1 /* Sign extension elimination optimization for GNU compiler.
2 Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Leehod Baruch <leehod@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 -Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>.
23 In order to support 32bit computations on a 64bit machine, sign
24 extension instructions are generated to ensure the correctness of
26 A possible policy (as currently implemented) is to generate a sign
27 extension right after each 32bit computation.
28 Depending on the instruction set of the architecture, some of these
29 sign extension instructions may be redundant.
30 There are two cases in which the extension may be redundant:
33 The instruction that uses the 64bit operands that are sign
34 extended has a dual mode that works with 32bit operands.
44 cmpd a, b --> cmpw a, b //half word compare
47 The instruction that defines the 64bit operand (which is later sign
48 extended) has a dual mode that defines and sign-extends simultaneously
49 a 32bit operand. For example:
53 ld a --> lwa a // load half word and sign extend
59 General idea for solution:
60 --------------------------
61 First, try to merge the sign extension with the instruction that
62 defines the source of the extension and (separately) with the
63 instructions that uses the extended result. By doing this, both cases
64 of redundancies (as described above) will be eliminated.
66 Then, use partial redundancy elimination to place the non redundant
67 ones at optimal placements.
70 Implementation by example:
71 --------------------------
72 Note: The instruction stream is not changed till the last phase.
74 Phase 0: Initial code, as currently generated by gcc.
87 set ((reg:SI 10) (..def1rhs..))
88 set ((reg:DI 100) (sign_extend:DI (reg:SI 10)))
91 set ((reg:DI 100) (const_int 7))
94 set ((reg:SI 20) (..def3rhs..))
95 set ((reg:DI 100) (sign_extend:DI (reg:SI 20)))
98 set ((reg:CC...) (compare:CC (reg:DI 100) (...)))
101 set ((...) (reg:DI 100))
103 Phase 1: Propagate extensions to uses.
118 From here, all of the subregs are lowpart !
120 def1, def2, def3: No change.
123 set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
124 set ((reg:CC...) (compare:CC (reg:DI 100) (...)))
127 set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
128 set ((...) (reg:DI 100))
131 Phase 2: Merge and eliminate locally redundant extensions.
147 The instructions that were changed at this phase are marked with
151 Remove the sign extension instruction, modify def1 and
152 insert a move instruction to assure to correctness of the code.
153 set ((subreg:SI (reg:DI 100)) (..def1rhs..))
154 set ((reg:SI 10) (subreg:SI (reg:DI 100)))
156 def2 + se: There is no need for merge.
157 Def2 is not changed but a sign extension instruction is
159 set ((reg:DI 100) (const_int 7))
160 set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
162 *def3 + se3: Merge succeeded.
163 set ((reg:DI 100) (sign_extend:DI (..def3rhs..)))
164 set ((reg:SI 20) (reg:DI 100))
165 set ((reg:DI 100) (sign_extend:DI (reg:SI 20)))
166 (The extension instruction is the original one).
168 *use1: Merge succeeded. Remove the sign extension instruction.
170 (compare:CC (subreg:SI (reg:DI 100)) (...)))
172 use2, use3: Merge failed. No change.
174 use4: The extension is locally redundant, therefore it is eliminated
178 Phase 3: Eliminate globally redundant extensions.
180 Following the LCM output:
195 set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
198 set ((reg:DI 100) (sign_extend:DI (reg:SI 20)))
201 Phase 4: Commit changes to the insn stream.
204 def1 def3 *def1 def2 *def3
205 se1 def2 se3 [se removed] [se removed]
207 | \ | / | ------> | \ | / |
208 | \ | / | ------> | se | / |
212 use1 use2 use3 *use1 use2 use3
215 The instructions that were changed during the whole optimization are
216 marked with asterisk.
221 [ set ((reg:SI 10) (..def1rhs..)) ] - Deleted
222 [ set ((reg:DI 100) (sign_extend:DI (reg:SI 10))) ] - Deleted
223 set ((subreg:SI (reg:DI 100)) (..def3rhs..)) - Inserted
224 set ((reg:SI 10) (subreg:SI (reg:DI 100))) - Inserted
227 set ((reg:DI 100) (const_int 7)) - No change
230 [ set ((reg:SI 20) (..def3rhs..)) ] - Deleted
231 [ set ((reg:DI 100) (sign_extend:DI (reg:SI 20))) ] - Deleted
232 set ((reg:DI 100) (sign_extend:DI (..def3rhs..))) - Inserted
233 set ((reg:SI 20) (reg:DI 100)) - Inserted
236 [ set ((reg:CC...) (compare:CC (reg:DI 100) (...))) ] - Deleted
237 set ((reg:CC...) - Inserted
238 (compare:CC (subreg:SI (reg:DI 100)) (...)))
241 set ((...) (reg:DI 100)) - No change
244 set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
246 Note: Most of the simple move instructions that were inserted will be
247 trivially dead and therefore eliminated.
249 The implementation outline:
250 ---------------------------
252 A web is RELEVANT if at the end of phase 1, his leader's
253 relevancy is {ZERO, SIGN}_EXTENDED_DEF. The source_mode of
254 the web is the source_mode of his leader.
255 A definition is a candidate for the optimization if it is part
256 of a RELEVANT web and his local source_mode is not narrower
257 then the source_mode of its web.
258 A use is a candidate for the optimization if it is part of a
260 A simple explicit extension is a single set instruction that
261 extends a register (or a subregister) to a register (or
263 A complex explicit extension is an explicit extension instruction
265 A def extension is a simple explicit extension that is
266 also a candidate for the optimization. This extension is part
267 of the instruction stream, it is not generated by this
269 A use extension is a simple explicit extension that is generated
270 and stored for candidate use during this optimization. It is
271 not emitted to the instruction stream till the last phase of
273 A reference is an instruction that satisfy at least on of these
275 - It contains a definition with EXTENDED_DEF relevancy in a RELEVANT web.
276 - It is followed by a def extension.
277 - It contains a candidate use.
279 Phase 1: Propagate extensions to uses.
280 In this phase, we find candidate extensions for the optimization
281 and we generate (but not emit) proper extensions "right before the
284 a. Build a DF object.
285 b. Traverse over all the instructions that contains a definition
286 and set their local relevancy and local source_mode like this:
287 - If the instruction is a simple explicit extension instruction,
288 mark it as {ZERO, SIGN}_EXTENDED_DEF according to the extension
289 type and mark its source_mode to be the mode of the quantity
290 that is been extended.
291 - Otherwise, If the instruction has an implicit extension,
292 which means that its high part is an extension of its low part,
293 or if it is a complicated explicit extension, mark it as
294 EXTENDED_DEF and set its source_mode to be the narrowest
295 mode that is been extended in the instruction.
296 c. Traverse over all the instructions that contains a use and set
297 their local relevancy to RELEVANT_USE (except for few corner
299 d. Produce the web. During union of two entries, update the
300 relevancy and source_mode of the leader. There are two major
301 guide lines for this update:
302 - If one of the entries is NOT_RELEVANT, mark the leader
304 - If one is ZERO_EXTENDED_DEF and the other is SIGN_EXTENDED_DEF
305 (or vice versa) mark the leader as NOT_RELEVANT. We don't
306 handle this kind of mixed webs.
307 (For more details about this update process,
308 see see_update_leader_extra_info ()).
309 e. Generate uses extensions according to the relevancy and
310 source_mode of the webs.
312 Phase 2: Merge and eliminate locally redundant extensions.
313 In this phase, we try to merge def extensions and use
314 extensions with their references, and eliminate redundant extensions
315 in the same basic block.
317 Traverse over all the references. Do this in basic block number and
318 luid number forward order.
319 For each reference do:
320 a. Peephole optimization - try to merge it with all its
321 def extensions and use extensions in the following
323 - Try to merge only the def extensions, one by one.
324 - Try to merge only the use extensions, one by one.
325 - Try to merge any couple of use extensions simultaneously.
326 - Try to merge any def extension with one or two uses
327 extensions simultaneously.
328 b. Handle each EXTENDED_DEF in it as if it was already merged with
331 During the merge process we save the following data for each
332 register in each basic block:
333 a. The first instruction that defines the register in the basic
335 b. The last instruction that defines the register in the basic
337 c. The first extension of this register before the first
338 instruction that defines it in the basic block.
339 c. The first extension of this register after the last
340 instruction that defines it in the basic block.
341 This data will help us eliminate (or more precisely, not generate)
342 locally redundant extensions, and will be useful in the next stage.
344 While merging extensions with their reference there are 4 possible
346 a. A use extension was merged with the reference:
347 Delete the extension instruction and save the merged reference
348 for phase 4. (For details, see see_use_extension_merged ())
349 b. A use extension failed to be merged with the reference:
350 If there is already such an extension in the same basic block
351 and it is not dead at this point, delete the unmerged extension
352 (it is locally redundant), otherwise properly update the above
354 (For details, see see_merge_one_use_extension ())
355 c. A def extension was merged with the reference:
356 Mark this extension as a merged_def extension and properly
357 update the above basic block data.
358 (For details, see see_merge_one_def_extension ())
359 d. A def extension failed to be merged with the reference:
360 Replace the definition of the NARROWmode register in the
361 reference with the proper subreg of WIDEmode register and save
362 the result as a merged reference. Also, properly update the
363 the above basic block data.
364 (For details, see see_def_extension_not_merged ())
366 Phase 3: Eliminate globally redundant extensions.
367 In this phase, we set the bit vectors input of the edge based LCM
368 using the recorded data on the registers in each basic block.
369 We also save pointers for all the anticipatable and available
370 occurrences of the relevant extensions. Then we run the LCM.
372 a. Initialize the comp, antloc, kill bit vectors to zero and the
373 transp bit vector to ones.
375 b. Traverse over all the references. Do this in basic block number
376 and luid number forward order. For each reference:
377 - Go over all its use extensions. For each such extension -
378 If it is not dead from the beginning of the basic block SET
379 the antloc bit of the current extension in the current
381 If it is not dead till the end of the basic block SET the
382 comp bit of the current extension in the current basic
384 - Go over all its def extensions that were merged with
385 it. For each such extension -
386 If it is not dead till the end of the basic block SET the
387 comp bit of the current extension in the current basic
389 RESET the proper transp and kill bits.
390 - Go over all its def extensions that were not merged
391 with it. For each such extension -
392 RESET the transp bit and SET the kill bit of the current
393 extension in the current basic block bits.
395 c. Run the edge based LCM.
397 Phase 4: Commit changes to the insn stream.
398 This is the only phase that actually changes the instruction stream.
399 Up to this point the optimization could be aborted at any time.
400 Here we insert extensions at their best placements and delete the
401 redundant ones according to the output of the LCM. We also replace
402 some of the instructions according to the second phase merges results.
404 a. Use the pre_delete_map (from the output of the LCM) in order to
405 delete redundant extensions. This will prevent them from been
406 emitted in the first place.
408 b. Insert extensions on edges where needed according to
409 pre_insert_map and edge_list (from the output of the LCM).
411 c. For each reference do-
412 - Emit all the uses extensions that were not deleted until now,
413 right before the reference.
414 - Delete all the merged and unmerged def extensions from
415 the instruction stream.
416 - Replace the reference with the merged one, if exist.
418 The implementation consists of four data structures:
420 Purpose: To handle the relevancy of the uses, definitions and webs.
421 Relevant structures: web_entry (from df.h), see_entry_extra_info.
422 Details: This is a disjoint-set data structure. Most of its functions are
423 implemented in web.c. Each definition and use in the code are
424 elements. A web_entry structure is allocated for each element to
425 hold the element's relevancy and source_mode. The union rules are
426 defined in see_update_leader_extra_info ().
428 Purpose: To store references and their extensions (uses and defs)
429 and to enable traverse over these references according to basic
431 Relevant structure: see_ref_s.
432 Details: This data structure consists of an array of splay trees. One splay
433 tree for each basic block. The splay tree nodes are references and
434 the keys are the luids of the references.
435 A see_ref_s structure is allocated for each reference. It holds the
436 reference itself, its def and uses extensions and later the merged
437 version of the reference.
438 Using this data structure we can traverse over all the references of
439 a basic block and their extensions in forward order.
440 - Data structure III.
441 Purpose: To store local properties of registers for each basic block.
442 This data will later help us build the LCM sbitmap_vectors
444 Relevant structure: see_register_properties.
445 Details: This data structure consists of an array of hash tables. One hash
446 for each basic block. The hash node are a register properties
447 and the keys are the numbers of the registers.
448 A see_register_properties structure is allocated for each register
449 that we might be interested in its properties.
450 Using this data structure we can easily find the properties of a
451 register in a specific basic block. This is necessary for locally
452 redundancy elimination and for setting up the LCM input.
454 Purpose: To store the extensions that are candidate for PRE and their
455 anticipatable and available occurrences.
456 Relevant structure: see_occr, see_pre_extension_expr.
457 Details: This data structure is a hash tables. Its nodes are the extensions
458 that are candidate for PRE.
459 A see_pre_extension_expr structure is allocated for each candidate
460 extension. It holds a copy of the extension and a linked list of all
461 the anticipatable and available occurrences of it.
462 We use this data structure when we read the output of the LCM. */
466 #include "coretypes.h"
473 #include "insn-config.h"
476 #include "splay-tree.h"
480 #include "tree-pass.h"
483 /* Used to classify defs and uses according to relevancy. */
492 /* Used to classify extensions in relevant webs. */
493 enum extension_type
{
495 EXPLICIT_DEF_EXTENSION
,
496 IMPLICIT_DEF_EXTENSION
,
500 /* Global data structures and flags. */
502 /* This structure will be assigned for each web_entry structure (defined
503 in df.h). It is placed in the extra_info field of a web_entry and holds the
504 relevancy and source mode of the web_entry. */
506 struct see_entry_extra_info
508 /* The relevancy of the ref. */
509 enum entry_type relevancy
;
510 /* The relevancy of the ref.
511 This field is updated only once - when this structure is created. */
512 enum entry_type local_relevancy
;
513 /* The source register mode. */
514 enum machine_mode source_mode
;
515 /* This field is used only if the relevancy is ZERO/SIGN_EXTENDED_DEF.
516 It is updated only once when this structure is created. */
517 enum machine_mode local_source_mode
;
518 /* This field is used only if the relevancy is EXTENDED_DEF.
519 It holds the narrowest mode that is sign extended. */
520 enum machine_mode source_mode_signed
;
521 /* This field is used only if the relevancy is EXTENDED_DEF.
522 It holds the narrowest mode that is zero extended. */
523 enum machine_mode source_mode_unsigned
;
526 /* There is one such structure for every reference. It stores the reference
527 itself as well as its extensions (uses and definitions).
528 Used as the value in splay_tree see_bb_splay_ar[]. */
531 /* The luid of the insn. */
533 /* The insn of the ref. */
535 /* The merged insn that was formed from the reference's insn and extensions.
536 If all merges failed, it remains NULL. */
538 /* The def extensions of the reference that were not merged with
540 htab_t unmerged_def_se_hash
;
541 /* The def extensions of the reference that were merged with
542 it. Implicit extensions of the reference will be stored here too. */
543 htab_t merged_def_se_hash
;
544 /* The uses extensions of reference. */
548 /* There is one such structure for every relevant extended register in a
549 specific basic block. This data will help us build the LCM sbitmap_vectors
551 struct see_register_properties
553 /* The register number. */
555 /* The last luid of the reference that defines this register in this basic
558 /* The luid of the reference that has the first extension of this register
559 that appears before any definition in this basic block. */
560 int first_se_before_any_def
;
561 /* The luid of the reference that has the first extension of this register
562 that appears after the last definition in this basic block. */
563 int first_se_after_last_def
;
566 /* Occurrence of an expression.
567 There must be at most one available occurrence and at most one anticipatable
568 occurrence per basic block. */
571 /* Next occurrence of this expression. */
572 struct see_occr
*next
;
573 /* The insn that computes the expression. */
578 /* There is one such structure for every relevant extension expression.
579 It holds a copy of this extension instruction as well as a linked lists of
580 pointers to all the antic and avail occurrences of it. */
581 struct see_pre_extension_expr
583 /* A copy of the extension instruction. */
585 /* Index in the available expression bitmaps. */
587 /* List of anticipatable occurrences in basic blocks in the function.
588 An "anticipatable occurrence" is the first occurrence in the basic block,
589 the operands are not modified in the basic block prior to the occurrence
590 and the output is not used between the start of the block and the
592 struct see_occr
*antic_occr
;
593 /* List of available occurrence in basic blocks in the function.
594 An "available occurrence" is the last occurrence in the basic block and
595 the operands are not modified by following statements in the basic block
596 [including this insn]. */
597 struct see_occr
*avail_occr
;
600 /* Helper structure for the note_uses and see_replace_src functions. */
601 struct see_replace_data
607 /* Helper structure for the note_uses and see_mentioned_reg functions. */
608 struct see_mentioned_reg_data
614 /* An array of web_entries. The i'th definition in the df object is associated
616 static struct web_entry
*def_entry
= NULL
;
617 /* An array of web_entries. The i'th use in the df object is associated with
619 static struct web_entry
*use_entry
= NULL
;
620 /* Array of splay_trees.
621 see_bb_splay_ar[i] refers to the splay tree of the i'th basic block.
622 The splay tree will hold see_ref_s structures. The key is the luid
623 of the insn. This way we can traverse over the references of each basic
624 block in forward or backward order. */
625 static splay_tree
*see_bb_splay_ar
= NULL
;
627 see_bb_hash_ar[i] refers to the hash of the i'th basic block.
628 The hash will hold see_register_properties structure. The key is regno. */
629 static htab_t
*see_bb_hash_ar
= NULL
;
630 /* Hash table that holds a copy of all the extensions. The key is the right
631 hand side of the se_insn field. */
632 static htab_t see_pre_extension_hash
= NULL
;
634 /* Local LCM properties of expressions. */
635 /* Nonzero for expressions that are transparent in the block. */
636 static sbitmap
*transp
= NULL
;
637 /* Nonzero for expressions that are computed (available) in the block. */
638 static sbitmap
*comp
= NULL
;
639 /* Nonzero for expressions that are locally anticipatable in the block. */
640 static sbitmap
*antloc
= NULL
;
641 /* Nonzero for expressions that are locally killed in the block. */
642 static sbitmap
*ae_kill
= NULL
;
643 /* Nonzero for expressions which should be inserted on a specific edge. */
644 static sbitmap
*pre_insert_map
= NULL
;
645 /* Nonzero for expressions which should be deleted in a specific block. */
646 static sbitmap
*pre_delete_map
= NULL
;
647 /* Contains the edge_list returned by pre_edge_lcm. */
648 static struct edge_list
*edge_list
= NULL
;
649 /* Records the last basic block at the beginning of the optimization. */
651 /* Records the number of uses at the beginning of the optimization. */
652 static unsigned int uses_num
;
653 /* Records the number of definitions at the beginning of the optimization. */
654 static unsigned int defs_num
;
656 #define ENTRY_EI(ENTRY) ((struct see_entry_extra_info *) (ENTRY)->extra_info)
658 /* Functions implementation. */
660 /* Verifies that EXTENSION's pattern is this:
662 set (reg/subreg reg1) (sign/zero_extend:WIDEmode (reg/subreg reg2))
664 If it doesn't have the expected pattern return NULL.
665 Otherwise, if RETURN_DEST_REG is set, return reg1 else return reg2. */
668 see_get_extension_reg (rtx extension
, bool return_dest_reg
)
674 /* Parallel pattern for extension not supported for the moment. */
675 if (GET_CODE (PATTERN (extension
)) == PARALLEL
)
678 set
= single_set (extension
);
681 lhs
= SET_DEST (set
);
686 else if (REG_P (SUBREG_REG (lhs
)))
687 reg1
= SUBREG_REG (lhs
);
691 if (GET_CODE (rhs
) != SIGN_EXTEND
&& GET_CODE (rhs
) != ZERO_EXTEND
)
697 else if (REG_P (SUBREG_REG (rhs
)))
698 reg2
= SUBREG_REG (rhs
);
707 /* Verifies that EXTENSION's pattern is this:
709 set (reg/subreg reg1) (sign/zero_extend: (...expr...)
711 If it doesn't have the expected pattern return UNKNOWN.
712 Otherwise, set SOURCE_MODE to be the mode of the extended expr and return
713 the rtx code of the extension. */
716 see_get_extension_data (rtx extension
, enum machine_mode
*source_mode
)
720 if (!extension
|| !INSN_P (extension
))
723 /* Parallel pattern for extension not supported for the moment. */
724 if (GET_CODE (PATTERN (extension
)) == PARALLEL
)
727 set
= single_set (extension
);
731 lhs
= SET_DEST (set
);
733 /* Don't handle extensions to something other then register or
735 if (!REG_P (lhs
) && !SUBREG_REG (lhs
))
738 if (GET_CODE (rhs
) != SIGN_EXTEND
&& GET_CODE (rhs
) != ZERO_EXTEND
)
741 if (!REG_P (XEXP (rhs
, 0))
742 && !(GET_CODE (XEXP (rhs
, 0)) == SUBREG
743 && REG_P (SUBREG_REG (XEXP (rhs
, 0)))))
746 *source_mode
= GET_MODE (XEXP (rhs
, 0));
748 if (GET_CODE (rhs
) == SIGN_EXTEND
)
754 /* Generate instruction with the pattern:
755 set ((reg r) (sign/zero_extend (subreg:mode (reg r))))
756 (the register r on both sides of the set is the same register).
758 If the recognition failed, this is very bad, return NULL (This will abort
759 the entire optimization).
760 Otherwise, return the generated instruction. */
763 see_gen_normalized_extension (rtx reg
, enum rtx_code extension_code
,
764 enum machine_mode mode
)
767 rtx extension
= NULL
;
771 || (extension_code
!= SIGN_EXTEND
&& extension_code
!= ZERO_EXTEND
))
774 subreg
= gen_lowpart_SUBREG (mode
, reg
);
775 if (extension_code
== SIGN_EXTEND
)
776 extension
= gen_rtx_SIGN_EXTEND (GET_MODE (reg
), subreg
);
778 extension
= gen_rtx_ZERO_EXTEND (GET_MODE (reg
), subreg
);
781 emit_insn (gen_rtx_SET (VOIDmode
, reg
, extension
));
785 if (insn_invalid_p (insn
))
786 /* Recognition failed, this is very bad for this optimization.
787 Abort the optimization. */
792 /* Hashes and splay_trees related functions implementation. */
794 /* Helper functions for the pre_extension hash.
795 This kind of hash will hold see_pre_extension_expr structures.
797 The key is the right hand side of the se_insn field.
798 Note that the se_insn is an expression that looks like:
800 set ((reg:WIDEmode r1) (sign_extend:WIDEmode
801 (subreg:NARROWmode (reg:WIDEmode r2)))) */
803 /* Return TRUE if P1 has the same value in its rhs as P2.
804 Otherwise, return FALSE.
805 P1 and P2 are see_pre_extension_expr structures. */
808 eq_descriptor_pre_extension (const void *p1
, const void *p2
)
810 const struct see_pre_extension_expr
*extension1
= p1
;
811 const struct see_pre_extension_expr
*extension2
= p2
;
812 rtx set1
= single_set (extension1
->se_insn
);
813 rtx set2
= single_set (extension2
->se_insn
);
816 gcc_assert (set1
&& set2
);
817 rhs1
= SET_SRC (set1
);
818 rhs2
= SET_SRC (set2
);
820 return rtx_equal_p (rhs1
, rhs2
);
824 /* P is a see_pre_extension_expr struct, use the RHS of the se_insn field.
825 Note that the RHS is an expression that looks like this:
826 (sign_extend:WIDEmode (subreg:NARROWmode (reg:WIDEmode r))) */
829 hash_descriptor_pre_extension (const void *p
)
831 const struct see_pre_extension_expr
*extension
= p
;
832 rtx set
= single_set (extension
->se_insn
);
838 return hash_rtx (rhs
, GET_MODE (rhs
), 0, NULL
, 0);
842 /* Free the allocated memory of the current see_pre_extension_expr struct.
844 It frees the two linked list of the occurrences structures. */
847 hash_del_pre_extension (void *p
)
849 struct see_pre_extension_expr
*extension
= p
;
850 struct see_occr
*curr_occr
= extension
->antic_occr
;
851 struct see_occr
*next_occr
= NULL
;
853 /* Free the linked list of the anticipatable occurrences. */
856 next_occr
= curr_occr
->next
;
858 curr_occr
= next_occr
;
861 /* Free the linked list of the available occurrences. */
862 curr_occr
= extension
->avail_occr
;
865 next_occr
= curr_occr
->next
;
867 curr_occr
= next_occr
;
870 /* Free the see_pre_extension_expr structure itself. */
875 /* Helper functions for the register_properties hash.
876 This kind of hash will hold see_register_properties structures.
878 The value of the key is the regno field of the structure. */
880 /* Return TRUE if P1 has the same value in the regno field as P2.
881 Otherwise, return FALSE.
882 Where P1 and P2 are see_register_properties structures. */
885 eq_descriptor_properties (const void *p1
, const void *p2
)
887 const struct see_register_properties
*curr_prop1
= p1
;
888 const struct see_register_properties
*curr_prop2
= p2
;
890 return curr_prop1
->regno
== curr_prop2
->regno
;
894 /* P is a see_register_properties struct, use the register number in the
898 hash_descriptor_properties (const void *p
)
900 const struct see_register_properties
*curr_prop
= p
;
901 return curr_prop
->regno
;
905 /* Free the allocated memory of the current see_register_properties struct. */
907 hash_del_properties (void *p
)
909 struct see_register_properties
*curr_prop
= p
;
914 /* Helper functions for an extension hash.
915 This kind of hash will hold insns that look like:
917 set ((reg:WIDEmode r1) (sign_extend:WIDEmode
918 (subreg:NARROWmode (reg:WIDEmode r2))))
920 set ((reg:WIDEmode r1) (sign_extend:WIDEmode (reg:NARROWmode r2)))
922 The value of the key is (REGNO (reg:WIDEmode r1))
923 It is possible to search this hash in two ways:
924 1. By a register rtx. The Value that is been compared to the keys is the
926 2. By an insn with the above pattern. The Value that is been compared to
927 the keys is the REGNO of the reg on the lhs. */
929 /* Return TRUE if P1 has the same value as P2. Otherwise, return FALSE.
930 Where P1 is an insn and P2 is an insn or a register. */
933 eq_descriptor_extension (const void *p1
, const void *p2
)
935 const_rtx
const insn
= (const_rtx
) p1
;
936 const_rtx
const element
= (const_rtx
) p2
;
937 rtx set1
= single_set (insn
);
940 const_rtx dest_reg2
= NULL
;
942 gcc_assert (set1
&& element
&& (REG_P (element
) || INSN_P (element
)));
944 dest_reg1
= SET_DEST (set1
);
946 if (INSN_P (element
))
948 set2
= single_set (element
);
949 dest_reg2
= SET_DEST (set2
);
954 return REGNO (dest_reg1
) == REGNO (dest_reg2
);
958 /* If P is an insn, use the register number of its lhs
959 otherwise, P is a register, use its number. */
962 hash_descriptor_extension (const void *p
)
964 const_rtx
const r
= (const_rtx
) p
;
970 gcc_assert (r
&& INSN_P (r
));
971 set
= single_set (r
);
973 lhs
= SET_DEST (set
);
978 /* Helper function for a see_bb_splay_ar[i] splay tree.
979 It frees all the allocated memory of a struct see_ref_s pointer.
981 VALUE is the value of a splay tree node. */
984 see_free_ref_s (splay_tree_value value
)
986 struct see_ref_s
*ref_s
= (struct see_ref_s
*)value
;
988 if (ref_s
->unmerged_def_se_hash
)
989 htab_delete (ref_s
->unmerged_def_se_hash
);
990 if (ref_s
->merged_def_se_hash
)
991 htab_delete (ref_s
->merged_def_se_hash
);
992 if (ref_s
->use_se_hash
)
993 htab_delete (ref_s
->use_se_hash
);
998 /* Rest of the implementation. */
1000 /* Search the extension hash for a suitable entry for EXTENSION.
1001 TYPE is the type of EXTENSION (USE_EXTENSION or DEF_EXTENSION).
1003 If TYPE is DEF_EXTENSION we need to normalize EXTENSION before searching the
1006 If a suitable entry was found, return the slot. Otherwise, store EXTENSION
1007 in the hash and return NULL. */
1009 static struct see_pre_extension_expr
*
1010 see_seek_pre_extension_expr (rtx extension
, enum extension_type type
)
1012 struct see_pre_extension_expr
**slot_pre_exp
, temp_pre_exp
;
1013 rtx dest_extension_reg
= see_get_extension_reg (extension
, 1);
1014 enum rtx_code extension_code
;
1015 enum machine_mode source_extension_mode
;
1017 if (type
== DEF_EXTENSION
)
1019 extension_code
= see_get_extension_data (extension
,
1020 &source_extension_mode
);
1021 gcc_assert (extension_code
!= UNKNOWN
);
1023 see_gen_normalized_extension (dest_extension_reg
, extension_code
,
1024 source_extension_mode
);
1026 temp_pre_exp
.se_insn
= extension
;
1028 (struct see_pre_extension_expr
**) htab_find_slot (see_pre_extension_hash
,
1029 &temp_pre_exp
, INSERT
);
1030 if (*slot_pre_exp
== NULL
)
1031 /* This is the first time this extension instruction is encountered. Store
1034 (*slot_pre_exp
) = xmalloc (sizeof (struct see_pre_extension_expr
));
1035 (*slot_pre_exp
)->se_insn
= extension
;
1036 (*slot_pre_exp
)->bitmap_index
=
1037 (htab_elements (see_pre_extension_hash
) - 1);
1038 (*slot_pre_exp
)->antic_occr
= NULL
;
1039 (*slot_pre_exp
)->avail_occr
= NULL
;
1042 return *slot_pre_exp
;
1046 /* This function defines how to update the extra_info of the web_entry.
1048 FIRST is the pointer of the extra_info of the first web_entry.
1049 SECOND is the pointer of the extra_info of the second web_entry.
1050 The first web_entry will be the predecessor (leader) of the second web_entry
1053 Return true if FIRST and SECOND points to the same web entry structure and
1054 nothing is done. Otherwise, return false. */
1057 see_update_leader_extra_info (struct web_entry
*first
, struct web_entry
*second
)
1059 struct see_entry_extra_info
*first_ei
, *second_ei
;
1061 first
= unionfind_root (first
);
1062 second
= unionfind_root (second
);
1064 if (unionfind_union (first
, second
))
1067 first_ei
= (struct see_entry_extra_info
*) first
->extra_info
;
1068 second_ei
= (struct see_entry_extra_info
*) second
->extra_info
;
1070 gcc_assert (first_ei
&& second_ei
);
1072 if (second_ei
->relevancy
== NOT_RELEVANT
)
1074 first_ei
->relevancy
= NOT_RELEVANT
;
1077 switch (first_ei
->relevancy
)
1082 switch (second_ei
->relevancy
)
1087 first_ei
->relevancy
= second_ei
->relevancy
;
1088 first_ei
->source_mode_signed
= second_ei
->source_mode_signed
;
1089 first_ei
->source_mode_unsigned
= second_ei
->source_mode_unsigned
;
1091 case SIGN_EXTENDED_DEF
:
1092 case ZERO_EXTENDED_DEF
:
1093 first_ei
->relevancy
= second_ei
->relevancy
;
1094 first_ei
->source_mode
= second_ei
->source_mode
;
1100 case SIGN_EXTENDED_DEF
:
1101 switch (second_ei
->relevancy
)
1103 case SIGN_EXTENDED_DEF
:
1104 /* The mode of the root should be the wider one in this case. */
1105 first_ei
->source_mode
=
1106 (first_ei
->source_mode
> second_ei
->source_mode
) ?
1107 first_ei
->source_mode
: second_ei
->source_mode
;
1111 case ZERO_EXTENDED_DEF
:
1112 /* Don't mix webs with zero extend and sign extend. */
1113 first_ei
->relevancy
= NOT_RELEVANT
;
1116 if (second_ei
->source_mode_signed
== MAX_MACHINE_MODE
)
1117 first_ei
->relevancy
= NOT_RELEVANT
;
1119 /* The mode of the root should be the wider one in this case. */
1120 first_ei
->source_mode
=
1121 (first_ei
->source_mode
> second_ei
->source_mode_signed
) ?
1122 first_ei
->source_mode
: second_ei
->source_mode_signed
;
1128 /* This case is similar to the previous one, with little changes. */
1129 case ZERO_EXTENDED_DEF
:
1130 switch (second_ei
->relevancy
)
1132 case SIGN_EXTENDED_DEF
:
1133 /* Don't mix webs with zero extend and sign extend. */
1134 first_ei
->relevancy
= NOT_RELEVANT
;
1138 case ZERO_EXTENDED_DEF
:
1139 /* The mode of the root should be the wider one in this case. */
1140 first_ei
->source_mode
=
1141 (first_ei
->source_mode
> second_ei
->source_mode
) ?
1142 first_ei
->source_mode
: second_ei
->source_mode
;
1145 if (second_ei
->source_mode_unsigned
== MAX_MACHINE_MODE
)
1146 first_ei
->relevancy
= NOT_RELEVANT
;
1148 /* The mode of the root should be the wider one in this case. */
1149 first_ei
->source_mode
=
1150 (first_ei
->source_mode
> second_ei
->source_mode_unsigned
) ?
1151 first_ei
->source_mode
: second_ei
->source_mode_unsigned
;
1158 if (first_ei
->source_mode_signed
!= MAX_MACHINE_MODE
1159 && first_ei
->source_mode_unsigned
!= MAX_MACHINE_MODE
)
1161 switch (second_ei
->relevancy
)
1163 case SIGN_EXTENDED_DEF
:
1164 first_ei
->relevancy
= SIGN_EXTENDED_DEF
;
1165 first_ei
->source_mode
=
1166 (first_ei
->source_mode_signed
> second_ei
->source_mode
) ?
1167 first_ei
->source_mode_signed
: second_ei
->source_mode
;
1171 case ZERO_EXTENDED_DEF
:
1172 first_ei
->relevancy
= ZERO_EXTENDED_DEF
;
1173 first_ei
->source_mode
=
1174 (first_ei
->source_mode_unsigned
> second_ei
->source_mode
) ?
1175 first_ei
->source_mode_unsigned
: second_ei
->source_mode
;
1178 if (second_ei
->source_mode_unsigned
!= MAX_MACHINE_MODE
)
1179 first_ei
->source_mode_unsigned
=
1180 (first_ei
->source_mode_unsigned
>
1181 second_ei
->source_mode_unsigned
) ?
1182 first_ei
->source_mode_unsigned
:
1183 second_ei
->source_mode_unsigned
;
1184 if (second_ei
->source_mode_signed
!= MAX_MACHINE_MODE
)
1185 first_ei
->source_mode_signed
=
1186 (first_ei
->source_mode_signed
>
1187 second_ei
->source_mode_signed
) ?
1188 first_ei
->source_mode_signed
: second_ei
->source_mode_signed
;
1194 else if (first_ei
->source_mode_signed
== MAX_MACHINE_MODE
)
1196 gcc_assert (first_ei
->source_mode_unsigned
!= MAX_MACHINE_MODE
);
1197 switch (second_ei
->relevancy
)
1199 case SIGN_EXTENDED_DEF
:
1200 first_ei
->relevancy
= NOT_RELEVANT
;
1204 case ZERO_EXTENDED_DEF
:
1205 first_ei
->relevancy
= ZERO_EXTENDED_DEF
;
1206 first_ei
->source_mode
=
1207 (first_ei
->source_mode_unsigned
> second_ei
->source_mode
) ?
1208 first_ei
->source_mode_unsigned
: second_ei
->source_mode
;
1211 if (second_ei
->source_mode_unsigned
== MAX_MACHINE_MODE
)
1212 first_ei
->relevancy
= NOT_RELEVANT
;
1214 first_ei
->source_mode_unsigned
=
1215 (first_ei
->source_mode_unsigned
>
1216 second_ei
->source_mode_unsigned
) ?
1217 first_ei
->source_mode_unsigned
:
1218 second_ei
->source_mode_unsigned
;
1226 gcc_assert (first_ei
->source_mode_unsigned
== MAX_MACHINE_MODE
);
1227 gcc_assert (first_ei
->source_mode_signed
!= MAX_MACHINE_MODE
);
1228 switch (second_ei
->relevancy
)
1230 case SIGN_EXTENDED_DEF
:
1231 first_ei
->relevancy
= SIGN_EXTENDED_DEF
;
1232 first_ei
->source_mode
=
1233 (first_ei
->source_mode_signed
> second_ei
->source_mode
) ?
1234 first_ei
->source_mode_signed
: second_ei
->source_mode
;
1238 case ZERO_EXTENDED_DEF
:
1239 first_ei
->relevancy
= NOT_RELEVANT
;
1242 if (second_ei
->source_mode_signed
== MAX_MACHINE_MODE
)
1243 first_ei
->relevancy
= NOT_RELEVANT
;
1245 first_ei
->source_mode_signed
=
1246 (first_ei
->source_mode_signed
>
1247 second_ei
->source_mode_signed
) ?
1248 first_ei
->source_mode_signed
: second_ei
->source_mode_signed
;
1256 /* Unknown patern type. */
1264 /* Free global data structures. */
1267 see_free_data_structures (void)
1272 /* Free the bitmap vectors. */
1275 sbitmap_vector_free (transp
);
1277 sbitmap_vector_free (comp
);
1279 sbitmap_vector_free (antloc
);
1281 sbitmap_vector_free (ae_kill
);
1286 sbitmap_vector_free (pre_insert_map
);
1287 pre_insert_map
= NULL
;
1291 sbitmap_vector_free (pre_delete_map
);
1292 pre_delete_map
= NULL
;
1296 free_edge_list (edge_list
);
1300 /* Free the extension hash. */
1301 htab_delete (see_pre_extension_hash
);
1303 /* Free the array of hashes. */
1304 for (i
= 0; i
< last_bb
; i
++)
1305 if (see_bb_hash_ar
[i
])
1306 htab_delete (see_bb_hash_ar
[i
]);
1307 free (see_bb_hash_ar
);
1309 /* Free the array of splay trees. */
1310 for (i
= 0; i
< last_bb
; i
++)
1311 if (see_bb_splay_ar
[i
])
1312 splay_tree_delete (see_bb_splay_ar
[i
]);
1313 free (see_bb_splay_ar
);
1315 /* Free the array of web entries and their extra info field. */
1316 for (j
= 0; j
< defs_num
; j
++)
1317 free (def_entry
[j
].extra_info
);
1319 for (j
= 0; j
< uses_num
; j
++)
1320 free (use_entry
[j
].extra_info
);
1325 /* Initialize global data structures and variables. */
1328 see_initialize_data_structures (void)
1330 unsigned int max_reg
= max_reg_num ();
1333 /* Build the df object. */
1334 df_set_flags (DF_EQ_NOTES
);
1335 df_chain_add_problem (DF_DU_CHAIN
+ DF_UD_CHAIN
);
1337 df_set_flags (DF_DEFER_INSN_RESCAN
);
1340 df_dump (dump_file
);
1342 /* Record the last basic block at the beginning of the optimization. */
1343 last_bb
= last_basic_block
;
1345 /* Record the number of uses and defs at the beginning of the optimization. */
1348 for (i
= 0; i
< max_reg
; i
++)
1350 uses_num
+= DF_REG_USE_COUNT (i
) + DF_REG_EQ_USE_COUNT (i
);
1351 defs_num
+= DF_REG_DEF_COUNT (i
);
1354 /* Allocate web entries array for the union-find data structure. */
1355 def_entry
= xcalloc (defs_num
, sizeof (struct web_entry
));
1356 use_entry
= xcalloc (uses_num
, sizeof (struct web_entry
));
1358 /* Allocate an array of splay trees.
1359 One splay tree for each basic block. */
1360 see_bb_splay_ar
= xcalloc (last_bb
, sizeof (splay_tree
));
1362 /* Allocate an array of hashes.
1363 One hash for each basic block. */
1364 see_bb_hash_ar
= xcalloc (last_bb
, sizeof (htab_t
));
1366 /* Allocate the extension hash. It will hold the extensions that we want
1368 see_pre_extension_hash
= htab_create (10,
1369 hash_descriptor_pre_extension
,
1370 eq_descriptor_pre_extension
,
1371 hash_del_pre_extension
);
1375 /* Function called by note_uses to check if a register is used in a
1378 X is a pointer to the subexpression and DATA is a pointer to a
1379 see_mentioned_reg_data structure that contains the register to look for and
1380 a place for the result. */
1383 see_mentioned_reg (rtx
*x
, void *data
)
1385 struct see_mentioned_reg_data
*d
1386 = (struct see_mentioned_reg_data
*) data
;
1388 if (reg_mentioned_p (d
->reg
, *x
))
1389 d
->mentioned
= true;
1393 /* We don't want to merge a use extension with a reference if the extended
1394 register is used only in a simple move instruction. We also don't want to
1395 merge a def extension with a reference if the source register of the
1396 extension is defined only in a simple move in the reference.
1398 REF is the reference instruction.
1399 EXTENSION is the use extension or def extension instruction.
1400 TYPE is the type of the extension (use or def).
1402 Return true if the reference is complicated enough, so we would like to merge
1403 it with the extension. Otherwise, return false. */
1406 see_want_to_be_merged_with_extension (rtx ref
, rtx extension
,
1407 enum extension_type type
)
1410 rtx dest_extension_reg
= see_get_extension_reg (extension
, 1);
1411 rtx source_extension_reg
= see_get_extension_reg (extension
, 0);
1413 struct see_mentioned_reg_data d
;
1416 pat
= PATTERN (ref
);
1417 code
= GET_CODE (pat
);
1419 if (code
== PARALLEL
)
1421 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1423 rtx sub
= XVECEXP (pat
, 0, i
);
1425 if (GET_CODE (sub
) == SET
1426 && (REG_P (SET_DEST (sub
))
1427 || (GET_CODE (SET_DEST (sub
)) == SUBREG
1428 && REG_P (SUBREG_REG (SET_DEST (sub
)))))
1429 && (REG_P (SET_SRC (sub
))
1430 || (GET_CODE (SET_SRC (sub
)) == SUBREG
1431 && REG_P (SUBREG_REG (SET_SRC (sub
))))))
1433 /* This is a simple move SET. */
1434 if (type
== DEF_EXTENSION
1435 && reg_mentioned_p (source_extension_reg
, SET_DEST (sub
)))
1440 /* This is not a simple move SET.
1441 Check if it uses the source of the extension. */
1442 if (type
== USE_EXTENSION
)
1444 d
.reg
= dest_extension_reg
;
1445 d
.mentioned
= false;
1446 note_uses (&sub
, see_mentioned_reg
, &d
);
1452 if (type
== USE_EXTENSION
)
1458 && (REG_P (SET_DEST (pat
))
1459 || (GET_CODE (SET_DEST (pat
)) == SUBREG
1460 && REG_P (SUBREG_REG (SET_DEST (pat
)))))
1461 && (REG_P (SET_SRC (pat
))
1462 || (GET_CODE (SET_SRC (pat
)) == SUBREG
1463 && REG_P (SUBREG_REG (SET_SRC (pat
))))))
1464 /* This is a simple move SET. */
1472 /* Print the register number of the current see_register_properties
1475 This is a subroutine of see_main called via htab_traverse.
1476 SLOT contains the current see_register_properties structure pointer. */
1479 see_print_register_properties (void **slot
, void *b ATTRIBUTE_UNUSED
)
1481 struct see_register_properties
*prop
= *slot
;
1484 fprintf (dump_file
, "Property found for register %d\n", prop
->regno
);
1489 /* Print the extension instruction of the current see_register_properties
1492 This is a subroutine of see_main called via htab_traverse.
1493 SLOT contains the current see_pre_extension_expr structure pointer. */
1496 see_print_pre_extension_expr (void **slot
, void *b ATTRIBUTE_UNUSED
)
1498 struct see_pre_extension_expr
*pre_extension
= *slot
;
1500 gcc_assert (pre_extension
1501 && pre_extension
->se_insn
1502 && INSN_P (pre_extension
->se_insn
));
1504 fprintf (dump_file
, "Index %d for:\n", pre_extension
->bitmap_index
);
1505 print_rtl_single (dump_file
, pre_extension
->se_insn
);
1511 /* Phase 4 implementation: Commit changes to the insn stream. */
1513 /* Delete the merged def extension.
1515 This is a subroutine of see_commit_ref_changes called via htab_traverse.
1517 SLOT contains the current def extension instruction.
1518 B is the see_ref_s structure pointer. */
1521 see_delete_merged_def_extension (void **slot
, void *b ATTRIBUTE_UNUSED
)
1527 fprintf (dump_file
, "Deleting merged def extension:\n");
1528 print_rtl_single (dump_file
, def_se
);
1531 if (INSN_DELETED_P (def_se
))
1532 /* This def extension is an implicit one. No need to delete it since
1533 it is not in the insn stream. */
1536 delete_insn (def_se
);
1541 /* Delete the unmerged def extension.
1543 This is a subroutine of see_commit_ref_changes called via htab_traverse.
1545 SLOT contains the current def extension instruction.
1546 B is the see_ref_s structure pointer. */
1549 see_delete_unmerged_def_extension (void **slot
, void *b ATTRIBUTE_UNUSED
)
1555 fprintf (dump_file
, "Deleting unmerged def extension:\n");
1556 print_rtl_single (dump_file
, def_se
);
1559 delete_insn (def_se
);
1564 /* Emit the non-redundant use extension to the instruction stream.
1566 This is a subroutine of see_commit_ref_changes called via htab_traverse.
1568 SLOT contains the current use extension instruction.
1569 B is the see_ref_s structure pointer. */
1572 see_emit_use_extension (void **slot
, void *b
)
1575 struct see_ref_s
*curr_ref_s
= (struct see_ref_s
*) b
;
1577 if (INSN_DELETED_P (use_se
))
1578 /* This use extension was previously removed according to the lcm
1584 fprintf (dump_file
, "Inserting use extension:\n");
1585 print_rtl_single (dump_file
, use_se
);
1588 add_insn_before (use_se
, curr_ref_s
->insn
, NULL
);
1594 /* For each relevant reference:
1595 a. Emit the non-redundant use extensions.
1596 b. Delete the def extensions.
1597 c. Replace the original reference with the merged one (if exists) and add the
1598 move instructions that were generated.
1600 This is a subroutine of see_commit_changes called via splay_tree_foreach.
1602 STN is the current node in the see_bb_splay_ar[i] splay tree. It holds a
1603 see_ref_s structure. */
1606 see_commit_ref_changes (splay_tree_node stn
,
1607 void *data ATTRIBUTE_UNUSED
)
1609 htab_t use_se_hash
= ((struct see_ref_s
*) (stn
->value
))->use_se_hash
;
1610 htab_t unmerged_def_se_hash
=
1611 ((struct see_ref_s
*) (stn
->value
))->unmerged_def_se_hash
;
1612 htab_t merged_def_se_hash
=
1613 ((struct see_ref_s
*) (stn
->value
))->merged_def_se_hash
;
1614 rtx ref
= ((struct see_ref_s
*) (stn
->value
))->insn
;
1615 rtx merged_ref
= ((struct see_ref_s
*) (stn
->value
))->merged_insn
;
1617 /* Emit the non-redundant use extensions. */
1619 htab_traverse_noresize (use_se_hash
, see_emit_use_extension
,
1620 (PTR
) (stn
->value
));
1622 /* Delete the def extensions. */
1623 if (unmerged_def_se_hash
)
1624 htab_traverse (unmerged_def_se_hash
, see_delete_unmerged_def_extension
,
1625 (PTR
) (stn
->value
));
1627 if (merged_def_se_hash
)
1628 htab_traverse (merged_def_se_hash
, see_delete_merged_def_extension
,
1629 (PTR
) (stn
->value
));
1631 /* Replace the original reference with the merged one (if exists) and add the
1632 move instructions that were generated. */
1633 if (merged_ref
&& !INSN_DELETED_P (ref
))
1637 fprintf (dump_file
, "Replacing orig reference:\n");
1638 print_rtl_single (dump_file
, ref
);
1639 fprintf (dump_file
, "With merged reference:\n");
1640 print_rtl_single (dump_file
, merged_ref
);
1642 emit_insn_after (merged_ref
, ref
);
1646 /* Continue to the next reference. */
1651 /* Insert partially redundant expressions on edges to make the expressions fully
1654 INDEX_MAP is a mapping of an index to an expression.
1655 Return true if an instruction was inserted on an edge.
1656 Otherwise, return false. */
1659 see_pre_insert_extensions (struct see_pre_extension_expr
**index_map
)
1661 int num_edges
= NUM_EDGES (edge_list
);
1662 int set_size
= pre_insert_map
[0]->size
;
1663 size_t pre_extension_num
= htab_elements (see_pre_extension_hash
);
1670 for (e
= 0; e
< num_edges
; e
++)
1673 basic_block bb
= INDEX_EDGE_PRED_BB (edge_list
, e
);
1675 for (i
= indx
= 0; i
< set_size
; i
++, indx
+= SBITMAP_ELT_BITS
)
1677 SBITMAP_ELT_TYPE insert
= pre_insert_map
[e
]->elms
[i
];
1679 for (j
= indx
; insert
&& j
< (int) pre_extension_num
;
1683 struct see_pre_extension_expr
*expr
= index_map
[j
];
1684 int idx
= expr
->bitmap_index
;
1686 edge eg
= INDEX_EDGE (edge_list
, e
);
1689 emit_insn (PATTERN (expr
->se_insn
));
1690 se_insn
= get_insns ();
1693 if (eg
->flags
& EDGE_ABNORMAL
)
1695 rtx new_insn
= NULL
;
1697 new_insn
= insert_insn_end_bb_new (se_insn
, bb
);
1698 gcc_assert (new_insn
&& INSN_P (new_insn
));
1703 "PRE: end of bb %d, insn %d, ",
1704 bb
->index
, INSN_UID (new_insn
));
1706 "inserting expression %d\n", idx
);
1711 insert_insn_on_edge (se_insn
, eg
);
1715 fprintf (dump_file
, "PRE: edge (%d,%d), ",
1717 INDEX_EDGE_SUCC_BB (edge_list
, e
)->index
);
1718 fprintf (dump_file
, "inserting expression %d\n", idx
);
1729 /* Since all the redundant extensions must be anticipatable, they must be a use
1730 extensions. Mark them as deleted. This will prevent them from been emitted
1733 This is a subroutine of see_commit_changes called via htab_traverse.
1735 SLOT contains the current see_pre_extension_expr structure pointer. */
1738 see_pre_delete_extension (void **slot
, void *b ATTRIBUTE_UNUSED
)
1740 struct see_pre_extension_expr
*expr
= *slot
;
1741 struct see_occr
*occr
;
1742 int indx
= expr
->bitmap_index
;
1744 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
1746 if (TEST_BIT (pre_delete_map
[occr
->block_num
], indx
))
1748 /* Mark as deleted. */
1749 INSN_DELETED_P (occr
->insn
) = 1;
1752 fprintf (dump_file
,"Redundant extension deleted:\n");
1753 print_rtl_single (dump_file
, occr
->insn
);
1761 /* Create the index_map mapping of an index to an expression.
1763 This is a subroutine of see_commit_changes called via htab_traverse.
1765 SLOT contains the current see_pre_extension_expr structure pointer.
1766 B a pointer to see_pre_extension_expr structure pointer. */
1769 see_map_extension (void **slot
, void *b
)
1771 struct see_pre_extension_expr
*expr
= *slot
;
1772 struct see_pre_extension_expr
**index_map
=
1773 (struct see_pre_extension_expr
**) b
;
1775 index_map
[expr
->bitmap_index
] = expr
;
1781 /* Phase 4 top level function.
1782 In this phase we finally change the instruction stream.
1783 Here we insert extensions at their best placements and delete the
1784 redundant ones according to the output of the LCM. We also replace
1785 some of the instructions according to phase 2 merges results. */
1788 see_commit_changes (void)
1790 struct see_pre_extension_expr
**index_map
;
1791 size_t pre_extension_num
= htab_elements (see_pre_extension_hash
);
1792 bool did_insert
= false;
1795 index_map
= xcalloc (pre_extension_num
,
1796 sizeof (struct see_pre_extension_expr
*));
1800 "* Phase 4: Commit changes to the insn stream. *\n");
1802 /* Produce a mapping of all the pre_extensions. */
1803 htab_traverse (see_pre_extension_hash
, see_map_extension
, (PTR
) index_map
);
1805 /* Delete redundant extension. This will prevent them from been emitted in
1807 htab_traverse (see_pre_extension_hash
, see_pre_delete_extension
, NULL
);
1809 /* Insert extensions on edges, according to the LCM result. */
1810 did_insert
= see_pre_insert_extensions (index_map
);
1813 commit_edge_insertions ();
1815 /* Commit the rest of the changes. */
1816 for (i
= 0; i
< last_bb
; i
++)
1818 if (see_bb_splay_ar
[i
])
1820 /* Traverse over all the references in the basic block in forward
1822 splay_tree_foreach (see_bb_splay_ar
[i
],
1823 see_commit_ref_changes
, NULL
);
1831 /* Phase 3 implementation: Eliminate globally redundant extensions. */
1833 /* Analyze the properties of a merged def extension for the LCM and record avail
1836 This is a subroutine of see_analyze_ref_local_prop called
1839 SLOT contains the current def extension instruction.
1840 B is the see_ref_s structure pointer. */
1843 see_analyze_merged_def_local_prop (void **slot
, void *b
)
1846 struct see_ref_s
*curr_ref_s
= (struct see_ref_s
*) b
;
1847 rtx ref
= curr_ref_s
->insn
;
1848 struct see_pre_extension_expr
*extension_expr
;
1850 int bb_num
= BLOCK_NUM (ref
);
1851 htab_t curr_bb_hash
;
1852 struct see_register_properties
*curr_prop
, **slot_prop
;
1853 struct see_register_properties temp_prop
;
1854 rtx dest_extension_reg
= see_get_extension_reg (def_se
, 1);
1855 struct see_occr
*curr_occr
= NULL
;
1856 struct see_occr
*tmp_occr
= NULL
;
1858 extension_expr
= see_seek_pre_extension_expr (def_se
, DEF_EXTENSION
);
1859 /* The extension_expr must be found. */
1860 gcc_assert (extension_expr
);
1862 curr_bb_hash
= see_bb_hash_ar
[bb_num
];
1863 gcc_assert (curr_bb_hash
);
1864 temp_prop
.regno
= REGNO (dest_extension_reg
);
1866 (struct see_register_properties
**) htab_find_slot (curr_bb_hash
,
1867 &temp_prop
, INSERT
);
1868 curr_prop
= *slot_prop
;
1869 gcc_assert (curr_prop
);
1871 indx
= extension_expr
->bitmap_index
;
1873 /* Reset the transparency bit. */
1874 RESET_BIT (transp
[bb_num
], indx
);
1875 /* Reset the killed bit. */
1876 RESET_BIT (ae_kill
[bb_num
], indx
);
1878 if (curr_prop
->first_se_after_last_def
== DF_INSN_LUID (ref
))
1880 /* Set the available bit. */
1881 SET_BIT (comp
[bb_num
], indx
);
1882 /* Record the available occurrence. */
1883 curr_occr
= xmalloc (sizeof (struct see_occr
));
1884 curr_occr
->next
= NULL
;
1885 curr_occr
->insn
= def_se
;
1886 curr_occr
->block_num
= bb_num
;
1887 tmp_occr
= extension_expr
->avail_occr
;
1889 extension_expr
->avail_occr
= curr_occr
;
1892 while (tmp_occr
->next
)
1893 tmp_occr
= tmp_occr
->next
;
1894 tmp_occr
->next
= curr_occr
;
1902 /* Analyze the properties of a unmerged def extension for the LCM.
1904 This is a subroutine of see_analyze_ref_local_prop called
1907 SLOT contains the current def extension instruction.
1908 B is the see_ref_s structure pointer. */
1911 see_analyze_unmerged_def_local_prop (void **slot
, void *b
)
1914 struct see_ref_s
*curr_ref_s
= (struct see_ref_s
*) b
;
1915 rtx ref
= curr_ref_s
->insn
;
1916 struct see_pre_extension_expr
*extension_expr
;
1918 int bb_num
= BLOCK_NUM (ref
);
1919 htab_t curr_bb_hash
;
1920 struct see_register_properties
*curr_prop
, **slot_prop
;
1921 struct see_register_properties temp_prop
;
1922 rtx dest_extension_reg
= see_get_extension_reg (def_se
, 1);
1924 extension_expr
= see_seek_pre_extension_expr (def_se
, DEF_EXTENSION
);
1925 /* The extension_expr must be found. */
1926 gcc_assert (extension_expr
);
1928 curr_bb_hash
= see_bb_hash_ar
[bb_num
];
1929 gcc_assert (curr_bb_hash
);
1930 temp_prop
.regno
= REGNO (dest_extension_reg
);
1932 (struct see_register_properties
**) htab_find_slot (curr_bb_hash
,
1933 &temp_prop
, INSERT
);
1934 curr_prop
= *slot_prop
;
1935 gcc_assert (curr_prop
);
1937 indx
= extension_expr
->bitmap_index
;
1939 /* Reset the transparency bit. */
1940 RESET_BIT (transp
[bb_num
], indx
);
1941 /* Set the killed bit. */
1942 SET_BIT (ae_kill
[bb_num
], indx
);
1948 /* Analyze the properties of a use extension for the LCM and record anic and
1951 This is a subroutine of see_analyze_ref_local_prop called
1954 SLOT contains the current use extension instruction.
1955 B is the see_ref_s structure pointer. */
1958 see_analyze_use_local_prop (void **slot
, void *b
)
1960 struct see_ref_s
*curr_ref_s
= (struct see_ref_s
*) b
;
1962 rtx ref
= curr_ref_s
->insn
;
1963 rtx dest_extension_reg
= see_get_extension_reg (use_se
, 1);
1964 struct see_pre_extension_expr
*extension_expr
;
1965 struct see_register_properties
*curr_prop
, **slot_prop
;
1966 struct see_register_properties temp_prop
;
1967 struct see_occr
*curr_occr
= NULL
;
1968 struct see_occr
*tmp_occr
= NULL
;
1969 htab_t curr_bb_hash
;
1971 int bb_num
= BLOCK_NUM (ref
);
1973 extension_expr
= see_seek_pre_extension_expr (use_se
, USE_EXTENSION
);
1974 /* The extension_expr must be found. */
1975 gcc_assert (extension_expr
);
1977 curr_bb_hash
= see_bb_hash_ar
[bb_num
];
1978 gcc_assert (curr_bb_hash
);
1979 temp_prop
.regno
= REGNO (dest_extension_reg
);
1981 (struct see_register_properties
**) htab_find_slot (curr_bb_hash
,
1982 &temp_prop
, INSERT
);
1983 curr_prop
= *slot_prop
;
1984 gcc_assert (curr_prop
);
1986 indx
= extension_expr
->bitmap_index
;
1988 if (curr_prop
->first_se_before_any_def
== DF_INSN_LUID (ref
))
1990 /* Set the anticipatable bit. */
1991 SET_BIT (antloc
[bb_num
], indx
);
1992 /* Record the anticipatable occurrence. */
1993 curr_occr
= xmalloc (sizeof (struct see_occr
));
1994 curr_occr
->next
= NULL
;
1995 curr_occr
->insn
= use_se
;
1996 curr_occr
->block_num
= bb_num
;
1997 tmp_occr
= extension_expr
->antic_occr
;
1999 extension_expr
->antic_occr
= curr_occr
;
2002 while (tmp_occr
->next
)
2003 tmp_occr
= tmp_occr
->next
;
2004 tmp_occr
->next
= curr_occr
;
2006 if (curr_prop
->last_def
< 0)
2008 /* Set the available bit. */
2009 SET_BIT (comp
[bb_num
], indx
);
2010 /* Record the available occurrence. */
2011 curr_occr
= xmalloc (sizeof (struct see_occr
));
2012 curr_occr
->next
= NULL
;
2013 curr_occr
->insn
= use_se
;
2014 curr_occr
->block_num
= bb_num
;
2015 tmp_occr
= extension_expr
->avail_occr
;
2017 extension_expr
->avail_occr
= curr_occr
;
2020 while (tmp_occr
->next
)
2021 tmp_occr
= tmp_occr
->next
;
2022 tmp_occr
->next
= curr_occr
;
2025 /* Note: there is no need to reset the killed bit since it must be zero at
2028 else if (curr_prop
->first_se_after_last_def
== DF_INSN_LUID (ref
))
2030 /* Set the available bit. */
2031 SET_BIT (comp
[bb_num
], indx
);
2032 /* Reset the killed bit. */
2033 RESET_BIT (ae_kill
[bb_num
], indx
);
2034 /* Record the available occurrence. */
2035 curr_occr
= xmalloc (sizeof (struct see_occr
));
2036 curr_occr
->next
= NULL
;
2037 curr_occr
->insn
= use_se
;
2038 curr_occr
->block_num
= bb_num
;
2039 tmp_occr
= extension_expr
->avail_occr
;
2041 extension_expr
->avail_occr
= curr_occr
;
2044 while (tmp_occr
->next
)
2045 tmp_occr
= tmp_occr
->next
;
2046 tmp_occr
->next
= curr_occr
;
2053 /* Here we traverse over all the merged and unmerged extensions of the reference
2054 and analyze their properties for the LCM.
2056 This is a subroutine of see_execute_LCM called via splay_tree_foreach.
2058 STN is the current node in the see_bb_splay_ar[i] splay tree. It holds a
2059 see_ref_s structure. */
2062 see_analyze_ref_local_prop (splay_tree_node stn
,
2063 void *data ATTRIBUTE_UNUSED
)
2065 htab_t use_se_hash
= ((struct see_ref_s
*) (stn
->value
))->use_se_hash
;
2066 htab_t unmerged_def_se_hash
=
2067 ((struct see_ref_s
*) (stn
->value
))->unmerged_def_se_hash
;
2068 htab_t merged_def_se_hash
=
2069 ((struct see_ref_s
*) (stn
->value
))->merged_def_se_hash
;
2071 /* Analyze use extensions that were not merged with the reference. */
2073 htab_traverse_noresize (use_se_hash
, see_analyze_use_local_prop
,
2074 (PTR
) (stn
->value
));
2076 /* Analyze def extensions that were not merged with the reference. */
2077 if (unmerged_def_se_hash
)
2078 htab_traverse (unmerged_def_se_hash
, see_analyze_unmerged_def_local_prop
,
2079 (PTR
) (stn
->value
));
2081 /* Analyze def extensions that were merged with the reference. */
2082 if (merged_def_se_hash
)
2083 htab_traverse (merged_def_se_hash
, see_analyze_merged_def_local_prop
,
2084 (PTR
) (stn
->value
));
2086 /* Continue to the next definition. */
2091 /* Phase 3 top level function.
2092 In this phase, we set the input bit vectors of the LCM according to data
2093 gathered in phase 2.
2094 Then we run the edge based LCM. */
2097 see_execute_LCM (void)
2099 size_t pre_extension_num
= htab_elements (see_pre_extension_hash
);
2104 "* Phase 3: Eliminate globally redundant extensions. *\n");
2106 /* Initialize the global sbitmap vectors. */
2107 transp
= sbitmap_vector_alloc (last_bb
, pre_extension_num
);
2108 comp
= sbitmap_vector_alloc (last_bb
, pre_extension_num
);
2109 antloc
= sbitmap_vector_alloc (last_bb
, pre_extension_num
);
2110 ae_kill
= sbitmap_vector_alloc (last_bb
, pre_extension_num
);
2111 sbitmap_vector_ones (transp
, last_bb
);
2112 sbitmap_vector_zero (comp
, last_bb
);
2113 sbitmap_vector_zero (antloc
, last_bb
);
2114 sbitmap_vector_zero (ae_kill
, last_bb
);
2116 /* Traverse over all the splay trees of the basic blocks. */
2117 for (i
= 0; i
< last_bb
; i
++)
2119 if (see_bb_splay_ar
[i
])
2121 /* Traverse over all the references in the basic block in forward
2123 splay_tree_foreach (see_bb_splay_ar
[i
],
2124 see_analyze_ref_local_prop
, NULL
);
2128 /* Add fake exit edges before running the lcm. */
2129 add_noreturn_fake_exit_edges ();
2132 edge_list
= pre_edge_lcm (pre_extension_num
, transp
, comp
, antloc
,
2133 ae_kill
, &pre_insert_map
, &pre_delete_map
);
2135 /* Remove the fake edges. */
2136 remove_fake_exit_edges ();
2140 /* Phase 2 implementation: Merge and eliminate locally redundant extensions. */
2142 /* In this function we set the register properties for the register that is
2143 defined and extended in the reference.
2144 The properties are defined in see_register_properties structure which is
2145 allocated per basic block and per register.
2146 Later the extension is inserted into the see_pre_extension_hash for the next
2147 phase of the optimization.
2149 This is a subroutine of see_handle_extensions_for_one_ref called
2152 SLOT contains the current def extension instruction.
2153 B is the see_ref_s structure pointer. */
2156 see_set_prop_merged_def (void **slot
, void *b
)
2159 struct see_ref_s
*curr_ref_s
= (struct see_ref_s
*) b
;
2160 rtx insn
= curr_ref_s
->insn
;
2161 rtx dest_extension_reg
= see_get_extension_reg (def_se
, 1);
2162 htab_t curr_bb_hash
;
2163 struct see_register_properties
*curr_prop
= NULL
;
2164 struct see_register_properties
**slot_prop
;
2165 struct see_register_properties temp_prop
;
2166 int ref_luid
= DF_INSN_LUID (insn
);
2168 curr_bb_hash
= see_bb_hash_ar
[BLOCK_NUM (curr_ref_s
->insn
)];
2171 /* The hash doesn't exist yet. Create it. */
2172 curr_bb_hash
= htab_create (10,
2173 hash_descriptor_properties
,
2174 eq_descriptor_properties
,
2175 hash_del_properties
);
2176 see_bb_hash_ar
[BLOCK_NUM (curr_ref_s
->insn
)] = curr_bb_hash
;
2179 /* Find the right register properties in the right basic block. */
2180 temp_prop
.regno
= REGNO (dest_extension_reg
);
2182 (struct see_register_properties
**) htab_find_slot (curr_bb_hash
,
2183 &temp_prop
, INSERT
);
2185 if (slot_prop
&& *slot_prop
!= NULL
)
2187 /* Property already exists. */
2188 curr_prop
= *slot_prop
;
2189 gcc_assert (curr_prop
->regno
== REGNO (dest_extension_reg
));
2191 curr_prop
->last_def
= ref_luid
;
2192 curr_prop
->first_se_after_last_def
= ref_luid
;
2196 /* Property doesn't exist yet. */
2197 curr_prop
= xmalloc (sizeof (struct see_register_properties
));
2198 curr_prop
->regno
= REGNO (dest_extension_reg
);
2199 curr_prop
->last_def
= ref_luid
;
2200 curr_prop
->first_se_before_any_def
= -1;
2201 curr_prop
->first_se_after_last_def
= ref_luid
;
2202 *slot_prop
= curr_prop
;
2205 /* Insert the def_se into see_pre_extension_hash if it isn't already
2207 see_seek_pre_extension_expr (def_se
, DEF_EXTENSION
);
2213 /* In this function we set the register properties for the register that is
2214 defined but not extended in the reference.
2215 The properties are defined in see_register_properties structure which is
2216 allocated per basic block and per register.
2217 Later the extension is inserted into the see_pre_extension_hash for the next
2218 phase of the optimization.
2220 This is a subroutine of see_handle_extensions_for_one_ref called
2223 SLOT contains the current def extension instruction.
2224 B is the see_ref_s structure pointer. */
2227 see_set_prop_unmerged_def (void **slot
, void *b
)
2230 struct see_ref_s
*curr_ref_s
= (struct see_ref_s
*) b
;
2231 rtx insn
= curr_ref_s
->insn
;
2232 rtx dest_extension_reg
= see_get_extension_reg (def_se
, 1);
2233 htab_t curr_bb_hash
;
2234 struct see_register_properties
*curr_prop
= NULL
;
2235 struct see_register_properties
**slot_prop
;
2236 struct see_register_properties temp_prop
;
2237 int ref_luid
= DF_INSN_LUID (insn
);
2239 curr_bb_hash
= see_bb_hash_ar
[BLOCK_NUM (curr_ref_s
->insn
)];
2242 /* The hash doesn't exist yet. Create it. */
2243 curr_bb_hash
= htab_create (10,
2244 hash_descriptor_properties
,
2245 eq_descriptor_properties
,
2246 hash_del_properties
);
2247 see_bb_hash_ar
[BLOCK_NUM (curr_ref_s
->insn
)] = curr_bb_hash
;
2250 /* Find the right register properties in the right basic block. */
2251 temp_prop
.regno
= REGNO (dest_extension_reg
);
2253 (struct see_register_properties
**) htab_find_slot (curr_bb_hash
,
2254 &temp_prop
, INSERT
);
2256 if (slot_prop
&& *slot_prop
!= NULL
)
2258 /* Property already exists. */
2259 curr_prop
= *slot_prop
;
2260 gcc_assert (curr_prop
->regno
== REGNO (dest_extension_reg
));
2262 curr_prop
->last_def
= ref_luid
;
2263 curr_prop
->first_se_after_last_def
= -1;
2267 /* Property doesn't exist yet. */
2268 curr_prop
= xmalloc (sizeof (struct see_register_properties
));
2269 curr_prop
->regno
= REGNO (dest_extension_reg
);
2270 curr_prop
->last_def
= ref_luid
;
2271 curr_prop
->first_se_before_any_def
= -1;
2272 curr_prop
->first_se_after_last_def
= -1;
2273 *slot_prop
= curr_prop
;
2276 /* Insert the def_se into see_pre_extension_hash if it isn't already
2278 see_seek_pre_extension_expr (def_se
, DEF_EXTENSION
);
2284 /* In this function we set the register properties for the register that is used
2286 The properties are defined in see_register_properties structure which is
2287 allocated per basic block and per register.
2288 When a redundant use extension is found it is removed from the hash of the
2290 If the extension is non redundant it is inserted into the
2291 see_pre_extension_hash for the next phase of the optimization.
2293 This is a subroutine of see_handle_extensions_for_one_ref called
2296 SLOT contains the current use extension instruction.
2297 B is the see_ref_s structure pointer. */
2300 see_set_prop_unmerged_use (void **slot
, void *b
)
2303 struct see_ref_s
*curr_ref_s
= (struct see_ref_s
*) b
;
2304 rtx insn
= curr_ref_s
->insn
;
2305 rtx dest_extension_reg
= see_get_extension_reg (use_se
, 1);
2306 htab_t curr_bb_hash
;
2307 struct see_register_properties
*curr_prop
= NULL
;
2308 struct see_register_properties
**slot_prop
;
2309 struct see_register_properties temp_prop
;
2310 bool locally_redundant
= false;
2311 int ref_luid
= DF_INSN_LUID (insn
);
2313 curr_bb_hash
= see_bb_hash_ar
[BLOCK_NUM (curr_ref_s
->insn
)];
2316 /* The hash doesn't exist yet. Create it. */
2317 curr_bb_hash
= htab_create (10,
2318 hash_descriptor_properties
,
2319 eq_descriptor_properties
,
2320 hash_del_properties
);
2321 see_bb_hash_ar
[BLOCK_NUM (curr_ref_s
->insn
)] = curr_bb_hash
;
2324 /* Find the right register properties in the right basic block. */
2325 temp_prop
.regno
= REGNO (dest_extension_reg
);
2327 (struct see_register_properties
**) htab_find_slot (curr_bb_hash
,
2328 &temp_prop
, INSERT
);
2330 if (slot_prop
&& *slot_prop
!= NULL
)
2332 /* Property already exists. */
2333 curr_prop
= *slot_prop
;
2334 gcc_assert (curr_prop
->regno
== REGNO (dest_extension_reg
));
2337 if (curr_prop
->last_def
< 0 && curr_prop
->first_se_before_any_def
< 0)
2338 curr_prop
->first_se_before_any_def
= ref_luid
;
2339 else if (curr_prop
->last_def
< 0
2340 && curr_prop
->first_se_before_any_def
>= 0)
2342 /* In this case the extension is locally redundant. */
2343 htab_clear_slot (curr_ref_s
->use_se_hash
, (PTR
*)slot
);
2344 locally_redundant
= true;
2346 else if (curr_prop
->last_def
>= 0
2347 && curr_prop
->first_se_after_last_def
< 0)
2348 curr_prop
->first_se_after_last_def
= ref_luid
;
2349 else if (curr_prop
->last_def
>= 0
2350 && curr_prop
->first_se_after_last_def
>= 0)
2352 /* In this case the extension is locally redundant. */
2353 htab_clear_slot (curr_ref_s
->use_se_hash
, (PTR
*)slot
);
2354 locally_redundant
= true;
2361 /* Property doesn't exist yet. Create a new one. */
2362 curr_prop
= xmalloc (sizeof (struct see_register_properties
));
2363 curr_prop
->regno
= REGNO (dest_extension_reg
);
2364 curr_prop
->last_def
= -1;
2365 curr_prop
->first_se_before_any_def
= ref_luid
;
2366 curr_prop
->first_se_after_last_def
= -1;
2367 *slot_prop
= curr_prop
;
2370 /* Insert the use_se into see_pre_extension_hash if it isn't already
2372 if (!locally_redundant
)
2373 see_seek_pre_extension_expr (use_se
, USE_EXTENSION
);
2374 if (locally_redundant
&& dump_file
)
2376 fprintf (dump_file
, "Locally redundant extension:\n");
2377 print_rtl_single (dump_file
, use_se
);
2383 /* Print an extension instruction.
2385 This is a subroutine of see_handle_extensions_for_one_ref called
2387 SLOT contains the extension instruction. */
2390 see_print_one_extension (void **slot
, void *b ATTRIBUTE_UNUSED
)
2394 gcc_assert (def_se
&& INSN_P (def_se
));
2395 print_rtl_single (dump_file
, def_se
);
2400 /* Function called by note_uses to replace used subexpressions.
2402 X is a pointer to the subexpression and DATA is a pointer to a
2403 see_replace_data structure that contains the data for the replacement. */
2406 see_replace_src (rtx
*x
, void *data
)
2408 struct see_replace_data
*d
2409 = (struct see_replace_data
*) data
;
2411 *x
= replace_rtx (*x
, d
->from
, d
->to
);
2416 see_copy_insn (rtx insn
)
2418 rtx pat
= copy_insn (PATTERN (insn
)), ret
;
2420 if (NONJUMP_INSN_P (insn
))
2421 ret
= make_insn_raw (pat
);
2422 else if (JUMP_P (insn
))
2423 ret
= make_jump_insn_raw (pat
);
2424 else if (CALL_P (insn
))
2427 ret
= emit_call_insn (pat
);
2429 if (CALL_INSN_FUNCTION_USAGE (insn
))
2430 CALL_INSN_FUNCTION_USAGE (ret
)
2431 = copy_rtx (CALL_INSN_FUNCTION_USAGE (insn
));
2432 SIBLING_CALL_P (ret
) = SIBLING_CALL_P (insn
);
2433 CONST_OR_PURE_CALL_P (ret
) = CONST_OR_PURE_CALL_P (insn
);
2437 if (REG_NOTES (insn
))
2438 REG_NOTES (ret
) = copy_rtx (REG_NOTES (insn
));
2439 INSN_LOCATOR (ret
) = INSN_LOCATOR (insn
);
2440 RTX_FRAME_RELATED_P (ret
) = RTX_FRAME_RELATED_P (insn
);
2441 PREV_INSN (ret
) = NULL_RTX
;
2442 NEXT_INSN (ret
) = NULL_RTX
;
2447 /* At this point the pattern is expected to be:
2449 ref: set (dest_reg) (rhs)
2450 def_se: set (dest_extension_reg) (sign/zero_extend (source_extension_reg))
2452 The merge of these two instructions didn't succeed.
2454 We try to generate the pattern:
2455 set (subreg (dest_extension_reg)) (rhs)
2457 We do this in 4 steps:
2458 a. Replace every use of dest_reg with a new pseudo register.
2459 b. Replace every instance of dest_reg with the subreg.
2460 c. Replace every use of the new pseudo register back to dest_reg.
2461 d. Try to recognize and simplify.
2463 If the manipulation failed, leave the original ref but try to generate and
2464 recognize a simple move instruction:
2465 set (subreg (dest_extension_reg)) (dest_reg)
2466 This move instruction will be emitted right after the ref to the instruction
2467 stream and assure the correctness of the code after def_se will be removed.
2469 CURR_REF_S is the current reference.
2470 DEF_SE is the extension that couldn't be merged. */
2473 see_def_extension_not_merged (struct see_ref_s
*curr_ref_s
, rtx def_se
)
2475 struct see_replace_data d
;
2476 /* If the original insn was already merged with an extension before,
2477 take the merged one. */
2478 rtx ref
= curr_ref_s
->merged_insn
2479 ? curr_ref_s
->merged_insn
: curr_ref_s
->insn
;
2480 rtx merged_ref_next
= curr_ref_s
->merged_insn
2481 ? NEXT_INSN (curr_ref_s
->merged_insn
) : NULL_RTX
;
2482 rtx ref_copy
= see_copy_insn (ref
);
2483 rtx source_extension_reg
= see_get_extension_reg (def_se
, 0);
2484 rtx dest_extension_reg
= see_get_extension_reg (def_se
, 1);
2486 rtx dest_reg
, dest_real_reg
;
2487 rtx new_pseudo_reg
, subreg
;
2488 enum machine_mode source_extension_mode
= GET_MODE (source_extension_reg
);
2489 enum machine_mode dest_mode
;
2491 set
= single_set (def_se
);
2493 rhs
= SET_SRC (set
);
2494 gcc_assert (GET_CODE (rhs
) == SIGN_EXTEND
2495 || GET_CODE (rhs
) == ZERO_EXTEND
);
2496 dest_reg
= XEXP (rhs
, 0);
2497 gcc_assert (REG_P (dest_reg
)
2498 || (GET_CODE (dest_reg
) == SUBREG
2499 && REG_P (SUBREG_REG (dest_reg
))));
2500 dest_real_reg
= REG_P (dest_reg
) ? dest_reg
: SUBREG_REG (dest_reg
);
2501 dest_mode
= GET_MODE (dest_reg
);
2503 subreg
= gen_lowpart_SUBREG (dest_mode
, dest_extension_reg
);
2504 new_pseudo_reg
= gen_reg_rtx (source_extension_mode
);
2506 /* Step a: Replace every use of dest_real_reg with a new pseudo register. */
2507 d
.from
= dest_real_reg
;
2508 d
.to
= new_pseudo_reg
;
2509 note_uses (&PATTERN (ref_copy
), see_replace_src
, &d
);
2510 /* Step b: Replace every instance of dest_reg with the subreg. */
2511 ref_copy
= replace_rtx (ref_copy
, dest_reg
, subreg
);
2513 /* Step c: Replace every use of the new pseudo register back to
2515 d
.from
= new_pseudo_reg
;
2516 d
.to
= dest_real_reg
;
2517 note_uses (&PATTERN (ref_copy
), see_replace_src
, &d
);
2519 if (rtx_equal_p (PATTERN (ref
), PATTERN (ref_copy
))
2520 || insn_invalid_p (ref_copy
))
2522 /* The manipulation failed. */
2523 df_insn_delete (NULL
, INSN_UID (ref_copy
));
2525 /* Create a new copy. */
2526 ref_copy
= see_copy_insn (ref
);
2528 if (curr_ref_s
->merged_insn
)
2529 df_insn_delete (NULL
, INSN_UID (curr_ref_s
->merged_insn
));
2531 /* Create a simple move instruction that will replace the def_se. */
2533 emit_insn (ref_copy
);
2534 emit_move_insn (subreg
, dest_reg
);
2535 if (merged_ref_next
!= NULL_RTX
)
2536 emit_insn (merged_ref_next
);
2537 curr_ref_s
->merged_insn
= get_insns ();
2542 fprintf (dump_file
, "Following def merge failure a move ");
2543 fprintf (dump_file
, "insn was added after the ref.\n");
2544 fprintf (dump_file
, "Original ref:\n");
2545 print_rtl_single (dump_file
, ref
);
2546 fprintf (dump_file
, "Move insn that was added:\n");
2547 print_rtl_single (dump_file
, NEXT_INSN (curr_ref_s
->merged_insn
));
2552 /* The manipulation succeeded. Store the new manipulated reference. */
2554 /* Try to simplify the new manipulated insn. */
2555 validate_simplify_insn (ref_copy
);
2557 if (curr_ref_s
->merged_insn
)
2558 df_insn_delete (NULL
, INSN_UID (curr_ref_s
->merged_insn
));
2560 /* Create a simple move instruction to assure the correctness of the code. */
2562 emit_insn (ref_copy
);
2563 emit_move_insn (dest_reg
, subreg
);
2564 if (merged_ref_next
!= NULL_RTX
)
2565 emit_insn (merged_ref_next
);
2566 curr_ref_s
->merged_insn
= get_insns ();
2571 fprintf (dump_file
, "Following merge failure the ref was transformed!\n");
2572 fprintf (dump_file
, "Original ref:\n");
2573 print_rtl_single (dump_file
, ref
);
2574 fprintf (dump_file
, "Transformed ref:\n");
2575 print_rtl_single (dump_file
, curr_ref_s
->merged_insn
);
2576 fprintf (dump_file
, "Move insn that was added:\n");
2577 print_rtl_single (dump_file
, NEXT_INSN (curr_ref_s
->merged_insn
));
2582 /* Merge the reference instruction (ref) with the current use extension.
2584 use_se extends a NARROWmode register to a WIDEmode register.
2585 ref uses the WIDEmode register.
2587 The pattern we try to merge is this:
2588 use_se: set (dest_extension_reg) (sign/zero_extend (source_extension_reg))
2589 ref: use (dest_extension_reg)
2591 where dest_extension_reg and source_extension_reg can be subregs.
2593 The merge is done by generating, simplifying and recognizing the pattern:
2594 use (sign/zero_extend (source_extension_reg))
2596 If ref is too simple (according to see_want_to_be_merged_with_extension ())
2597 we don't try to merge it with use_se and we continue as if the merge failed.
2599 This is a subroutine of see_handle_extensions_for_one_ref called
2601 SLOT contains the current use extension instruction.
2602 B is the see_ref_s structure pointer. */
2605 see_merge_one_use_extension (void **slot
, void *b
)
2607 struct see_ref_s
*curr_ref_s
= (struct see_ref_s
*) b
;
2609 rtx ref
= curr_ref_s
->merged_insn
2610 ? curr_ref_s
->merged_insn
: curr_ref_s
->insn
;
2611 rtx merged_ref_next
= curr_ref_s
->merged_insn
2612 ? NEXT_INSN (curr_ref_s
->merged_insn
) : NULL_RTX
;
2613 rtx ref_copy
= see_copy_insn (ref
);
2614 rtx extension_set
= single_set (use_se
);
2615 rtx extension_rhs
= NULL
;
2616 rtx dest_extension_reg
= see_get_extension_reg (use_se
, 1);
2618 rtx simplified_note
= NULL
;
2620 gcc_assert (use_se
&& curr_ref_s
&& extension_set
);
2622 extension_rhs
= SET_SRC (extension_set
);
2624 /* In REG_EQUIV and REG_EQUAL notes that mention the register we need to
2625 replace the uses of the dest_extension_reg with the rhs of the extension
2626 instruction. This is necessary since there might not be an extension in
2627 the path between the definition and the note when this optimization is
2629 note
= find_reg_equal_equiv_note (ref_copy
);
2632 simplified_note
= simplify_replace_rtx (XEXP (note
, 0),
2635 if (rtx_equal_p (XEXP (note
, 0), simplified_note
))
2636 /* Replacement failed. Remove the note. */
2637 remove_note (ref_copy
, note
);
2639 set_unique_reg_note (ref_copy
, REG_NOTE_KIND (note
),
2643 if (!see_want_to_be_merged_with_extension (ref
, use_se
, USE_EXTENSION
))
2645 /* The use in the reference is too simple. Don't try to merge. */
2648 fprintf (dump_file
, "Use merge skipped!\n");
2649 fprintf (dump_file
, "Original instructions:\n");
2650 print_rtl_single (dump_file
, use_se
);
2651 print_rtl_single (dump_file
, ref
);
2653 df_insn_delete (NULL
, INSN_UID (ref_copy
));
2654 /* Don't remove the current use_se from the use_se_hash and continue to
2655 the next extension. */
2659 validate_replace_src_group (dest_extension_reg
, extension_rhs
, ref_copy
);
2661 if (!num_changes_pending ())
2662 /* In this case this is not a real use (the only use is/was in the notes
2663 list). Remove the use extension from the hash. This will prevent it
2664 from been emitted in the first place. */
2668 fprintf (dump_file
, "Use extension not necessary before:\n");
2669 print_rtl_single (dump_file
, ref
);
2671 htab_clear_slot (curr_ref_s
->use_se_hash
, (PTR
*)slot
);
2673 if (curr_ref_s
->merged_insn
)
2674 df_insn_delete (NULL
, INSN_UID (curr_ref_s
->merged_insn
));
2676 if (merged_ref_next
!= NULL_RTX
)
2679 emit_insn (ref_copy
);
2680 emit_insn (merged_ref_next
);
2681 curr_ref_s
->merged_insn
= get_insns ();
2685 curr_ref_s
->merged_insn
= ref_copy
;
2689 if (!apply_change_group ())
2691 /* The merge failed. */
2694 fprintf (dump_file
, "Use merge failed!\n");
2695 fprintf (dump_file
, "Original instructions:\n");
2696 print_rtl_single (dump_file
, use_se
);
2697 print_rtl_single (dump_file
, ref
);
2699 df_insn_delete (NULL
, INSN_UID (ref_copy
));
2700 /* Don't remove the current use_se from the use_se_hash and continue to
2701 the next extension. */
2705 /* The merge succeeded! */
2707 /* Try to simplify the new merged insn. */
2708 validate_simplify_insn (ref_copy
);
2710 if (curr_ref_s
->merged_insn
)
2711 df_insn_delete (NULL
, INSN_UID (curr_ref_s
->merged_insn
));
2713 if (merged_ref_next
!= NULL_RTX
)
2716 emit_insn (ref_copy
);
2717 emit_insn (merged_ref_next
);
2718 curr_ref_s
->merged_insn
= get_insns ();
2722 curr_ref_s
->merged_insn
= ref_copy
;
2726 fprintf (dump_file
, "Use merge succeeded!\n");
2727 fprintf (dump_file
, "Original instructions:\n");
2728 print_rtl_single (dump_file
, use_se
);
2729 print_rtl_single (dump_file
, ref
);
2730 fprintf (dump_file
, "Merged instruction:\n");
2731 print_rtl_single (dump_file
, curr_ref_s
->merged_insn
);
2734 /* Remove the current use_se from the use_se_hash. This will prevent it from
2735 been emitted in the first place. */
2736 htab_clear_slot (curr_ref_s
->use_se_hash
, (PTR
*)slot
);
2741 /* Merge the reference instruction (ref) with the extension that follows it
2742 in the same basic block (def_se).
2743 ref sets a NARROWmode register and def_se extends it to WIDEmode register.
2745 The pattern we try to merge is this:
2746 ref: set (dest_reg) (rhs)
2747 def_se: set (dest_extension_reg) (sign/zero_extend (source_extension_reg))
2749 where dest_reg and source_extension_reg can both be subregs (together)
2750 and (REGNO (dest_reg) == REGNO (source_extension_reg))
2752 The merge is done by generating, simplifying and recognizing the pattern:
2753 set (dest_extension_reg) (sign/zero_extend (rhs))
2754 If ref is a parallel instruction we just replace the relevant set in it.
2756 If ref is too simple (according to see_want_to_be_merged_with_extension ())
2757 we don't try to merge it with def_se and we continue as if the merge failed.
2759 This is a subroutine of see_handle_extensions_for_one_ref called
2762 SLOT contains the current def extension instruction.
2763 B is the see_ref_s structure pointer. */
2766 see_merge_one_def_extension (void **slot
, void *b
)
2768 struct see_ref_s
*curr_ref_s
= (struct see_ref_s
*) b
;
2770 /* If the original insn was already merged with an extension before,
2771 take the merged one. */
2772 rtx ref
= curr_ref_s
->merged_insn
2773 ? curr_ref_s
->merged_insn
: curr_ref_s
->insn
;
2774 rtx merged_ref_next
= curr_ref_s
->merged_insn
2775 ? NEXT_INSN (curr_ref_s
->merged_insn
) : NULL_RTX
;
2776 rtx ref_copy
= see_copy_insn (ref
);
2778 rtx source_extension_reg
= see_get_extension_reg (def_se
, 0);
2779 rtx dest_extension_reg
= see_get_extension_reg (def_se
, 1);
2780 rtx
*rtx_slot
, subreg
;
2781 rtx temp_extension
= NULL
;
2782 rtx simplified_temp_extension
= NULL
;
2785 enum rtx_code extension_code
;
2786 enum machine_mode source_extension_mode
;
2787 enum machine_mode source_mode
;
2788 enum machine_mode dest_extension_mode
;
2789 bool merge_success
= false;
2798 if (!see_want_to_be_merged_with_extension (ref
, def_se
, DEF_EXTENSION
))
2800 /* The definition in the reference is too simple. Don't try to merge. */
2803 fprintf (dump_file
, "Def merge skipped!\n");
2804 fprintf (dump_file
, "Original instructions:\n");
2805 print_rtl_single (dump_file
, ref
);
2806 print_rtl_single (dump_file
, def_se
);
2809 df_insn_delete (NULL
, INSN_UID (ref_copy
));
2810 see_def_extension_not_merged (curr_ref_s
, def_se
);
2811 /* Continue to the next extension. */
2815 extension_code
= see_get_extension_data (def_se
, &source_mode
);
2817 /* Try to merge and simplify the extension. */
2818 source_extension_mode
= GET_MODE (source_extension_reg
);
2819 dest_extension_mode
= GET_MODE (dest_extension_reg
);
2821 pat
= &PATTERN (ref_copy
);
2822 code
= GET_CODE (*pat
);
2824 if (code
== PARALLEL
)
2826 bool need_to_apply_change
= false;
2828 for (i
= 0; i
< XVECLEN (*pat
, 0); i
++)
2830 rtx
*sub
= &XVECEXP (*pat
, 0, i
);
2832 if (GET_CODE (*sub
) == SET
2833 && GET_MODE (SET_SRC (*sub
)) != VOIDmode
2834 && GET_MODE (SET_DEST (*sub
)) == source_mode
2835 && ((REG_P (SET_DEST (*sub
))
2836 && REGNO (SET_DEST (*sub
)) == REGNO (source_extension_reg
))
2837 || (GET_CODE (SET_DEST (*sub
)) == SUBREG
2838 && REG_P (SUBREG_REG (SET_DEST (*sub
)))
2839 && (REGNO (SUBREG_REG (SET_DEST (*sub
))) ==
2840 REGNO (source_extension_reg
)))))
2842 rtx orig_src
= SET_SRC (*sub
);
2844 if (extension_code
== SIGN_EXTEND
)
2845 temp_extension
= gen_rtx_SIGN_EXTEND (dest_extension_mode
,
2848 temp_extension
= gen_rtx_ZERO_EXTEND (dest_extension_mode
,
2850 simplified_temp_extension
= simplify_rtx (temp_extension
);
2852 (simplified_temp_extension
) ? simplified_temp_extension
:
2854 new_set
= gen_rtx_SET (VOIDmode
, dest_extension_reg
,
2856 validate_change (ref_copy
, sub
, new_set
, 1);
2857 need_to_apply_change
= true;
2860 if (need_to_apply_change
)
2861 if (apply_change_group ())
2862 merge_success
= true;
2864 else if (code
== SET
2865 && GET_MODE (SET_SRC (*pat
)) != VOIDmode
2866 && GET_MODE (SET_DEST (*pat
)) == source_mode
2867 && ((REG_P (SET_DEST (*pat
))
2868 && REGNO (SET_DEST (*pat
)) == REGNO (source_extension_reg
))
2869 || (GET_CODE (SET_DEST (*pat
)) == SUBREG
2870 && REG_P (SUBREG_REG (SET_DEST (*pat
)))
2871 && (REGNO (SUBREG_REG (SET_DEST (*pat
))) ==
2872 REGNO (source_extension_reg
)))))
2874 rtx orig_src
= SET_SRC (*pat
);
2876 if (extension_code
== SIGN_EXTEND
)
2877 temp_extension
= gen_rtx_SIGN_EXTEND (dest_extension_mode
, orig_src
);
2879 temp_extension
= gen_rtx_ZERO_EXTEND (dest_extension_mode
, orig_src
);
2880 simplified_temp_extension
= simplify_rtx (temp_extension
);
2881 temp_extension
= (simplified_temp_extension
) ? simplified_temp_extension
:
2883 new_set
= gen_rtx_SET (VOIDmode
, dest_extension_reg
, temp_extension
);
2884 if (validate_change (ref_copy
, pat
, new_set
, 0))
2885 merge_success
= true;
2889 /* The merge failed. */
2892 fprintf (dump_file
, "Def merge failed!\n");
2893 fprintf (dump_file
, "Original instructions:\n");
2894 print_rtl_single (dump_file
, ref
);
2895 print_rtl_single (dump_file
, def_se
);
2898 df_insn_delete (NULL
, INSN_UID (ref_copy
));
2899 see_def_extension_not_merged (curr_ref_s
, def_se
);
2900 /* Continue to the next extension. */
2904 /* The merge succeeded! */
2905 if (curr_ref_s
->merged_insn
)
2906 df_insn_delete (NULL
, INSN_UID (curr_ref_s
->merged_insn
));
2908 /* Create a simple move instruction to assure the correctness of the code. */
2909 subreg
= gen_lowpart_SUBREG (source_extension_mode
, dest_extension_reg
);
2911 emit_insn (ref_copy
);
2912 emit_move_insn (source_extension_reg
, subreg
);
2913 if (merged_ref_next
!= NULL_RTX
)
2914 emit_insn (merged_ref_next
);
2915 curr_ref_s
->merged_insn
= get_insns ();
2920 fprintf (dump_file
, "Def merge succeeded!\n");
2921 fprintf (dump_file
, "Original instructions:\n");
2922 print_rtl_single (dump_file
, ref
);
2923 print_rtl_single (dump_file
, def_se
);
2924 fprintf (dump_file
, "Merged instruction:\n");
2925 print_rtl_single (dump_file
, curr_ref_s
->merged_insn
);
2926 fprintf (dump_file
, "Move instruction that was added:\n");
2927 print_rtl_single (dump_file
, NEXT_INSN (curr_ref_s
->merged_insn
));
2930 /* Remove the current def_se from the unmerged_def_se_hash and insert it to
2931 the merged_def_se_hash. */
2932 htab_clear_slot (curr_ref_s
->unmerged_def_se_hash
, (PTR
*)slot
);
2933 if (!curr_ref_s
->merged_def_se_hash
)
2934 curr_ref_s
->merged_def_se_hash
= htab_create (10,
2935 hash_descriptor_extension
,
2936 eq_descriptor_extension
,
2938 rtx_slot
= (rtx
*) htab_find_slot (curr_ref_s
->merged_def_se_hash
,
2939 dest_extension_reg
, INSERT
);
2940 gcc_assert (*rtx_slot
== NULL
);
2947 /* Try to eliminate extensions in this order:
2948 a. Try to merge only the def extensions, one by one.
2949 b. Try to merge only the use extensions, one by one.
2952 Try to merge any couple of use extensions simultaneously.
2953 Try to merge any def extension with one or two uses extensions
2956 After all the merges are done, update the register properties for the basic
2957 block and eliminate locally redundant use extensions.
2959 This is a subroutine of see_merge_and_eliminate_extensions called
2960 via splay_tree_foreach.
2961 STN is the current node in the see_bb_splay_ar[i] splay tree. It holds a
2962 see_ref_s structure. */
2965 see_handle_extensions_for_one_ref (splay_tree_node stn
,
2966 void *data ATTRIBUTE_UNUSED
)
2968 htab_t use_se_hash
= ((struct see_ref_s
*) (stn
->value
))->use_se_hash
;
2969 htab_t unmerged_def_se_hash
=
2970 ((struct see_ref_s
*) (stn
->value
))->unmerged_def_se_hash
;
2971 htab_t merged_def_se_hash
;
2972 rtx ref
= ((struct see_ref_s
*) (stn
->value
))->insn
;
2976 fprintf (dump_file
, "Handling ref:\n");
2977 print_rtl_single (dump_file
, ref
);
2980 /* a. Try to eliminate only def extensions, one by one. */
2981 if (unmerged_def_se_hash
)
2982 htab_traverse_noresize (unmerged_def_se_hash
, see_merge_one_def_extension
,
2983 (PTR
) (stn
->value
));
2986 /* b. Try to eliminate only use extensions, one by one. */
2987 htab_traverse_noresize (use_se_hash
, see_merge_one_use_extension
,
2988 (PTR
) (stn
->value
));
2990 merged_def_se_hash
= ((struct see_ref_s
*) (stn
->value
))->merged_def_se_hash
;
2994 fprintf (dump_file
, "The hashes of the current reference:\n");
2995 if (unmerged_def_se_hash
)
2997 fprintf (dump_file
, "unmerged_def_se_hash:\n");
2998 htab_traverse (unmerged_def_se_hash
, see_print_one_extension
, NULL
);
3000 if (merged_def_se_hash
)
3002 fprintf (dump_file
, "merged_def_se_hash:\n");
3003 htab_traverse (merged_def_se_hash
, see_print_one_extension
, NULL
);
3007 fprintf (dump_file
, "use_se_hash:\n");
3008 htab_traverse (use_se_hash
, see_print_one_extension
, NULL
);
3012 /* Now that all the merges are done, update the register properties of the
3013 basic block and eliminate locally redundant extensions.
3014 It is important that we first traverse the use extensions hash and
3015 afterwards the def extensions hashes. */
3018 htab_traverse_noresize (use_se_hash
, see_set_prop_unmerged_use
,
3019 (PTR
) (stn
->value
));
3021 if (unmerged_def_se_hash
)
3022 htab_traverse (unmerged_def_se_hash
, see_set_prop_unmerged_def
,
3023 (PTR
) (stn
->value
));
3025 if (merged_def_se_hash
)
3026 htab_traverse (merged_def_se_hash
, see_set_prop_merged_def
,
3027 (PTR
) (stn
->value
));
3029 /* Continue to the next definition. */
3034 /* Phase 2 top level function.
3035 In this phase, we try to merge def extensions and use extensions with their
3036 references, and eliminate redundant extensions in the same basic block.
3037 We also gather information for the next phases. */
3040 see_merge_and_eliminate_extensions (void)
3046 "* Phase 2: Merge and eliminate locally redundant extensions. *\n");
3048 /* Traverse over all the splay trees of the basic blocks. */
3049 for (i
= 0; i
< last_bb
; i
++)
3051 if (see_bb_splay_ar
[i
])
3054 fprintf (dump_file
, "Handling references for bb %d\n", i
);
3055 /* Traverse over all the references in the basic block in forward
3057 splay_tree_foreach (see_bb_splay_ar
[i
],
3058 see_handle_extensions_for_one_ref
, NULL
);
3064 /* Phase 1 implementation: Propagate extensions to uses. */
3066 /* Insert REF_INSN into the splay tree of its basic block.
3067 SE_INSN is the extension to store in the proper hash according to TYPE.
3069 Return true if everything went well.
3070 Otherwise, return false (this will cause the optimization to be aborted). */
3073 see_store_reference_and_extension (rtx ref_insn
, rtx se_insn
,
3074 enum extension_type type
)
3078 splay_tree_node stn
= NULL
;
3079 htab_t se_hash
= NULL
;
3080 struct see_ref_s
*ref_s
= NULL
;
3082 /* Check the arguments. */
3083 gcc_assert (ref_insn
&& se_insn
);
3084 if (!see_bb_splay_ar
)
3087 curr_bb_num
= BLOCK_NUM (ref_insn
);
3088 gcc_assert (curr_bb_num
< last_bb
&& curr_bb_num
>= 0);
3090 /* Insert the reference to the splay tree of its basic block. */
3091 if (!see_bb_splay_ar
[curr_bb_num
])
3092 /* The splay tree for this block doesn't exist yet, create it. */
3093 see_bb_splay_ar
[curr_bb_num
] = splay_tree_new (splay_tree_compare_ints
,
3094 NULL
, see_free_ref_s
);
3096 /* Splay tree already exists, check if the current reference is already
3099 stn
= splay_tree_lookup (see_bb_splay_ar
[curr_bb_num
],
3100 DF_INSN_LUID (ref_insn
));
3104 case EXPLICIT_DEF_EXTENSION
:
3106 ((struct see_ref_s
*) (stn
->value
))->unmerged_def_se_hash
;
3109 se_hash
= htab_create (10,
3110 hash_descriptor_extension
,
3111 eq_descriptor_extension
,
3113 ((struct see_ref_s
*) (stn
->value
))->unmerged_def_se_hash
=
3117 case IMPLICIT_DEF_EXTENSION
:
3118 se_hash
= ((struct see_ref_s
*) (stn
->value
))->merged_def_se_hash
;
3121 se_hash
= htab_create (10,
3122 hash_descriptor_extension
,
3123 eq_descriptor_extension
,
3125 ((struct see_ref_s
*) (stn
->value
))->merged_def_se_hash
=
3130 se_hash
= ((struct see_ref_s
*) (stn
->value
))->use_se_hash
;
3133 se_hash
= htab_create (10,
3134 hash_descriptor_extension
,
3135 eq_descriptor_extension
,
3137 ((struct see_ref_s
*) (stn
->value
))->use_se_hash
= se_hash
;
3145 /* Initialize a new see_ref_s structure and insert it to the splay
3149 ref_s
= xmalloc (sizeof (struct see_ref_s
));
3150 ref_s
->luid
= DF_INSN_LUID (ref_insn
);
3151 ref_s
->insn
= ref_insn
;
3152 ref_s
->merged_insn
= NULL
;
3154 /* Initialize the hashes. */
3157 case EXPLICIT_DEF_EXTENSION
:
3158 ref_s
->unmerged_def_se_hash
= htab_create (10,
3159 hash_descriptor_extension
,
3160 eq_descriptor_extension
,
3162 se_hash
= ref_s
->unmerged_def_se_hash
;
3163 ref_s
->merged_def_se_hash
= NULL
;
3164 ref_s
->use_se_hash
= NULL
;
3166 case IMPLICIT_DEF_EXTENSION
:
3167 ref_s
->merged_def_se_hash
= htab_create (10,
3168 hash_descriptor_extension
,
3169 eq_descriptor_extension
,
3171 se_hash
= ref_s
->merged_def_se_hash
;
3172 ref_s
->unmerged_def_se_hash
= NULL
;
3173 ref_s
->use_se_hash
= NULL
;
3176 ref_s
->use_se_hash
= htab_create (10,
3177 hash_descriptor_extension
,
3178 eq_descriptor_extension
,
3180 se_hash
= ref_s
->use_se_hash
;
3181 ref_s
->unmerged_def_se_hash
= NULL
;
3182 ref_s
->merged_def_se_hash
= NULL
;
3189 /* Insert the new extension instruction into the correct se_hash of the
3190 current reference. */
3191 rtx_slot
= (rtx
*) htab_find_slot (se_hash
, se_insn
, INSERT
);
3192 if (*rtx_slot
!= NULL
)
3194 gcc_assert (type
== USE_EXTENSION
);
3195 gcc_assert (rtx_equal_p (PATTERN (*rtx_slot
), PATTERN (se_insn
)));
3198 *rtx_slot
= se_insn
;
3200 /* If this is a new reference, insert it into the splay_tree. */
3202 splay_tree_insert (see_bb_splay_ar
[curr_bb_num
],
3203 DF_INSN_LUID (ref_insn
), (splay_tree_value
) ref_s
);
3208 /* Go over all the defs, for each relevant definition (defined below) store its
3209 instruction as a reference.
3211 A definition is relevant if its root has
3212 ((entry_type == SIGN_EXTENDED_DEF) || (entry_type == ZERO_EXTENDED_DEF)) and
3213 his source_mode is not narrower then the roots source_mode.
3215 Return the number of relevant defs or negative number if something bad had
3216 happened and the optimization should be aborted. */
3219 see_handle_relevant_defs (struct df_ref
*ref
, rtx insn
)
3221 struct web_entry
*root_entry
= NULL
;
3223 enum rtx_code extension_code
;
3224 rtx reg
= DF_REF_REAL_REG (ref
);
3225 rtx ref_insn
= NULL
;
3226 unsigned int i
= DF_REF_ID (ref
);
3228 root_entry
= unionfind_root (&def_entry
[DF_REF_ID (ref
)]);
3230 if (ENTRY_EI (root_entry
)->relevancy
!= SIGN_EXTENDED_DEF
3231 && ENTRY_EI (root_entry
)->relevancy
!= ZERO_EXTENDED_DEF
)
3232 /* The current web is not relevant. Continue to the next def. */
3235 if (root_entry
->reg
)
3236 /* It isn't possible to have two different register for the same
3238 gcc_assert (rtx_equal_p (root_entry
->reg
, reg
));
3240 root_entry
->reg
= reg
;
3242 /* The current definition is an EXTENDED_DEF or a definition that its
3243 source_mode is narrower then its web's source_mode.
3244 This means that we need to generate the implicit extension explicitly
3245 and store it in the current reference's merged_def_se_hash. */
3246 if (ENTRY_EI (&def_entry
[i
])->local_relevancy
== EXTENDED_DEF
3247 || (ENTRY_EI (&def_entry
[i
])->local_source_mode
<
3248 ENTRY_EI (root_entry
)->source_mode
))
3251 if (ENTRY_EI (root_entry
)->relevancy
== SIGN_EXTENDED_DEF
)
3252 extension_code
= SIGN_EXTEND
;
3254 extension_code
= ZERO_EXTEND
;
3257 see_gen_normalized_extension (reg
, extension_code
,
3258 ENTRY_EI (root_entry
)->source_mode
);
3260 /* This is a dummy extension, mark it as deleted. */
3261 INSN_DELETED_P (se_insn
) = 1;
3263 if (!see_store_reference_and_extension (insn
, se_insn
,
3264 IMPLICIT_DEF_EXTENSION
))
3265 /* Something bad happened. Abort the optimization. */
3270 ref_insn
= PREV_INSN (insn
);
3271 gcc_assert (BLOCK_NUM (ref_insn
) == BLOCK_NUM (insn
));
3273 if (!see_store_reference_and_extension (ref_insn
, insn
,
3274 EXPLICIT_DEF_EXTENSION
))
3275 /* Something bad happened. Abort the optimization. */
3281 /* Go over all the uses, for each use in relevant web store its instruction as
3282 a reference and generate an extension before it.
3284 Return the number of relevant uses or negative number if something bad had
3285 happened and the optimization should be aborted. */
3288 see_handle_relevant_uses (struct df_ref
*ref
, rtx insn
)
3290 struct web_entry
*root_entry
= NULL
;
3292 enum rtx_code extension_code
;
3293 rtx reg
= DF_REF_REAL_REG (ref
);
3295 root_entry
= unionfind_root (&use_entry
[DF_REF_ID (ref
)]);
3297 if (ENTRY_EI (root_entry
)->relevancy
!= SIGN_EXTENDED_DEF
3298 && ENTRY_EI (root_entry
)->relevancy
!= ZERO_EXTENDED_DEF
)
3299 /* The current web is not relevant. Continue to the next use. */
3302 if (root_entry
->reg
)
3303 /* It isn't possible to have two different register for the same
3305 gcc_assert (rtx_equal_p (root_entry
->reg
, reg
));
3307 root_entry
->reg
= reg
;
3309 /* Generate the use extension. */
3310 if (ENTRY_EI (root_entry
)->relevancy
== SIGN_EXTENDED_DEF
)
3311 extension_code
= SIGN_EXTEND
;
3313 extension_code
= ZERO_EXTEND
;
3316 see_gen_normalized_extension (reg
, extension_code
,
3317 ENTRY_EI (root_entry
)->source_mode
);
3319 /* This is very bad, abort the transformation. */
3322 if (!see_store_reference_and_extension (insn
, se_insn
,
3324 /* Something bad happened. Abort the optimization. */
3330 see_handle_relevant_refs (void)
3332 int num_relevant_refs
= 0;
3338 FOR_BB_INSNS (bb
, insn
)
3340 unsigned int uid
= INSN_UID (insn
);
3344 struct df_ref
**use_rec
;
3345 struct df_ref
**def_rec
;
3347 for (use_rec
= DF_INSN_UID_USES (uid
); *use_rec
; use_rec
++)
3349 struct df_ref
*use
= *use_rec
;
3350 int result
= see_handle_relevant_uses (use
, insn
);
3353 num_relevant_refs
+= result
;
3355 for (use_rec
= DF_INSN_UID_EQ_USES (uid
); *use_rec
; use_rec
++)
3357 struct df_ref
*use
= *use_rec
;
3358 int result
= see_handle_relevant_uses (use
, insn
);
3361 num_relevant_refs
+= result
;
3363 for (def_rec
= DF_INSN_UID_DEFS (uid
); *def_rec
; def_rec
++)
3365 struct df_ref
*def
= *def_rec
;
3366 int result
= see_handle_relevant_defs (def
, insn
);
3369 num_relevant_refs
+= result
;
3374 return num_relevant_refs
;
3378 /* Initialized the use_entry field for REF in INSN at INDEX with ET. */
3381 see_update_uses_relevancy (rtx insn
, struct df_ref
*ref
,
3382 enum entry_type et
, unsigned int index
)
3384 struct see_entry_extra_info
*curr_entry_extra_info
;
3388 rtx reg
= DF_REF_REAL_REG (ref
);
3389 fprintf (dump_file
, "u%i insn %i reg %i ",
3390 index
, (insn
? INSN_UID (insn
) : -1), REGNO (reg
));
3391 if (et
== NOT_RELEVANT
)
3392 fprintf (dump_file
, "NOT RELEVANT \n");
3394 fprintf (dump_file
, "RELEVANT USE \n");
3397 DF_REF_ID (ref
) = index
;
3398 curr_entry_extra_info
= xmalloc (sizeof (struct see_entry_extra_info
));
3399 curr_entry_extra_info
->relevancy
= et
;
3400 curr_entry_extra_info
->local_relevancy
= et
;
3401 use_entry
[index
].extra_info
= curr_entry_extra_info
;
3402 use_entry
[index
].reg
= NULL
;
3403 use_entry
[index
].pred
= NULL
;
3407 /* A definition in a candidate for this optimization only if its pattern is
3408 recognized as relevant in this function.
3409 INSN is the instruction to be recognized.
3411 - If this is the pattern of a common sign extension after definition:
3412 PREV_INSN (INSN): def (reg:NARROWmode r)
3413 INSN: set ((reg:WIDEmode r')
3414 (sign_extend:WIDEmode (reg:NARROWmode r)))
3415 return SIGN_EXTENDED_DEF and set SOURCE_MODE to NARROWmode.
3417 - If this is the pattern of a common zero extension after definition:
3418 PREV_INSN (INSN): def (reg:NARROWmode r)
3419 INSN: set ((reg:WIDEmode r')
3420 (zero_extend:WIDEmode (reg:NARROWmode r)))
3421 return ZERO_EXTENDED_DEF and set SOURCE_MODE to NARROWmode.
3426 INSN: set ((reg:WIDEmode r) (sign_extend:WIDEmode (...expr...)))
3427 return EXTENDED_DEF and set SOURCE_MODE to the mode of expr.
3430 INSN: set ((reg:WIDEmode r) (zero_extend:WIDEmode (...expr...)))
3431 return EXTENDED_DEF and set SOURCE_MODE_UNSIGNED to the mode of expr.
3434 INSN: set ((reg:WIDEmode r) (CONST_INT (...)))
3435 return EXTENDED_DEF and set SOURCE_MODE(_UNSIGNED) to the narrowest mode that
3436 is implicitly sign(zero) extended to WIDEmode in the INSN.
3438 - FIXME: Extensions that are not adjacent to their definition and EXTENDED_DEF
3439 that is part of a PARALLEL instruction are not handled.
3440 These restriction can be relaxed. */
3442 static enum entry_type
3443 see_analyze_one_def (rtx insn
, enum machine_mode
*source_mode
,
3444 enum machine_mode
*source_mode_unsigned
)
3446 enum rtx_code extension_code
;
3450 rtx source_register
= NULL
;
3451 rtx prev_insn
= NULL
;
3452 rtx next_insn
= NULL
;
3453 enum machine_mode mode
;
3454 enum machine_mode next_source_mode
;
3455 HOST_WIDE_INT val
= 0;
3456 HOST_WIDE_INT val2
= 0;
3459 *source_mode
= MAX_MACHINE_MODE
;
3460 *source_mode_unsigned
= MAX_MACHINE_MODE
;
3462 extension_code
= see_get_extension_data (insn
, source_mode
);
3463 switch (extension_code
)
3467 source_register
= see_get_extension_reg (insn
, 0);
3468 /* FIXME: This restriction can be relaxed. The only thing that is
3469 important is that the reference would be inside the same basic block
3470 as the extension. */
3471 prev_insn
= PREV_INSN (insn
);
3472 if (!prev_insn
|| !INSN_P (prev_insn
))
3473 return NOT_RELEVANT
;
3475 if (!reg_set_between_p (source_register
, PREV_INSN (prev_insn
), insn
))
3476 return NOT_RELEVANT
;
3478 if (find_reg_note (prev_insn
, REG_LIBCALL
, NULL_RTX
))
3479 return NOT_RELEVANT
;
3481 if (find_reg_note (prev_insn
, REG_RETVAL
, NULL_RTX
))
3482 return NOT_RELEVANT
;
3484 /* If we can't use copy_rtx on the reference it can't be a reference. */
3485 if (GET_CODE (PATTERN (prev_insn
)) == PARALLEL
3486 && asm_noperands (PATTERN (prev_insn
)) >= 0)
3487 return NOT_RELEVANT
;
3489 /* Now, check if this extension is a reference itself. If so, it is not
3490 relevant. Handling this extension as relevant would make things much
3491 more complicated. */
3492 next_insn
= NEXT_INSN (insn
);
3494 && INSN_P (next_insn
)
3495 && (see_get_extension_data (next_insn
, &next_source_mode
) !=
3498 rtx curr_dest_register
= see_get_extension_reg (insn
, 1);
3499 rtx next_source_register
= see_get_extension_reg (next_insn
, 0);
3501 if (REGNO (curr_dest_register
) == REGNO (next_source_register
))
3502 return NOT_RELEVANT
;
3505 if (extension_code
== SIGN_EXTEND
)
3506 return SIGN_EXTENDED_DEF
;
3508 return ZERO_EXTENDED_DEF
;
3511 /* This may still be an EXTENDED_DEF. */
3513 /* FIXME: This restriction can be relaxed. It is possible to handle
3514 PARALLEL insns too. */
3515 set
= single_set (insn
);
3517 return NOT_RELEVANT
;
3518 rhs
= SET_SRC (set
);
3519 lhs
= SET_DEST (set
);
3521 /* Don't handle extensions to something other then register or
3523 if (!REG_P (lhs
) && !SUBREG_REG (lhs
))
3524 return NOT_RELEVANT
;
3526 switch (GET_CODE (rhs
))
3529 *source_mode
= GET_MODE (XEXP (rhs
, 0));
3530 *source_mode_unsigned
= MAX_MACHINE_MODE
;
3531 return EXTENDED_DEF
;
3533 *source_mode
= MAX_MACHINE_MODE
;
3534 *source_mode_unsigned
= GET_MODE (XEXP (rhs
, 0));
3535 return EXTENDED_DEF
;
3540 /* Find the narrowest mode, val could fit into. */
3541 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), i
= 0;
3542 GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
;
3543 mode
= GET_MODE_WIDER_MODE (mode
), i
++)
3545 val2
= trunc_int_for_mode (val
, mode
);
3546 if (val2
== val
&& *source_mode
== MAX_MACHINE_MODE
)
3547 *source_mode
= mode
;
3548 if (val
== (val
& (HOST_WIDE_INT
)GET_MODE_MASK (mode
))
3549 && *source_mode_unsigned
== MAX_MACHINE_MODE
)
3550 *source_mode_unsigned
= mode
;
3551 if (*source_mode
!= MAX_MACHINE_MODE
3552 && *source_mode_unsigned
!=MAX_MACHINE_MODE
)
3553 return EXTENDED_DEF
;
3555 if (*source_mode
!= MAX_MACHINE_MODE
3556 || *source_mode_unsigned
!=MAX_MACHINE_MODE
)
3557 return EXTENDED_DEF
;
3558 return NOT_RELEVANT
;
3560 return NOT_RELEVANT
;
3568 /* Initialized the def_entry field for REF in INSN at INDEX with ET. */
3571 see_update_defs_relevancy (rtx insn
, struct df_ref
*ref
,
3573 enum machine_mode source_mode
,
3574 enum machine_mode source_mode_unsigned
,
3577 struct see_entry_extra_info
*curr_entry_extra_info
3578 = xmalloc (sizeof (struct see_entry_extra_info
));
3579 curr_entry_extra_info
->relevancy
= et
;
3580 curr_entry_extra_info
->local_relevancy
= et
;
3582 DF_REF_ID (ref
) = index
;
3584 if (et
!= EXTENDED_DEF
)
3586 curr_entry_extra_info
->source_mode
= source_mode
;
3587 curr_entry_extra_info
->local_source_mode
= source_mode
;
3591 curr_entry_extra_info
->source_mode_signed
= source_mode
;
3592 curr_entry_extra_info
->source_mode_unsigned
= source_mode_unsigned
;
3594 def_entry
[index
].extra_info
= curr_entry_extra_info
;
3595 def_entry
[index
].reg
= NULL
;
3596 def_entry
[index
].pred
= NULL
;
3600 rtx reg
= DF_REF_REAL_REG (ref
);
3601 if (et
== NOT_RELEVANT
)
3603 fprintf (dump_file
, "d%i insn %i reg %i ",
3604 index
, (insn
? INSN_UID (insn
) : -1), REGNO (reg
));
3605 fprintf (dump_file
, "NOT RELEVANT \n");
3609 fprintf (dump_file
, "d%i insn %i reg %i ",
3610 index
, INSN_UID (insn
), REGNO (reg
));
3611 fprintf (dump_file
, "RELEVANT - ");
3614 case SIGN_EXTENDED_DEF
:
3615 fprintf (dump_file
, "SIGN_EXTENDED_DEF, source_mode = %s\n",
3616 GET_MODE_NAME (source_mode
));
3618 case ZERO_EXTENDED_DEF
:
3619 fprintf (dump_file
, "ZERO_EXTENDED_DEF, source_mode = %s\n",
3620 GET_MODE_NAME (source_mode
));
3623 fprintf (dump_file
, "EXTENDED_DEF, ");
3624 if (source_mode
!= MAX_MACHINE_MODE
3625 && source_mode_unsigned
!= MAX_MACHINE_MODE
)
3627 fprintf (dump_file
, "positive const, ");
3628 fprintf (dump_file
, "source_mode_signed = %s, ",
3629 GET_MODE_NAME (source_mode
));
3630 fprintf (dump_file
, "source_mode_unsigned = %s\n",
3631 GET_MODE_NAME (source_mode_unsigned
));
3633 else if (source_mode
!= MAX_MACHINE_MODE
)
3634 fprintf (dump_file
, "source_mode_signed = %s\n",
3635 GET_MODE_NAME (source_mode
));
3637 fprintf (dump_file
, "source_mode_unsigned = %s\n",
3638 GET_MODE_NAME (source_mode_unsigned
));
3648 /* Updates the relevancy of all the uses and all defs.
3650 The information of the u'th use is stored in use_entry[u] and the
3651 information of the d'th definition is stored in def_entry[d].
3653 Currently all the uses are relevant for the optimization except for
3654 uses that are in LIBCALL or RETVAL instructions. */
3657 see_update_relevancy (void)
3662 enum machine_mode source_mode
;
3663 enum machine_mode source_mode_unsigned
;
3671 struct df_ref
**use_rec
;
3672 struct df_ref
**def_rec
;
3674 FOR_BB_INSNS (bb
, insn
)
3676 unsigned int uid
= INSN_UID (insn
);
3679 if (find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
)
3680 || find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
3685 for (use_rec
= DF_INSN_UID_USES (uid
); *use_rec
; use_rec
++)
3687 struct df_ref
*use
= *use_rec
;
3688 see_update_uses_relevancy (insn
, use
, et
, u
);
3692 for (use_rec
= DF_INSN_UID_EQ_USES (uid
); *use_rec
; use_rec
++)
3694 struct df_ref
*use
= *use_rec
;
3695 see_update_uses_relevancy (insn
, use
, et
, u
);
3699 et
= see_analyze_one_def (insn
, &source_mode
, &source_mode_unsigned
);
3700 for (def_rec
= DF_INSN_UID_DEFS (uid
); *def_rec
; def_rec
++)
3702 struct df_ref
*def
= *def_rec
;
3703 see_update_defs_relevancy (insn
, def
, et
, source_mode
,
3704 source_mode_unsigned
, d
);
3710 for (use_rec
= df_get_artificial_uses (bb
->index
); *use_rec
; use_rec
++)
3712 struct df_ref
*use
= *use_rec
;
3713 see_update_uses_relevancy (NULL
, use
, NOT_RELEVANT
, u
);
3717 for (def_rec
= df_get_artificial_defs (bb
->index
); *def_rec
; def_rec
++)
3719 struct df_ref
*def
= *def_rec
;
3720 see_update_defs_relevancy (NULL
, def
, NOT_RELEVANT
,
3721 MAX_MACHINE_MODE
, MAX_MACHINE_MODE
, d
);
3728 /* Phase 1 top level function.
3729 In this phase the relevancy of all the definitions and uses are checked,
3730 later the webs are produces and the extensions are generated.
3731 These extensions are not emitted yet into the insns stream.
3733 returns true if at list one relevant web was found and there were no
3734 problems, otherwise return false. */
3737 see_propagate_extensions_to_uses (void)
3739 int num_relevant_refs
;
3744 "* Phase 1: Propagate extensions to uses. *\n");
3746 /* Update the relevancy of references using the DF object. */
3747 see_update_relevancy ();
3749 /* Produce the webs and update the extra_info of the root.
3750 In general, a web is relevant if all its definitions and uses are relevant
3751 and there is at least one definition that was marked as SIGN_EXTENDED_DEF
3752 or ZERO_EXTENDED_DEF. */
3756 struct df_ref
**use_rec
;
3758 FOR_BB_INSNS (bb
, insn
)
3760 unsigned int uid
= INSN_UID (insn
);
3763 for (use_rec
= DF_INSN_UID_USES (uid
); *use_rec
; use_rec
++)
3765 struct df_ref
*use
= *use_rec
;
3766 union_defs (use
, def_entry
, use_entry
, see_update_leader_extra_info
);
3769 for (use_rec
= DF_INSN_UID_EQ_USES (uid
); *use_rec
; use_rec
++)
3771 struct df_ref
*use
= *use_rec
;
3772 union_defs (use
, def_entry
, use_entry
, see_update_leader_extra_info
);
3777 for (use_rec
= df_get_artificial_uses (bb
->index
); *use_rec
; use_rec
++)
3779 struct df_ref
*use
= *use_rec
;
3780 union_defs (use
, def_entry
, use_entry
, see_update_leader_extra_info
);
3784 /* Generate use extensions for references and insert these
3785 references to see_bb_splay_ar data structure. */
3786 num_relevant_refs
= see_handle_relevant_refs ();
3788 return num_relevant_refs
> 0;
3792 /* Main entry point for the sign extension elimination optimization. */
3800 /* Initialize global data structures. */
3801 see_initialize_data_structures ();
3803 /* Phase 1: Propagate extensions to uses. */
3804 cont
= see_propagate_extensions_to_uses ();
3810 /* Phase 2: Merge and eliminate locally redundant extensions. */
3811 see_merge_and_eliminate_extensions ();
3813 /* Phase 3: Eliminate globally redundant extensions. */
3816 /* Phase 4: Commit changes to the insn stream. */
3817 see_commit_changes ();
3821 /* For debug purpose only. */
3822 fprintf (dump_file
, "see_pre_extension_hash:\n");
3823 htab_traverse (see_pre_extension_hash
, see_print_pre_extension_expr
,
3826 for (i
= 0; i
< last_bb
; i
++)
3828 if (see_bb_hash_ar
[i
])
3829 /* Traverse over all the references in the basic block in
3833 "Searching register properties in bb %d\n", i
);
3834 htab_traverse (see_bb_hash_ar
[i
],
3835 see_print_register_properties
, NULL
);
3841 /* Free global data structures. */
3842 see_free_data_structures ();
3847 gate_handle_see (void)
3849 return optimize
> 1 && flag_see
;
3853 rest_of_handle_see (void)
3856 df_clear_flags (DF_DEFER_INSN_RESCAN
);
3857 df_process_deferred_rescans ();
3862 struct tree_opt_pass pass_see
=
3865 gate_handle_see
, /* gate */
3866 rest_of_handle_see
, /* execute */
3869 0, /* static_pass_number */
3871 0, /* properties_required */
3872 0, /* properties_provided */
3873 0, /* properties_destroyed */
3874 0, /* todo_flags_start */
3876 TODO_df_finish
| TODO_verify_rtl_sharing
|
3877 TODO_dump_func
, /* todo_flags_finish */