runtime: don't crash if signal handler info argument is nil
[official-gcc.git] / gcc / tree-ssa-math-opts.c
blobb28c808c55489ae1ae16c173d66c561c1897e6ab
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
28 that can be optimized to
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 by the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "backend.h"
91 #include "target.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "gimple.h"
95 #include "predict.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "ssa.h"
99 #include "optabs-tree.h"
100 #include "gimple-pretty-print.h"
101 #include "alias.h"
102 #include "fold-const.h"
103 #include "gimple-fold.h"
104 #include "gimple-iterator.h"
105 #include "gimplify.h"
106 #include "gimplify-me.h"
107 #include "stor-layout.h"
108 #include "tree-cfg.h"
109 #include "tree-dfa.h"
110 #include "tree-ssa.h"
111 #include "builtins.h"
112 #include "params.h"
113 #include "internal-fn.h"
114 #include "case-cfn-macros.h"
115 #include "optabs-libfuncs.h"
116 #include "tree-eh.h"
117 #include "targhooks.h"
119 /* This structure represents one basic block that either computes a
120 division, or is a common dominator for basic block that compute a
121 division. */
122 struct occurrence {
123 /* The basic block represented by this structure. */
124 basic_block bb;
126 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
127 inserted in BB. */
128 tree recip_def;
130 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
131 was inserted in BB. */
132 gimple *recip_def_stmt;
134 /* Pointer to a list of "struct occurrence"s for blocks dominated
135 by BB. */
136 struct occurrence *children;
138 /* Pointer to the next "struct occurrence"s in the list of blocks
139 sharing a common dominator. */
140 struct occurrence *next;
142 /* The number of divisions that are in BB before compute_merit. The
143 number of divisions that are in BB or post-dominate it after
144 compute_merit. */
145 int num_divisions;
147 /* True if the basic block has a division, false if it is a common
148 dominator for basic blocks that do. If it is false and trapping
149 math is active, BB is not a candidate for inserting a reciprocal. */
150 bool bb_has_division;
153 static struct
155 /* Number of 1.0/X ops inserted. */
156 int rdivs_inserted;
158 /* Number of 1.0/FUNC ops inserted. */
159 int rfuncs_inserted;
160 } reciprocal_stats;
162 static struct
164 /* Number of cexpi calls inserted. */
165 int inserted;
166 } sincos_stats;
168 static struct
170 /* Number of hand-written 16-bit nop / bswaps found. */
171 int found_16bit;
173 /* Number of hand-written 32-bit nop / bswaps found. */
174 int found_32bit;
176 /* Number of hand-written 64-bit nop / bswaps found. */
177 int found_64bit;
178 } nop_stats, bswap_stats;
180 static struct
182 /* Number of widening multiplication ops inserted. */
183 int widen_mults_inserted;
185 /* Number of integer multiply-and-accumulate ops inserted. */
186 int maccs_inserted;
188 /* Number of fp fused multiply-add ops inserted. */
189 int fmas_inserted;
191 /* Number of divmod calls inserted. */
192 int divmod_calls_inserted;
193 } widen_mul_stats;
195 /* The instance of "struct occurrence" representing the highest
196 interesting block in the dominator tree. */
197 static struct occurrence *occ_head;
199 /* Allocation pool for getting instances of "struct occurrence". */
200 static object_allocator<occurrence> *occ_pool;
204 /* Allocate and return a new struct occurrence for basic block BB, and
205 whose children list is headed by CHILDREN. */
206 static struct occurrence *
207 occ_new (basic_block bb, struct occurrence *children)
209 struct occurrence *occ;
211 bb->aux = occ = occ_pool->allocate ();
212 memset (occ, 0, sizeof (struct occurrence));
214 occ->bb = bb;
215 occ->children = children;
216 return occ;
220 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
221 list of "struct occurrence"s, one per basic block, having IDOM as
222 their common dominator.
224 We try to insert NEW_OCC as deep as possible in the tree, and we also
225 insert any other block that is a common dominator for BB and one
226 block already in the tree. */
228 static void
229 insert_bb (struct occurrence *new_occ, basic_block idom,
230 struct occurrence **p_head)
232 struct occurrence *occ, **p_occ;
234 for (p_occ = p_head; (occ = *p_occ) != NULL; )
236 basic_block bb = new_occ->bb, occ_bb = occ->bb;
237 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
238 if (dom == bb)
240 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
241 from its list. */
242 *p_occ = occ->next;
243 occ->next = new_occ->children;
244 new_occ->children = occ;
246 /* Try the next block (it may as well be dominated by BB). */
249 else if (dom == occ_bb)
251 /* OCC_BB dominates BB. Tail recurse to look deeper. */
252 insert_bb (new_occ, dom, &occ->children);
253 return;
256 else if (dom != idom)
258 gcc_assert (!dom->aux);
260 /* There is a dominator between IDOM and BB, add it and make
261 two children out of NEW_OCC and OCC. First, remove OCC from
262 its list. */
263 *p_occ = occ->next;
264 new_occ->next = occ;
265 occ->next = NULL;
267 /* None of the previous blocks has DOM as a dominator: if we tail
268 recursed, we would reexamine them uselessly. Just switch BB with
269 DOM, and go on looking for blocks dominated by DOM. */
270 new_occ = occ_new (dom, new_occ);
273 else
275 /* Nothing special, go on with the next element. */
276 p_occ = &occ->next;
280 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
281 new_occ->next = *p_head;
282 *p_head = new_occ;
285 /* Register that we found a division in BB. */
287 static inline void
288 register_division_in (basic_block bb)
290 struct occurrence *occ;
292 occ = (struct occurrence *) bb->aux;
293 if (!occ)
295 occ = occ_new (bb, NULL);
296 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
299 occ->bb_has_division = true;
300 occ->num_divisions++;
304 /* Compute the number of divisions that postdominate each block in OCC and
305 its children. */
307 static void
308 compute_merit (struct occurrence *occ)
310 struct occurrence *occ_child;
311 basic_block dom = occ->bb;
313 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
315 basic_block bb;
316 if (occ_child->children)
317 compute_merit (occ_child);
319 if (flag_exceptions)
320 bb = single_noncomplex_succ (dom);
321 else
322 bb = dom;
324 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
325 occ->num_divisions += occ_child->num_divisions;
330 /* Return whether USE_STMT is a floating-point division by DEF. */
331 static inline bool
332 is_division_by (gimple *use_stmt, tree def)
334 return is_gimple_assign (use_stmt)
335 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
336 && gimple_assign_rhs2 (use_stmt) == def
337 /* Do not recognize x / x as valid division, as we are getting
338 confused later by replacing all immediate uses x in such
339 a stmt. */
340 && gimple_assign_rhs1 (use_stmt) != def;
343 /* Walk the subset of the dominator tree rooted at OCC, setting the
344 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
345 the given basic block. The field may be left NULL, of course,
346 if it is not possible or profitable to do the optimization.
348 DEF_BSI is an iterator pointing at the statement defining DEF.
349 If RECIP_DEF is set, a dominator already has a computation that can
350 be used. */
352 static void
353 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
354 tree def, tree recip_def, int threshold)
356 tree type;
357 gassign *new_stmt;
358 gimple_stmt_iterator gsi;
359 struct occurrence *occ_child;
361 if (!recip_def
362 && (occ->bb_has_division || !flag_trapping_math)
363 && occ->num_divisions >= threshold)
365 /* Make a variable with the replacement and substitute it. */
366 type = TREE_TYPE (def);
367 recip_def = create_tmp_reg (type, "reciptmp");
368 new_stmt = gimple_build_assign (recip_def, RDIV_EXPR,
369 build_one_cst (type), def);
371 if (occ->bb_has_division)
373 /* Case 1: insert before an existing division. */
374 gsi = gsi_after_labels (occ->bb);
375 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
376 gsi_next (&gsi);
378 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
380 else if (def_gsi && occ->bb == def_gsi->bb)
382 /* Case 2: insert right after the definition. Note that this will
383 never happen if the definition statement can throw, because in
384 that case the sole successor of the statement's basic block will
385 dominate all the uses as well. */
386 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
388 else
390 /* Case 3: insert in a basic block not containing defs/uses. */
391 gsi = gsi_after_labels (occ->bb);
392 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
395 reciprocal_stats.rdivs_inserted++;
397 occ->recip_def_stmt = new_stmt;
400 occ->recip_def = recip_def;
401 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
402 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
406 /* Replace the division at USE_P with a multiplication by the reciprocal, if
407 possible. */
409 static inline void
410 replace_reciprocal (use_operand_p use_p)
412 gimple *use_stmt = USE_STMT (use_p);
413 basic_block bb = gimple_bb (use_stmt);
414 struct occurrence *occ = (struct occurrence *) bb->aux;
416 if (optimize_bb_for_speed_p (bb)
417 && occ->recip_def && use_stmt != occ->recip_def_stmt)
419 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
420 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
421 SET_USE (use_p, occ->recip_def);
422 fold_stmt_inplace (&gsi);
423 update_stmt (use_stmt);
428 /* Free OCC and return one more "struct occurrence" to be freed. */
430 static struct occurrence *
431 free_bb (struct occurrence *occ)
433 struct occurrence *child, *next;
435 /* First get the two pointers hanging off OCC. */
436 next = occ->next;
437 child = occ->children;
438 occ->bb->aux = NULL;
439 occ_pool->remove (occ);
441 /* Now ensure that we don't recurse unless it is necessary. */
442 if (!child)
443 return next;
444 else
446 while (next)
447 next = free_bb (next);
449 return child;
454 /* Look for floating-point divisions among DEF's uses, and try to
455 replace them by multiplications with the reciprocal. Add
456 as many statements computing the reciprocal as needed.
458 DEF must be a GIMPLE register of a floating-point type. */
460 static void
461 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
463 use_operand_p use_p;
464 imm_use_iterator use_iter;
465 struct occurrence *occ;
466 int count = 0, threshold;
468 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
470 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
472 gimple *use_stmt = USE_STMT (use_p);
473 if (is_division_by (use_stmt, def))
475 register_division_in (gimple_bb (use_stmt));
476 count++;
480 /* Do the expensive part only if we can hope to optimize something. */
481 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
482 if (count >= threshold)
484 gimple *use_stmt;
485 for (occ = occ_head; occ; occ = occ->next)
487 compute_merit (occ);
488 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
491 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
493 if (is_division_by (use_stmt, def))
495 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
496 replace_reciprocal (use_p);
501 for (occ = occ_head; occ; )
502 occ = free_bb (occ);
504 occ_head = NULL;
507 /* Return an internal function that implements the reciprocal of CALL,
508 or IFN_LAST if there is no such function that the target supports. */
510 internal_fn
511 internal_fn_reciprocal (gcall *call)
513 internal_fn ifn;
515 switch (gimple_call_combined_fn (call))
517 CASE_CFN_SQRT:
518 ifn = IFN_RSQRT;
519 break;
521 default:
522 return IFN_LAST;
525 tree_pair types = direct_internal_fn_types (ifn, call);
526 if (!direct_internal_fn_supported_p (ifn, types, OPTIMIZE_FOR_SPEED))
527 return IFN_LAST;
529 return ifn;
532 /* Go through all the floating-point SSA_NAMEs, and call
533 execute_cse_reciprocals_1 on each of them. */
534 namespace {
536 const pass_data pass_data_cse_reciprocals =
538 GIMPLE_PASS, /* type */
539 "recip", /* name */
540 OPTGROUP_NONE, /* optinfo_flags */
541 TV_NONE, /* tv_id */
542 PROP_ssa, /* properties_required */
543 0, /* properties_provided */
544 0, /* properties_destroyed */
545 0, /* todo_flags_start */
546 TODO_update_ssa, /* todo_flags_finish */
549 class pass_cse_reciprocals : public gimple_opt_pass
551 public:
552 pass_cse_reciprocals (gcc::context *ctxt)
553 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
556 /* opt_pass methods: */
557 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
558 virtual unsigned int execute (function *);
560 }; // class pass_cse_reciprocals
562 unsigned int
563 pass_cse_reciprocals::execute (function *fun)
565 basic_block bb;
566 tree arg;
568 occ_pool = new object_allocator<occurrence> ("dominators for recip");
570 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
571 calculate_dominance_info (CDI_DOMINATORS);
572 calculate_dominance_info (CDI_POST_DOMINATORS);
574 if (flag_checking)
575 FOR_EACH_BB_FN (bb, fun)
576 gcc_assert (!bb->aux);
578 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
579 if (FLOAT_TYPE_P (TREE_TYPE (arg))
580 && is_gimple_reg (arg))
582 tree name = ssa_default_def (fun, arg);
583 if (name)
584 execute_cse_reciprocals_1 (NULL, name);
587 FOR_EACH_BB_FN (bb, fun)
589 tree def;
591 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
592 gsi_next (&gsi))
594 gphi *phi = gsi.phi ();
595 def = PHI_RESULT (phi);
596 if (! virtual_operand_p (def)
597 && FLOAT_TYPE_P (TREE_TYPE (def)))
598 execute_cse_reciprocals_1 (NULL, def);
601 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
602 gsi_next (&gsi))
604 gimple *stmt = gsi_stmt (gsi);
606 if (gimple_has_lhs (stmt)
607 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
608 && FLOAT_TYPE_P (TREE_TYPE (def))
609 && TREE_CODE (def) == SSA_NAME)
610 execute_cse_reciprocals_1 (&gsi, def);
613 if (optimize_bb_for_size_p (bb))
614 continue;
616 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
617 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
618 gsi_next (&gsi))
620 gimple *stmt = gsi_stmt (gsi);
622 if (is_gimple_assign (stmt)
623 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
625 tree arg1 = gimple_assign_rhs2 (stmt);
626 gimple *stmt1;
628 if (TREE_CODE (arg1) != SSA_NAME)
629 continue;
631 stmt1 = SSA_NAME_DEF_STMT (arg1);
633 if (is_gimple_call (stmt1)
634 && gimple_call_lhs (stmt1))
636 bool fail;
637 imm_use_iterator ui;
638 use_operand_p use_p;
639 tree fndecl = NULL_TREE;
641 gcall *call = as_a <gcall *> (stmt1);
642 internal_fn ifn = internal_fn_reciprocal (call);
643 if (ifn == IFN_LAST)
645 fndecl = gimple_call_fndecl (call);
646 if (!fndecl
647 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_MD)
648 continue;
649 fndecl = targetm.builtin_reciprocal (fndecl);
650 if (!fndecl)
651 continue;
654 /* Check that all uses of the SSA name are divisions,
655 otherwise replacing the defining statement will do
656 the wrong thing. */
657 fail = false;
658 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
660 gimple *stmt2 = USE_STMT (use_p);
661 if (is_gimple_debug (stmt2))
662 continue;
663 if (!is_gimple_assign (stmt2)
664 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
665 || gimple_assign_rhs1 (stmt2) == arg1
666 || gimple_assign_rhs2 (stmt2) != arg1)
668 fail = true;
669 break;
672 if (fail)
673 continue;
675 gimple_replace_ssa_lhs (call, arg1);
676 if (gimple_call_internal_p (call) != (ifn != IFN_LAST))
678 auto_vec<tree, 4> args;
679 for (unsigned int i = 0;
680 i < gimple_call_num_args (call); i++)
681 args.safe_push (gimple_call_arg (call, i));
682 gcall *stmt2;
683 if (ifn == IFN_LAST)
684 stmt2 = gimple_build_call_vec (fndecl, args);
685 else
686 stmt2 = gimple_build_call_internal_vec (ifn, args);
687 gimple_call_set_lhs (stmt2, arg1);
688 if (gimple_vdef (call))
690 gimple_set_vdef (stmt2, gimple_vdef (call));
691 SSA_NAME_DEF_STMT (gimple_vdef (stmt2)) = stmt2;
693 gimple_set_vuse (stmt2, gimple_vuse (call));
694 gimple_stmt_iterator gsi2 = gsi_for_stmt (call);
695 gsi_replace (&gsi2, stmt2, true);
697 else
699 if (ifn == IFN_LAST)
700 gimple_call_set_fndecl (call, fndecl);
701 else
702 gimple_call_set_internal_fn (call, ifn);
703 update_stmt (call);
705 reciprocal_stats.rfuncs_inserted++;
707 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
709 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
710 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
711 fold_stmt_inplace (&gsi);
712 update_stmt (stmt);
719 statistics_counter_event (fun, "reciprocal divs inserted",
720 reciprocal_stats.rdivs_inserted);
721 statistics_counter_event (fun, "reciprocal functions inserted",
722 reciprocal_stats.rfuncs_inserted);
724 free_dominance_info (CDI_DOMINATORS);
725 free_dominance_info (CDI_POST_DOMINATORS);
726 delete occ_pool;
727 return 0;
730 } // anon namespace
732 gimple_opt_pass *
733 make_pass_cse_reciprocals (gcc::context *ctxt)
735 return new pass_cse_reciprocals (ctxt);
738 /* Records an occurrence at statement USE_STMT in the vector of trees
739 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
740 is not yet initialized. Returns true if the occurrence was pushed on
741 the vector. Adjusts *TOP_BB to be the basic block dominating all
742 statements in the vector. */
744 static bool
745 maybe_record_sincos (vec<gimple *> *stmts,
746 basic_block *top_bb, gimple *use_stmt)
748 basic_block use_bb = gimple_bb (use_stmt);
749 if (*top_bb
750 && (*top_bb == use_bb
751 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
752 stmts->safe_push (use_stmt);
753 else if (!*top_bb
754 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
756 stmts->safe_push (use_stmt);
757 *top_bb = use_bb;
759 else
760 return false;
762 return true;
765 /* Look for sin, cos and cexpi calls with the same argument NAME and
766 create a single call to cexpi CSEing the result in this case.
767 We first walk over all immediate uses of the argument collecting
768 statements that we can CSE in a vector and in a second pass replace
769 the statement rhs with a REALPART or IMAGPART expression on the
770 result of the cexpi call we insert before the use statement that
771 dominates all other candidates. */
773 static bool
774 execute_cse_sincos_1 (tree name)
776 gimple_stmt_iterator gsi;
777 imm_use_iterator use_iter;
778 tree fndecl, res, type;
779 gimple *def_stmt, *use_stmt, *stmt;
780 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
781 auto_vec<gimple *> stmts;
782 basic_block top_bb = NULL;
783 int i;
784 bool cfg_changed = false;
786 type = TREE_TYPE (name);
787 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
789 if (gimple_code (use_stmt) != GIMPLE_CALL
790 || !gimple_call_lhs (use_stmt))
791 continue;
793 switch (gimple_call_combined_fn (use_stmt))
795 CASE_CFN_COS:
796 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
797 break;
799 CASE_CFN_SIN:
800 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
801 break;
803 CASE_CFN_CEXPI:
804 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
805 break;
807 default:;
811 if (seen_cos + seen_sin + seen_cexpi <= 1)
812 return false;
814 /* Simply insert cexpi at the beginning of top_bb but not earlier than
815 the name def statement. */
816 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
817 if (!fndecl)
818 return false;
819 stmt = gimple_build_call (fndecl, 1, name);
820 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
821 gimple_call_set_lhs (stmt, res);
823 def_stmt = SSA_NAME_DEF_STMT (name);
824 if (!SSA_NAME_IS_DEFAULT_DEF (name)
825 && gimple_code (def_stmt) != GIMPLE_PHI
826 && gimple_bb (def_stmt) == top_bb)
828 gsi = gsi_for_stmt (def_stmt);
829 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
831 else
833 gsi = gsi_after_labels (top_bb);
834 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
836 sincos_stats.inserted++;
838 /* And adjust the recorded old call sites. */
839 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
841 tree rhs = NULL;
843 switch (gimple_call_combined_fn (use_stmt))
845 CASE_CFN_COS:
846 rhs = fold_build1 (REALPART_EXPR, type, res);
847 break;
849 CASE_CFN_SIN:
850 rhs = fold_build1 (IMAGPART_EXPR, type, res);
851 break;
853 CASE_CFN_CEXPI:
854 rhs = res;
855 break;
857 default:;
858 gcc_unreachable ();
861 /* Replace call with a copy. */
862 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
864 gsi = gsi_for_stmt (use_stmt);
865 gsi_replace (&gsi, stmt, true);
866 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
867 cfg_changed = true;
870 return cfg_changed;
873 /* To evaluate powi(x,n), the floating point value x raised to the
874 constant integer exponent n, we use a hybrid algorithm that
875 combines the "window method" with look-up tables. For an
876 introduction to exponentiation algorithms and "addition chains",
877 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
878 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
879 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
880 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
882 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
883 multiplications to inline before calling the system library's pow
884 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
885 so this default never requires calling pow, powf or powl. */
887 #ifndef POWI_MAX_MULTS
888 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
889 #endif
891 /* The size of the "optimal power tree" lookup table. All
892 exponents less than this value are simply looked up in the
893 powi_table below. This threshold is also used to size the
894 cache of pseudo registers that hold intermediate results. */
895 #define POWI_TABLE_SIZE 256
897 /* The size, in bits of the window, used in the "window method"
898 exponentiation algorithm. This is equivalent to a radix of
899 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
900 #define POWI_WINDOW_SIZE 3
902 /* The following table is an efficient representation of an
903 "optimal power tree". For each value, i, the corresponding
904 value, j, in the table states than an optimal evaluation
905 sequence for calculating pow(x,i) can be found by evaluating
906 pow(x,j)*pow(x,i-j). An optimal power tree for the first
907 100 integers is given in Knuth's "Seminumerical algorithms". */
909 static const unsigned char powi_table[POWI_TABLE_SIZE] =
911 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
912 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
913 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
914 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
915 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
916 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
917 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
918 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
919 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
920 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
921 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
922 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
923 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
924 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
925 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
926 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
927 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
928 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
929 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
930 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
931 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
932 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
933 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
934 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
935 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
936 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
937 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
938 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
939 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
940 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
941 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
942 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
946 /* Return the number of multiplications required to calculate
947 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
948 subroutine of powi_cost. CACHE is an array indicating
949 which exponents have already been calculated. */
951 static int
952 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
954 /* If we've already calculated this exponent, then this evaluation
955 doesn't require any additional multiplications. */
956 if (cache[n])
957 return 0;
959 cache[n] = true;
960 return powi_lookup_cost (n - powi_table[n], cache)
961 + powi_lookup_cost (powi_table[n], cache) + 1;
964 /* Return the number of multiplications required to calculate
965 powi(x,n) for an arbitrary x, given the exponent N. This
966 function needs to be kept in sync with powi_as_mults below. */
968 static int
969 powi_cost (HOST_WIDE_INT n)
971 bool cache[POWI_TABLE_SIZE];
972 unsigned HOST_WIDE_INT digit;
973 unsigned HOST_WIDE_INT val;
974 int result;
976 if (n == 0)
977 return 0;
979 /* Ignore the reciprocal when calculating the cost. */
980 val = (n < 0) ? -n : n;
982 /* Initialize the exponent cache. */
983 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
984 cache[1] = true;
986 result = 0;
988 while (val >= POWI_TABLE_SIZE)
990 if (val & 1)
992 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
993 result += powi_lookup_cost (digit, cache)
994 + POWI_WINDOW_SIZE + 1;
995 val >>= POWI_WINDOW_SIZE;
997 else
999 val >>= 1;
1000 result++;
1004 return result + powi_lookup_cost (val, cache);
1007 /* Recursive subroutine of powi_as_mults. This function takes the
1008 array, CACHE, of already calculated exponents and an exponent N and
1009 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
1011 static tree
1012 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
1013 HOST_WIDE_INT n, tree *cache)
1015 tree op0, op1, ssa_target;
1016 unsigned HOST_WIDE_INT digit;
1017 gassign *mult_stmt;
1019 if (n < POWI_TABLE_SIZE && cache[n])
1020 return cache[n];
1022 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
1024 if (n < POWI_TABLE_SIZE)
1026 cache[n] = ssa_target;
1027 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
1028 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
1030 else if (n & 1)
1032 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
1033 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
1034 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
1036 else
1038 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
1039 op1 = op0;
1042 mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1);
1043 gimple_set_location (mult_stmt, loc);
1044 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1046 return ssa_target;
1049 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1050 This function needs to be kept in sync with powi_cost above. */
1052 static tree
1053 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1054 tree arg0, HOST_WIDE_INT n)
1056 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1057 gassign *div_stmt;
1058 tree target;
1060 if (n == 0)
1061 return build_real (type, dconst1);
1063 memset (cache, 0, sizeof (cache));
1064 cache[1] = arg0;
1066 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1067 if (n >= 0)
1068 return result;
1070 /* If the original exponent was negative, reciprocate the result. */
1071 target = make_temp_ssa_name (type, NULL, "powmult");
1072 div_stmt = gimple_build_assign (target, RDIV_EXPR,
1073 build_real (type, dconst1), result);
1074 gimple_set_location (div_stmt, loc);
1075 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1077 return target;
1080 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1081 location info LOC. If the arguments are appropriate, create an
1082 equivalent sequence of statements prior to GSI using an optimal
1083 number of multiplications, and return an expession holding the
1084 result. */
1086 static tree
1087 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1088 tree arg0, HOST_WIDE_INT n)
1090 /* Avoid largest negative number. */
1091 if (n != -n
1092 && ((n >= -1 && n <= 2)
1093 || (optimize_function_for_speed_p (cfun)
1094 && powi_cost (n) <= POWI_MAX_MULTS)))
1095 return powi_as_mults (gsi, loc, arg0, n);
1097 return NULL_TREE;
1100 /* Build a gimple call statement that calls FN with argument ARG.
1101 Set the lhs of the call statement to a fresh SSA name. Insert the
1102 statement prior to GSI's current position, and return the fresh
1103 SSA name. */
1105 static tree
1106 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1107 tree fn, tree arg)
1109 gcall *call_stmt;
1110 tree ssa_target;
1112 call_stmt = gimple_build_call (fn, 1, arg);
1113 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1114 gimple_set_lhs (call_stmt, ssa_target);
1115 gimple_set_location (call_stmt, loc);
1116 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1118 return ssa_target;
1121 /* Build a gimple binary operation with the given CODE and arguments
1122 ARG0, ARG1, assigning the result to a new SSA name for variable
1123 TARGET. Insert the statement prior to GSI's current position, and
1124 return the fresh SSA name.*/
1126 static tree
1127 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1128 const char *name, enum tree_code code,
1129 tree arg0, tree arg1)
1131 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1132 gassign *stmt = gimple_build_assign (result, code, arg0, arg1);
1133 gimple_set_location (stmt, loc);
1134 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1135 return result;
1138 /* Build a gimple reference operation with the given CODE and argument
1139 ARG, assigning the result to a new SSA name of TYPE with NAME.
1140 Insert the statement prior to GSI's current position, and return
1141 the fresh SSA name. */
1143 static inline tree
1144 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1145 const char *name, enum tree_code code, tree arg0)
1147 tree result = make_temp_ssa_name (type, NULL, name);
1148 gimple *stmt = gimple_build_assign (result, build1 (code, type, arg0));
1149 gimple_set_location (stmt, loc);
1150 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1151 return result;
1154 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1155 prior to GSI's current position, and return the fresh SSA name. */
1157 static tree
1158 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1159 tree type, tree val)
1161 tree result = make_ssa_name (type);
1162 gassign *stmt = gimple_build_assign (result, NOP_EXPR, val);
1163 gimple_set_location (stmt, loc);
1164 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1165 return result;
1168 struct pow_synth_sqrt_info
1170 bool *factors;
1171 unsigned int deepest;
1172 unsigned int num_mults;
1175 /* Return true iff the real value C can be represented as a
1176 sum of powers of 0.5 up to N. That is:
1177 C == SUM<i from 1..N> (a[i]*(0.5**i)) where a[i] is either 0 or 1.
1178 Record in INFO the various parameters of the synthesis algorithm such
1179 as the factors a[i], the maximum 0.5 power and the number of
1180 multiplications that will be required. */
1182 bool
1183 representable_as_half_series_p (REAL_VALUE_TYPE c, unsigned n,
1184 struct pow_synth_sqrt_info *info)
1186 REAL_VALUE_TYPE factor = dconsthalf;
1187 REAL_VALUE_TYPE remainder = c;
1189 info->deepest = 0;
1190 info->num_mults = 0;
1191 memset (info->factors, 0, n * sizeof (bool));
1193 for (unsigned i = 0; i < n; i++)
1195 REAL_VALUE_TYPE res;
1197 /* If something inexact happened bail out now. */
1198 if (real_arithmetic (&res, MINUS_EXPR, &remainder, &factor))
1199 return false;
1201 /* We have hit zero. The number is representable as a sum
1202 of powers of 0.5. */
1203 if (real_equal (&res, &dconst0))
1205 info->factors[i] = true;
1206 info->deepest = i + 1;
1207 return true;
1209 else if (!REAL_VALUE_NEGATIVE (res))
1211 remainder = res;
1212 info->factors[i] = true;
1213 info->num_mults++;
1215 else
1216 info->factors[i] = false;
1218 real_arithmetic (&factor, MULT_EXPR, &factor, &dconsthalf);
1220 return false;
1223 /* Return the tree corresponding to FN being applied
1224 to ARG N times at GSI and LOC.
1225 Look up previous results from CACHE if need be.
1226 cache[0] should contain just plain ARG i.e. FN applied to ARG 0 times. */
1228 static tree
1229 get_fn_chain (tree arg, unsigned int n, gimple_stmt_iterator *gsi,
1230 tree fn, location_t loc, tree *cache)
1232 tree res = cache[n];
1233 if (!res)
1235 tree prev = get_fn_chain (arg, n - 1, gsi, fn, loc, cache);
1236 res = build_and_insert_call (gsi, loc, fn, prev);
1237 cache[n] = res;
1240 return res;
1243 /* Print to STREAM the repeated application of function FNAME to ARG
1244 N times. So, for FNAME = "foo", ARG = "x", N = 2 it would print:
1245 "foo (foo (x))". */
1247 static void
1248 print_nested_fn (FILE* stream, const char *fname, const char* arg,
1249 unsigned int n)
1251 if (n == 0)
1252 fprintf (stream, "%s", arg);
1253 else
1255 fprintf (stream, "%s (", fname);
1256 print_nested_fn (stream, fname, arg, n - 1);
1257 fprintf (stream, ")");
1261 /* Print to STREAM the fractional sequence of sqrt chains
1262 applied to ARG, described by INFO. Used for the dump file. */
1264 static void
1265 dump_fractional_sqrt_sequence (FILE *stream, const char *arg,
1266 struct pow_synth_sqrt_info *info)
1268 for (unsigned int i = 0; i < info->deepest; i++)
1270 bool is_set = info->factors[i];
1271 if (is_set)
1273 print_nested_fn (stream, "sqrt", arg, i + 1);
1274 if (i != info->deepest - 1)
1275 fprintf (stream, " * ");
1280 /* Print to STREAM a representation of raising ARG to an integer
1281 power N. Used for the dump file. */
1283 static void
1284 dump_integer_part (FILE *stream, const char* arg, HOST_WIDE_INT n)
1286 if (n > 1)
1287 fprintf (stream, "powi (%s, " HOST_WIDE_INT_PRINT_DEC ")", arg, n);
1288 else if (n == 1)
1289 fprintf (stream, "%s", arg);
1292 /* Attempt to synthesize a POW[F] (ARG0, ARG1) call using chains of
1293 square roots. Place at GSI and LOC. Limit the maximum depth
1294 of the sqrt chains to MAX_DEPTH. Return the tree holding the
1295 result of the expanded sequence or NULL_TREE if the expansion failed.
1297 This routine assumes that ARG1 is a real number with a fractional part
1298 (the integer exponent case will have been handled earlier in
1299 gimple_expand_builtin_pow).
1301 For ARG1 > 0.0:
1302 * For ARG1 composed of a whole part WHOLE_PART and a fractional part
1303 FRAC_PART i.e. WHOLE_PART == floor (ARG1) and
1304 FRAC_PART == ARG1 - WHOLE_PART:
1305 Produce POWI (ARG0, WHOLE_PART) * POW (ARG0, FRAC_PART) where
1306 POW (ARG0, FRAC_PART) is expanded as a product of square root chains
1307 if it can be expressed as such, that is if FRAC_PART satisfies:
1308 FRAC_PART == <SUM from i = 1 until MAX_DEPTH> (a[i] * (0.5**i))
1309 where integer a[i] is either 0 or 1.
1311 Example:
1312 POW (x, 3.625) == POWI (x, 3) * POW (x, 0.625)
1313 --> POWI (x, 3) * SQRT (x) * SQRT (SQRT (SQRT (x)))
1315 For ARG1 < 0.0 there are two approaches:
1316 * (A) Expand to 1.0 / POW (ARG0, -ARG1) where POW (ARG0, -ARG1)
1317 is calculated as above.
1319 Example:
1320 POW (x, -5.625) == 1.0 / POW (x, 5.625)
1321 --> 1.0 / (POWI (x, 5) * SQRT (x) * SQRT (SQRT (SQRT (x))))
1323 * (B) : WHOLE_PART := - ceil (abs (ARG1))
1324 FRAC_PART := ARG1 - WHOLE_PART
1325 and expand to POW (x, FRAC_PART) / POWI (x, WHOLE_PART).
1326 Example:
1327 POW (x, -5.875) == POW (x, 0.125) / POWI (X, 6)
1328 --> SQRT (SQRT (SQRT (x))) / (POWI (x, 6))
1330 For ARG1 < 0.0 we choose between (A) and (B) depending on
1331 how many multiplications we'd have to do.
1332 So, for the example in (B): POW (x, -5.875), if we were to
1333 follow algorithm (A) we would produce:
1334 1.0 / POWI (X, 5) * SQRT (X) * SQRT (SQRT (X)) * SQRT (SQRT (SQRT (X)))
1335 which contains more multiplications than approach (B).
1337 Hopefully, this approach will eliminate potentially expensive POW library
1338 calls when unsafe floating point math is enabled and allow the compiler to
1339 further optimise the multiplies, square roots and divides produced by this
1340 function. */
1342 static tree
1343 expand_pow_as_sqrts (gimple_stmt_iterator *gsi, location_t loc,
1344 tree arg0, tree arg1, HOST_WIDE_INT max_depth)
1346 tree type = TREE_TYPE (arg0);
1347 machine_mode mode = TYPE_MODE (type);
1348 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1349 bool one_over = true;
1351 if (!sqrtfn)
1352 return NULL_TREE;
1354 if (TREE_CODE (arg1) != REAL_CST)
1355 return NULL_TREE;
1357 REAL_VALUE_TYPE exp_init = TREE_REAL_CST (arg1);
1359 gcc_assert (max_depth > 0);
1360 tree *cache = XALLOCAVEC (tree, max_depth + 1);
1362 struct pow_synth_sqrt_info synth_info;
1363 synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1364 synth_info.deepest = 0;
1365 synth_info.num_mults = 0;
1367 bool neg_exp = REAL_VALUE_NEGATIVE (exp_init);
1368 REAL_VALUE_TYPE exp = real_value_abs (&exp_init);
1370 /* The whole and fractional parts of exp. */
1371 REAL_VALUE_TYPE whole_part;
1372 REAL_VALUE_TYPE frac_part;
1374 real_floor (&whole_part, mode, &exp);
1375 real_arithmetic (&frac_part, MINUS_EXPR, &exp, &whole_part);
1378 REAL_VALUE_TYPE ceil_whole = dconst0;
1379 REAL_VALUE_TYPE ceil_fract = dconst0;
1381 if (neg_exp)
1383 real_ceil (&ceil_whole, mode, &exp);
1384 real_arithmetic (&ceil_fract, MINUS_EXPR, &ceil_whole, &exp);
1387 if (!representable_as_half_series_p (frac_part, max_depth, &synth_info))
1388 return NULL_TREE;
1390 /* Check whether it's more profitable to not use 1.0 / ... */
1391 if (neg_exp)
1393 struct pow_synth_sqrt_info alt_synth_info;
1394 alt_synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1395 alt_synth_info.deepest = 0;
1396 alt_synth_info.num_mults = 0;
1398 if (representable_as_half_series_p (ceil_fract, max_depth,
1399 &alt_synth_info)
1400 && alt_synth_info.deepest <= synth_info.deepest
1401 && alt_synth_info.num_mults < synth_info.num_mults)
1403 whole_part = ceil_whole;
1404 frac_part = ceil_fract;
1405 synth_info.deepest = alt_synth_info.deepest;
1406 synth_info.num_mults = alt_synth_info.num_mults;
1407 memcpy (synth_info.factors, alt_synth_info.factors,
1408 (max_depth + 1) * sizeof (bool));
1409 one_over = false;
1413 HOST_WIDE_INT n = real_to_integer (&whole_part);
1414 REAL_VALUE_TYPE cint;
1415 real_from_integer (&cint, VOIDmode, n, SIGNED);
1417 if (!real_identical (&whole_part, &cint))
1418 return NULL_TREE;
1420 if (powi_cost (n) + synth_info.num_mults > POWI_MAX_MULTS)
1421 return NULL_TREE;
1423 memset (cache, 0, (max_depth + 1) * sizeof (tree));
1425 tree integer_res = n == 0 ? build_real (type, dconst1) : arg0;
1427 /* Calculate the integer part of the exponent. */
1428 if (n > 1)
1430 integer_res = gimple_expand_builtin_powi (gsi, loc, arg0, n);
1431 if (!integer_res)
1432 return NULL_TREE;
1435 if (dump_file)
1437 char string[64];
1439 real_to_decimal (string, &exp_init, sizeof (string), 0, 1);
1440 fprintf (dump_file, "synthesizing pow (x, %s) as:\n", string);
1442 if (neg_exp)
1444 if (one_over)
1446 fprintf (dump_file, "1.0 / (");
1447 dump_integer_part (dump_file, "x", n);
1448 if (n > 0)
1449 fprintf (dump_file, " * ");
1450 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1451 fprintf (dump_file, ")");
1453 else
1455 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1456 fprintf (dump_file, " / (");
1457 dump_integer_part (dump_file, "x", n);
1458 fprintf (dump_file, ")");
1461 else
1463 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1464 if (n > 0)
1465 fprintf (dump_file, " * ");
1466 dump_integer_part (dump_file, "x", n);
1469 fprintf (dump_file, "\ndeepest sqrt chain: %d\n", synth_info.deepest);
1473 tree fract_res = NULL_TREE;
1474 cache[0] = arg0;
1476 /* Calculate the fractional part of the exponent. */
1477 for (unsigned i = 0; i < synth_info.deepest; i++)
1479 if (synth_info.factors[i])
1481 tree sqrt_chain = get_fn_chain (arg0, i + 1, gsi, sqrtfn, loc, cache);
1483 if (!fract_res)
1484 fract_res = sqrt_chain;
1486 else
1487 fract_res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1488 fract_res, sqrt_chain);
1492 tree res = NULL_TREE;
1494 if (neg_exp)
1496 if (one_over)
1498 if (n > 0)
1499 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1500 fract_res, integer_res);
1501 else
1502 res = fract_res;
1504 res = build_and_insert_binop (gsi, loc, "powrootrecip", RDIV_EXPR,
1505 build_real (type, dconst1), res);
1507 else
1509 res = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1510 fract_res, integer_res);
1513 else
1514 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1515 fract_res, integer_res);
1516 return res;
1519 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1520 with location info LOC. If possible, create an equivalent and
1521 less expensive sequence of statements prior to GSI, and return an
1522 expession holding the result. */
1524 static tree
1525 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1526 tree arg0, tree arg1)
1528 REAL_VALUE_TYPE c, cint, dconst1_3, dconst1_4, dconst1_6;
1529 REAL_VALUE_TYPE c2, dconst3;
1530 HOST_WIDE_INT n;
1531 tree type, sqrtfn, cbrtfn, sqrt_arg0, result, cbrt_x, powi_cbrt_x;
1532 machine_mode mode;
1533 bool speed_p = optimize_bb_for_speed_p (gsi_bb (*gsi));
1534 bool hw_sqrt_exists, c_is_int, c2_is_int;
1536 dconst1_4 = dconst1;
1537 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1539 /* If the exponent isn't a constant, there's nothing of interest
1540 to be done. */
1541 if (TREE_CODE (arg1) != REAL_CST)
1542 return NULL_TREE;
1544 /* Don't perform the operation if flag_signaling_nans is on
1545 and the operand is a signaling NaN. */
1546 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
1547 && ((TREE_CODE (arg0) == REAL_CST
1548 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0)))
1549 || REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1))))
1550 return NULL_TREE;
1552 /* If the exponent is equivalent to an integer, expand to an optimal
1553 multiplication sequence when profitable. */
1554 c = TREE_REAL_CST (arg1);
1555 n = real_to_integer (&c);
1556 real_from_integer (&cint, VOIDmode, n, SIGNED);
1557 c_is_int = real_identical (&c, &cint);
1559 if (c_is_int
1560 && ((n >= -1 && n <= 2)
1561 || (flag_unsafe_math_optimizations
1562 && speed_p
1563 && powi_cost (n) <= POWI_MAX_MULTS)))
1564 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1566 /* Attempt various optimizations using sqrt and cbrt. */
1567 type = TREE_TYPE (arg0);
1568 mode = TYPE_MODE (type);
1569 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1571 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1572 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1573 sqrt(-0) = -0. */
1574 if (sqrtfn
1575 && real_equal (&c, &dconsthalf)
1576 && !HONOR_SIGNED_ZEROS (mode))
1577 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1579 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1581 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1582 optimizations since 1./3. is not exactly representable. If x
1583 is negative and finite, the correct value of pow(x,1./3.) is
1584 a NaN with the "invalid" exception raised, because the value
1585 of 1./3. actually has an even denominator. The correct value
1586 of cbrt(x) is a negative real value. */
1587 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1588 dconst1_3 = real_value_truncate (mode, dconst_third ());
1590 if (flag_unsafe_math_optimizations
1591 && cbrtfn
1592 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1593 && real_equal (&c, &dconst1_3))
1594 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1596 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1597 if we don't have a hardware sqrt insn. */
1598 dconst1_6 = dconst1_3;
1599 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1601 if (flag_unsafe_math_optimizations
1602 && sqrtfn
1603 && cbrtfn
1604 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1605 && speed_p
1606 && hw_sqrt_exists
1607 && real_equal (&c, &dconst1_6))
1609 /* sqrt(x) */
1610 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1612 /* cbrt(sqrt(x)) */
1613 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1617 /* Attempt to expand the POW as a product of square root chains.
1618 Expand the 0.25 case even when otpimising for size. */
1619 if (flag_unsafe_math_optimizations
1620 && sqrtfn
1621 && hw_sqrt_exists
1622 && (speed_p || real_equal (&c, &dconst1_4))
1623 && !HONOR_SIGNED_ZEROS (mode))
1625 unsigned int max_depth = speed_p
1626 ? PARAM_VALUE (PARAM_MAX_POW_SQRT_DEPTH)
1627 : 2;
1629 tree expand_with_sqrts
1630 = expand_pow_as_sqrts (gsi, loc, arg0, arg1, max_depth);
1632 if (expand_with_sqrts)
1633 return expand_with_sqrts;
1636 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1637 n = real_to_integer (&c2);
1638 real_from_integer (&cint, VOIDmode, n, SIGNED);
1639 c2_is_int = real_identical (&c2, &cint);
1641 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1643 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1644 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1646 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1647 different from pow(x, 1./3.) due to rounding and behavior with
1648 negative x, we need to constrain this transformation to unsafe
1649 math and positive x or finite math. */
1650 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1651 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1652 real_round (&c2, mode, &c2);
1653 n = real_to_integer (&c2);
1654 real_from_integer (&cint, VOIDmode, n, SIGNED);
1655 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1656 real_convert (&c2, mode, &c2);
1658 if (flag_unsafe_math_optimizations
1659 && cbrtfn
1660 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1661 && real_identical (&c2, &c)
1662 && !c2_is_int
1663 && optimize_function_for_speed_p (cfun)
1664 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1666 tree powi_x_ndiv3 = NULL_TREE;
1668 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1669 possible or profitable, give up. Skip the degenerate case when
1670 abs(n) < 3, where the result is always 1. */
1671 if (absu_hwi (n) >= 3)
1673 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1674 abs_hwi (n / 3));
1675 if (!powi_x_ndiv3)
1676 return NULL_TREE;
1679 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1680 as that creates an unnecessary variable. Instead, just produce
1681 either cbrt(x) or cbrt(x) * cbrt(x). */
1682 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1684 if (absu_hwi (n) % 3 == 1)
1685 powi_cbrt_x = cbrt_x;
1686 else
1687 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1688 cbrt_x, cbrt_x);
1690 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1691 if (absu_hwi (n) < 3)
1692 result = powi_cbrt_x;
1693 else
1694 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1695 powi_x_ndiv3, powi_cbrt_x);
1697 /* If n is negative, reciprocate the result. */
1698 if (n < 0)
1699 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1700 build_real (type, dconst1), result);
1702 return result;
1705 /* No optimizations succeeded. */
1706 return NULL_TREE;
1709 /* ARG is the argument to a cabs builtin call in GSI with location info
1710 LOC. Create a sequence of statements prior to GSI that calculates
1711 sqrt(R*R + I*I), where R and I are the real and imaginary components
1712 of ARG, respectively. Return an expression holding the result. */
1714 static tree
1715 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1717 tree real_part, imag_part, addend1, addend2, sum, result;
1718 tree type = TREE_TYPE (TREE_TYPE (arg));
1719 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1720 machine_mode mode = TYPE_MODE (type);
1722 if (!flag_unsafe_math_optimizations
1723 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1724 || !sqrtfn
1725 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1726 return NULL_TREE;
1728 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1729 REALPART_EXPR, arg);
1730 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1731 real_part, real_part);
1732 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1733 IMAGPART_EXPR, arg);
1734 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1735 imag_part, imag_part);
1736 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1737 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1739 return result;
1742 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1743 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1744 an optimal number of multiplies, when n is a constant. */
1746 namespace {
1748 const pass_data pass_data_cse_sincos =
1750 GIMPLE_PASS, /* type */
1751 "sincos", /* name */
1752 OPTGROUP_NONE, /* optinfo_flags */
1753 TV_NONE, /* tv_id */
1754 PROP_ssa, /* properties_required */
1755 PROP_gimple_opt_math, /* properties_provided */
1756 0, /* properties_destroyed */
1757 0, /* todo_flags_start */
1758 TODO_update_ssa, /* todo_flags_finish */
1761 class pass_cse_sincos : public gimple_opt_pass
1763 public:
1764 pass_cse_sincos (gcc::context *ctxt)
1765 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1768 /* opt_pass methods: */
1769 virtual bool gate (function *)
1771 /* We no longer require either sincos or cexp, since powi expansion
1772 piggybacks on this pass. */
1773 return optimize;
1776 virtual unsigned int execute (function *);
1778 }; // class pass_cse_sincos
1780 unsigned int
1781 pass_cse_sincos::execute (function *fun)
1783 basic_block bb;
1784 bool cfg_changed = false;
1786 calculate_dominance_info (CDI_DOMINATORS);
1787 memset (&sincos_stats, 0, sizeof (sincos_stats));
1789 FOR_EACH_BB_FN (bb, fun)
1791 gimple_stmt_iterator gsi;
1792 bool cleanup_eh = false;
1794 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1796 gimple *stmt = gsi_stmt (gsi);
1798 /* Only the last stmt in a bb could throw, no need to call
1799 gimple_purge_dead_eh_edges if we change something in the middle
1800 of a basic block. */
1801 cleanup_eh = false;
1803 if (is_gimple_call (stmt)
1804 && gimple_call_lhs (stmt))
1806 tree arg, arg0, arg1, result;
1807 HOST_WIDE_INT n;
1808 location_t loc;
1810 switch (gimple_call_combined_fn (stmt))
1812 CASE_CFN_COS:
1813 CASE_CFN_SIN:
1814 CASE_CFN_CEXPI:
1815 /* Make sure we have either sincos or cexp. */
1816 if (!targetm.libc_has_function (function_c99_math_complex)
1817 && !targetm.libc_has_function (function_sincos))
1818 break;
1820 arg = gimple_call_arg (stmt, 0);
1821 if (TREE_CODE (arg) == SSA_NAME)
1822 cfg_changed |= execute_cse_sincos_1 (arg);
1823 break;
1825 CASE_CFN_POW:
1826 arg0 = gimple_call_arg (stmt, 0);
1827 arg1 = gimple_call_arg (stmt, 1);
1829 loc = gimple_location (stmt);
1830 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1832 if (result)
1834 tree lhs = gimple_get_lhs (stmt);
1835 gassign *new_stmt = gimple_build_assign (lhs, result);
1836 gimple_set_location (new_stmt, loc);
1837 unlink_stmt_vdef (stmt);
1838 gsi_replace (&gsi, new_stmt, true);
1839 cleanup_eh = true;
1840 if (gimple_vdef (stmt))
1841 release_ssa_name (gimple_vdef (stmt));
1843 break;
1845 CASE_CFN_POWI:
1846 arg0 = gimple_call_arg (stmt, 0);
1847 arg1 = gimple_call_arg (stmt, 1);
1848 loc = gimple_location (stmt);
1850 if (real_minus_onep (arg0))
1852 tree t0, t1, cond, one, minus_one;
1853 gassign *stmt;
1855 t0 = TREE_TYPE (arg0);
1856 t1 = TREE_TYPE (arg1);
1857 one = build_real (t0, dconst1);
1858 minus_one = build_real (t0, dconstm1);
1860 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1861 stmt = gimple_build_assign (cond, BIT_AND_EXPR,
1862 arg1, build_int_cst (t1, 1));
1863 gimple_set_location (stmt, loc);
1864 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1866 result = make_temp_ssa_name (t0, NULL, "powi");
1867 stmt = gimple_build_assign (result, COND_EXPR, cond,
1868 minus_one, one);
1869 gimple_set_location (stmt, loc);
1870 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1872 else
1874 if (!tree_fits_shwi_p (arg1))
1875 break;
1877 n = tree_to_shwi (arg1);
1878 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1881 if (result)
1883 tree lhs = gimple_get_lhs (stmt);
1884 gassign *new_stmt = gimple_build_assign (lhs, result);
1885 gimple_set_location (new_stmt, loc);
1886 unlink_stmt_vdef (stmt);
1887 gsi_replace (&gsi, new_stmt, true);
1888 cleanup_eh = true;
1889 if (gimple_vdef (stmt))
1890 release_ssa_name (gimple_vdef (stmt));
1892 break;
1894 CASE_CFN_CABS:
1895 arg0 = gimple_call_arg (stmt, 0);
1896 loc = gimple_location (stmt);
1897 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1899 if (result)
1901 tree lhs = gimple_get_lhs (stmt);
1902 gassign *new_stmt = gimple_build_assign (lhs, result);
1903 gimple_set_location (new_stmt, loc);
1904 unlink_stmt_vdef (stmt);
1905 gsi_replace (&gsi, new_stmt, true);
1906 cleanup_eh = true;
1907 if (gimple_vdef (stmt))
1908 release_ssa_name (gimple_vdef (stmt));
1910 break;
1912 default:;
1916 if (cleanup_eh)
1917 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1920 statistics_counter_event (fun, "sincos statements inserted",
1921 sincos_stats.inserted);
1923 return cfg_changed ? TODO_cleanup_cfg : 0;
1926 } // anon namespace
1928 gimple_opt_pass *
1929 make_pass_cse_sincos (gcc::context *ctxt)
1931 return new pass_cse_sincos (ctxt);
1934 /* A symbolic number is used to detect byte permutation and selection
1935 patterns. Therefore the field N contains an artificial number
1936 consisting of octet sized markers:
1938 0 - target byte has the value 0
1939 FF - target byte has an unknown value (eg. due to sign extension)
1940 1..size - marker value is the target byte index minus one.
1942 To detect permutations on memory sources (arrays and structures), a symbolic
1943 number is also associated a base address (the array or structure the load is
1944 made from), an offset from the base address and a range which gives the
1945 difference between the highest and lowest accessed memory location to make
1946 such a symbolic number. The range is thus different from size which reflects
1947 the size of the type of current expression. Note that for non memory source,
1948 range holds the same value as size.
1950 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1951 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1952 still have a size of 2 but this time a range of 1. */
1954 struct symbolic_number {
1955 uint64_t n;
1956 tree type;
1957 tree base_addr;
1958 tree offset;
1959 HOST_WIDE_INT bytepos;
1960 tree alias_set;
1961 tree vuse;
1962 unsigned HOST_WIDE_INT range;
1965 #define BITS_PER_MARKER 8
1966 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1967 #define MARKER_BYTE_UNKNOWN MARKER_MASK
1968 #define HEAD_MARKER(n, size) \
1969 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
1971 /* The number which the find_bswap_or_nop_1 result should match in
1972 order to have a nop. The number is masked according to the size of
1973 the symbolic number before using it. */
1974 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1975 (uint64_t)0x08070605 << 32 | 0x04030201)
1977 /* The number which the find_bswap_or_nop_1 result should match in
1978 order to have a byte swap. The number is masked according to the
1979 size of the symbolic number before using it. */
1980 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1981 (uint64_t)0x01020304 << 32 | 0x05060708)
1983 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1984 number N. Return false if the requested operation is not permitted
1985 on a symbolic number. */
1987 static inline bool
1988 do_shift_rotate (enum tree_code code,
1989 struct symbolic_number *n,
1990 int count)
1992 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1993 unsigned head_marker;
1995 if (count % BITS_PER_UNIT != 0)
1996 return false;
1997 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
1999 /* Zero out the extra bits of N in order to avoid them being shifted
2000 into the significant bits. */
2001 if (size < 64 / BITS_PER_MARKER)
2002 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
2004 switch (code)
2006 case LSHIFT_EXPR:
2007 n->n <<= count;
2008 break;
2009 case RSHIFT_EXPR:
2010 head_marker = HEAD_MARKER (n->n, size);
2011 n->n >>= count;
2012 /* Arithmetic shift of signed type: result is dependent on the value. */
2013 if (!TYPE_UNSIGNED (n->type) && head_marker)
2014 for (i = 0; i < count / BITS_PER_MARKER; i++)
2015 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
2016 << ((size - 1 - i) * BITS_PER_MARKER);
2017 break;
2018 case LROTATE_EXPR:
2019 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
2020 break;
2021 case RROTATE_EXPR:
2022 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
2023 break;
2024 default:
2025 return false;
2027 /* Zero unused bits for size. */
2028 if (size < 64 / BITS_PER_MARKER)
2029 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
2030 return true;
2033 /* Perform sanity checking for the symbolic number N and the gimple
2034 statement STMT. */
2036 static inline bool
2037 verify_symbolic_number_p (struct symbolic_number *n, gimple *stmt)
2039 tree lhs_type;
2041 lhs_type = gimple_expr_type (stmt);
2043 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
2044 return false;
2046 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
2047 return false;
2049 return true;
2052 /* Initialize the symbolic number N for the bswap pass from the base element
2053 SRC manipulated by the bitwise OR expression. */
2055 static bool
2056 init_symbolic_number (struct symbolic_number *n, tree src)
2058 int size;
2060 if (! INTEGRAL_TYPE_P (TREE_TYPE (src)))
2061 return false;
2063 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
2065 /* Set up the symbolic number N by setting each byte to a value between 1 and
2066 the byte size of rhs1. The highest order byte is set to n->size and the
2067 lowest order byte to 1. */
2068 n->type = TREE_TYPE (src);
2069 size = TYPE_PRECISION (n->type);
2070 if (size % BITS_PER_UNIT != 0)
2071 return false;
2072 size /= BITS_PER_UNIT;
2073 if (size > 64 / BITS_PER_MARKER)
2074 return false;
2075 n->range = size;
2076 n->n = CMPNOP;
2078 if (size < 64 / BITS_PER_MARKER)
2079 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
2081 return true;
2084 /* Check if STMT might be a byte swap or a nop from a memory source and returns
2085 the answer. If so, REF is that memory source and the base of the memory area
2086 accessed and the offset of the access from that base are recorded in N. */
2088 bool
2089 find_bswap_or_nop_load (gimple *stmt, tree ref, struct symbolic_number *n)
2091 /* Leaf node is an array or component ref. Memorize its base and
2092 offset from base to compare to other such leaf node. */
2093 HOST_WIDE_INT bitsize, bitpos;
2094 machine_mode mode;
2095 int unsignedp, reversep, volatilep;
2096 tree offset, base_addr;
2098 /* Not prepared to handle PDP endian. */
2099 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2100 return false;
2102 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
2103 return false;
2105 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
2106 &unsignedp, &reversep, &volatilep);
2108 if (TREE_CODE (base_addr) == MEM_REF)
2110 offset_int bit_offset = 0;
2111 tree off = TREE_OPERAND (base_addr, 1);
2113 if (!integer_zerop (off))
2115 offset_int boff, coff = mem_ref_offset (base_addr);
2116 boff = coff << LOG2_BITS_PER_UNIT;
2117 bit_offset += boff;
2120 base_addr = TREE_OPERAND (base_addr, 0);
2122 /* Avoid returning a negative bitpos as this may wreak havoc later. */
2123 if (wi::neg_p (bit_offset))
2125 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
2126 offset_int tem = bit_offset.and_not (mask);
2127 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
2128 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
2129 bit_offset -= tem;
2130 tem >>= LOG2_BITS_PER_UNIT;
2131 if (offset)
2132 offset = size_binop (PLUS_EXPR, offset,
2133 wide_int_to_tree (sizetype, tem));
2134 else
2135 offset = wide_int_to_tree (sizetype, tem);
2138 bitpos += bit_offset.to_shwi ();
2141 if (bitpos % BITS_PER_UNIT)
2142 return false;
2143 if (bitsize % BITS_PER_UNIT)
2144 return false;
2145 if (reversep)
2146 return false;
2148 if (!init_symbolic_number (n, ref))
2149 return false;
2150 n->base_addr = base_addr;
2151 n->offset = offset;
2152 n->bytepos = bitpos / BITS_PER_UNIT;
2153 n->alias_set = reference_alias_ptr_type (ref);
2154 n->vuse = gimple_vuse (stmt);
2155 return true;
2158 /* Compute the symbolic number N representing the result of a bitwise OR on 2
2159 symbolic number N1 and N2 whose source statements are respectively
2160 SOURCE_STMT1 and SOURCE_STMT2. */
2162 static gimple *
2163 perform_symbolic_merge (gimple *source_stmt1, struct symbolic_number *n1,
2164 gimple *source_stmt2, struct symbolic_number *n2,
2165 struct symbolic_number *n)
2167 int i, size;
2168 uint64_t mask;
2169 gimple *source_stmt;
2170 struct symbolic_number *n_start;
2172 tree rhs1 = gimple_assign_rhs1 (source_stmt1);
2173 if (TREE_CODE (rhs1) == BIT_FIELD_REF
2174 && TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
2175 rhs1 = TREE_OPERAND (rhs1, 0);
2176 tree rhs2 = gimple_assign_rhs1 (source_stmt2);
2177 if (TREE_CODE (rhs2) == BIT_FIELD_REF
2178 && TREE_CODE (TREE_OPERAND (rhs2, 0)) == SSA_NAME)
2179 rhs2 = TREE_OPERAND (rhs2, 0);
2181 /* Sources are different, cancel bswap if they are not memory location with
2182 the same base (array, structure, ...). */
2183 if (rhs1 != rhs2)
2185 uint64_t inc;
2186 HOST_WIDE_INT start_sub, end_sub, end1, end2, end;
2187 struct symbolic_number *toinc_n_ptr, *n_end;
2189 if (!n1->base_addr || !n2->base_addr
2190 || !operand_equal_p (n1->base_addr, n2->base_addr, 0))
2191 return NULL;
2193 if (!n1->offset != !n2->offset
2194 || (n1->offset && !operand_equal_p (n1->offset, n2->offset, 0)))
2195 return NULL;
2197 if (n1->bytepos < n2->bytepos)
2199 n_start = n1;
2200 start_sub = n2->bytepos - n1->bytepos;
2201 source_stmt = source_stmt1;
2203 else
2205 n_start = n2;
2206 start_sub = n1->bytepos - n2->bytepos;
2207 source_stmt = source_stmt2;
2210 /* Find the highest address at which a load is performed and
2211 compute related info. */
2212 end1 = n1->bytepos + (n1->range - 1);
2213 end2 = n2->bytepos + (n2->range - 1);
2214 if (end1 < end2)
2216 end = end2;
2217 end_sub = end2 - end1;
2219 else
2221 end = end1;
2222 end_sub = end1 - end2;
2224 n_end = (end2 > end1) ? n2 : n1;
2226 /* Find symbolic number whose lsb is the most significant. */
2227 if (BYTES_BIG_ENDIAN)
2228 toinc_n_ptr = (n_end == n1) ? n2 : n1;
2229 else
2230 toinc_n_ptr = (n_start == n1) ? n2 : n1;
2232 n->range = end - n_start->bytepos + 1;
2234 /* Check that the range of memory covered can be represented by
2235 a symbolic number. */
2236 if (n->range > 64 / BITS_PER_MARKER)
2237 return NULL;
2239 /* Reinterpret byte marks in symbolic number holding the value of
2240 bigger weight according to target endianness. */
2241 inc = BYTES_BIG_ENDIAN ? end_sub : start_sub;
2242 size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT;
2243 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
2245 unsigned marker
2246 = (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
2247 if (marker && marker != MARKER_BYTE_UNKNOWN)
2248 toinc_n_ptr->n += inc;
2251 else
2253 n->range = n1->range;
2254 n_start = n1;
2255 source_stmt = source_stmt1;
2258 if (!n1->alias_set
2259 || alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set))
2260 n->alias_set = n1->alias_set;
2261 else
2262 n->alias_set = ptr_type_node;
2263 n->vuse = n_start->vuse;
2264 n->base_addr = n_start->base_addr;
2265 n->offset = n_start->offset;
2266 n->bytepos = n_start->bytepos;
2267 n->type = n_start->type;
2268 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2270 for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER)
2272 uint64_t masked1, masked2;
2274 masked1 = n1->n & mask;
2275 masked2 = n2->n & mask;
2276 if (masked1 && masked2 && masked1 != masked2)
2277 return NULL;
2279 n->n = n1->n | n2->n;
2281 return source_stmt;
2284 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
2285 the operation given by the rhs of STMT on the result. If the operation
2286 could successfully be executed the function returns a gimple stmt whose
2287 rhs's first tree is the expression of the source operand and NULL
2288 otherwise. */
2290 static gimple *
2291 find_bswap_or_nop_1 (gimple *stmt, struct symbolic_number *n, int limit)
2293 enum tree_code code;
2294 tree rhs1, rhs2 = NULL;
2295 gimple *rhs1_stmt, *rhs2_stmt, *source_stmt1;
2296 enum gimple_rhs_class rhs_class;
2298 if (!limit || !is_gimple_assign (stmt))
2299 return NULL;
2301 rhs1 = gimple_assign_rhs1 (stmt);
2303 if (find_bswap_or_nop_load (stmt, rhs1, n))
2304 return stmt;
2306 /* Handle BIT_FIELD_REF. */
2307 if (TREE_CODE (rhs1) == BIT_FIELD_REF
2308 && TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
2310 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TREE_OPERAND (rhs1, 1));
2311 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (TREE_OPERAND (rhs1, 2));
2312 if (bitpos % BITS_PER_UNIT == 0
2313 && bitsize % BITS_PER_UNIT == 0
2314 && init_symbolic_number (n, TREE_OPERAND (rhs1, 0)))
2316 /* Handle big-endian bit numbering in BIT_FIELD_REF. */
2317 if (BYTES_BIG_ENDIAN)
2318 bitpos = TYPE_PRECISION (n->type) - bitpos - bitsize;
2320 /* Shift. */
2321 if (!do_shift_rotate (RSHIFT_EXPR, n, bitpos))
2322 return NULL;
2324 /* Mask. */
2325 uint64_t mask = 0;
2326 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
2327 for (unsigned i = 0; i < bitsize / BITS_PER_UNIT;
2328 i++, tmp <<= BITS_PER_UNIT)
2329 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
2330 n->n &= mask;
2332 /* Convert. */
2333 n->type = TREE_TYPE (rhs1);
2334 if (!n->base_addr)
2335 n->range = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2337 return verify_symbolic_number_p (n, stmt) ? stmt : NULL;
2340 return NULL;
2343 if (TREE_CODE (rhs1) != SSA_NAME)
2344 return NULL;
2346 code = gimple_assign_rhs_code (stmt);
2347 rhs_class = gimple_assign_rhs_class (stmt);
2348 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2350 if (rhs_class == GIMPLE_BINARY_RHS)
2351 rhs2 = gimple_assign_rhs2 (stmt);
2353 /* Handle unary rhs and binary rhs with integer constants as second
2354 operand. */
2356 if (rhs_class == GIMPLE_UNARY_RHS
2357 || (rhs_class == GIMPLE_BINARY_RHS
2358 && TREE_CODE (rhs2) == INTEGER_CST))
2360 if (code != BIT_AND_EXPR
2361 && code != LSHIFT_EXPR
2362 && code != RSHIFT_EXPR
2363 && code != LROTATE_EXPR
2364 && code != RROTATE_EXPR
2365 && !CONVERT_EXPR_CODE_P (code))
2366 return NULL;
2368 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
2370 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
2371 we have to initialize the symbolic number. */
2372 if (!source_stmt1)
2374 if (gimple_assign_load_p (stmt)
2375 || !init_symbolic_number (n, rhs1))
2376 return NULL;
2377 source_stmt1 = stmt;
2380 switch (code)
2382 case BIT_AND_EXPR:
2384 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2385 uint64_t val = int_cst_value (rhs2), mask = 0;
2386 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
2388 /* Only constants masking full bytes are allowed. */
2389 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
2390 if ((val & tmp) != 0 && (val & tmp) != tmp)
2391 return NULL;
2392 else if (val & tmp)
2393 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
2395 n->n &= mask;
2397 break;
2398 case LSHIFT_EXPR:
2399 case RSHIFT_EXPR:
2400 case LROTATE_EXPR:
2401 case RROTATE_EXPR:
2402 if (!do_shift_rotate (code, n, (int) TREE_INT_CST_LOW (rhs2)))
2403 return NULL;
2404 break;
2405 CASE_CONVERT:
2407 int i, type_size, old_type_size;
2408 tree type;
2410 type = gimple_expr_type (stmt);
2411 type_size = TYPE_PRECISION (type);
2412 if (type_size % BITS_PER_UNIT != 0)
2413 return NULL;
2414 type_size /= BITS_PER_UNIT;
2415 if (type_size > 64 / BITS_PER_MARKER)
2416 return NULL;
2418 /* Sign extension: result is dependent on the value. */
2419 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2420 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
2421 && HEAD_MARKER (n->n, old_type_size))
2422 for (i = 0; i < type_size - old_type_size; i++)
2423 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
2424 << ((type_size - 1 - i) * BITS_PER_MARKER);
2426 if (type_size < 64 / BITS_PER_MARKER)
2428 /* If STMT casts to a smaller type mask out the bits not
2429 belonging to the target type. */
2430 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
2432 n->type = type;
2433 if (!n->base_addr)
2434 n->range = type_size;
2436 break;
2437 default:
2438 return NULL;
2440 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
2443 /* Handle binary rhs. */
2445 if (rhs_class == GIMPLE_BINARY_RHS)
2447 struct symbolic_number n1, n2;
2448 gimple *source_stmt, *source_stmt2;
2450 if (code != BIT_IOR_EXPR)
2451 return NULL;
2453 if (TREE_CODE (rhs2) != SSA_NAME)
2454 return NULL;
2456 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2458 switch (code)
2460 case BIT_IOR_EXPR:
2461 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
2463 if (!source_stmt1)
2464 return NULL;
2466 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
2468 if (!source_stmt2)
2469 return NULL;
2471 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
2472 return NULL;
2474 if (!n1.vuse != !n2.vuse
2475 || (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
2476 return NULL;
2478 source_stmt
2479 = perform_symbolic_merge (source_stmt1, &n1, source_stmt2, &n2, n);
2481 if (!source_stmt)
2482 return NULL;
2484 if (!verify_symbolic_number_p (n, stmt))
2485 return NULL;
2487 break;
2488 default:
2489 return NULL;
2491 return source_stmt;
2493 return NULL;
2496 /* Check if STMT completes a bswap implementation or a read in a given
2497 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2498 accordingly. It also sets N to represent the kind of operations
2499 performed: size of the resulting expression and whether it works on
2500 a memory source, and if so alias-set and vuse. At last, the
2501 function returns a stmt whose rhs's first tree is the source
2502 expression. */
2504 static gimple *
2505 find_bswap_or_nop (gimple *stmt, struct symbolic_number *n, bool *bswap)
2507 unsigned rsize;
2508 uint64_t tmpn, mask;
2509 /* The number which the find_bswap_or_nop_1 result should match in order
2510 to have a full byte swap. The number is shifted to the right
2511 according to the size of the symbolic number before using it. */
2512 uint64_t cmpxchg = CMPXCHG;
2513 uint64_t cmpnop = CMPNOP;
2515 gimple *source_stmt;
2516 int limit;
2518 /* The last parameter determines the depth search limit. It usually
2519 correlates directly to the number n of bytes to be touched. We
2520 increase that number by log2(n) + 1 here in order to also
2521 cover signed -> unsigned conversions of the src operand as can be seen
2522 in libgcc, and for initial shift/and operation of the src operand. */
2523 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2524 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
2525 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
2527 if (!source_stmt)
2528 return NULL;
2530 /* Find real size of result (highest non-zero byte). */
2531 if (n->base_addr)
2532 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
2533 else
2534 rsize = n->range;
2536 /* Zero out the bits corresponding to untouched bytes in original gimple
2537 expression. */
2538 if (n->range < (int) sizeof (int64_t))
2540 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
2541 cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
2542 cmpnop &= mask;
2545 /* Zero out the bits corresponding to unused bytes in the result of the
2546 gimple expression. */
2547 if (rsize < n->range)
2549 if (BYTES_BIG_ENDIAN)
2551 mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1;
2552 cmpxchg &= mask;
2553 cmpnop >>= (n->range - rsize) * BITS_PER_MARKER;
2555 else
2557 mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1;
2558 cmpxchg >>= (n->range - rsize) * BITS_PER_MARKER;
2559 cmpnop &= mask;
2561 n->range = rsize;
2564 /* A complete byte swap should make the symbolic number to start with
2565 the largest digit in the highest order byte. Unchanged symbolic
2566 number indicates a read with same endianness as target architecture. */
2567 if (n->n == cmpnop)
2568 *bswap = false;
2569 else if (n->n == cmpxchg)
2570 *bswap = true;
2571 else
2572 return NULL;
2574 /* Useless bit manipulation performed by code. */
2575 if (!n->base_addr && n->n == cmpnop)
2576 return NULL;
2578 n->range *= BITS_PER_UNIT;
2579 return source_stmt;
2582 namespace {
2584 const pass_data pass_data_optimize_bswap =
2586 GIMPLE_PASS, /* type */
2587 "bswap", /* name */
2588 OPTGROUP_NONE, /* optinfo_flags */
2589 TV_NONE, /* tv_id */
2590 PROP_ssa, /* properties_required */
2591 0, /* properties_provided */
2592 0, /* properties_destroyed */
2593 0, /* todo_flags_start */
2594 0, /* todo_flags_finish */
2597 class pass_optimize_bswap : public gimple_opt_pass
2599 public:
2600 pass_optimize_bswap (gcc::context *ctxt)
2601 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2604 /* opt_pass methods: */
2605 virtual bool gate (function *)
2607 return flag_expensive_optimizations && optimize;
2610 virtual unsigned int execute (function *);
2612 }; // class pass_optimize_bswap
2614 /* Perform the bswap optimization: replace the expression computed in the rhs
2615 of CUR_STMT by an equivalent bswap, load or load + bswap expression.
2616 Which of these alternatives replace the rhs is given by N->base_addr (non
2617 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
2618 load to perform are also given in N while the builtin bswap invoke is given
2619 in FNDEL. Finally, if a load is involved, SRC_STMT refers to one of the
2620 load statements involved to construct the rhs in CUR_STMT and N->range gives
2621 the size of the rhs expression for maintaining some statistics.
2623 Note that if the replacement involve a load, CUR_STMT is moved just after
2624 SRC_STMT to do the load with the same VUSE which can lead to CUR_STMT
2625 changing of basic block. */
2627 static bool
2628 bswap_replace (gimple *cur_stmt, gimple *src_stmt, tree fndecl,
2629 tree bswap_type, tree load_type, struct symbolic_number *n,
2630 bool bswap)
2632 gimple_stmt_iterator gsi;
2633 tree src, tmp, tgt;
2634 gimple *bswap_stmt;
2636 gsi = gsi_for_stmt (cur_stmt);
2637 src = gimple_assign_rhs1 (src_stmt);
2638 tgt = gimple_assign_lhs (cur_stmt);
2640 /* Need to load the value from memory first. */
2641 if (n->base_addr)
2643 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
2644 tree addr_expr, addr_tmp, val_expr, val_tmp;
2645 tree load_offset_ptr, aligned_load_type;
2646 gimple *addr_stmt, *load_stmt;
2647 unsigned align;
2648 HOST_WIDE_INT load_offset = 0;
2650 align = get_object_alignment (src);
2652 if (bswap
2653 && align < GET_MODE_ALIGNMENT (TYPE_MODE (load_type))
2654 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
2655 return false;
2657 /* Move cur_stmt just before one of the load of the original
2658 to ensure it has the same VUSE. See PR61517 for what could
2659 go wrong. */
2660 if (gimple_bb (cur_stmt) != gimple_bb (src_stmt))
2661 reset_flow_sensitive_info (gimple_assign_lhs (cur_stmt));
2662 gsi_move_before (&gsi, &gsi_ins);
2663 gsi = gsi_for_stmt (cur_stmt);
2665 /* Compute address to load from and cast according to the size
2666 of the load. */
2667 addr_expr = build_fold_addr_expr (unshare_expr (src));
2668 if (is_gimple_mem_ref_addr (addr_expr))
2669 addr_tmp = addr_expr;
2670 else
2672 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2673 "load_src");
2674 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
2675 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
2678 /* Perform the load. */
2679 aligned_load_type = load_type;
2680 if (align < TYPE_ALIGN (load_type))
2681 aligned_load_type = build_aligned_type (load_type, align);
2682 load_offset_ptr = build_int_cst (n->alias_set, load_offset);
2683 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2684 load_offset_ptr);
2686 if (!bswap)
2688 if (n->range == 16)
2689 nop_stats.found_16bit++;
2690 else if (n->range == 32)
2691 nop_stats.found_32bit++;
2692 else
2694 gcc_assert (n->range == 64);
2695 nop_stats.found_64bit++;
2698 /* Convert the result of load if necessary. */
2699 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2701 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2702 "load_dst");
2703 load_stmt = gimple_build_assign (val_tmp, val_expr);
2704 gimple_set_vuse (load_stmt, n->vuse);
2705 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2706 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
2708 else
2710 gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
2711 gimple_set_vuse (cur_stmt, n->vuse);
2713 update_stmt (cur_stmt);
2715 if (dump_file)
2717 fprintf (dump_file,
2718 "%d bit load in target endianness found at: ",
2719 (int) n->range);
2720 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2722 return true;
2724 else
2726 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2727 load_stmt = gimple_build_assign (val_tmp, val_expr);
2728 gimple_set_vuse (load_stmt, n->vuse);
2729 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2731 src = val_tmp;
2733 else if (TREE_CODE (src) == BIT_FIELD_REF)
2734 src = TREE_OPERAND (src, 0);
2736 if (n->range == 16)
2737 bswap_stats.found_16bit++;
2738 else if (n->range == 32)
2739 bswap_stats.found_32bit++;
2740 else
2742 gcc_assert (n->range == 64);
2743 bswap_stats.found_64bit++;
2746 tmp = src;
2748 /* Convert the src expression if necessary. */
2749 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2751 gimple *convert_stmt;
2753 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2754 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
2755 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2758 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
2759 are considered as rotation of 2N bit values by N bits is generally not
2760 equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
2761 gives 0x03040102 while a bswap for that value is 0x04030201. */
2762 if (bswap && n->range == 16)
2764 tree count = build_int_cst (NULL, BITS_PER_UNIT);
2765 src = fold_build2 (LROTATE_EXPR, bswap_type, tmp, count);
2766 bswap_stmt = gimple_build_assign (NULL, src);
2768 else
2769 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
2771 tmp = tgt;
2773 /* Convert the result if necessary. */
2774 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2776 gimple *convert_stmt;
2778 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2779 convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
2780 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2783 gimple_set_lhs (bswap_stmt, tmp);
2785 if (dump_file)
2787 fprintf (dump_file, "%d bit bswap implementation found at: ",
2788 (int) n->range);
2789 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2792 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
2793 gsi_remove (&gsi, true);
2794 return true;
2797 /* Find manual byte swap implementations as well as load in a given
2798 endianness. Byte swaps are turned into a bswap builtin invokation
2799 while endian loads are converted to bswap builtin invokation or
2800 simple load according to the target endianness. */
2802 unsigned int
2803 pass_optimize_bswap::execute (function *fun)
2805 basic_block bb;
2806 bool bswap32_p, bswap64_p;
2807 bool changed = false;
2808 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
2810 if (BITS_PER_UNIT != 8)
2811 return 0;
2813 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2814 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
2815 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2816 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
2817 || (bswap32_p && word_mode == SImode)));
2819 /* Determine the argument type of the builtins. The code later on
2820 assumes that the return and argument type are the same. */
2821 if (bswap32_p)
2823 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2824 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2827 if (bswap64_p)
2829 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2830 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2833 memset (&nop_stats, 0, sizeof (nop_stats));
2834 memset (&bswap_stats, 0, sizeof (bswap_stats));
2836 FOR_EACH_BB_FN (bb, fun)
2838 gimple_stmt_iterator gsi;
2840 /* We do a reverse scan for bswap patterns to make sure we get the
2841 widest match. As bswap pattern matching doesn't handle previously
2842 inserted smaller bswap replacements as sub-patterns, the wider
2843 variant wouldn't be detected. */
2844 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
2846 gimple *src_stmt, *cur_stmt = gsi_stmt (gsi);
2847 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
2848 enum tree_code code;
2849 struct symbolic_number n;
2850 bool bswap;
2852 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
2853 might be moved to a different basic block by bswap_replace and gsi
2854 must not points to it if that's the case. Moving the gsi_prev
2855 there make sure that gsi points to the statement previous to
2856 cur_stmt while still making sure that all statements are
2857 considered in this basic block. */
2858 gsi_prev (&gsi);
2860 if (!is_gimple_assign (cur_stmt))
2861 continue;
2863 code = gimple_assign_rhs_code (cur_stmt);
2864 switch (code)
2866 case LROTATE_EXPR:
2867 case RROTATE_EXPR:
2868 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
2869 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
2870 % BITS_PER_UNIT)
2871 continue;
2872 /* Fall through. */
2873 case BIT_IOR_EXPR:
2874 break;
2875 default:
2876 continue;
2879 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
2881 if (!src_stmt)
2882 continue;
2884 switch (n.range)
2886 case 16:
2887 /* Already in canonical form, nothing to do. */
2888 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
2889 continue;
2890 load_type = bswap_type = uint16_type_node;
2891 break;
2892 case 32:
2893 load_type = uint32_type_node;
2894 if (bswap32_p)
2896 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2897 bswap_type = bswap32_type;
2899 break;
2900 case 64:
2901 load_type = uint64_type_node;
2902 if (bswap64_p)
2904 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2905 bswap_type = bswap64_type;
2907 break;
2908 default:
2909 continue;
2912 if (bswap && !fndecl && n.range != 16)
2913 continue;
2915 if (bswap_replace (cur_stmt, src_stmt, fndecl, bswap_type, load_type,
2916 &n, bswap))
2917 changed = true;
2921 statistics_counter_event (fun, "16-bit nop implementations found",
2922 nop_stats.found_16bit);
2923 statistics_counter_event (fun, "32-bit nop implementations found",
2924 nop_stats.found_32bit);
2925 statistics_counter_event (fun, "64-bit nop implementations found",
2926 nop_stats.found_64bit);
2927 statistics_counter_event (fun, "16-bit bswap implementations found",
2928 bswap_stats.found_16bit);
2929 statistics_counter_event (fun, "32-bit bswap implementations found",
2930 bswap_stats.found_32bit);
2931 statistics_counter_event (fun, "64-bit bswap implementations found",
2932 bswap_stats.found_64bit);
2934 return (changed ? TODO_update_ssa : 0);
2937 } // anon namespace
2939 gimple_opt_pass *
2940 make_pass_optimize_bswap (gcc::context *ctxt)
2942 return new pass_optimize_bswap (ctxt);
2945 /* Return true if stmt is a type conversion operation that can be stripped
2946 when used in a widening multiply operation. */
2947 static bool
2948 widening_mult_conversion_strippable_p (tree result_type, gimple *stmt)
2950 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2952 if (TREE_CODE (result_type) == INTEGER_TYPE)
2954 tree op_type;
2955 tree inner_op_type;
2957 if (!CONVERT_EXPR_CODE_P (rhs_code))
2958 return false;
2960 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2962 /* If the type of OP has the same precision as the result, then
2963 we can strip this conversion. The multiply operation will be
2964 selected to create the correct extension as a by-product. */
2965 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2966 return true;
2968 /* We can also strip a conversion if it preserves the signed-ness of
2969 the operation and doesn't narrow the range. */
2970 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2972 /* If the inner-most type is unsigned, then we can strip any
2973 intermediate widening operation. If it's signed, then the
2974 intermediate widening operation must also be signed. */
2975 if ((TYPE_UNSIGNED (inner_op_type)
2976 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2977 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2978 return true;
2980 return false;
2983 return rhs_code == FIXED_CONVERT_EXPR;
2986 /* Return true if RHS is a suitable operand for a widening multiplication,
2987 assuming a target type of TYPE.
2988 There are two cases:
2990 - RHS makes some value at least twice as wide. Store that value
2991 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2993 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2994 but leave *TYPE_OUT untouched. */
2996 static bool
2997 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2998 tree *new_rhs_out)
3000 gimple *stmt;
3001 tree type1, rhs1;
3003 if (TREE_CODE (rhs) == SSA_NAME)
3005 stmt = SSA_NAME_DEF_STMT (rhs);
3006 if (is_gimple_assign (stmt))
3008 if (! widening_mult_conversion_strippable_p (type, stmt))
3009 rhs1 = rhs;
3010 else
3012 rhs1 = gimple_assign_rhs1 (stmt);
3014 if (TREE_CODE (rhs1) == INTEGER_CST)
3016 *new_rhs_out = rhs1;
3017 *type_out = NULL;
3018 return true;
3022 else
3023 rhs1 = rhs;
3025 type1 = TREE_TYPE (rhs1);
3027 if (TREE_CODE (type1) != TREE_CODE (type)
3028 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
3029 return false;
3031 *new_rhs_out = rhs1;
3032 *type_out = type1;
3033 return true;
3036 if (TREE_CODE (rhs) == INTEGER_CST)
3038 *new_rhs_out = rhs;
3039 *type_out = NULL;
3040 return true;
3043 return false;
3046 /* Return true if STMT performs a widening multiplication, assuming the
3047 output type is TYPE. If so, store the unwidened types of the operands
3048 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
3049 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
3050 and *TYPE2_OUT would give the operands of the multiplication. */
3052 static bool
3053 is_widening_mult_p (gimple *stmt,
3054 tree *type1_out, tree *rhs1_out,
3055 tree *type2_out, tree *rhs2_out)
3057 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
3059 if (TREE_CODE (type) != INTEGER_TYPE
3060 && TREE_CODE (type) != FIXED_POINT_TYPE)
3061 return false;
3063 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
3064 rhs1_out))
3065 return false;
3067 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
3068 rhs2_out))
3069 return false;
3071 if (*type1_out == NULL)
3073 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
3074 return false;
3075 *type1_out = *type2_out;
3078 if (*type2_out == NULL)
3080 if (!int_fits_type_p (*rhs2_out, *type1_out))
3081 return false;
3082 *type2_out = *type1_out;
3085 /* Ensure that the larger of the two operands comes first. */
3086 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
3088 std::swap (*type1_out, *type2_out);
3089 std::swap (*rhs1_out, *rhs2_out);
3092 return true;
3095 /* Process a single gimple statement STMT, which has a MULT_EXPR as
3096 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
3097 value is true iff we converted the statement. */
3099 static bool
3100 convert_mult_to_widen (gimple *stmt, gimple_stmt_iterator *gsi)
3102 tree lhs, rhs1, rhs2, type, type1, type2;
3103 enum insn_code handler;
3104 machine_mode to_mode, from_mode, actual_mode;
3105 optab op;
3106 int actual_precision;
3107 location_t loc = gimple_location (stmt);
3108 bool from_unsigned1, from_unsigned2;
3110 lhs = gimple_assign_lhs (stmt);
3111 type = TREE_TYPE (lhs);
3112 if (TREE_CODE (type) != INTEGER_TYPE)
3113 return false;
3115 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
3116 return false;
3118 to_mode = TYPE_MODE (type);
3119 from_mode = TYPE_MODE (type1);
3120 from_unsigned1 = TYPE_UNSIGNED (type1);
3121 from_unsigned2 = TYPE_UNSIGNED (type2);
3123 if (from_unsigned1 && from_unsigned2)
3124 op = umul_widen_optab;
3125 else if (!from_unsigned1 && !from_unsigned2)
3126 op = smul_widen_optab;
3127 else
3128 op = usmul_widen_optab;
3130 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
3131 0, &actual_mode);
3133 if (handler == CODE_FOR_nothing)
3135 if (op != smul_widen_optab)
3137 /* We can use a signed multiply with unsigned types as long as
3138 there is a wider mode to use, or it is the smaller of the two
3139 types that is unsigned. Note that type1 >= type2, always. */
3140 if ((TYPE_UNSIGNED (type1)
3141 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
3142 || (TYPE_UNSIGNED (type2)
3143 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
3145 from_mode = GET_MODE_WIDER_MODE (from_mode);
3146 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
3147 return false;
3150 op = smul_widen_optab;
3151 handler = find_widening_optab_handler_and_mode (op, to_mode,
3152 from_mode, 0,
3153 &actual_mode);
3155 if (handler == CODE_FOR_nothing)
3156 return false;
3158 from_unsigned1 = from_unsigned2 = false;
3160 else
3161 return false;
3164 /* Ensure that the inputs to the handler are in the correct precison
3165 for the opcode. This will be the full mode size. */
3166 actual_precision = GET_MODE_PRECISION (actual_mode);
3167 if (2 * actual_precision > TYPE_PRECISION (type))
3168 return false;
3169 if (actual_precision != TYPE_PRECISION (type1)
3170 || from_unsigned1 != TYPE_UNSIGNED (type1))
3171 rhs1 = build_and_insert_cast (gsi, loc,
3172 build_nonstandard_integer_type
3173 (actual_precision, from_unsigned1), rhs1);
3174 if (actual_precision != TYPE_PRECISION (type2)
3175 || from_unsigned2 != TYPE_UNSIGNED (type2))
3176 rhs2 = build_and_insert_cast (gsi, loc,
3177 build_nonstandard_integer_type
3178 (actual_precision, from_unsigned2), rhs2);
3180 /* Handle constants. */
3181 if (TREE_CODE (rhs1) == INTEGER_CST)
3182 rhs1 = fold_convert (type1, rhs1);
3183 if (TREE_CODE (rhs2) == INTEGER_CST)
3184 rhs2 = fold_convert (type2, rhs2);
3186 gimple_assign_set_rhs1 (stmt, rhs1);
3187 gimple_assign_set_rhs2 (stmt, rhs2);
3188 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
3189 update_stmt (stmt);
3190 widen_mul_stats.widen_mults_inserted++;
3191 return true;
3194 /* Process a single gimple statement STMT, which is found at the
3195 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
3196 rhs (given by CODE), and try to convert it into a
3197 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
3198 is true iff we converted the statement. */
3200 static bool
3201 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple *stmt,
3202 enum tree_code code)
3204 gimple *rhs1_stmt = NULL, *rhs2_stmt = NULL;
3205 gimple *conv1_stmt = NULL, *conv2_stmt = NULL, *conv_stmt;
3206 tree type, type1, type2, optype;
3207 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
3208 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
3209 optab this_optab;
3210 enum tree_code wmult_code;
3211 enum insn_code handler;
3212 machine_mode to_mode, from_mode, actual_mode;
3213 location_t loc = gimple_location (stmt);
3214 int actual_precision;
3215 bool from_unsigned1, from_unsigned2;
3217 lhs = gimple_assign_lhs (stmt);
3218 type = TREE_TYPE (lhs);
3219 if (TREE_CODE (type) != INTEGER_TYPE
3220 && TREE_CODE (type) != FIXED_POINT_TYPE)
3221 return false;
3223 if (code == MINUS_EXPR)
3224 wmult_code = WIDEN_MULT_MINUS_EXPR;
3225 else
3226 wmult_code = WIDEN_MULT_PLUS_EXPR;
3228 rhs1 = gimple_assign_rhs1 (stmt);
3229 rhs2 = gimple_assign_rhs2 (stmt);
3231 if (TREE_CODE (rhs1) == SSA_NAME)
3233 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
3234 if (is_gimple_assign (rhs1_stmt))
3235 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
3238 if (TREE_CODE (rhs2) == SSA_NAME)
3240 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
3241 if (is_gimple_assign (rhs2_stmt))
3242 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
3245 /* Allow for one conversion statement between the multiply
3246 and addition/subtraction statement. If there are more than
3247 one conversions then we assume they would invalidate this
3248 transformation. If that's not the case then they should have
3249 been folded before now. */
3250 if (CONVERT_EXPR_CODE_P (rhs1_code))
3252 conv1_stmt = rhs1_stmt;
3253 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
3254 if (TREE_CODE (rhs1) == SSA_NAME)
3256 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
3257 if (is_gimple_assign (rhs1_stmt))
3258 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
3260 else
3261 return false;
3263 if (CONVERT_EXPR_CODE_P (rhs2_code))
3265 conv2_stmt = rhs2_stmt;
3266 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
3267 if (TREE_CODE (rhs2) == SSA_NAME)
3269 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
3270 if (is_gimple_assign (rhs2_stmt))
3271 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
3273 else
3274 return false;
3277 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
3278 is_widening_mult_p, but we still need the rhs returns.
3280 It might also appear that it would be sufficient to use the existing
3281 operands of the widening multiply, but that would limit the choice of
3282 multiply-and-accumulate instructions.
3284 If the widened-multiplication result has more than one uses, it is
3285 probably wiser not to do the conversion. */
3286 if (code == PLUS_EXPR
3287 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
3289 if (!has_single_use (rhs1)
3290 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
3291 &type2, &mult_rhs2))
3292 return false;
3293 add_rhs = rhs2;
3294 conv_stmt = conv1_stmt;
3296 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
3298 if (!has_single_use (rhs2)
3299 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
3300 &type2, &mult_rhs2))
3301 return false;
3302 add_rhs = rhs1;
3303 conv_stmt = conv2_stmt;
3305 else
3306 return false;
3308 to_mode = TYPE_MODE (type);
3309 from_mode = TYPE_MODE (type1);
3310 from_unsigned1 = TYPE_UNSIGNED (type1);
3311 from_unsigned2 = TYPE_UNSIGNED (type2);
3312 optype = type1;
3314 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
3315 if (from_unsigned1 != from_unsigned2)
3317 if (!INTEGRAL_TYPE_P (type))
3318 return false;
3319 /* We can use a signed multiply with unsigned types as long as
3320 there is a wider mode to use, or it is the smaller of the two
3321 types that is unsigned. Note that type1 >= type2, always. */
3322 if ((from_unsigned1
3323 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
3324 || (from_unsigned2
3325 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
3327 from_mode = GET_MODE_WIDER_MODE (from_mode);
3328 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
3329 return false;
3332 from_unsigned1 = from_unsigned2 = false;
3333 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
3334 false);
3337 /* If there was a conversion between the multiply and addition
3338 then we need to make sure it fits a multiply-and-accumulate.
3339 The should be a single mode change which does not change the
3340 value. */
3341 if (conv_stmt)
3343 /* We use the original, unmodified data types for this. */
3344 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
3345 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
3346 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
3347 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
3349 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
3351 /* Conversion is a truncate. */
3352 if (TYPE_PRECISION (to_type) < data_size)
3353 return false;
3355 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
3357 /* Conversion is an extend. Check it's the right sort. */
3358 if (TYPE_UNSIGNED (from_type) != is_unsigned
3359 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
3360 return false;
3362 /* else convert is a no-op for our purposes. */
3365 /* Verify that the machine can perform a widening multiply
3366 accumulate in this mode/signedness combination, otherwise
3367 this transformation is likely to pessimize code. */
3368 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
3369 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
3370 from_mode, 0, &actual_mode);
3372 if (handler == CODE_FOR_nothing)
3373 return false;
3375 /* Ensure that the inputs to the handler are in the correct precison
3376 for the opcode. This will be the full mode size. */
3377 actual_precision = GET_MODE_PRECISION (actual_mode);
3378 if (actual_precision != TYPE_PRECISION (type1)
3379 || from_unsigned1 != TYPE_UNSIGNED (type1))
3380 mult_rhs1 = build_and_insert_cast (gsi, loc,
3381 build_nonstandard_integer_type
3382 (actual_precision, from_unsigned1),
3383 mult_rhs1);
3384 if (actual_precision != TYPE_PRECISION (type2)
3385 || from_unsigned2 != TYPE_UNSIGNED (type2))
3386 mult_rhs2 = build_and_insert_cast (gsi, loc,
3387 build_nonstandard_integer_type
3388 (actual_precision, from_unsigned2),
3389 mult_rhs2);
3391 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
3392 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
3394 /* Handle constants. */
3395 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
3396 mult_rhs1 = fold_convert (type1, mult_rhs1);
3397 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
3398 mult_rhs2 = fold_convert (type2, mult_rhs2);
3400 gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2,
3401 add_rhs);
3402 update_stmt (gsi_stmt (*gsi));
3403 widen_mul_stats.maccs_inserted++;
3404 return true;
3407 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
3408 with uses in additions and subtractions to form fused multiply-add
3409 operations. Returns true if successful and MUL_STMT should be removed. */
3411 static bool
3412 convert_mult_to_fma (gimple *mul_stmt, tree op1, tree op2)
3414 tree mul_result = gimple_get_lhs (mul_stmt);
3415 tree type = TREE_TYPE (mul_result);
3416 gimple *use_stmt, *neguse_stmt;
3417 gassign *fma_stmt;
3418 use_operand_p use_p;
3419 imm_use_iterator imm_iter;
3421 if (FLOAT_TYPE_P (type)
3422 && flag_fp_contract_mode == FP_CONTRACT_OFF)
3423 return false;
3425 /* We don't want to do bitfield reduction ops. */
3426 if (INTEGRAL_TYPE_P (type)
3427 && (TYPE_PRECISION (type)
3428 != GET_MODE_PRECISION (TYPE_MODE (type))))
3429 return false;
3431 /* If the target doesn't support it, don't generate it. We assume that
3432 if fma isn't available then fms, fnma or fnms are not either. */
3433 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
3434 return false;
3436 /* If the multiplication has zero uses, it is kept around probably because
3437 of -fnon-call-exceptions. Don't optimize it away in that case,
3438 it is DCE job. */
3439 if (has_zero_uses (mul_result))
3440 return false;
3442 /* Make sure that the multiplication statement becomes dead after
3443 the transformation, thus that all uses are transformed to FMAs.
3444 This means we assume that an FMA operation has the same cost
3445 as an addition. */
3446 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
3448 enum tree_code use_code;
3449 tree result = mul_result;
3450 bool negate_p = false;
3452 use_stmt = USE_STMT (use_p);
3454 if (is_gimple_debug (use_stmt))
3455 continue;
3457 /* For now restrict this operations to single basic blocks. In theory
3458 we would want to support sinking the multiplication in
3459 m = a*b;
3460 if ()
3461 ma = m + c;
3462 else
3463 d = m;
3464 to form a fma in the then block and sink the multiplication to the
3465 else block. */
3466 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3467 return false;
3469 if (!is_gimple_assign (use_stmt))
3470 return false;
3472 use_code = gimple_assign_rhs_code (use_stmt);
3474 /* A negate on the multiplication leads to FNMA. */
3475 if (use_code == NEGATE_EXPR)
3477 ssa_op_iter iter;
3478 use_operand_p usep;
3480 result = gimple_assign_lhs (use_stmt);
3482 /* Make sure the negate statement becomes dead with this
3483 single transformation. */
3484 if (!single_imm_use (gimple_assign_lhs (use_stmt),
3485 &use_p, &neguse_stmt))
3486 return false;
3488 /* Make sure the multiplication isn't also used on that stmt. */
3489 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
3490 if (USE_FROM_PTR (usep) == mul_result)
3491 return false;
3493 /* Re-validate. */
3494 use_stmt = neguse_stmt;
3495 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3496 return false;
3497 if (!is_gimple_assign (use_stmt))
3498 return false;
3500 use_code = gimple_assign_rhs_code (use_stmt);
3501 negate_p = true;
3504 switch (use_code)
3506 case MINUS_EXPR:
3507 if (gimple_assign_rhs2 (use_stmt) == result)
3508 negate_p = !negate_p;
3509 break;
3510 case PLUS_EXPR:
3511 break;
3512 default:
3513 /* FMA can only be formed from PLUS and MINUS. */
3514 return false;
3517 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3518 by a MULT_EXPR that we'll visit later, we might be able to
3519 get a more profitable match with fnma.
3520 OTOH, if we don't, a negate / fma pair has likely lower latency
3521 that a mult / subtract pair. */
3522 if (use_code == MINUS_EXPR && !negate_p
3523 && gimple_assign_rhs1 (use_stmt) == result
3524 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3525 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3527 tree rhs2 = gimple_assign_rhs2 (use_stmt);
3529 if (TREE_CODE (rhs2) == SSA_NAME)
3531 gimple *stmt2 = SSA_NAME_DEF_STMT (rhs2);
3532 if (has_single_use (rhs2)
3533 && is_gimple_assign (stmt2)
3534 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3535 return false;
3539 /* We can't handle a * b + a * b. */
3540 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3541 return false;
3543 /* While it is possible to validate whether or not the exact form
3544 that we've recognized is available in the backend, the assumption
3545 is that the transformation is never a loss. For instance, suppose
3546 the target only has the plain FMA pattern available. Consider
3547 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3548 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3549 still have 3 operations, but in the FMA form the two NEGs are
3550 independent and could be run in parallel. */
3553 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3555 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3556 enum tree_code use_code;
3557 tree addop, mulop1 = op1, result = mul_result;
3558 bool negate_p = false;
3560 if (is_gimple_debug (use_stmt))
3561 continue;
3563 use_code = gimple_assign_rhs_code (use_stmt);
3564 if (use_code == NEGATE_EXPR)
3566 result = gimple_assign_lhs (use_stmt);
3567 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3568 gsi_remove (&gsi, true);
3569 release_defs (use_stmt);
3571 use_stmt = neguse_stmt;
3572 gsi = gsi_for_stmt (use_stmt);
3573 use_code = gimple_assign_rhs_code (use_stmt);
3574 negate_p = true;
3577 if (gimple_assign_rhs1 (use_stmt) == result)
3579 addop = gimple_assign_rhs2 (use_stmt);
3580 /* a * b - c -> a * b + (-c) */
3581 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3582 addop = force_gimple_operand_gsi (&gsi,
3583 build1 (NEGATE_EXPR,
3584 type, addop),
3585 true, NULL_TREE, true,
3586 GSI_SAME_STMT);
3588 else
3590 addop = gimple_assign_rhs1 (use_stmt);
3591 /* a - b * c -> (-b) * c + a */
3592 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3593 negate_p = !negate_p;
3596 if (negate_p)
3597 mulop1 = force_gimple_operand_gsi (&gsi,
3598 build1 (NEGATE_EXPR,
3599 type, mulop1),
3600 true, NULL_TREE, true,
3601 GSI_SAME_STMT);
3603 fma_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt),
3604 FMA_EXPR, mulop1, op2, addop);
3605 gsi_replace (&gsi, fma_stmt, true);
3606 widen_mul_stats.fmas_inserted++;
3609 return true;
3613 /* Helper function of match_uaddsub_overflow. Return 1
3614 if USE_STMT is unsigned overflow check ovf != 0 for
3615 STMT, -1 if USE_STMT is unsigned overflow check ovf == 0
3616 and 0 otherwise. */
3618 static int
3619 uaddsub_overflow_check_p (gimple *stmt, gimple *use_stmt)
3621 enum tree_code ccode = ERROR_MARK;
3622 tree crhs1 = NULL_TREE, crhs2 = NULL_TREE;
3623 if (gimple_code (use_stmt) == GIMPLE_COND)
3625 ccode = gimple_cond_code (use_stmt);
3626 crhs1 = gimple_cond_lhs (use_stmt);
3627 crhs2 = gimple_cond_rhs (use_stmt);
3629 else if (is_gimple_assign (use_stmt))
3631 if (gimple_assign_rhs_class (use_stmt) == GIMPLE_BINARY_RHS)
3633 ccode = gimple_assign_rhs_code (use_stmt);
3634 crhs1 = gimple_assign_rhs1 (use_stmt);
3635 crhs2 = gimple_assign_rhs2 (use_stmt);
3637 else if (gimple_assign_rhs_code (use_stmt) == COND_EXPR)
3639 tree cond = gimple_assign_rhs1 (use_stmt);
3640 if (COMPARISON_CLASS_P (cond))
3642 ccode = TREE_CODE (cond);
3643 crhs1 = TREE_OPERAND (cond, 0);
3644 crhs2 = TREE_OPERAND (cond, 1);
3646 else
3647 return 0;
3649 else
3650 return 0;
3652 else
3653 return 0;
3655 if (TREE_CODE_CLASS (ccode) != tcc_comparison)
3656 return 0;
3658 enum tree_code code = gimple_assign_rhs_code (stmt);
3659 tree lhs = gimple_assign_lhs (stmt);
3660 tree rhs1 = gimple_assign_rhs1 (stmt);
3661 tree rhs2 = gimple_assign_rhs2 (stmt);
3663 switch (ccode)
3665 case GT_EXPR:
3666 case LE_EXPR:
3667 /* r = a - b; r > a or r <= a
3668 r = a + b; a > r or a <= r or b > r or b <= r. */
3669 if ((code == MINUS_EXPR && crhs1 == lhs && crhs2 == rhs1)
3670 || (code == PLUS_EXPR && (crhs1 == rhs1 || crhs1 == rhs2)
3671 && crhs2 == lhs))
3672 return ccode == GT_EXPR ? 1 : -1;
3673 break;
3674 case LT_EXPR:
3675 case GE_EXPR:
3676 /* r = a - b; a < r or a >= r
3677 r = a + b; r < a or r >= a or r < b or r >= b. */
3678 if ((code == MINUS_EXPR && crhs1 == rhs1 && crhs2 == lhs)
3679 || (code == PLUS_EXPR && crhs1 == lhs
3680 && (crhs2 == rhs1 || crhs2 == rhs2)))
3681 return ccode == LT_EXPR ? 1 : -1;
3682 break;
3683 default:
3684 break;
3686 return 0;
3689 /* Recognize for unsigned x
3690 x = y - z;
3691 if (x > y)
3692 where there are other uses of x and replace it with
3693 _7 = SUB_OVERFLOW (y, z);
3694 x = REALPART_EXPR <_7>;
3695 _8 = IMAGPART_EXPR <_7>;
3696 if (_8)
3697 and similarly for addition. */
3699 static bool
3700 match_uaddsub_overflow (gimple_stmt_iterator *gsi, gimple *stmt,
3701 enum tree_code code)
3703 tree lhs = gimple_assign_lhs (stmt);
3704 tree type = TREE_TYPE (lhs);
3705 use_operand_p use_p;
3706 imm_use_iterator iter;
3707 bool use_seen = false;
3708 bool ovf_use_seen = false;
3709 gimple *use_stmt;
3711 gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR);
3712 if (!INTEGRAL_TYPE_P (type)
3713 || !TYPE_UNSIGNED (type)
3714 || has_zero_uses (lhs)
3715 || has_single_use (lhs)
3716 || optab_handler (code == PLUS_EXPR ? uaddv4_optab : usubv4_optab,
3717 TYPE_MODE (type)) == CODE_FOR_nothing)
3718 return false;
3720 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
3722 use_stmt = USE_STMT (use_p);
3723 if (is_gimple_debug (use_stmt))
3724 continue;
3726 if (uaddsub_overflow_check_p (stmt, use_stmt))
3727 ovf_use_seen = true;
3728 else
3729 use_seen = true;
3730 if (ovf_use_seen && use_seen)
3731 break;
3734 if (!ovf_use_seen || !use_seen)
3735 return false;
3737 tree ctype = build_complex_type (type);
3738 tree rhs1 = gimple_assign_rhs1 (stmt);
3739 tree rhs2 = gimple_assign_rhs2 (stmt);
3740 gcall *g = gimple_build_call_internal (code == PLUS_EXPR
3741 ? IFN_ADD_OVERFLOW : IFN_SUB_OVERFLOW,
3742 2, rhs1, rhs2);
3743 tree ctmp = make_ssa_name (ctype);
3744 gimple_call_set_lhs (g, ctmp);
3745 gsi_insert_before (gsi, g, GSI_SAME_STMT);
3746 gassign *g2 = gimple_build_assign (lhs, REALPART_EXPR,
3747 build1 (REALPART_EXPR, type, ctmp));
3748 gsi_replace (gsi, g2, true);
3749 tree ovf = make_ssa_name (type);
3750 g2 = gimple_build_assign (ovf, IMAGPART_EXPR,
3751 build1 (IMAGPART_EXPR, type, ctmp));
3752 gsi_insert_after (gsi, g2, GSI_NEW_STMT);
3754 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3756 if (is_gimple_debug (use_stmt))
3757 continue;
3759 int ovf_use = uaddsub_overflow_check_p (stmt, use_stmt);
3760 if (ovf_use == 0)
3761 continue;
3762 if (gimple_code (use_stmt) == GIMPLE_COND)
3764 gcond *cond_stmt = as_a <gcond *> (use_stmt);
3765 gimple_cond_set_lhs (cond_stmt, ovf);
3766 gimple_cond_set_rhs (cond_stmt, build_int_cst (type, 0));
3767 gimple_cond_set_code (cond_stmt, ovf_use == 1 ? NE_EXPR : EQ_EXPR);
3769 else
3771 gcc_checking_assert (is_gimple_assign (use_stmt));
3772 if (gimple_assign_rhs_class (use_stmt) == GIMPLE_BINARY_RHS)
3774 gimple_assign_set_rhs1 (use_stmt, ovf);
3775 gimple_assign_set_rhs2 (use_stmt, build_int_cst (type, 0));
3776 gimple_assign_set_rhs_code (use_stmt,
3777 ovf_use == 1 ? NE_EXPR : EQ_EXPR);
3779 else
3781 gcc_checking_assert (gimple_assign_rhs_code (use_stmt)
3782 == COND_EXPR);
3783 tree cond = build2 (ovf_use == 1 ? NE_EXPR : EQ_EXPR,
3784 boolean_type_node, ovf,
3785 build_int_cst (type, 0));
3786 gimple_assign_set_rhs1 (use_stmt, cond);
3789 update_stmt (use_stmt);
3791 return true;
3794 /* Return true if target has support for divmod. */
3796 static bool
3797 target_supports_divmod_p (optab divmod_optab, optab div_optab, machine_mode mode)
3799 /* If target supports hardware divmod insn, use it for divmod. */
3800 if (optab_handler (divmod_optab, mode) != CODE_FOR_nothing)
3801 return true;
3803 /* Check if libfunc for divmod is available. */
3804 rtx libfunc = optab_libfunc (divmod_optab, mode);
3805 if (libfunc != NULL_RTX)
3807 /* If optab_handler exists for div_optab, perhaps in a wider mode,
3808 we don't want to use the libfunc even if it exists for given mode. */
3809 for (machine_mode div_mode = mode;
3810 div_mode != VOIDmode;
3811 div_mode = GET_MODE_WIDER_MODE (div_mode))
3812 if (optab_handler (div_optab, div_mode) != CODE_FOR_nothing)
3813 return false;
3815 return targetm.expand_divmod_libfunc != NULL;
3818 return false;
3821 /* Check if stmt is candidate for divmod transform. */
3823 static bool
3824 divmod_candidate_p (gassign *stmt)
3826 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
3827 enum machine_mode mode = TYPE_MODE (type);
3828 optab divmod_optab, div_optab;
3830 if (TYPE_UNSIGNED (type))
3832 divmod_optab = udivmod_optab;
3833 div_optab = udiv_optab;
3835 else
3837 divmod_optab = sdivmod_optab;
3838 div_optab = sdiv_optab;
3841 tree op1 = gimple_assign_rhs1 (stmt);
3842 tree op2 = gimple_assign_rhs2 (stmt);
3844 /* Disable the transform if either is a constant, since division-by-constant
3845 may have specialized expansion. */
3846 if (CONSTANT_CLASS_P (op1) || CONSTANT_CLASS_P (op2))
3847 return false;
3849 /* Exclude the case where TYPE_OVERFLOW_TRAPS (type) as that should
3850 expand using the [su]divv optabs. */
3851 if (TYPE_OVERFLOW_TRAPS (type))
3852 return false;
3854 if (!target_supports_divmod_p (divmod_optab, div_optab, mode))
3855 return false;
3857 return true;
3860 /* This function looks for:
3861 t1 = a TRUNC_DIV_EXPR b;
3862 t2 = a TRUNC_MOD_EXPR b;
3863 and transforms it to the following sequence:
3864 complex_tmp = DIVMOD (a, b);
3865 t1 = REALPART_EXPR(a);
3866 t2 = IMAGPART_EXPR(b);
3867 For conditions enabling the transform see divmod_candidate_p().
3869 The pass has three parts:
3870 1) Find top_stmt which is trunc_div or trunc_mod stmt and dominates all
3871 other trunc_div_expr and trunc_mod_expr stmts.
3872 2) Add top_stmt and all trunc_div and trunc_mod stmts dominated by top_stmt
3873 to stmts vector.
3874 3) Insert DIVMOD call just before top_stmt and update entries in
3875 stmts vector to use return value of DIMOVD (REALEXPR_PART for div,
3876 IMAGPART_EXPR for mod). */
3878 static bool
3879 convert_to_divmod (gassign *stmt)
3881 if (stmt_can_throw_internal (stmt)
3882 || !divmod_candidate_p (stmt))
3883 return false;
3885 tree op1 = gimple_assign_rhs1 (stmt);
3886 tree op2 = gimple_assign_rhs2 (stmt);
3888 imm_use_iterator use_iter;
3889 gimple *use_stmt;
3890 auto_vec<gimple *> stmts;
3892 gimple *top_stmt = stmt;
3893 basic_block top_bb = gimple_bb (stmt);
3895 /* Part 1: Try to set top_stmt to "topmost" stmt that dominates
3896 at-least stmt and possibly other trunc_div/trunc_mod stmts
3897 having same operands as stmt. */
3899 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, op1)
3901 if (is_gimple_assign (use_stmt)
3902 && (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR
3903 || gimple_assign_rhs_code (use_stmt) == TRUNC_MOD_EXPR)
3904 && operand_equal_p (op1, gimple_assign_rhs1 (use_stmt), 0)
3905 && operand_equal_p (op2, gimple_assign_rhs2 (use_stmt), 0))
3907 if (stmt_can_throw_internal (use_stmt))
3908 continue;
3910 basic_block bb = gimple_bb (use_stmt);
3912 if (bb == top_bb)
3914 if (gimple_uid (use_stmt) < gimple_uid (top_stmt))
3915 top_stmt = use_stmt;
3917 else if (dominated_by_p (CDI_DOMINATORS, top_bb, bb))
3919 top_bb = bb;
3920 top_stmt = use_stmt;
3925 tree top_op1 = gimple_assign_rhs1 (top_stmt);
3926 tree top_op2 = gimple_assign_rhs2 (top_stmt);
3928 stmts.safe_push (top_stmt);
3929 bool div_seen = (gimple_assign_rhs_code (top_stmt) == TRUNC_DIV_EXPR);
3931 /* Part 2: Add all trunc_div/trunc_mod statements domianted by top_bb
3932 to stmts vector. The 2nd loop will always add stmt to stmts vector, since
3933 gimple_bb (top_stmt) dominates gimple_bb (stmt), so the
3934 2nd loop ends up adding at-least single trunc_mod_expr stmt. */
3936 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, top_op1)
3938 if (is_gimple_assign (use_stmt)
3939 && (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR
3940 || gimple_assign_rhs_code (use_stmt) == TRUNC_MOD_EXPR)
3941 && operand_equal_p (top_op1, gimple_assign_rhs1 (use_stmt), 0)
3942 && operand_equal_p (top_op2, gimple_assign_rhs2 (use_stmt), 0))
3944 if (use_stmt == top_stmt
3945 || stmt_can_throw_internal (use_stmt)
3946 || !dominated_by_p (CDI_DOMINATORS, gimple_bb (use_stmt), top_bb))
3947 continue;
3949 stmts.safe_push (use_stmt);
3950 if (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR)
3951 div_seen = true;
3955 if (!div_seen)
3956 return false;
3958 /* Part 3: Create libcall to internal fn DIVMOD:
3959 divmod_tmp = DIVMOD (op1, op2). */
3961 gcall *call_stmt = gimple_build_call_internal (IFN_DIVMOD, 2, op1, op2);
3962 tree res = make_temp_ssa_name (build_complex_type (TREE_TYPE (op1)),
3963 call_stmt, "divmod_tmp");
3964 gimple_call_set_lhs (call_stmt, res);
3966 /* Insert the call before top_stmt. */
3967 gimple_stmt_iterator top_stmt_gsi = gsi_for_stmt (top_stmt);
3968 gsi_insert_before (&top_stmt_gsi, call_stmt, GSI_SAME_STMT);
3970 widen_mul_stats.divmod_calls_inserted++;
3972 /* Update all statements in stmts vector:
3973 lhs = op1 TRUNC_DIV_EXPR op2 -> lhs = REALPART_EXPR<divmod_tmp>
3974 lhs = op1 TRUNC_MOD_EXPR op2 -> lhs = IMAGPART_EXPR<divmod_tmp>. */
3976 for (unsigned i = 0; stmts.iterate (i, &use_stmt); ++i)
3978 tree new_rhs;
3980 switch (gimple_assign_rhs_code (use_stmt))
3982 case TRUNC_DIV_EXPR:
3983 new_rhs = fold_build1 (REALPART_EXPR, TREE_TYPE (op1), res);
3984 break;
3986 case TRUNC_MOD_EXPR:
3987 new_rhs = fold_build1 (IMAGPART_EXPR, TREE_TYPE (op1), res);
3988 break;
3990 default:
3991 gcc_unreachable ();
3994 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3995 gimple_assign_set_rhs_from_tree (&gsi, new_rhs);
3996 update_stmt (use_stmt);
3999 return true;
4002 /* Find integer multiplications where the operands are extended from
4003 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
4004 where appropriate. */
4006 namespace {
4008 const pass_data pass_data_optimize_widening_mul =
4010 GIMPLE_PASS, /* type */
4011 "widening_mul", /* name */
4012 OPTGROUP_NONE, /* optinfo_flags */
4013 TV_NONE, /* tv_id */
4014 PROP_ssa, /* properties_required */
4015 0, /* properties_provided */
4016 0, /* properties_destroyed */
4017 0, /* todo_flags_start */
4018 TODO_update_ssa, /* todo_flags_finish */
4021 class pass_optimize_widening_mul : public gimple_opt_pass
4023 public:
4024 pass_optimize_widening_mul (gcc::context *ctxt)
4025 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
4028 /* opt_pass methods: */
4029 virtual bool gate (function *)
4031 return flag_expensive_optimizations && optimize;
4034 virtual unsigned int execute (function *);
4036 }; // class pass_optimize_widening_mul
4038 unsigned int
4039 pass_optimize_widening_mul::execute (function *fun)
4041 basic_block bb;
4042 bool cfg_changed = false;
4044 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
4045 calculate_dominance_info (CDI_DOMINATORS);
4046 renumber_gimple_stmt_uids ();
4048 FOR_EACH_BB_FN (bb, fun)
4050 gimple_stmt_iterator gsi;
4052 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
4054 gimple *stmt = gsi_stmt (gsi);
4055 enum tree_code code;
4057 if (is_gimple_assign (stmt))
4059 code = gimple_assign_rhs_code (stmt);
4060 switch (code)
4062 case MULT_EXPR:
4063 if (!convert_mult_to_widen (stmt, &gsi)
4064 && convert_mult_to_fma (stmt,
4065 gimple_assign_rhs1 (stmt),
4066 gimple_assign_rhs2 (stmt)))
4068 gsi_remove (&gsi, true);
4069 release_defs (stmt);
4070 continue;
4072 break;
4074 case PLUS_EXPR:
4075 case MINUS_EXPR:
4076 if (!convert_plusminus_to_widen (&gsi, stmt, code))
4077 match_uaddsub_overflow (&gsi, stmt, code);
4078 break;
4080 case TRUNC_MOD_EXPR:
4081 convert_to_divmod (as_a<gassign *> (stmt));
4082 break;
4084 default:;
4087 else if (is_gimple_call (stmt)
4088 && gimple_call_lhs (stmt))
4090 tree fndecl = gimple_call_fndecl (stmt);
4091 if (fndecl
4092 && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
4094 switch (DECL_FUNCTION_CODE (fndecl))
4096 case BUILT_IN_POWF:
4097 case BUILT_IN_POW:
4098 case BUILT_IN_POWL:
4099 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
4100 && real_equal
4101 (&TREE_REAL_CST (gimple_call_arg (stmt, 1)),
4102 &dconst2)
4103 && convert_mult_to_fma (stmt,
4104 gimple_call_arg (stmt, 0),
4105 gimple_call_arg (stmt, 0)))
4107 unlink_stmt_vdef (stmt);
4108 if (gsi_remove (&gsi, true)
4109 && gimple_purge_dead_eh_edges (bb))
4110 cfg_changed = true;
4111 release_defs (stmt);
4112 continue;
4114 break;
4116 default:;
4120 gsi_next (&gsi);
4124 statistics_counter_event (fun, "widening multiplications inserted",
4125 widen_mul_stats.widen_mults_inserted);
4126 statistics_counter_event (fun, "widening maccs inserted",
4127 widen_mul_stats.maccs_inserted);
4128 statistics_counter_event (fun, "fused multiply-adds inserted",
4129 widen_mul_stats.fmas_inserted);
4130 statistics_counter_event (fun, "divmod calls inserted",
4131 widen_mul_stats.divmod_calls_inserted);
4133 return cfg_changed ? TODO_cleanup_cfg : 0;
4136 } // anon namespace
4138 gimple_opt_pass *
4139 make_pass_optimize_widening_mul (gcc::context *ctxt)
4141 return new pass_optimize_widening_mul (ctxt);