Initial revision
[official-gcc.git] / gcc / global.c
blob1a9158a073fa8106458a8d0848631791f9249694
1 /* Allocate registers for pseudo-registers that span basic blocks.
2 Copyright (C) 1987, 1988, 1991 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
21 #include <stdio.h>
22 #include "config.h"
23 #include "rtl.h"
24 #include "flags.h"
25 #include "basic-block.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "insn-config.h"
29 #include "output.h"
31 /* This pass of the compiler performs global register allocation.
32 It assigns hard register numbers to all the pseudo registers
33 that were not handled in local_alloc. Assignments are recorded
34 in the vector reg_renumber, not by changing the rtl code.
35 (Such changes are made by final). The entry point is
36 the function global_alloc.
38 After allocation is complete, the reload pass is run as a subroutine
39 of this pass, so that when a pseudo reg loses its hard reg due to
40 spilling it is possible to make a second attempt to find a hard
41 reg for it. The reload pass is independent in other respects
42 and it is run even when stupid register allocation is in use.
44 1. count the pseudo-registers still needing allocation
45 and assign allocation-numbers (allocnos) to them.
46 Set up tables reg_allocno and allocno_reg to map
47 reg numbers to allocnos and vice versa.
48 max_allocno gets the number of allocnos in use.
50 2. Allocate a max_allocno by max_allocno conflict bit matrix and clear it.
51 Allocate a max_allocno by FIRST_PSEUDO_REGISTER conflict matrix
52 for conflicts between allocnos and explicit hard register use
53 (which includes use of pseudo-registers allocated by local_alloc).
55 3. for each basic block
56 walk forward through the block, recording which
57 unallocated registers and which hardware registers are live.
58 Build the conflict matrix between the unallocated registers
59 and another of unallocated registers versus hardware registers.
60 Also record the preferred hardware registers
61 for each unallocated one.
63 4. Sort a table of the allocnos into order of
64 desirability of the variables.
66 5. Allocate the variables in that order; each if possible into
67 a preferred register, else into another register. */
69 /* Number of pseudo-registers still requiring allocation
70 (not allocated by local_allocate). */
72 static int max_allocno;
74 /* Indexed by (pseudo) reg number, gives the allocno, or -1
75 for pseudo registers already allocated by local_allocate. */
77 static int *reg_allocno;
79 /* Indexed by allocno, gives the reg number. */
81 static int *allocno_reg;
83 /* A vector of the integers from 0 to max_allocno-1,
84 sorted in the order of first-to-be-allocated first. */
86 static int *allocno_order;
88 /* Indexed by an allocno, gives the number of consecutive
89 hard registers needed by that pseudo reg. */
91 static int *allocno_size;
93 /* Indexed by (pseudo) reg number, gives the number of another
94 lower-numbered pseudo reg which can share a hard reg with this pseudo
95 *even if the two pseudos would otherwise appear to conflict*. */
97 static int *reg_may_share;
99 /* Define the number of bits in each element of `conflicts' and what
100 type that element has. We use the largest integer format on the
101 host machine. */
103 #define INT_BITS HOST_BITS_PER_WIDE_INT
104 #define INT_TYPE HOST_WIDE_INT
106 /* max_allocno by max_allocno array of bits,
107 recording whether two allocno's conflict (can't go in the same
108 hardware register).
110 `conflicts' is not symmetric; a conflict between allocno's i and j
111 is recorded either in element i,j or in element j,i. */
113 static INT_TYPE *conflicts;
115 /* Number of ints require to hold max_allocno bits.
116 This is the length of a row in `conflicts'. */
118 static int allocno_row_words;
120 /* Two macros to test or store 1 in an element of `conflicts'. */
122 #define CONFLICTP(I, J) \
123 (conflicts[(I) * allocno_row_words + (J) / INT_BITS] \
124 & ((INT_TYPE) 1 << ((J) % INT_BITS)))
126 #define SET_CONFLICT(I, J) \
127 (conflicts[(I) * allocno_row_words + (J) / INT_BITS] \
128 |= ((INT_TYPE) 1 << ((J) % INT_BITS)))
130 /* Set of hard regs currently live (during scan of all insns). */
132 static HARD_REG_SET hard_regs_live;
134 /* Indexed by N, set of hard regs conflicting with allocno N. */
136 static HARD_REG_SET *hard_reg_conflicts;
138 /* Indexed by N, set of hard regs preferred by allocno N.
139 This is used to make allocnos go into regs that are copied to or from them,
140 when possible, to reduce register shuffling. */
142 static HARD_REG_SET *hard_reg_preferences;
144 /* Similar, but just counts register preferences made in simple copy
145 operations, rather than arithmetic. These are given priority because
146 we can always eliminate an insn by using these, but using a register
147 in the above list won't always eliminate an insn. */
149 static HARD_REG_SET *hard_reg_copy_preferences;
151 /* Similar to hard_reg_preferences, but includes bits for subsequent
152 registers when an allocno is multi-word. The above variable is used for
153 allocation while this is used to build reg_someone_prefers, below. */
155 static HARD_REG_SET *hard_reg_full_preferences;
157 /* Indexed by N, set of hard registers that some later allocno has a
158 preference for. */
160 static HARD_REG_SET *regs_someone_prefers;
162 /* Set of registers that global-alloc isn't supposed to use. */
164 static HARD_REG_SET no_global_alloc_regs;
166 /* Set of registers used so far. */
168 static HARD_REG_SET regs_used_so_far;
170 /* Number of calls crossed by each allocno. */
172 static int *allocno_calls_crossed;
174 /* Number of refs (weighted) to each allocno. */
176 static int *allocno_n_refs;
178 /* Guess at live length of each allocno.
179 This is actually the max of the live lengths of the regs. */
181 static int *allocno_live_length;
183 /* Number of refs (weighted) to each hard reg, as used by local alloc.
184 It is zero for a reg that contains global pseudos or is explicitly used. */
186 static int local_reg_n_refs[FIRST_PSEUDO_REGISTER];
188 /* Guess at live length of each hard reg, as used by local alloc.
189 This is actually the sum of the live lengths of the specific regs. */
191 static int local_reg_live_length[FIRST_PSEUDO_REGISTER];
193 /* Test a bit in TABLE, a vector of HARD_REG_SETs,
194 for vector element I, and hard register number J. */
196 #define REGBITP(TABLE, I, J) TEST_HARD_REG_BIT (TABLE[I], J)
198 /* Set to 1 a bit in a vector of HARD_REG_SETs. Works like REGBITP. */
200 #define SET_REGBIT(TABLE, I, J) SET_HARD_REG_BIT (TABLE[I], J)
202 /* Bit mask for allocnos live at current point in the scan. */
204 static INT_TYPE *allocnos_live;
206 /* Test, set or clear bit number I in allocnos_live,
207 a bit vector indexed by allocno. */
209 #define ALLOCNO_LIVE_P(I) \
210 (allocnos_live[(I) / INT_BITS] & ((INT_TYPE) 1 << ((I) % INT_BITS)))
212 #define SET_ALLOCNO_LIVE(I) \
213 (allocnos_live[(I) / INT_BITS] |= ((INT_TYPE) 1 << ((I) % INT_BITS)))
215 #define CLEAR_ALLOCNO_LIVE(I) \
216 (allocnos_live[(I) / INT_BITS] &= ~((INT_TYPE) 1 << ((I) % INT_BITS)))
218 /* This is turned off because it doesn't work right for DImode.
219 (And it is only used for DImode, so the other cases are worthless.)
220 The problem is that it isn't true that there is NO possibility of conflict;
221 only that there is no conflict if the two pseudos get the exact same regs.
222 If they were allocated with a partial overlap, there would be a conflict.
223 We can't safely turn off the conflict unless we have another way to
224 prevent the partial overlap.
226 Idea: change hard_reg_conflicts so that instead of recording which
227 hard regs the allocno may not overlap, it records where the allocno
228 may not start. Change both where it is used and where it is updated.
229 Then there is a way to record that (reg:DI 108) may start at 10
230 but not at 9 or 11. There is still the question of how to record
231 this semi-conflict between two pseudos. */
232 #if 0
233 /* Reg pairs for which conflict after the current insn
234 is inhibited by a REG_NO_CONFLICT note.
235 If the table gets full, we ignore any other notes--that is conservative. */
236 #define NUM_NO_CONFLICT_PAIRS 4
237 /* Number of pairs in use in this insn. */
238 int n_no_conflict_pairs;
239 static struct { int allocno1, allocno2;}
240 no_conflict_pairs[NUM_NO_CONFLICT_PAIRS];
241 #endif /* 0 */
243 /* Record all regs that are set in any one insn.
244 Communication from mark_reg_{store,clobber} and global_conflicts. */
246 static rtx *regs_set;
247 static int n_regs_set;
249 /* All register that can be eliminated. */
251 static HARD_REG_SET eliminable_regset;
253 static int allocno_compare ();
254 static void mark_reg_store ();
255 static void mark_reg_clobber ();
256 static void mark_reg_conflicts ();
257 static void mark_reg_live_nc ();
258 static void mark_reg_death ();
259 static void dump_conflicts ();
260 void dump_global_regs ();
261 static void find_reg ();
262 static void global_conflicts ();
263 static void expand_preferences ();
264 static void prune_preferences ();
265 static void record_conflicts ();
266 static void set_preference ();
268 /* Perform allocation of pseudo-registers not allocated by local_alloc.
269 FILE is a file to output debugging information on,
270 or zero if such output is not desired.
272 Return value is nonzero if reload failed
273 and we must not do any more for this function. */
276 global_alloc (file)
277 FILE *file;
279 #ifdef ELIMINABLE_REGS
280 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
281 #endif
282 register int i;
283 rtx x;
285 max_allocno = 0;
287 /* A machine may have certain hard registers that
288 are safe to use only within a basic block. */
290 CLEAR_HARD_REG_SET (no_global_alloc_regs);
291 #ifdef OVERLAPPING_REGNO_P
292 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
293 if (OVERLAPPING_REGNO_P (i))
294 SET_HARD_REG_BIT (no_global_alloc_regs, i);
295 #endif
297 /* Build the regset of all eliminable registers and show we can't use those
298 that we already know won't be eliminated. */
299 #ifdef ELIMINABLE_REGS
300 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
302 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
304 if (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to)
305 || (eliminables[i].from == HARD_FRAME_POINTER_REGNUM
306 && (! flag_omit_frame_pointer || FRAME_POINTER_REQUIRED)))
307 SET_HARD_REG_BIT (no_global_alloc_regs, eliminables[i].from);
309 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
310 if (!flag_omit_frame_pointer || FRAME_POINTER_REQUIRED)
311 SET_HARD_REG_BIT (no_global_alloc_regs, HARD_FRAME_POINTER_REGNUM);
312 #endif
313 #else
314 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
316 /* If we know we will definitely not be eliminating the frame pointer,
317 don't allocate it. */
318 if (! flag_omit_frame_pointer || FRAME_POINTER_REQUIRED)
319 SET_HARD_REG_BIT (no_global_alloc_regs, FRAME_POINTER_REGNUM);
320 #endif
322 /* Track which registers have already been used. Start with registers
323 explicitly in the rtl, then registers allocated by local register
324 allocation. */
326 CLEAR_HARD_REG_SET (regs_used_so_far);
327 #ifdef LEAF_REGISTERS
328 /* If we are doing the leaf function optimization, and this is a leaf
329 function, it means that the registers that take work to save are those
330 that need a register window. So prefer the ones that can be used in
331 a leaf function. */
333 char *cheap_regs;
334 static char leaf_regs[] = LEAF_REGISTERS;
336 if (only_leaf_regs_used () && leaf_function_p ())
337 cheap_regs = leaf_regs;
338 else
339 cheap_regs = call_used_regs;
340 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
341 if (regs_ever_live[i] || cheap_regs[i])
342 SET_HARD_REG_BIT (regs_used_so_far, i);
344 #else
345 /* We consider registers that do not have to be saved over calls as if
346 they were already used since there is no cost in using them. */
347 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
348 if (regs_ever_live[i] || call_used_regs[i])
349 SET_HARD_REG_BIT (regs_used_so_far, i);
350 #endif
352 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
353 if (reg_renumber[i] >= 0)
354 SET_HARD_REG_BIT (regs_used_so_far, reg_renumber[i]);
356 /* Establish mappings from register number to allocation number
357 and vice versa. In the process, count the allocnos. */
359 reg_allocno = (int *) alloca (max_regno * sizeof (int));
361 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
362 reg_allocno[i] = -1;
364 /* Initialize the shared-hard-reg mapping
365 from the list of pairs that may share. */
366 reg_may_share = (int *) alloca (max_regno * sizeof (int));
367 bzero (reg_may_share, max_regno * sizeof (int));
368 for (x = regs_may_share; x; x = XEXP (XEXP (x, 1), 1))
370 int r1 = REGNO (XEXP (x, 0));
371 int r2 = REGNO (XEXP (XEXP (x, 1), 0));
372 if (r1 > r2)
373 reg_may_share[r1] = r2;
374 else
375 reg_may_share[r2] = r1;
378 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
379 /* Note that reg_live_length[i] < 0 indicates a "constant" reg
380 that we are supposed to refrain from putting in a hard reg.
381 -2 means do make an allocno but don't allocate it. */
382 if (reg_n_refs[i] != 0 && reg_renumber[i] < 0 && reg_live_length[i] != -1
383 /* Don't allocate pseudos that cross calls,
384 if this function receives a nonlocal goto. */
385 && (! current_function_has_nonlocal_label
386 || reg_n_calls_crossed[i] == 0))
388 if (reg_may_share[i] && reg_allocno[reg_may_share[i]] >= 0)
389 reg_allocno[i] = reg_allocno[reg_may_share[i]];
390 else
391 reg_allocno[i] = max_allocno++;
392 if (reg_live_length[i] == 0)
393 abort ();
395 else
396 reg_allocno[i] = -1;
398 allocno_reg = (int *) alloca (max_allocno * sizeof (int));
399 allocno_size = (int *) alloca (max_allocno * sizeof (int));
400 allocno_calls_crossed = (int *) alloca (max_allocno * sizeof (int));
401 allocno_n_refs = (int *) alloca (max_allocno * sizeof (int));
402 allocno_live_length = (int *) alloca (max_allocno * sizeof (int));
403 bzero (allocno_size, max_allocno * sizeof (int));
404 bzero (allocno_calls_crossed, max_allocno * sizeof (int));
405 bzero (allocno_n_refs, max_allocno * sizeof (int));
406 bzero (allocno_live_length, max_allocno * sizeof (int));
408 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
409 if (reg_allocno[i] >= 0)
411 int allocno = reg_allocno[i];
412 allocno_reg[allocno] = i;
413 allocno_size[allocno] = PSEUDO_REGNO_SIZE (i);
414 allocno_calls_crossed[allocno] += reg_n_calls_crossed[i];
415 allocno_n_refs[allocno] += reg_n_refs[i];
416 if (allocno_live_length[allocno] < reg_live_length[i])
417 allocno_live_length[allocno] = reg_live_length[i];
420 /* Calculate amount of usage of each hard reg by pseudos
421 allocated by local-alloc. This is to see if we want to
422 override it. */
423 bzero (local_reg_live_length, sizeof local_reg_live_length);
424 bzero (local_reg_n_refs, sizeof local_reg_n_refs);
425 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
426 if (reg_allocno[i] < 0 && reg_renumber[i] >= 0)
428 int regno = reg_renumber[i];
429 int endregno = regno + HARD_REGNO_NREGS (regno, PSEUDO_REGNO_MODE (i));
430 int j;
432 for (j = regno; j < endregno; j++)
434 local_reg_n_refs[j] += reg_n_refs[i];
435 local_reg_live_length[j] += reg_live_length[i];
439 /* We can't override local-alloc for a reg used not just by local-alloc. */
440 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
441 if (regs_ever_live[i])
442 local_reg_n_refs[i] = 0;
444 /* Allocate the space for the conflict and preference tables and
445 initialize them. */
447 hard_reg_conflicts
448 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
449 bzero (hard_reg_conflicts, max_allocno * sizeof (HARD_REG_SET));
451 hard_reg_preferences
452 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
453 bzero (hard_reg_preferences, max_allocno * sizeof (HARD_REG_SET));
455 hard_reg_copy_preferences
456 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
457 bzero (hard_reg_copy_preferences, max_allocno * sizeof (HARD_REG_SET));
459 hard_reg_full_preferences
460 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
461 bzero (hard_reg_full_preferences, max_allocno * sizeof (HARD_REG_SET));
463 regs_someone_prefers
464 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
465 bzero (regs_someone_prefers, max_allocno * sizeof (HARD_REG_SET));
467 allocno_row_words = (max_allocno + INT_BITS - 1) / INT_BITS;
469 conflicts = (INT_TYPE *) alloca (max_allocno * allocno_row_words
470 * sizeof (INT_TYPE));
471 bzero (conflicts, max_allocno * allocno_row_words
472 * sizeof (INT_TYPE));
474 allocnos_live = (INT_TYPE *) alloca (allocno_row_words * sizeof (INT_TYPE));
476 /* If there is work to be done (at least one reg to allocate),
477 perform global conflict analysis and allocate the regs. */
479 if (max_allocno > 0)
481 /* Scan all the insns and compute the conflicts among allocnos
482 and between allocnos and hard regs. */
484 global_conflicts ();
486 /* Eliminate conflicts between pseudos and eliminable registers. If
487 the register is not eliminated, the pseudo won't really be able to
488 live in the eliminable register, so the conflict doesn't matter.
489 If we do eliminate the register, the conflict will no longer exist.
490 So in either case, we can ignore the conflict. Likewise for
491 preferences. */
493 for (i = 0; i < max_allocno; i++)
495 AND_COMPL_HARD_REG_SET (hard_reg_conflicts[i], eliminable_regset);
496 AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[i],
497 eliminable_regset);
498 AND_COMPL_HARD_REG_SET (hard_reg_preferences[i], eliminable_regset);
501 /* Try to expand the preferences by merging them between allocnos. */
503 expand_preferences ();
505 /* Determine the order to allocate the remaining pseudo registers. */
507 allocno_order = (int *) alloca (max_allocno * sizeof (int));
508 for (i = 0; i < max_allocno; i++)
509 allocno_order[i] = i;
511 /* Default the size to 1, since allocno_compare uses it to divide by.
512 Also convert allocno_live_length of zero to -1. A length of zero
513 can occur when all the registers for that allocno have reg_live_length
514 equal to -2. In this case, we want to make an allocno, but not
515 allocate it. So avoid the divide-by-zero and set it to a low
516 priority. */
518 for (i = 0; i < max_allocno; i++)
520 if (allocno_size[i] == 0)
521 allocno_size[i] = 1;
522 if (allocno_live_length[i] == 0)
523 allocno_live_length[i] = -1;
526 qsort (allocno_order, max_allocno, sizeof (int), allocno_compare);
528 prune_preferences ();
530 if (file)
531 dump_conflicts (file);
533 /* Try allocating them, one by one, in that order,
534 except for parameters marked with reg_live_length[regno] == -2. */
536 for (i = 0; i < max_allocno; i++)
537 if (reg_live_length[allocno_reg[allocno_order[i]]] >= 0)
539 /* If we have more than one register class,
540 first try allocating in the class that is cheapest
541 for this pseudo-reg. If that fails, try any reg. */
542 if (N_REG_CLASSES > 1)
544 find_reg (allocno_order[i], HARD_CONST (0), 0, 0, 0);
545 if (reg_renumber[allocno_reg[allocno_order[i]]] >= 0)
546 continue;
548 if (reg_alternate_class (allocno_reg[allocno_order[i]]) != NO_REGS)
549 find_reg (allocno_order[i], HARD_CONST (0), 1, 0, 0);
553 /* Do the reloads now while the allocno data still exist, so that we can
554 try to assign new hard regs to any pseudo regs that are spilled. */
556 #if 0 /* We need to eliminate regs even if there is no rtl code,
557 for the sake of debugging information. */
558 if (n_basic_blocks > 0)
559 #endif
560 return reload (get_insns (), 1, file);
563 /* Sort predicate for ordering the allocnos.
564 Returns -1 (1) if *v1 should be allocated before (after) *v2. */
566 static int
567 allocno_compare (v1, v2)
568 int *v1, *v2;
570 /* Note that the quotient will never be bigger than
571 the value of floor_log2 times the maximum number of
572 times a register can occur in one insn (surely less than 100).
573 Multiplying this by 10000 can't overflow. */
574 register int pri1
575 = (((double) (floor_log2 (allocno_n_refs[*v1]) * allocno_n_refs[*v1])
576 / (allocno_live_length[*v1] * allocno_size[*v1]))
577 * 10000);
578 register int pri2
579 = (((double) (floor_log2 (allocno_n_refs[*v2]) * allocno_n_refs[*v2])
580 / (allocno_live_length[*v2] * allocno_size[*v2]))
581 * 10000);
582 if (pri2 - pri1)
583 return pri2 - pri1;
585 /* If regs are equally good, sort by allocno,
586 so that the results of qsort leave nothing to chance. */
587 return *v1 - *v2;
590 /* Scan the rtl code and record all conflicts and register preferences in the
591 conflict matrices and preference tables. */
593 static void
594 global_conflicts ()
596 register int b, i;
597 register rtx insn;
598 short *block_start_allocnos;
600 /* Make a vector that mark_reg_{store,clobber} will store in. */
601 regs_set = (rtx *) alloca (max_parallel * sizeof (rtx) * 2);
603 block_start_allocnos = (short *) alloca (max_allocno * sizeof (short));
605 for (b = 0; b < n_basic_blocks; b++)
607 bzero (allocnos_live, allocno_row_words * sizeof (INT_TYPE));
609 /* Initialize table of registers currently live
610 to the state at the beginning of this basic block.
611 This also marks the conflicts among them.
613 For pseudo-regs, there is only one bit for each one
614 no matter how many hard regs it occupies.
615 This is ok; we know the size from PSEUDO_REGNO_SIZE.
616 For explicit hard regs, we cannot know the size that way
617 since one hard reg can be used with various sizes.
618 Therefore, we must require that all the hard regs
619 implicitly live as part of a multi-word hard reg
620 are explicitly marked in basic_block_live_at_start. */
623 register int offset;
624 REGSET_ELT_TYPE bit;
625 register regset old = basic_block_live_at_start[b];
626 int ax = 0;
628 #ifdef HARD_REG_SET
629 hard_regs_live = old[0];
630 #else
631 COPY_HARD_REG_SET (hard_regs_live, old);
632 #endif
633 for (offset = 0, i = 0; offset < regset_size; offset++)
634 if (old[offset] == 0)
635 i += REGSET_ELT_BITS;
636 else
637 for (bit = 1; bit; bit <<= 1, i++)
639 if (i >= max_regno)
640 break;
641 if (old[offset] & bit)
643 register int a = reg_allocno[i];
644 if (a >= 0)
646 SET_ALLOCNO_LIVE (a);
647 block_start_allocnos[ax++] = a;
649 else if ((a = reg_renumber[i]) >= 0)
650 mark_reg_live_nc (a, PSEUDO_REGNO_MODE (i));
654 /* Record that each allocno now live conflicts with each other
655 allocno now live, and with each hard reg now live. */
657 record_conflicts (block_start_allocnos, ax);
660 insn = basic_block_head[b];
662 /* Scan the code of this basic block, noting which allocnos
663 and hard regs are born or die. When one is born,
664 record a conflict with all others currently live. */
666 while (1)
668 register RTX_CODE code = GET_CODE (insn);
669 register rtx link;
671 /* Make regs_set an empty set. */
673 n_regs_set = 0;
675 if (code == INSN || code == CALL_INSN || code == JUMP_INSN)
677 int i = 0;
679 #if 0
680 for (link = REG_NOTES (insn);
681 link && i < NUM_NO_CONFLICT_PAIRS;
682 link = XEXP (link, 1))
683 if (REG_NOTE_KIND (link) == REG_NO_CONFLICT)
685 no_conflict_pairs[i].allocno1
686 = reg_allocno[REGNO (SET_DEST (PATTERN (insn)))];
687 no_conflict_pairs[i].allocno2
688 = reg_allocno[REGNO (XEXP (link, 0))];
689 i++;
691 #endif /* 0 */
693 /* Mark any registers clobbered by INSN as live,
694 so they conflict with the inputs. */
696 note_stores (PATTERN (insn), mark_reg_clobber);
698 /* Mark any registers dead after INSN as dead now. */
700 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
701 if (REG_NOTE_KIND (link) == REG_DEAD)
702 mark_reg_death (XEXP (link, 0));
704 /* Mark any registers set in INSN as live,
705 and mark them as conflicting with all other live regs.
706 Clobbers are processed again, so they conflict with
707 the registers that are set. */
709 note_stores (PATTERN (insn), mark_reg_store);
711 #ifdef AUTO_INC_DEC
712 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
713 if (REG_NOTE_KIND (link) == REG_INC)
714 mark_reg_store (XEXP (link, 0), NULL_RTX);
715 #endif
717 /* If INSN has multiple outputs, then any reg that dies here
718 and is used inside of an output
719 must conflict with the other outputs. */
721 if (GET_CODE (PATTERN (insn)) == PARALLEL && !single_set (insn))
722 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
723 if (REG_NOTE_KIND (link) == REG_DEAD)
725 int used_in_output = 0;
726 int i;
727 rtx reg = XEXP (link, 0);
729 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
731 rtx set = XVECEXP (PATTERN (insn), 0, i);
732 if (GET_CODE (set) == SET
733 && GET_CODE (SET_DEST (set)) != REG
734 && !rtx_equal_p (reg, SET_DEST (set))
735 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
736 used_in_output = 1;
738 if (used_in_output)
739 mark_reg_conflicts (reg);
742 /* Mark any registers set in INSN and then never used. */
744 while (n_regs_set > 0)
745 if (find_regno_note (insn, REG_UNUSED,
746 REGNO (regs_set[--n_regs_set])))
747 mark_reg_death (regs_set[n_regs_set]);
750 if (insn == basic_block_end[b])
751 break;
752 insn = NEXT_INSN (insn);
756 /* Expand the preference information by looking for cases where one allocno
757 dies in an insn that sets an allocno. If those two allocnos don't conflict,
758 merge any preferences between those allocnos. */
760 static void
761 expand_preferences ()
763 rtx insn;
764 rtx link;
765 rtx set;
767 /* We only try to handle the most common cases here. Most of the cases
768 where this wins are reg-reg copies. */
770 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
771 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
772 && (set = single_set (insn)) != 0
773 && GET_CODE (SET_DEST (set)) == REG
774 && reg_allocno[REGNO (SET_DEST (set))] >= 0)
775 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
776 if (REG_NOTE_KIND (link) == REG_DEAD
777 && GET_CODE (XEXP (link, 0)) == REG
778 && reg_allocno[REGNO (XEXP (link, 0))] >= 0
779 && ! CONFLICTP (reg_allocno[REGNO (SET_DEST (set))],
780 reg_allocno[REGNO (XEXP (link, 0))])
781 && ! CONFLICTP (reg_allocno[REGNO (XEXP (link, 0))],
782 reg_allocno[REGNO (SET_DEST (set))]))
784 int a1 = reg_allocno[REGNO (SET_DEST (set))];
785 int a2 = reg_allocno[REGNO (XEXP (link, 0))];
787 if (XEXP (link, 0) == SET_SRC (set))
789 IOR_HARD_REG_SET (hard_reg_copy_preferences[a1],
790 hard_reg_copy_preferences[a2]);
791 IOR_HARD_REG_SET (hard_reg_copy_preferences[a2],
792 hard_reg_copy_preferences[a1]);
795 IOR_HARD_REG_SET (hard_reg_preferences[a1],
796 hard_reg_preferences[a2]);
797 IOR_HARD_REG_SET (hard_reg_preferences[a2],
798 hard_reg_preferences[a1]);
799 IOR_HARD_REG_SET (hard_reg_full_preferences[a1],
800 hard_reg_full_preferences[a2]);
801 IOR_HARD_REG_SET (hard_reg_full_preferences[a2],
802 hard_reg_full_preferences[a1]);
806 /* Prune the preferences for global registers to exclude registers that cannot
807 be used.
809 Compute `regs_someone_prefers', which is a bitmask of the hard registers
810 that are preferred by conflicting registers of lower priority. If possible,
811 we will avoid using these registers. */
813 static void
814 prune_preferences ()
816 int i, j;
817 int allocno;
819 /* Scan least most important to most important.
820 For each allocno, remove from preferences registers that cannot be used,
821 either because of conflicts or register type. Then compute all registers
822 preferred by each lower-priority register that conflicts. */
824 for (i = max_allocno - 1; i >= 0; i--)
826 HARD_REG_SET temp;
828 allocno = allocno_order[i];
829 COPY_HARD_REG_SET (temp, hard_reg_conflicts[allocno]);
831 if (allocno_calls_crossed[allocno] == 0)
832 IOR_HARD_REG_SET (temp, fixed_reg_set);
833 else
834 IOR_HARD_REG_SET (temp, call_used_reg_set);
836 IOR_COMPL_HARD_REG_SET
837 (temp,
838 reg_class_contents[(int) reg_preferred_class (allocno_reg[allocno])]);
840 AND_COMPL_HARD_REG_SET (hard_reg_preferences[allocno], temp);
841 AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[allocno], temp);
842 AND_COMPL_HARD_REG_SET (hard_reg_full_preferences[allocno], temp);
844 CLEAR_HARD_REG_SET (regs_someone_prefers[allocno]);
846 /* Merge in the preferences of lower-priority registers (they have
847 already been pruned). If we also prefer some of those registers,
848 don't exclude them unless we are of a smaller size (in which case
849 we want to give the lower-priority allocno the first chance for
850 these registers). */
851 for (j = i + 1; j < max_allocno; j++)
852 if (CONFLICTP (allocno, allocno_order[j]))
854 COPY_HARD_REG_SET (temp,
855 hard_reg_full_preferences[allocno_order[j]]);
856 if (allocno_size[allocno_order[j]] <= allocno_size[allocno])
857 AND_COMPL_HARD_REG_SET (temp,
858 hard_reg_full_preferences[allocno]);
860 IOR_HARD_REG_SET (regs_someone_prefers[allocno], temp);
865 /* Assign a hard register to ALLOCNO; look for one that is the beginning
866 of a long enough stretch of hard regs none of which conflicts with ALLOCNO.
867 The registers marked in PREFREGS are tried first.
869 LOSERS, if non-zero, is a HARD_REG_SET indicating registers that cannot
870 be used for this allocation.
872 If ALT_REGS_P is zero, consider only the preferred class of ALLOCNO's reg.
873 Otherwise ignore that preferred class and use the alternate class.
875 If ACCEPT_CALL_CLOBBERED is nonzero, accept a call-clobbered hard reg that
876 will have to be saved and restored at calls.
878 RETRYING is nonzero if this is called from retry_global_alloc.
880 If we find one, record it in reg_renumber.
881 If not, do nothing. */
883 static void
884 find_reg (allocno, losers, alt_regs_p, accept_call_clobbered, retrying)
885 int allocno;
886 HARD_REG_SET losers;
887 int alt_regs_p;
888 int accept_call_clobbered;
889 int retrying;
891 register int i, best_reg, pass;
892 #ifdef HARD_REG_SET
893 register /* Declare it register if it's a scalar. */
894 #endif
895 HARD_REG_SET used, used1, used2;
897 enum reg_class class = (alt_regs_p
898 ? reg_alternate_class (allocno_reg[allocno])
899 : reg_preferred_class (allocno_reg[allocno]));
900 enum machine_mode mode = PSEUDO_REGNO_MODE (allocno_reg[allocno]);
902 if (accept_call_clobbered)
903 COPY_HARD_REG_SET (used1, call_fixed_reg_set);
904 else if (allocno_calls_crossed[allocno] == 0)
905 COPY_HARD_REG_SET (used1, fixed_reg_set);
906 else
907 COPY_HARD_REG_SET (used1, call_used_reg_set);
909 /* Some registers should not be allocated in global-alloc. */
910 IOR_HARD_REG_SET (used1, no_global_alloc_regs);
911 if (losers)
912 IOR_HARD_REG_SET (used1, losers);
914 IOR_COMPL_HARD_REG_SET (used1, reg_class_contents[(int) class]);
915 COPY_HARD_REG_SET (used2, used1);
917 IOR_HARD_REG_SET (used1, hard_reg_conflicts[allocno]);
919 /* Try each hard reg to see if it fits. Do this in two passes.
920 In the first pass, skip registers that are preferred by some other pseudo
921 to give it a better chance of getting one of those registers. Only if
922 we can't get a register when excluding those do we take one of them.
923 However, we never allocate a register for the first time in pass 0. */
925 COPY_HARD_REG_SET (used, used1);
926 IOR_COMPL_HARD_REG_SET (used, regs_used_so_far);
927 IOR_HARD_REG_SET (used, regs_someone_prefers[allocno]);
929 best_reg = -1;
930 for (i = FIRST_PSEUDO_REGISTER, pass = 0;
931 pass <= 1 && i >= FIRST_PSEUDO_REGISTER;
932 pass++)
934 if (pass == 1)
935 COPY_HARD_REG_SET (used, used1);
936 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
938 #ifdef REG_ALLOC_ORDER
939 int regno = reg_alloc_order[i];
940 #else
941 int regno = i;
942 #endif
943 if (! TEST_HARD_REG_BIT (used, regno)
944 && HARD_REGNO_MODE_OK (regno, mode))
946 register int j;
947 register int lim = regno + HARD_REGNO_NREGS (regno, mode);
948 for (j = regno + 1;
949 (j < lim
950 && ! TEST_HARD_REG_BIT (used, j));
951 j++);
952 if (j == lim)
954 best_reg = regno;
955 break;
957 #ifndef REG_ALLOC_ORDER
958 i = j; /* Skip starting points we know will lose */
959 #endif
964 /* See if there is a preferred register with the same class as the register
965 we allocated above. Making this restriction prevents register
966 preferencing from creating worse register allocation.
968 Remove from the preferred registers and conflicting registers. Note that
969 additional conflicts may have been added after `prune_preferences' was
970 called.
972 First do this for those register with copy preferences, then all
973 preferred registers. */
975 AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[allocno], used);
976 GO_IF_HARD_REG_SUBSET (hard_reg_copy_preferences[allocno],
977 reg_class_contents[(int) NO_REGS], no_copy_prefs);
979 if (best_reg >= 0)
981 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
982 if (TEST_HARD_REG_BIT (hard_reg_copy_preferences[allocno], i)
983 && HARD_REGNO_MODE_OK (i, mode)
984 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
985 || reg_class_subset_p (REGNO_REG_CLASS (i),
986 REGNO_REG_CLASS (best_reg))
987 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
988 REGNO_REG_CLASS (i))))
990 register int j;
991 register int lim = i + HARD_REGNO_NREGS (i, mode);
992 for (j = i + 1;
993 (j < lim
994 && ! TEST_HARD_REG_BIT (used, j)
995 && (REGNO_REG_CLASS (j)
996 == REGNO_REG_CLASS (best_reg + (j - i))
997 || reg_class_subset_p (REGNO_REG_CLASS (j),
998 REGNO_REG_CLASS (best_reg + (j - i)))
999 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1000 REGNO_REG_CLASS (j))));
1001 j++);
1002 if (j == lim)
1004 best_reg = i;
1005 goto no_prefs;
1009 no_copy_prefs:
1011 AND_COMPL_HARD_REG_SET (hard_reg_preferences[allocno], used);
1012 GO_IF_HARD_REG_SUBSET (hard_reg_preferences[allocno],
1013 reg_class_contents[(int) NO_REGS], no_prefs);
1015 if (best_reg >= 0)
1017 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1018 if (TEST_HARD_REG_BIT (hard_reg_preferences[allocno], i)
1019 && HARD_REGNO_MODE_OK (i, mode)
1020 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1021 || reg_class_subset_p (REGNO_REG_CLASS (i),
1022 REGNO_REG_CLASS (best_reg))
1023 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1024 REGNO_REG_CLASS (i))))
1026 register int j;
1027 register int lim = i + HARD_REGNO_NREGS (i, mode);
1028 for (j = i + 1;
1029 (j < lim
1030 && ! TEST_HARD_REG_BIT (used, j)
1031 && (REGNO_REG_CLASS (j)
1032 == REGNO_REG_CLASS (best_reg + (j - i))
1033 || reg_class_subset_p (REGNO_REG_CLASS (j),
1034 REGNO_REG_CLASS (best_reg + (j - i)))
1035 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1036 REGNO_REG_CLASS (j))));
1037 j++);
1038 if (j == lim)
1040 best_reg = i;
1041 break;
1045 no_prefs:
1047 /* If we haven't succeeded yet, try with caller-saves.
1048 We need not check to see if the current function has nonlocal
1049 labels because we don't put any pseudos that are live over calls in
1050 registers in that case. */
1052 if (flag_caller_saves && best_reg < 0)
1054 /* Did not find a register. If it would be profitable to
1055 allocate a call-clobbered register and save and restore it
1056 around calls, do that. */
1057 if (! accept_call_clobbered
1058 && allocno_calls_crossed[allocno] != 0
1059 && CALLER_SAVE_PROFITABLE (allocno_n_refs[allocno],
1060 allocno_calls_crossed[allocno]))
1062 find_reg (allocno, losers, alt_regs_p, 1, retrying);
1063 if (reg_renumber[allocno_reg[allocno]] >= 0)
1065 caller_save_needed = 1;
1066 return;
1071 /* If we haven't succeeded yet,
1072 see if some hard reg that conflicts with us
1073 was utilized poorly by local-alloc.
1074 If so, kick out the regs that were put there by local-alloc
1075 so we can use it instead. */
1076 if (best_reg < 0 && !retrying
1077 /* Let's not bother with multi-reg allocnos. */
1078 && allocno_size[allocno] == 1)
1080 /* Count from the end, to find the least-used ones first. */
1081 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1082 if (local_reg_n_refs[i] != 0
1083 /* Don't use a reg no good for this pseudo. */
1084 && ! TEST_HARD_REG_BIT (used2, i)
1085 && HARD_REGNO_MODE_OK (i, mode)
1086 && ((double) local_reg_n_refs[i] / local_reg_live_length[i]
1087 < ((double) allocno_n_refs[allocno]
1088 / allocno_live_length[allocno])))
1090 /* Hard reg I was used less in total by local regs
1091 than it would be used by this one allocno! */
1092 int k;
1093 for (k = 0; k < max_regno; k++)
1094 if (reg_renumber[k] >= 0)
1096 int regno = reg_renumber[k];
1097 int endregno
1098 = regno + HARD_REGNO_NREGS (regno, PSEUDO_REGNO_MODE (k));
1100 if (i >= regno && i < endregno)
1101 reg_renumber[k] = -1;
1104 best_reg = i;
1105 break;
1109 /* Did we find a register? */
1111 if (best_reg >= 0)
1113 register int lim, j;
1114 HARD_REG_SET this_reg;
1116 /* Yes. Record it as the hard register of this pseudo-reg. */
1117 reg_renumber[allocno_reg[allocno]] = best_reg;
1118 /* Also of any pseudo-regs that share with it. */
1119 if (reg_may_share[allocno_reg[allocno]])
1120 for (j = FIRST_PSEUDO_REGISTER; j < max_regno; j++)
1121 if (reg_allocno[j] == allocno)
1122 reg_renumber[j] = best_reg;
1124 /* Make a set of the hard regs being allocated. */
1125 CLEAR_HARD_REG_SET (this_reg);
1126 lim = best_reg + HARD_REGNO_NREGS (best_reg, mode);
1127 for (j = best_reg; j < lim; j++)
1129 SET_HARD_REG_BIT (this_reg, j);
1130 SET_HARD_REG_BIT (regs_used_so_far, j);
1131 /* This is no longer a reg used just by local regs. */
1132 local_reg_n_refs[j] = 0;
1134 /* For each other pseudo-reg conflicting with this one,
1135 mark it as conflicting with the hard regs this one occupies. */
1136 lim = allocno;
1137 for (j = 0; j < max_allocno; j++)
1138 if (CONFLICTP (lim, j) || CONFLICTP (j, lim))
1140 IOR_HARD_REG_SET (hard_reg_conflicts[j], this_reg);
1145 /* Called from `reload' to look for a hard reg to put pseudo reg REGNO in.
1146 Perhaps it had previously seemed not worth a hard reg,
1147 or perhaps its old hard reg has been commandeered for reloads.
1148 FORBIDDEN_REGS indicates certain hard regs that may not be used, even if
1149 they do not appear to be allocated.
1150 If FORBIDDEN_REGS is zero, no regs are forbidden. */
1152 void
1153 retry_global_alloc (regno, forbidden_regs)
1154 int regno;
1155 HARD_REG_SET forbidden_regs;
1157 int allocno = reg_allocno[regno];
1158 if (allocno >= 0)
1160 /* If we have more than one register class,
1161 first try allocating in the class that is cheapest
1162 for this pseudo-reg. If that fails, try any reg. */
1163 if (N_REG_CLASSES > 1)
1164 find_reg (allocno, forbidden_regs, 0, 0, 1);
1165 if (reg_renumber[regno] < 0
1166 && reg_alternate_class (regno) != NO_REGS)
1167 find_reg (allocno, forbidden_regs, 1, 0, 1);
1169 /* If we found a register, modify the RTL for the register to
1170 show the hard register, and mark that register live. */
1171 if (reg_renumber[regno] >= 0)
1173 REGNO (regno_reg_rtx[regno]) = reg_renumber[regno];
1174 mark_home_live (regno);
1179 /* Record a conflict between register REGNO
1180 and everything currently live.
1181 REGNO must not be a pseudo reg that was allocated
1182 by local_alloc; such numbers must be translated through
1183 reg_renumber before calling here. */
1185 static void
1186 record_one_conflict (regno)
1187 int regno;
1189 register int j;
1191 if (regno < FIRST_PSEUDO_REGISTER)
1192 /* When a hard register becomes live,
1193 record conflicts with live pseudo regs. */
1194 for (j = 0; j < max_allocno; j++)
1196 if (ALLOCNO_LIVE_P (j))
1197 SET_HARD_REG_BIT (hard_reg_conflicts[j], regno);
1199 else
1200 /* When a pseudo-register becomes live,
1201 record conflicts first with hard regs,
1202 then with other pseudo regs. */
1204 register int ialloc = reg_allocno[regno];
1205 register int ialloc_prod = ialloc * allocno_row_words;
1206 IOR_HARD_REG_SET (hard_reg_conflicts[ialloc], hard_regs_live);
1207 for (j = allocno_row_words - 1; j >= 0; j--)
1209 #if 0
1210 int k;
1211 for (k = 0; k < n_no_conflict_pairs; k++)
1212 if (! ((j == no_conflict_pairs[k].allocno1
1213 && ialloc == no_conflict_pairs[k].allocno2)
1215 (j == no_conflict_pairs[k].allocno2
1216 && ialloc == no_conflict_pairs[k].allocno1)))
1217 #endif /* 0 */
1218 conflicts[ialloc_prod + j] |= allocnos_live[j];
1223 /* Record all allocnos currently live as conflicting
1224 with each other and with all hard regs currently live.
1225 ALLOCNO_VEC is a vector of LEN allocnos, all allocnos that
1226 are currently live. Their bits are also flagged in allocnos_live. */
1228 static void
1229 record_conflicts (allocno_vec, len)
1230 register short *allocno_vec;
1231 register int len;
1233 register int allocno;
1234 register int j;
1235 register int ialloc_prod;
1237 while (--len >= 0)
1239 allocno = allocno_vec[len];
1240 ialloc_prod = allocno * allocno_row_words;
1241 IOR_HARD_REG_SET (hard_reg_conflicts[allocno], hard_regs_live);
1242 for (j = allocno_row_words - 1; j >= 0; j--)
1243 conflicts[ialloc_prod + j] |= allocnos_live[j];
1247 /* Handle the case where REG is set by the insn being scanned,
1248 during the forward scan to accumulate conflicts.
1249 Store a 1 in regs_live or allocnos_live for this register, record how many
1250 consecutive hardware registers it actually needs,
1251 and record a conflict with all other registers already live.
1253 Note that even if REG does not remain alive after this insn,
1254 we must mark it here as live, to ensure a conflict between
1255 REG and any other regs set in this insn that really do live.
1256 This is because those other regs could be considered after this.
1258 REG might actually be something other than a register;
1259 if so, we do nothing.
1261 SETTER is 0 if this register was modified by an auto-increment (i.e.,
1262 a REG_INC note was found for it).
1264 CLOBBERs are processed here by calling mark_reg_clobber. */
1266 static void
1267 mark_reg_store (orig_reg, setter)
1268 rtx orig_reg, setter;
1270 register int regno;
1271 register rtx reg = orig_reg;
1273 /* WORD is which word of a multi-register group is being stored.
1274 For the case where the store is actually into a SUBREG of REG.
1275 Except we don't use it; I believe the entire REG needs to be
1276 made live. */
1277 int word = 0;
1279 if (GET_CODE (reg) == SUBREG)
1281 word = SUBREG_WORD (reg);
1282 reg = SUBREG_REG (reg);
1285 if (GET_CODE (reg) != REG)
1286 return;
1288 if (setter && GET_CODE (setter) == CLOBBER)
1290 /* A clobber of a register should be processed here too. */
1291 mark_reg_clobber (orig_reg, setter);
1292 return;
1295 regs_set[n_regs_set++] = reg;
1297 if (setter)
1298 set_preference (reg, SET_SRC (setter));
1300 regno = REGNO (reg);
1302 if (reg_renumber[regno] >= 0)
1303 regno = reg_renumber[regno] /* + word */;
1305 /* Either this is one of the max_allocno pseudo regs not allocated,
1306 or it is or has a hardware reg. First handle the pseudo-regs. */
1307 if (regno >= FIRST_PSEUDO_REGISTER)
1309 if (reg_allocno[regno] >= 0)
1311 SET_ALLOCNO_LIVE (reg_allocno[regno]);
1312 record_one_conflict (regno);
1315 /* Handle hardware regs (and pseudos allocated to hard regs). */
1316 else if (! fixed_regs[regno])
1318 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1319 while (regno < last)
1321 record_one_conflict (regno);
1322 SET_HARD_REG_BIT (hard_regs_live, regno);
1323 regno++;
1328 /* Like mark_reg_set except notice just CLOBBERs; ignore SETs. */
1330 static void
1331 mark_reg_clobber (reg, setter)
1332 rtx reg, setter;
1334 register int regno;
1336 /* WORD is which word of a multi-register group is being stored.
1337 For the case where the store is actually into a SUBREG of REG.
1338 Except we don't use it; I believe the entire REG needs to be
1339 made live. */
1340 int word = 0;
1342 if (GET_CODE (setter) != CLOBBER)
1343 return;
1345 if (GET_CODE (reg) == SUBREG)
1347 word = SUBREG_WORD (reg);
1348 reg = SUBREG_REG (reg);
1351 if (GET_CODE (reg) != REG)
1352 return;
1354 regs_set[n_regs_set++] = reg;
1356 regno = REGNO (reg);
1358 if (reg_renumber[regno] >= 0)
1359 regno = reg_renumber[regno] /* + word */;
1361 /* Either this is one of the max_allocno pseudo regs not allocated,
1362 or it is or has a hardware reg. First handle the pseudo-regs. */
1363 if (regno >= FIRST_PSEUDO_REGISTER)
1365 if (reg_allocno[regno] >= 0)
1367 SET_ALLOCNO_LIVE (reg_allocno[regno]);
1368 record_one_conflict (regno);
1371 /* Handle hardware regs (and pseudos allocated to hard regs). */
1372 else if (! fixed_regs[regno])
1374 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1375 while (regno < last)
1377 record_one_conflict (regno);
1378 SET_HARD_REG_BIT (hard_regs_live, regno);
1379 regno++;
1384 /* Record that REG has conflicts with all the regs currently live.
1385 Do not mark REG itself as live. */
1387 static void
1388 mark_reg_conflicts (reg)
1389 rtx reg;
1391 register int regno;
1393 if (GET_CODE (reg) == SUBREG)
1394 reg = SUBREG_REG (reg);
1396 if (GET_CODE (reg) != REG)
1397 return;
1399 regno = REGNO (reg);
1401 if (reg_renumber[regno] >= 0)
1402 regno = reg_renumber[regno];
1404 /* Either this is one of the max_allocno pseudo regs not allocated,
1405 or it is or has a hardware reg. First handle the pseudo-regs. */
1406 if (regno >= FIRST_PSEUDO_REGISTER)
1408 if (reg_allocno[regno] >= 0)
1409 record_one_conflict (regno);
1411 /* Handle hardware regs (and pseudos allocated to hard regs). */
1412 else if (! fixed_regs[regno])
1414 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1415 while (regno < last)
1417 record_one_conflict (regno);
1418 regno++;
1423 /* Mark REG as being dead (following the insn being scanned now).
1424 Store a 0 in regs_live or allocnos_live for this register. */
1426 static void
1427 mark_reg_death (reg)
1428 rtx reg;
1430 register int regno = REGNO (reg);
1432 /* For pseudo reg, see if it has been assigned a hardware reg. */
1433 if (reg_renumber[regno] >= 0)
1434 regno = reg_renumber[regno];
1436 /* Either this is one of the max_allocno pseudo regs not allocated,
1437 or it is a hardware reg. First handle the pseudo-regs. */
1438 if (regno >= FIRST_PSEUDO_REGISTER)
1440 if (reg_allocno[regno] >= 0)
1441 CLEAR_ALLOCNO_LIVE (reg_allocno[regno]);
1443 /* Handle hardware regs (and pseudos allocated to hard regs). */
1444 else if (! fixed_regs[regno])
1446 /* Pseudo regs already assigned hardware regs are treated
1447 almost the same as explicit hardware regs. */
1448 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1449 while (regno < last)
1451 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
1452 regno++;
1457 /* Mark hard reg REGNO as currently live, assuming machine mode MODE
1458 for the value stored in it. MODE determines how many consecutive
1459 registers are actually in use. Do not record conflicts;
1460 it is assumed that the caller will do that. */
1462 static void
1463 mark_reg_live_nc (regno, mode)
1464 register int regno;
1465 enum machine_mode mode;
1467 register int last = regno + HARD_REGNO_NREGS (regno, mode);
1468 while (regno < last)
1470 SET_HARD_REG_BIT (hard_regs_live, regno);
1471 regno++;
1475 /* Try to set a preference for an allocno to a hard register.
1476 We are passed DEST and SRC which are the operands of a SET. It is known
1477 that SRC is a register. If SRC or the first operand of SRC is a register,
1478 try to set a preference. If one of the two is a hard register and the other
1479 is a pseudo-register, mark the preference.
1481 Note that we are not as aggressive as local-alloc in trying to tie a
1482 pseudo-register to a hard register. */
1484 static void
1485 set_preference (dest, src)
1486 rtx dest, src;
1488 int src_regno, dest_regno;
1489 /* Amount to add to the hard regno for SRC, or subtract from that for DEST,
1490 to compensate for subregs in SRC or DEST. */
1491 int offset = 0;
1492 int i;
1493 int copy = 1;
1495 if (GET_RTX_FORMAT (GET_CODE (src))[0] == 'e')
1496 src = XEXP (src, 0), copy = 0;
1498 /* Get the reg number for both SRC and DEST.
1499 If neither is a reg, give up. */
1501 if (GET_CODE (src) == REG)
1502 src_regno = REGNO (src);
1503 else if (GET_CODE (src) == SUBREG && GET_CODE (SUBREG_REG (src)) == REG)
1505 src_regno = REGNO (SUBREG_REG (src));
1506 offset += SUBREG_WORD (src);
1508 else
1509 return;
1511 if (GET_CODE (dest) == REG)
1512 dest_regno = REGNO (dest);
1513 else if (GET_CODE (dest) == SUBREG && GET_CODE (SUBREG_REG (dest)) == REG)
1515 dest_regno = REGNO (SUBREG_REG (dest));
1516 offset -= SUBREG_WORD (dest);
1518 else
1519 return;
1521 /* Convert either or both to hard reg numbers. */
1523 if (reg_renumber[src_regno] >= 0)
1524 src_regno = reg_renumber[src_regno];
1526 if (reg_renumber[dest_regno] >= 0)
1527 dest_regno = reg_renumber[dest_regno];
1529 /* Now if one is a hard reg and the other is a global pseudo
1530 then give the other a preference. */
1532 if (dest_regno < FIRST_PSEUDO_REGISTER && src_regno >= FIRST_PSEUDO_REGISTER
1533 && reg_allocno[src_regno] >= 0)
1535 dest_regno -= offset;
1536 if (dest_regno >= 0 && dest_regno < FIRST_PSEUDO_REGISTER)
1538 if (copy)
1539 SET_REGBIT (hard_reg_copy_preferences,
1540 reg_allocno[src_regno], dest_regno);
1542 SET_REGBIT (hard_reg_preferences,
1543 reg_allocno[src_regno], dest_regno);
1544 for (i = dest_regno;
1545 i < dest_regno + HARD_REGNO_NREGS (dest_regno, GET_MODE (dest));
1546 i++)
1547 SET_REGBIT (hard_reg_full_preferences, reg_allocno[src_regno], i);
1551 if (src_regno < FIRST_PSEUDO_REGISTER && dest_regno >= FIRST_PSEUDO_REGISTER
1552 && reg_allocno[dest_regno] >= 0)
1554 src_regno += offset;
1555 if (src_regno >= 0 && src_regno < FIRST_PSEUDO_REGISTER)
1557 if (copy)
1558 SET_REGBIT (hard_reg_copy_preferences,
1559 reg_allocno[dest_regno], src_regno);
1561 SET_REGBIT (hard_reg_preferences,
1562 reg_allocno[dest_regno], src_regno);
1563 for (i = src_regno;
1564 i < src_regno + HARD_REGNO_NREGS (src_regno, GET_MODE (src));
1565 i++)
1566 SET_REGBIT (hard_reg_full_preferences, reg_allocno[dest_regno], i);
1571 /* Indicate that hard register number FROM was eliminated and replaced with
1572 an offset from hard register number TO. The status of hard registers live
1573 at the start of a basic block is updated by replacing a use of FROM with
1574 a use of TO. */
1576 void
1577 mark_elimination (from, to)
1578 int from, to;
1580 int i;
1582 for (i = 0; i < n_basic_blocks; i++)
1583 if ((basic_block_live_at_start[i][from / REGSET_ELT_BITS]
1584 & ((REGSET_ELT_TYPE) 1 << (from % REGSET_ELT_BITS))) != 0)
1586 basic_block_live_at_start[i][from / REGSET_ELT_BITS]
1587 &= ~ ((REGSET_ELT_TYPE) 1 << (from % REGSET_ELT_BITS));
1588 basic_block_live_at_start[i][to / REGSET_ELT_BITS]
1589 |= ((REGSET_ELT_TYPE) 1 << (to % REGSET_ELT_BITS));
1593 /* Print debugging trace information if -greg switch is given,
1594 showing the information on which the allocation decisions are based. */
1596 static void
1597 dump_conflicts (file)
1598 FILE *file;
1600 register int i;
1601 register int has_preferences;
1602 fprintf (file, ";; %d regs to allocate:", max_allocno);
1603 for (i = 0; i < max_allocno; i++)
1605 int j;
1606 fprintf (file, " %d", allocno_reg[allocno_order[i]]);
1607 for (j = 0; j < max_regno; j++)
1608 if (reg_allocno[j] == allocno_order[i]
1609 && j != allocno_reg[allocno_order[i]])
1610 fprintf (file, "+%d", j);
1611 if (allocno_size[allocno_order[i]] != 1)
1612 fprintf (file, " (%d)", allocno_size[allocno_order[i]]);
1614 fprintf (file, "\n");
1616 for (i = 0; i < max_allocno; i++)
1618 register int j;
1619 fprintf (file, ";; %d conflicts:", allocno_reg[i]);
1620 for (j = 0; j < max_allocno; j++)
1621 if (CONFLICTP (i, j) || CONFLICTP (j, i))
1622 fprintf (file, " %d", allocno_reg[j]);
1623 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1624 if (TEST_HARD_REG_BIT (hard_reg_conflicts[i], j))
1625 fprintf (file, " %d", j);
1626 fprintf (file, "\n");
1628 has_preferences = 0;
1629 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1630 if (TEST_HARD_REG_BIT (hard_reg_preferences[i], j))
1631 has_preferences = 1;
1633 if (! has_preferences)
1634 continue;
1635 fprintf (file, ";; %d preferences:", allocno_reg[i]);
1636 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1637 if (TEST_HARD_REG_BIT (hard_reg_preferences[i], j))
1638 fprintf (file, " %d", j);
1639 fprintf (file, "\n");
1641 fprintf (file, "\n");
1644 void
1645 dump_global_regs (file)
1646 FILE *file;
1648 register int i, j;
1650 fprintf (file, ";; Register dispositions:\n");
1651 for (i = FIRST_PSEUDO_REGISTER, j = 0; i < max_regno; i++)
1652 if (reg_renumber[i] >= 0)
1654 fprintf (file, "%d in %d ", i, reg_renumber[i]);
1655 if (++j % 6 == 0)
1656 fprintf (file, "\n");
1659 fprintf (file, "\n\n;; Hard regs used: ");
1660 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1661 if (regs_ever_live[i])
1662 fprintf (file, " %d", i);
1663 fprintf (file, "\n\n");