Initial revision
[official-gcc.git] / gcc / loop.c
blob6f68b58c5b3d8c9b2dc953abd765ff26b77b7301
1 /* Move constant computations out of loops.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
21 /* This is the loop optimization pass of the compiler.
22 It finds invariant computations within loops and moves them
23 to the beginning of the loop. Then it identifies basic and
24 general induction variables. Strength reduction is applied to the general
25 induction variables, and induction variable elimination is applied to
26 the basic induction variables.
28 It also finds cases where
29 a register is set within the loop by zero-extending a narrower value
30 and changes these to zero the entire register once before the loop
31 and merely copy the low part within the loop.
33 Most of the complexity is in heuristics to decide when it is worth
34 while to do these things. */
36 #include <stdio.h>
37 #include "config.h"
38 #include "rtl.h"
39 #include "obstack.h"
40 #include "expr.h"
41 #include "insn-config.h"
42 #include "insn-flags.h"
43 #include "regs.h"
44 #include "hard-reg-set.h"
45 #include "recog.h"
46 #include "flags.h"
47 #include "real.h"
48 #include "loop.h"
50 /* Vector mapping INSN_UIDs to luids.
51 The luids are like uids but increase monotonically always.
52 We use them to see whether a jump comes from outside a given loop. */
54 int *uid_luid;
56 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
57 number the insn is contained in. */
59 int *uid_loop_num;
61 /* 1 + largest uid of any insn. */
63 int max_uid_for_loop;
65 /* 1 + luid of last insn. */
67 static int max_luid;
69 /* Number of loops detected in current function. Used as index to the
70 next few tables. */
72 static int max_loop_num;
74 /* Indexed by loop number, contains the first and last insn of each loop. */
76 static rtx *loop_number_loop_starts, *loop_number_loop_ends;
78 /* For each loop, gives the containing loop number, -1 if none. */
80 int *loop_outer_loop;
82 /* Indexed by loop number, contains a nonzero value if the "loop" isn't
83 really a loop (an insn outside the loop branches into it). */
85 static char *loop_invalid;
87 /* Indexed by loop number, links together all LABEL_REFs which refer to
88 code labels outside the loop. Used by routines that need to know all
89 loop exits, such as final_biv_value and final_giv_value.
91 This does not include loop exits due to return instructions. This is
92 because all bivs and givs are pseudos, and hence must be dead after a
93 return, so the presense of a return does not affect any of the
94 optimizations that use this info. It is simpler to just not include return
95 instructions on this list. */
97 rtx *loop_number_exit_labels;
99 /* Holds the number of loop iterations. It is zero if the number could not be
100 calculated. Must be unsigned since the number of iterations can
101 be as high as 2^wordsize-1. For loops with a wider iterator, this number
102 will will be zero if the number of loop iterations is too large for an
103 unsigned integer to hold. */
105 unsigned HOST_WIDE_INT loop_n_iterations;
107 /* Nonzero if there is a subroutine call in the current loop.
108 (unknown_address_altered is also nonzero in this case.) */
110 static int loop_has_call;
112 /* Nonzero if there is a volatile memory reference in the current
113 loop. */
115 static int loop_has_volatile;
117 /* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
118 current loop. A continue statement will generate a branch to
119 NEXT_INSN (loop_continue). */
121 static rtx loop_continue;
123 /* Indexed by register number, contains the number of times the reg
124 is set during the loop being scanned.
125 During code motion, a negative value indicates a reg that has been
126 made a candidate; in particular -2 means that it is an candidate that
127 we know is equal to a constant and -1 means that it is an candidate
128 not known equal to a constant.
129 After code motion, regs moved have 0 (which is accurate now)
130 while the failed candidates have the original number of times set.
132 Therefore, at all times, == 0 indicates an invariant register;
133 < 0 a conditionally invariant one. */
135 static short *n_times_set;
137 /* Original value of n_times_set; same except that this value
138 is not set negative for a reg whose sets have been made candidates
139 and not set to 0 for a reg that is moved. */
141 static short *n_times_used;
143 /* Index by register number, 1 indicates that the register
144 cannot be moved or strength reduced. */
146 static char *may_not_optimize;
148 /* Nonzero means reg N has already been moved out of one loop.
149 This reduces the desire to move it out of another. */
151 static char *moved_once;
153 /* Array of MEMs that are stored in this loop. If there are too many to fit
154 here, we just turn on unknown_address_altered. */
156 #define NUM_STORES 20
157 static rtx loop_store_mems[NUM_STORES];
159 /* Index of first available slot in above array. */
160 static int loop_store_mems_idx;
162 /* Nonzero if we don't know what MEMs were changed in the current loop.
163 This happens if the loop contains a call (in which case `loop_has_call'
164 will also be set) or if we store into more than NUM_STORES MEMs. */
166 static int unknown_address_altered;
168 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
169 static int num_movables;
171 /* Count of memory write instructions discovered in the loop. */
172 static int num_mem_sets;
174 /* Number of loops contained within the current one, including itself. */
175 static int loops_enclosed;
177 /* Bound on pseudo register number before loop optimization.
178 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
179 int max_reg_before_loop;
181 /* This obstack is used in product_cheap_p to allocate its rtl. It
182 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
183 If we used the same obstack that it did, we would be deallocating
184 that array. */
186 static struct obstack temp_obstack;
188 /* This is where the pointer to the obstack being used for RTL is stored. */
190 extern struct obstack *rtl_obstack;
192 #define obstack_chunk_alloc xmalloc
193 #define obstack_chunk_free free
195 extern char *oballoc ();
197 /* During the analysis of a loop, a chain of `struct movable's
198 is made to record all the movable insns found.
199 Then the entire chain can be scanned to decide which to move. */
201 struct movable
203 rtx insn; /* A movable insn */
204 rtx set_src; /* The expression this reg is set from. */
205 rtx set_dest; /* The destination of this SET. */
206 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
207 of any registers used within the LIBCALL. */
208 int consec; /* Number of consecutive following insns
209 that must be moved with this one. */
210 int regno; /* The register it sets */
211 short lifetime; /* lifetime of that register;
212 may be adjusted when matching movables
213 that load the same value are found. */
214 short savings; /* Number of insns we can move for this reg,
215 including other movables that force this
216 or match this one. */
217 unsigned int cond : 1; /* 1 if only conditionally movable */
218 unsigned int force : 1; /* 1 means MUST move this insn */
219 unsigned int global : 1; /* 1 means reg is live outside this loop */
220 /* If PARTIAL is 1, GLOBAL means something different:
221 that the reg is live outside the range from where it is set
222 to the following label. */
223 unsigned int done : 1; /* 1 inhibits further processing of this */
225 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
226 In particular, moving it does not make it
227 invariant. */
228 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
229 load SRC, rather than copying INSN. */
230 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
231 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
232 that we should avoid changing when clearing
233 the rest of the reg. */
234 struct movable *match; /* First entry for same value */
235 struct movable *forces; /* An insn that must be moved if this is */
236 struct movable *next;
239 FILE *loop_dump_stream;
241 /* Forward declarations. */
243 static void find_and_verify_loops ();
244 static void mark_loop_jump ();
245 static void prescan_loop ();
246 static int reg_in_basic_block_p ();
247 static int consec_sets_invariant_p ();
248 static rtx libcall_other_reg ();
249 static int labels_in_range_p ();
250 static void count_loop_regs_set ();
251 static void note_addr_stored ();
252 static int loop_reg_used_before_p ();
253 static void scan_loop ();
254 static void replace_call_address ();
255 static rtx skip_consec_insns ();
256 static int libcall_benefit ();
257 static void ignore_some_movables ();
258 static void force_movables ();
259 static void combine_movables ();
260 static int rtx_equal_for_loop_p ();
261 static void move_movables ();
262 static void strength_reduce ();
263 static int valid_initial_value_p ();
264 static void find_mem_givs ();
265 static void record_biv ();
266 static void check_final_value ();
267 static void record_giv ();
268 static void update_giv_derive ();
269 static int basic_induction_var ();
270 static rtx simplify_giv_expr ();
271 static int general_induction_var ();
272 static int consec_sets_giv ();
273 static int check_dbra_loop ();
274 static rtx express_from ();
275 static int combine_givs_p ();
276 static void combine_givs ();
277 static int product_cheap_p ();
278 static int maybe_eliminate_biv ();
279 static int maybe_eliminate_biv_1 ();
280 static int last_use_this_basic_block ();
281 static void record_initial ();
282 static void update_reg_last_use ();
284 /* Relative gain of eliminating various kinds of operations. */
285 int add_cost;
286 #if 0
287 int shift_cost;
288 int mult_cost;
289 #endif
291 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
292 copy the value of the strength reduced giv to its original register. */
293 int copy_cost;
295 void
296 init_loop ()
298 char *free_point = (char *) oballoc (1);
299 rtx reg = gen_rtx (REG, word_mode, 0);
300 rtx pow2 = GEN_INT (32);
301 rtx lea;
302 int i;
304 add_cost = rtx_cost (gen_rtx (PLUS, word_mode, reg, reg), SET);
306 /* We multiply by 2 to reconcile the difference in scale between
307 these two ways of computing costs. Otherwise the cost of a copy
308 will be far less than the cost of an add. */
310 copy_cost = 2 * 2;
312 /* Free the objects we just allocated. */
313 obfree (free_point);
315 /* Initialize the obstack used for rtl in product_cheap_p. */
316 gcc_obstack_init (&temp_obstack);
319 /* Entry point of this file. Perform loop optimization
320 on the current function. F is the first insn of the function
321 and DUMPFILE is a stream for output of a trace of actions taken
322 (or 0 if none should be output). */
324 void
325 loop_optimize (f, dumpfile)
326 /* f is the first instruction of a chain of insns for one function */
327 rtx f;
328 FILE *dumpfile;
330 register rtx insn;
331 register int i;
332 rtx end;
333 rtx last_insn;
335 loop_dump_stream = dumpfile;
337 init_recog_no_volatile ();
338 init_alias_analysis ();
340 max_reg_before_loop = max_reg_num ();
342 moved_once = (char *) alloca (max_reg_before_loop);
343 bzero (moved_once, max_reg_before_loop);
345 regs_may_share = 0;
347 /* Count the number of loops. */
349 max_loop_num = 0;
350 for (insn = f; insn; insn = NEXT_INSN (insn))
352 if (GET_CODE (insn) == NOTE
353 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
354 max_loop_num++;
357 /* Don't waste time if no loops. */
358 if (max_loop_num == 0)
359 return;
361 /* Get size to use for tables indexed by uids.
362 Leave some space for labels allocated by find_and_verify_loops. */
363 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
365 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
366 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
368 bzero (uid_luid, max_uid_for_loop * sizeof (int));
369 bzero (uid_loop_num, max_uid_for_loop * sizeof (int));
371 /* Allocate tables for recording each loop. We set each entry, so they need
372 not be zeroed. */
373 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
374 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
375 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
376 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
377 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
379 /* Find and process each loop.
380 First, find them, and record them in order of their beginnings. */
381 find_and_verify_loops (f);
383 /* Now find all register lifetimes. This must be done after
384 find_and_verify_loops, because it might reorder the insns in the
385 function. */
386 reg_scan (f, max_reg_num (), 1);
388 /* See if we went too far. */
389 if (get_max_uid () > max_uid_for_loop)
390 abort ();
392 /* Compute the mapping from uids to luids.
393 LUIDs are numbers assigned to insns, like uids,
394 except that luids increase monotonically through the code.
395 Don't assign luids to line-number NOTEs, so that the distance in luids
396 between two insns is not affected by -g. */
398 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
400 last_insn = insn;
401 if (GET_CODE (insn) != NOTE
402 || NOTE_LINE_NUMBER (insn) <= 0)
403 uid_luid[INSN_UID (insn)] = ++i;
404 else
405 /* Give a line number note the same luid as preceding insn. */
406 uid_luid[INSN_UID (insn)] = i;
409 max_luid = i + 1;
411 /* Don't leave gaps in uid_luid for insns that have been
412 deleted. It is possible that the first or last insn
413 using some register has been deleted by cross-jumping.
414 Make sure that uid_luid for that former insn's uid
415 points to the general area where that insn used to be. */
416 for (i = 0; i < max_uid_for_loop; i++)
418 uid_luid[0] = uid_luid[i];
419 if (uid_luid[0] != 0)
420 break;
422 for (i = 0; i < max_uid_for_loop; i++)
423 if (uid_luid[i] == 0)
424 uid_luid[i] = uid_luid[i - 1];
426 /* Create a mapping from loops to BLOCK tree nodes. */
427 if (flag_unroll_loops && write_symbols != NO_DEBUG)
428 find_loop_tree_blocks ();
430 /* Now scan the loops, last ones first, since this means inner ones are done
431 before outer ones. */
432 for (i = max_loop_num-1; i >= 0; i--)
433 if (! loop_invalid[i] && loop_number_loop_ends[i])
434 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
435 max_reg_num ());
437 /* If debugging and unrolling loops, we must replicate the tree nodes
438 corresponding to the blocks inside the loop, so that the original one
439 to one mapping will remain. */
440 if (flag_unroll_loops && write_symbols != NO_DEBUG)
441 unroll_block_trees ();
444 /* Optimize one loop whose start is LOOP_START and end is END.
445 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
446 NOTE_INSN_LOOP_END. */
448 /* ??? Could also move memory writes out of loops if the destination address
449 is invariant, the source is invariant, the memory write is not volatile,
450 and if we can prove that no read inside the loop can read this address
451 before the write occurs. If there is a read of this address after the
452 write, then we can also mark the memory read as invariant. */
454 static void
455 scan_loop (loop_start, end, nregs)
456 rtx loop_start, end;
457 int nregs;
459 register int i;
460 register rtx p;
461 /* 1 if we are scanning insns that could be executed zero times. */
462 int maybe_never = 0;
463 /* 1 if we are scanning insns that might never be executed
464 due to a subroutine call which might exit before they are reached. */
465 int call_passed = 0;
466 /* For a rotated loop that is entered near the bottom,
467 this is the label at the top. Otherwise it is zero. */
468 rtx loop_top = 0;
469 /* Jump insn that enters the loop, or 0 if control drops in. */
470 rtx loop_entry_jump = 0;
471 /* Place in the loop where control enters. */
472 rtx scan_start;
473 /* Number of insns in the loop. */
474 int insn_count;
475 int in_libcall = 0;
476 int tem;
477 rtx temp;
478 /* The SET from an insn, if it is the only SET in the insn. */
479 rtx set, set1;
480 /* Chain describing insns movable in current loop. */
481 struct movable *movables = 0;
482 /* Last element in `movables' -- so we can add elements at the end. */
483 struct movable *last_movable = 0;
484 /* Ratio of extra register life span we can justify
485 for saving an instruction. More if loop doesn't call subroutines
486 since in that case saving an insn makes more difference
487 and more registers are available. */
488 int threshold;
489 /* If we have calls, contains the insn in which a register was used
490 if it was used exactly once; contains const0_rtx if it was used more
491 than once. */
492 rtx *reg_single_usage = 0;
494 n_times_set = (short *) alloca (nregs * sizeof (short));
495 n_times_used = (short *) alloca (nregs * sizeof (short));
496 may_not_optimize = (char *) alloca (nregs);
498 /* Determine whether this loop starts with a jump down to a test at
499 the end. This will occur for a small number of loops with a test
500 that is too complex to duplicate in front of the loop.
502 We search for the first insn or label in the loop, skipping NOTEs.
503 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
504 (because we might have a loop executed only once that contains a
505 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
506 (in case we have a degenerate loop).
508 Note that if we mistakenly think that a loop is entered at the top
509 when, in fact, it is entered at the exit test, the only effect will be
510 slightly poorer optimization. Making the opposite error can generate
511 incorrect code. Since very few loops now start with a jump to the
512 exit test, the code here to detect that case is very conservative. */
514 for (p = NEXT_INSN (loop_start);
515 p != end
516 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
517 && (GET_CODE (p) != NOTE
518 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
519 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
520 p = NEXT_INSN (p))
523 scan_start = p;
525 /* Set up variables describing this loop. */
526 prescan_loop (loop_start, end);
527 threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
529 /* If loop has a jump before the first label,
530 the true entry is the target of that jump.
531 Start scan from there.
532 But record in LOOP_TOP the place where the end-test jumps
533 back to so we can scan that after the end of the loop. */
534 if (GET_CODE (p) == JUMP_INSN)
536 loop_entry_jump = p;
538 /* Loop entry must be unconditional jump (and not a RETURN) */
539 if (simplejump_p (p)
540 && JUMP_LABEL (p) != 0
541 /* Check to see whether the jump actually
542 jumps out of the loop (meaning it's no loop).
543 This case can happen for things like
544 do {..} while (0). If this label was generated previously
545 by loop, we can't tell anything about it and have to reject
546 the loop. */
547 && INSN_UID (JUMP_LABEL (p)) < max_uid_for_loop
548 && INSN_LUID (JUMP_LABEL (p)) >= INSN_LUID (loop_start)
549 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (end))
551 loop_top = next_label (scan_start);
552 scan_start = JUMP_LABEL (p);
556 /* If SCAN_START was an insn created by loop, we don't know its luid
557 as required by loop_reg_used_before_p. So skip such loops. (This
558 test may never be true, but it's best to play it safe.)
560 Also, skip loops where we do not start scanning at a label. This
561 test also rejects loops starting with a JUMP_INSN that failed the
562 test above. */
564 if (INSN_UID (scan_start) >= max_uid_for_loop
565 || GET_CODE (scan_start) != CODE_LABEL)
567 if (loop_dump_stream)
568 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
569 INSN_UID (loop_start), INSN_UID (end));
570 return;
573 /* Count number of times each reg is set during this loop.
574 Set may_not_optimize[I] if it is not safe to move out
575 the setting of register I. If this loop has calls, set
576 reg_single_usage[I]. */
578 bzero (n_times_set, nregs * sizeof (short));
579 bzero (may_not_optimize, nregs);
581 if (loop_has_call)
583 reg_single_usage = (rtx *) alloca (nregs * sizeof (rtx));
584 bzero (reg_single_usage, nregs * sizeof (rtx));
587 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
588 may_not_optimize, reg_single_usage, &insn_count, nregs);
590 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
591 may_not_optimize[i] = 1, n_times_set[i] = 1;
592 bcopy (n_times_set, n_times_used, nregs * sizeof (short));
594 if (loop_dump_stream)
596 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
597 INSN_UID (loop_start), INSN_UID (end), insn_count);
598 if (loop_continue)
599 fprintf (loop_dump_stream, "Continue at insn %d.\n",
600 INSN_UID (loop_continue));
603 /* Scan through the loop finding insns that are safe to move.
604 Set n_times_set negative for the reg being set, so that
605 this reg will be considered invariant for subsequent insns.
606 We consider whether subsequent insns use the reg
607 in deciding whether it is worth actually moving.
609 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
610 and therefore it is possible that the insns we are scanning
611 would never be executed. At such times, we must make sure
612 that it is safe to execute the insn once instead of zero times.
613 When MAYBE_NEVER is 0, all insns will be executed at least once
614 so that is not a problem. */
616 p = scan_start;
617 while (1)
619 p = NEXT_INSN (p);
620 /* At end of a straight-in loop, we are done.
621 At end of a loop entered at the bottom, scan the top. */
622 if (p == scan_start)
623 break;
624 if (p == end)
626 if (loop_top != 0)
627 p = NEXT_INSN (loop_top);
628 else
629 break;
630 if (p == scan_start)
631 break;
634 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
635 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
636 in_libcall = 1;
637 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
638 && find_reg_note (p, REG_RETVAL, NULL_RTX))
639 in_libcall = 0;
641 if (GET_CODE (p) == INSN
642 && (set = single_set (p))
643 && GET_CODE (SET_DEST (set)) == REG
644 && ! may_not_optimize[REGNO (SET_DEST (set))])
646 int tem1 = 0;
647 int tem2 = 0;
648 int move_insn = 0;
649 rtx src = SET_SRC (set);
650 rtx dependencies = 0;
652 /* Figure out what to use as a source of this insn. If a REG_EQUIV
653 note is given or if a REG_EQUAL note with a constant operand is
654 specified, use it as the source and mark that we should move
655 this insn by calling emit_move_insn rather that duplicating the
656 insn.
658 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
659 is present. */
660 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
661 if (temp)
662 src = XEXP (temp, 0), move_insn = 1;
663 else
665 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
666 if (temp && CONSTANT_P (XEXP (temp, 0)))
667 src = XEXP (temp, 0), move_insn = 1;
668 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
670 src = XEXP (temp, 0);
671 /* A libcall block can use regs that don't appear in
672 the equivalent expression. To move the libcall,
673 we must move those regs too. */
674 dependencies = libcall_other_reg (p, src);
678 /* Don't try to optimize a register that was made
679 by loop-optimization for an inner loop.
680 We don't know its life-span, so we can't compute the benefit. */
681 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
683 /* In order to move a register, we need to have one of three cases:
684 (1) it is used only in the same basic block as the set
685 (2) it is not a user variable and it is not used in the
686 exit test (this can cause the variable to be used
687 before it is set just like a user-variable).
688 (3) the set is guaranteed to be executed once the loop starts,
689 and the reg is not used until after that. */
690 else if (! ((! maybe_never
691 && ! loop_reg_used_before_p (set, p, loop_start,
692 scan_start, end))
693 || (! REG_USERVAR_P (SET_DEST (PATTERN (p)))
694 && ! REG_LOOP_TEST_P (SET_DEST (PATTERN (p))))
695 || reg_in_basic_block_p (p, SET_DEST (PATTERN (p)))))
697 else if ((tem = invariant_p (src))
698 && (dependencies == 0
699 || (tem2 = invariant_p (dependencies)) != 0)
700 && (n_times_set[REGNO (SET_DEST (set))] == 1
701 || (tem1
702 = consec_sets_invariant_p (SET_DEST (set),
703 n_times_set[REGNO (SET_DEST (set))],
704 p)))
705 /* If the insn can cause a trap (such as divide by zero),
706 can't move it unless it's guaranteed to be executed
707 once loop is entered. Even a function call might
708 prevent the trap insn from being reached
709 (since it might exit!) */
710 && ! ((maybe_never || call_passed)
711 && may_trap_p (src)))
713 register struct movable *m;
714 register int regno = REGNO (SET_DEST (set));
716 /* A potential lossage is where we have a case where two insns
717 can be combined as long as they are both in the loop, but
718 we move one of them outside the loop. For large loops,
719 this can lose. The most common case of this is the address
720 of a function being called.
722 Therefore, if this register is marked as being used exactly
723 once if we are in a loop with calls (a "large loop"), see if
724 we can replace the usage of this register with the source
725 of this SET. If we can, delete this insn.
727 Don't do this if P has a REG_RETVAL note or if we have
728 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
730 if (reg_single_usage && reg_single_usage[regno] != 0
731 && reg_single_usage[regno] != const0_rtx
732 && regno_first_uid[regno] == INSN_UID (p)
733 && (regno_last_uid[regno]
734 == INSN_UID (reg_single_usage[regno]))
735 && n_times_set[REGNO (SET_DEST (set))] == 1
736 && ! side_effects_p (SET_SRC (set))
737 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
738 #ifdef SMALL_REGISTER_CLASSES
739 && ! (GET_CODE (SET_SRC (set)) == REG
740 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)
741 #endif
742 /* This test is not redundant; SET_SRC (set) might be
743 a call-clobbered register and the life of REGNO
744 might span a call. */
745 && ! modified_between_p (SET_SRC (set), p,
746 reg_single_usage[regno])
747 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
748 reg_single_usage[regno]))
750 /* Replace any usage in a REG_EQUAL note. */
751 REG_NOTES (reg_single_usage[regno])
752 = replace_rtx (REG_NOTES (reg_single_usage[regno]),
753 SET_DEST (set), SET_SRC (set));
755 PUT_CODE (p, NOTE);
756 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
757 NOTE_SOURCE_FILE (p) = 0;
758 n_times_set[regno] = 0;
759 continue;
762 m = (struct movable *) alloca (sizeof (struct movable));
763 m->next = 0;
764 m->insn = p;
765 m->set_src = src;
766 m->dependencies = dependencies;
767 m->set_dest = SET_DEST (set);
768 m->force = 0;
769 m->consec = n_times_set[REGNO (SET_DEST (set))] - 1;
770 m->done = 0;
771 m->forces = 0;
772 m->partial = 0;
773 m->move_insn = move_insn;
774 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
775 m->savemode = VOIDmode;
776 m->regno = regno;
777 /* Set M->cond if either invariant_p or consec_sets_invariant_p
778 returned 2 (only conditionally invariant). */
779 m->cond = ((tem | tem1 | tem2) > 1);
780 m->global = (uid_luid[regno_last_uid[regno]] > INSN_LUID (end)
781 || uid_luid[regno_first_uid[regno]] < INSN_LUID (loop_start));
782 m->match = 0;
783 m->lifetime = (uid_luid[regno_last_uid[regno]]
784 - uid_luid[regno_first_uid[regno]]);
785 m->savings = n_times_used[regno];
786 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
787 m->savings += libcall_benefit (p);
788 n_times_set[regno] = move_insn ? -2 : -1;
789 /* Add M to the end of the chain MOVABLES. */
790 if (movables == 0)
791 movables = m;
792 else
793 last_movable->next = m;
794 last_movable = m;
796 if (m->consec > 0)
798 /* Skip this insn, not checking REG_LIBCALL notes. */
799 p = NEXT_INSN (p);
800 /* Skip the consecutive insns, if there are any. */
801 p = skip_consec_insns (p, m->consec);
802 /* Back up to the last insn of the consecutive group. */
803 p = prev_nonnote_insn (p);
805 /* We must now reset m->move_insn, m->is_equiv, and possibly
806 m->set_src to correspond to the effects of all the
807 insns. */
808 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
809 if (temp)
810 m->set_src = XEXP (temp, 0), m->move_insn = 1;
811 else
813 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
814 if (temp && CONSTANT_P (XEXP (temp, 0)))
815 m->set_src = XEXP (temp, 0), m->move_insn = 1;
816 else
817 m->move_insn = 0;
820 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
823 /* If this register is always set within a STRICT_LOW_PART
824 or set to zero, then its high bytes are constant.
825 So clear them outside the loop and within the loop
826 just load the low bytes.
827 We must check that the machine has an instruction to do so.
828 Also, if the value loaded into the register
829 depends on the same register, this cannot be done. */
830 else if (SET_SRC (set) == const0_rtx
831 && GET_CODE (NEXT_INSN (p)) == INSN
832 && (set1 = single_set (NEXT_INSN (p)))
833 && GET_CODE (set1) == SET
834 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
835 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
836 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
837 == SET_DEST (set))
838 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
840 register int regno = REGNO (SET_DEST (set));
841 if (n_times_set[regno] == 2)
843 register struct movable *m;
844 m = (struct movable *) alloca (sizeof (struct movable));
845 m->next = 0;
846 m->insn = p;
847 m->set_dest = SET_DEST (set);
848 m->dependencies = 0;
849 m->force = 0;
850 m->consec = 0;
851 m->done = 0;
852 m->forces = 0;
853 m->move_insn = 0;
854 m->partial = 1;
855 /* If the insn may not be executed on some cycles,
856 we can't clear the whole reg; clear just high part.
857 Not even if the reg is used only within this loop.
858 Consider this:
859 while (1)
860 while (s != t) {
861 if (foo ()) x = *s;
862 use (x);
864 Clearing x before the inner loop could clobber a value
865 being saved from the last time around the outer loop.
866 However, if the reg is not used outside this loop
867 and all uses of the register are in the same
868 basic block as the store, there is no problem.
870 If this insn was made by loop, we don't know its
871 INSN_LUID and hence must make a conservative
872 assumption. */
873 m->global = (INSN_UID (p) >= max_uid_for_loop
874 || (uid_luid[regno_last_uid[regno]]
875 > INSN_LUID (end))
876 || (uid_luid[regno_first_uid[regno]]
877 < INSN_LUID (p))
878 || (labels_in_range_p
879 (p, uid_luid[regno_first_uid[regno]])));
880 if (maybe_never && m->global)
881 m->savemode = GET_MODE (SET_SRC (set1));
882 else
883 m->savemode = VOIDmode;
884 m->regno = regno;
885 m->cond = 0;
886 m->match = 0;
887 m->lifetime = (uid_luid[regno_last_uid[regno]]
888 - uid_luid[regno_first_uid[regno]]);
889 m->savings = 1;
890 n_times_set[regno] = -1;
891 /* Add M to the end of the chain MOVABLES. */
892 if (movables == 0)
893 movables = m;
894 else
895 last_movable->next = m;
896 last_movable = m;
900 /* Past a call insn, we get to insns which might not be executed
901 because the call might exit. This matters for insns that trap.
902 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
903 so they don't count. */
904 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
905 call_passed = 1;
906 /* Past a label or a jump, we get to insns for which we
907 can't count on whether or how many times they will be
908 executed during each iteration. Therefore, we can
909 only move out sets of trivial variables
910 (those not used after the loop). */
911 /* This code appears in three places, once in scan_loop, and twice
912 in strength_reduce. */
913 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
914 /* If we enter the loop in the middle, and scan around to the
915 beginning, don't set maybe_never for that. This must be an
916 unconditional jump, otherwise the code at the top of the
917 loop might never be executed. Unconditional jumps are
918 followed a by barrier then loop end. */
919 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
920 && NEXT_INSN (NEXT_INSN (p)) == end
921 && simplejump_p (p)))
922 maybe_never = 1;
923 /* At the virtual top of a converted loop, insns are again known to
924 be executed: logically, the loop begins here even though the exit
925 code has been duplicated. */
926 else if (GET_CODE (p) == NOTE
927 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
928 maybe_never = call_passed = 0;
931 /* If one movable subsumes another, ignore that other. */
933 ignore_some_movables (movables);
935 /* For each movable insn, see if the reg that it loads
936 leads when it dies right into another conditionally movable insn.
937 If so, record that the second insn "forces" the first one,
938 since the second can be moved only if the first is. */
940 force_movables (movables);
942 /* See if there are multiple movable insns that load the same value.
943 If there are, make all but the first point at the first one
944 through the `match' field, and add the priorities of them
945 all together as the priority of the first. */
947 combine_movables (movables, nregs);
949 /* Now consider each movable insn to decide whether it is worth moving.
950 Store 0 in n_times_set for each reg that is moved. */
952 move_movables (movables, threshold,
953 insn_count, loop_start, end, nregs);
955 /* Now candidates that still are negative are those not moved.
956 Change n_times_set to indicate that those are not actually invariant. */
957 for (i = 0; i < nregs; i++)
958 if (n_times_set[i] < 0)
959 n_times_set[i] = n_times_used[i];
961 if (flag_strength_reduce)
962 strength_reduce (scan_start, end, loop_top,
963 insn_count, loop_start, end);
966 /* Add elements to *OUTPUT to record all the pseudo-regs
967 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
969 void
970 record_excess_regs (in_this, not_in_this, output)
971 rtx in_this, not_in_this;
972 rtx *output;
974 enum rtx_code code;
975 char *fmt;
976 int i;
978 code = GET_CODE (in_this);
980 switch (code)
982 case PC:
983 case CC0:
984 case CONST_INT:
985 case CONST_DOUBLE:
986 case CONST:
987 case SYMBOL_REF:
988 case LABEL_REF:
989 return;
991 case REG:
992 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
993 && ! reg_mentioned_p (in_this, not_in_this))
994 *output = gen_rtx (EXPR_LIST, VOIDmode, in_this, *output);
995 return;
998 fmt = GET_RTX_FORMAT (code);
999 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1001 int j;
1003 switch (fmt[i])
1005 case 'E':
1006 for (j = 0; j < XVECLEN (in_this, i); j++)
1007 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1008 break;
1010 case 'e':
1011 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1012 break;
1017 /* Check what regs are referred to in the libcall block ending with INSN,
1018 aside from those mentioned in the equivalent value.
1019 If there are none, return 0.
1020 If there are one or more, return an EXPR_LIST containing all of them. */
1022 static rtx
1023 libcall_other_reg (insn, equiv)
1024 rtx insn, equiv;
1026 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1027 rtx p = XEXP (note, 0);
1028 rtx output = 0;
1030 /* First, find all the regs used in the libcall block
1031 that are not mentioned as inputs to the result. */
1033 while (p != insn)
1035 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1036 || GET_CODE (p) == CALL_INSN)
1037 record_excess_regs (PATTERN (p), equiv, &output);
1038 p = NEXT_INSN (p);
1041 return output;
1044 /* Return 1 if all uses of REG
1045 are between INSN and the end of the basic block. */
1047 static int
1048 reg_in_basic_block_p (insn, reg)
1049 rtx insn, reg;
1051 int regno = REGNO (reg);
1052 rtx p;
1054 if (regno_first_uid[regno] != INSN_UID (insn))
1055 return 0;
1057 /* Search this basic block for the already recorded last use of the reg. */
1058 for (p = insn; p; p = NEXT_INSN (p))
1060 switch (GET_CODE (p))
1062 case NOTE:
1063 break;
1065 case INSN:
1066 case CALL_INSN:
1067 /* Ordinary insn: if this is the last use, we win. */
1068 if (regno_last_uid[regno] == INSN_UID (p))
1069 return 1;
1070 break;
1072 case JUMP_INSN:
1073 /* Jump insn: if this is the last use, we win. */
1074 if (regno_last_uid[regno] == INSN_UID (p))
1075 return 1;
1076 /* Otherwise, it's the end of the basic block, so we lose. */
1077 return 0;
1079 case CODE_LABEL:
1080 case BARRIER:
1081 /* It's the end of the basic block, so we lose. */
1082 return 0;
1086 /* The "last use" doesn't follow the "first use"?? */
1087 abort ();
1090 /* Compute the benefit of eliminating the insns in the block whose
1091 last insn is LAST. This may be a group of insns used to compute a
1092 value directly or can contain a library call. */
1094 static int
1095 libcall_benefit (last)
1096 rtx last;
1098 rtx insn;
1099 int benefit = 0;
1101 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1102 insn != last; insn = NEXT_INSN (insn))
1104 if (GET_CODE (insn) == CALL_INSN)
1105 benefit += 10; /* Assume at least this many insns in a library
1106 routine. */
1107 else if (GET_CODE (insn) == INSN
1108 && GET_CODE (PATTERN (insn)) != USE
1109 && GET_CODE (PATTERN (insn)) != CLOBBER)
1110 benefit++;
1113 return benefit;
1116 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1118 static rtx
1119 skip_consec_insns (insn, count)
1120 rtx insn;
1121 int count;
1123 for (; count > 0; count--)
1125 rtx temp;
1127 /* If first insn of libcall sequence, skip to end. */
1128 /* Do this at start of loop, since INSN is guaranteed to
1129 be an insn here. */
1130 if (GET_CODE (insn) != NOTE
1131 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1132 insn = XEXP (temp, 0);
1134 do insn = NEXT_INSN (insn);
1135 while (GET_CODE (insn) == NOTE);
1138 return insn;
1141 /* Ignore any movable whose insn falls within a libcall
1142 which is part of another movable.
1143 We make use of the fact that the movable for the libcall value
1144 was made later and so appears later on the chain. */
1146 static void
1147 ignore_some_movables (movables)
1148 struct movable *movables;
1150 register struct movable *m, *m1;
1152 for (m = movables; m; m = m->next)
1154 /* Is this a movable for the value of a libcall? */
1155 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1156 if (note)
1158 rtx insn;
1159 /* Check for earlier movables inside that range,
1160 and mark them invalid. We cannot use LUIDs here because
1161 insns created by loop.c for prior loops don't have LUIDs.
1162 Rather than reject all such insns from movables, we just
1163 explicitly check each insn in the libcall (since invariant
1164 libcalls aren't that common). */
1165 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1166 for (m1 = movables; m1 != m; m1 = m1->next)
1167 if (m1->insn == insn)
1168 m1->done = 1;
1173 /* For each movable insn, see if the reg that it loads
1174 leads when it dies right into another conditionally movable insn.
1175 If so, record that the second insn "forces" the first one,
1176 since the second can be moved only if the first is. */
1178 static void
1179 force_movables (movables)
1180 struct movable *movables;
1182 register struct movable *m, *m1;
1183 for (m1 = movables; m1; m1 = m1->next)
1184 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1185 if (!m1->partial && !m1->done)
1187 int regno = m1->regno;
1188 for (m = m1->next; m; m = m->next)
1189 /* ??? Could this be a bug? What if CSE caused the
1190 register of M1 to be used after this insn?
1191 Since CSE does not update regno_last_uid,
1192 this insn M->insn might not be where it dies.
1193 But very likely this doesn't matter; what matters is
1194 that M's reg is computed from M1's reg. */
1195 if (INSN_UID (m->insn) == regno_last_uid[regno]
1196 && !m->done)
1197 break;
1198 if (m != 0 && m->set_src == m1->set_dest
1199 /* If m->consec, m->set_src isn't valid. */
1200 && m->consec == 0)
1201 m = 0;
1203 /* Increase the priority of the moving the first insn
1204 since it permits the second to be moved as well. */
1205 if (m != 0)
1207 m->forces = m1;
1208 m1->lifetime += m->lifetime;
1209 m1->savings += m1->savings;
1214 /* Find invariant expressions that are equal and can be combined into
1215 one register. */
1217 static void
1218 combine_movables (movables, nregs)
1219 struct movable *movables;
1220 int nregs;
1222 register struct movable *m;
1223 char *matched_regs = (char *) alloca (nregs);
1224 enum machine_mode mode;
1226 /* Regs that are set more than once are not allowed to match
1227 or be matched. I'm no longer sure why not. */
1228 /* Perhaps testing m->consec_sets would be more appropriate here? */
1230 for (m = movables; m; m = m->next)
1231 if (m->match == 0 && n_times_used[m->regno] == 1 && !m->partial)
1233 register struct movable *m1;
1234 int regno = m->regno;
1235 rtx reg_note, reg_note1;
1237 bzero (matched_regs, nregs);
1238 matched_regs[regno] = 1;
1240 for (m1 = movables; m1; m1 = m1->next)
1241 if (m != m1 && m1->match == 0 && n_times_used[m1->regno] == 1
1242 /* A reg used outside the loop mustn't be eliminated. */
1243 && !m1->global
1244 /* A reg used for zero-extending mustn't be eliminated. */
1245 && !m1->partial
1246 && (matched_regs[m1->regno]
1249 /* Can combine regs with different modes loaded from the
1250 same constant only if the modes are the same or
1251 if both are integer modes with M wider or the same
1252 width as M1. The check for integer is redundant, but
1253 safe, since the only case of differing destination
1254 modes with equal sources is when both sources are
1255 VOIDmode, i.e., CONST_INT. */
1256 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1257 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1258 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1259 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1260 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1261 /* See if the source of M1 says it matches M. */
1262 && ((GET_CODE (m1->set_src) == REG
1263 && matched_regs[REGNO (m1->set_src)])
1264 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1265 movables))))
1266 && ((m->dependencies == m1->dependencies)
1267 || rtx_equal_p (m->dependencies, m1->dependencies)))
1269 m->lifetime += m1->lifetime;
1270 m->savings += m1->savings;
1271 m1->done = 1;
1272 m1->match = m;
1273 matched_regs[m1->regno] = 1;
1277 /* Now combine the regs used for zero-extension.
1278 This can be done for those not marked `global'
1279 provided their lives don't overlap. */
1281 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1282 mode = GET_MODE_WIDER_MODE (mode))
1284 register struct movable *m0 = 0;
1286 /* Combine all the registers for extension from mode MODE.
1287 Don't combine any that are used outside this loop. */
1288 for (m = movables; m; m = m->next)
1289 if (m->partial && ! m->global
1290 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1292 register struct movable *m1;
1293 int first = uid_luid[regno_first_uid[m->regno]];
1294 int last = uid_luid[regno_last_uid[m->regno]];
1296 if (m0 == 0)
1298 /* First one: don't check for overlap, just record it. */
1299 m0 = m;
1300 continue;
1303 /* Make sure they extend to the same mode.
1304 (Almost always true.) */
1305 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1306 continue;
1308 /* We already have one: check for overlap with those
1309 already combined together. */
1310 for (m1 = movables; m1 != m; m1 = m1->next)
1311 if (m1 == m0 || (m1->partial && m1->match == m0))
1312 if (! (uid_luid[regno_first_uid[m1->regno]] > last
1313 || uid_luid[regno_last_uid[m1->regno]] < first))
1314 goto overlap;
1316 /* No overlap: we can combine this with the others. */
1317 m0->lifetime += m->lifetime;
1318 m0->savings += m->savings;
1319 m->done = 1;
1320 m->match = m0;
1322 overlap: ;
1327 /* Return 1 if regs X and Y will become the same if moved. */
1329 static int
1330 regs_match_p (x, y, movables)
1331 rtx x, y;
1332 struct movable *movables;
1334 int xn = REGNO (x);
1335 int yn = REGNO (y);
1336 struct movable *mx, *my;
1338 for (mx = movables; mx; mx = mx->next)
1339 if (mx->regno == xn)
1340 break;
1342 for (my = movables; my; my = my->next)
1343 if (my->regno == yn)
1344 break;
1346 return (mx && my
1347 && ((mx->match == my->match && mx->match != 0)
1348 || mx->match == my
1349 || mx == my->match));
1352 /* Return 1 if X and Y are identical-looking rtx's.
1353 This is the Lisp function EQUAL for rtx arguments.
1355 If two registers are matching movables or a movable register and an
1356 equivalent constant, consider them equal. */
1358 static int
1359 rtx_equal_for_loop_p (x, y, movables)
1360 rtx x, y;
1361 struct movable *movables;
1363 register int i;
1364 register int j;
1365 register struct movable *m;
1366 register enum rtx_code code;
1367 register char *fmt;
1369 if (x == y)
1370 return 1;
1371 if (x == 0 || y == 0)
1372 return 0;
1374 code = GET_CODE (x);
1376 /* If we have a register and a constant, they may sometimes be
1377 equal. */
1378 if (GET_CODE (x) == REG && n_times_set[REGNO (x)] == -2
1379 && CONSTANT_P (y))
1380 for (m = movables; m; m = m->next)
1381 if (m->move_insn && m->regno == REGNO (x)
1382 && rtx_equal_p (m->set_src, y))
1383 return 1;
1385 else if (GET_CODE (y) == REG && n_times_set[REGNO (y)] == -2
1386 && CONSTANT_P (x))
1387 for (m = movables; m; m = m->next)
1388 if (m->move_insn && m->regno == REGNO (y)
1389 && rtx_equal_p (m->set_src, x))
1390 return 1;
1392 /* Otherwise, rtx's of different codes cannot be equal. */
1393 if (code != GET_CODE (y))
1394 return 0;
1396 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1397 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1399 if (GET_MODE (x) != GET_MODE (y))
1400 return 0;
1402 /* These three types of rtx's can be compared nonrecursively. */
1403 if (code == REG)
1404 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1406 if (code == LABEL_REF)
1407 return XEXP (x, 0) == XEXP (y, 0);
1408 if (code == SYMBOL_REF)
1409 return XSTR (x, 0) == XSTR (y, 0);
1411 /* Compare the elements. If any pair of corresponding elements
1412 fail to match, return 0 for the whole things. */
1414 fmt = GET_RTX_FORMAT (code);
1415 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1417 switch (fmt[i])
1419 case 'w':
1420 if (XWINT (x, i) != XWINT (y, i))
1421 return 0;
1422 break;
1424 case 'i':
1425 if (XINT (x, i) != XINT (y, i))
1426 return 0;
1427 break;
1429 case 'E':
1430 /* Two vectors must have the same length. */
1431 if (XVECLEN (x, i) != XVECLEN (y, i))
1432 return 0;
1434 /* And the corresponding elements must match. */
1435 for (j = 0; j < XVECLEN (x, i); j++)
1436 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1437 return 0;
1438 break;
1440 case 'e':
1441 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1442 return 0;
1443 break;
1445 case 's':
1446 if (strcmp (XSTR (x, i), XSTR (y, i)))
1447 return 0;
1448 break;
1450 case 'u':
1451 /* These are just backpointers, so they don't matter. */
1452 break;
1454 case '0':
1455 break;
1457 /* It is believed that rtx's at this level will never
1458 contain anything but integers and other rtx's,
1459 except for within LABEL_REFs and SYMBOL_REFs. */
1460 default:
1461 abort ();
1464 return 1;
1467 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1468 insns in INSNS which use thet reference. */
1470 static void
1471 add_label_notes (x, insns)
1472 rtx x;
1473 rtx insns;
1475 enum rtx_code code = GET_CODE (x);
1476 int i, j;
1477 char *fmt;
1478 rtx insn;
1480 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1482 rtx next = next_real_insn (XEXP (x, 0));
1484 /* Don't record labels that refer to dispatch tables.
1485 This is not necessary, since the tablejump references the same label.
1486 And if we did record them, flow.c would make worse code. */
1487 if (next == 0
1488 || ! (GET_CODE (next) == JUMP_INSN
1489 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1490 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
1492 for (insn = insns; insn; insn = NEXT_INSN (insn))
1493 if (reg_mentioned_p (XEXP (x, 0), insn))
1494 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL, XEXP (x, 0),
1495 REG_NOTES (insn));
1497 return;
1500 fmt = GET_RTX_FORMAT (code);
1501 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1503 if (fmt[i] == 'e')
1504 add_label_notes (XEXP (x, i), insns);
1505 else if (fmt[i] == 'E')
1506 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1507 add_label_notes (XVECEXP (x, i, j), insns);
1511 /* Scan MOVABLES, and move the insns that deserve to be moved.
1512 If two matching movables are combined, replace one reg with the
1513 other throughout. */
1515 static void
1516 move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1517 struct movable *movables;
1518 int threshold;
1519 int insn_count;
1520 rtx loop_start;
1521 rtx end;
1522 int nregs;
1524 rtx new_start = 0;
1525 register struct movable *m;
1526 register rtx p;
1527 /* Map of pseudo-register replacements to handle combining
1528 when we move several insns that load the same value
1529 into different pseudo-registers. */
1530 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1531 char *already_moved = (char *) alloca (nregs);
1533 bzero (already_moved, nregs);
1534 bzero (reg_map, nregs * sizeof (rtx));
1536 num_movables = 0;
1538 for (m = movables; m; m = m->next)
1540 /* Describe this movable insn. */
1542 if (loop_dump_stream)
1544 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1545 INSN_UID (m->insn), m->regno, m->lifetime);
1546 if (m->consec > 0)
1547 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1548 if (m->cond)
1549 fprintf (loop_dump_stream, "cond ");
1550 if (m->force)
1551 fprintf (loop_dump_stream, "force ");
1552 if (m->global)
1553 fprintf (loop_dump_stream, "global ");
1554 if (m->done)
1555 fprintf (loop_dump_stream, "done ");
1556 if (m->move_insn)
1557 fprintf (loop_dump_stream, "move-insn ");
1558 if (m->match)
1559 fprintf (loop_dump_stream, "matches %d ",
1560 INSN_UID (m->match->insn));
1561 if (m->forces)
1562 fprintf (loop_dump_stream, "forces %d ",
1563 INSN_UID (m->forces->insn));
1566 /* Count movables. Value used in heuristics in strength_reduce. */
1567 num_movables++;
1569 /* Ignore the insn if it's already done (it matched something else).
1570 Otherwise, see if it is now safe to move. */
1572 if (!m->done
1573 && (! m->cond
1574 || (1 == invariant_p (m->set_src)
1575 && (m->dependencies == 0
1576 || 1 == invariant_p (m->dependencies))
1577 && (m->consec == 0
1578 || 1 == consec_sets_invariant_p (m->set_dest,
1579 m->consec + 1,
1580 m->insn))))
1581 && (! m->forces || m->forces->done))
1583 register int regno;
1584 register rtx p;
1585 int savings = m->savings;
1587 /* We have an insn that is safe to move.
1588 Compute its desirability. */
1590 p = m->insn;
1591 regno = m->regno;
1593 if (loop_dump_stream)
1594 fprintf (loop_dump_stream, "savings %d ", savings);
1596 if (moved_once[regno])
1598 insn_count *= 2;
1600 if (loop_dump_stream)
1601 fprintf (loop_dump_stream, "halved since already moved ");
1604 /* An insn MUST be moved if we already moved something else
1605 which is safe only if this one is moved too: that is,
1606 if already_moved[REGNO] is nonzero. */
1608 /* An insn is desirable to move if the new lifetime of the
1609 register is no more than THRESHOLD times the old lifetime.
1610 If it's not desirable, it means the loop is so big
1611 that moving won't speed things up much,
1612 and it is liable to make register usage worse. */
1614 /* It is also desirable to move if it can be moved at no
1615 extra cost because something else was already moved. */
1617 if (already_moved[regno]
1618 || (threshold * savings * m->lifetime) >= insn_count
1619 || (m->forces && m->forces->done
1620 && n_times_used[m->forces->regno] == 1))
1622 int count;
1623 register struct movable *m1;
1624 rtx first;
1626 /* Now move the insns that set the reg. */
1628 if (m->partial && m->match)
1630 rtx newpat, i1;
1631 rtx r1, r2;
1632 /* Find the end of this chain of matching regs.
1633 Thus, we load each reg in the chain from that one reg.
1634 And that reg is loaded with 0 directly,
1635 since it has ->match == 0. */
1636 for (m1 = m; m1->match; m1 = m1->match);
1637 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1638 SET_DEST (PATTERN (m1->insn)));
1639 i1 = emit_insn_before (newpat, loop_start);
1641 /* Mark the moved, invariant reg as being allowed to
1642 share a hard reg with the other matching invariant. */
1643 REG_NOTES (i1) = REG_NOTES (m->insn);
1644 r1 = SET_DEST (PATTERN (m->insn));
1645 r2 = SET_DEST (PATTERN (m1->insn));
1646 regs_may_share = gen_rtx (EXPR_LIST, VOIDmode, r1,
1647 gen_rtx (EXPR_LIST, VOIDmode, r2,
1648 regs_may_share));
1649 delete_insn (m->insn);
1651 if (new_start == 0)
1652 new_start = i1;
1654 if (loop_dump_stream)
1655 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1657 /* If we are to re-generate the item being moved with a
1658 new move insn, first delete what we have and then emit
1659 the move insn before the loop. */
1660 else if (m->move_insn)
1662 rtx i1, temp;
1664 for (count = m->consec; count >= 0; count--)
1666 /* If this is the first insn of a library call sequence,
1667 skip to the end. */
1668 if (GET_CODE (p) != NOTE
1669 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1670 p = XEXP (temp, 0);
1672 /* If this is the last insn of a libcall sequence, then
1673 delete every insn in the sequence except the last.
1674 The last insn is handled in the normal manner. */
1675 if (GET_CODE (p) != NOTE
1676 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1678 temp = XEXP (temp, 0);
1679 while (temp != p)
1680 temp = delete_insn (temp);
1683 p = delete_insn (p);
1686 start_sequence ();
1687 emit_move_insn (m->set_dest, m->set_src);
1688 temp = get_insns ();
1689 end_sequence ();
1691 add_label_notes (m->set_src, temp);
1693 i1 = emit_insns_before (temp, loop_start);
1694 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1695 REG_NOTES (i1)
1696 = gen_rtx (EXPR_LIST,
1697 m->is_equiv ? REG_EQUIV : REG_EQUAL,
1698 m->set_src, REG_NOTES (i1));
1700 if (loop_dump_stream)
1701 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1703 /* The more regs we move, the less we like moving them. */
1704 threshold -= 3;
1706 else
1708 for (count = m->consec; count >= 0; count--)
1710 rtx i1, temp;
1712 /* If first insn of libcall sequence, skip to end. */
1713 /* Do this at start of loop, since p is guaranteed to
1714 be an insn here. */
1715 if (GET_CODE (p) != NOTE
1716 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1717 p = XEXP (temp, 0);
1719 /* If last insn of libcall sequence, move all
1720 insns except the last before the loop. The last
1721 insn is handled in the normal manner. */
1722 if (GET_CODE (p) != NOTE
1723 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1725 rtx fn_address = 0;
1726 rtx fn_reg = 0;
1727 rtx fn_address_insn = 0;
1729 first = 0;
1730 for (temp = XEXP (temp, 0); temp != p;
1731 temp = NEXT_INSN (temp))
1733 rtx body;
1734 rtx n;
1735 rtx next;
1737 if (GET_CODE (temp) == NOTE)
1738 continue;
1740 body = PATTERN (temp);
1742 /* Find the next insn after TEMP,
1743 not counting USE or NOTE insns. */
1744 for (next = NEXT_INSN (temp); next != p;
1745 next = NEXT_INSN (next))
1746 if (! (GET_CODE (next) == INSN
1747 && GET_CODE (PATTERN (next)) == USE)
1748 && GET_CODE (next) != NOTE)
1749 break;
1751 /* If that is the call, this may be the insn
1752 that loads the function address.
1754 Extract the function address from the insn
1755 that loads it into a register.
1756 If this insn was cse'd, we get incorrect code.
1758 So emit a new move insn that copies the
1759 function address into the register that the
1760 call insn will use. flow.c will delete any
1761 redundant stores that we have created. */
1762 if (GET_CODE (next) == CALL_INSN
1763 && GET_CODE (body) == SET
1764 && GET_CODE (SET_DEST (body)) == REG
1765 && (n = find_reg_note (temp, REG_EQUAL,
1766 NULL_RTX)))
1768 fn_reg = SET_SRC (body);
1769 if (GET_CODE (fn_reg) != REG)
1770 fn_reg = SET_DEST (body);
1771 fn_address = XEXP (n, 0);
1772 fn_address_insn = temp;
1774 /* We have the call insn.
1775 If it uses the register we suspect it might,
1776 load it with the correct address directly. */
1777 if (GET_CODE (temp) == CALL_INSN
1778 && fn_address != 0
1779 && reg_referenced_p (fn_reg, body))
1780 emit_insn_after (gen_move_insn (fn_reg,
1781 fn_address),
1782 fn_address_insn);
1784 if (GET_CODE (temp) == CALL_INSN)
1785 i1 = emit_call_insn_before (body, loop_start);
1786 else
1787 i1 = emit_insn_before (body, loop_start);
1788 if (first == 0)
1789 first = i1;
1790 if (temp == fn_address_insn)
1791 fn_address_insn = i1;
1792 REG_NOTES (i1) = REG_NOTES (temp);
1793 delete_insn (temp);
1796 if (m->savemode != VOIDmode)
1798 /* P sets REG to zero; but we should clear only
1799 the bits that are not covered by the mode
1800 m->savemode. */
1801 rtx reg = m->set_dest;
1802 rtx sequence;
1803 rtx tem;
1805 start_sequence ();
1806 tem = expand_binop
1807 (GET_MODE (reg), and_optab, reg,
1808 GEN_INT ((((HOST_WIDE_INT) 1
1809 << GET_MODE_BITSIZE (m->savemode)))
1810 - 1),
1811 reg, 1, OPTAB_LIB_WIDEN);
1812 if (tem == 0)
1813 abort ();
1814 if (tem != reg)
1815 emit_move_insn (reg, tem);
1816 sequence = gen_sequence ();
1817 end_sequence ();
1818 i1 = emit_insn_before (sequence, loop_start);
1820 else if (GET_CODE (p) == CALL_INSN)
1821 i1 = emit_call_insn_before (PATTERN (p), loop_start);
1822 else
1823 i1 = emit_insn_before (PATTERN (p), loop_start);
1825 REG_NOTES (i1) = REG_NOTES (p);
1827 /* If there is a REG_EQUAL note present whose value is
1828 not loop invariant, then delete it, since it may
1829 cause problems with later optimization passes.
1830 It is possible for cse to create such notes
1831 like this as a result of record_jump_cond. */
1833 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
1834 && ! invariant_p (XEXP (temp, 0)))
1835 remove_note (i1, temp);
1837 if (new_start == 0)
1838 new_start = i1;
1840 if (loop_dump_stream)
1841 fprintf (loop_dump_stream, " moved to %d",
1842 INSN_UID (i1));
1844 #if 0
1845 /* This isn't needed because REG_NOTES is copied
1846 below and is wrong since P might be a PARALLEL. */
1847 if (REG_NOTES (i1) == 0
1848 && ! m->partial /* But not if it's a zero-extend clr. */
1849 && ! m->global /* and not if used outside the loop
1850 (since it might get set outside). */
1851 && CONSTANT_P (SET_SRC (PATTERN (p))))
1852 REG_NOTES (i1)
1853 = gen_rtx (EXPR_LIST, REG_EQUAL,
1854 SET_SRC (PATTERN (p)), REG_NOTES (i1));
1855 #endif
1857 /* If library call, now fix the REG_NOTES that contain
1858 insn pointers, namely REG_LIBCALL on FIRST
1859 and REG_RETVAL on I1. */
1860 if (temp = find_reg_note (i1, REG_RETVAL, NULL_RTX))
1862 XEXP (temp, 0) = first;
1863 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
1864 XEXP (temp, 0) = i1;
1867 delete_insn (p);
1868 do p = NEXT_INSN (p);
1869 while (p && GET_CODE (p) == NOTE);
1872 /* The more regs we move, the less we like moving them. */
1873 threshold -= 3;
1876 /* Any other movable that loads the same register
1877 MUST be moved. */
1878 already_moved[regno] = 1;
1880 /* This reg has been moved out of one loop. */
1881 moved_once[regno] = 1;
1883 /* The reg set here is now invariant. */
1884 if (! m->partial)
1885 n_times_set[regno] = 0;
1887 m->done = 1;
1889 /* Change the length-of-life info for the register
1890 to say it lives at least the full length of this loop.
1891 This will help guide optimizations in outer loops. */
1893 if (uid_luid[regno_first_uid[regno]] > INSN_LUID (loop_start))
1894 /* This is the old insn before all the moved insns.
1895 We can't use the moved insn because it is out of range
1896 in uid_luid. Only the old insns have luids. */
1897 regno_first_uid[regno] = INSN_UID (loop_start);
1898 if (uid_luid[regno_last_uid[regno]] < INSN_LUID (end))
1899 regno_last_uid[regno] = INSN_UID (end);
1901 /* Combine with this moved insn any other matching movables. */
1903 if (! m->partial)
1904 for (m1 = movables; m1; m1 = m1->next)
1905 if (m1->match == m)
1907 rtx temp;
1909 /* Schedule the reg loaded by M1
1910 for replacement so that shares the reg of M.
1911 If the modes differ (only possible in restricted
1912 circumstances, make a SUBREG. */
1913 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
1914 reg_map[m1->regno] = m->set_dest;
1915 else
1916 reg_map[m1->regno]
1917 = gen_lowpart_common (GET_MODE (m1->set_dest),
1918 m->set_dest);
1920 /* Get rid of the matching insn
1921 and prevent further processing of it. */
1922 m1->done = 1;
1924 /* if library call, delete all insn except last, which
1925 is deleted below */
1926 if (temp = find_reg_note (m1->insn, REG_RETVAL,
1927 NULL_RTX))
1929 for (temp = XEXP (temp, 0); temp != m1->insn;
1930 temp = NEXT_INSN (temp))
1931 delete_insn (temp);
1933 delete_insn (m1->insn);
1935 /* Any other movable that loads the same register
1936 MUST be moved. */
1937 already_moved[m1->regno] = 1;
1939 /* The reg merged here is now invariant,
1940 if the reg it matches is invariant. */
1941 if (! m->partial)
1942 n_times_set[m1->regno] = 0;
1945 else if (loop_dump_stream)
1946 fprintf (loop_dump_stream, "not desirable");
1948 else if (loop_dump_stream && !m->match)
1949 fprintf (loop_dump_stream, "not safe");
1951 if (loop_dump_stream)
1952 fprintf (loop_dump_stream, "\n");
1955 if (new_start == 0)
1956 new_start = loop_start;
1958 /* Go through all the instructions in the loop, making
1959 all the register substitutions scheduled in REG_MAP. */
1960 for (p = new_start; p != end; p = NEXT_INSN (p))
1961 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1962 || GET_CODE (p) == CALL_INSN)
1964 replace_regs (PATTERN (p), reg_map, nregs, 0);
1965 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
1966 INSN_CODE (p) = -1;
1970 #if 0
1971 /* Scan X and replace the address of any MEM in it with ADDR.
1972 REG is the address that MEM should have before the replacement. */
1974 static void
1975 replace_call_address (x, reg, addr)
1976 rtx x, reg, addr;
1978 register enum rtx_code code;
1979 register int i;
1980 register char *fmt;
1982 if (x == 0)
1983 return;
1984 code = GET_CODE (x);
1985 switch (code)
1987 case PC:
1988 case CC0:
1989 case CONST_INT:
1990 case CONST_DOUBLE:
1991 case CONST:
1992 case SYMBOL_REF:
1993 case LABEL_REF:
1994 case REG:
1995 return;
1997 case SET:
1998 /* Short cut for very common case. */
1999 replace_call_address (XEXP (x, 1), reg, addr);
2000 return;
2002 case CALL:
2003 /* Short cut for very common case. */
2004 replace_call_address (XEXP (x, 0), reg, addr);
2005 return;
2007 case MEM:
2008 /* If this MEM uses a reg other than the one we expected,
2009 something is wrong. */
2010 if (XEXP (x, 0) != reg)
2011 abort ();
2012 XEXP (x, 0) = addr;
2013 return;
2016 fmt = GET_RTX_FORMAT (code);
2017 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2019 if (fmt[i] == 'e')
2020 replace_call_address (XEXP (x, i), reg, addr);
2021 if (fmt[i] == 'E')
2023 register int j;
2024 for (j = 0; j < XVECLEN (x, i); j++)
2025 replace_call_address (XVECEXP (x, i, j), reg, addr);
2029 #endif
2031 /* Return the number of memory refs to addresses that vary
2032 in the rtx X. */
2034 static int
2035 count_nonfixed_reads (x)
2036 rtx x;
2038 register enum rtx_code code;
2039 register int i;
2040 register char *fmt;
2041 int value;
2043 if (x == 0)
2044 return 0;
2046 code = GET_CODE (x);
2047 switch (code)
2049 case PC:
2050 case CC0:
2051 case CONST_INT:
2052 case CONST_DOUBLE:
2053 case CONST:
2054 case SYMBOL_REF:
2055 case LABEL_REF:
2056 case REG:
2057 return 0;
2059 case MEM:
2060 return ((invariant_p (XEXP (x, 0)) != 1)
2061 + count_nonfixed_reads (XEXP (x, 0)));
2064 value = 0;
2065 fmt = GET_RTX_FORMAT (code);
2066 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2068 if (fmt[i] == 'e')
2069 value += count_nonfixed_reads (XEXP (x, i));
2070 if (fmt[i] == 'E')
2072 register int j;
2073 for (j = 0; j < XVECLEN (x, i); j++)
2074 value += count_nonfixed_reads (XVECEXP (x, i, j));
2077 return value;
2081 #if 0
2082 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2083 Replace it with an instruction to load just the low bytes
2084 if the machine supports such an instruction,
2085 and insert above LOOP_START an instruction to clear the register. */
2087 static void
2088 constant_high_bytes (p, loop_start)
2089 rtx p, loop_start;
2091 register rtx new;
2092 register int insn_code_number;
2094 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2095 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2097 new = gen_rtx (SET, VOIDmode,
2098 gen_rtx (STRICT_LOW_PART, VOIDmode,
2099 gen_rtx (SUBREG, GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2100 SET_DEST (PATTERN (p)),
2101 0)),
2102 XEXP (SET_SRC (PATTERN (p)), 0));
2103 insn_code_number = recog (new, p);
2105 if (insn_code_number)
2107 register int i;
2109 /* Clear destination register before the loop. */
2110 emit_insn_before (gen_rtx (SET, VOIDmode,
2111 SET_DEST (PATTERN (p)),
2112 const0_rtx),
2113 loop_start);
2115 /* Inside the loop, just load the low part. */
2116 PATTERN (p) = new;
2119 #endif
2121 /* Scan a loop setting the variables `unknown_address_altered',
2122 `num_mem_sets', `loop_continue', loops_enclosed', `loop_has_call',
2123 and `loop_has_volatile'.
2124 Also, fill in the array `loop_store_mems'. */
2126 static void
2127 prescan_loop (start, end)
2128 rtx start, end;
2130 register int level = 1;
2131 register rtx insn;
2133 unknown_address_altered = 0;
2134 loop_has_call = 0;
2135 loop_has_volatile = 0;
2136 loop_store_mems_idx = 0;
2138 num_mem_sets = 0;
2139 loops_enclosed = 1;
2140 loop_continue = 0;
2142 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2143 insn = NEXT_INSN (insn))
2145 if (GET_CODE (insn) == NOTE)
2147 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2149 ++level;
2150 /* Count number of loops contained in this one. */
2151 loops_enclosed++;
2153 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2155 --level;
2156 if (level == 0)
2158 end = insn;
2159 break;
2162 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2164 if (level == 1)
2165 loop_continue = insn;
2168 else if (GET_CODE (insn) == CALL_INSN)
2170 unknown_address_altered = 1;
2171 loop_has_call = 1;
2173 else
2175 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2177 if (volatile_refs_p (PATTERN (insn)))
2178 loop_has_volatile = 1;
2180 note_stores (PATTERN (insn), note_addr_stored);
2186 /* Scan the function looking for loops. Record the start and end of each loop.
2187 Also mark as invalid loops any loops that contain a setjmp or are branched
2188 to from outside the loop. */
2190 static void
2191 find_and_verify_loops (f)
2192 rtx f;
2194 rtx insn, label;
2195 int current_loop = -1;
2196 int next_loop = -1;
2197 int loop;
2199 /* If there are jumps to undefined labels,
2200 treat them as jumps out of any/all loops.
2201 This also avoids writing past end of tables when there are no loops. */
2202 uid_loop_num[0] = -1;
2204 /* Find boundaries of loops, mark which loops are contained within
2205 loops, and invalidate loops that have setjmp. */
2207 for (insn = f; insn; insn = NEXT_INSN (insn))
2209 if (GET_CODE (insn) == NOTE)
2210 switch (NOTE_LINE_NUMBER (insn))
2212 case NOTE_INSN_LOOP_BEG:
2213 loop_number_loop_starts[++next_loop] = insn;
2214 loop_number_loop_ends[next_loop] = 0;
2215 loop_outer_loop[next_loop] = current_loop;
2216 loop_invalid[next_loop] = 0;
2217 loop_number_exit_labels[next_loop] = 0;
2218 current_loop = next_loop;
2219 break;
2221 case NOTE_INSN_SETJMP:
2222 /* In this case, we must invalidate our current loop and any
2223 enclosing loop. */
2224 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2226 loop_invalid[loop] = 1;
2227 if (loop_dump_stream)
2228 fprintf (loop_dump_stream,
2229 "\nLoop at %d ignored due to setjmp.\n",
2230 INSN_UID (loop_number_loop_starts[loop]));
2232 break;
2234 case NOTE_INSN_LOOP_END:
2235 if (current_loop == -1)
2236 abort ();
2238 loop_number_loop_ends[current_loop] = insn;
2239 current_loop = loop_outer_loop[current_loop];
2240 break;
2244 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2245 enclosing loop, but this doesn't matter. */
2246 uid_loop_num[INSN_UID (insn)] = current_loop;
2249 /* Any loop containing a label used in an initializer must be invalidated,
2250 because it can be jumped into from anywhere. */
2252 for (label = forced_labels; label; label = XEXP (label, 1))
2254 int loop_num;
2256 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2257 loop_num != -1;
2258 loop_num = loop_outer_loop[loop_num])
2259 loop_invalid[loop_num] = 1;
2262 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2263 loop that it is not contained within, that loop is marked invalid.
2264 If any INSN or CALL_INSN uses a label's address, then the loop containing
2265 that label is marked invalid, because it could be jumped into from
2266 anywhere.
2268 Also look for blocks of code ending in an unconditional branch that
2269 exits the loop. If such a block is surrounded by a conditional
2270 branch around the block, move the block elsewhere (see below) and
2271 invert the jump to point to the code block. This may eliminate a
2272 label in our loop and will simplify processing by both us and a
2273 possible second cse pass. */
2275 for (insn = f; insn; insn = NEXT_INSN (insn))
2276 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2278 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2280 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2282 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2283 if (note)
2285 int loop_num;
2287 for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2288 loop_num != -1;
2289 loop_num = loop_outer_loop[loop_num])
2290 loop_invalid[loop_num] = 1;
2294 if (GET_CODE (insn) != JUMP_INSN)
2295 continue;
2297 mark_loop_jump (PATTERN (insn), this_loop_num);
2299 /* See if this is an unconditional branch outside the loop. */
2300 if (this_loop_num != -1
2301 && (GET_CODE (PATTERN (insn)) == RETURN
2302 || (simplejump_p (insn)
2303 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2304 != this_loop_num)))
2305 && get_max_uid () < max_uid_for_loop)
2307 rtx p;
2308 rtx our_next = next_real_insn (insn);
2310 /* Go backwards until we reach the start of the loop, a label,
2311 or a JUMP_INSN. */
2312 for (p = PREV_INSN (insn);
2313 GET_CODE (p) != CODE_LABEL
2314 && ! (GET_CODE (p) == NOTE
2315 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2316 && GET_CODE (p) != JUMP_INSN;
2317 p = PREV_INSN (p))
2320 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2321 we have a block of code to try to move.
2323 We look backward and then forward from the target of INSN
2324 to find a BARRIER at the same loop depth as the target.
2325 If we find such a BARRIER, we make a new label for the start
2326 of the block, invert the jump in P and point it to that label,
2327 and move the block of code to the spot we found. */
2329 if (GET_CODE (p) == JUMP_INSN
2330 && JUMP_LABEL (p) != 0
2331 /* Just ignore jumps to labels that were never emitted.
2332 These always indicate compilation errors. */
2333 && INSN_UID (JUMP_LABEL (p)) != 0
2334 && condjump_p (p)
2335 && ! simplejump_p (p)
2336 && next_real_insn (JUMP_LABEL (p)) == our_next)
2338 rtx target
2339 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2340 int target_loop_num = uid_loop_num[INSN_UID (target)];
2341 rtx loc;
2343 for (loc = target; loc; loc = PREV_INSN (loc))
2344 if (GET_CODE (loc) == BARRIER
2345 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2346 break;
2348 if (loc == 0)
2349 for (loc = target; loc; loc = NEXT_INSN (loc))
2350 if (GET_CODE (loc) == BARRIER
2351 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2352 break;
2354 if (loc)
2356 rtx cond_label = JUMP_LABEL (p);
2357 rtx new_label = get_label_after (p);
2359 /* Ensure our label doesn't go away. */
2360 LABEL_NUSES (cond_label)++;
2362 /* Verify that uid_loop_num is large enough and that
2363 we can invert P. */
2364 if (invert_jump (p, new_label))
2366 rtx q, r;
2368 /* Include the BARRIER after INSN and copy the
2369 block after LOC. */
2370 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
2371 reorder_insns (new_label, NEXT_INSN (insn), loc);
2373 /* All those insns are now in TARGET_LOOP_NUM. */
2374 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2375 q = NEXT_INSN (q))
2376 uid_loop_num[INSN_UID (q)] = target_loop_num;
2378 /* The label jumped to by INSN is no longer a loop exit.
2379 Unless INSN does not have a label (e.g., it is a
2380 RETURN insn), search loop_number_exit_labels to find
2381 its label_ref, and remove it. Also turn off
2382 LABEL_OUTSIDE_LOOP_P bit. */
2383 if (JUMP_LABEL (insn))
2385 for (q = 0,
2386 r = loop_number_exit_labels[this_loop_num];
2387 r; q = r, r = LABEL_NEXTREF (r))
2388 if (XEXP (r, 0) == JUMP_LABEL (insn))
2390 LABEL_OUTSIDE_LOOP_P (r) = 0;
2391 if (q)
2392 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2393 else
2394 loop_number_exit_labels[this_loop_num]
2395 = LABEL_NEXTREF (r);
2396 break;
2399 /* If we didn't find it, then something is wrong. */
2400 if (! r)
2401 abort ();
2404 /* P is now a jump outside the loop, so it must be put
2405 in loop_number_exit_labels, and marked as such.
2406 The easiest way to do this is to just call
2407 mark_loop_jump again for P. */
2408 mark_loop_jump (PATTERN (p), this_loop_num);
2410 /* If INSN now jumps to the insn after it,
2411 delete INSN. */
2412 if (JUMP_LABEL (insn) != 0
2413 && (next_real_insn (JUMP_LABEL (insn))
2414 == next_real_insn (insn)))
2415 delete_insn (insn);
2418 /* Continue the loop after where the conditional
2419 branch used to jump, since the only branch insn
2420 in the block (if it still remains) is an inter-loop
2421 branch and hence needs no processing. */
2422 insn = NEXT_INSN (cond_label);
2424 if (--LABEL_NUSES (cond_label) == 0)
2425 delete_insn (cond_label);
2432 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2433 loops it is contained in, mark the target loop invalid.
2435 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2437 static void
2438 mark_loop_jump (x, loop_num)
2439 rtx x;
2440 int loop_num;
2442 int dest_loop;
2443 int outer_loop;
2444 int i;
2446 switch (GET_CODE (x))
2448 case PC:
2449 case USE:
2450 case CLOBBER:
2451 case REG:
2452 case MEM:
2453 case CONST_INT:
2454 case CONST_DOUBLE:
2455 case RETURN:
2456 return;
2458 case CONST:
2459 /* There could be a label reference in here. */
2460 mark_loop_jump (XEXP (x, 0), loop_num);
2461 return;
2463 case PLUS:
2464 case MINUS:
2465 case MULT:
2466 case LSHIFT:
2467 mark_loop_jump (XEXP (x, 0), loop_num);
2468 mark_loop_jump (XEXP (x, 1), loop_num);
2469 return;
2471 case SIGN_EXTEND:
2472 case ZERO_EXTEND:
2473 mark_loop_jump (XEXP (x, 0), loop_num);
2474 return;
2476 case LABEL_REF:
2477 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
2479 /* Link together all labels that branch outside the loop. This
2480 is used by final_[bg]iv_value and the loop unrolling code. Also
2481 mark this LABEL_REF so we know that this branch should predict
2482 false. */
2484 if (dest_loop != loop_num && loop_num != -1)
2486 LABEL_OUTSIDE_LOOP_P (x) = 1;
2487 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2488 loop_number_exit_labels[loop_num] = x;
2491 /* If this is inside a loop, but not in the current loop or one enclosed
2492 by it, it invalidates at least one loop. */
2494 if (dest_loop == -1)
2495 return;
2497 /* We must invalidate every nested loop containing the target of this
2498 label, except those that also contain the jump insn. */
2500 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
2502 /* Stop when we reach a loop that also contains the jump insn. */
2503 for (outer_loop = loop_num; outer_loop != -1;
2504 outer_loop = loop_outer_loop[outer_loop])
2505 if (dest_loop == outer_loop)
2506 return;
2508 /* If we get here, we know we need to invalidate a loop. */
2509 if (loop_dump_stream && ! loop_invalid[dest_loop])
2510 fprintf (loop_dump_stream,
2511 "\nLoop at %d ignored due to multiple entry points.\n",
2512 INSN_UID (loop_number_loop_starts[dest_loop]));
2514 loop_invalid[dest_loop] = 1;
2516 return;
2518 case SET:
2519 /* If this is not setting pc, ignore. */
2520 if (SET_DEST (x) == pc_rtx)
2521 mark_loop_jump (SET_SRC (x), loop_num);
2522 return;
2524 case IF_THEN_ELSE:
2525 mark_loop_jump (XEXP (x, 1), loop_num);
2526 mark_loop_jump (XEXP (x, 2), loop_num);
2527 return;
2529 case PARALLEL:
2530 case ADDR_VEC:
2531 for (i = 0; i < XVECLEN (x, 0); i++)
2532 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
2533 return;
2535 case ADDR_DIFF_VEC:
2536 for (i = 0; i < XVECLEN (x, 1); i++)
2537 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
2538 return;
2540 default:
2541 /* Treat anything else (such as a symbol_ref)
2542 as a branch out of this loop, but not into any loop. */
2544 if (loop_num != -1)
2546 LABEL_OUTSIDE_LOOP_P (x) = 1;
2547 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2548 loop_number_exit_labels[loop_num] = x;
2551 return;
2555 /* Return nonzero if there is a label in the range from
2556 insn INSN to and including the insn whose luid is END
2557 INSN must have an assigned luid (i.e., it must not have
2558 been previously created by loop.c). */
2560 static int
2561 labels_in_range_p (insn, end)
2562 rtx insn;
2563 int end;
2565 while (insn && INSN_LUID (insn) <= end)
2567 if (GET_CODE (insn) == CODE_LABEL)
2568 return 1;
2569 insn = NEXT_INSN (insn);
2572 return 0;
2575 /* Record that a memory reference X is being set. */
2577 static void
2578 note_addr_stored (x)
2579 rtx x;
2581 register int i;
2583 if (x == 0 || GET_CODE (x) != MEM)
2584 return;
2586 /* Count number of memory writes.
2587 This affects heuristics in strength_reduce. */
2588 num_mem_sets++;
2590 if (unknown_address_altered)
2591 return;
2593 for (i = 0; i < loop_store_mems_idx; i++)
2594 if (rtx_equal_p (XEXP (loop_store_mems[i], 0), XEXP (x, 0))
2595 && MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (loop_store_mems[i]))
2597 /* We are storing at the same address as previously noted. Save the
2598 wider reference, treating BLKmode as wider. */
2599 if (GET_MODE (x) == BLKmode
2600 || (GET_MODE_SIZE (GET_MODE (x))
2601 > GET_MODE_SIZE (GET_MODE (loop_store_mems[i]))))
2602 loop_store_mems[i] = x;
2603 break;
2606 if (i == NUM_STORES)
2607 unknown_address_altered = 1;
2609 else if (i == loop_store_mems_idx)
2610 loop_store_mems[loop_store_mems_idx++] = x;
2613 /* Return nonzero if the rtx X is invariant over the current loop.
2615 The value is 2 if we refer to something only conditionally invariant.
2617 If `unknown_address_altered' is nonzero, no memory ref is invariant.
2618 Otherwise, a memory ref is invariant if it does not conflict with
2619 anything stored in `loop_store_mems'. */
2622 invariant_p (x)
2623 register rtx x;
2625 register int i;
2626 register enum rtx_code code;
2627 register char *fmt;
2628 int conditional = 0;
2630 if (x == 0)
2631 return 1;
2632 code = GET_CODE (x);
2633 switch (code)
2635 case CONST_INT:
2636 case CONST_DOUBLE:
2637 case SYMBOL_REF:
2638 case CONST:
2639 return 1;
2641 case LABEL_REF:
2642 /* A LABEL_REF is normally invariant, however, if we are unrolling
2643 loops, and this label is inside the loop, then it isn't invariant.
2644 This is because each unrolled copy of the loop body will have
2645 a copy of this label. If this was invariant, then an insn loading
2646 the address of this label into a register might get moved outside
2647 the loop, and then each loop body would end up using the same label.
2649 We don't know the loop bounds here though, so just fail for all
2650 labels. */
2651 if (flag_unroll_loops)
2652 return 0;
2653 else
2654 return 1;
2656 case PC:
2657 case CC0:
2658 case UNSPEC_VOLATILE:
2659 return 0;
2661 case REG:
2662 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
2663 since the reg might be set by initialization within the loop. */
2664 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
2665 || x == arg_pointer_rtx)
2666 return 1;
2667 if (loop_has_call
2668 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
2669 return 0;
2670 if (n_times_set[REGNO (x)] < 0)
2671 return 2;
2672 return n_times_set[REGNO (x)] == 0;
2674 case MEM:
2675 /* Read-only items (such as constants in a constant pool) are
2676 invariant if their address is. */
2677 if (RTX_UNCHANGING_P (x))
2678 break;
2680 /* If we filled the table (or had a subroutine call), any location
2681 in memory could have been clobbered. */
2682 if (unknown_address_altered
2683 /* Don't mess with volatile memory references. */
2684 || MEM_VOLATILE_P (x))
2685 return 0;
2687 /* See if there is any dependence between a store and this load. */
2688 for (i = loop_store_mems_idx - 1; i >= 0; i--)
2689 if (true_dependence (loop_store_mems[i], x))
2690 return 0;
2692 /* It's not invalidated by a store in memory
2693 but we must still verify the address is invariant. */
2694 break;
2696 case ASM_OPERANDS:
2697 /* Don't mess with insns declared volatile. */
2698 if (MEM_VOLATILE_P (x))
2699 return 0;
2702 fmt = GET_RTX_FORMAT (code);
2703 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2705 if (fmt[i] == 'e')
2707 int tem = invariant_p (XEXP (x, i));
2708 if (tem == 0)
2709 return 0;
2710 if (tem == 2)
2711 conditional = 1;
2713 else if (fmt[i] == 'E')
2715 register int j;
2716 for (j = 0; j < XVECLEN (x, i); j++)
2718 int tem = invariant_p (XVECEXP (x, i, j));
2719 if (tem == 0)
2720 return 0;
2721 if (tem == 2)
2722 conditional = 1;
2728 return 1 + conditional;
2732 /* Return nonzero if all the insns in the loop that set REG
2733 are INSN and the immediately following insns,
2734 and if each of those insns sets REG in an invariant way
2735 (not counting uses of REG in them).
2737 The value is 2 if some of these insns are only conditionally invariant.
2739 We assume that INSN itself is the first set of REG
2740 and that its source is invariant. */
2742 static int
2743 consec_sets_invariant_p (reg, n_sets, insn)
2744 int n_sets;
2745 rtx reg, insn;
2747 register rtx p = insn;
2748 register int regno = REGNO (reg);
2749 rtx temp;
2750 /* Number of sets we have to insist on finding after INSN. */
2751 int count = n_sets - 1;
2752 int old = n_times_set[regno];
2753 int value = 0;
2754 int this;
2756 /* If N_SETS hit the limit, we can't rely on its value. */
2757 if (n_sets == 127)
2758 return 0;
2760 n_times_set[regno] = 0;
2762 while (count > 0)
2764 register enum rtx_code code;
2765 rtx set;
2767 p = NEXT_INSN (p);
2768 code = GET_CODE (p);
2770 /* If library call, skip to end of of it. */
2771 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
2772 p = XEXP (temp, 0);
2774 this = 0;
2775 if (code == INSN
2776 && (set = single_set (p))
2777 && GET_CODE (SET_DEST (set)) == REG
2778 && REGNO (SET_DEST (set)) == regno)
2780 this = invariant_p (SET_SRC (set));
2781 if (this != 0)
2782 value |= this;
2783 else if (temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
2785 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
2786 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
2787 notes are OK. */
2788 this = (CONSTANT_P (XEXP (temp, 0))
2789 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
2790 && invariant_p (XEXP (temp, 0))));
2791 if (this != 0)
2792 value |= this;
2795 if (this != 0)
2796 count--;
2797 else if (code != NOTE)
2799 n_times_set[regno] = old;
2800 return 0;
2804 n_times_set[regno] = old;
2805 /* If invariant_p ever returned 2, we return 2. */
2806 return 1 + (value & 2);
2809 #if 0
2810 /* I don't think this condition is sufficient to allow INSN
2811 to be moved, so we no longer test it. */
2813 /* Return 1 if all insns in the basic block of INSN and following INSN
2814 that set REG are invariant according to TABLE. */
2816 static int
2817 all_sets_invariant_p (reg, insn, table)
2818 rtx reg, insn;
2819 short *table;
2821 register rtx p = insn;
2822 register int regno = REGNO (reg);
2824 while (1)
2826 register enum rtx_code code;
2827 p = NEXT_INSN (p);
2828 code = GET_CODE (p);
2829 if (code == CODE_LABEL || code == JUMP_INSN)
2830 return 1;
2831 if (code == INSN && GET_CODE (PATTERN (p)) == SET
2832 && GET_CODE (SET_DEST (PATTERN (p))) == REG
2833 && REGNO (SET_DEST (PATTERN (p))) == regno)
2835 if (!invariant_p (SET_SRC (PATTERN (p)), table))
2836 return 0;
2840 #endif /* 0 */
2842 /* Look at all uses (not sets) of registers in X. For each, if it is
2843 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
2844 a different insn, set USAGE[REGNO] to const0_rtx. */
2846 static void
2847 find_single_use_in_loop (insn, x, usage)
2848 rtx insn;
2849 rtx x;
2850 rtx *usage;
2852 enum rtx_code code = GET_CODE (x);
2853 char *fmt = GET_RTX_FORMAT (code);
2854 int i, j;
2856 if (code == REG)
2857 usage[REGNO (x)]
2858 = (usage[REGNO (x)] != 0 && usage[REGNO (x)] != insn)
2859 ? const0_rtx : insn;
2861 else if (code == SET)
2863 /* Don't count SET_DEST if it is a REG; otherwise count things
2864 in SET_DEST because if a register is partially modified, it won't
2865 show up as a potential movable so we don't care how USAGE is set
2866 for it. */
2867 if (GET_CODE (SET_DEST (x)) != REG)
2868 find_single_use_in_loop (insn, SET_DEST (x), usage);
2869 find_single_use_in_loop (insn, SET_SRC (x), usage);
2871 else
2872 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2874 if (fmt[i] == 'e' && XEXP (x, i) != 0)
2875 find_single_use_in_loop (insn, XEXP (x, i), usage);
2876 else if (fmt[i] == 'E')
2877 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2878 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
2882 /* Increment N_TIMES_SET at the index of each register
2883 that is modified by an insn between FROM and TO.
2884 If the value of an element of N_TIMES_SET becomes 127 or more,
2885 stop incrementing it, to avoid overflow.
2887 Store in SINGLE_USAGE[I] the single insn in which register I is
2888 used, if it is only used once. Otherwise, it is set to 0 (for no
2889 uses) or const0_rtx for more than one use. This parameter may be zero,
2890 in which case this processing is not done.
2892 Store in *COUNT_PTR the number of actual instruction
2893 in the loop. We use this to decide what is worth moving out. */
2895 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
2896 In that case, it is the insn that last set reg n. */
2898 static void
2899 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
2900 register rtx from, to;
2901 char *may_not_move;
2902 rtx *single_usage;
2903 int *count_ptr;
2904 int nregs;
2906 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
2907 register rtx insn;
2908 register int count = 0;
2909 register rtx dest;
2911 bzero (last_set, nregs * sizeof (rtx));
2912 for (insn = from; insn != to; insn = NEXT_INSN (insn))
2914 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2916 ++count;
2918 /* If requested, record registers that have exactly one use. */
2919 if (single_usage)
2921 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
2923 /* Include uses in REG_EQUAL notes. */
2924 if (REG_NOTES (insn))
2925 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
2928 if (GET_CODE (PATTERN (insn)) == CLOBBER
2929 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
2930 /* Don't move a reg that has an explicit clobber.
2931 We might do so sometimes, but it's not worth the pain. */
2932 may_not_move[REGNO (XEXP (PATTERN (insn), 0))] = 1;
2934 if (GET_CODE (PATTERN (insn)) == SET
2935 || GET_CODE (PATTERN (insn)) == CLOBBER)
2937 dest = SET_DEST (PATTERN (insn));
2938 while (GET_CODE (dest) == SUBREG
2939 || GET_CODE (dest) == ZERO_EXTRACT
2940 || GET_CODE (dest) == SIGN_EXTRACT
2941 || GET_CODE (dest) == STRICT_LOW_PART)
2942 dest = XEXP (dest, 0);
2943 if (GET_CODE (dest) == REG)
2945 register int regno = REGNO (dest);
2946 /* If this is the first setting of this reg
2947 in current basic block, and it was set before,
2948 it must be set in two basic blocks, so it cannot
2949 be moved out of the loop. */
2950 if (n_times_set[regno] > 0 && last_set[regno] == 0)
2951 may_not_move[regno] = 1;
2952 /* If this is not first setting in current basic block,
2953 see if reg was used in between previous one and this.
2954 If so, neither one can be moved. */
2955 if (last_set[regno] != 0
2956 && reg_used_between_p (dest, last_set[regno], insn))
2957 may_not_move[regno] = 1;
2958 if (n_times_set[regno] < 127)
2959 ++n_times_set[regno];
2960 last_set[regno] = insn;
2963 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2965 register int i;
2966 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2968 register rtx x = XVECEXP (PATTERN (insn), 0, i);
2969 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
2970 /* Don't move a reg that has an explicit clobber.
2971 It's not worth the pain to try to do it correctly. */
2972 may_not_move[REGNO (XEXP (x, 0))] = 1;
2974 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2976 dest = SET_DEST (x);
2977 while (GET_CODE (dest) == SUBREG
2978 || GET_CODE (dest) == ZERO_EXTRACT
2979 || GET_CODE (dest) == SIGN_EXTRACT
2980 || GET_CODE (dest) == STRICT_LOW_PART)
2981 dest = XEXP (dest, 0);
2982 if (GET_CODE (dest) == REG)
2984 register int regno = REGNO (dest);
2985 if (n_times_set[regno] > 0 && last_set[regno] == 0)
2986 may_not_move[regno] = 1;
2987 if (last_set[regno] != 0
2988 && reg_used_between_p (dest, last_set[regno], insn))
2989 may_not_move[regno] = 1;
2990 if (n_times_set[regno] < 127)
2991 ++n_times_set[regno];
2992 last_set[regno] = insn;
2998 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
2999 bzero (last_set, nregs * sizeof (rtx));
3001 *count_ptr = count;
3004 /* Given a loop that is bounded by LOOP_START and LOOP_END
3005 and that is entered at SCAN_START,
3006 return 1 if the register set in SET contained in insn INSN is used by
3007 any insn that precedes INSN in cyclic order starting
3008 from the loop entry point.
3010 We don't want to use INSN_LUID here because if we restrict INSN to those
3011 that have a valid INSN_LUID, it means we cannot move an invariant out
3012 from an inner loop past two loops. */
3014 static int
3015 loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
3016 rtx set, insn, loop_start, scan_start, loop_end;
3018 rtx reg = SET_DEST (set);
3019 rtx p;
3021 /* Scan forward checking for register usage. If we hit INSN, we
3022 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3023 for (p = scan_start; p != insn; p = NEXT_INSN (p))
3025 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3026 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3027 return 1;
3029 if (p == loop_end)
3030 p = loop_start;
3033 return 0;
3036 /* A "basic induction variable" or biv is a pseudo reg that is set
3037 (within this loop) only by incrementing or decrementing it. */
3038 /* A "general induction variable" or giv is a pseudo reg whose
3039 value is a linear function of a biv. */
3041 /* Bivs are recognized by `basic_induction_var';
3042 Givs by `general_induct_var'. */
3044 /* Indexed by register number, indicates whether or not register is an
3045 induction variable, and if so what type. */
3047 enum iv_mode *reg_iv_type;
3049 /* Indexed by register number, contains pointer to `struct induction'
3050 if register is an induction variable. This holds general info for
3051 all induction variables. */
3053 struct induction **reg_iv_info;
3055 /* Indexed by register number, contains pointer to `struct iv_class'
3056 if register is a basic induction variable. This holds info describing
3057 the class (a related group) of induction variables that the biv belongs
3058 to. */
3060 struct iv_class **reg_biv_class;
3062 /* The head of a list which links together (via the next field)
3063 every iv class for the current loop. */
3065 struct iv_class *loop_iv_list;
3067 /* Communication with routines called via `note_stores'. */
3069 static rtx note_insn;
3071 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3073 static rtx addr_placeholder;
3075 /* ??? Unfinished optimizations, and possible future optimizations,
3076 for the strength reduction code. */
3078 /* ??? There is one more optimization you might be interested in doing: to
3079 allocate pseudo registers for frequently-accessed memory locations.
3080 If the same memory location is referenced each time around, it might
3081 be possible to copy it into a register before and out after.
3082 This is especially useful when the memory location is a variable which
3083 is in a stack slot because somewhere its address is taken. If the
3084 loop doesn't contain a function call and the variable isn't volatile,
3085 it is safe to keep the value in a register for the duration of the
3086 loop. One tricky thing is that the copying of the value back from the
3087 register has to be done on all exits from the loop. You need to check that
3088 all the exits from the loop go to the same place. */
3090 /* ??? The interaction of biv elimination, and recognition of 'constant'
3091 bivs, may cause problems. */
3093 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3094 performance problems.
3096 Perhaps don't eliminate things that can be combined with an addressing
3097 mode. Find all givs that have the same biv, mult_val, and add_val;
3098 then for each giv, check to see if its only use dies in a following
3099 memory address. If so, generate a new memory address and check to see
3100 if it is valid. If it is valid, then store the modified memory address,
3101 otherwise, mark the giv as not done so that it will get its own iv. */
3103 /* ??? Could try to optimize branches when it is known that a biv is always
3104 positive. */
3106 /* ??? When replace a biv in a compare insn, we should replace with closest
3107 giv so that an optimized branch can still be recognized by the combiner,
3108 e.g. the VAX acb insn. */
3110 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3111 was rerun in loop_optimize whenever a register was added or moved.
3112 Also, some of the optimizations could be a little less conservative. */
3114 /* Perform strength reduction and induction variable elimination. */
3116 /* Pseudo registers created during this function will be beyond the last
3117 valid index in several tables including n_times_set and regno_last_uid.
3118 This does not cause a problem here, because the added registers cannot be
3119 givs outside of their loop, and hence will never be reconsidered.
3120 But scan_loop must check regnos to make sure they are in bounds. */
3122 static void
3123 strength_reduce (scan_start, end, loop_top, insn_count,
3124 loop_start, loop_end)
3125 rtx scan_start;
3126 rtx end;
3127 rtx loop_top;
3128 int insn_count;
3129 rtx loop_start;
3130 rtx loop_end;
3132 rtx p;
3133 rtx set;
3134 rtx inc_val;
3135 rtx mult_val;
3136 rtx dest_reg;
3137 /* This is 1 if current insn is not executed at least once for every loop
3138 iteration. */
3139 int not_every_iteration = 0;
3140 /* This is 1 if current insn may be executed more than once for every
3141 loop iteration. */
3142 int maybe_multiple = 0;
3143 /* Temporary list pointers for traversing loop_iv_list. */
3144 struct iv_class *bl, **backbl;
3145 /* Ratio of extra register life span we can justify
3146 for saving an instruction. More if loop doesn't call subroutines
3147 since in that case saving an insn makes more difference
3148 and more registers are available. */
3149 /* ??? could set this to last value of threshold in move_movables */
3150 int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3151 /* Map of pseudo-register replacements. */
3152 rtx *reg_map;
3153 int call_seen;
3154 rtx test;
3155 rtx end_insert_before;
3157 reg_iv_type = (enum iv_mode *) alloca (max_reg_before_loop
3158 * sizeof (enum iv_mode *));
3159 bzero ((char *) reg_iv_type, max_reg_before_loop * sizeof (enum iv_mode *));
3160 reg_iv_info = (struct induction **)
3161 alloca (max_reg_before_loop * sizeof (struct induction *));
3162 bzero ((char *) reg_iv_info, (max_reg_before_loop
3163 * sizeof (struct induction *)));
3164 reg_biv_class = (struct iv_class **)
3165 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3166 bzero ((char *) reg_biv_class, (max_reg_before_loop
3167 * sizeof (struct iv_class *)));
3169 loop_iv_list = 0;
3170 addr_placeholder = gen_reg_rtx (Pmode);
3172 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3173 must be put before this insn, so that they will appear in the right
3174 order (i.e. loop order).
3176 If loop_end is the end of the current function, then emit a
3177 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3178 dummy note insn. */
3179 if (NEXT_INSN (loop_end) != 0)
3180 end_insert_before = NEXT_INSN (loop_end);
3181 else
3182 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3184 /* Scan through loop to find all possible bivs. */
3186 p = scan_start;
3187 while (1)
3189 p = NEXT_INSN (p);
3190 /* At end of a straight-in loop, we are done.
3191 At end of a loop entered at the bottom, scan the top. */
3192 if (p == scan_start)
3193 break;
3194 if (p == end)
3196 if (loop_top != 0)
3197 p = NEXT_INSN (loop_top);
3198 else
3199 break;
3200 if (p == scan_start)
3201 break;
3204 if (GET_CODE (p) == INSN
3205 && (set = single_set (p))
3206 && GET_CODE (SET_DEST (set)) == REG)
3208 dest_reg = SET_DEST (set);
3209 if (REGNO (dest_reg) < max_reg_before_loop
3210 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3211 && reg_iv_type[REGNO (dest_reg)] != NOT_BASIC_INDUCT)
3213 if (basic_induction_var (SET_SRC (set), GET_MODE (SET_SRC (set)),
3214 dest_reg, p, &inc_val, &mult_val))
3216 /* It is a possible basic induction variable.
3217 Create and initialize an induction structure for it. */
3219 struct induction *v
3220 = (struct induction *) alloca (sizeof (struct induction));
3222 record_biv (v, p, dest_reg, inc_val, mult_val,
3223 not_every_iteration, maybe_multiple);
3224 reg_iv_type[REGNO (dest_reg)] = BASIC_INDUCT;
3226 else if (REGNO (dest_reg) < max_reg_before_loop)
3227 reg_iv_type[REGNO (dest_reg)] = NOT_BASIC_INDUCT;
3231 /* Past CODE_LABEL, we get to insns that may be executed multiple
3232 times. The only way we can be sure that they can't is if every
3233 every jump insn between here and the end of the loop either
3234 returns, exits the loop, or is a forward jump. */
3236 if (GET_CODE (p) == CODE_LABEL)
3238 rtx insn = p;
3240 maybe_multiple = 0;
3242 while (1)
3244 insn = NEXT_INSN (insn);
3245 if (insn == scan_start)
3246 break;
3247 if (insn == end)
3249 if (loop_top != 0)
3250 insn = NEXT_INSN (loop_top);
3251 else
3252 break;
3253 if (insn == scan_start)
3254 break;
3257 if (GET_CODE (insn) == JUMP_INSN
3258 && GET_CODE (PATTERN (insn)) != RETURN
3259 && (! condjump_p (insn)
3260 || (JUMP_LABEL (insn) != 0
3261 && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
3262 || INSN_UID (insn) >= max_uid_for_loop
3263 || (INSN_LUID (JUMP_LABEL (insn))
3264 < INSN_LUID (insn))))))
3266 maybe_multiple = 1;
3267 break;
3272 /* Past a label or a jump, we get to insns for which we can't count
3273 on whether or how many times they will be executed during each
3274 iteration. */
3275 /* This code appears in three places, once in scan_loop, and twice
3276 in strength_reduce. */
3277 if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
3278 /* If we enter the loop in the middle, and scan around to the
3279 beginning, don't set not_every_iteration for that.
3280 This can be any kind of jump, since we want to know if insns
3281 will be executed if the loop is executed. */
3282 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
3283 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3284 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3285 not_every_iteration = 1;
3287 /* At the virtual top of a converted loop, insns are again known to
3288 be executed each iteration: logically, the loop begins here
3289 even though the exit code has been duplicated. */
3291 else if (GET_CODE (p) == NOTE
3292 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
3293 not_every_iteration = 0;
3295 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3296 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3297 or not an insn is known to be executed each iteration of the
3298 loop, whether or not any iterations are known to occur.
3300 Therefore, if we have just passed a label and have no more labels
3301 between here and the test insn of the loop, we know these insns
3302 will be executed each iteration. This can also happen if we
3303 have just passed a jump, for example, when there are nested loops. */
3305 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3306 && no_labels_between_p (p, loop_end))
3307 not_every_iteration = 0;
3310 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3311 Make a sanity check against n_times_set. */
3312 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3314 if (reg_iv_type[bl->regno] != BASIC_INDUCT
3315 /* Above happens if register modified by subreg, etc. */
3316 /* Make sure it is not recognized as a basic induction var: */
3317 || n_times_set[bl->regno] != bl->biv_count
3318 /* If never incremented, it is invariant that we decided not to
3319 move. So leave it alone. */
3320 || ! bl->incremented)
3322 if (loop_dump_stream)
3323 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3324 bl->regno,
3325 (reg_iv_type[bl->regno] != BASIC_INDUCT
3326 ? "not induction variable"
3327 : (! bl->incremented ? "never incremented"
3328 : "count error")));
3330 reg_iv_type[bl->regno] = NOT_BASIC_INDUCT;
3331 *backbl = bl->next;
3333 else
3335 backbl = &bl->next;
3337 if (loop_dump_stream)
3338 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3342 /* Exit if there are no bivs. */
3343 if (! loop_iv_list)
3345 /* Can still unroll the loop anyways, but indicate that there is no
3346 strength reduction info available. */
3347 if (flag_unroll_loops)
3348 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 0);
3350 return;
3353 /* Find initial value for each biv by searching backwards from loop_start,
3354 halting at first label. Also record any test condition. */
3356 call_seen = 0;
3357 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3359 note_insn = p;
3361 if (GET_CODE (p) == CALL_INSN)
3362 call_seen = 1;
3364 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3365 || GET_CODE (p) == CALL_INSN)
3366 note_stores (PATTERN (p), record_initial);
3368 /* Record any test of a biv that branches around the loop if no store
3369 between it and the start of loop. We only care about tests with
3370 constants and registers and only certain of those. */
3371 if (GET_CODE (p) == JUMP_INSN
3372 && JUMP_LABEL (p) != 0
3373 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3374 && (test = get_condition_for_loop (p)) != 0
3375 && GET_CODE (XEXP (test, 0)) == REG
3376 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3377 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3378 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3379 && bl->init_insn == 0)
3381 /* If an NE test, we have an initial value! */
3382 if (GET_CODE (test) == NE)
3384 bl->init_insn = p;
3385 bl->init_set = gen_rtx (SET, VOIDmode,
3386 XEXP (test, 0), XEXP (test, 1));
3388 else
3389 bl->initial_test = test;
3393 /* Look at the each biv and see if we can say anything better about its
3394 initial value from any initializing insns set up above. (This is done
3395 in two passes to avoid missing SETs in a PARALLEL.) */
3396 for (bl = loop_iv_list; bl; bl = bl->next)
3398 rtx src;
3400 if (! bl->init_insn)
3401 continue;
3403 src = SET_SRC (bl->init_set);
3405 if (loop_dump_stream)
3406 fprintf (loop_dump_stream,
3407 "Biv %d initialized at insn %d: initial value ",
3408 bl->regno, INSN_UID (bl->init_insn));
3410 if (valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3412 bl->initial_value = src;
3414 if (loop_dump_stream)
3416 if (GET_CODE (src) == CONST_INT)
3417 fprintf (loop_dump_stream, "%d\n", INTVAL (src));
3418 else
3420 print_rtl (loop_dump_stream, src);
3421 fprintf (loop_dump_stream, "\n");
3425 else
3427 /* Biv initial value is not simple move,
3428 so let it keep initial value of "itself". */
3430 if (loop_dump_stream)
3431 fprintf (loop_dump_stream, "is complex\n");
3435 /* Search the loop for general induction variables. */
3437 /* A register is a giv if: it is only set once, it is a function of a
3438 biv and a constant (or invariant), and it is not a biv. */
3440 not_every_iteration = 0;
3441 p = scan_start;
3442 while (1)
3444 p = NEXT_INSN (p);
3445 /* At end of a straight-in loop, we are done.
3446 At end of a loop entered at the bottom, scan the top. */
3447 if (p == scan_start)
3448 break;
3449 if (p == end)
3451 if (loop_top != 0)
3452 p = NEXT_INSN (loop_top);
3453 else
3454 break;
3455 if (p == scan_start)
3456 break;
3459 /* Look for a general induction variable in a register. */
3460 if (GET_CODE (p) == INSN
3461 && (set = single_set (p))
3462 && GET_CODE (SET_DEST (set)) == REG
3463 && ! may_not_optimize[REGNO (SET_DEST (set))])
3465 rtx src_reg;
3466 rtx add_val;
3467 rtx mult_val;
3468 int benefit;
3469 rtx regnote = 0;
3471 dest_reg = SET_DEST (set);
3472 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
3473 continue;
3475 if (/* SET_SRC is a giv. */
3476 ((benefit = general_induction_var (SET_SRC (set),
3477 &src_reg, &add_val,
3478 &mult_val))
3479 /* Equivalent expression is a giv. */
3480 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
3481 && (benefit = general_induction_var (XEXP (regnote, 0),
3482 &src_reg,
3483 &add_val, &mult_val))))
3484 /* Don't try to handle any regs made by loop optimization.
3485 We have nothing on them in regno_first_uid, etc. */
3486 && REGNO (dest_reg) < max_reg_before_loop
3487 /* Don't recognize a BASIC_INDUCT_VAR here. */
3488 && dest_reg != src_reg
3489 /* This must be the only place where the register is set. */
3490 && (n_times_set[REGNO (dest_reg)] == 1
3491 /* or all sets must be consecutive and make a giv. */
3492 || (benefit = consec_sets_giv (benefit, p,
3493 src_reg, dest_reg,
3494 &add_val, &mult_val))))
3496 int count;
3497 struct induction *v
3498 = (struct induction *) alloca (sizeof (struct induction));
3499 rtx temp;
3501 /* If this is a library call, increase benefit. */
3502 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
3503 benefit += libcall_benefit (p);
3505 /* Skip the consecutive insns, if there are any. */
3506 for (count = n_times_set[REGNO (dest_reg)] - 1;
3507 count > 0; count--)
3509 /* If first insn of libcall sequence, skip to end.
3510 Do this at start of loop, since INSN is guaranteed to
3511 be an insn here. */
3512 if (GET_CODE (p) != NOTE
3513 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3514 p = XEXP (temp, 0);
3516 do p = NEXT_INSN (p);
3517 while (GET_CODE (p) == NOTE);
3520 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
3521 DEST_REG, not_every_iteration, NULL_PTR, loop_start,
3522 loop_end);
3527 #ifndef DONT_REDUCE_ADDR
3528 /* Look for givs which are memory addresses. */
3529 /* This resulted in worse code on a VAX 8600. I wonder if it
3530 still does. */
3531 if (GET_CODE (p) == INSN)
3532 find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
3533 loop_end);
3534 #endif
3536 /* Update the status of whether giv can derive other givs. This can
3537 change when we pass a label or an insn that updates a biv. */
3538 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3539 || GET_CODE (p) == CODE_LABEL)
3540 update_giv_derive (p);
3542 /* Past a label or a jump, we get to insns for which we can't count
3543 on whether or how many times they will be executed during each
3544 iteration. */
3545 /* This code appears in three places, once in scan_loop, and twice
3546 in strength_reduce. */
3547 if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
3548 /* If we enter the loop in the middle, and scan around
3549 to the beginning, don't set not_every_iteration for that.
3550 This can be any kind of jump, since we want to know if insns
3551 will be executed if the loop is executed. */
3552 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
3553 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3554 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3555 not_every_iteration = 1;
3557 /* At the virtual top of a converted loop, insns are again known to
3558 be executed each iteration: logically, the loop begins here
3559 even though the exit code has been duplicated. */
3561 else if (GET_CODE (p) == NOTE
3562 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
3563 not_every_iteration = 0;
3565 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3566 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3567 or not an insn is known to be executed each iteration of the
3568 loop, whether or not any iterations are known to occur.
3570 Therefore, if we have just passed a label and have no more labels
3571 between here and the test insn of the loop, we know these insns
3572 will be executed each iteration. */
3574 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3575 && no_labels_between_p (p, loop_end))
3576 not_every_iteration = 0;
3579 /* Try to calculate and save the number of loop iterations. This is
3580 set to zero if the actual number can not be calculated. This must
3581 be called after all giv's have been identified, since otherwise it may
3582 fail if the iteration variable is a giv. */
3584 loop_n_iterations = loop_iterations (loop_start, loop_end);
3586 /* Now for each giv for which we still don't know whether or not it is
3587 replaceable, check to see if it is replaceable because its final value
3588 can be calculated. This must be done after loop_iterations is called,
3589 so that final_giv_value will work correctly. */
3591 for (bl = loop_iv_list; bl; bl = bl->next)
3593 struct induction *v;
3595 for (v = bl->giv; v; v = v->next_iv)
3596 if (! v->replaceable && ! v->not_replaceable)
3597 check_final_value (v, loop_start, loop_end);
3600 /* Try to prove that the loop counter variable (if any) is always
3601 nonnegative; if so, record that fact with a REG_NONNEG note
3602 so that "decrement and branch until zero" insn can be used. */
3603 check_dbra_loop (loop_end, insn_count, loop_start);
3605 /* Create reg_map to hold substitutions for replaceable giv regs. */
3606 reg_map = (rtx *) alloca (max_reg_before_loop * sizeof (rtx));
3607 bzero ((char *) reg_map, max_reg_before_loop * sizeof (rtx));
3609 /* Examine each iv class for feasibility of strength reduction/induction
3610 variable elimination. */
3612 for (bl = loop_iv_list; bl; bl = bl->next)
3614 struct induction *v;
3615 int benefit;
3616 int all_reduced;
3617 rtx final_value = 0;
3619 /* Test whether it will be possible to eliminate this biv
3620 provided all givs are reduced. This is possible if either
3621 the reg is not used outside the loop, or we can compute
3622 what its final value will be.
3624 For architectures with a decrement_and_branch_until_zero insn,
3625 don't do this if we put a REG_NONNEG note on the endtest for
3626 this biv. */
3628 /* Compare against bl->init_insn rather than loop_start.
3629 We aren't concerned with any uses of the biv between
3630 init_insn and loop_start since these won't be affected
3631 by the value of the biv elsewhere in the function, so
3632 long as init_insn doesn't use the biv itself.
3633 March 14, 1989 -- self@bayes.arc.nasa.gov */
3635 if ((uid_luid[regno_last_uid[bl->regno]] < INSN_LUID (loop_end)
3636 && bl->init_insn
3637 && INSN_UID (bl->init_insn) < max_uid_for_loop
3638 && uid_luid[regno_first_uid[bl->regno]] >= INSN_LUID (bl->init_insn)
3639 #ifdef HAVE_decrement_and_branch_until_zero
3640 && ! bl->nonneg
3641 #endif
3642 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
3643 || ((final_value = final_biv_value (bl, loop_start, loop_end))
3644 #ifdef HAVE_decrement_and_branch_until_zero
3645 && ! bl->nonneg
3646 #endif
3648 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
3649 threshold, insn_count);
3650 else
3652 if (loop_dump_stream)
3654 fprintf (loop_dump_stream,
3655 "Cannot eliminate biv %d.\n",
3656 bl->regno);
3657 fprintf (loop_dump_stream,
3658 "First use: insn %d, last use: insn %d.\n",
3659 regno_first_uid[bl->regno],
3660 regno_last_uid[bl->regno]);
3664 /* Combine all giv's for this iv_class. */
3665 combine_givs (bl);
3667 /* This will be true at the end, if all givs which depend on this
3668 biv have been strength reduced.
3669 We can't (currently) eliminate the biv unless this is so. */
3670 all_reduced = 1;
3672 /* Check each giv in this class to see if we will benefit by reducing
3673 it. Skip giv's combined with others. */
3674 for (v = bl->giv; v; v = v->next_iv)
3676 struct induction *tv;
3678 if (v->ignore || v->same)
3679 continue;
3681 benefit = v->benefit;
3683 /* Reduce benefit if not replaceable, since we will insert
3684 a move-insn to replace the insn that calculates this giv.
3685 Don't do this unless the giv is a user variable, since it
3686 will often be marked non-replaceable because of the duplication
3687 of the exit code outside the loop. In such a case, the copies
3688 we insert are dead and will be deleted. So they don't have
3689 a cost. Similar situations exist. */
3690 /* ??? The new final_[bg]iv_value code does a much better job
3691 of finding replaceable giv's, and hence this code may no longer
3692 be necessary. */
3693 if (! v->replaceable && ! bl->eliminable
3694 && REG_USERVAR_P (v->dest_reg))
3695 benefit -= copy_cost;
3697 /* Decrease the benefit to count the add-insns that we will
3698 insert to increment the reduced reg for the giv. */
3699 benefit -= add_cost * bl->biv_count;
3701 /* Decide whether to strength-reduce this giv or to leave the code
3702 unchanged (recompute it from the biv each time it is used).
3703 This decision can be made independently for each giv. */
3705 /* ??? Perhaps attempt to guess whether autoincrement will handle
3706 some of the new add insns; if so, can increase BENEFIT
3707 (undo the subtraction of add_cost that was done above). */
3709 /* If an insn is not to be strength reduced, then set its ignore
3710 flag, and clear all_reduced. */
3712 /* A giv that depends on a reversed biv must be reduced if it is
3713 used after the loop exit, otherwise, it would have the wrong
3714 value after the loop exit. To make it simple, just reduce all
3715 of such giv's whether or not we know they are used after the loop
3716 exit. */
3718 if (v->lifetime * threshold * benefit < insn_count
3719 && ! bl->reversed)
3721 if (loop_dump_stream)
3722 fprintf (loop_dump_stream,
3723 "giv of insn %d not worth while, %d vs %d.\n",
3724 INSN_UID (v->insn),
3725 v->lifetime * threshold * benefit, insn_count);
3726 v->ignore = 1;
3727 all_reduced = 0;
3729 else
3731 /* Check that we can increment the reduced giv without a
3732 multiply insn. If not, reject it. */
3734 for (tv = bl->biv; tv; tv = tv->next_iv)
3735 if (tv->mult_val == const1_rtx
3736 && ! product_cheap_p (tv->add_val, v->mult_val))
3738 if (loop_dump_stream)
3739 fprintf (loop_dump_stream,
3740 "giv of insn %d: would need a multiply.\n",
3741 INSN_UID (v->insn));
3742 v->ignore = 1;
3743 all_reduced = 0;
3744 break;
3749 /* Reduce each giv that we decided to reduce. */
3751 for (v = bl->giv; v; v = v->next_iv)
3753 struct induction *tv;
3754 if (! v->ignore && v->same == 0)
3756 v->new_reg = gen_reg_rtx (v->mode);
3758 /* For each place where the biv is incremented,
3759 add an insn to increment the new, reduced reg for the giv. */
3760 for (tv = bl->biv; tv; tv = tv->next_iv)
3762 if (tv->mult_val == const1_rtx)
3763 emit_iv_add_mult (tv->add_val, v->mult_val,
3764 v->new_reg, v->new_reg, tv->insn);
3765 else /* tv->mult_val == const0_rtx */
3766 /* A multiply is acceptable here
3767 since this is presumed to be seldom executed. */
3768 emit_iv_add_mult (tv->add_val, v->mult_val,
3769 v->add_val, v->new_reg, tv->insn);
3772 /* Add code at loop start to initialize giv's reduced reg. */
3774 emit_iv_add_mult (bl->initial_value, v->mult_val,
3775 v->add_val, v->new_reg, loop_start);
3779 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
3780 as not reduced.
3782 For each giv register that can be reduced now: if replaceable,
3783 substitute reduced reg wherever the old giv occurs;
3784 else add new move insn "giv_reg = reduced_reg".
3786 Also check for givs whose first use is their definition and whose
3787 last use is the definition of another giv. If so, it is likely
3788 dead and should not be used to eliminate a biv. */
3789 for (v = bl->giv; v; v = v->next_iv)
3791 if (v->same && v->same->ignore)
3792 v->ignore = 1;
3794 if (v->ignore)
3795 continue;
3797 if (v->giv_type == DEST_REG
3798 && regno_first_uid[REGNO (v->dest_reg)] == INSN_UID (v->insn))
3800 struct induction *v1;
3802 for (v1 = bl->giv; v1; v1 = v1->next_iv)
3803 if (regno_last_uid[REGNO (v->dest_reg)] == INSN_UID (v1->insn))
3804 v->maybe_dead = 1;
3807 /* Update expression if this was combined, in case other giv was
3808 replaced. */
3809 if (v->same)
3810 v->new_reg = replace_rtx (v->new_reg,
3811 v->same->dest_reg, v->same->new_reg);
3813 if (v->giv_type == DEST_ADDR)
3814 /* Store reduced reg as the address in the memref where we found
3815 this giv. */
3816 *v->location = v->new_reg;
3817 else if (v->replaceable)
3819 reg_map[REGNO (v->dest_reg)] = v->new_reg;
3821 #if 0
3822 /* I can no longer duplicate the original problem. Perhaps
3823 this is unnecessary now? */
3825 /* Replaceable; it isn't strictly necessary to delete the old
3826 insn and emit a new one, because v->dest_reg is now dead.
3828 However, especially when unrolling loops, the special
3829 handling for (set REG0 REG1) in the second cse pass may
3830 make v->dest_reg live again. To avoid this problem, emit
3831 an insn to set the original giv reg from the reduced giv.
3832 We can not delete the original insn, since it may be part
3833 of a LIBCALL, and the code in flow that eliminates dead
3834 libcalls will fail if it is deleted. */
3835 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
3836 v->insn);
3837 #endif
3839 else
3841 /* Not replaceable; emit an insn to set the original giv reg from
3842 the reduced giv, same as above. */
3843 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
3844 v->insn);
3847 /* When a loop is reversed, givs which depend on the reversed
3848 biv, and which are live outside the loop, must be set to their
3849 correct final value. This insn is only needed if the giv is
3850 not replaceable. The correct final value is the same as the
3851 value that the giv starts the reversed loop with. */
3852 if (bl->reversed && ! v->replaceable)
3853 emit_iv_add_mult (bl->initial_value, v->mult_val,
3854 v->add_val, v->dest_reg, end_insert_before);
3855 else if (v->final_value)
3857 rtx insert_before;
3859 /* If the loop has multiple exits, emit the insn before the
3860 loop to ensure that it will always be executed no matter
3861 how the loop exits. Otherwise, emit the insn after the loop,
3862 since this is slightly more efficient. */
3863 if (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
3864 insert_before = loop_start;
3865 else
3866 insert_before = end_insert_before;
3867 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
3868 insert_before);
3870 #if 0
3871 /* If the insn to set the final value of the giv was emitted
3872 before the loop, then we must delete the insn inside the loop
3873 that sets it. If this is a LIBCALL, then we must delete
3874 every insn in the libcall. Note, however, that
3875 final_giv_value will only succeed when there are multiple
3876 exits if the giv is dead at each exit, hence it does not
3877 matter that the original insn remains because it is dead
3878 anyways. */
3879 /* Delete the insn inside the loop that sets the giv since
3880 the giv is now set before (or after) the loop. */
3881 delete_insn (v->insn);
3882 #endif
3885 if (loop_dump_stream)
3887 fprintf (loop_dump_stream, "giv at %d reduced to ",
3888 INSN_UID (v->insn));
3889 print_rtl (loop_dump_stream, v->new_reg);
3890 fprintf (loop_dump_stream, "\n");
3894 /* All the givs based on the biv bl have been reduced if they
3895 merit it. */
3897 /* For each giv not marked as maybe dead that has been combined with a
3898 second giv, clear any "maybe dead" mark on that second giv.
3899 v->new_reg will either be or refer to the register of the giv it
3900 combined with.
3902 Doing this clearing avoids problems in biv elimination where a
3903 giv's new_reg is a complex value that can't be put in the insn but
3904 the giv combined with (with a reg as new_reg) is marked maybe_dead.
3905 Since the register will be used in either case, we'd prefer it be
3906 used from the simpler giv. */
3908 for (v = bl->giv; v; v = v->next_iv)
3909 if (! v->maybe_dead && v->same)
3910 v->same->maybe_dead = 0;
3912 /* Try to eliminate the biv, if it is a candidate.
3913 This won't work if ! all_reduced,
3914 since the givs we planned to use might not have been reduced.
3916 We have to be careful that we didn't initially think we could eliminate
3917 this biv because of a giv that we now think may be dead and shouldn't
3918 be used as a biv replacement.
3920 Also, there is the possibility that we may have a giv that looks
3921 like it can be used to eliminate a biv, but the resulting insn
3922 isn't valid. This can happen, for example, on the 88k, where a
3923 JUMP_INSN can compare a register only with zero. Attempts to
3924 replace it with a compare with a constant will fail.
3926 Note that in cases where this call fails, we may have replaced some
3927 of the occurrences of the biv with a giv, but no harm was done in
3928 doing so in the rare cases where it can occur. */
3930 if (all_reduced == 1 && bl->eliminable
3931 && maybe_eliminate_biv (bl, loop_start, end, 1,
3932 threshold, insn_count))
3935 /* ?? If we created a new test to bypass the loop entirely,
3936 or otherwise drop straight in, based on this test, then
3937 we might want to rewrite it also. This way some later
3938 pass has more hope of removing the initialization of this
3939 biv entirely. */
3941 /* If final_value != 0, then the biv may be used after loop end
3942 and we must emit an insn to set it just in case.
3944 Reversed bivs already have an insn after the loop setting their
3945 value, so we don't need another one. We can't calculate the
3946 proper final value for such a biv here anyways. */
3947 if (final_value != 0 && ! bl->reversed)
3949 rtx insert_before;
3951 /* If the loop has multiple exits, emit the insn before the
3952 loop to ensure that it will always be executed no matter
3953 how the loop exits. Otherwise, emit the insn after the
3954 loop, since this is slightly more efficient. */
3955 if (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
3956 insert_before = loop_start;
3957 else
3958 insert_before = end_insert_before;
3960 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
3961 end_insert_before);
3964 #if 0
3965 /* Delete all of the instructions inside the loop which set
3966 the biv, as they are all dead. If is safe to delete them,
3967 because an insn setting a biv will never be part of a libcall. */
3968 /* However, deleting them will invalidate the regno_last_uid info,
3969 so keeping them around is more convenient. Final_biv_value
3970 will only succeed when there are multiple exits if the biv
3971 is dead at each exit, hence it does not matter that the original
3972 insn remains, because it is dead anyways. */
3973 for (v = bl->biv; v; v = v->next_iv)
3974 delete_insn (v->insn);
3975 #endif
3977 if (loop_dump_stream)
3978 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
3979 bl->regno);
3983 /* Go through all the instructions in the loop, making all the
3984 register substitutions scheduled in REG_MAP. */
3986 for (p = loop_start; p != end; p = NEXT_INSN (p))
3987 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3988 || GET_CODE (p) == CALL_INSN)
3990 replace_regs (PATTERN (p), reg_map, max_reg_before_loop, 0);
3991 replace_regs (REG_NOTES (p), reg_map, max_reg_before_loop, 0);
3992 INSN_CODE (p) = -1;
3995 /* Unroll loops from within strength reduction so that we can use the
3996 induction variable information that strength_reduce has already
3997 collected. */
3999 if (flag_unroll_loops)
4000 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 1);
4002 if (loop_dump_stream)
4003 fprintf (loop_dump_stream, "\n");
4006 /* Return 1 if X is a valid source for an initial value (or as value being
4007 compared against in an initial test).
4009 X must be either a register or constant and must not be clobbered between
4010 the current insn and the start of the loop.
4012 INSN is the insn containing X. */
4014 static int
4015 valid_initial_value_p (x, insn, call_seen, loop_start)
4016 rtx x;
4017 rtx insn;
4018 int call_seen;
4019 rtx loop_start;
4021 if (CONSTANT_P (x))
4022 return 1;
4024 /* Only consider pseudos we know about initialized in insns whose luids
4025 we know. */
4026 if (GET_CODE (x) != REG
4027 || REGNO (x) >= max_reg_before_loop)
4028 return 0;
4030 /* Don't use call-clobbered registers across a call which clobbers it. On
4031 some machines, don't use any hard registers at all. */
4032 if (REGNO (x) < FIRST_PSEUDO_REGISTER
4033 #ifndef SMALL_REGISTER_CLASSES
4034 && call_used_regs[REGNO (x)] && call_seen
4035 #endif
4037 return 0;
4039 /* Don't use registers that have been clobbered before the start of the
4040 loop. */
4041 if (reg_set_between_p (x, insn, loop_start))
4042 return 0;
4044 return 1;
4047 /* Scan X for memory refs and check each memory address
4048 as a possible giv. INSN is the insn whose pattern X comes from.
4049 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4050 every loop iteration. */
4052 static void
4053 find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
4054 rtx x;
4055 rtx insn;
4056 int not_every_iteration;
4057 rtx loop_start, loop_end;
4059 register int i, j;
4060 register enum rtx_code code;
4061 register char *fmt;
4063 if (x == 0)
4064 return;
4066 code = GET_CODE (x);
4067 switch (code)
4069 case REG:
4070 case CONST_INT:
4071 case CONST:
4072 case CONST_DOUBLE:
4073 case SYMBOL_REF:
4074 case LABEL_REF:
4075 case PC:
4076 case CC0:
4077 case ADDR_VEC:
4078 case ADDR_DIFF_VEC:
4079 case USE:
4080 case CLOBBER:
4081 return;
4083 case MEM:
4085 rtx src_reg;
4086 rtx add_val;
4087 rtx mult_val;
4088 int benefit;
4090 benefit = general_induction_var (XEXP (x, 0),
4091 &src_reg, &add_val, &mult_val);
4093 /* Don't make a DEST_ADDR giv with mult_val == 1 && add_val == 0.
4094 Such a giv isn't useful. */
4095 if (benefit > 0 && (mult_val != const1_rtx || add_val != const0_rtx))
4097 /* Found one; record it. */
4098 struct induction *v
4099 = (struct induction *) oballoc (sizeof (struct induction));
4101 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
4102 add_val, benefit, DEST_ADDR, not_every_iteration,
4103 &XEXP (x, 0), loop_start, loop_end);
4105 v->mem_mode = GET_MODE (x);
4107 return;
4111 /* Recursively scan the subexpressions for other mem refs. */
4113 fmt = GET_RTX_FORMAT (code);
4114 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4115 if (fmt[i] == 'e')
4116 find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
4117 loop_end);
4118 else if (fmt[i] == 'E')
4119 for (j = 0; j < XVECLEN (x, i); j++)
4120 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
4121 loop_start, loop_end);
4124 /* Fill in the data about one biv update.
4125 V is the `struct induction' in which we record the biv. (It is
4126 allocated by the caller, with alloca.)
4127 INSN is the insn that sets it.
4128 DEST_REG is the biv's reg.
4130 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4131 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
4132 being set to INC_VAL.
4134 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4135 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4136 can be executed more than once per iteration. If MAYBE_MULTIPLE
4137 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4138 executed exactly once per iteration. */
4140 static void
4141 record_biv (v, insn, dest_reg, inc_val, mult_val,
4142 not_every_iteration, maybe_multiple)
4143 struct induction *v;
4144 rtx insn;
4145 rtx dest_reg;
4146 rtx inc_val;
4147 rtx mult_val;
4148 int not_every_iteration;
4149 int maybe_multiple;
4151 struct iv_class *bl;
4153 v->insn = insn;
4154 v->src_reg = dest_reg;
4155 v->dest_reg = dest_reg;
4156 v->mult_val = mult_val;
4157 v->add_val = inc_val;
4158 v->mode = GET_MODE (dest_reg);
4159 v->always_computable = ! not_every_iteration;
4160 v->maybe_multiple = maybe_multiple;
4162 /* Add this to the reg's iv_class, creating a class
4163 if this is the first incrementation of the reg. */
4165 bl = reg_biv_class[REGNO (dest_reg)];
4166 if (bl == 0)
4168 /* Create and initialize new iv_class. */
4170 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
4172 bl->regno = REGNO (dest_reg);
4173 bl->biv = 0;
4174 bl->giv = 0;
4175 bl->biv_count = 0;
4176 bl->giv_count = 0;
4178 /* Set initial value to the reg itself. */
4179 bl->initial_value = dest_reg;
4180 /* We haven't seen the initializing insn yet */
4181 bl->init_insn = 0;
4182 bl->init_set = 0;
4183 bl->initial_test = 0;
4184 bl->incremented = 0;
4185 bl->eliminable = 0;
4186 bl->nonneg = 0;
4187 bl->reversed = 0;
4188 bl->total_benefit = 0;
4190 /* Add this class to loop_iv_list. */
4191 bl->next = loop_iv_list;
4192 loop_iv_list = bl;
4194 /* Put it in the array of biv register classes. */
4195 reg_biv_class[REGNO (dest_reg)] = bl;
4198 /* Update IV_CLASS entry for this biv. */
4199 v->next_iv = bl->biv;
4200 bl->biv = v;
4201 bl->biv_count++;
4202 if (mult_val == const1_rtx)
4203 bl->incremented = 1;
4205 if (loop_dump_stream)
4207 fprintf (loop_dump_stream,
4208 "Insn %d: possible biv, reg %d,",
4209 INSN_UID (insn), REGNO (dest_reg));
4210 if (GET_CODE (inc_val) == CONST_INT)
4211 fprintf (loop_dump_stream, " const = %d\n",
4212 INTVAL (inc_val));
4213 else
4215 fprintf (loop_dump_stream, " const = ");
4216 print_rtl (loop_dump_stream, inc_val);
4217 fprintf (loop_dump_stream, "\n");
4222 /* Fill in the data about one giv.
4223 V is the `struct induction' in which we record the giv. (It is
4224 allocated by the caller, with alloca.)
4225 INSN is the insn that sets it.
4226 BENEFIT estimates the savings from deleting this insn.
4227 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4228 into a register or is used as a memory address.
4230 SRC_REG is the biv reg which the giv is computed from.
4231 DEST_REG is the giv's reg (if the giv is stored in a reg).
4232 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4233 LOCATION points to the place where this giv's value appears in INSN. */
4235 static void
4236 record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
4237 type, not_every_iteration, location, loop_start, loop_end)
4238 struct induction *v;
4239 rtx insn;
4240 rtx src_reg;
4241 rtx dest_reg;
4242 rtx mult_val, add_val;
4243 int benefit;
4244 enum g_types type;
4245 int not_every_iteration;
4246 rtx *location;
4247 rtx loop_start, loop_end;
4249 struct induction *b;
4250 struct iv_class *bl;
4251 rtx set = single_set (insn);
4252 rtx p;
4254 v->insn = insn;
4255 v->src_reg = src_reg;
4256 v->giv_type = type;
4257 v->dest_reg = dest_reg;
4258 v->mult_val = mult_val;
4259 v->add_val = add_val;
4260 v->benefit = benefit;
4261 v->location = location;
4262 v->cant_derive = 0;
4263 v->combined_with = 0;
4264 v->maybe_multiple = 0;
4265 v->maybe_dead = 0;
4266 v->derive_adjustment = 0;
4267 v->same = 0;
4268 v->ignore = 0;
4269 v->new_reg = 0;
4270 v->final_value = 0;
4272 /* The v->always_computable field is used in update_giv_derive, to
4273 determine whether a giv can be used to derive another giv. For a
4274 DEST_REG giv, INSN computes a new value for the giv, so its value
4275 isn't computable if INSN insn't executed every iteration.
4276 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4277 it does not compute a new value. Hence the value is always computable
4278 regardless of whether INSN is executed each iteration. */
4280 if (type == DEST_ADDR)
4281 v->always_computable = 1;
4282 else
4283 v->always_computable = ! not_every_iteration;
4285 if (type == DEST_ADDR)
4287 v->mode = GET_MODE (*location);
4288 v->lifetime = 1;
4289 v->times_used = 1;
4291 else /* type == DEST_REG */
4293 v->mode = GET_MODE (SET_DEST (set));
4295 v->lifetime = (uid_luid[regno_last_uid[REGNO (dest_reg)]]
4296 - uid_luid[regno_first_uid[REGNO (dest_reg)]]);
4298 v->times_used = n_times_used[REGNO (dest_reg)];
4300 /* If the lifetime is zero, it means that this register is
4301 really a dead store. So mark this as a giv that can be
4302 ignored. This will not prevent the biv from being eliminated. */
4303 if (v->lifetime == 0)
4304 v->ignore = 1;
4306 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
4307 reg_iv_info[REGNO (dest_reg)] = v;
4310 /* Add the giv to the class of givs computed from one biv. */
4312 bl = reg_biv_class[REGNO (src_reg)];
4313 if (bl)
4315 v->next_iv = bl->giv;
4316 bl->giv = v;
4317 /* Don't count DEST_ADDR. This is supposed to count the number of
4318 insns that calculate givs. */
4319 if (type == DEST_REG)
4320 bl->giv_count++;
4321 bl->total_benefit += benefit;
4323 else
4324 /* Fatal error, biv missing for this giv? */
4325 abort ();
4327 if (type == DEST_ADDR)
4328 v->replaceable = 1;
4329 else
4331 /* The giv can be replaced outright by the reduced register only if all
4332 of the following conditions are true:
4333 - the insn that sets the giv is always executed on any iteration
4334 on which the giv is used at all
4335 (there are two ways to deduce this:
4336 either the insn is executed on every iteration,
4337 or all uses follow that insn in the same basic block),
4338 - the giv is not used outside the loop
4339 - no assignments to the biv occur during the giv's lifetime. */
4341 if (regno_first_uid[REGNO (dest_reg)] == INSN_UID (insn)
4342 /* Previous line always fails if INSN was moved by loop opt. */
4343 && uid_luid[regno_last_uid[REGNO (dest_reg)]] < INSN_LUID (loop_end)
4344 && (! not_every_iteration
4345 || last_use_this_basic_block (dest_reg, insn)))
4347 /* Now check that there are no assignments to the biv within the
4348 giv's lifetime. This requires two separate checks. */
4350 /* Check each biv update, and fail if any are between the first
4351 and last use of the giv.
4353 If this loop contains an inner loop that was unrolled, then
4354 the insn modifying the biv may have been emitted by the loop
4355 unrolling code, and hence does not have a valid luid. Just
4356 mark the biv as not replaceable in this case. It is not very
4357 useful as a biv, because it is used in two different loops.
4358 It is very unlikely that we would be able to optimize the giv
4359 using this biv anyways. */
4361 v->replaceable = 1;
4362 for (b = bl->biv; b; b = b->next_iv)
4364 if (INSN_UID (b->insn) >= max_uid_for_loop
4365 || ((uid_luid[INSN_UID (b->insn)]
4366 >= uid_luid[regno_first_uid[REGNO (dest_reg)]])
4367 && (uid_luid[INSN_UID (b->insn)]
4368 <= uid_luid[regno_last_uid[REGNO (dest_reg)]])))
4370 v->replaceable = 0;
4371 v->not_replaceable = 1;
4372 break;
4376 /* Check each insn between the first and last use of the giv,
4377 and fail if any of them are branches that jump to a named label
4378 outside this range, but still inside the loop. This catches
4379 cases of spaghetti code where the execution order of insns
4380 is not linear, and hence the above test fails. For example,
4381 in the following code, j is not replaceable:
4382 for (i = 0; i < 100; ) {
4383 L0: j = 4*i; goto L1;
4384 L2: k = j; goto L3;
4385 L1: i++; goto L2;
4386 L3: ; }
4387 printf ("k = %d\n", k); }
4388 This test is conservative, but this test succeeds rarely enough
4389 that it isn't a problem. See also check_final_value below. */
4391 if (v->replaceable)
4392 for (p = insn;
4393 INSN_UID (p) >= max_uid_for_loop
4394 || INSN_LUID (p) < uid_luid[regno_last_uid[REGNO (dest_reg)]];
4395 p = NEXT_INSN (p))
4397 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4398 && LABEL_NAME (JUMP_LABEL (p))
4399 && ((INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start)
4400 && (INSN_LUID (JUMP_LABEL (p))
4401 < uid_luid[regno_first_uid[REGNO (dest_reg)]]))
4402 || (INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end)
4403 && (INSN_LUID (JUMP_LABEL (p))
4404 > uid_luid[regno_last_uid[REGNO (dest_reg)]]))))
4406 v->replaceable = 0;
4407 v->not_replaceable = 1;
4409 if (loop_dump_stream)
4410 fprintf (loop_dump_stream,
4411 "Found branch outside giv lifetime.\n");
4413 break;
4417 else
4419 /* May still be replaceable, we don't have enough info here to
4420 decide. */
4421 v->replaceable = 0;
4422 v->not_replaceable = 0;
4426 if (loop_dump_stream)
4428 if (type == DEST_REG)
4429 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
4430 INSN_UID (insn), REGNO (dest_reg));
4431 else
4432 fprintf (loop_dump_stream, "Insn %d: dest address",
4433 INSN_UID (insn));
4435 fprintf (loop_dump_stream, " src reg %d benefit %d",
4436 REGNO (src_reg), v->benefit);
4437 fprintf (loop_dump_stream, " used %d lifetime %d",
4438 v->times_used, v->lifetime);
4440 if (v->replaceable)
4441 fprintf (loop_dump_stream, " replaceable");
4443 if (GET_CODE (mult_val) == CONST_INT)
4444 fprintf (loop_dump_stream, " mult %d",
4445 INTVAL (mult_val));
4446 else
4448 fprintf (loop_dump_stream, " mult ");
4449 print_rtl (loop_dump_stream, mult_val);
4452 if (GET_CODE (add_val) == CONST_INT)
4453 fprintf (loop_dump_stream, " add %d",
4454 INTVAL (add_val));
4455 else
4457 fprintf (loop_dump_stream, " add ");
4458 print_rtl (loop_dump_stream, add_val);
4462 if (loop_dump_stream)
4463 fprintf (loop_dump_stream, "\n");
4468 /* All this does is determine whether a giv can be made replaceable because
4469 its final value can be calculated. This code can not be part of record_giv
4470 above, because final_giv_value requires that the number of loop iterations
4471 be known, and that can not be accurately calculated until after all givs
4472 have been identified. */
4474 static void
4475 check_final_value (v, loop_start, loop_end)
4476 struct induction *v;
4477 rtx loop_start, loop_end;
4479 struct iv_class *bl;
4480 rtx final_value = 0;
4481 rtx tem;
4483 bl = reg_biv_class[REGNO (v->src_reg)];
4485 /* DEST_ADDR givs will never reach here, because they are always marked
4486 replaceable above in record_giv. */
4488 /* The giv can be replaced outright by the reduced register only if all
4489 of the following conditions are true:
4490 - the insn that sets the giv is always executed on any iteration
4491 on which the giv is used at all
4492 (there are two ways to deduce this:
4493 either the insn is executed on every iteration,
4494 or all uses follow that insn in the same basic block),
4495 - its final value can be calculated (this condition is different
4496 than the one above in record_giv)
4497 - no assignments to the biv occur during the giv's lifetime. */
4499 #if 0
4500 /* This is only called now when replaceable is known to be false. */
4501 /* Clear replaceable, so that it won't confuse final_giv_value. */
4502 v->replaceable = 0;
4503 #endif
4505 if ((final_value = final_giv_value (v, loop_start, loop_end))
4506 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
4508 int biv_increment_seen = 0;
4509 rtx p = v->insn;
4510 rtx last_giv_use;
4512 v->replaceable = 1;
4514 /* When trying to determine whether or not a biv increment occurs
4515 during the lifetime of the giv, we can ignore uses of the variable
4516 outside the loop because final_value is true. Hence we can not
4517 use regno_last_uid and regno_first_uid as above in record_giv. */
4519 /* Search the loop to determine whether any assignments to the
4520 biv occur during the giv's lifetime. Start with the insn
4521 that sets the giv, and search around the loop until we come
4522 back to that insn again.
4524 Also fail if there is a jump within the giv's lifetime that jumps
4525 to somewhere outside the lifetime but still within the loop. This
4526 catches spaghetti code where the execution order is not linear, and
4527 hence the above test fails. Here we assume that the giv lifetime
4528 does not extend from one iteration of the loop to the next, so as
4529 to make the test easier. Since the lifetime isn't known yet,
4530 this requires two loops. See also record_giv above. */
4532 last_giv_use = v->insn;
4534 while (1)
4536 p = NEXT_INSN (p);
4537 if (p == loop_end)
4538 p = NEXT_INSN (loop_start);
4539 if (p == v->insn)
4540 break;
4542 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4543 || GET_CODE (p) == CALL_INSN)
4545 if (biv_increment_seen)
4547 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4549 v->replaceable = 0;
4550 v->not_replaceable = 1;
4551 break;
4554 else if (GET_CODE (PATTERN (p)) == SET
4555 && SET_DEST (PATTERN (p)) == v->src_reg)
4556 biv_increment_seen = 1;
4557 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4558 last_giv_use = p;
4562 /* Now that the lifetime of the giv is known, check for branches
4563 from within the lifetime to outside the lifetime if it is still
4564 replaceable. */
4566 if (v->replaceable)
4568 p = v->insn;
4569 while (1)
4571 p = NEXT_INSN (p);
4572 if (p == loop_end)
4573 p = NEXT_INSN (loop_start);
4574 if (p == last_giv_use)
4575 break;
4577 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4578 && LABEL_NAME (JUMP_LABEL (p))
4579 && ((INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (v->insn)
4580 && INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start))
4581 || (INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (last_giv_use)
4582 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end))))
4584 v->replaceable = 0;
4585 v->not_replaceable = 1;
4587 if (loop_dump_stream)
4588 fprintf (loop_dump_stream,
4589 "Found branch outside giv lifetime.\n");
4591 break;
4596 /* If it is replaceable, then save the final value. */
4597 if (v->replaceable)
4598 v->final_value = final_value;
4601 if (loop_dump_stream && v->replaceable)
4602 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
4603 INSN_UID (v->insn), REGNO (v->dest_reg));
4606 /* Update the status of whether a giv can derive other givs.
4608 We need to do something special if there is or may be an update to the biv
4609 between the time the giv is defined and the time it is used to derive
4610 another giv.
4612 In addition, a giv that is only conditionally set is not allowed to
4613 derive another giv once a label has been passed.
4615 The cases we look at are when a label or an update to a biv is passed. */
4617 static void
4618 update_giv_derive (p)
4619 rtx p;
4621 struct iv_class *bl;
4622 struct induction *biv, *giv;
4623 rtx tem;
4624 int dummy;
4626 /* Search all IV classes, then all bivs, and finally all givs.
4628 There are three cases we are concerned with. First we have the situation
4629 of a giv that is only updated conditionally. In that case, it may not
4630 derive any givs after a label is passed.
4632 The second case is when a biv update occurs, or may occur, after the
4633 definition of a giv. For certain biv updates (see below) that are
4634 known to occur between the giv definition and use, we can adjust the
4635 giv definition. For others, or when the biv update is conditional,
4636 we must prevent the giv from deriving any other givs. There are two
4637 sub-cases within this case.
4639 If this is a label, we are concerned with any biv update that is done
4640 conditionally, since it may be done after the giv is defined followed by
4641 a branch here (actually, we need to pass both a jump and a label, but
4642 this extra tracking doesn't seem worth it).
4644 If this is a jump, we are concerned about any biv update that may be
4645 executed multiple times. We are actually only concerned about
4646 backward jumps, but it is probably not worth performing the test
4647 on the jump again here.
4649 If this is a biv update, we must adjust the giv status to show that a
4650 subsequent biv update was performed. If this adjustment cannot be done,
4651 the giv cannot derive further givs. */
4653 for (bl = loop_iv_list; bl; bl = bl->next)
4654 for (biv = bl->biv; biv; biv = biv->next_iv)
4655 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
4656 || biv->insn == p)
4658 for (giv = bl->giv; giv; giv = giv->next_iv)
4660 /* If cant_derive is already true, there is no point in
4661 checking all of these conditions again. */
4662 if (giv->cant_derive)
4663 continue;
4665 /* If this giv is conditionally set and we have passed a label,
4666 it cannot derive anything. */
4667 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
4668 giv->cant_derive = 1;
4670 /* Skip givs that have mult_val == 0, since
4671 they are really invariants. Also skip those that are
4672 replaceable, since we know their lifetime doesn't contain
4673 any biv update. */
4674 else if (giv->mult_val == const0_rtx || giv->replaceable)
4675 continue;
4677 /* The only way we can allow this giv to derive another
4678 is if this is a biv increment and we can form the product
4679 of biv->add_val and giv->mult_val. In this case, we will
4680 be able to compute a compensation. */
4681 else if (biv->insn == p)
4683 tem = 0;
4685 if (biv->mult_val == const1_rtx)
4686 tem = simplify_giv_expr (gen_rtx (MULT, giv->mode,
4687 biv->add_val,
4688 giv->mult_val),
4689 &dummy);
4691 if (tem && giv->derive_adjustment)
4692 tem = simplify_giv_expr (gen_rtx (PLUS, giv->mode, tem,
4693 giv->derive_adjustment),
4694 &dummy);
4695 if (tem)
4696 giv->derive_adjustment = tem;
4697 else
4698 giv->cant_derive = 1;
4700 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
4701 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
4702 giv->cant_derive = 1;
4707 /* Check whether an insn is an increment legitimate for a basic induction var.
4708 X is the source of insn P, or a part of it.
4709 MODE is the mode in which X should be interpreted.
4711 DEST_REG is the putative biv, also the destination of the insn.
4712 We accept patterns of these forms:
4713 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
4714 REG = INVARIANT + REG
4716 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
4717 and store the additive term into *INC_VAL.
4719 If X is an assignment of an invariant into DEST_REG, we set
4720 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
4722 We also want to detect a BIV when it corresponds to a variable
4723 whose mode was promoted via PROMOTED_MODE. In that case, an increment
4724 of the variable may be a PLUS that adds a SUBREG of that variable to
4725 an invariant and then sign- or zero-extends the result of the PLUS
4726 into the variable.
4728 Most GIVs in such cases will be in the promoted mode, since that is the
4729 probably the natural computation mode (and almost certainly the mode
4730 used for addresses) on the machine. So we view the pseudo-reg containing
4731 the variable as the BIV, as if it were simply incremented.
4733 Note that treating the entire pseudo as a BIV will result in making
4734 simple increments to any GIVs based on it. However, if the variable
4735 overflows in its declared mode but not its promoted mode, the result will
4736 be incorrect. This is acceptable if the variable is signed, since
4737 overflows in such cases are undefined, but not if it is unsigned, since
4738 those overflows are defined. So we only check for SIGN_EXTEND and
4739 not ZERO_EXTEND.
4741 If we cannot find a biv, we return 0. */
4743 static int
4744 basic_induction_var (x, mode, dest_reg, p, inc_val, mult_val)
4745 register rtx x;
4746 enum machine_mode mode;
4747 rtx p;
4748 rtx dest_reg;
4749 rtx *inc_val;
4750 rtx *mult_val;
4752 register enum rtx_code code;
4753 rtx arg;
4754 rtx insn, set = 0;
4756 code = GET_CODE (x);
4757 switch (code)
4759 case PLUS:
4760 if (XEXP (x, 0) == dest_reg
4761 || (GET_CODE (XEXP (x, 0)) == SUBREG
4762 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
4763 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
4764 arg = XEXP (x, 1);
4765 else if (XEXP (x, 1) == dest_reg
4766 || (GET_CODE (XEXP (x, 1)) == SUBREG
4767 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
4768 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
4769 arg = XEXP (x, 0);
4770 else
4771 return 0;
4773 if (invariant_p (arg) != 1)
4774 return 0;
4776 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
4777 *mult_val = const1_rtx;
4778 return 1;
4780 case SUBREG:
4781 /* If this is a SUBREG for a promoted variable, check the inner
4782 value. */
4783 if (SUBREG_PROMOTED_VAR_P (x))
4784 return basic_induction_var (SUBREG_REG (x), GET_MODE (SUBREG_REG (x)),
4785 dest_reg, p, inc_val, mult_val);
4787 case REG:
4788 /* If this register is assigned in the previous insn, look at its
4789 source, but don't go outside the loop or past a label. */
4791 for (insn = PREV_INSN (p);
4792 (insn && GET_CODE (insn) == NOTE
4793 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
4794 insn = PREV_INSN (insn))
4797 if (insn)
4798 set = single_set (insn);
4800 if (set != 0 && SET_DEST (set) == x)
4801 return basic_induction_var (SET_SRC (set),
4802 (GET_MODE (SET_SRC (set)) == VOIDmode
4803 ? GET_MODE (x)
4804 : GET_MODE (SET_SRC (set))),
4805 dest_reg, insn,
4806 inc_val, mult_val);
4807 /* ... fall through ... */
4809 /* Can accept constant setting of biv only when inside inner most loop.
4810 Otherwise, a biv of an inner loop may be incorrectly recognized
4811 as a biv of the outer loop,
4812 causing code to be moved INTO the inner loop. */
4813 case MEM:
4814 if (invariant_p (x) != 1)
4815 return 0;
4816 case CONST_INT:
4817 case SYMBOL_REF:
4818 case CONST:
4819 if (loops_enclosed == 1)
4821 /* Possible bug here? Perhaps we don't know the mode of X. */
4822 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
4823 *mult_val = const0_rtx;
4824 return 1;
4826 else
4827 return 0;
4829 case SIGN_EXTEND:
4830 return basic_induction_var (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4831 dest_reg, p, inc_val, mult_val);
4832 case ASHIFTRT:
4833 /* Similar, since this can be a sign extension. */
4834 for (insn = PREV_INSN (p);
4835 (insn && GET_CODE (insn) == NOTE
4836 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
4837 insn = PREV_INSN (insn))
4840 if (insn)
4841 set = single_set (insn);
4843 if (set && SET_DEST (set) == XEXP (x, 0)
4844 && GET_CODE (XEXP (x, 1)) == CONST_INT
4845 && INTVAL (XEXP (x, 1)) >= 0
4846 && GET_CODE (SET_SRC (set)) == ASHIFT
4847 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
4848 return basic_induction_var (XEXP (SET_SRC (set), 0),
4849 GET_MODE (XEXP (x, 0)),
4850 dest_reg, insn, inc_val, mult_val);
4851 return 0;
4853 default:
4854 return 0;
4858 /* A general induction variable (giv) is any quantity that is a linear
4859 function of a basic induction variable,
4860 i.e. giv = biv * mult_val + add_val.
4861 The coefficients can be any loop invariant quantity.
4862 A giv need not be computed directly from the biv;
4863 it can be computed by way of other givs. */
4865 /* Determine whether X computes a giv.
4866 If it does, return a nonzero value
4867 which is the benefit from eliminating the computation of X;
4868 set *SRC_REG to the register of the biv that it is computed from;
4869 set *ADD_VAL and *MULT_VAL to the coefficients,
4870 such that the value of X is biv * mult + add; */
4872 static int
4873 general_induction_var (x, src_reg, add_val, mult_val)
4874 rtx x;
4875 rtx *src_reg;
4876 rtx *add_val;
4877 rtx *mult_val;
4879 rtx orig_x = x;
4880 int benefit = 0;
4881 char *storage;
4883 /* If this is an invariant, forget it, it isn't a giv. */
4884 if (invariant_p (x) == 1)
4885 return 0;
4887 /* See if the expression could be a giv and get its form.
4888 Mark our place on the obstack in case we don't find a giv. */
4889 storage = (char *) oballoc (0);
4890 x = simplify_giv_expr (x, &benefit);
4891 if (x == 0)
4893 obfree (storage);
4894 return 0;
4897 switch (GET_CODE (x))
4899 case USE:
4900 case CONST_INT:
4901 /* Since this is now an invariant and wasn't before, it must be a giv
4902 with MULT_VAL == 0. It doesn't matter which BIV we associate this
4903 with. */
4904 *src_reg = loop_iv_list->biv->dest_reg;
4905 *mult_val = const0_rtx;
4906 *add_val = x;
4907 break;
4909 case REG:
4910 /* This is equivalent to a BIV. */
4911 *src_reg = x;
4912 *mult_val = const1_rtx;
4913 *add_val = const0_rtx;
4914 break;
4916 case PLUS:
4917 /* Either (plus (biv) (invar)) or
4918 (plus (mult (biv) (invar_1)) (invar_2)). */
4919 if (GET_CODE (XEXP (x, 0)) == MULT)
4921 *src_reg = XEXP (XEXP (x, 0), 0);
4922 *mult_val = XEXP (XEXP (x, 0), 1);
4924 else
4926 *src_reg = XEXP (x, 0);
4927 *mult_val = const1_rtx;
4929 *add_val = XEXP (x, 1);
4930 break;
4932 case MULT:
4933 /* ADD_VAL is zero. */
4934 *src_reg = XEXP (x, 0);
4935 *mult_val = XEXP (x, 1);
4936 *add_val = const0_rtx;
4937 break;
4939 default:
4940 abort ();
4943 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
4944 unless they are CONST_INT). */
4945 if (GET_CODE (*add_val) == USE)
4946 *add_val = XEXP (*add_val, 0);
4947 if (GET_CODE (*mult_val) == USE)
4948 *mult_val = XEXP (*mult_val, 0);
4950 benefit += rtx_cost (orig_x, SET);
4952 /* Always return some benefit if this is a giv so it will be detected
4953 as such. This allows elimination of bivs that might otherwise
4954 not be eliminated. */
4955 return benefit == 0 ? 1 : benefit;
4958 /* Given an expression, X, try to form it as a linear function of a biv.
4959 We will canonicalize it to be of the form
4960 (plus (mult (BIV) (invar_1))
4961 (invar_2))
4962 with possible degeneracies.
4964 The invariant expressions must each be of a form that can be used as a
4965 machine operand. We surround then with a USE rtx (a hack, but localized
4966 and certainly unambiguous!) if not a CONST_INT for simplicity in this
4967 routine; it is the caller's responsibility to strip them.
4969 If no such canonicalization is possible (i.e., two biv's are used or an
4970 expression that is neither invariant nor a biv or giv), this routine
4971 returns 0.
4973 For a non-zero return, the result will have a code of CONST_INT, USE,
4974 REG (for a BIV), PLUS, or MULT. No other codes will occur.
4976 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
4978 static rtx
4979 simplify_giv_expr (x, benefit)
4980 rtx x;
4981 int *benefit;
4983 enum machine_mode mode = GET_MODE (x);
4984 rtx arg0, arg1;
4985 rtx tem;
4987 /* If this is not an integer mode, or if we cannot do arithmetic in this
4988 mode, this can't be a giv. */
4989 if (mode != VOIDmode
4990 && (GET_MODE_CLASS (mode) != MODE_INT
4991 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
4992 return 0;
4994 switch (GET_CODE (x))
4996 case PLUS:
4997 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
4998 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
4999 if (arg0 == 0 || arg1 == 0)
5000 return 0;
5002 /* Put constant last, CONST_INT last if both constant. */
5003 if ((GET_CODE (arg0) == USE
5004 || GET_CODE (arg0) == CONST_INT)
5005 && GET_CODE (arg1) != CONST_INT)
5006 tem = arg0, arg0 = arg1, arg1 = tem;
5008 /* Handle addition of zero, then addition of an invariant. */
5009 if (arg1 == const0_rtx)
5010 return arg0;
5011 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
5012 switch (GET_CODE (arg0))
5014 case CONST_INT:
5015 case USE:
5016 /* Both invariant. Only valid if sum is machine operand.
5017 First strip off possible USE on first operand. */
5018 if (GET_CODE (arg0) == USE)
5019 arg0 = XEXP (arg0, 0);
5021 tem = 0;
5022 if (CONSTANT_P (arg0) && GET_CODE (arg1) == CONST_INT)
5024 tem = plus_constant (arg0, INTVAL (arg1));
5025 if (GET_CODE (tem) != CONST_INT)
5026 tem = gen_rtx (USE, mode, tem);
5029 return tem;
5031 case REG:
5032 case MULT:
5033 /* biv + invar or mult + invar. Return sum. */
5034 return gen_rtx (PLUS, mode, arg0, arg1);
5036 case PLUS:
5037 /* (a + invar_1) + invar_2. Associate. */
5038 return simplify_giv_expr (gen_rtx (PLUS, mode,
5039 XEXP (arg0, 0),
5040 gen_rtx (PLUS, mode,
5041 XEXP (arg0, 1), arg1)),
5042 benefit);
5044 default:
5045 abort ();
5048 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
5049 MULT to reduce cases. */
5050 if (GET_CODE (arg0) == REG)
5051 arg0 = gen_rtx (MULT, mode, arg0, const1_rtx);
5052 if (GET_CODE (arg1) == REG)
5053 arg1 = gen_rtx (MULT, mode, arg1, const1_rtx);
5055 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5056 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5057 Recurse to associate the second PLUS. */
5058 if (GET_CODE (arg1) == MULT)
5059 tem = arg0, arg0 = arg1, arg1 = tem;
5061 if (GET_CODE (arg1) == PLUS)
5062 return simplify_giv_expr (gen_rtx (PLUS, mode,
5063 gen_rtx (PLUS, mode,
5064 arg0, XEXP (arg1, 0)),
5065 XEXP (arg1, 1)),
5066 benefit);
5068 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
5069 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
5070 abort ();
5072 if (XEXP (arg0, 0) != XEXP (arg1, 0))
5073 return 0;
5075 return simplify_giv_expr (gen_rtx (MULT, mode,
5076 XEXP (arg0, 0),
5077 gen_rtx (PLUS, mode,
5078 XEXP (arg0, 1),
5079 XEXP (arg1, 1))),
5080 benefit);
5082 case MINUS:
5083 /* Handle "a - b" as "a + b * (-1)". */
5084 return simplify_giv_expr (gen_rtx (PLUS, mode,
5085 XEXP (x, 0),
5086 gen_rtx (MULT, mode,
5087 XEXP (x, 1), constm1_rtx)),
5088 benefit);
5090 case MULT:
5091 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5092 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5093 if (arg0 == 0 || arg1 == 0)
5094 return 0;
5096 /* Put constant last, CONST_INT last if both constant. */
5097 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
5098 && GET_CODE (arg1) != CONST_INT)
5099 tem = arg0, arg0 = arg1, arg1 = tem;
5101 /* If second argument is not now constant, not giv. */
5102 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
5103 return 0;
5105 /* Handle multiply by 0 or 1. */
5106 if (arg1 == const0_rtx)
5107 return const0_rtx;
5109 else if (arg1 == const1_rtx)
5110 return arg0;
5112 switch (GET_CODE (arg0))
5114 case REG:
5115 /* biv * invar. Done. */
5116 return gen_rtx (MULT, mode, arg0, arg1);
5118 case CONST_INT:
5119 /* Product of two constants. */
5120 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
5122 case USE:
5123 /* invar * invar. Not giv. */
5124 return 0;
5126 case MULT:
5127 /* (a * invar_1) * invar_2. Associate. */
5128 return simplify_giv_expr (gen_rtx (MULT, mode,
5129 XEXP (arg0, 0),
5130 gen_rtx (MULT, mode,
5131 XEXP (arg0, 1), arg1)),
5132 benefit);
5134 case PLUS:
5135 /* (a + invar_1) * invar_2. Distribute. */
5136 return simplify_giv_expr (gen_rtx (PLUS, mode,
5137 gen_rtx (MULT, mode,
5138 XEXP (arg0, 0), arg1),
5139 gen_rtx (MULT, mode,
5140 XEXP (arg0, 1), arg1)),
5141 benefit);
5143 default:
5144 abort ();
5147 case ASHIFT:
5148 case LSHIFT:
5149 /* Shift by constant is multiply by power of two. */
5150 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5151 return 0;
5153 return simplify_giv_expr (gen_rtx (MULT, mode,
5154 XEXP (x, 0),
5155 GEN_INT ((HOST_WIDE_INT) 1
5156 << INTVAL (XEXP (x, 1)))),
5157 benefit);
5159 case NEG:
5160 /* "-a" is "a * (-1)" */
5161 return simplify_giv_expr (gen_rtx (MULT, mode, XEXP (x, 0), constm1_rtx),
5162 benefit);
5164 case NOT:
5165 /* "~a" is "-a - 1". Silly, but easy. */
5166 return simplify_giv_expr (gen_rtx (MINUS, mode,
5167 gen_rtx (NEG, mode, XEXP (x, 0)),
5168 const1_rtx),
5169 benefit);
5171 case USE:
5172 /* Already in proper form for invariant. */
5173 return x;
5175 case REG:
5176 /* If this is a new register, we can't deal with it. */
5177 if (REGNO (x) >= max_reg_before_loop)
5178 return 0;
5180 /* Check for biv or giv. */
5181 switch (reg_iv_type[REGNO (x)])
5183 case BASIC_INDUCT:
5184 return x;
5185 case GENERAL_INDUCT:
5187 struct induction *v = reg_iv_info[REGNO (x)];
5189 /* Form expression from giv and add benefit. Ensure this giv
5190 can derive another and subtract any needed adjustment if so. */
5191 *benefit += v->benefit;
5192 if (v->cant_derive)
5193 return 0;
5195 tem = gen_rtx (PLUS, mode, gen_rtx (MULT, mode,
5196 v->src_reg, v->mult_val),
5197 v->add_val);
5198 if (v->derive_adjustment)
5199 tem = gen_rtx (MINUS, mode, tem, v->derive_adjustment);
5200 return simplify_giv_expr (tem, benefit);
5204 /* Fall through to general case. */
5205 default:
5206 /* If invariant, return as USE (unless CONST_INT).
5207 Otherwise, not giv. */
5208 if (GET_CODE (x) == USE)
5209 x = XEXP (x, 0);
5211 if (invariant_p (x) == 1)
5213 if (GET_CODE (x) == CONST_INT)
5214 return x;
5215 else
5216 return gen_rtx (USE, mode, x);
5218 else
5219 return 0;
5223 /* Help detect a giv that is calculated by several consecutive insns;
5224 for example,
5225 giv = biv * M
5226 giv = giv + A
5227 The caller has already identified the first insn P as having a giv as dest;
5228 we check that all other insns that set the same register follow
5229 immediately after P, that they alter nothing else,
5230 and that the result of the last is still a giv.
5232 The value is 0 if the reg set in P is not really a giv.
5233 Otherwise, the value is the amount gained by eliminating
5234 all the consecutive insns that compute the value.
5236 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
5237 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
5239 The coefficients of the ultimate giv value are stored in
5240 *MULT_VAL and *ADD_VAL. */
5242 static int
5243 consec_sets_giv (first_benefit, p, src_reg, dest_reg,
5244 add_val, mult_val)
5245 int first_benefit;
5246 rtx p;
5247 rtx src_reg;
5248 rtx dest_reg;
5249 rtx *add_val;
5250 rtx *mult_val;
5252 int count;
5253 enum rtx_code code;
5254 int benefit;
5255 rtx temp;
5256 rtx set;
5258 /* Indicate that this is a giv so that we can update the value produced in
5259 each insn of the multi-insn sequence.
5261 This induction structure will be used only by the call to
5262 general_induction_var below, so we can allocate it on our stack.
5263 If this is a giv, our caller will replace the induct var entry with
5264 a new induction structure. */
5265 struct induction *v
5266 = (struct induction *) alloca (sizeof (struct induction));
5267 v->src_reg = src_reg;
5268 v->mult_val = *mult_val;
5269 v->add_val = *add_val;
5270 v->benefit = first_benefit;
5271 v->cant_derive = 0;
5272 v->derive_adjustment = 0;
5274 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
5275 reg_iv_info[REGNO (dest_reg)] = v;
5277 count = n_times_set[REGNO (dest_reg)] - 1;
5279 while (count > 0)
5281 p = NEXT_INSN (p);
5282 code = GET_CODE (p);
5284 /* If libcall, skip to end of call sequence. */
5285 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
5286 p = XEXP (temp, 0);
5288 if (code == INSN
5289 && (set = single_set (p))
5290 && GET_CODE (SET_DEST (set)) == REG
5291 && SET_DEST (set) == dest_reg
5292 && ((benefit = general_induction_var (SET_SRC (set), &src_reg,
5293 add_val, mult_val))
5294 /* Giv created by equivalent expression. */
5295 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
5296 && (benefit = general_induction_var (XEXP (temp, 0), &src_reg,
5297 add_val, mult_val))))
5298 && src_reg == v->src_reg)
5300 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5301 benefit += libcall_benefit (p);
5303 count--;
5304 v->mult_val = *mult_val;
5305 v->add_val = *add_val;
5306 v->benefit = benefit;
5308 else if (code != NOTE)
5310 /* Allow insns that set something other than this giv to a
5311 constant. Such insns are needed on machines which cannot
5312 include long constants and should not disqualify a giv. */
5313 if (code == INSN
5314 && (set = single_set (p))
5315 && SET_DEST (set) != dest_reg
5316 && CONSTANT_P (SET_SRC (set)))
5317 continue;
5319 reg_iv_type[REGNO (dest_reg)] = UNKNOWN_INDUCT;
5320 return 0;
5324 return v->benefit;
5327 /* Return an rtx, if any, that expresses giv G2 as a function of the register
5328 represented by G1. If no such expression can be found, or it is clear that
5329 it cannot possibly be a valid address, 0 is returned.
5331 To perform the computation, we note that
5332 G1 = a * v + b and
5333 G2 = c * v + d
5334 where `v' is the biv.
5336 So G2 = (c/a) * G1 + (d - b*c/a) */
5338 #ifdef ADDRESS_COST
5339 static rtx
5340 express_from (g1, g2)
5341 struct induction *g1, *g2;
5343 rtx mult, add;
5345 /* The value that G1 will be multiplied by must be a constant integer. Also,
5346 the only chance we have of getting a valid address is if b*c/a (see above
5347 for notation) is also an integer. */
5348 if (GET_CODE (g1->mult_val) != CONST_INT
5349 || GET_CODE (g2->mult_val) != CONST_INT
5350 || GET_CODE (g1->add_val) != CONST_INT
5351 || g1->mult_val == const0_rtx
5352 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
5353 return 0;
5355 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
5356 add = plus_constant (g2->add_val, - INTVAL (g1->add_val) * INTVAL (mult));
5358 /* Form simplified final result. */
5359 if (mult == const0_rtx)
5360 return add;
5361 else if (mult == const1_rtx)
5362 mult = g1->dest_reg;
5363 else
5364 mult = gen_rtx (MULT, g2->mode, g1->dest_reg, mult);
5366 if (add == const0_rtx)
5367 return mult;
5368 else
5369 return gen_rtx (PLUS, g2->mode, mult, add);
5371 #endif
5373 /* Return 1 if giv G2 can be combined with G1. This means that G2 can use
5374 (either directly or via an address expression) a register used to represent
5375 G1. Set g2->new_reg to a represtation of G1 (normally just
5376 g1->dest_reg). */
5378 static int
5379 combine_givs_p (g1, g2)
5380 struct induction *g1, *g2;
5382 rtx tem;
5384 /* If these givs are identical, they can be combined. */
5385 if (rtx_equal_p (g1->mult_val, g2->mult_val)
5386 && rtx_equal_p (g1->add_val, g2->add_val))
5388 g2->new_reg = g1->dest_reg;
5389 return 1;
5392 #ifdef ADDRESS_COST
5393 /* If G2 can be expressed as a function of G1 and that function is valid
5394 as an address and no more expensive than using a register for G2,
5395 the expression of G2 in terms of G1 can be used. */
5396 if (g2->giv_type == DEST_ADDR
5397 && (tem = express_from (g1, g2)) != 0
5398 && memory_address_p (g2->mem_mode, tem)
5399 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location))
5401 g2->new_reg = tem;
5402 return 1;
5404 #endif
5406 return 0;
5409 /* Check all pairs of givs for iv_class BL and see if any can be combined with
5410 any other. If so, point SAME to the giv combined with and set NEW_REG to
5411 be an expression (in terms of the other giv's DEST_REG) equivalent to the
5412 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
5414 static void
5415 combine_givs (bl)
5416 struct iv_class *bl;
5418 struct induction *g1, *g2;
5419 int pass;
5421 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5422 for (pass = 0; pass <= 1; pass++)
5423 for (g2 = bl->giv; g2; g2 = g2->next_iv)
5424 if (g1 != g2
5425 /* First try to combine with replaceable givs, then all givs. */
5426 && (g1->replaceable || pass == 1)
5427 /* If either has already been combined or is to be ignored, can't
5428 combine. */
5429 && ! g1->ignore && ! g2->ignore && ! g1->same && ! g2->same
5430 /* If something has been based on G2, G2 cannot itself be based
5431 on something else. */
5432 && ! g2->combined_with
5433 && combine_givs_p (g1, g2))
5435 /* g2->new_reg set by `combine_givs_p' */
5436 g2->same = g1;
5437 g1->combined_with = 1;
5438 g1->benefit += g2->benefit;
5439 /* ??? The new final_[bg]iv_value code does a much better job
5440 of finding replaceable giv's, and hence this code may no
5441 longer be necessary. */
5442 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
5443 g1->benefit -= copy_cost;
5444 g1->lifetime += g2->lifetime;
5445 g1->times_used += g2->times_used;
5447 if (loop_dump_stream)
5448 fprintf (loop_dump_stream, "giv at %d combined with giv at %d\n",
5449 INSN_UID (g2->insn), INSN_UID (g1->insn));
5453 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
5455 void
5456 emit_iv_add_mult (b, m, a, reg, insert_before)
5457 rtx b; /* initial value of basic induction variable */
5458 rtx m; /* multiplicative constant */
5459 rtx a; /* additive constant */
5460 rtx reg; /* destination register */
5461 rtx insert_before;
5463 rtx seq;
5464 rtx result;
5466 /* Prevent unexpected sharing of these rtx. */
5467 a = copy_rtx (a);
5468 b = copy_rtx (b);
5470 /* Increase the lifetime of any invariants moved further in code. */
5471 update_reg_last_use (a, insert_before);
5472 update_reg_last_use (b, insert_before);
5473 update_reg_last_use (m, insert_before);
5475 start_sequence ();
5476 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
5477 if (reg != result)
5478 emit_move_insn (reg, result);
5479 seq = gen_sequence ();
5480 end_sequence ();
5482 emit_insn_before (seq, insert_before);
5485 /* Test whether A * B can be computed without
5486 an actual multiply insn. Value is 1 if so. */
5488 static int
5489 product_cheap_p (a, b)
5490 rtx a;
5491 rtx b;
5493 int i;
5494 rtx tmp;
5495 struct obstack *old_rtl_obstack = rtl_obstack;
5496 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
5497 int win = 1;
5499 /* If only one is constant, make it B. */
5500 if (GET_CODE (a) == CONST_INT)
5501 tmp = a, a = b, b = tmp;
5503 /* If first constant, both constant, so don't need multiply. */
5504 if (GET_CODE (a) == CONST_INT)
5505 return 1;
5507 /* If second not constant, neither is constant, so would need multiply. */
5508 if (GET_CODE (b) != CONST_INT)
5509 return 0;
5511 /* One operand is constant, so might not need multiply insn. Generate the
5512 code for the multiply and see if a call or multiply, or long sequence
5513 of insns is generated. */
5515 rtl_obstack = &temp_obstack;
5516 start_sequence ();
5517 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
5518 tmp = gen_sequence ();
5519 end_sequence ();
5521 if (GET_CODE (tmp) == SEQUENCE)
5523 if (XVEC (tmp, 0) == 0)
5524 win = 1;
5525 else if (XVECLEN (tmp, 0) > 3)
5526 win = 0;
5527 else
5528 for (i = 0; i < XVECLEN (tmp, 0); i++)
5530 rtx insn = XVECEXP (tmp, 0, i);
5532 if (GET_CODE (insn) != INSN
5533 || (GET_CODE (PATTERN (insn)) == SET
5534 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
5535 || (GET_CODE (PATTERN (insn)) == PARALLEL
5536 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
5537 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
5539 win = 0;
5540 break;
5544 else if (GET_CODE (tmp) == SET
5545 && GET_CODE (SET_SRC (tmp)) == MULT)
5546 win = 0;
5547 else if (GET_CODE (tmp) == PARALLEL
5548 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
5549 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
5550 win = 0;
5552 /* Free any storage we obtained in generating this multiply and restore rtl
5553 allocation to its normal obstack. */
5554 obstack_free (&temp_obstack, storage);
5555 rtl_obstack = old_rtl_obstack;
5557 return win;
5560 /* Check to see if loop can be terminated by a "decrement and branch until
5561 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
5562 Also try reversing an increment loop to a decrement loop
5563 to see if the optimization can be performed.
5564 Value is nonzero if optimization was performed. */
5566 /* This is useful even if the architecture doesn't have such an insn,
5567 because it might change a loops which increments from 0 to n to a loop
5568 which decrements from n to 0. A loop that decrements to zero is usually
5569 faster than one that increments from zero. */
5571 /* ??? This could be rewritten to use some of the loop unrolling procedures,
5572 such as approx_final_value, biv_total_increment, loop_iterations, and
5573 final_[bg]iv_value. */
5575 static int
5576 check_dbra_loop (loop_end, insn_count, loop_start)
5577 rtx loop_end;
5578 int insn_count;
5579 rtx loop_start;
5581 struct iv_class *bl;
5582 rtx reg;
5583 rtx jump_label;
5584 rtx final_value;
5585 rtx start_value;
5586 enum rtx_code branch_code;
5587 rtx new_add_val;
5588 rtx comparison;
5589 rtx before_comparison;
5590 rtx p;
5592 /* If last insn is a conditional branch, and the insn before tests a
5593 register value, try to optimize it. Otherwise, we can't do anything. */
5595 comparison = get_condition_for_loop (PREV_INSN (loop_end));
5596 if (comparison == 0)
5597 return 0;
5599 /* Check all of the bivs to see if the compare uses one of them.
5600 Skip biv's set more than once because we can't guarantee that
5601 it will be zero on the last iteration. Also skip if the biv is
5602 used between its update and the test insn. */
5604 for (bl = loop_iv_list; bl; bl = bl->next)
5606 if (bl->biv_count == 1
5607 && bl->biv->dest_reg == XEXP (comparison, 0)
5608 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
5609 PREV_INSN (PREV_INSN (loop_end))))
5610 break;
5613 if (! bl)
5614 return 0;
5616 /* Look for the case where the basic induction variable is always
5617 nonnegative, and equals zero on the last iteration.
5618 In this case, add a reg_note REG_NONNEG, which allows the
5619 m68k DBRA instruction to be used. */
5621 if (((GET_CODE (comparison) == GT
5622 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
5623 && INTVAL (XEXP (comparison, 1)) == -1)
5624 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
5625 && GET_CODE (bl->biv->add_val) == CONST_INT
5626 && INTVAL (bl->biv->add_val) < 0)
5628 /* Initial value must be greater than 0,
5629 init_val % -dec_value == 0 to ensure that it equals zero on
5630 the last iteration */
5632 if (GET_CODE (bl->initial_value) == CONST_INT
5633 && INTVAL (bl->initial_value) > 0
5634 && (INTVAL (bl->initial_value) %
5635 (-INTVAL (bl->biv->add_val))) == 0)
5637 /* register always nonnegative, add REG_NOTE to branch */
5638 REG_NOTES (PREV_INSN (loop_end))
5639 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5640 REG_NOTES (PREV_INSN (loop_end)));
5641 bl->nonneg = 1;
5643 return 1;
5646 /* If the decrement is 1 and the value was tested as >= 0 before
5647 the loop, then we can safely optimize. */
5648 for (p = loop_start; p; p = PREV_INSN (p))
5650 if (GET_CODE (p) == CODE_LABEL)
5651 break;
5652 if (GET_CODE (p) != JUMP_INSN)
5653 continue;
5655 before_comparison = get_condition_for_loop (p);
5656 if (before_comparison
5657 && XEXP (before_comparison, 0) == bl->biv->dest_reg
5658 && GET_CODE (before_comparison) == LT
5659 && XEXP (before_comparison, 1) == const0_rtx
5660 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
5661 && INTVAL (bl->biv->add_val) == -1)
5663 REG_NOTES (PREV_INSN (loop_end))
5664 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5665 REG_NOTES (PREV_INSN (loop_end)));
5666 bl->nonneg = 1;
5668 return 1;
5672 else if (num_mem_sets <= 1)
5674 /* Try to change inc to dec, so can apply above optimization. */
5675 /* Can do this if:
5676 all registers modified are induction variables or invariant,
5677 all memory references have non-overlapping addresses
5678 (obviously true if only one write)
5679 allow 2 insns for the compare/jump at the end of the loop. */
5680 int num_nonfixed_reads = 0;
5681 /* 1 if the iteration var is used only to count iterations. */
5682 int no_use_except_counting = 0;
5684 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
5685 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5686 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
5688 if (bl->giv_count == 0
5689 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
5691 rtx bivreg = regno_reg_rtx[bl->regno];
5693 /* If there are no givs for this biv, and the only exit is the
5694 fall through at the end of the the loop, then
5695 see if perhaps there are no uses except to count. */
5696 no_use_except_counting = 1;
5697 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
5698 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5700 rtx set = single_set (p);
5702 if (set && GET_CODE (SET_DEST (set)) == REG
5703 && REGNO (SET_DEST (set)) == bl->regno)
5704 /* An insn that sets the biv is okay. */
5706 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
5707 || p == prev_nonnote_insn (loop_end))
5708 /* Don't bother about the end test. */
5710 else if (reg_mentioned_p (bivreg, PATTERN (p)))
5711 /* Any other use of the biv is no good. */
5713 no_use_except_counting = 0;
5714 break;
5719 /* This code only acts for innermost loops. Also it simplifies
5720 the memory address check by only reversing loops with
5721 zero or one memory access.
5722 Two memory accesses could involve parts of the same array,
5723 and that can't be reversed. */
5725 if (num_nonfixed_reads <= 1
5726 && !loop_has_call
5727 && !loop_has_volatile
5728 && (no_use_except_counting
5729 || (bl->giv_count + bl->biv_count + num_mem_sets
5730 + num_movables + 2 == insn_count)))
5732 rtx condition = get_condition_for_loop (PREV_INSN (loop_end));
5733 int win;
5734 rtx tem;
5736 /* Loop can be reversed. */
5737 if (loop_dump_stream)
5738 fprintf (loop_dump_stream, "Can reverse loop\n");
5740 /* Now check other conditions:
5741 initial_value must be zero,
5742 final_value % add_val == 0, so that when reversed, the
5743 biv will be zero on the last iteration.
5745 This test can probably be improved since +/- 1 in the constant
5746 can be obtained by changing LT to LE and vice versa; this is
5747 confusing. */
5749 if (comparison && bl->initial_value == const0_rtx
5750 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
5751 /* LE gets turned into LT */
5752 && GET_CODE (comparison) == LT
5753 && (INTVAL (XEXP (comparison, 1))
5754 % INTVAL (bl->biv->add_val)) == 0)
5756 /* Register will always be nonnegative, with value
5757 0 on last iteration if loop reversed */
5759 /* Save some info needed to produce the new insns. */
5760 reg = bl->biv->dest_reg;
5761 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
5762 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
5764 final_value = XEXP (comparison, 1);
5765 start_value = GEN_INT (INTVAL (XEXP (comparison, 1))
5766 - INTVAL (bl->biv->add_val));
5768 /* Initialize biv to start_value before loop start.
5769 The old initializing insn will be deleted as a
5770 dead store by flow.c. */
5771 emit_insn_before (gen_move_insn (reg, start_value), loop_start);
5773 /* Add insn to decrement register, and delete insn
5774 that incremented the register. */
5775 p = emit_insn_before (gen_add2_insn (reg, new_add_val),
5776 bl->biv->insn);
5777 delete_insn (bl->biv->insn);
5779 /* Update biv info to reflect its new status. */
5780 bl->biv->insn = p;
5781 bl->initial_value = start_value;
5782 bl->biv->add_val = new_add_val;
5784 /* Inc LABEL_NUSES so that delete_insn will
5785 not delete the label. */
5786 LABEL_NUSES (XEXP (jump_label, 0)) ++;
5788 /* Emit an insn after the end of the loop to set the biv's
5789 proper exit value if it is used anywhere outside the loop. */
5790 if ((regno_last_uid[bl->regno]
5791 != INSN_UID (PREV_INSN (PREV_INSN (loop_end))))
5792 || ! bl->init_insn
5793 || regno_first_uid[bl->regno] != INSN_UID (bl->init_insn))
5794 emit_insn_after (gen_move_insn (reg, final_value),
5795 loop_end);
5797 /* Delete compare/branch at end of loop. */
5798 delete_insn (PREV_INSN (loop_end));
5799 delete_insn (PREV_INSN (loop_end));
5801 /* Add new compare/branch insn at end of loop. */
5802 start_sequence ();
5803 emit_cmp_insn (reg, const0_rtx, GE, NULL_RTX,
5804 GET_MODE (reg), 0, 0);
5805 emit_jump_insn (gen_bge (XEXP (jump_label, 0)));
5806 tem = gen_sequence ();
5807 end_sequence ();
5808 emit_jump_insn_before (tem, loop_end);
5810 for (tem = PREV_INSN (loop_end);
5811 tem && GET_CODE (tem) != JUMP_INSN; tem = PREV_INSN (tem))
5813 if (tem)
5815 JUMP_LABEL (tem) = XEXP (jump_label, 0);
5817 /* Increment of LABEL_NUSES done above. */
5818 /* Register is now always nonnegative,
5819 so add REG_NONNEG note to the branch. */
5820 REG_NOTES (tem) = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5821 REG_NOTES (tem));
5824 bl->nonneg = 1;
5826 /* Mark that this biv has been reversed. Each giv which depends
5827 on this biv, and which is also live past the end of the loop
5828 will have to be fixed up. */
5830 bl->reversed = 1;
5832 if (loop_dump_stream)
5833 fprintf (loop_dump_stream,
5834 "Reversed loop and added reg_nonneg\n");
5836 return 1;
5841 return 0;
5844 /* Verify whether the biv BL appears to be eliminable,
5845 based on the insns in the loop that refer to it.
5846 LOOP_START is the first insn of the loop, and END is the end insn.
5848 If ELIMINATE_P is non-zero, actually do the elimination.
5850 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
5851 determine whether invariant insns should be placed inside or at the
5852 start of the loop. */
5854 static int
5855 maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
5856 struct iv_class *bl;
5857 rtx loop_start;
5858 rtx end;
5859 int eliminate_p;
5860 int threshold, insn_count;
5862 rtx reg = bl->biv->dest_reg;
5863 rtx p, set;
5864 struct induction *v;
5866 /* Scan all insns in the loop, stopping if we find one that uses the
5867 biv in a way that we cannot eliminate. */
5869 for (p = loop_start; p != end; p = NEXT_INSN (p))
5871 enum rtx_code code = GET_CODE (p);
5872 rtx where = threshold >= insn_count ? loop_start : p;
5874 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
5875 && reg_mentioned_p (reg, PATTERN (p))
5876 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
5878 if (loop_dump_stream)
5879 fprintf (loop_dump_stream,
5880 "Cannot eliminate biv %d: biv used in insn %d.\n",
5881 bl->regno, INSN_UID (p));
5882 break;
5886 if (p == end)
5888 if (loop_dump_stream)
5889 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
5890 bl->regno, eliminate_p ? "was" : "can be");
5891 return 1;
5894 return 0;
5897 /* If BL appears in X (part of the pattern of INSN), see if we can
5898 eliminate its use. If so, return 1. If not, return 0.
5900 If BIV does not appear in X, return 1.
5902 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
5903 where extra insns should be added. Depending on how many items have been
5904 moved out of the loop, it will either be before INSN or at the start of
5905 the loop. */
5907 static int
5908 maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
5909 rtx x, insn;
5910 struct iv_class *bl;
5911 int eliminate_p;
5912 rtx where;
5914 enum rtx_code code = GET_CODE (x);
5915 rtx reg = bl->biv->dest_reg;
5916 enum machine_mode mode = GET_MODE (reg);
5917 struct induction *v;
5918 rtx arg, new, tem;
5919 int arg_operand;
5920 char *fmt;
5921 int i, j;
5923 switch (code)
5925 case REG:
5926 /* If we haven't already been able to do something with this BIV,
5927 we can't eliminate it. */
5928 if (x == reg)
5929 return 0;
5930 return 1;
5932 case SET:
5933 /* If this sets the BIV, it is not a problem. */
5934 if (SET_DEST (x) == reg)
5935 return 1;
5937 /* If this is an insn that defines a giv, it is also ok because
5938 it will go away when the giv is reduced. */
5939 for (v = bl->giv; v; v = v->next_iv)
5940 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
5941 return 1;
5943 #ifdef HAVE_cc0
5944 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
5946 /* Can replace with any giv that was reduced and
5947 that has (MULT_VAL != 0) and (ADD_VAL == 0).
5948 Require a constant for MULT_VAL, so we know it's nonzero. */
5950 for (v = bl->giv; v; v = v->next_iv)
5951 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
5952 && v->add_val == const0_rtx
5953 && ! v->ignore && ! v->maybe_dead
5954 && v->mode == mode)
5956 if (! eliminate_p)
5957 return 1;
5959 /* If the giv has the opposite direction of change,
5960 then reverse the comparison. */
5961 if (INTVAL (v->mult_val) < 0)
5962 new = gen_rtx (COMPARE, GET_MODE (v->new_reg),
5963 const0_rtx, v->new_reg);
5964 else
5965 new = v->new_reg;
5967 /* We can probably test that giv's reduced reg. */
5968 if (validate_change (insn, &SET_SRC (x), new, 0))
5969 return 1;
5972 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
5973 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
5974 Require a constant for MULT_VAL, so we know it's nonzero. */
5976 for (v = bl->giv; v; v = v->next_iv)
5977 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
5978 && ! v->ignore && ! v->maybe_dead
5979 && v->mode == mode)
5981 if (! eliminate_p)
5982 return 1;
5984 /* If the giv has the opposite direction of change,
5985 then reverse the comparison. */
5986 if (INTVAL (v->mult_val) < 0)
5987 new = gen_rtx (COMPARE, VOIDmode, copy_rtx (v->add_val),
5988 v->new_reg);
5989 else
5990 new = gen_rtx (COMPARE, VOIDmode, v->new_reg,
5991 copy_rtx (v->add_val));
5993 /* Replace biv with the giv's reduced register. */
5994 update_reg_last_use (v->add_val, insn);
5995 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
5996 return 1;
5998 /* Insn doesn't support that constant or invariant. Copy it
5999 into a register (it will be a loop invariant.) */
6000 tem = gen_reg_rtx (GET_MODE (v->new_reg));
6002 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
6003 where);
6005 if (validate_change (insn, &SET_SRC (PATTERN (insn)),
6006 gen_rtx (COMPARE, VOIDmode,
6007 v->new_reg, tem), 0))
6008 return 1;
6011 #endif
6012 break;
6014 case COMPARE:
6015 case EQ: case NE:
6016 case GT: case GE: case GTU: case GEU:
6017 case LT: case LE: case LTU: case LEU:
6018 /* See if either argument is the biv. */
6019 if (XEXP (x, 0) == reg)
6020 arg = XEXP (x, 1), arg_operand = 1;
6021 else if (XEXP (x, 1) == reg)
6022 arg = XEXP (x, 0), arg_operand = 0;
6023 else
6024 break;
6026 if (CONSTANT_P (arg))
6028 /* First try to replace with any giv that has constant positive
6029 mult_val and constant add_val. We might be able to support
6030 negative mult_val, but it seems complex to do it in general. */
6032 for (v = bl->giv; v; v = v->next_iv)
6033 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6034 && CONSTANT_P (v->add_val)
6035 && ! v->ignore && ! v->maybe_dead
6036 && v->mode == mode)
6038 if (! eliminate_p)
6039 return 1;
6041 /* Replace biv with the giv's reduced reg. */
6042 XEXP (x, 1-arg_operand) = v->new_reg;
6044 /* If all constants are actually constant integers and
6045 the derived constant can be directly placed in the COMPARE,
6046 do so. */
6047 if (GET_CODE (arg) == CONST_INT
6048 && GET_CODE (v->mult_val) == CONST_INT
6049 && GET_CODE (v->add_val) == CONST_INT
6050 && validate_change (insn, &XEXP (x, arg_operand),
6051 GEN_INT (INTVAL (arg)
6052 * INTVAL (v->mult_val)
6053 + INTVAL (v->add_val)), 0))
6054 return 1;
6056 /* Otherwise, load it into a register. */
6057 tem = gen_reg_rtx (mode);
6058 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6059 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
6060 return 1;
6062 /* If that failed, put back the change we made above. */
6063 XEXP (x, 1-arg_operand) = reg;
6066 /* Look for giv with positive constant mult_val and nonconst add_val.
6067 Insert insns to calculate new compare value. */
6069 for (v = bl->giv; v; v = v->next_iv)
6070 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6071 && ! v->ignore && ! v->maybe_dead
6072 && v->mode == mode)
6074 rtx tem;
6076 if (! eliminate_p)
6077 return 1;
6079 tem = gen_reg_rtx (mode);
6081 /* Replace biv with giv's reduced register. */
6082 validate_change (insn, &XEXP (x, 1 - arg_operand),
6083 v->new_reg, 1);
6085 /* Compute value to compare against. */
6086 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6087 /* Use it in this insn. */
6088 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6089 if (apply_change_group ())
6090 return 1;
6093 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
6095 if (invariant_p (arg) == 1)
6097 /* Look for giv with constant positive mult_val and nonconst
6098 add_val. Insert insns to compute new compare value. */
6100 for (v = bl->giv; v; v = v->next_iv)
6101 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6102 && ! v->ignore && ! v->maybe_dead
6103 && v->mode == mode)
6105 rtx tem;
6107 if (! eliminate_p)
6108 return 1;
6110 tem = gen_reg_rtx (mode);
6112 /* Replace biv with giv's reduced register. */
6113 validate_change (insn, &XEXP (x, 1 - arg_operand),
6114 v->new_reg, 1);
6116 /* Compute value to compare against. */
6117 emit_iv_add_mult (arg, v->mult_val, v->add_val,
6118 tem, where);
6119 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6120 if (apply_change_group ())
6121 return 1;
6125 /* This code has problems. Basically, you can't know when
6126 seeing if we will eliminate BL, whether a particular giv
6127 of ARG will be reduced. If it isn't going to be reduced,
6128 we can't eliminate BL. We can try forcing it to be reduced,
6129 but that can generate poor code.
6131 The problem is that the benefit of reducing TV, below should
6132 be increased if BL can actually be eliminated, but this means
6133 we might have to do a topological sort of the order in which
6134 we try to process biv. It doesn't seem worthwhile to do
6135 this sort of thing now. */
6137 #if 0
6138 /* Otherwise the reg compared with had better be a biv. */
6139 if (GET_CODE (arg) != REG
6140 || reg_iv_type[REGNO (arg)] != BASIC_INDUCT)
6141 return 0;
6143 /* Look for a pair of givs, one for each biv,
6144 with identical coefficients. */
6145 for (v = bl->giv; v; v = v->next_iv)
6147 struct induction *tv;
6149 if (v->ignore || v->maybe_dead || v->mode != mode)
6150 continue;
6152 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
6153 if (! tv->ignore && ! tv->maybe_dead
6154 && rtx_equal_p (tv->mult_val, v->mult_val)
6155 && rtx_equal_p (tv->add_val, v->add_val)
6156 && tv->mode == mode)
6158 if (! eliminate_p)
6159 return 1;
6161 /* Replace biv with its giv's reduced reg. */
6162 XEXP (x, 1-arg_operand) = v->new_reg;
6163 /* Replace other operand with the other giv's
6164 reduced reg. */
6165 XEXP (x, arg_operand) = tv->new_reg;
6166 return 1;
6169 #endif
6172 /* If we get here, the biv can't be eliminated. */
6173 return 0;
6175 case MEM:
6176 /* If this address is a DEST_ADDR giv, it doesn't matter if the
6177 biv is used in it, since it will be replaced. */
6178 for (v = bl->giv; v; v = v->next_iv)
6179 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
6180 return 1;
6181 break;
6184 /* See if any subexpression fails elimination. */
6185 fmt = GET_RTX_FORMAT (code);
6186 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6188 switch (fmt[i])
6190 case 'e':
6191 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
6192 eliminate_p, where))
6193 return 0;
6194 break;
6196 case 'E':
6197 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6198 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
6199 eliminate_p, where))
6200 return 0;
6201 break;
6205 return 1;
6208 /* Return nonzero if the last use of REG
6209 is in an insn following INSN in the same basic block. */
6211 static int
6212 last_use_this_basic_block (reg, insn)
6213 rtx reg;
6214 rtx insn;
6216 rtx n;
6217 for (n = insn;
6218 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
6219 n = NEXT_INSN (n))
6221 if (regno_last_uid[REGNO (reg)] == INSN_UID (n))
6222 return 1;
6224 return 0;
6227 /* Called via `note_stores' to record the initial value of a biv. Here we
6228 just record the location of the set and process it later. */
6230 static void
6231 record_initial (dest, set)
6232 rtx dest;
6233 rtx set;
6235 struct iv_class *bl;
6237 if (GET_CODE (dest) != REG
6238 || REGNO (dest) >= max_reg_before_loop
6239 || reg_iv_type[REGNO (dest)] != BASIC_INDUCT
6240 /* Reject this insn if the source isn't valid for the mode of DEST. */
6241 || GET_MODE (dest) != GET_MODE (SET_DEST (set)))
6242 return;
6244 bl = reg_biv_class[REGNO (dest)];
6246 /* If this is the first set found, record it. */
6247 if (bl->init_insn == 0)
6249 bl->init_insn = note_insn;
6250 bl->init_set = set;
6254 /* If any of the registers in X are "old" and currently have a last use earlier
6255 than INSN, update them to have a last use of INSN. Their actual last use
6256 will be the previous insn but it will not have a valid uid_luid so we can't
6257 use it. */
6259 static void
6260 update_reg_last_use (x, insn)
6261 rtx x;
6262 rtx insn;
6264 /* Check for the case where INSN does not have a valid luid. In this case,
6265 there is no need to modify the regno_last_uid, as this can only happen
6266 when code is inserted after the loop_end to set a pseudo's final value,
6267 and hence this insn will never be the last use of x. */
6268 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
6269 && INSN_UID (insn) < max_uid_for_loop
6270 && uid_luid[regno_last_uid[REGNO (x)]] < uid_luid[INSN_UID (insn)])
6271 regno_last_uid[REGNO (x)] = INSN_UID (insn);
6272 else
6274 register int i, j;
6275 register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
6276 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6278 if (fmt[i] == 'e')
6279 update_reg_last_use (XEXP (x, i), insn);
6280 else if (fmt[i] == 'E')
6281 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6282 update_reg_last_use (XVECEXP (x, i, j), insn);
6287 /* Given a jump insn JUMP, return the condition that will cause it to branch
6288 to its JUMP_LABEL. If the condition cannot be understood, or is an
6289 inequality floating-point comparison which needs to be reversed, 0 will
6290 be returned.
6292 If EARLIEST is non-zero, it is a pointer to a place where the earliest
6293 insn used in locating the condition was found. If a replacement test
6294 of the condition is desired, it should be placed in front of that
6295 insn and we will be sure that the inputs are still valid.
6297 The condition will be returned in a canonical form to simplify testing by
6298 callers. Specifically:
6300 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
6301 (2) Both operands will be machine operands; (cc0) will have been replaced.
6302 (3) If an operand is a constant, it will be the second operand.
6303 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
6304 for GE, GEU, and LEU. */
6307 get_condition (jump, earliest)
6308 rtx jump;
6309 rtx *earliest;
6311 enum rtx_code code;
6312 rtx prev = jump;
6313 rtx set;
6314 rtx tem;
6315 rtx op0, op1;
6316 int reverse_code = 0;
6317 int did_reverse_condition = 0;
6319 /* If this is not a standard conditional jump, we can't parse it. */
6320 if (GET_CODE (jump) != JUMP_INSN
6321 || ! condjump_p (jump) || simplejump_p (jump))
6322 return 0;
6324 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
6325 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
6326 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
6328 if (earliest)
6329 *earliest = jump;
6331 /* If this branches to JUMP_LABEL when the condition is false, reverse
6332 the condition. */
6333 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
6334 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
6335 code = reverse_condition (code), did_reverse_condition ^= 1;
6337 /* If we are comparing a register with zero, see if the register is set
6338 in the previous insn to a COMPARE or a comparison operation. Perform
6339 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
6340 in cse.c */
6342 while (GET_RTX_CLASS (code) == '<' && op1 == const0_rtx)
6344 /* Set non-zero when we find something of interest. */
6345 rtx x = 0;
6347 #ifdef HAVE_cc0
6348 /* If comparison with cc0, import actual comparison from compare
6349 insn. */
6350 if (op0 == cc0_rtx)
6352 if ((prev = prev_nonnote_insn (prev)) == 0
6353 || GET_CODE (prev) != INSN
6354 || (set = single_set (prev)) == 0
6355 || SET_DEST (set) != cc0_rtx)
6356 return 0;
6358 op0 = SET_SRC (set);
6359 op1 = CONST0_RTX (GET_MODE (op0));
6360 if (earliest)
6361 *earliest = prev;
6363 #endif
6365 /* If this is a COMPARE, pick up the two things being compared. */
6366 if (GET_CODE (op0) == COMPARE)
6368 op1 = XEXP (op0, 1);
6369 op0 = XEXP (op0, 0);
6370 continue;
6372 else if (GET_CODE (op0) != REG)
6373 break;
6375 /* Go back to the previous insn. Stop if it is not an INSN. We also
6376 stop if it isn't a single set or if it has a REG_INC note because
6377 we don't want to bother dealing with it. */
6379 if ((prev = prev_nonnote_insn (prev)) == 0
6380 || GET_CODE (prev) != INSN
6381 || FIND_REG_INC_NOTE (prev, 0)
6382 || (set = single_set (prev)) == 0)
6383 break;
6385 /* If this is setting OP0, get what it sets it to if it looks
6386 relevant. */
6387 if (SET_DEST (set) == op0)
6389 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
6391 if ((GET_CODE (SET_SRC (set)) == COMPARE
6392 || (((code == NE
6393 || (code == LT
6394 && GET_MODE_CLASS (inner_mode) == MODE_INT
6395 && (GET_MODE_BITSIZE (inner_mode)
6396 <= HOST_BITS_PER_WIDE_INT)
6397 && (STORE_FLAG_VALUE
6398 & ((HOST_WIDE_INT) 1
6399 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6400 #ifdef FLOAT_STORE_FLAG_VALUE
6401 || (code == LT
6402 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6403 && FLOAT_STORE_FLAG_VALUE < 0)
6404 #endif
6406 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')))
6407 x = SET_SRC (set);
6408 else if (((code == EQ
6409 || (code == GE
6410 && (GET_MODE_BITSIZE (inner_mode)
6411 <= HOST_BITS_PER_WIDE_INT)
6412 && GET_MODE_CLASS (inner_mode) == MODE_INT
6413 && (STORE_FLAG_VALUE
6414 & ((HOST_WIDE_INT) 1
6415 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6416 #ifdef FLOAT_STORE_FLAG_VALUE
6417 || (code == GE
6418 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6419 && FLOAT_STORE_FLAG_VALUE < 0)
6420 #endif
6422 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')
6424 /* We might have reversed a LT to get a GE here. But this wasn't
6425 actually the comparison of data, so we don't flag that we
6426 have had to reverse the condition. */
6427 did_reverse_condition ^= 1;
6428 reverse_code = 1;
6429 x = SET_SRC (set);
6433 else if (reg_set_p (op0, prev))
6434 /* If this sets OP0, but not directly, we have to give up. */
6435 break;
6437 if (x)
6439 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
6440 code = GET_CODE (x);
6441 if (reverse_code)
6443 code = reverse_condition (code);
6444 did_reverse_condition ^= 1;
6445 reverse_code = 0;
6448 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
6449 if (earliest)
6450 *earliest = prev;
6454 /* If constant is first, put it last. */
6455 if (CONSTANT_P (op0))
6456 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
6458 /* If OP0 is the result of a comparison, we weren't able to find what
6459 was really being compared, so fail. */
6460 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6461 return 0;
6463 /* Canonicalize any ordered comparison with integers involving equality
6464 if we can do computations in the relevant mode and we do not
6465 overflow. */
6467 if (GET_CODE (op1) == CONST_INT
6468 && GET_MODE (op0) != VOIDmode
6469 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
6471 HOST_WIDE_INT const_val = INTVAL (op1);
6472 unsigned HOST_WIDE_INT uconst_val = const_val;
6473 unsigned HOST_WIDE_INT max_val
6474 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
6476 switch (code)
6478 case LE:
6479 if (const_val != max_val >> 1)
6480 code = LT, op1 = GEN_INT (const_val + 1);
6481 break;
6483 case GE:
6484 if (const_val
6485 != (((HOST_WIDE_INT) 1
6486 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
6487 code = GT, op1 = GEN_INT (const_val - 1);
6488 break;
6490 case LEU:
6491 if (uconst_val != max_val)
6492 code = LTU, op1 = GEN_INT (uconst_val + 1);
6493 break;
6495 case GEU:
6496 if (uconst_val != 0)
6497 code = GTU, op1 = GEN_INT (uconst_val - 1);
6498 break;
6502 /* If this was floating-point and we reversed anything other than an
6503 EQ or NE, return zero. */
6504 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
6505 && did_reverse_condition && code != NE && code != EQ
6506 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
6507 return 0;
6509 #ifdef HAVE_cc0
6510 /* Never return CC0; return zero instead. */
6511 if (op0 == cc0_rtx)
6512 return 0;
6513 #endif
6515 return gen_rtx (code, VOIDmode, op0, op1);
6518 /* Similar to above routine, except that we also put an invariant last
6519 unless both operands are invariants. */
6522 get_condition_for_loop (x)
6523 rtx x;
6525 rtx comparison = get_condition (x, NULL_PTR);
6527 if (comparison == 0
6528 || ! invariant_p (XEXP (comparison, 0))
6529 || invariant_p (XEXP (comparison, 1)))
6530 return comparison;
6532 return gen_rtx (swap_condition (GET_CODE (comparison)), VOIDmode,
6533 XEXP (comparison, 1), XEXP (comparison, 0));