src2))
1548 redirect_to = src2;
1549 else
1551 if (dump_file)
1552 fprintf (dump_file, "Splitting bb %i before %i insns\n",
1553 src2->index, nmatch);
1554 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1557 if (dump_file)
1558 fprintf (dump_file,
1559 "Cross jumping from bb %i to bb %i; %i common insns\n",
1560 src1->index, src2->index, nmatch);
1562 redirect_to->count += src1->count;
1563 redirect_to->frequency += src1->frequency;
1564 /* We may have some registers visible trought the block. */
1565 redirect_to->flags |= BB_DIRTY;
1567 /* Recompute the frequencies and counts of outgoing edges. */
1568 for (s = redirect_to->succ; s; s = s->succ_next)
1570 edge s2;
1571 basic_block d = s->dest;
1573 if (FORWARDER_BLOCK_P (d))
1574 d = d->succ->dest;
1576 for (s2 = src1->succ; ; s2 = s2->succ_next)
1578 basic_block d2 = s2->dest;
1579 if (FORWARDER_BLOCK_P (d2))
1580 d2 = d2->succ->dest;
1581 if (d == d2)
1582 break;
1585 s->count += s2->count;
1587 /* Take care to update possible forwarder blocks. We verified
1588 that there is no more than one in the chain, so we can't run
1589 into infinite loop. */
1590 if (FORWARDER_BLOCK_P (s->dest))
1592 s->dest->succ->count += s2->count;
1593 s->dest->count += s2->count;
1594 s->dest->frequency += EDGE_FREQUENCY (s);
1597 if (FORWARDER_BLOCK_P (s2->dest))
1599 s2->dest->succ->count -= s2->count;
1600 if (s2->dest->succ->count < 0)
1601 s2->dest->succ->count = 0;
1602 s2->dest->count -= s2->count;
1603 s2->dest->frequency -= EDGE_FREQUENCY (s);
1604 if (s2->dest->frequency < 0)
1605 s2->dest->frequency = 0;
1606 if (s2->dest->count < 0)
1607 s2->dest->count = 0;
1610 if (!redirect_to->frequency && !src1->frequency)
1611 s->probability = (s->probability + s2->probability) / 2;
1612 else
1613 s->probability
1614 = ((s->probability * redirect_to->frequency +
1615 s2->probability * src1->frequency)
1616 / (redirect_to->frequency + src1->frequency));
1619 update_br_prob_note (redirect_to);
1621 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1623 /* Skip possible basic block header. */
1624 if (LABEL_P (newpos1))
1625 newpos1 = NEXT_INSN (newpos1);
1627 if (NOTE_P (newpos1))
1628 newpos1 = NEXT_INSN (newpos1);
1630 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
1631 to_remove = redirect_from->succ->dest;
1633 redirect_edge_and_branch_force (redirect_from->succ, redirect_to);
1634 delete_basic_block (to_remove);
1636 update_forwarder_flag (redirect_from);
1638 return true;
1641 /* Search the predecessors of BB for common insn sequences. When found,
1642 share code between them by redirecting control flow. Return true if
1643 any changes made. */
1645 static bool
1646 try_crossjump_bb (int mode, basic_block bb)
1648 edge e, e2, nexte2, nexte, fallthru;
1649 bool changed;
1650 int n = 0, max;
1652 /* Nothing to do if there is not at least two incoming edges. */
1653 if (!bb->pred || !bb->pred->pred_next)
1654 return false;
1656 /* If we are partitioning hot/cold basic blocks, we don't want to
1657 mess up unconditional or indirect jumps that cross between hot
1658 and cold sections. */
1660 if (flag_reorder_blocks_and_partition
1661 && (bb->pred->src->partition != bb->pred->pred_next->src->partition
1662 || bb->pred->crossing_edge))
1663 return false;
1665 /* It is always cheapest to redirect a block that ends in a branch to
1666 a block that falls through into BB, as that adds no branches to the
1667 program. We'll try that combination first. */
1668 fallthru = NULL;
1669 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
1670 for (e = bb->pred; e ; e = e->pred_next, n++)
1672 if (e->flags & EDGE_FALLTHRU)
1673 fallthru = e;
1674 if (n > max)
1675 return false;
1678 changed = false;
1679 for (e = bb->pred; e; e = nexte)
1681 nexte = e->pred_next;
1683 /* As noted above, first try with the fallthru predecessor. */
1684 if (fallthru)
1686 /* Don't combine the fallthru edge into anything else.
1687 If there is a match, we'll do it the other way around. */
1688 if (e == fallthru)
1689 continue;
1690 /* If nothing changed since the last attempt, there is nothing
1691 we can do. */
1692 if (!first_pass
1693 && (!(e->src->flags & BB_DIRTY)
1694 && !(fallthru->src->flags & BB_DIRTY)))
1695 continue;
1697 if (try_crossjump_to_edge (mode, e, fallthru))
1699 changed = true;
1700 nexte = bb->pred;
1701 continue;
1705 /* Non-obvious work limiting check: Recognize that we're going
1706 to call try_crossjump_bb on every basic block. So if we have
1707 two blocks with lots of outgoing edges (a switch) and they
1708 share lots of common destinations, then we would do the
1709 cross-jump check once for each common destination.
1711 Now, if the blocks actually are cross-jump candidates, then
1712 all of their destinations will be shared. Which means that
1713 we only need check them for cross-jump candidacy once. We
1714 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1715 choosing to do the check from the block for which the edge
1716 in question is the first successor of A. */
1717 if (e->src->succ != e)
1718 continue;
1720 for (e2 = bb->pred; e2; e2 = nexte2)
1722 nexte2 = e2->pred_next;
1724 if (e2 == e)
1725 continue;
1727 /* We've already checked the fallthru edge above. */
1728 if (e2 == fallthru)
1729 continue;
1731 /* The "first successor" check above only prevents multiple
1732 checks of crossjump(A,B). In order to prevent redundant
1733 checks of crossjump(B,A), require that A be the block
1734 with the lowest index. */
1735 if (e->src->index > e2->src->index)
1736 continue;
1738 /* If nothing changed since the last attempt, there is nothing
1739 we can do. */
1740 if (!first_pass
1741 && (!(e->src->flags & BB_DIRTY)
1742 && !(e2->src->flags & BB_DIRTY)))
1743 continue;
1745 if (try_crossjump_to_edge (mode, e, e2))
1747 changed = true;
1748 nexte = bb->pred;
1749 break;
1754 return changed;
1757 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1758 instructions etc. Return nonzero if changes were made. */
1760 static bool
1761 try_optimize_cfg (int mode)
1763 bool changed_overall = false;
1764 bool changed;
1765 int iterations = 0;
1766 basic_block bb, b, next;
1768 if (mode & CLEANUP_CROSSJUMP)
1769 add_noreturn_fake_exit_edges ();
1771 FOR_EACH_BB (bb)
1772 update_forwarder_flag (bb);
1774 if (mode & (CLEANUP_UPDATE_LIFE | CLEANUP_CROSSJUMP | CLEANUP_THREADING))
1775 clear_bb_flags ();
1777 if (! targetm.cannot_modify_jumps_p ())
1779 first_pass = true;
1780 /* Attempt to merge blocks as made possible by edge removal. If
1781 a block has only one successor, and the successor has only
1782 one predecessor, they may be combined. */
1785 changed = false;
1786 iterations++;
1788 if (dump_file)
1789 fprintf (dump_file,
1790 "\n\ntry_optimize_cfg iteration %i\n\n",
1791 iterations);
1793 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
1795 basic_block c;
1796 edge s;
1797 bool changed_here = false;
1799 /* Delete trivially dead basic blocks. */
1800 while (b->pred == NULL)
1802 c = b->prev_bb;
1803 if (dump_file)
1804 fprintf (dump_file, "Deleting block %i.\n",
1805 b->index);
1807 delete_basic_block (b);
1808 if (!(mode & CLEANUP_CFGLAYOUT))
1809 changed = true;
1810 b = c;
1813 /* Remove code labels no longer used. */
1814 if (b->pred->pred_next == NULL
1815 && (b->pred->flags & EDGE_FALLTHRU)
1816 && !(b->pred->flags & EDGE_COMPLEX)
1817 && LABEL_P (BB_HEAD (b))
1818 /* If the previous block ends with a branch to this
1819 block, we can't delete the label. Normally this
1820 is a condjump that is yet to be simplified, but
1821 if CASE_DROPS_THRU, this can be a tablejump with
1822 some element going to the same place as the
1823 default (fallthru). */
1824 && (b->pred->src == ENTRY_BLOCK_PTR
1825 || !JUMP_P (BB_END (b->pred->src))
1826 || ! label_is_jump_target_p (BB_HEAD (b),
1827 BB_END (b->pred->src))))
1829 rtx label = BB_HEAD (b);
1831 delete_insn_chain (label, label);
1832 /* In the case label is undeletable, move it after the
1833 BASIC_BLOCK note. */
1834 if (NOTE_LINE_NUMBER (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
1836 rtx bb_note = NEXT_INSN (BB_HEAD (b));
1838 reorder_insns_nobb (label, label, bb_note);
1839 BB_HEAD (b) = bb_note;
1841 if (dump_file)
1842 fprintf (dump_file, "Deleted label in block %i.\n",
1843 b->index);
1846 /* If we fall through an empty block, we can remove it. */
1847 if (!(mode & CLEANUP_CFGLAYOUT)
1848 && b->pred->pred_next == NULL
1849 && (b->pred->flags & EDGE_FALLTHRU)
1850 && !LABEL_P (BB_HEAD (b))
1851 && FORWARDER_BLOCK_P (b)
1852 /* Note that forwarder_block_p true ensures that
1853 there is a successor for this block. */
1854 && (b->succ->flags & EDGE_FALLTHRU)
1855 && n_basic_blocks > 1)
1857 if (dump_file)
1858 fprintf (dump_file,
1859 "Deleting fallthru block %i.\n",
1860 b->index);
1862 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
1863 redirect_edge_succ_nodup (b->pred, b->succ->dest);
1864 delete_basic_block (b);
1865 changed = true;
1866 b = c;
1869 if ((s = b->succ) != NULL
1870 && s->succ_next == NULL
1871 && !(s->flags & EDGE_COMPLEX)
1872 && (c = s->dest) != EXIT_BLOCK_PTR
1873 && c->pred->pred_next == NULL
1874 && b != c)
1876 /* When not in cfg_layout mode use code aware of reordering
1877 INSN. This code possibly creates new basic blocks so it
1878 does not fit merge_blocks interface and is kept here in
1879 hope that it will become useless once more of compiler
1880 is transformed to use cfg_layout mode. */
1882 if ((mode & CLEANUP_CFGLAYOUT)
1883 && can_merge_blocks_p (b, c))
1885 merge_blocks (b, c);
1886 update_forwarder_flag (b);
1887 changed_here = true;
1889 else if (!(mode & CLEANUP_CFGLAYOUT)
1890 /* If the jump insn has side effects,
1891 we can't kill the edge. */
1892 && (!JUMP_P (BB_END (b))
1893 || (reload_completed
1894 ? simplejump_p (BB_END (b))
1895 : (onlyjump_p (BB_END (b))
1896 && !tablejump_p (BB_END (b),
1897 NULL, NULL))))
1898 && (next = merge_blocks_move (s, b, c, mode)))
1900 b = next;
1901 changed_here = true;
1905 /* Simplify branch over branch. */
1906 if ((mode & CLEANUP_EXPENSIVE)
1907 && !(mode & CLEANUP_CFGLAYOUT)
1908 && try_simplify_condjump (b))
1909 changed_here = true;
1911 /* If B has a single outgoing edge, but uses a
1912 non-trivial jump instruction without side-effects, we
1913 can either delete the jump entirely, or replace it
1914 with a simple unconditional jump. */
1915 if (b->succ
1916 && ! b->succ->succ_next
1917 && b->succ->dest != EXIT_BLOCK_PTR
1918 && onlyjump_p (BB_END (b))
1919 && !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
1920 && try_redirect_by_replacing_jump (b->succ, b->succ->dest,
1921 (mode & CLEANUP_CFGLAYOUT) != 0))
1923 update_forwarder_flag (b);
1924 changed_here = true;
1927 /* Simplify branch to branch. */
1928 if (try_forward_edges (mode, b))
1929 changed_here = true;
1931 /* Look for shared code between blocks. */
1932 if ((mode & CLEANUP_CROSSJUMP)
1933 && try_crossjump_bb (mode, b))
1934 changed_here = true;
1936 /* Don't get confused by the index shift caused by
1937 deleting blocks. */
1938 if (!changed_here)
1939 b = b->next_bb;
1940 else
1941 changed = true;
1944 if ((mode & CLEANUP_CROSSJUMP)
1945 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
1946 changed = true;
1948 #ifdef ENABLE_CHECKING
1949 if (changed)
1950 verify_flow_info ();
1951 #endif
1953 changed_overall |= changed;
1954 first_pass = false;
1956 while (changed);
1959 if (mode & CLEANUP_CROSSJUMP)
1960 remove_fake_exit_edges ();
1962 clear_aux_for_blocks ();
1964 return changed_overall;
1967 /* Delete all unreachable basic blocks. */
1969 bool
1970 delete_unreachable_blocks (void)
1972 bool changed = false;
1973 basic_block b, next_bb;
1975 find_unreachable_blocks ();
1977 /* Delete all unreachable basic blocks. */
1979 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
1981 next_bb = b->next_bb;
1983 if (!(b->flags & BB_REACHABLE))
1985 delete_basic_block (b);
1986 changed = true;
1990 if (changed)
1991 tidy_fallthru_edges ();
1992 return changed;
1995 /* Merges sequential blocks if possible. */
1997 bool
1998 merge_seq_blocks (void)
2000 basic_block bb;
2001 bool changed = false;
2003 for (bb = ENTRY_BLOCK_PTR->next_bb; bb != EXIT_BLOCK_PTR; )
2005 if (bb->succ
2006 && !bb->succ->succ_next
2007 && can_merge_blocks_p (bb, bb->succ->dest))
2009 /* Merge the blocks and retry. */
2010 merge_blocks (bb, bb->succ->dest);
2011 changed = true;
2012 continue;
2015 bb = bb->next_bb;
2018 return changed;
2021 /* Tidy the CFG by deleting unreachable code and whatnot. */
2023 bool
2024 cleanup_cfg (int mode)
2026 bool changed = false;
2028 timevar_push (TV_CLEANUP_CFG);
2029 if (delete_unreachable_blocks ())
2031 changed = true;
2032 /* We've possibly created trivially dead code. Cleanup it right
2033 now to introduce more opportunities for try_optimize_cfg. */
2034 if (!(mode & (CLEANUP_NO_INSN_DEL | CLEANUP_UPDATE_LIFE))
2035 && !reload_completed)
2036 delete_trivially_dead_insns (get_insns(), max_reg_num ());
2039 compact_blocks ();
2041 while (try_optimize_cfg (mode))
2043 delete_unreachable_blocks (), changed = true;
2044 if (mode & CLEANUP_UPDATE_LIFE)
2046 /* Cleaning up CFG introduces more opportunities for dead code
2047 removal that in turn may introduce more opportunities for
2048 cleaning up the CFG. */
2049 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
2050 PROP_DEATH_NOTES
2051 | PROP_SCAN_DEAD_CODE
2052 | PROP_KILL_DEAD_CODE
2053 | ((mode & CLEANUP_LOG_LINKS)
2054 ? PROP_LOG_LINKS : 0)))
2055 break;
2057 else if (!(mode & CLEANUP_NO_INSN_DEL)
2058 && (mode & CLEANUP_EXPENSIVE)
2059 && !reload_completed)
2061 if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
2062 break;
2064 else
2065 break;
2066 delete_dead_jumptables ();
2069 /* Kill the data we won't maintain. */
2070 free_EXPR_LIST_list (&label_value_list);
2071 timevar_pop (TV_CLEANUP_CFG);
2073 return changed;