Daily bump.
[official-gcc.git] / gcc / reload1.c
blob9021050c409ef02d48ce6710e3bf80841dd3acf3
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "addresses.h"
39 #include "basic-block.h"
40 #include "reload.h"
41 #include "recog.h"
42 #include "output.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "df.h"
48 #include "target.h"
49 #include "dse.h"
51 /* This file contains the reload pass of the compiler, which is
52 run after register allocation has been done. It checks that
53 each insn is valid (operands required to be in registers really
54 are in registers of the proper class) and fixes up invalid ones
55 by copying values temporarily into registers for the insns
56 that need them.
58 The results of register allocation are described by the vector
59 reg_renumber; the insns still contain pseudo regs, but reg_renumber
60 can be used to find which hard reg, if any, a pseudo reg is in.
62 The technique we always use is to free up a few hard regs that are
63 called ``reload regs'', and for each place where a pseudo reg
64 must be in a hard reg, copy it temporarily into one of the reload regs.
66 Reload regs are allocated locally for every instruction that needs
67 reloads. When there are pseudos which are allocated to a register that
68 has been chosen as a reload reg, such pseudos must be ``spilled''.
69 This means that they go to other hard regs, or to stack slots if no other
70 available hard regs can be found. Spilling can invalidate more
71 insns, requiring additional need for reloads, so we must keep checking
72 until the process stabilizes.
74 For machines with different classes of registers, we must keep track
75 of the register class needed for each reload, and make sure that
76 we allocate enough reload registers of each class.
78 The file reload.c contains the code that checks one insn for
79 validity and reports the reloads that it needs. This file
80 is in charge of scanning the entire rtl code, accumulating the
81 reload needs, spilling, assigning reload registers to use for
82 fixing up each insn, and generating the new insns to copy values
83 into the reload registers. */
85 /* During reload_as_needed, element N contains a REG rtx for the hard reg
86 into which reg N has been reloaded (perhaps for a previous insn). */
87 static rtx *reg_last_reload_reg;
89 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
90 for an output reload that stores into reg N. */
91 static regset_head reg_has_output_reload;
93 /* Indicates which hard regs are reload-registers for an output reload
94 in the current insn. */
95 static HARD_REG_SET reg_is_output_reload;
97 /* Element N is the constant value to which pseudo reg N is equivalent,
98 or zero if pseudo reg N is not equivalent to a constant.
99 find_reloads looks at this in order to replace pseudo reg N
100 with the constant it stands for. */
101 rtx *reg_equiv_constant;
103 /* Element N is an invariant value to which pseudo reg N is equivalent.
104 eliminate_regs_in_insn uses this to replace pseudos in particular
105 contexts. */
106 rtx *reg_equiv_invariant;
108 /* Element N is a memory location to which pseudo reg N is equivalent,
109 prior to any register elimination (such as frame pointer to stack
110 pointer). Depending on whether or not it is a valid address, this value
111 is transferred to either reg_equiv_address or reg_equiv_mem. */
112 rtx *reg_equiv_memory_loc;
114 /* We allocate reg_equiv_memory_loc inside a varray so that the garbage
115 collector can keep track of what is inside. */
116 VEC(rtx,gc) *reg_equiv_memory_loc_vec;
118 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
119 This is used when the address is not valid as a memory address
120 (because its displacement is too big for the machine.) */
121 rtx *reg_equiv_address;
123 /* Element N is the memory slot to which pseudo reg N is equivalent,
124 or zero if pseudo reg N is not equivalent to a memory slot. */
125 rtx *reg_equiv_mem;
127 /* Element N is an EXPR_LIST of REG_EQUIVs containing MEMs with
128 alternate representations of the location of pseudo reg N. */
129 rtx *reg_equiv_alt_mem_list;
131 /* Widest width in which each pseudo reg is referred to (via subreg). */
132 static unsigned int *reg_max_ref_width;
134 /* Element N is the list of insns that initialized reg N from its equivalent
135 constant or memory slot. */
136 rtx *reg_equiv_init;
137 int reg_equiv_init_size;
139 /* Vector to remember old contents of reg_renumber before spilling. */
140 static short *reg_old_renumber;
142 /* During reload_as_needed, element N contains the last pseudo regno reloaded
143 into hard register N. If that pseudo reg occupied more than one register,
144 reg_reloaded_contents points to that pseudo for each spill register in
145 use; all of these must remain set for an inheritance to occur. */
146 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
148 /* During reload_as_needed, element N contains the insn for which
149 hard register N was last used. Its contents are significant only
150 when reg_reloaded_valid is set for this register. */
151 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
153 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
154 static HARD_REG_SET reg_reloaded_valid;
155 /* Indicate if the register was dead at the end of the reload.
156 This is only valid if reg_reloaded_contents is set and valid. */
157 static HARD_REG_SET reg_reloaded_dead;
159 /* Indicate whether the register's current value is one that is not
160 safe to retain across a call, even for registers that are normally
161 call-saved. */
162 static HARD_REG_SET reg_reloaded_call_part_clobbered;
164 /* Number of spill-regs so far; number of valid elements of spill_regs. */
165 static int n_spills;
167 /* In parallel with spill_regs, contains REG rtx's for those regs.
168 Holds the last rtx used for any given reg, or 0 if it has never
169 been used for spilling yet. This rtx is reused, provided it has
170 the proper mode. */
171 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
173 /* In parallel with spill_regs, contains nonzero for a spill reg
174 that was stored after the last time it was used.
175 The precise value is the insn generated to do the store. */
176 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
178 /* This is the register that was stored with spill_reg_store. This is a
179 copy of reload_out / reload_out_reg when the value was stored; if
180 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
181 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
183 /* This table is the inverse mapping of spill_regs:
184 indexed by hard reg number,
185 it contains the position of that reg in spill_regs,
186 or -1 for something that is not in spill_regs.
188 ?!? This is no longer accurate. */
189 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
191 /* This reg set indicates registers that can't be used as spill registers for
192 the currently processed insn. These are the hard registers which are live
193 during the insn, but not allocated to pseudos, as well as fixed
194 registers. */
195 static HARD_REG_SET bad_spill_regs;
197 /* These are the hard registers that can't be used as spill register for any
198 insn. This includes registers used for user variables and registers that
199 we can't eliminate. A register that appears in this set also can't be used
200 to retry register allocation. */
201 static HARD_REG_SET bad_spill_regs_global;
203 /* Describes order of use of registers for reloading
204 of spilled pseudo-registers. `n_spills' is the number of
205 elements that are actually valid; new ones are added at the end.
207 Both spill_regs and spill_reg_order are used on two occasions:
208 once during find_reload_regs, where they keep track of the spill registers
209 for a single insn, but also during reload_as_needed where they show all
210 the registers ever used by reload. For the latter case, the information
211 is calculated during finish_spills. */
212 static short spill_regs[FIRST_PSEUDO_REGISTER];
214 /* This vector of reg sets indicates, for each pseudo, which hard registers
215 may not be used for retrying global allocation because the register was
216 formerly spilled from one of them. If we allowed reallocating a pseudo to
217 a register that it was already allocated to, reload might not
218 terminate. */
219 static HARD_REG_SET *pseudo_previous_regs;
221 /* This vector of reg sets indicates, for each pseudo, which hard
222 registers may not be used for retrying global allocation because they
223 are used as spill registers during one of the insns in which the
224 pseudo is live. */
225 static HARD_REG_SET *pseudo_forbidden_regs;
227 /* All hard regs that have been used as spill registers for any insn are
228 marked in this set. */
229 static HARD_REG_SET used_spill_regs;
231 /* Index of last register assigned as a spill register. We allocate in
232 a round-robin fashion. */
233 static int last_spill_reg;
235 /* Nonzero if indirect addressing is supported on the machine; this means
236 that spilling (REG n) does not require reloading it into a register in
237 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
238 value indicates the level of indirect addressing supported, e.g., two
239 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
240 a hard register. */
241 static char spill_indirect_levels;
243 /* Nonzero if indirect addressing is supported when the innermost MEM is
244 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
245 which these are valid is the same as spill_indirect_levels, above. */
246 char indirect_symref_ok;
248 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
249 char double_reg_address_ok;
251 /* Record the stack slot for each spilled hard register. */
252 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
254 /* Width allocated so far for that stack slot. */
255 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
257 /* Record which pseudos needed to be spilled. */
258 static regset_head spilled_pseudos;
260 /* Used for communication between order_regs_for_reload and count_pseudo.
261 Used to avoid counting one pseudo twice. */
262 static regset_head pseudos_counted;
264 /* First uid used by insns created by reload in this function.
265 Used in find_equiv_reg. */
266 int reload_first_uid;
268 /* Flag set by local-alloc or global-alloc if anything is live in
269 a call-clobbered reg across calls. */
270 int caller_save_needed;
272 /* Set to 1 while reload_as_needed is operating.
273 Required by some machines to handle any generated moves differently. */
274 int reload_in_progress = 0;
276 /* These arrays record the insn_code of insns that may be needed to
277 perform input and output reloads of special objects. They provide a
278 place to pass a scratch register. */
279 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
280 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
282 /* This obstack is used for allocation of rtl during register elimination.
283 The allocated storage can be freed once find_reloads has processed the
284 insn. */
285 static struct obstack reload_obstack;
287 /* Points to the beginning of the reload_obstack. All insn_chain structures
288 are allocated first. */
289 static char *reload_startobj;
291 /* The point after all insn_chain structures. Used to quickly deallocate
292 memory allocated in copy_reloads during calculate_needs_all_insns. */
293 static char *reload_firstobj;
295 /* This points before all local rtl generated by register elimination.
296 Used to quickly free all memory after processing one insn. */
297 static char *reload_insn_firstobj;
299 /* List of insn_chain instructions, one for every insn that reload needs to
300 examine. */
301 struct insn_chain *reload_insn_chain;
303 /* List of all insns needing reloads. */
304 static struct insn_chain *insns_need_reload;
306 /* This structure is used to record information about register eliminations.
307 Each array entry describes one possible way of eliminating a register
308 in favor of another. If there is more than one way of eliminating a
309 particular register, the most preferred should be specified first. */
311 struct elim_table
313 int from; /* Register number to be eliminated. */
314 int to; /* Register number used as replacement. */
315 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
316 int can_eliminate; /* Nonzero if this elimination can be done. */
317 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
318 insns made by reload. */
319 HOST_WIDE_INT offset; /* Current offset between the two regs. */
320 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
321 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
322 rtx from_rtx; /* REG rtx for the register to be eliminated.
323 We cannot simply compare the number since
324 we might then spuriously replace a hard
325 register corresponding to a pseudo
326 assigned to the reg to be eliminated. */
327 rtx to_rtx; /* REG rtx for the replacement. */
330 static struct elim_table *reg_eliminate = 0;
332 /* This is an intermediate structure to initialize the table. It has
333 exactly the members provided by ELIMINABLE_REGS. */
334 static const struct elim_table_1
336 const int from;
337 const int to;
338 } reg_eliminate_1[] =
340 /* If a set of eliminable registers was specified, define the table from it.
341 Otherwise, default to the normal case of the frame pointer being
342 replaced by the stack pointer. */
344 #ifdef ELIMINABLE_REGS
345 ELIMINABLE_REGS;
346 #else
347 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
348 #endif
350 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
352 /* Record the number of pending eliminations that have an offset not equal
353 to their initial offset. If nonzero, we use a new copy of each
354 replacement result in any insns encountered. */
355 int num_not_at_initial_offset;
357 /* Count the number of registers that we may be able to eliminate. */
358 static int num_eliminable;
359 /* And the number of registers that are equivalent to a constant that
360 can be eliminated to frame_pointer / arg_pointer + constant. */
361 static int num_eliminable_invariants;
363 /* For each label, we record the offset of each elimination. If we reach
364 a label by more than one path and an offset differs, we cannot do the
365 elimination. This information is indexed by the difference of the
366 number of the label and the first label number. We can't offset the
367 pointer itself as this can cause problems on machines with segmented
368 memory. The first table is an array of flags that records whether we
369 have yet encountered a label and the second table is an array of arrays,
370 one entry in the latter array for each elimination. */
372 static int first_label_num;
373 static char *offsets_known_at;
374 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
376 /* Number of labels in the current function. */
378 static int num_labels;
380 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
381 static void maybe_fix_stack_asms (void);
382 static void copy_reloads (struct insn_chain *);
383 static void calculate_needs_all_insns (int);
384 static int find_reg (struct insn_chain *, int);
385 static void find_reload_regs (struct insn_chain *);
386 static void select_reload_regs (void);
387 static void delete_caller_save_insns (void);
389 static void spill_failure (rtx, enum reg_class);
390 static void count_spilled_pseudo (int, int, int);
391 static void delete_dead_insn (rtx);
392 static void alter_reg (int, int);
393 static void set_label_offsets (rtx, rtx, int);
394 static void check_eliminable_occurrences (rtx);
395 static void elimination_effects (rtx, enum machine_mode);
396 static int eliminate_regs_in_insn (rtx, int);
397 static void update_eliminable_offsets (void);
398 static void mark_not_eliminable (rtx, const_rtx, void *);
399 static void set_initial_elim_offsets (void);
400 static bool verify_initial_elim_offsets (void);
401 static void set_initial_label_offsets (void);
402 static void set_offsets_for_label (rtx);
403 static void init_elim_table (void);
404 static void update_eliminables (HARD_REG_SET *);
405 static void spill_hard_reg (unsigned int, int);
406 static int finish_spills (int);
407 static void scan_paradoxical_subregs (rtx);
408 static void count_pseudo (int);
409 static void order_regs_for_reload (struct insn_chain *);
410 static void reload_as_needed (int);
411 static void forget_old_reloads_1 (rtx, const_rtx, void *);
412 static void forget_marked_reloads (regset);
413 static int reload_reg_class_lower (const void *, const void *);
414 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
415 enum machine_mode);
416 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
417 enum machine_mode);
418 static int reload_reg_free_p (unsigned int, int, enum reload_type);
419 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
420 rtx, rtx, int, int);
421 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
422 rtx, rtx, int, int);
423 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
424 static int allocate_reload_reg (struct insn_chain *, int, int);
425 static int conflicts_with_override (rtx);
426 static void failed_reload (rtx, int);
427 static int set_reload_reg (int, int);
428 static void choose_reload_regs_init (struct insn_chain *, rtx *);
429 static void choose_reload_regs (struct insn_chain *);
430 static void merge_assigned_reloads (rtx);
431 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
432 rtx, int);
433 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
434 int);
435 static void do_input_reload (struct insn_chain *, struct reload *, int);
436 static void do_output_reload (struct insn_chain *, struct reload *, int);
437 static bool inherit_piecemeal_p (int, int);
438 static void emit_reload_insns (struct insn_chain *);
439 static void delete_output_reload (rtx, int, int);
440 static void delete_address_reloads (rtx, rtx);
441 static void delete_address_reloads_1 (rtx, rtx, rtx);
442 static rtx inc_for_reload (rtx, rtx, rtx, int);
443 #ifdef AUTO_INC_DEC
444 static void add_auto_inc_notes (rtx, rtx);
445 #endif
446 static void copy_eh_notes (rtx, rtx);
447 static int reloads_conflict (int, int);
448 static rtx gen_reload (rtx, rtx, int, enum reload_type);
449 static rtx emit_insn_if_valid_for_reload (rtx);
451 /* Initialize the reload pass. This is called at the beginning of compilation
452 and may be called again if the target is reinitialized. */
454 void
455 init_reload (void)
457 int i;
459 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
460 Set spill_indirect_levels to the number of levels such addressing is
461 permitted, zero if it is not permitted at all. */
463 rtx tem
464 = gen_rtx_MEM (Pmode,
465 gen_rtx_PLUS (Pmode,
466 gen_rtx_REG (Pmode,
467 LAST_VIRTUAL_REGISTER + 1),
468 GEN_INT (4)));
469 spill_indirect_levels = 0;
471 while (memory_address_p (QImode, tem))
473 spill_indirect_levels++;
474 tem = gen_rtx_MEM (Pmode, tem);
477 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
479 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
480 indirect_symref_ok = memory_address_p (QImode, tem);
482 /* See if reg+reg is a valid (and offsettable) address. */
484 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
486 tem = gen_rtx_PLUS (Pmode,
487 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
488 gen_rtx_REG (Pmode, i));
490 /* This way, we make sure that reg+reg is an offsettable address. */
491 tem = plus_constant (tem, 4);
493 if (memory_address_p (QImode, tem))
495 double_reg_address_ok = 1;
496 break;
500 /* Initialize obstack for our rtl allocation. */
501 gcc_obstack_init (&reload_obstack);
502 reload_startobj = obstack_alloc (&reload_obstack, 0);
504 INIT_REG_SET (&spilled_pseudos);
505 INIT_REG_SET (&pseudos_counted);
508 /* List of insn chains that are currently unused. */
509 static struct insn_chain *unused_insn_chains = 0;
511 /* Allocate an empty insn_chain structure. */
512 struct insn_chain *
513 new_insn_chain (void)
515 struct insn_chain *c;
517 if (unused_insn_chains == 0)
519 c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
520 INIT_REG_SET (&c->live_throughout);
521 INIT_REG_SET (&c->dead_or_set);
523 else
525 c = unused_insn_chains;
526 unused_insn_chains = c->next;
528 c->is_caller_save_insn = 0;
529 c->need_operand_change = 0;
530 c->need_reload = 0;
531 c->need_elim = 0;
532 return c;
535 /* Small utility function to set all regs in hard reg set TO which are
536 allocated to pseudos in regset FROM. */
538 void
539 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
541 unsigned int regno;
542 reg_set_iterator rsi;
544 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
546 int r = reg_renumber[regno];
548 if (r < 0)
550 /* reload_combine uses the information from
551 DF_RA_LIVE_IN (BASIC_BLOCK), which might still
552 contain registers that have not actually been allocated
553 since they have an equivalence. */
554 gcc_assert (reload_completed);
556 else
557 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
561 /* Replace all pseudos found in LOC with their corresponding
562 equivalences. */
564 static void
565 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
567 rtx x = *loc;
568 enum rtx_code code;
569 const char *fmt;
570 int i, j;
572 if (! x)
573 return;
575 code = GET_CODE (x);
576 if (code == REG)
578 unsigned int regno = REGNO (x);
580 if (regno < FIRST_PSEUDO_REGISTER)
581 return;
583 x = eliminate_regs (x, mem_mode, usage);
584 if (x != *loc)
586 *loc = x;
587 replace_pseudos_in (loc, mem_mode, usage);
588 return;
591 if (reg_equiv_constant[regno])
592 *loc = reg_equiv_constant[regno];
593 else if (reg_equiv_mem[regno])
594 *loc = reg_equiv_mem[regno];
595 else if (reg_equiv_address[regno])
596 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
597 else
599 gcc_assert (!REG_P (regno_reg_rtx[regno])
600 || REGNO (regno_reg_rtx[regno]) != regno);
601 *loc = regno_reg_rtx[regno];
604 return;
606 else if (code == MEM)
608 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
609 return;
612 /* Process each of our operands recursively. */
613 fmt = GET_RTX_FORMAT (code);
614 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
615 if (*fmt == 'e')
616 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
617 else if (*fmt == 'E')
618 for (j = 0; j < XVECLEN (x, i); j++)
619 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
622 /* Determine if the current function has an exception receiver block
623 that reaches the exit block via non-exceptional edges */
625 static bool
626 has_nonexceptional_receiver (void)
628 edge e;
629 edge_iterator ei;
630 basic_block *tos, *worklist, bb;
632 /* If we're not optimizing, then just err on the safe side. */
633 if (!optimize)
634 return true;
636 /* First determine which blocks can reach exit via normal paths. */
637 tos = worklist = xmalloc (sizeof (basic_block) * (n_basic_blocks + 1));
639 FOR_EACH_BB (bb)
640 bb->flags &= ~BB_REACHABLE;
642 /* Place the exit block on our worklist. */
643 EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
644 *tos++ = EXIT_BLOCK_PTR;
646 /* Iterate: find everything reachable from what we've already seen. */
647 while (tos != worklist)
649 bb = *--tos;
651 FOR_EACH_EDGE (e, ei, bb->preds)
652 if (!(e->flags & EDGE_ABNORMAL))
654 basic_block src = e->src;
656 if (!(src->flags & BB_REACHABLE))
658 src->flags |= BB_REACHABLE;
659 *tos++ = src;
663 free (worklist);
665 /* Now see if there's a reachable block with an exceptional incoming
666 edge. */
667 FOR_EACH_BB (bb)
668 if (bb->flags & BB_REACHABLE)
669 FOR_EACH_EDGE (e, ei, bb->preds)
670 if (e->flags & EDGE_ABNORMAL)
671 return true;
673 /* No exceptional block reached exit unexceptionally. */
674 return false;
678 /* Global variables used by reload and its subroutines. */
680 /* Set during calculate_needs if an insn needs register elimination. */
681 static int something_needs_elimination;
682 /* Set during calculate_needs if an insn needs an operand changed. */
683 static int something_needs_operands_changed;
685 /* Nonzero means we couldn't get enough spill regs. */
686 static int failure;
688 /* Main entry point for the reload pass.
690 FIRST is the first insn of the function being compiled.
692 GLOBAL nonzero means we were called from global_alloc
693 and should attempt to reallocate any pseudoregs that we
694 displace from hard regs we will use for reloads.
695 If GLOBAL is zero, we do not have enough information to do that,
696 so any pseudo reg that is spilled must go to the stack.
698 Return value is nonzero if reload failed
699 and we must not do any more for this function. */
702 reload (rtx first, int global)
704 int i;
705 rtx insn;
706 struct elim_table *ep;
707 basic_block bb;
709 /* Make sure even insns with volatile mem refs are recognizable. */
710 init_recog ();
712 failure = 0;
714 reload_firstobj = obstack_alloc (&reload_obstack, 0);
716 /* Make sure that the last insn in the chain
717 is not something that needs reloading. */
718 emit_note (NOTE_INSN_DELETED);
720 /* Enable find_equiv_reg to distinguish insns made by reload. */
721 reload_first_uid = get_max_uid ();
723 #ifdef SECONDARY_MEMORY_NEEDED
724 /* Initialize the secondary memory table. */
725 clear_secondary_mem ();
726 #endif
728 /* We don't have a stack slot for any spill reg yet. */
729 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
730 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
732 /* Initialize the save area information for caller-save, in case some
733 are needed. */
734 init_save_areas ();
736 /* Compute which hard registers are now in use
737 as homes for pseudo registers.
738 This is done here rather than (eg) in global_alloc
739 because this point is reached even if not optimizing. */
740 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
741 mark_home_live (i);
743 /* A function that has a nonlocal label that can reach the exit
744 block via non-exceptional paths must save all call-saved
745 registers. */
746 if (current_function_has_nonlocal_label
747 && has_nonexceptional_receiver ())
748 current_function_saves_all_registers = 1;
750 if (current_function_saves_all_registers)
751 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
752 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
753 df_set_regs_ever_live (i, true);
755 /* Find all the pseudo registers that didn't get hard regs
756 but do have known equivalent constants or memory slots.
757 These include parameters (known equivalent to parameter slots)
758 and cse'd or loop-moved constant memory addresses.
760 Record constant equivalents in reg_equiv_constant
761 so they will be substituted by find_reloads.
762 Record memory equivalents in reg_mem_equiv so they can
763 be substituted eventually by altering the REG-rtx's. */
765 reg_equiv_constant = XCNEWVEC (rtx, max_regno);
766 reg_equiv_invariant = XCNEWVEC (rtx, max_regno);
767 reg_equiv_mem = XCNEWVEC (rtx, max_regno);
768 reg_equiv_alt_mem_list = XCNEWVEC (rtx, max_regno);
769 reg_equiv_address = XCNEWVEC (rtx, max_regno);
770 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
771 reg_old_renumber = XCNEWVEC (short, max_regno);
772 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
773 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
774 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
776 CLEAR_HARD_REG_SET (bad_spill_regs_global);
778 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
779 to. Also find all paradoxical subregs and find largest such for
780 each pseudo. */
782 num_eliminable_invariants = 0;
783 for (insn = first; insn; insn = NEXT_INSN (insn))
785 rtx set = single_set (insn);
787 /* We may introduce USEs that we want to remove at the end, so
788 we'll mark them with QImode. Make sure there are no
789 previously-marked insns left by say regmove. */
790 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
791 && GET_MODE (insn) != VOIDmode)
792 PUT_MODE (insn, VOIDmode);
794 if (INSN_P (insn))
795 scan_paradoxical_subregs (PATTERN (insn));
797 if (set != 0 && REG_P (SET_DEST (set)))
799 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
800 rtx x;
802 if (! note)
803 continue;
805 i = REGNO (SET_DEST (set));
806 x = XEXP (note, 0);
808 if (i <= LAST_VIRTUAL_REGISTER)
809 continue;
811 if (! function_invariant_p (x)
812 || ! flag_pic
813 /* A function invariant is often CONSTANT_P but may
814 include a register. We promise to only pass
815 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
816 || (CONSTANT_P (x)
817 && LEGITIMATE_PIC_OPERAND_P (x)))
819 /* It can happen that a REG_EQUIV note contains a MEM
820 that is not a legitimate memory operand. As later
821 stages of reload assume that all addresses found
822 in the reg_equiv_* arrays were originally legitimate,
823 we ignore such REG_EQUIV notes. */
824 if (memory_operand (x, VOIDmode))
826 /* Always unshare the equivalence, so we can
827 substitute into this insn without touching the
828 equivalence. */
829 reg_equiv_memory_loc[i] = copy_rtx (x);
831 else if (function_invariant_p (x))
833 if (GET_CODE (x) == PLUS)
835 /* This is PLUS of frame pointer and a constant,
836 and might be shared. Unshare it. */
837 reg_equiv_invariant[i] = copy_rtx (x);
838 num_eliminable_invariants++;
840 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
842 reg_equiv_invariant[i] = x;
843 num_eliminable_invariants++;
845 else if (LEGITIMATE_CONSTANT_P (x))
846 reg_equiv_constant[i] = x;
847 else
849 reg_equiv_memory_loc[i]
850 = force_const_mem (GET_MODE (SET_DEST (set)), x);
851 if (! reg_equiv_memory_loc[i])
852 reg_equiv_init[i] = NULL_RTX;
855 else
857 reg_equiv_init[i] = NULL_RTX;
858 continue;
861 else
862 reg_equiv_init[i] = NULL_RTX;
866 if (dump_file)
867 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
868 if (reg_equiv_init[i])
870 fprintf (dump_file, "init_insns for %u: ", i);
871 print_inline_rtx (dump_file, reg_equiv_init[i], 20);
872 fprintf (dump_file, "\n");
875 init_elim_table ();
877 first_label_num = get_first_label_num ();
878 num_labels = max_label_num () - first_label_num;
880 /* Allocate the tables used to store offset information at labels. */
881 /* We used to use alloca here, but the size of what it would try to
882 allocate would occasionally cause it to exceed the stack limit and
883 cause a core dump. */
884 offsets_known_at = XNEWVEC (char, num_labels);
885 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
887 /* Alter each pseudo-reg rtx to contain its hard reg number.
888 Assign stack slots to the pseudos that lack hard regs or equivalents.
889 Do not touch virtual registers. */
891 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
892 alter_reg (i, -1);
894 /* If we have some registers we think can be eliminated, scan all insns to
895 see if there is an insn that sets one of these registers to something
896 other than itself plus a constant. If so, the register cannot be
897 eliminated. Doing this scan here eliminates an extra pass through the
898 main reload loop in the most common case where register elimination
899 cannot be done. */
900 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
901 if (INSN_P (insn))
902 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
904 maybe_fix_stack_asms ();
906 insns_need_reload = 0;
907 something_needs_elimination = 0;
909 /* Initialize to -1, which means take the first spill register. */
910 last_spill_reg = -1;
912 /* Spill any hard regs that we know we can't eliminate. */
913 CLEAR_HARD_REG_SET (used_spill_regs);
914 /* There can be multiple ways to eliminate a register;
915 they should be listed adjacently.
916 Elimination for any register fails only if all possible ways fail. */
917 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
919 int from = ep->from;
920 int can_eliminate = 0;
923 can_eliminate |= ep->can_eliminate;
924 ep++;
926 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
927 if (! can_eliminate)
928 spill_hard_reg (from, 1);
931 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
932 if (frame_pointer_needed)
933 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
934 #endif
935 finish_spills (global);
937 /* From now on, we may need to generate moves differently. We may also
938 allow modifications of insns which cause them to not be recognized.
939 Any such modifications will be cleaned up during reload itself. */
940 reload_in_progress = 1;
942 /* This loop scans the entire function each go-round
943 and repeats until one repetition spills no additional hard regs. */
944 for (;;)
946 int something_changed;
947 int did_spill;
948 HOST_WIDE_INT starting_frame_size;
950 starting_frame_size = get_frame_size ();
952 set_initial_elim_offsets ();
953 set_initial_label_offsets ();
955 /* For each pseudo register that has an equivalent location defined,
956 try to eliminate any eliminable registers (such as the frame pointer)
957 assuming initial offsets for the replacement register, which
958 is the normal case.
960 If the resulting location is directly addressable, substitute
961 the MEM we just got directly for the old REG.
963 If it is not addressable but is a constant or the sum of a hard reg
964 and constant, it is probably not addressable because the constant is
965 out of range, in that case record the address; we will generate
966 hairy code to compute the address in a register each time it is
967 needed. Similarly if it is a hard register, but one that is not
968 valid as an address register.
970 If the location is not addressable, but does not have one of the
971 above forms, assign a stack slot. We have to do this to avoid the
972 potential of producing lots of reloads if, e.g., a location involves
973 a pseudo that didn't get a hard register and has an equivalent memory
974 location that also involves a pseudo that didn't get a hard register.
976 Perhaps at some point we will improve reload_when_needed handling
977 so this problem goes away. But that's very hairy. */
979 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
980 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
982 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
984 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
985 XEXP (x, 0)))
986 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
987 else if (CONSTANT_P (XEXP (x, 0))
988 || (REG_P (XEXP (x, 0))
989 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
990 || (GET_CODE (XEXP (x, 0)) == PLUS
991 && REG_P (XEXP (XEXP (x, 0), 0))
992 && (REGNO (XEXP (XEXP (x, 0), 0))
993 < FIRST_PSEUDO_REGISTER)
994 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
995 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
996 else
998 /* Make a new stack slot. Then indicate that something
999 changed so we go back and recompute offsets for
1000 eliminable registers because the allocation of memory
1001 below might change some offset. reg_equiv_{mem,address}
1002 will be set up for this pseudo on the next pass around
1003 the loop. */
1004 reg_equiv_memory_loc[i] = 0;
1005 reg_equiv_init[i] = 0;
1006 alter_reg (i, -1);
1010 if (caller_save_needed)
1011 setup_save_areas ();
1013 /* If we allocated another stack slot, redo elimination bookkeeping. */
1014 if (starting_frame_size != get_frame_size ())
1015 continue;
1016 if (starting_frame_size && cfun->stack_alignment_needed)
1018 /* If we have a stack frame, we must align it now. The
1019 stack size may be a part of the offset computation for
1020 register elimination. So if this changes the stack size,
1021 then repeat the elimination bookkeeping. We don't
1022 realign when there is no stack, as that will cause a
1023 stack frame when none is needed should
1024 STARTING_FRAME_OFFSET not be already aligned to
1025 STACK_BOUNDARY. */
1026 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
1027 if (starting_frame_size != get_frame_size ())
1028 continue;
1031 if (caller_save_needed)
1033 save_call_clobbered_regs ();
1034 /* That might have allocated new insn_chain structures. */
1035 reload_firstobj = obstack_alloc (&reload_obstack, 0);
1038 calculate_needs_all_insns (global);
1040 CLEAR_REG_SET (&spilled_pseudos);
1041 did_spill = 0;
1043 something_changed = 0;
1045 /* If we allocated any new memory locations, make another pass
1046 since it might have changed elimination offsets. */
1047 if (starting_frame_size != get_frame_size ())
1048 something_changed = 1;
1050 /* Even if the frame size remained the same, we might still have
1051 changed elimination offsets, e.g. if find_reloads called
1052 force_const_mem requiring the back end to allocate a constant
1053 pool base register that needs to be saved on the stack. */
1054 else if (!verify_initial_elim_offsets ())
1055 something_changed = 1;
1058 HARD_REG_SET to_spill;
1059 CLEAR_HARD_REG_SET (to_spill);
1060 update_eliminables (&to_spill);
1061 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
1063 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1064 if (TEST_HARD_REG_BIT (to_spill, i))
1066 spill_hard_reg (i, 1);
1067 did_spill = 1;
1069 /* Regardless of the state of spills, if we previously had
1070 a register that we thought we could eliminate, but now can
1071 not eliminate, we must run another pass.
1073 Consider pseudos which have an entry in reg_equiv_* which
1074 reference an eliminable register. We must make another pass
1075 to update reg_equiv_* so that we do not substitute in the
1076 old value from when we thought the elimination could be
1077 performed. */
1078 something_changed = 1;
1082 select_reload_regs ();
1083 if (failure)
1084 goto failed;
1086 if (insns_need_reload != 0 || did_spill)
1087 something_changed |= finish_spills (global);
1089 if (! something_changed)
1090 break;
1092 if (caller_save_needed)
1093 delete_caller_save_insns ();
1095 obstack_free (&reload_obstack, reload_firstobj);
1098 /* If global-alloc was run, notify it of any register eliminations we have
1099 done. */
1100 if (global)
1101 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1102 if (ep->can_eliminate)
1103 mark_elimination (ep->from, ep->to);
1105 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1106 If that insn didn't set the register (i.e., it copied the register to
1107 memory), just delete that insn instead of the equivalencing insn plus
1108 anything now dead. If we call delete_dead_insn on that insn, we may
1109 delete the insn that actually sets the register if the register dies
1110 there and that is incorrect. */
1112 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1114 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1116 rtx list;
1117 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1119 rtx equiv_insn = XEXP (list, 0);
1121 /* If we already deleted the insn or if it may trap, we can't
1122 delete it. The latter case shouldn't happen, but can
1123 if an insn has a variable address, gets a REG_EH_REGION
1124 note added to it, and then gets converted into a load
1125 from a constant address. */
1126 if (NOTE_P (equiv_insn)
1127 || can_throw_internal (equiv_insn))
1129 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1130 delete_dead_insn (equiv_insn);
1131 else
1132 SET_INSN_DELETED (equiv_insn);
1137 /* Use the reload registers where necessary
1138 by generating move instructions to move the must-be-register
1139 values into or out of the reload registers. */
1141 if (insns_need_reload != 0 || something_needs_elimination
1142 || something_needs_operands_changed)
1144 HOST_WIDE_INT old_frame_size = get_frame_size ();
1146 reload_as_needed (global);
1148 gcc_assert (old_frame_size == get_frame_size ());
1150 gcc_assert (verify_initial_elim_offsets ());
1153 /* If we were able to eliminate the frame pointer, show that it is no
1154 longer live at the start of any basic block. If it ls live by
1155 virtue of being in a pseudo, that pseudo will be marked live
1156 and hence the frame pointer will be known to be live via that
1157 pseudo. */
1159 if (! frame_pointer_needed)
1160 FOR_EACH_BB (bb)
1162 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1163 bitmap_clear_bit (df_get_live_top (bb), HARD_FRAME_POINTER_REGNUM);
1166 /* Come here (with failure set nonzero) if we can't get enough spill
1167 regs. */
1168 failed:
1170 CLEAR_REG_SET (&spilled_pseudos);
1171 reload_in_progress = 0;
1173 /* Now eliminate all pseudo regs by modifying them into
1174 their equivalent memory references.
1175 The REG-rtx's for the pseudos are modified in place,
1176 so all insns that used to refer to them now refer to memory.
1178 For a reg that has a reg_equiv_address, all those insns
1179 were changed by reloading so that no insns refer to it any longer;
1180 but the DECL_RTL of a variable decl may refer to it,
1181 and if so this causes the debugging info to mention the variable. */
1183 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1185 rtx addr = 0;
1187 if (reg_equiv_mem[i])
1188 addr = XEXP (reg_equiv_mem[i], 0);
1190 if (reg_equiv_address[i])
1191 addr = reg_equiv_address[i];
1193 if (addr)
1195 if (reg_renumber[i] < 0)
1197 rtx reg = regno_reg_rtx[i];
1199 REG_USERVAR_P (reg) = 0;
1200 PUT_CODE (reg, MEM);
1201 XEXP (reg, 0) = addr;
1202 if (reg_equiv_memory_loc[i])
1203 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1204 else
1206 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1207 MEM_ATTRS (reg) = 0;
1209 MEM_NOTRAP_P (reg) = 1;
1211 else if (reg_equiv_mem[i])
1212 XEXP (reg_equiv_mem[i], 0) = addr;
1216 /* We must set reload_completed now since the cleanup_subreg_operands call
1217 below will re-recognize each insn and reload may have generated insns
1218 which are only valid during and after reload. */
1219 reload_completed = 1;
1221 /* Make a pass over all the insns and delete all USEs which we inserted
1222 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1223 notes. Delete all CLOBBER insns, except those that refer to the return
1224 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1225 from misarranging variable-array code, and simplify (subreg (reg))
1226 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1227 are no longer useful or accurate. Strip and regenerate REG_INC notes
1228 that may have been moved around. */
1230 for (insn = first; insn; insn = NEXT_INSN (insn))
1231 if (INSN_P (insn))
1233 rtx *pnote;
1235 if (CALL_P (insn))
1236 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1237 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1239 if ((GET_CODE (PATTERN (insn)) == USE
1240 /* We mark with QImode USEs introduced by reload itself. */
1241 && (GET_MODE (insn) == QImode
1242 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1243 || (GET_CODE (PATTERN (insn)) == CLOBBER
1244 && (!MEM_P (XEXP (PATTERN (insn), 0))
1245 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1246 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1247 && XEXP (XEXP (PATTERN (insn), 0), 0)
1248 != stack_pointer_rtx))
1249 && (!REG_P (XEXP (PATTERN (insn), 0))
1250 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1252 delete_insn (insn);
1253 continue;
1256 /* Some CLOBBERs may survive until here and still reference unassigned
1257 pseudos with const equivalent, which may in turn cause ICE in later
1258 passes if the reference remains in place. */
1259 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1260 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1261 VOIDmode, PATTERN (insn));
1263 /* Discard obvious no-ops, even without -O. This optimization
1264 is fast and doesn't interfere with debugging. */
1265 if (NONJUMP_INSN_P (insn)
1266 && GET_CODE (PATTERN (insn)) == SET
1267 && REG_P (SET_SRC (PATTERN (insn)))
1268 && REG_P (SET_DEST (PATTERN (insn)))
1269 && (REGNO (SET_SRC (PATTERN (insn)))
1270 == REGNO (SET_DEST (PATTERN (insn)))))
1272 delete_insn (insn);
1273 continue;
1276 pnote = &REG_NOTES (insn);
1277 while (*pnote != 0)
1279 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1280 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1281 || REG_NOTE_KIND (*pnote) == REG_INC
1282 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1283 || REG_NOTE_KIND (*pnote) == REG_LIBCALL_ID
1284 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1285 *pnote = XEXP (*pnote, 1);
1286 else
1287 pnote = &XEXP (*pnote, 1);
1290 #ifdef AUTO_INC_DEC
1291 add_auto_inc_notes (insn, PATTERN (insn));
1292 #endif
1294 /* Simplify (subreg (reg)) if it appears as an operand. */
1295 cleanup_subreg_operands (insn);
1297 /* Clean up invalid ASMs so that they don't confuse later passes.
1298 See PR 21299. */
1299 if (asm_noperands (PATTERN (insn)) >= 0)
1301 extract_insn (insn);
1302 if (!constrain_operands (1))
1304 error_for_asm (insn,
1305 "%<asm%> operand has impossible constraints");
1306 delete_insn (insn);
1307 continue;
1312 /* If we are doing stack checking, give a warning if this function's
1313 frame size is larger than we expect. */
1314 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1316 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1317 static int verbose_warned = 0;
1319 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1320 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1321 size += UNITS_PER_WORD;
1323 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1325 warning (0, "frame size too large for reliable stack checking");
1326 if (! verbose_warned)
1328 warning (0, "try reducing the number of local variables");
1329 verbose_warned = 1;
1334 /* Indicate that we no longer have known memory locations or constants. */
1335 if (reg_equiv_constant)
1336 free (reg_equiv_constant);
1337 if (reg_equiv_invariant)
1338 free (reg_equiv_invariant);
1339 reg_equiv_constant = 0;
1340 reg_equiv_invariant = 0;
1341 VEC_free (rtx, gc, reg_equiv_memory_loc_vec);
1342 reg_equiv_memory_loc = 0;
1344 if (offsets_known_at)
1345 free (offsets_known_at);
1346 if (offsets_at)
1347 free (offsets_at);
1349 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1350 if (reg_equiv_alt_mem_list[i])
1351 free_EXPR_LIST_list (&reg_equiv_alt_mem_list[i]);
1352 free (reg_equiv_alt_mem_list);
1354 free (reg_equiv_mem);
1355 reg_equiv_init = 0;
1356 free (reg_equiv_address);
1357 free (reg_max_ref_width);
1358 free (reg_old_renumber);
1359 free (pseudo_previous_regs);
1360 free (pseudo_forbidden_regs);
1362 CLEAR_HARD_REG_SET (used_spill_regs);
1363 for (i = 0; i < n_spills; i++)
1364 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1366 /* Free all the insn_chain structures at once. */
1367 obstack_free (&reload_obstack, reload_startobj);
1368 unused_insn_chains = 0;
1369 fixup_abnormal_edges ();
1371 /* Replacing pseudos with their memory equivalents might have
1372 created shared rtx. Subsequent passes would get confused
1373 by this, so unshare everything here. */
1374 unshare_all_rtl_again (first);
1376 #ifdef STACK_BOUNDARY
1377 /* init_emit has set the alignment of the hard frame pointer
1378 to STACK_BOUNDARY. It is very likely no longer valid if
1379 the hard frame pointer was used for register allocation. */
1380 if (!frame_pointer_needed)
1381 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1382 #endif
1384 return failure;
1387 /* Yet another special case. Unfortunately, reg-stack forces people to
1388 write incorrect clobbers in asm statements. These clobbers must not
1389 cause the register to appear in bad_spill_regs, otherwise we'll call
1390 fatal_insn later. We clear the corresponding regnos in the live
1391 register sets to avoid this.
1392 The whole thing is rather sick, I'm afraid. */
1394 static void
1395 maybe_fix_stack_asms (void)
1397 #ifdef STACK_REGS
1398 const char *constraints[MAX_RECOG_OPERANDS];
1399 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1400 struct insn_chain *chain;
1402 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1404 int i, noperands;
1405 HARD_REG_SET clobbered, allowed;
1406 rtx pat;
1408 if (! INSN_P (chain->insn)
1409 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1410 continue;
1411 pat = PATTERN (chain->insn);
1412 if (GET_CODE (pat) != PARALLEL)
1413 continue;
1415 CLEAR_HARD_REG_SET (clobbered);
1416 CLEAR_HARD_REG_SET (allowed);
1418 /* First, make a mask of all stack regs that are clobbered. */
1419 for (i = 0; i < XVECLEN (pat, 0); i++)
1421 rtx t = XVECEXP (pat, 0, i);
1422 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1423 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1426 /* Get the operand values and constraints out of the insn. */
1427 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1428 constraints, operand_mode, NULL);
1430 /* For every operand, see what registers are allowed. */
1431 for (i = 0; i < noperands; i++)
1433 const char *p = constraints[i];
1434 /* For every alternative, we compute the class of registers allowed
1435 for reloading in CLS, and merge its contents into the reg set
1436 ALLOWED. */
1437 int cls = (int) NO_REGS;
1439 for (;;)
1441 char c = *p;
1443 if (c == '\0' || c == ',' || c == '#')
1445 /* End of one alternative - mark the regs in the current
1446 class, and reset the class. */
1447 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1448 cls = NO_REGS;
1449 p++;
1450 if (c == '#')
1451 do {
1452 c = *p++;
1453 } while (c != '\0' && c != ',');
1454 if (c == '\0')
1455 break;
1456 continue;
1459 switch (c)
1461 case '=': case '+': case '*': case '%': case '?': case '!':
1462 case '0': case '1': case '2': case '3': case '4': case 'm':
1463 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1464 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1465 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1466 case 'P':
1467 break;
1469 case 'p':
1470 cls = (int) reg_class_subunion[cls]
1471 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1472 break;
1474 case 'g':
1475 case 'r':
1476 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1477 break;
1479 default:
1480 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1481 cls = (int) reg_class_subunion[cls]
1482 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1483 else
1484 cls = (int) reg_class_subunion[cls]
1485 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1487 p += CONSTRAINT_LEN (c, p);
1490 /* Those of the registers which are clobbered, but allowed by the
1491 constraints, must be usable as reload registers. So clear them
1492 out of the life information. */
1493 AND_HARD_REG_SET (allowed, clobbered);
1494 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1495 if (TEST_HARD_REG_BIT (allowed, i))
1497 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1498 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1502 #endif
1505 /* Copy the global variables n_reloads and rld into the corresponding elts
1506 of CHAIN. */
1507 static void
1508 copy_reloads (struct insn_chain *chain)
1510 chain->n_reloads = n_reloads;
1511 chain->rld = obstack_alloc (&reload_obstack,
1512 n_reloads * sizeof (struct reload));
1513 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1514 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1517 /* Walk the chain of insns, and determine for each whether it needs reloads
1518 and/or eliminations. Build the corresponding insns_need_reload list, and
1519 set something_needs_elimination as appropriate. */
1520 static void
1521 calculate_needs_all_insns (int global)
1523 struct insn_chain **pprev_reload = &insns_need_reload;
1524 struct insn_chain *chain, *next = 0;
1526 something_needs_elimination = 0;
1528 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1529 for (chain = reload_insn_chain; chain != 0; chain = next)
1531 rtx insn = chain->insn;
1533 next = chain->next;
1535 /* Clear out the shortcuts. */
1536 chain->n_reloads = 0;
1537 chain->need_elim = 0;
1538 chain->need_reload = 0;
1539 chain->need_operand_change = 0;
1541 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1542 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1543 what effects this has on the known offsets at labels. */
1545 if (LABEL_P (insn) || JUMP_P (insn)
1546 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1547 set_label_offsets (insn, insn, 0);
1549 if (INSN_P (insn))
1551 rtx old_body = PATTERN (insn);
1552 int old_code = INSN_CODE (insn);
1553 rtx old_notes = REG_NOTES (insn);
1554 int did_elimination = 0;
1555 int operands_changed = 0;
1556 rtx set = single_set (insn);
1558 /* Skip insns that only set an equivalence. */
1559 if (set && REG_P (SET_DEST (set))
1560 && reg_renumber[REGNO (SET_DEST (set))] < 0
1561 && (reg_equiv_constant[REGNO (SET_DEST (set))]
1562 || (reg_equiv_invariant[REGNO (SET_DEST (set))]))
1563 && reg_equiv_init[REGNO (SET_DEST (set))])
1564 continue;
1566 /* If needed, eliminate any eliminable registers. */
1567 if (num_eliminable || num_eliminable_invariants)
1568 did_elimination = eliminate_regs_in_insn (insn, 0);
1570 /* Analyze the instruction. */
1571 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1572 global, spill_reg_order);
1574 /* If a no-op set needs more than one reload, this is likely
1575 to be something that needs input address reloads. We
1576 can't get rid of this cleanly later, and it is of no use
1577 anyway, so discard it now.
1578 We only do this when expensive_optimizations is enabled,
1579 since this complements reload inheritance / output
1580 reload deletion, and it can make debugging harder. */
1581 if (flag_expensive_optimizations && n_reloads > 1)
1583 rtx set = single_set (insn);
1584 if (set
1585 && SET_SRC (set) == SET_DEST (set)
1586 && REG_P (SET_SRC (set))
1587 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1589 delete_insn (insn);
1590 /* Delete it from the reload chain. */
1591 if (chain->prev)
1592 chain->prev->next = next;
1593 else
1594 reload_insn_chain = next;
1595 if (next)
1596 next->prev = chain->prev;
1597 chain->next = unused_insn_chains;
1598 unused_insn_chains = chain;
1599 continue;
1602 if (num_eliminable)
1603 update_eliminable_offsets ();
1605 /* Remember for later shortcuts which insns had any reloads or
1606 register eliminations. */
1607 chain->need_elim = did_elimination;
1608 chain->need_reload = n_reloads > 0;
1609 chain->need_operand_change = operands_changed;
1611 /* Discard any register replacements done. */
1612 if (did_elimination)
1614 obstack_free (&reload_obstack, reload_insn_firstobj);
1615 PATTERN (insn) = old_body;
1616 INSN_CODE (insn) = old_code;
1617 REG_NOTES (insn) = old_notes;
1618 something_needs_elimination = 1;
1621 something_needs_operands_changed |= operands_changed;
1623 if (n_reloads != 0)
1625 copy_reloads (chain);
1626 *pprev_reload = chain;
1627 pprev_reload = &chain->next_need_reload;
1631 *pprev_reload = 0;
1634 /* Comparison function for qsort to decide which of two reloads
1635 should be handled first. *P1 and *P2 are the reload numbers. */
1637 static int
1638 reload_reg_class_lower (const void *r1p, const void *r2p)
1640 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1641 int t;
1643 /* Consider required reloads before optional ones. */
1644 t = rld[r1].optional - rld[r2].optional;
1645 if (t != 0)
1646 return t;
1648 /* Count all solitary classes before non-solitary ones. */
1649 t = ((reg_class_size[(int) rld[r2].class] == 1)
1650 - (reg_class_size[(int) rld[r1].class] == 1));
1651 if (t != 0)
1652 return t;
1654 /* Aside from solitaires, consider all multi-reg groups first. */
1655 t = rld[r2].nregs - rld[r1].nregs;
1656 if (t != 0)
1657 return t;
1659 /* Consider reloads in order of increasing reg-class number. */
1660 t = (int) rld[r1].class - (int) rld[r2].class;
1661 if (t != 0)
1662 return t;
1664 /* If reloads are equally urgent, sort by reload number,
1665 so that the results of qsort leave nothing to chance. */
1666 return r1 - r2;
1669 /* The cost of spilling each hard reg. */
1670 static int spill_cost[FIRST_PSEUDO_REGISTER];
1672 /* When spilling multiple hard registers, we use SPILL_COST for the first
1673 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1674 only the first hard reg for a multi-reg pseudo. */
1675 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1677 /* Update the spill cost arrays, considering that pseudo REG is live. */
1679 static void
1680 count_pseudo (int reg)
1682 int freq = REG_FREQ (reg);
1683 int r = reg_renumber[reg];
1684 int nregs;
1686 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1687 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1688 return;
1690 SET_REGNO_REG_SET (&pseudos_counted, reg);
1692 gcc_assert (r >= 0);
1694 spill_add_cost[r] += freq;
1696 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1697 while (nregs-- > 0)
1698 spill_cost[r + nregs] += freq;
1701 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1702 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1704 static void
1705 order_regs_for_reload (struct insn_chain *chain)
1707 unsigned i;
1708 HARD_REG_SET used_by_pseudos;
1709 HARD_REG_SET used_by_pseudos2;
1710 reg_set_iterator rsi;
1712 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1714 memset (spill_cost, 0, sizeof spill_cost);
1715 memset (spill_add_cost, 0, sizeof spill_add_cost);
1717 /* Count number of uses of each hard reg by pseudo regs allocated to it
1718 and then order them by decreasing use. First exclude hard registers
1719 that are live in or across this insn. */
1721 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1722 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1723 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1724 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1726 /* Now find out which pseudos are allocated to it, and update
1727 hard_reg_n_uses. */
1728 CLEAR_REG_SET (&pseudos_counted);
1730 EXECUTE_IF_SET_IN_REG_SET
1731 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1733 count_pseudo (i);
1735 EXECUTE_IF_SET_IN_REG_SET
1736 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1738 count_pseudo (i);
1740 CLEAR_REG_SET (&pseudos_counted);
1743 /* Vector of reload-numbers showing the order in which the reloads should
1744 be processed. */
1745 static short reload_order[MAX_RELOADS];
1747 /* This is used to keep track of the spill regs used in one insn. */
1748 static HARD_REG_SET used_spill_regs_local;
1750 /* We decided to spill hard register SPILLED, which has a size of
1751 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1752 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1753 update SPILL_COST/SPILL_ADD_COST. */
1755 static void
1756 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1758 int r = reg_renumber[reg];
1759 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1761 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1762 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1763 return;
1765 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1767 spill_add_cost[r] -= REG_FREQ (reg);
1768 while (nregs-- > 0)
1769 spill_cost[r + nregs] -= REG_FREQ (reg);
1772 /* Find reload register to use for reload number ORDER. */
1774 static int
1775 find_reg (struct insn_chain *chain, int order)
1777 int rnum = reload_order[order];
1778 struct reload *rl = rld + rnum;
1779 int best_cost = INT_MAX;
1780 int best_reg = -1;
1781 unsigned int i, j;
1782 int k;
1783 HARD_REG_SET not_usable;
1784 HARD_REG_SET used_by_other_reload;
1785 reg_set_iterator rsi;
1787 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1788 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1789 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1791 CLEAR_HARD_REG_SET (used_by_other_reload);
1792 for (k = 0; k < order; k++)
1794 int other = reload_order[k];
1796 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1797 for (j = 0; j < rld[other].nregs; j++)
1798 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1801 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1803 unsigned int regno = i;
1805 if (! TEST_HARD_REG_BIT (not_usable, regno)
1806 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1807 && HARD_REGNO_MODE_OK (regno, rl->mode))
1809 int this_cost = spill_cost[regno];
1810 int ok = 1;
1811 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1813 for (j = 1; j < this_nregs; j++)
1815 this_cost += spill_add_cost[regno + j];
1816 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1817 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1818 ok = 0;
1820 if (! ok)
1821 continue;
1822 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1823 this_cost--;
1824 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1825 this_cost--;
1826 if (this_cost < best_cost
1827 /* Among registers with equal cost, prefer caller-saved ones, or
1828 use REG_ALLOC_ORDER if it is defined. */
1829 || (this_cost == best_cost
1830 #ifdef REG_ALLOC_ORDER
1831 && (inv_reg_alloc_order[regno]
1832 < inv_reg_alloc_order[best_reg])
1833 #else
1834 && call_used_regs[regno]
1835 && ! call_used_regs[best_reg]
1836 #endif
1839 best_reg = regno;
1840 best_cost = this_cost;
1844 if (best_reg == -1)
1845 return 0;
1847 if (dump_file)
1848 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1850 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1851 rl->regno = best_reg;
1853 EXECUTE_IF_SET_IN_REG_SET
1854 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1856 count_spilled_pseudo (best_reg, rl->nregs, j);
1859 EXECUTE_IF_SET_IN_REG_SET
1860 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1862 count_spilled_pseudo (best_reg, rl->nregs, j);
1865 for (i = 0; i < rl->nregs; i++)
1867 gcc_assert (spill_cost[best_reg + i] == 0);
1868 gcc_assert (spill_add_cost[best_reg + i] == 0);
1869 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1871 return 1;
1874 /* Find more reload regs to satisfy the remaining need of an insn, which
1875 is given by CHAIN.
1876 Do it by ascending class number, since otherwise a reg
1877 might be spilled for a big class and might fail to count
1878 for a smaller class even though it belongs to that class. */
1880 static void
1881 find_reload_regs (struct insn_chain *chain)
1883 int i;
1885 /* In order to be certain of getting the registers we need,
1886 we must sort the reloads into order of increasing register class.
1887 Then our grabbing of reload registers will parallel the process
1888 that provided the reload registers. */
1889 for (i = 0; i < chain->n_reloads; i++)
1891 /* Show whether this reload already has a hard reg. */
1892 if (chain->rld[i].reg_rtx)
1894 int regno = REGNO (chain->rld[i].reg_rtx);
1895 chain->rld[i].regno = regno;
1896 chain->rld[i].nregs
1897 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1899 else
1900 chain->rld[i].regno = -1;
1901 reload_order[i] = i;
1904 n_reloads = chain->n_reloads;
1905 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1907 CLEAR_HARD_REG_SET (used_spill_regs_local);
1909 if (dump_file)
1910 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1912 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1914 /* Compute the order of preference for hard registers to spill. */
1916 order_regs_for_reload (chain);
1918 for (i = 0; i < n_reloads; i++)
1920 int r = reload_order[i];
1922 /* Ignore reloads that got marked inoperative. */
1923 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1924 && ! rld[r].optional
1925 && rld[r].regno == -1)
1926 if (! find_reg (chain, i))
1928 if (dump_file)
1929 fprintf (dump_file, "reload failure for reload %d\n", r);
1930 spill_failure (chain->insn, rld[r].class);
1931 failure = 1;
1932 return;
1936 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1937 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1939 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1942 static void
1943 select_reload_regs (void)
1945 struct insn_chain *chain;
1947 /* Try to satisfy the needs for each insn. */
1948 for (chain = insns_need_reload; chain != 0;
1949 chain = chain->next_need_reload)
1950 find_reload_regs (chain);
1953 /* Delete all insns that were inserted by emit_caller_save_insns during
1954 this iteration. */
1955 static void
1956 delete_caller_save_insns (void)
1958 struct insn_chain *c = reload_insn_chain;
1960 while (c != 0)
1962 while (c != 0 && c->is_caller_save_insn)
1964 struct insn_chain *next = c->next;
1965 rtx insn = c->insn;
1967 if (c == reload_insn_chain)
1968 reload_insn_chain = next;
1969 delete_insn (insn);
1971 if (next)
1972 next->prev = c->prev;
1973 if (c->prev)
1974 c->prev->next = next;
1975 c->next = unused_insn_chains;
1976 unused_insn_chains = c;
1977 c = next;
1979 if (c != 0)
1980 c = c->next;
1984 /* Handle the failure to find a register to spill.
1985 INSN should be one of the insns which needed this particular spill reg. */
1987 static void
1988 spill_failure (rtx insn, enum reg_class class)
1990 if (asm_noperands (PATTERN (insn)) >= 0)
1991 error_for_asm (insn, "can't find a register in class %qs while "
1992 "reloading %<asm%>",
1993 reg_class_names[class]);
1994 else
1996 error ("unable to find a register to spill in class %qs",
1997 reg_class_names[class]);
1999 if (dump_file)
2001 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2002 debug_reload_to_stream (dump_file);
2004 fatal_insn ("this is the insn:", insn);
2008 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2009 data that is dead in INSN. */
2011 static void
2012 delete_dead_insn (rtx insn)
2014 rtx prev = prev_real_insn (insn);
2015 rtx prev_dest;
2017 /* If the previous insn sets a register that dies in our insn, delete it
2018 too. */
2019 if (prev && GET_CODE (PATTERN (prev)) == SET
2020 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2021 && reg_mentioned_p (prev_dest, PATTERN (insn))
2022 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2023 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2024 delete_dead_insn (prev);
2026 SET_INSN_DELETED (insn);
2029 /* Modify the home of pseudo-reg I.
2030 The new home is present in reg_renumber[I].
2032 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2033 or it may be -1, meaning there is none or it is not relevant.
2034 This is used so that all pseudos spilled from a given hard reg
2035 can share one stack slot. */
2037 static void
2038 alter_reg (int i, int from_reg)
2040 /* When outputting an inline function, this can happen
2041 for a reg that isn't actually used. */
2042 if (regno_reg_rtx[i] == 0)
2043 return;
2045 /* If the reg got changed to a MEM at rtl-generation time,
2046 ignore it. */
2047 if (!REG_P (regno_reg_rtx[i]))
2048 return;
2050 /* Modify the reg-rtx to contain the new hard reg
2051 number or else to contain its pseudo reg number. */
2052 SET_REGNO (regno_reg_rtx[i],
2053 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2055 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2056 allocate a stack slot for it. */
2058 if (reg_renumber[i] < 0
2059 && REG_N_REFS (i) > 0
2060 && reg_equiv_constant[i] == 0
2061 && (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
2062 && reg_equiv_memory_loc[i] == 0)
2064 rtx x;
2065 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2066 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2067 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2068 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2069 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2070 int adjust = 0;
2072 /* Each pseudo reg has an inherent size which comes from its own mode,
2073 and a total size which provides room for paradoxical subregs
2074 which refer to the pseudo reg in wider modes.
2076 We can use a slot already allocated if it provides both
2077 enough inherent space and enough total space.
2078 Otherwise, we allocate a new slot, making sure that it has no less
2079 inherent space, and no less total space, then the previous slot. */
2080 if (from_reg == -1)
2082 alias_set_type alias_set = new_alias_set ();
2084 /* No known place to spill from => no slot to reuse. */
2085 x = assign_stack_local (mode, total_size,
2086 min_align > inherent_align
2087 || total_size > inherent_size ? -1 : 0);
2088 if (BYTES_BIG_ENDIAN)
2089 /* Cancel the big-endian correction done in assign_stack_local.
2090 Get the address of the beginning of the slot.
2091 This is so we can do a big-endian correction unconditionally
2092 below. */
2093 adjust = inherent_size - total_size;
2095 /* Nothing can alias this slot except this pseudo. */
2096 set_mem_alias_set (x, alias_set);
2097 dse_record_singleton_alias_set (alias_set, mode);
2100 /* Reuse a stack slot if possible. */
2101 else if (spill_stack_slot[from_reg] != 0
2102 && spill_stack_slot_width[from_reg] >= total_size
2103 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2104 >= inherent_size)
2105 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2106 x = spill_stack_slot[from_reg];
2107 /* Allocate a bigger slot. */
2108 else
2110 /* Compute maximum size needed, both for inherent size
2111 and for total size. */
2112 rtx stack_slot;
2114 if (spill_stack_slot[from_reg])
2116 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2117 > inherent_size)
2118 mode = GET_MODE (spill_stack_slot[from_reg]);
2119 if (spill_stack_slot_width[from_reg] > total_size)
2120 total_size = spill_stack_slot_width[from_reg];
2121 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2122 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2125 /* Make a slot with that size. */
2126 x = assign_stack_local (mode, total_size,
2127 min_align > inherent_align
2128 || total_size > inherent_size ? -1 : 0);
2129 stack_slot = x;
2131 /* All pseudos mapped to this slot can alias each other. */
2132 if (spill_stack_slot[from_reg])
2134 alias_set_type alias_set
2135 = MEM_ALIAS_SET (spill_stack_slot[from_reg]);
2136 set_mem_alias_set (x, alias_set);
2137 dse_invalidate_singleton_alias_set (alias_set);
2139 else
2141 alias_set_type alias_set = new_alias_set ();
2142 set_mem_alias_set (x, alias_set);
2143 dse_record_singleton_alias_set (alias_set, mode);
2146 if (BYTES_BIG_ENDIAN)
2148 /* Cancel the big-endian correction done in assign_stack_local.
2149 Get the address of the beginning of the slot.
2150 This is so we can do a big-endian correction unconditionally
2151 below. */
2152 adjust = GET_MODE_SIZE (mode) - total_size;
2153 if (adjust)
2154 stack_slot
2155 = adjust_address_nv (x, mode_for_size (total_size
2156 * BITS_PER_UNIT,
2157 MODE_INT, 1),
2158 adjust);
2161 spill_stack_slot[from_reg] = stack_slot;
2162 spill_stack_slot_width[from_reg] = total_size;
2165 /* On a big endian machine, the "address" of the slot
2166 is the address of the low part that fits its inherent mode. */
2167 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2168 adjust += (total_size - inherent_size);
2170 /* If we have any adjustment to make, or if the stack slot is the
2171 wrong mode, make a new stack slot. */
2172 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2174 /* If we have a decl for the original register, set it for the
2175 memory. If this is a shared MEM, make a copy. */
2176 if (REG_EXPR (regno_reg_rtx[i])
2177 && DECL_P (REG_EXPR (regno_reg_rtx[i])))
2179 rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2181 /* We can do this only for the DECLs home pseudo, not for
2182 any copies of it, since otherwise when the stack slot
2183 is reused, nonoverlapping_memrefs_p might think they
2184 cannot overlap. */
2185 if (decl && REG_P (decl) && REGNO (decl) == (unsigned) i)
2187 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2188 x = copy_rtx (x);
2190 set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2194 /* Save the stack slot for later. */
2195 reg_equiv_memory_loc[i] = x;
2199 /* Mark the slots in regs_ever_live for the hard regs used by
2200 pseudo-reg number REGNO, accessed in MODE. */
2202 static void
2203 mark_home_live_1 (int regno, enum machine_mode mode)
2205 int i, lim;
2207 i = reg_renumber[regno];
2208 if (i < 0)
2209 return;
2210 lim = end_hard_regno (mode, i);
2211 while (i < lim)
2212 df_set_regs_ever_live(i++, true);
2215 /* Mark the slots in regs_ever_live for the hard regs
2216 used by pseudo-reg number REGNO. */
2218 void
2219 mark_home_live (int regno)
2221 if (reg_renumber[regno] >= 0)
2222 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2225 /* This function handles the tracking of elimination offsets around branches.
2227 X is a piece of RTL being scanned.
2229 INSN is the insn that it came from, if any.
2231 INITIAL_P is nonzero if we are to set the offset to be the initial
2232 offset and zero if we are setting the offset of the label to be the
2233 current offset. */
2235 static void
2236 set_label_offsets (rtx x, rtx insn, int initial_p)
2238 enum rtx_code code = GET_CODE (x);
2239 rtx tem;
2240 unsigned int i;
2241 struct elim_table *p;
2243 switch (code)
2245 case LABEL_REF:
2246 if (LABEL_REF_NONLOCAL_P (x))
2247 return;
2249 x = XEXP (x, 0);
2251 /* ... fall through ... */
2253 case CODE_LABEL:
2254 /* If we know nothing about this label, set the desired offsets. Note
2255 that this sets the offset at a label to be the offset before a label
2256 if we don't know anything about the label. This is not correct for
2257 the label after a BARRIER, but is the best guess we can make. If
2258 we guessed wrong, we will suppress an elimination that might have
2259 been possible had we been able to guess correctly. */
2261 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2263 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2264 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2265 = (initial_p ? reg_eliminate[i].initial_offset
2266 : reg_eliminate[i].offset);
2267 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2270 /* Otherwise, if this is the definition of a label and it is
2271 preceded by a BARRIER, set our offsets to the known offset of
2272 that label. */
2274 else if (x == insn
2275 && (tem = prev_nonnote_insn (insn)) != 0
2276 && BARRIER_P (tem))
2277 set_offsets_for_label (insn);
2278 else
2279 /* If neither of the above cases is true, compare each offset
2280 with those previously recorded and suppress any eliminations
2281 where the offsets disagree. */
2283 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2284 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2285 != (initial_p ? reg_eliminate[i].initial_offset
2286 : reg_eliminate[i].offset))
2287 reg_eliminate[i].can_eliminate = 0;
2289 return;
2291 case JUMP_INSN:
2292 set_label_offsets (PATTERN (insn), insn, initial_p);
2294 /* ... fall through ... */
2296 case INSN:
2297 case CALL_INSN:
2298 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2299 to indirectly and hence must have all eliminations at their
2300 initial offsets. */
2301 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2302 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2303 set_label_offsets (XEXP (tem, 0), insn, 1);
2304 return;
2306 case PARALLEL:
2307 case ADDR_VEC:
2308 case ADDR_DIFF_VEC:
2309 /* Each of the labels in the parallel or address vector must be
2310 at their initial offsets. We want the first field for PARALLEL
2311 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2313 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2314 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2315 insn, initial_p);
2316 return;
2318 case SET:
2319 /* We only care about setting PC. If the source is not RETURN,
2320 IF_THEN_ELSE, or a label, disable any eliminations not at
2321 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2322 isn't one of those possibilities. For branches to a label,
2323 call ourselves recursively.
2325 Note that this can disable elimination unnecessarily when we have
2326 a non-local goto since it will look like a non-constant jump to
2327 someplace in the current function. This isn't a significant
2328 problem since such jumps will normally be when all elimination
2329 pairs are back to their initial offsets. */
2331 if (SET_DEST (x) != pc_rtx)
2332 return;
2334 switch (GET_CODE (SET_SRC (x)))
2336 case PC:
2337 case RETURN:
2338 return;
2340 case LABEL_REF:
2341 set_label_offsets (SET_SRC (x), insn, initial_p);
2342 return;
2344 case IF_THEN_ELSE:
2345 tem = XEXP (SET_SRC (x), 1);
2346 if (GET_CODE (tem) == LABEL_REF)
2347 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2348 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2349 break;
2351 tem = XEXP (SET_SRC (x), 2);
2352 if (GET_CODE (tem) == LABEL_REF)
2353 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2354 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2355 break;
2356 return;
2358 default:
2359 break;
2362 /* If we reach here, all eliminations must be at their initial
2363 offset because we are doing a jump to a variable address. */
2364 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2365 if (p->offset != p->initial_offset)
2366 p->can_eliminate = 0;
2367 break;
2369 default:
2370 break;
2374 /* Scan X and replace any eliminable registers (such as fp) with a
2375 replacement (such as sp), plus an offset.
2377 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2378 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2379 MEM, we are allowed to replace a sum of a register and the constant zero
2380 with the register, which we cannot do outside a MEM. In addition, we need
2381 to record the fact that a register is referenced outside a MEM.
2383 If INSN is an insn, it is the insn containing X. If we replace a REG
2384 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2385 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2386 the REG is being modified.
2388 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2389 That's used when we eliminate in expressions stored in notes.
2390 This means, do not set ref_outside_mem even if the reference
2391 is outside of MEMs.
2393 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2394 replacements done assuming all offsets are at their initial values. If
2395 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2396 encounter, return the actual location so that find_reloads will do
2397 the proper thing. */
2399 static rtx
2400 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2401 bool may_use_invariant)
2403 enum rtx_code code = GET_CODE (x);
2404 struct elim_table *ep;
2405 int regno;
2406 rtx new;
2407 int i, j;
2408 const char *fmt;
2409 int copied = 0;
2411 if (! current_function_decl)
2412 return x;
2414 switch (code)
2416 case CONST_INT:
2417 case CONST_DOUBLE:
2418 case CONST_FIXED:
2419 case CONST_VECTOR:
2420 case CONST:
2421 case SYMBOL_REF:
2422 case CODE_LABEL:
2423 case PC:
2424 case CC0:
2425 case ASM_INPUT:
2426 case ADDR_VEC:
2427 case ADDR_DIFF_VEC:
2428 case RETURN:
2429 return x;
2431 case REG:
2432 regno = REGNO (x);
2434 /* First handle the case where we encounter a bare register that
2435 is eliminable. Replace it with a PLUS. */
2436 if (regno < FIRST_PSEUDO_REGISTER)
2438 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2439 ep++)
2440 if (ep->from_rtx == x && ep->can_eliminate)
2441 return plus_constant (ep->to_rtx, ep->previous_offset);
2444 else if (reg_renumber && reg_renumber[regno] < 0
2445 && reg_equiv_invariant && reg_equiv_invariant[regno])
2447 if (may_use_invariant)
2448 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
2449 mem_mode, insn, true);
2450 /* There exists at least one use of REGNO that cannot be
2451 eliminated. Prevent the defining insn from being deleted. */
2452 reg_equiv_init[regno] = NULL_RTX;
2453 alter_reg (regno, -1);
2455 return x;
2457 /* You might think handling MINUS in a manner similar to PLUS is a
2458 good idea. It is not. It has been tried multiple times and every
2459 time the change has had to have been reverted.
2461 Other parts of reload know a PLUS is special (gen_reload for example)
2462 and require special code to handle code a reloaded PLUS operand.
2464 Also consider backends where the flags register is clobbered by a
2465 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2466 lea instruction comes to mind). If we try to reload a MINUS, we
2467 may kill the flags register that was holding a useful value.
2469 So, please before trying to handle MINUS, consider reload as a
2470 whole instead of this little section as well as the backend issues. */
2471 case PLUS:
2472 /* If this is the sum of an eliminable register and a constant, rework
2473 the sum. */
2474 if (REG_P (XEXP (x, 0))
2475 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2476 && CONSTANT_P (XEXP (x, 1)))
2478 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2479 ep++)
2480 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2482 /* The only time we want to replace a PLUS with a REG (this
2483 occurs when the constant operand of the PLUS is the negative
2484 of the offset) is when we are inside a MEM. We won't want
2485 to do so at other times because that would change the
2486 structure of the insn in a way that reload can't handle.
2487 We special-case the commonest situation in
2488 eliminate_regs_in_insn, so just replace a PLUS with a
2489 PLUS here, unless inside a MEM. */
2490 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2491 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2492 return ep->to_rtx;
2493 else
2494 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2495 plus_constant (XEXP (x, 1),
2496 ep->previous_offset));
2499 /* If the register is not eliminable, we are done since the other
2500 operand is a constant. */
2501 return x;
2504 /* If this is part of an address, we want to bring any constant to the
2505 outermost PLUS. We will do this by doing register replacement in
2506 our operands and seeing if a constant shows up in one of them.
2508 Note that there is no risk of modifying the structure of the insn,
2509 since we only get called for its operands, thus we are either
2510 modifying the address inside a MEM, or something like an address
2511 operand of a load-address insn. */
2514 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2515 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2517 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2519 /* If one side is a PLUS and the other side is a pseudo that
2520 didn't get a hard register but has a reg_equiv_constant,
2521 we must replace the constant here since it may no longer
2522 be in the position of any operand. */
2523 if (GET_CODE (new0) == PLUS && REG_P (new1)
2524 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2525 && reg_renumber[REGNO (new1)] < 0
2526 && reg_equiv_constant != 0
2527 && reg_equiv_constant[REGNO (new1)] != 0)
2528 new1 = reg_equiv_constant[REGNO (new1)];
2529 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2530 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2531 && reg_renumber[REGNO (new0)] < 0
2532 && reg_equiv_constant[REGNO (new0)] != 0)
2533 new0 = reg_equiv_constant[REGNO (new0)];
2535 new = form_sum (new0, new1);
2537 /* As above, if we are not inside a MEM we do not want to
2538 turn a PLUS into something else. We might try to do so here
2539 for an addition of 0 if we aren't optimizing. */
2540 if (! mem_mode && GET_CODE (new) != PLUS)
2541 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2542 else
2543 return new;
2546 return x;
2548 case MULT:
2549 /* If this is the product of an eliminable register and a
2550 constant, apply the distribute law and move the constant out
2551 so that we have (plus (mult ..) ..). This is needed in order
2552 to keep load-address insns valid. This case is pathological.
2553 We ignore the possibility of overflow here. */
2554 if (REG_P (XEXP (x, 0))
2555 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2556 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2557 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2558 ep++)
2559 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2561 if (! mem_mode
2562 /* Refs inside notes don't count for this purpose. */
2563 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2564 || GET_CODE (insn) == INSN_LIST)))
2565 ep->ref_outside_mem = 1;
2567 return
2568 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2569 ep->previous_offset * INTVAL (XEXP (x, 1)));
2572 /* ... fall through ... */
2574 case CALL:
2575 case COMPARE:
2576 /* See comments before PLUS about handling MINUS. */
2577 case MINUS:
2578 case DIV: case UDIV:
2579 case MOD: case UMOD:
2580 case AND: case IOR: case XOR:
2581 case ROTATERT: case ROTATE:
2582 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2583 case NE: case EQ:
2584 case GE: case GT: case GEU: case GTU:
2585 case LE: case LT: case LEU: case LTU:
2587 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2588 rtx new1 = XEXP (x, 1)
2589 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
2591 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2592 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2594 return x;
2596 case EXPR_LIST:
2597 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2598 if (XEXP (x, 0))
2600 new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2601 if (new != XEXP (x, 0))
2603 /* If this is a REG_DEAD note, it is not valid anymore.
2604 Using the eliminated version could result in creating a
2605 REG_DEAD note for the stack or frame pointer. */
2606 if (GET_MODE (x) == REG_DEAD)
2607 return (XEXP (x, 1)
2608 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
2609 : NULL_RTX);
2611 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2615 /* ... fall through ... */
2617 case INSN_LIST:
2618 /* Now do eliminations in the rest of the chain. If this was
2619 an EXPR_LIST, this might result in allocating more memory than is
2620 strictly needed, but it simplifies the code. */
2621 if (XEXP (x, 1))
2623 new = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2624 if (new != XEXP (x, 1))
2625 return
2626 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2628 return x;
2630 case PRE_INC:
2631 case POST_INC:
2632 case PRE_DEC:
2633 case POST_DEC:
2634 /* We do not support elimination of a register that is modified.
2635 elimination_effects has already make sure that this does not
2636 happen. */
2637 return x;
2639 case PRE_MODIFY:
2640 case POST_MODIFY:
2641 /* We do not support elimination of a register that is modified.
2642 elimination_effects has already make sure that this does not
2643 happen. The only remaining case we need to consider here is
2644 that the increment value may be an eliminable register. */
2645 if (GET_CODE (XEXP (x, 1)) == PLUS
2646 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2648 rtx new = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2649 insn, true);
2651 if (new != XEXP (XEXP (x, 1), 1))
2652 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2653 gen_rtx_PLUS (GET_MODE (x),
2654 XEXP (x, 0), new));
2656 return x;
2658 case STRICT_LOW_PART:
2659 case NEG: case NOT:
2660 case SIGN_EXTEND: case ZERO_EXTEND:
2661 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2662 case FLOAT: case FIX:
2663 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2664 case ABS:
2665 case SQRT:
2666 case FFS:
2667 case CLZ:
2668 case CTZ:
2669 case POPCOUNT:
2670 case PARITY:
2671 case BSWAP:
2672 new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2673 if (new != XEXP (x, 0))
2674 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2675 return x;
2677 case SUBREG:
2678 /* Similar to above processing, but preserve SUBREG_BYTE.
2679 Convert (subreg (mem)) to (mem) if not paradoxical.
2680 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2681 pseudo didn't get a hard reg, we must replace this with the
2682 eliminated version of the memory location because push_reload
2683 may do the replacement in certain circumstances. */
2684 if (REG_P (SUBREG_REG (x))
2685 && (GET_MODE_SIZE (GET_MODE (x))
2686 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2687 && reg_equiv_memory_loc != 0
2688 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2690 new = SUBREG_REG (x);
2692 else
2693 new = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
2695 if (new != SUBREG_REG (x))
2697 int x_size = GET_MODE_SIZE (GET_MODE (x));
2698 int new_size = GET_MODE_SIZE (GET_MODE (new));
2700 if (MEM_P (new)
2701 && ((x_size < new_size
2702 #ifdef WORD_REGISTER_OPERATIONS
2703 /* On these machines, combine can create rtl of the form
2704 (set (subreg:m1 (reg:m2 R) 0) ...)
2705 where m1 < m2, and expects something interesting to
2706 happen to the entire word. Moreover, it will use the
2707 (reg:m2 R) later, expecting all bits to be preserved.
2708 So if the number of words is the same, preserve the
2709 subreg so that push_reload can see it. */
2710 && ! ((x_size - 1) / UNITS_PER_WORD
2711 == (new_size -1 ) / UNITS_PER_WORD)
2712 #endif
2714 || x_size == new_size)
2716 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2717 else
2718 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2721 return x;
2723 case MEM:
2724 /* Our only special processing is to pass the mode of the MEM to our
2725 recursive call and copy the flags. While we are here, handle this
2726 case more efficiently. */
2727 return
2728 replace_equiv_address_nv (x,
2729 eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
2730 insn, true));
2732 case USE:
2733 /* Handle insn_list USE that a call to a pure function may generate. */
2734 new = eliminate_regs_1 (XEXP (x, 0), 0, insn, false);
2735 if (new != XEXP (x, 0))
2736 return gen_rtx_USE (GET_MODE (x), new);
2737 return x;
2739 case CLOBBER:
2740 case ASM_OPERANDS:
2741 case SET:
2742 gcc_unreachable ();
2744 default:
2745 break;
2748 /* Process each of our operands recursively. If any have changed, make a
2749 copy of the rtx. */
2750 fmt = GET_RTX_FORMAT (code);
2751 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2753 if (*fmt == 'e')
2755 new = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
2756 if (new != XEXP (x, i) && ! copied)
2758 x = shallow_copy_rtx (x);
2759 copied = 1;
2761 XEXP (x, i) = new;
2763 else if (*fmt == 'E')
2765 int copied_vec = 0;
2766 for (j = 0; j < XVECLEN (x, i); j++)
2768 new = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
2769 if (new != XVECEXP (x, i, j) && ! copied_vec)
2771 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2772 XVEC (x, i)->elem);
2773 if (! copied)
2775 x = shallow_copy_rtx (x);
2776 copied = 1;
2778 XVEC (x, i) = new_v;
2779 copied_vec = 1;
2781 XVECEXP (x, i, j) = new;
2786 return x;
2790 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2792 return eliminate_regs_1 (x, mem_mode, insn, false);
2795 /* Scan rtx X for modifications of elimination target registers. Update
2796 the table of eliminables to reflect the changed state. MEM_MODE is
2797 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2799 static void
2800 elimination_effects (rtx x, enum machine_mode mem_mode)
2802 enum rtx_code code = GET_CODE (x);
2803 struct elim_table *ep;
2804 int regno;
2805 int i, j;
2806 const char *fmt;
2808 switch (code)
2810 case CONST_INT:
2811 case CONST_DOUBLE:
2812 case CONST_FIXED:
2813 case CONST_VECTOR:
2814 case CONST:
2815 case SYMBOL_REF:
2816 case CODE_LABEL:
2817 case PC:
2818 case CC0:
2819 case ASM_INPUT:
2820 case ADDR_VEC:
2821 case ADDR_DIFF_VEC:
2822 case RETURN:
2823 return;
2825 case REG:
2826 regno = REGNO (x);
2828 /* First handle the case where we encounter a bare register that
2829 is eliminable. Replace it with a PLUS. */
2830 if (regno < FIRST_PSEUDO_REGISTER)
2832 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2833 ep++)
2834 if (ep->from_rtx == x && ep->can_eliminate)
2836 if (! mem_mode)
2837 ep->ref_outside_mem = 1;
2838 return;
2842 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2843 && reg_equiv_constant[regno]
2844 && ! function_invariant_p (reg_equiv_constant[regno]))
2845 elimination_effects (reg_equiv_constant[regno], mem_mode);
2846 return;
2848 case PRE_INC:
2849 case POST_INC:
2850 case PRE_DEC:
2851 case POST_DEC:
2852 case POST_MODIFY:
2853 case PRE_MODIFY:
2854 /* If we modify the source of an elimination rule, disable it. */
2855 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2856 if (ep->from_rtx == XEXP (x, 0))
2857 ep->can_eliminate = 0;
2859 /* If we modify the target of an elimination rule by adding a constant,
2860 update its offset. If we modify the target in any other way, we'll
2861 have to disable the rule as well. */
2862 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2863 if (ep->to_rtx == XEXP (x, 0))
2865 int size = GET_MODE_SIZE (mem_mode);
2867 /* If more bytes than MEM_MODE are pushed, account for them. */
2868 #ifdef PUSH_ROUNDING
2869 if (ep->to_rtx == stack_pointer_rtx)
2870 size = PUSH_ROUNDING (size);
2871 #endif
2872 if (code == PRE_DEC || code == POST_DEC)
2873 ep->offset += size;
2874 else if (code == PRE_INC || code == POST_INC)
2875 ep->offset -= size;
2876 else if (code == PRE_MODIFY || code == POST_MODIFY)
2878 if (GET_CODE (XEXP (x, 1)) == PLUS
2879 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2880 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
2881 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2882 else
2883 ep->can_eliminate = 0;
2887 /* These two aren't unary operators. */
2888 if (code == POST_MODIFY || code == PRE_MODIFY)
2889 break;
2891 /* Fall through to generic unary operation case. */
2892 case STRICT_LOW_PART:
2893 case NEG: case NOT:
2894 case SIGN_EXTEND: case ZERO_EXTEND:
2895 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2896 case FLOAT: case FIX:
2897 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2898 case ABS:
2899 case SQRT:
2900 case FFS:
2901 case CLZ:
2902 case CTZ:
2903 case POPCOUNT:
2904 case PARITY:
2905 case BSWAP:
2906 elimination_effects (XEXP (x, 0), mem_mode);
2907 return;
2909 case SUBREG:
2910 if (REG_P (SUBREG_REG (x))
2911 && (GET_MODE_SIZE (GET_MODE (x))
2912 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2913 && reg_equiv_memory_loc != 0
2914 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2915 return;
2917 elimination_effects (SUBREG_REG (x), mem_mode);
2918 return;
2920 case USE:
2921 /* If using a register that is the source of an eliminate we still
2922 think can be performed, note it cannot be performed since we don't
2923 know how this register is used. */
2924 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2925 if (ep->from_rtx == XEXP (x, 0))
2926 ep->can_eliminate = 0;
2928 elimination_effects (XEXP (x, 0), mem_mode);
2929 return;
2931 case CLOBBER:
2932 /* If clobbering a register that is the replacement register for an
2933 elimination we still think can be performed, note that it cannot
2934 be performed. Otherwise, we need not be concerned about it. */
2935 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2936 if (ep->to_rtx == XEXP (x, 0))
2937 ep->can_eliminate = 0;
2939 elimination_effects (XEXP (x, 0), mem_mode);
2940 return;
2942 case SET:
2943 /* Check for setting a register that we know about. */
2944 if (REG_P (SET_DEST (x)))
2946 /* See if this is setting the replacement register for an
2947 elimination.
2949 If DEST is the hard frame pointer, we do nothing because we
2950 assume that all assignments to the frame pointer are for
2951 non-local gotos and are being done at a time when they are valid
2952 and do not disturb anything else. Some machines want to
2953 eliminate a fake argument pointer (or even a fake frame pointer)
2954 with either the real frame or the stack pointer. Assignments to
2955 the hard frame pointer must not prevent this elimination. */
2957 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2958 ep++)
2959 if (ep->to_rtx == SET_DEST (x)
2960 && SET_DEST (x) != hard_frame_pointer_rtx)
2962 /* If it is being incremented, adjust the offset. Otherwise,
2963 this elimination can't be done. */
2964 rtx src = SET_SRC (x);
2966 if (GET_CODE (src) == PLUS
2967 && XEXP (src, 0) == SET_DEST (x)
2968 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2969 ep->offset -= INTVAL (XEXP (src, 1));
2970 else
2971 ep->can_eliminate = 0;
2975 elimination_effects (SET_DEST (x), 0);
2976 elimination_effects (SET_SRC (x), 0);
2977 return;
2979 case MEM:
2980 /* Our only special processing is to pass the mode of the MEM to our
2981 recursive call. */
2982 elimination_effects (XEXP (x, 0), GET_MODE (x));
2983 return;
2985 default:
2986 break;
2989 fmt = GET_RTX_FORMAT (code);
2990 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2992 if (*fmt == 'e')
2993 elimination_effects (XEXP (x, i), mem_mode);
2994 else if (*fmt == 'E')
2995 for (j = 0; j < XVECLEN (x, i); j++)
2996 elimination_effects (XVECEXP (x, i, j), mem_mode);
3000 /* Descend through rtx X and verify that no references to eliminable registers
3001 remain. If any do remain, mark the involved register as not
3002 eliminable. */
3004 static void
3005 check_eliminable_occurrences (rtx x)
3007 const char *fmt;
3008 int i;
3009 enum rtx_code code;
3011 if (x == 0)
3012 return;
3014 code = GET_CODE (x);
3016 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3018 struct elim_table *ep;
3020 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3021 if (ep->from_rtx == x)
3022 ep->can_eliminate = 0;
3023 return;
3026 fmt = GET_RTX_FORMAT (code);
3027 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3029 if (*fmt == 'e')
3030 check_eliminable_occurrences (XEXP (x, i));
3031 else if (*fmt == 'E')
3033 int j;
3034 for (j = 0; j < XVECLEN (x, i); j++)
3035 check_eliminable_occurrences (XVECEXP (x, i, j));
3040 /* Scan INSN and eliminate all eliminable registers in it.
3042 If REPLACE is nonzero, do the replacement destructively. Also
3043 delete the insn as dead it if it is setting an eliminable register.
3045 If REPLACE is zero, do all our allocations in reload_obstack.
3047 If no eliminations were done and this insn doesn't require any elimination
3048 processing (these are not identical conditions: it might be updating sp,
3049 but not referencing fp; this needs to be seen during reload_as_needed so
3050 that the offset between fp and sp can be taken into consideration), zero
3051 is returned. Otherwise, 1 is returned. */
3053 static int
3054 eliminate_regs_in_insn (rtx insn, int replace)
3056 int icode = recog_memoized (insn);
3057 rtx old_body = PATTERN (insn);
3058 int insn_is_asm = asm_noperands (old_body) >= 0;
3059 rtx old_set = single_set (insn);
3060 rtx new_body;
3061 int val = 0;
3062 int i;
3063 rtx substed_operand[MAX_RECOG_OPERANDS];
3064 rtx orig_operand[MAX_RECOG_OPERANDS];
3065 struct elim_table *ep;
3066 rtx plus_src, plus_cst_src;
3068 if (! insn_is_asm && icode < 0)
3070 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3071 || GET_CODE (PATTERN (insn)) == CLOBBER
3072 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3073 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3074 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3075 return 0;
3078 if (old_set != 0 && REG_P (SET_DEST (old_set))
3079 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3081 /* Check for setting an eliminable register. */
3082 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3083 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3085 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3086 /* If this is setting the frame pointer register to the
3087 hardware frame pointer register and this is an elimination
3088 that will be done (tested above), this insn is really
3089 adjusting the frame pointer downward to compensate for
3090 the adjustment done before a nonlocal goto. */
3091 if (ep->from == FRAME_POINTER_REGNUM
3092 && ep->to == HARD_FRAME_POINTER_REGNUM)
3094 rtx base = SET_SRC (old_set);
3095 rtx base_insn = insn;
3096 HOST_WIDE_INT offset = 0;
3098 while (base != ep->to_rtx)
3100 rtx prev_insn, prev_set;
3102 if (GET_CODE (base) == PLUS
3103 && GET_CODE (XEXP (base, 1)) == CONST_INT)
3105 offset += INTVAL (XEXP (base, 1));
3106 base = XEXP (base, 0);
3108 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3109 && (prev_set = single_set (prev_insn)) != 0
3110 && rtx_equal_p (SET_DEST (prev_set), base))
3112 base = SET_SRC (prev_set);
3113 base_insn = prev_insn;
3115 else
3116 break;
3119 if (base == ep->to_rtx)
3121 rtx src
3122 = plus_constant (ep->to_rtx, offset - ep->offset);
3124 new_body = old_body;
3125 if (! replace)
3127 new_body = copy_insn (old_body);
3128 if (REG_NOTES (insn))
3129 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3131 PATTERN (insn) = new_body;
3132 old_set = single_set (insn);
3134 /* First see if this insn remains valid when we
3135 make the change. If not, keep the INSN_CODE
3136 the same and let reload fit it up. */
3137 validate_change (insn, &SET_SRC (old_set), src, 1);
3138 validate_change (insn, &SET_DEST (old_set),
3139 ep->to_rtx, 1);
3140 if (! apply_change_group ())
3142 SET_SRC (old_set) = src;
3143 SET_DEST (old_set) = ep->to_rtx;
3146 val = 1;
3147 goto done;
3150 #endif
3152 /* In this case this insn isn't serving a useful purpose. We
3153 will delete it in reload_as_needed once we know that this
3154 elimination is, in fact, being done.
3156 If REPLACE isn't set, we can't delete this insn, but needn't
3157 process it since it won't be used unless something changes. */
3158 if (replace)
3160 delete_dead_insn (insn);
3161 return 1;
3163 val = 1;
3164 goto done;
3168 /* We allow one special case which happens to work on all machines we
3169 currently support: a single set with the source or a REG_EQUAL
3170 note being a PLUS of an eliminable register and a constant. */
3171 plus_src = plus_cst_src = 0;
3172 if (old_set && REG_P (SET_DEST (old_set)))
3174 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3175 plus_src = SET_SRC (old_set);
3176 /* First see if the source is of the form (plus (...) CST). */
3177 if (plus_src
3178 && GET_CODE (XEXP (plus_src, 1)) == CONST_INT)
3179 plus_cst_src = plus_src;
3180 else if (REG_P (SET_SRC (old_set))
3181 || plus_src)
3183 /* Otherwise, see if we have a REG_EQUAL note of the form
3184 (plus (...) CST). */
3185 rtx links;
3186 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3188 if ((REG_NOTE_KIND (links) == REG_EQUAL
3189 || REG_NOTE_KIND (links) == REG_EQUIV)
3190 && GET_CODE (XEXP (links, 0)) == PLUS
3191 && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT)
3193 plus_cst_src = XEXP (links, 0);
3194 break;
3199 /* Check that the first operand of the PLUS is a hard reg or
3200 the lowpart subreg of one. */
3201 if (plus_cst_src)
3203 rtx reg = XEXP (plus_cst_src, 0);
3204 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3205 reg = SUBREG_REG (reg);
3207 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3208 plus_cst_src = 0;
3211 if (plus_cst_src)
3213 rtx reg = XEXP (plus_cst_src, 0);
3214 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3216 if (GET_CODE (reg) == SUBREG)
3217 reg = SUBREG_REG (reg);
3219 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3220 if (ep->from_rtx == reg && ep->can_eliminate)
3222 rtx to_rtx = ep->to_rtx;
3223 offset += ep->offset;
3224 offset = trunc_int_for_mode (offset, GET_MODE (reg));
3226 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3227 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3228 to_rtx);
3229 /* If we have a nonzero offset, and the source is already
3230 a simple REG, the following transformation would
3231 increase the cost of the insn by replacing a simple REG
3232 with (plus (reg sp) CST). So try only when we already
3233 had a PLUS before. */
3234 if (offset == 0 || plus_src)
3236 rtx new_src = plus_constant (to_rtx, offset);
3238 new_body = old_body;
3239 if (! replace)
3241 new_body = copy_insn (old_body);
3242 if (REG_NOTES (insn))
3243 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3245 PATTERN (insn) = new_body;
3246 old_set = single_set (insn);
3248 /* First see if this insn remains valid when we make the
3249 change. If not, try to replace the whole pattern with
3250 a simple set (this may help if the original insn was a
3251 PARALLEL that was only recognized as single_set due to
3252 REG_UNUSED notes). If this isn't valid either, keep
3253 the INSN_CODE the same and let reload fix it up. */
3254 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3256 rtx new_pat = gen_rtx_SET (VOIDmode,
3257 SET_DEST (old_set), new_src);
3259 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3260 SET_SRC (old_set) = new_src;
3263 else
3264 break;
3266 val = 1;
3267 /* This can't have an effect on elimination offsets, so skip right
3268 to the end. */
3269 goto done;
3273 /* Determine the effects of this insn on elimination offsets. */
3274 elimination_effects (old_body, 0);
3276 /* Eliminate all eliminable registers occurring in operands that
3277 can be handled by reload. */
3278 extract_insn (insn);
3279 for (i = 0; i < recog_data.n_operands; i++)
3281 orig_operand[i] = recog_data.operand[i];
3282 substed_operand[i] = recog_data.operand[i];
3284 /* For an asm statement, every operand is eliminable. */
3285 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3287 bool is_set_src, in_plus;
3289 /* Check for setting a register that we know about. */
3290 if (recog_data.operand_type[i] != OP_IN
3291 && REG_P (orig_operand[i]))
3293 /* If we are assigning to a register that can be eliminated, it
3294 must be as part of a PARALLEL, since the code above handles
3295 single SETs. We must indicate that we can no longer
3296 eliminate this reg. */
3297 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3298 ep++)
3299 if (ep->from_rtx == orig_operand[i])
3300 ep->can_eliminate = 0;
3303 /* Companion to the above plus substitution, we can allow
3304 invariants as the source of a plain move. */
3305 is_set_src = false;
3306 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3307 is_set_src = true;
3308 in_plus = false;
3309 if (plus_src
3310 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3311 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3312 in_plus = true;
3314 substed_operand[i]
3315 = eliminate_regs_1 (recog_data.operand[i], 0,
3316 replace ? insn : NULL_RTX,
3317 is_set_src || in_plus);
3318 if (substed_operand[i] != orig_operand[i])
3319 val = 1;
3320 /* Terminate the search in check_eliminable_occurrences at
3321 this point. */
3322 *recog_data.operand_loc[i] = 0;
3324 /* If an output operand changed from a REG to a MEM and INSN is an
3325 insn, write a CLOBBER insn. */
3326 if (recog_data.operand_type[i] != OP_IN
3327 && REG_P (orig_operand[i])
3328 && MEM_P (substed_operand[i])
3329 && replace)
3330 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3331 insn);
3335 for (i = 0; i < recog_data.n_dups; i++)
3336 *recog_data.dup_loc[i]
3337 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3339 /* If any eliminable remain, they aren't eliminable anymore. */
3340 check_eliminable_occurrences (old_body);
3342 /* Substitute the operands; the new values are in the substed_operand
3343 array. */
3344 for (i = 0; i < recog_data.n_operands; i++)
3345 *recog_data.operand_loc[i] = substed_operand[i];
3346 for (i = 0; i < recog_data.n_dups; i++)
3347 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3349 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3350 re-recognize the insn. We do this in case we had a simple addition
3351 but now can do this as a load-address. This saves an insn in this
3352 common case.
3353 If re-recognition fails, the old insn code number will still be used,
3354 and some register operands may have changed into PLUS expressions.
3355 These will be handled by find_reloads by loading them into a register
3356 again. */
3358 if (val)
3360 /* If we aren't replacing things permanently and we changed something,
3361 make another copy to ensure that all the RTL is new. Otherwise
3362 things can go wrong if find_reload swaps commutative operands
3363 and one is inside RTL that has been copied while the other is not. */
3364 new_body = old_body;
3365 if (! replace)
3367 new_body = copy_insn (old_body);
3368 if (REG_NOTES (insn))
3369 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3371 PATTERN (insn) = new_body;
3373 /* If we had a move insn but now we don't, rerecognize it. This will
3374 cause spurious re-recognition if the old move had a PARALLEL since
3375 the new one still will, but we can't call single_set without
3376 having put NEW_BODY into the insn and the re-recognition won't
3377 hurt in this rare case. */
3378 /* ??? Why this huge if statement - why don't we just rerecognize the
3379 thing always? */
3380 if (! insn_is_asm
3381 && old_set != 0
3382 && ((REG_P (SET_SRC (old_set))
3383 && (GET_CODE (new_body) != SET
3384 || !REG_P (SET_SRC (new_body))))
3385 /* If this was a load from or store to memory, compare
3386 the MEM in recog_data.operand to the one in the insn.
3387 If they are not equal, then rerecognize the insn. */
3388 || (old_set != 0
3389 && ((MEM_P (SET_SRC (old_set))
3390 && SET_SRC (old_set) != recog_data.operand[1])
3391 || (MEM_P (SET_DEST (old_set))
3392 && SET_DEST (old_set) != recog_data.operand[0])))
3393 /* If this was an add insn before, rerecognize. */
3394 || GET_CODE (SET_SRC (old_set)) == PLUS))
3396 int new_icode = recog (PATTERN (insn), insn, 0);
3397 if (new_icode >= 0)
3398 INSN_CODE (insn) = new_icode;
3402 /* Restore the old body. If there were any changes to it, we made a copy
3403 of it while the changes were still in place, so we'll correctly return
3404 a modified insn below. */
3405 if (! replace)
3407 /* Restore the old body. */
3408 for (i = 0; i < recog_data.n_operands; i++)
3409 *recog_data.operand_loc[i] = orig_operand[i];
3410 for (i = 0; i < recog_data.n_dups; i++)
3411 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3414 /* Update all elimination pairs to reflect the status after the current
3415 insn. The changes we make were determined by the earlier call to
3416 elimination_effects.
3418 We also detect cases where register elimination cannot be done,
3419 namely, if a register would be both changed and referenced outside a MEM
3420 in the resulting insn since such an insn is often undefined and, even if
3421 not, we cannot know what meaning will be given to it. Note that it is
3422 valid to have a register used in an address in an insn that changes it
3423 (presumably with a pre- or post-increment or decrement).
3425 If anything changes, return nonzero. */
3427 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3429 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3430 ep->can_eliminate = 0;
3432 ep->ref_outside_mem = 0;
3434 if (ep->previous_offset != ep->offset)
3435 val = 1;
3438 done:
3439 /* If we changed something, perform elimination in REG_NOTES. This is
3440 needed even when REPLACE is zero because a REG_DEAD note might refer
3441 to a register that we eliminate and could cause a different number
3442 of spill registers to be needed in the final reload pass than in
3443 the pre-passes. */
3444 if (val && REG_NOTES (insn) != 0)
3445 REG_NOTES (insn)
3446 = eliminate_regs_1 (REG_NOTES (insn), 0, REG_NOTES (insn), true);
3448 return val;
3451 /* Loop through all elimination pairs.
3452 Recalculate the number not at initial offset.
3454 Compute the maximum offset (minimum offset if the stack does not
3455 grow downward) for each elimination pair. */
3457 static void
3458 update_eliminable_offsets (void)
3460 struct elim_table *ep;
3462 num_not_at_initial_offset = 0;
3463 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3465 ep->previous_offset = ep->offset;
3466 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3467 num_not_at_initial_offset++;
3471 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3472 replacement we currently believe is valid, mark it as not eliminable if X
3473 modifies DEST in any way other than by adding a constant integer to it.
3475 If DEST is the frame pointer, we do nothing because we assume that
3476 all assignments to the hard frame pointer are nonlocal gotos and are being
3477 done at a time when they are valid and do not disturb anything else.
3478 Some machines want to eliminate a fake argument pointer with either the
3479 frame or stack pointer. Assignments to the hard frame pointer must not
3480 prevent this elimination.
3482 Called via note_stores from reload before starting its passes to scan
3483 the insns of the function. */
3485 static void
3486 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3488 unsigned int i;
3490 /* A SUBREG of a hard register here is just changing its mode. We should
3491 not see a SUBREG of an eliminable hard register, but check just in
3492 case. */
3493 if (GET_CODE (dest) == SUBREG)
3494 dest = SUBREG_REG (dest);
3496 if (dest == hard_frame_pointer_rtx)
3497 return;
3499 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3500 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3501 && (GET_CODE (x) != SET
3502 || GET_CODE (SET_SRC (x)) != PLUS
3503 || XEXP (SET_SRC (x), 0) != dest
3504 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3506 reg_eliminate[i].can_eliminate_previous
3507 = reg_eliminate[i].can_eliminate = 0;
3508 num_eliminable--;
3512 /* Verify that the initial elimination offsets did not change since the
3513 last call to set_initial_elim_offsets. This is used to catch cases
3514 where something illegal happened during reload_as_needed that could
3515 cause incorrect code to be generated if we did not check for it. */
3517 static bool
3518 verify_initial_elim_offsets (void)
3520 HOST_WIDE_INT t;
3522 if (!num_eliminable)
3523 return true;
3525 #ifdef ELIMINABLE_REGS
3527 struct elim_table *ep;
3529 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3531 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3532 if (t != ep->initial_offset)
3533 return false;
3536 #else
3537 INITIAL_FRAME_POINTER_OFFSET (t);
3538 if (t != reg_eliminate[0].initial_offset)
3539 return false;
3540 #endif
3542 return true;
3545 /* Reset all offsets on eliminable registers to their initial values. */
3547 static void
3548 set_initial_elim_offsets (void)
3550 struct elim_table *ep = reg_eliminate;
3552 #ifdef ELIMINABLE_REGS
3553 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3555 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3556 ep->previous_offset = ep->offset = ep->initial_offset;
3558 #else
3559 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3560 ep->previous_offset = ep->offset = ep->initial_offset;
3561 #endif
3563 num_not_at_initial_offset = 0;
3566 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3568 static void
3569 set_initial_eh_label_offset (rtx label)
3571 set_label_offsets (label, NULL_RTX, 1);
3574 /* Initialize the known label offsets.
3575 Set a known offset for each forced label to be at the initial offset
3576 of each elimination. We do this because we assume that all
3577 computed jumps occur from a location where each elimination is
3578 at its initial offset.
3579 For all other labels, show that we don't know the offsets. */
3581 static void
3582 set_initial_label_offsets (void)
3584 rtx x;
3585 memset (offsets_known_at, 0, num_labels);
3587 for (x = forced_labels; x; x = XEXP (x, 1))
3588 if (XEXP (x, 0))
3589 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3591 for_each_eh_label (set_initial_eh_label_offset);
3594 /* Set all elimination offsets to the known values for the code label given
3595 by INSN. */
3597 static void
3598 set_offsets_for_label (rtx insn)
3600 unsigned int i;
3601 int label_nr = CODE_LABEL_NUMBER (insn);
3602 struct elim_table *ep;
3604 num_not_at_initial_offset = 0;
3605 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3607 ep->offset = ep->previous_offset
3608 = offsets_at[label_nr - first_label_num][i];
3609 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3610 num_not_at_initial_offset++;
3614 /* See if anything that happened changes which eliminations are valid.
3615 For example, on the SPARC, whether or not the frame pointer can
3616 be eliminated can depend on what registers have been used. We need
3617 not check some conditions again (such as flag_omit_frame_pointer)
3618 since they can't have changed. */
3620 static void
3621 update_eliminables (HARD_REG_SET *pset)
3623 int previous_frame_pointer_needed = frame_pointer_needed;
3624 struct elim_table *ep;
3626 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3627 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3628 #ifdef ELIMINABLE_REGS
3629 || ! CAN_ELIMINATE (ep->from, ep->to)
3630 #endif
3632 ep->can_eliminate = 0;
3634 /* Look for the case where we have discovered that we can't replace
3635 register A with register B and that means that we will now be
3636 trying to replace register A with register C. This means we can
3637 no longer replace register C with register B and we need to disable
3638 such an elimination, if it exists. This occurs often with A == ap,
3639 B == sp, and C == fp. */
3641 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3643 struct elim_table *op;
3644 int new_to = -1;
3646 if (! ep->can_eliminate && ep->can_eliminate_previous)
3648 /* Find the current elimination for ep->from, if there is a
3649 new one. */
3650 for (op = reg_eliminate;
3651 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3652 if (op->from == ep->from && op->can_eliminate)
3654 new_to = op->to;
3655 break;
3658 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3659 disable it. */
3660 for (op = reg_eliminate;
3661 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3662 if (op->from == new_to && op->to == ep->to)
3663 op->can_eliminate = 0;
3667 /* See if any registers that we thought we could eliminate the previous
3668 time are no longer eliminable. If so, something has changed and we
3669 must spill the register. Also, recompute the number of eliminable
3670 registers and see if the frame pointer is needed; it is if there is
3671 no elimination of the frame pointer that we can perform. */
3673 frame_pointer_needed = 1;
3674 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3676 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3677 && ep->to != HARD_FRAME_POINTER_REGNUM)
3678 frame_pointer_needed = 0;
3680 if (! ep->can_eliminate && ep->can_eliminate_previous)
3682 ep->can_eliminate_previous = 0;
3683 SET_HARD_REG_BIT (*pset, ep->from);
3684 num_eliminable--;
3688 /* If we didn't need a frame pointer last time, but we do now, spill
3689 the hard frame pointer. */
3690 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3691 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3694 /* Return true if X is used as the target register of an elimination. */
3696 bool
3697 elimination_target_reg_p (rtx x)
3699 struct elim_table *ep;
3701 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3702 if (ep->to_rtx == x && ep->can_eliminate)
3703 return true;
3705 return false;
3708 /* Initialize the table of registers to eliminate. */
3710 static void
3711 init_elim_table (void)
3713 struct elim_table *ep;
3714 #ifdef ELIMINABLE_REGS
3715 const struct elim_table_1 *ep1;
3716 #endif
3718 if (!reg_eliminate)
3719 reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3721 /* Does this function require a frame pointer? */
3723 frame_pointer_needed = (! flag_omit_frame_pointer
3724 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3725 and restore sp for alloca. So we can't eliminate
3726 the frame pointer in that case. At some point,
3727 we should improve this by emitting the
3728 sp-adjusting insns for this case. */
3729 || (current_function_calls_alloca
3730 && EXIT_IGNORE_STACK)
3731 || current_function_accesses_prior_frames
3732 || FRAME_POINTER_REQUIRED);
3734 num_eliminable = 0;
3736 #ifdef ELIMINABLE_REGS
3737 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3738 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3740 ep->from = ep1->from;
3741 ep->to = ep1->to;
3742 ep->can_eliminate = ep->can_eliminate_previous
3743 = (CAN_ELIMINATE (ep->from, ep->to)
3744 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3746 #else
3747 reg_eliminate[0].from = reg_eliminate_1[0].from;
3748 reg_eliminate[0].to = reg_eliminate_1[0].to;
3749 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3750 = ! frame_pointer_needed;
3751 #endif
3753 /* Count the number of eliminable registers and build the FROM and TO
3754 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3755 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3756 We depend on this. */
3757 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3759 num_eliminable += ep->can_eliminate;
3760 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3761 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3765 /* Kick all pseudos out of hard register REGNO.
3767 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3768 because we found we can't eliminate some register. In the case, no pseudos
3769 are allowed to be in the register, even if they are only in a block that
3770 doesn't require spill registers, unlike the case when we are spilling this
3771 hard reg to produce another spill register.
3773 Return nonzero if any pseudos needed to be kicked out. */
3775 static void
3776 spill_hard_reg (unsigned int regno, int cant_eliminate)
3778 int i;
3780 if (cant_eliminate)
3782 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3783 df_set_regs_ever_live (regno, true);
3786 /* Spill every pseudo reg that was allocated to this reg
3787 or to something that overlaps this reg. */
3789 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3790 if (reg_renumber[i] >= 0
3791 && (unsigned int) reg_renumber[i] <= regno
3792 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
3793 SET_REGNO_REG_SET (&spilled_pseudos, i);
3796 /* After find_reload_regs has been run for all insn that need reloads,
3797 and/or spill_hard_regs was called, this function is used to actually
3798 spill pseudo registers and try to reallocate them. It also sets up the
3799 spill_regs array for use by choose_reload_regs. */
3801 static int
3802 finish_spills (int global)
3804 struct insn_chain *chain;
3805 int something_changed = 0;
3806 unsigned i;
3807 reg_set_iterator rsi;
3809 /* Build the spill_regs array for the function. */
3810 /* If there are some registers still to eliminate and one of the spill regs
3811 wasn't ever used before, additional stack space may have to be
3812 allocated to store this register. Thus, we may have changed the offset
3813 between the stack and frame pointers, so mark that something has changed.
3815 One might think that we need only set VAL to 1 if this is a call-used
3816 register. However, the set of registers that must be saved by the
3817 prologue is not identical to the call-used set. For example, the
3818 register used by the call insn for the return PC is a call-used register,
3819 but must be saved by the prologue. */
3821 n_spills = 0;
3822 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3823 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3825 spill_reg_order[i] = n_spills;
3826 spill_regs[n_spills++] = i;
3827 if (num_eliminable && ! df_regs_ever_live_p (i))
3828 something_changed = 1;
3829 df_set_regs_ever_live (i, true);
3831 else
3832 spill_reg_order[i] = -1;
3834 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
3836 /* Record the current hard register the pseudo is allocated to in
3837 pseudo_previous_regs so we avoid reallocating it to the same
3838 hard reg in a later pass. */
3839 gcc_assert (reg_renumber[i] >= 0);
3841 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3842 /* Mark it as no longer having a hard register home. */
3843 reg_renumber[i] = -1;
3844 /* We will need to scan everything again. */
3845 something_changed = 1;
3848 /* Retry global register allocation if possible. */
3849 if (global)
3851 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3852 /* For every insn that needs reloads, set the registers used as spill
3853 regs in pseudo_forbidden_regs for every pseudo live across the
3854 insn. */
3855 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3857 EXECUTE_IF_SET_IN_REG_SET
3858 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
3860 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3861 chain->used_spill_regs);
3863 EXECUTE_IF_SET_IN_REG_SET
3864 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
3866 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3867 chain->used_spill_regs);
3871 /* Retry allocating the spilled pseudos. For each reg, merge the
3872 various reg sets that indicate which hard regs can't be used,
3873 and call retry_global_alloc.
3874 We change spill_pseudos here to only contain pseudos that did not
3875 get a new hard register. */
3876 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3877 if (reg_old_renumber[i] != reg_renumber[i])
3879 HARD_REG_SET forbidden;
3880 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3881 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3882 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3883 retry_global_alloc (i, forbidden);
3884 if (reg_renumber[i] >= 0)
3885 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3889 /* Fix up the register information in the insn chain.
3890 This involves deleting those of the spilled pseudos which did not get
3891 a new hard register home from the live_{before,after} sets. */
3892 for (chain = reload_insn_chain; chain; chain = chain->next)
3894 HARD_REG_SET used_by_pseudos;
3895 HARD_REG_SET used_by_pseudos2;
3897 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3898 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3900 /* Mark any unallocated hard regs as available for spills. That
3901 makes inheritance work somewhat better. */
3902 if (chain->need_reload)
3904 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3905 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3906 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3908 /* Save the old value for the sanity test below. */
3909 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3911 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3912 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3913 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3914 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3916 /* Make sure we only enlarge the set. */
3917 gcc_assert (hard_reg_set_subset_p (used_by_pseudos2,
3918 chain->used_spill_regs));
3922 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3923 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3925 int regno = reg_renumber[i];
3926 if (reg_old_renumber[i] == regno)
3927 continue;
3929 alter_reg (i, reg_old_renumber[i]);
3930 reg_old_renumber[i] = regno;
3931 if (dump_file)
3933 if (regno == -1)
3934 fprintf (dump_file, " Register %d now on stack.\n\n", i);
3935 else
3936 fprintf (dump_file, " Register %d now in %d.\n\n",
3937 i, reg_renumber[i]);
3941 return something_changed;
3944 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
3946 static void
3947 scan_paradoxical_subregs (rtx x)
3949 int i;
3950 const char *fmt;
3951 enum rtx_code code = GET_CODE (x);
3953 switch (code)
3955 case REG:
3956 case CONST_INT:
3957 case CONST:
3958 case SYMBOL_REF:
3959 case LABEL_REF:
3960 case CONST_DOUBLE:
3961 case CONST_FIXED:
3962 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3963 case CC0:
3964 case PC:
3965 case USE:
3966 case CLOBBER:
3967 return;
3969 case SUBREG:
3970 if (REG_P (SUBREG_REG (x))
3971 && (GET_MODE_SIZE (GET_MODE (x))
3972 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
3974 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3975 = GET_MODE_SIZE (GET_MODE (x));
3976 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
3978 return;
3980 default:
3981 break;
3984 fmt = GET_RTX_FORMAT (code);
3985 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3987 if (fmt[i] == 'e')
3988 scan_paradoxical_subregs (XEXP (x, i));
3989 else if (fmt[i] == 'E')
3991 int j;
3992 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3993 scan_paradoxical_subregs (XVECEXP (x, i, j));
3998 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
3999 examine all of the reload insns between PREV and NEXT exclusive, and
4000 annotate all that may trap. */
4002 static void
4003 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
4005 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4006 unsigned int trap_count;
4007 rtx i;
4009 if (note == NULL)
4010 return;
4012 if (may_trap_p (PATTERN (insn)))
4013 trap_count = 1;
4014 else
4016 remove_note (insn, note);
4017 trap_count = 0;
4020 for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
4021 if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
4023 trap_count++;
4024 REG_NOTES (i)
4025 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (note, 0), REG_NOTES (i));
4029 /* Reload pseudo-registers into hard regs around each insn as needed.
4030 Additional register load insns are output before the insn that needs it
4031 and perhaps store insns after insns that modify the reloaded pseudo reg.
4033 reg_last_reload_reg and reg_reloaded_contents keep track of
4034 which registers are already available in reload registers.
4035 We update these for the reloads that we perform,
4036 as the insns are scanned. */
4038 static void
4039 reload_as_needed (int live_known)
4041 struct insn_chain *chain;
4042 #if defined (AUTO_INC_DEC)
4043 int i;
4044 #endif
4045 rtx x;
4047 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4048 memset (spill_reg_store, 0, sizeof spill_reg_store);
4049 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4050 INIT_REG_SET (&reg_has_output_reload);
4051 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4052 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4054 set_initial_elim_offsets ();
4056 for (chain = reload_insn_chain; chain; chain = chain->next)
4058 rtx prev = 0;
4059 rtx insn = chain->insn;
4060 rtx old_next = NEXT_INSN (insn);
4062 /* If we pass a label, copy the offsets from the label information
4063 into the current offsets of each elimination. */
4064 if (LABEL_P (insn))
4065 set_offsets_for_label (insn);
4067 else if (INSN_P (insn))
4069 regset_head regs_to_forget;
4070 INIT_REG_SET (&regs_to_forget);
4071 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4073 /* If this is a USE and CLOBBER of a MEM, ensure that any
4074 references to eliminable registers have been removed. */
4076 if ((GET_CODE (PATTERN (insn)) == USE
4077 || GET_CODE (PATTERN (insn)) == CLOBBER)
4078 && MEM_P (XEXP (PATTERN (insn), 0)))
4079 XEXP (XEXP (PATTERN (insn), 0), 0)
4080 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4081 GET_MODE (XEXP (PATTERN (insn), 0)),
4082 NULL_RTX);
4084 /* If we need to do register elimination processing, do so.
4085 This might delete the insn, in which case we are done. */
4086 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4088 eliminate_regs_in_insn (insn, 1);
4089 if (NOTE_P (insn))
4091 update_eliminable_offsets ();
4092 CLEAR_REG_SET (&regs_to_forget);
4093 continue;
4097 /* If need_elim is nonzero but need_reload is zero, one might think
4098 that we could simply set n_reloads to 0. However, find_reloads
4099 could have done some manipulation of the insn (such as swapping
4100 commutative operands), and these manipulations are lost during
4101 the first pass for every insn that needs register elimination.
4102 So the actions of find_reloads must be redone here. */
4104 if (! chain->need_elim && ! chain->need_reload
4105 && ! chain->need_operand_change)
4106 n_reloads = 0;
4107 /* First find the pseudo regs that must be reloaded for this insn.
4108 This info is returned in the tables reload_... (see reload.h).
4109 Also modify the body of INSN by substituting RELOAD
4110 rtx's for those pseudo regs. */
4111 else
4113 CLEAR_REG_SET (&reg_has_output_reload);
4114 CLEAR_HARD_REG_SET (reg_is_output_reload);
4116 find_reloads (insn, 1, spill_indirect_levels, live_known,
4117 spill_reg_order);
4120 if (n_reloads > 0)
4122 rtx next = NEXT_INSN (insn);
4123 rtx p;
4125 prev = PREV_INSN (insn);
4127 /* Now compute which reload regs to reload them into. Perhaps
4128 reusing reload regs from previous insns, or else output
4129 load insns to reload them. Maybe output store insns too.
4130 Record the choices of reload reg in reload_reg_rtx. */
4131 choose_reload_regs (chain);
4133 /* Merge any reloads that we didn't combine for fear of
4134 increasing the number of spill registers needed but now
4135 discover can be safely merged. */
4136 if (SMALL_REGISTER_CLASSES)
4137 merge_assigned_reloads (insn);
4139 /* Generate the insns to reload operands into or out of
4140 their reload regs. */
4141 emit_reload_insns (chain);
4143 /* Substitute the chosen reload regs from reload_reg_rtx
4144 into the insn's body (or perhaps into the bodies of other
4145 load and store insn that we just made for reloading
4146 and that we moved the structure into). */
4147 subst_reloads (insn);
4149 /* Adjust the exception region notes for loads and stores. */
4150 if (flag_non_call_exceptions && !CALL_P (insn))
4151 fixup_eh_region_note (insn, prev, next);
4153 /* If this was an ASM, make sure that all the reload insns
4154 we have generated are valid. If not, give an error
4155 and delete them. */
4156 if (asm_noperands (PATTERN (insn)) >= 0)
4157 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4158 if (p != insn && INSN_P (p)
4159 && GET_CODE (PATTERN (p)) != USE
4160 && (recog_memoized (p) < 0
4161 || (extract_insn (p), ! constrain_operands (1))))
4163 error_for_asm (insn,
4164 "%<asm%> operand requires "
4165 "impossible reload");
4166 delete_insn (p);
4170 if (num_eliminable && chain->need_elim)
4171 update_eliminable_offsets ();
4173 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4174 is no longer validly lying around to save a future reload.
4175 Note that this does not detect pseudos that were reloaded
4176 for this insn in order to be stored in
4177 (obeying register constraints). That is correct; such reload
4178 registers ARE still valid. */
4179 forget_marked_reloads (&regs_to_forget);
4180 CLEAR_REG_SET (&regs_to_forget);
4182 /* There may have been CLOBBER insns placed after INSN. So scan
4183 between INSN and NEXT and use them to forget old reloads. */
4184 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4185 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4186 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4188 #ifdef AUTO_INC_DEC
4189 /* Likewise for regs altered by auto-increment in this insn.
4190 REG_INC notes have been changed by reloading:
4191 find_reloads_address_1 records substitutions for them,
4192 which have been performed by subst_reloads above. */
4193 for (i = n_reloads - 1; i >= 0; i--)
4195 rtx in_reg = rld[i].in_reg;
4196 if (in_reg)
4198 enum rtx_code code = GET_CODE (in_reg);
4199 /* PRE_INC / PRE_DEC will have the reload register ending up
4200 with the same value as the stack slot, but that doesn't
4201 hold true for POST_INC / POST_DEC. Either we have to
4202 convert the memory access to a true POST_INC / POST_DEC,
4203 or we can't use the reload register for inheritance. */
4204 if ((code == POST_INC || code == POST_DEC)
4205 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4206 REGNO (rld[i].reg_rtx))
4207 /* Make sure it is the inc/dec pseudo, and not
4208 some other (e.g. output operand) pseudo. */
4209 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4210 == REGNO (XEXP (in_reg, 0))))
4213 rtx reload_reg = rld[i].reg_rtx;
4214 enum machine_mode mode = GET_MODE (reload_reg);
4215 int n = 0;
4216 rtx p;
4218 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4220 /* We really want to ignore REG_INC notes here, so
4221 use PATTERN (p) as argument to reg_set_p . */
4222 if (reg_set_p (reload_reg, PATTERN (p)))
4223 break;
4224 n = count_occurrences (PATTERN (p), reload_reg, 0);
4225 if (! n)
4226 continue;
4227 if (n == 1)
4229 n = validate_replace_rtx (reload_reg,
4230 gen_rtx_fmt_e (code,
4231 mode,
4232 reload_reg),
4235 /* We must also verify that the constraints
4236 are met after the replacement. */
4237 extract_insn (p);
4238 if (n)
4239 n = constrain_operands (1);
4240 else
4241 break;
4243 /* If the constraints were not met, then
4244 undo the replacement. */
4245 if (!n)
4247 validate_replace_rtx (gen_rtx_fmt_e (code,
4248 mode,
4249 reload_reg),
4250 reload_reg, p);
4251 break;
4255 break;
4257 if (n == 1)
4259 REG_NOTES (p)
4260 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4261 REG_NOTES (p));
4262 /* Mark this as having an output reload so that the
4263 REG_INC processing code below won't invalidate
4264 the reload for inheritance. */
4265 SET_HARD_REG_BIT (reg_is_output_reload,
4266 REGNO (reload_reg));
4267 SET_REGNO_REG_SET (&reg_has_output_reload,
4268 REGNO (XEXP (in_reg, 0)));
4270 else
4271 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4272 NULL);
4274 else if ((code == PRE_INC || code == PRE_DEC)
4275 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4276 REGNO (rld[i].reg_rtx))
4277 /* Make sure it is the inc/dec pseudo, and not
4278 some other (e.g. output operand) pseudo. */
4279 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4280 == REGNO (XEXP (in_reg, 0))))
4282 SET_HARD_REG_BIT (reg_is_output_reload,
4283 REGNO (rld[i].reg_rtx));
4284 SET_REGNO_REG_SET (&reg_has_output_reload,
4285 REGNO (XEXP (in_reg, 0)));
4289 /* If a pseudo that got a hard register is auto-incremented,
4290 we must purge records of copying it into pseudos without
4291 hard registers. */
4292 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4293 if (REG_NOTE_KIND (x) == REG_INC)
4295 /* See if this pseudo reg was reloaded in this insn.
4296 If so, its last-reload info is still valid
4297 because it is based on this insn's reload. */
4298 for (i = 0; i < n_reloads; i++)
4299 if (rld[i].out == XEXP (x, 0))
4300 break;
4302 if (i == n_reloads)
4303 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4305 #endif
4307 /* A reload reg's contents are unknown after a label. */
4308 if (LABEL_P (insn))
4309 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4311 /* Don't assume a reload reg is still good after a call insn
4312 if it is a call-used reg, or if it contains a value that will
4313 be partially clobbered by the call. */
4314 else if (CALL_P (insn))
4316 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4317 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4321 /* Clean up. */
4322 free (reg_last_reload_reg);
4323 CLEAR_REG_SET (&reg_has_output_reload);
4326 /* Discard all record of any value reloaded from X,
4327 or reloaded in X from someplace else;
4328 unless X is an output reload reg of the current insn.
4330 X may be a hard reg (the reload reg)
4331 or it may be a pseudo reg that was reloaded from.
4333 When DATA is non-NULL just mark the registers in regset
4334 to be forgotten later. */
4336 static void
4337 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4338 void *data)
4340 unsigned int regno;
4341 unsigned int nr;
4342 regset regs = (regset) data;
4344 /* note_stores does give us subregs of hard regs,
4345 subreg_regno_offset requires a hard reg. */
4346 while (GET_CODE (x) == SUBREG)
4348 /* We ignore the subreg offset when calculating the regno,
4349 because we are using the entire underlying hard register
4350 below. */
4351 x = SUBREG_REG (x);
4354 if (!REG_P (x))
4355 return;
4357 regno = REGNO (x);
4359 if (regno >= FIRST_PSEUDO_REGISTER)
4360 nr = 1;
4361 else
4363 unsigned int i;
4365 nr = hard_regno_nregs[regno][GET_MODE (x)];
4366 /* Storing into a spilled-reg invalidates its contents.
4367 This can happen if a block-local pseudo is allocated to that reg
4368 and it wasn't spilled because this block's total need is 0.
4369 Then some insn might have an optional reload and use this reg. */
4370 if (!regs)
4371 for (i = 0; i < nr; i++)
4372 /* But don't do this if the reg actually serves as an output
4373 reload reg in the current instruction. */
4374 if (n_reloads == 0
4375 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4377 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4378 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
4379 spill_reg_store[regno + i] = 0;
4383 if (regs)
4384 while (nr-- > 0)
4385 SET_REGNO_REG_SET (regs, regno + nr);
4386 else
4388 /* Since value of X has changed,
4389 forget any value previously copied from it. */
4391 while (nr-- > 0)
4392 /* But don't forget a copy if this is the output reload
4393 that establishes the copy's validity. */
4394 if (n_reloads == 0
4395 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4396 reg_last_reload_reg[regno + nr] = 0;
4400 /* Forget the reloads marked in regset by previous function. */
4401 static void
4402 forget_marked_reloads (regset regs)
4404 unsigned int reg;
4405 reg_set_iterator rsi;
4406 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4408 if (reg < FIRST_PSEUDO_REGISTER
4409 /* But don't do this if the reg actually serves as an output
4410 reload reg in the current instruction. */
4411 && (n_reloads == 0
4412 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4414 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4415 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, reg);
4416 spill_reg_store[reg] = 0;
4418 if (n_reloads == 0
4419 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4420 reg_last_reload_reg[reg] = 0;
4424 /* The following HARD_REG_SETs indicate when each hard register is
4425 used for a reload of various parts of the current insn. */
4427 /* If reg is unavailable for all reloads. */
4428 static HARD_REG_SET reload_reg_unavailable;
4429 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4430 static HARD_REG_SET reload_reg_used;
4431 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4432 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4433 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4434 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4435 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4436 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4437 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4438 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4439 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4440 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4441 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4442 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4443 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4444 static HARD_REG_SET reload_reg_used_in_op_addr;
4445 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4446 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4447 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4448 static HARD_REG_SET reload_reg_used_in_insn;
4449 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4450 static HARD_REG_SET reload_reg_used_in_other_addr;
4452 /* If reg is in use as a reload reg for any sort of reload. */
4453 static HARD_REG_SET reload_reg_used_at_all;
4455 /* If reg is use as an inherited reload. We just mark the first register
4456 in the group. */
4457 static HARD_REG_SET reload_reg_used_for_inherit;
4459 /* Records which hard regs are used in any way, either as explicit use or
4460 by being allocated to a pseudo during any point of the current insn. */
4461 static HARD_REG_SET reg_used_in_insn;
4463 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4464 TYPE. MODE is used to indicate how many consecutive regs are
4465 actually used. */
4467 static void
4468 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4469 enum machine_mode mode)
4471 unsigned int nregs = hard_regno_nregs[regno][mode];
4472 unsigned int i;
4474 for (i = regno; i < nregs + regno; i++)
4476 switch (type)
4478 case RELOAD_OTHER:
4479 SET_HARD_REG_BIT (reload_reg_used, i);
4480 break;
4482 case RELOAD_FOR_INPUT_ADDRESS:
4483 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4484 break;
4486 case RELOAD_FOR_INPADDR_ADDRESS:
4487 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4488 break;
4490 case RELOAD_FOR_OUTPUT_ADDRESS:
4491 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4492 break;
4494 case RELOAD_FOR_OUTADDR_ADDRESS:
4495 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4496 break;
4498 case RELOAD_FOR_OPERAND_ADDRESS:
4499 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4500 break;
4502 case RELOAD_FOR_OPADDR_ADDR:
4503 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4504 break;
4506 case RELOAD_FOR_OTHER_ADDRESS:
4507 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4508 break;
4510 case RELOAD_FOR_INPUT:
4511 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4512 break;
4514 case RELOAD_FOR_OUTPUT:
4515 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4516 break;
4518 case RELOAD_FOR_INSN:
4519 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4520 break;
4523 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4527 /* Similarly, but show REGNO is no longer in use for a reload. */
4529 static void
4530 clear_reload_reg_in_use (unsigned int regno, int opnum,
4531 enum reload_type type, enum machine_mode mode)
4533 unsigned int nregs = hard_regno_nregs[regno][mode];
4534 unsigned int start_regno, end_regno, r;
4535 int i;
4536 /* A complication is that for some reload types, inheritance might
4537 allow multiple reloads of the same types to share a reload register.
4538 We set check_opnum if we have to check only reloads with the same
4539 operand number, and check_any if we have to check all reloads. */
4540 int check_opnum = 0;
4541 int check_any = 0;
4542 HARD_REG_SET *used_in_set;
4544 switch (type)
4546 case RELOAD_OTHER:
4547 used_in_set = &reload_reg_used;
4548 break;
4550 case RELOAD_FOR_INPUT_ADDRESS:
4551 used_in_set = &reload_reg_used_in_input_addr[opnum];
4552 break;
4554 case RELOAD_FOR_INPADDR_ADDRESS:
4555 check_opnum = 1;
4556 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4557 break;
4559 case RELOAD_FOR_OUTPUT_ADDRESS:
4560 used_in_set = &reload_reg_used_in_output_addr[opnum];
4561 break;
4563 case RELOAD_FOR_OUTADDR_ADDRESS:
4564 check_opnum = 1;
4565 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4566 break;
4568 case RELOAD_FOR_OPERAND_ADDRESS:
4569 used_in_set = &reload_reg_used_in_op_addr;
4570 break;
4572 case RELOAD_FOR_OPADDR_ADDR:
4573 check_any = 1;
4574 used_in_set = &reload_reg_used_in_op_addr_reload;
4575 break;
4577 case RELOAD_FOR_OTHER_ADDRESS:
4578 used_in_set = &reload_reg_used_in_other_addr;
4579 check_any = 1;
4580 break;
4582 case RELOAD_FOR_INPUT:
4583 used_in_set = &reload_reg_used_in_input[opnum];
4584 break;
4586 case RELOAD_FOR_OUTPUT:
4587 used_in_set = &reload_reg_used_in_output[opnum];
4588 break;
4590 case RELOAD_FOR_INSN:
4591 used_in_set = &reload_reg_used_in_insn;
4592 break;
4593 default:
4594 gcc_unreachable ();
4596 /* We resolve conflicts with remaining reloads of the same type by
4597 excluding the intervals of reload registers by them from the
4598 interval of freed reload registers. Since we only keep track of
4599 one set of interval bounds, we might have to exclude somewhat
4600 more than what would be necessary if we used a HARD_REG_SET here.
4601 But this should only happen very infrequently, so there should
4602 be no reason to worry about it. */
4604 start_regno = regno;
4605 end_regno = regno + nregs;
4606 if (check_opnum || check_any)
4608 for (i = n_reloads - 1; i >= 0; i--)
4610 if (rld[i].when_needed == type
4611 && (check_any || rld[i].opnum == opnum)
4612 && rld[i].reg_rtx)
4614 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4615 unsigned int conflict_end
4616 = end_hard_regno (rld[i].mode, conflict_start);
4618 /* If there is an overlap with the first to-be-freed register,
4619 adjust the interval start. */
4620 if (conflict_start <= start_regno && conflict_end > start_regno)
4621 start_regno = conflict_end;
4622 /* Otherwise, if there is a conflict with one of the other
4623 to-be-freed registers, adjust the interval end. */
4624 if (conflict_start > start_regno && conflict_start < end_regno)
4625 end_regno = conflict_start;
4630 for (r = start_regno; r < end_regno; r++)
4631 CLEAR_HARD_REG_BIT (*used_in_set, r);
4634 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4635 specified by OPNUM and TYPE. */
4637 static int
4638 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4640 int i;
4642 /* In use for a RELOAD_OTHER means it's not available for anything. */
4643 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4644 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4645 return 0;
4647 switch (type)
4649 case RELOAD_OTHER:
4650 /* In use for anything means we can't use it for RELOAD_OTHER. */
4651 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4652 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4653 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4654 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4655 return 0;
4657 for (i = 0; i < reload_n_operands; i++)
4658 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4659 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4660 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4661 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4662 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4663 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4664 return 0;
4666 return 1;
4668 case RELOAD_FOR_INPUT:
4669 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4670 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4671 return 0;
4673 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4674 return 0;
4676 /* If it is used for some other input, can't use it. */
4677 for (i = 0; i < reload_n_operands; i++)
4678 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4679 return 0;
4681 /* If it is used in a later operand's address, can't use it. */
4682 for (i = opnum + 1; i < reload_n_operands; i++)
4683 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4684 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4685 return 0;
4687 return 1;
4689 case RELOAD_FOR_INPUT_ADDRESS:
4690 /* Can't use a register if it is used for an input address for this
4691 operand or used as an input in an earlier one. */
4692 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4693 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4694 return 0;
4696 for (i = 0; i < opnum; i++)
4697 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4698 return 0;
4700 return 1;
4702 case RELOAD_FOR_INPADDR_ADDRESS:
4703 /* Can't use a register if it is used for an input address
4704 for this operand or used as an input in an earlier
4705 one. */
4706 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4707 return 0;
4709 for (i = 0; i < opnum; i++)
4710 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4711 return 0;
4713 return 1;
4715 case RELOAD_FOR_OUTPUT_ADDRESS:
4716 /* Can't use a register if it is used for an output address for this
4717 operand or used as an output in this or a later operand. Note
4718 that multiple output operands are emitted in reverse order, so
4719 the conflicting ones are those with lower indices. */
4720 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4721 return 0;
4723 for (i = 0; i <= opnum; i++)
4724 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4725 return 0;
4727 return 1;
4729 case RELOAD_FOR_OUTADDR_ADDRESS:
4730 /* Can't use a register if it is used for an output address
4731 for this operand or used as an output in this or a
4732 later operand. Note that multiple output operands are
4733 emitted in reverse order, so the conflicting ones are
4734 those with lower indices. */
4735 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4736 return 0;
4738 for (i = 0; i <= opnum; i++)
4739 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4740 return 0;
4742 return 1;
4744 case RELOAD_FOR_OPERAND_ADDRESS:
4745 for (i = 0; i < reload_n_operands; i++)
4746 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4747 return 0;
4749 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4750 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4752 case RELOAD_FOR_OPADDR_ADDR:
4753 for (i = 0; i < reload_n_operands; i++)
4754 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4755 return 0;
4757 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4759 case RELOAD_FOR_OUTPUT:
4760 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4761 outputs, or an operand address for this or an earlier output.
4762 Note that multiple output operands are emitted in reverse order,
4763 so the conflicting ones are those with higher indices. */
4764 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4765 return 0;
4767 for (i = 0; i < reload_n_operands; i++)
4768 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4769 return 0;
4771 for (i = opnum; i < reload_n_operands; i++)
4772 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4773 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4774 return 0;
4776 return 1;
4778 case RELOAD_FOR_INSN:
4779 for (i = 0; i < reload_n_operands; i++)
4780 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4781 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4782 return 0;
4784 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4785 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4787 case RELOAD_FOR_OTHER_ADDRESS:
4788 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4790 default:
4791 gcc_unreachable ();
4795 /* Return 1 if the value in reload reg REGNO, as used by a reload
4796 needed for the part of the insn specified by OPNUM and TYPE,
4797 is still available in REGNO at the end of the insn.
4799 We can assume that the reload reg was already tested for availability
4800 at the time it is needed, and we should not check this again,
4801 in case the reg has already been marked in use. */
4803 static int
4804 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4806 int i;
4808 switch (type)
4810 case RELOAD_OTHER:
4811 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4812 its value must reach the end. */
4813 return 1;
4815 /* If this use is for part of the insn,
4816 its value reaches if no subsequent part uses the same register.
4817 Just like the above function, don't try to do this with lots
4818 of fallthroughs. */
4820 case RELOAD_FOR_OTHER_ADDRESS:
4821 /* Here we check for everything else, since these don't conflict
4822 with anything else and everything comes later. */
4824 for (i = 0; i < reload_n_operands; i++)
4825 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4826 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4827 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4828 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4829 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4830 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4831 return 0;
4833 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4834 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4835 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4836 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4838 case RELOAD_FOR_INPUT_ADDRESS:
4839 case RELOAD_FOR_INPADDR_ADDRESS:
4840 /* Similar, except that we check only for this and subsequent inputs
4841 and the address of only subsequent inputs and we do not need
4842 to check for RELOAD_OTHER objects since they are known not to
4843 conflict. */
4845 for (i = opnum; i < reload_n_operands; i++)
4846 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4847 return 0;
4849 for (i = opnum + 1; i < reload_n_operands; i++)
4850 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4851 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4852 return 0;
4854 for (i = 0; i < reload_n_operands; i++)
4855 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4856 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4857 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4858 return 0;
4860 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4861 return 0;
4863 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4864 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4865 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4867 case RELOAD_FOR_INPUT:
4868 /* Similar to input address, except we start at the next operand for
4869 both input and input address and we do not check for
4870 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4871 would conflict. */
4873 for (i = opnum + 1; i < reload_n_operands; i++)
4874 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4875 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4876 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4877 return 0;
4879 /* ... fall through ... */
4881 case RELOAD_FOR_OPERAND_ADDRESS:
4882 /* Check outputs and their addresses. */
4884 for (i = 0; i < reload_n_operands; i++)
4885 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4886 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4887 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4888 return 0;
4890 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4892 case RELOAD_FOR_OPADDR_ADDR:
4893 for (i = 0; i < reload_n_operands; i++)
4894 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4895 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4896 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4897 return 0;
4899 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4900 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4901 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4903 case RELOAD_FOR_INSN:
4904 /* These conflict with other outputs with RELOAD_OTHER. So
4905 we need only check for output addresses. */
4907 opnum = reload_n_operands;
4909 /* ... fall through ... */
4911 case RELOAD_FOR_OUTPUT:
4912 case RELOAD_FOR_OUTPUT_ADDRESS:
4913 case RELOAD_FOR_OUTADDR_ADDRESS:
4914 /* We already know these can't conflict with a later output. So the
4915 only thing to check are later output addresses.
4916 Note that multiple output operands are emitted in reverse order,
4917 so the conflicting ones are those with lower indices. */
4918 for (i = 0; i < opnum; i++)
4919 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4920 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4921 return 0;
4923 return 1;
4925 default:
4926 gcc_unreachable ();
4931 /* Returns whether R1 and R2 are uniquely chained: the value of one
4932 is used by the other, and that value is not used by any other
4933 reload for this insn. This is used to partially undo the decision
4934 made in find_reloads when in the case of multiple
4935 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
4936 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
4937 reloads. This code tries to avoid the conflict created by that
4938 change. It might be cleaner to explicitly keep track of which
4939 RELOAD_FOR_OPADDR_ADDR reload is associated with which
4940 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
4941 this after the fact. */
4942 static bool
4943 reloads_unique_chain_p (int r1, int r2)
4945 int i;
4947 /* We only check input reloads. */
4948 if (! rld[r1].in || ! rld[r2].in)
4949 return false;
4951 /* Avoid anything with output reloads. */
4952 if (rld[r1].out || rld[r2].out)
4953 return false;
4955 /* "chained" means one reload is a component of the other reload,
4956 not the same as the other reload. */
4957 if (rld[r1].opnum != rld[r2].opnum
4958 || rtx_equal_p (rld[r1].in, rld[r2].in)
4959 || rld[r1].optional || rld[r2].optional
4960 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
4961 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
4962 return false;
4964 for (i = 0; i < n_reloads; i ++)
4965 /* Look for input reloads that aren't our two */
4966 if (i != r1 && i != r2 && rld[i].in)
4968 /* If our reload is mentioned at all, it isn't a simple chain. */
4969 if (reg_mentioned_p (rld[r1].in, rld[i].in))
4970 return false;
4972 return true;
4975 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4976 Return 0 otherwise.
4978 This function uses the same algorithm as reload_reg_free_p above. */
4980 static int
4981 reloads_conflict (int r1, int r2)
4983 enum reload_type r1_type = rld[r1].when_needed;
4984 enum reload_type r2_type = rld[r2].when_needed;
4985 int r1_opnum = rld[r1].opnum;
4986 int r2_opnum = rld[r2].opnum;
4988 /* RELOAD_OTHER conflicts with everything. */
4989 if (r2_type == RELOAD_OTHER)
4990 return 1;
4992 /* Otherwise, check conflicts differently for each type. */
4994 switch (r1_type)
4996 case RELOAD_FOR_INPUT:
4997 return (r2_type == RELOAD_FOR_INSN
4998 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4999 || r2_type == RELOAD_FOR_OPADDR_ADDR
5000 || r2_type == RELOAD_FOR_INPUT
5001 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5002 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5003 && r2_opnum > r1_opnum));
5005 case RELOAD_FOR_INPUT_ADDRESS:
5006 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5007 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5009 case RELOAD_FOR_INPADDR_ADDRESS:
5010 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5011 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5013 case RELOAD_FOR_OUTPUT_ADDRESS:
5014 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5015 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5017 case RELOAD_FOR_OUTADDR_ADDRESS:
5018 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5019 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5021 case RELOAD_FOR_OPERAND_ADDRESS:
5022 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5023 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5024 && !reloads_unique_chain_p (r1, r2)));
5026 case RELOAD_FOR_OPADDR_ADDR:
5027 return (r2_type == RELOAD_FOR_INPUT
5028 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5030 case RELOAD_FOR_OUTPUT:
5031 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5032 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5033 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5034 && r2_opnum >= r1_opnum));
5036 case RELOAD_FOR_INSN:
5037 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5038 || r2_type == RELOAD_FOR_INSN
5039 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5041 case RELOAD_FOR_OTHER_ADDRESS:
5042 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5044 case RELOAD_OTHER:
5045 return 1;
5047 default:
5048 gcc_unreachable ();
5052 /* Indexed by reload number, 1 if incoming value
5053 inherited from previous insns. */
5054 static char reload_inherited[MAX_RELOADS];
5056 /* For an inherited reload, this is the insn the reload was inherited from,
5057 if we know it. Otherwise, this is 0. */
5058 static rtx reload_inheritance_insn[MAX_RELOADS];
5060 /* If nonzero, this is a place to get the value of the reload,
5061 rather than using reload_in. */
5062 static rtx reload_override_in[MAX_RELOADS];
5064 /* For each reload, the hard register number of the register used,
5065 or -1 if we did not need a register for this reload. */
5066 static int reload_spill_index[MAX_RELOADS];
5068 /* Subroutine of free_for_value_p, used to check a single register.
5069 START_REGNO is the starting regno of the full reload register
5070 (possibly comprising multiple hard registers) that we are considering. */
5072 static int
5073 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5074 enum reload_type type, rtx value, rtx out,
5075 int reloadnum, int ignore_address_reloads)
5077 int time1;
5078 /* Set if we see an input reload that must not share its reload register
5079 with any new earlyclobber, but might otherwise share the reload
5080 register with an output or input-output reload. */
5081 int check_earlyclobber = 0;
5082 int i;
5083 int copy = 0;
5085 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5086 return 0;
5088 if (out == const0_rtx)
5090 copy = 1;
5091 out = NULL_RTX;
5094 /* We use some pseudo 'time' value to check if the lifetimes of the
5095 new register use would overlap with the one of a previous reload
5096 that is not read-only or uses a different value.
5097 The 'time' used doesn't have to be linear in any shape or form, just
5098 monotonic.
5099 Some reload types use different 'buckets' for each operand.
5100 So there are MAX_RECOG_OPERANDS different time values for each
5101 such reload type.
5102 We compute TIME1 as the time when the register for the prospective
5103 new reload ceases to be live, and TIME2 for each existing
5104 reload as the time when that the reload register of that reload
5105 becomes live.
5106 Where there is little to be gained by exact lifetime calculations,
5107 we just make conservative assumptions, i.e. a longer lifetime;
5108 this is done in the 'default:' cases. */
5109 switch (type)
5111 case RELOAD_FOR_OTHER_ADDRESS:
5112 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5113 time1 = copy ? 0 : 1;
5114 break;
5115 case RELOAD_OTHER:
5116 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5117 break;
5118 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5119 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5120 respectively, to the time values for these, we get distinct time
5121 values. To get distinct time values for each operand, we have to
5122 multiply opnum by at least three. We round that up to four because
5123 multiply by four is often cheaper. */
5124 case RELOAD_FOR_INPADDR_ADDRESS:
5125 time1 = opnum * 4 + 2;
5126 break;
5127 case RELOAD_FOR_INPUT_ADDRESS:
5128 time1 = opnum * 4 + 3;
5129 break;
5130 case RELOAD_FOR_INPUT:
5131 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5132 executes (inclusive). */
5133 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5134 break;
5135 case RELOAD_FOR_OPADDR_ADDR:
5136 /* opnum * 4 + 4
5137 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5138 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5139 break;
5140 case RELOAD_FOR_OPERAND_ADDRESS:
5141 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5142 is executed. */
5143 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5144 break;
5145 case RELOAD_FOR_OUTADDR_ADDRESS:
5146 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5147 break;
5148 case RELOAD_FOR_OUTPUT_ADDRESS:
5149 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5150 break;
5151 default:
5152 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5155 for (i = 0; i < n_reloads; i++)
5157 rtx reg = rld[i].reg_rtx;
5158 if (reg && REG_P (reg)
5159 && ((unsigned) regno - true_regnum (reg)
5160 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5161 && i != reloadnum)
5163 rtx other_input = rld[i].in;
5165 /* If the other reload loads the same input value, that
5166 will not cause a conflict only if it's loading it into
5167 the same register. */
5168 if (true_regnum (reg) != start_regno)
5169 other_input = NULL_RTX;
5170 if (! other_input || ! rtx_equal_p (other_input, value)
5171 || rld[i].out || out)
5173 int time2;
5174 switch (rld[i].when_needed)
5176 case RELOAD_FOR_OTHER_ADDRESS:
5177 time2 = 0;
5178 break;
5179 case RELOAD_FOR_INPADDR_ADDRESS:
5180 /* find_reloads makes sure that a
5181 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5182 by at most one - the first -
5183 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5184 address reload is inherited, the address address reload
5185 goes away, so we can ignore this conflict. */
5186 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5187 && ignore_address_reloads
5188 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5189 Then the address address is still needed to store
5190 back the new address. */
5191 && ! rld[reloadnum].out)
5192 continue;
5193 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5194 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5195 reloads go away. */
5196 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5197 && ignore_address_reloads
5198 /* Unless we are reloading an auto_inc expression. */
5199 && ! rld[reloadnum].out)
5200 continue;
5201 time2 = rld[i].opnum * 4 + 2;
5202 break;
5203 case RELOAD_FOR_INPUT_ADDRESS:
5204 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5205 && ignore_address_reloads
5206 && ! rld[reloadnum].out)
5207 continue;
5208 time2 = rld[i].opnum * 4 + 3;
5209 break;
5210 case RELOAD_FOR_INPUT:
5211 time2 = rld[i].opnum * 4 + 4;
5212 check_earlyclobber = 1;
5213 break;
5214 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5215 == MAX_RECOG_OPERAND * 4 */
5216 case RELOAD_FOR_OPADDR_ADDR:
5217 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5218 && ignore_address_reloads
5219 && ! rld[reloadnum].out)
5220 continue;
5221 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5222 break;
5223 case RELOAD_FOR_OPERAND_ADDRESS:
5224 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5225 check_earlyclobber = 1;
5226 break;
5227 case RELOAD_FOR_INSN:
5228 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5229 break;
5230 case RELOAD_FOR_OUTPUT:
5231 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5232 instruction is executed. */
5233 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5234 break;
5235 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5236 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5237 value. */
5238 case RELOAD_FOR_OUTADDR_ADDRESS:
5239 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5240 && ignore_address_reloads
5241 && ! rld[reloadnum].out)
5242 continue;
5243 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5244 break;
5245 case RELOAD_FOR_OUTPUT_ADDRESS:
5246 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5247 break;
5248 case RELOAD_OTHER:
5249 /* If there is no conflict in the input part, handle this
5250 like an output reload. */
5251 if (! rld[i].in || rtx_equal_p (other_input, value))
5253 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5254 /* Earlyclobbered outputs must conflict with inputs. */
5255 if (earlyclobber_operand_p (rld[i].out))
5256 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5258 break;
5260 time2 = 1;
5261 /* RELOAD_OTHER might be live beyond instruction execution,
5262 but this is not obvious when we set time2 = 1. So check
5263 here if there might be a problem with the new reload
5264 clobbering the register used by the RELOAD_OTHER. */
5265 if (out)
5266 return 0;
5267 break;
5268 default:
5269 return 0;
5271 if ((time1 >= time2
5272 && (! rld[i].in || rld[i].out
5273 || ! rtx_equal_p (other_input, value)))
5274 || (out && rld[reloadnum].out_reg
5275 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5276 return 0;
5281 /* Earlyclobbered outputs must conflict with inputs. */
5282 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5283 return 0;
5285 return 1;
5288 /* Return 1 if the value in reload reg REGNO, as used by a reload
5289 needed for the part of the insn specified by OPNUM and TYPE,
5290 may be used to load VALUE into it.
5292 MODE is the mode in which the register is used, this is needed to
5293 determine how many hard regs to test.
5295 Other read-only reloads with the same value do not conflict
5296 unless OUT is nonzero and these other reloads have to live while
5297 output reloads live.
5298 If OUT is CONST0_RTX, this is a special case: it means that the
5299 test should not be for using register REGNO as reload register, but
5300 for copying from register REGNO into the reload register.
5302 RELOADNUM is the number of the reload we want to load this value for;
5303 a reload does not conflict with itself.
5305 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5306 reloads that load an address for the very reload we are considering.
5308 The caller has to make sure that there is no conflict with the return
5309 register. */
5311 static int
5312 free_for_value_p (int regno, enum machine_mode mode, int opnum,
5313 enum reload_type type, rtx value, rtx out, int reloadnum,
5314 int ignore_address_reloads)
5316 int nregs = hard_regno_nregs[regno][mode];
5317 while (nregs-- > 0)
5318 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5319 value, out, reloadnum,
5320 ignore_address_reloads))
5321 return 0;
5322 return 1;
5325 /* Return nonzero if the rtx X is invariant over the current function. */
5326 /* ??? Actually, the places where we use this expect exactly what is
5327 tested here, and not everything that is function invariant. In
5328 particular, the frame pointer and arg pointer are special cased;
5329 pic_offset_table_rtx is not, and we must not spill these things to
5330 memory. */
5333 function_invariant_p (const_rtx x)
5335 if (CONSTANT_P (x))
5336 return 1;
5337 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5338 return 1;
5339 if (GET_CODE (x) == PLUS
5340 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5341 && CONSTANT_P (XEXP (x, 1)))
5342 return 1;
5343 return 0;
5346 /* Determine whether the reload reg X overlaps any rtx'es used for
5347 overriding inheritance. Return nonzero if so. */
5349 static int
5350 conflicts_with_override (rtx x)
5352 int i;
5353 for (i = 0; i < n_reloads; i++)
5354 if (reload_override_in[i]
5355 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5356 return 1;
5357 return 0;
5360 /* Give an error message saying we failed to find a reload for INSN,
5361 and clear out reload R. */
5362 static void
5363 failed_reload (rtx insn, int r)
5365 if (asm_noperands (PATTERN (insn)) < 0)
5366 /* It's the compiler's fault. */
5367 fatal_insn ("could not find a spill register", insn);
5369 /* It's the user's fault; the operand's mode and constraint
5370 don't match. Disable this reload so we don't crash in final. */
5371 error_for_asm (insn,
5372 "%<asm%> operand constraint incompatible with operand size");
5373 rld[r].in = 0;
5374 rld[r].out = 0;
5375 rld[r].reg_rtx = 0;
5376 rld[r].optional = 1;
5377 rld[r].secondary_p = 1;
5380 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5381 for reload R. If it's valid, get an rtx for it. Return nonzero if
5382 successful. */
5383 static int
5384 set_reload_reg (int i, int r)
5386 int regno;
5387 rtx reg = spill_reg_rtx[i];
5389 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5390 spill_reg_rtx[i] = reg
5391 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5393 regno = true_regnum (reg);
5395 /* Detect when the reload reg can't hold the reload mode.
5396 This used to be one `if', but Sequent compiler can't handle that. */
5397 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5399 enum machine_mode test_mode = VOIDmode;
5400 if (rld[r].in)
5401 test_mode = GET_MODE (rld[r].in);
5402 /* If rld[r].in has VOIDmode, it means we will load it
5403 in whatever mode the reload reg has: to wit, rld[r].mode.
5404 We have already tested that for validity. */
5405 /* Aside from that, we need to test that the expressions
5406 to reload from or into have modes which are valid for this
5407 reload register. Otherwise the reload insns would be invalid. */
5408 if (! (rld[r].in != 0 && test_mode != VOIDmode
5409 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5410 if (! (rld[r].out != 0
5411 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5413 /* The reg is OK. */
5414 last_spill_reg = i;
5416 /* Mark as in use for this insn the reload regs we use
5417 for this. */
5418 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5419 rld[r].when_needed, rld[r].mode);
5421 rld[r].reg_rtx = reg;
5422 reload_spill_index[r] = spill_regs[i];
5423 return 1;
5426 return 0;
5429 /* Find a spill register to use as a reload register for reload R.
5430 LAST_RELOAD is nonzero if this is the last reload for the insn being
5431 processed.
5433 Set rld[R].reg_rtx to the register allocated.
5435 We return 1 if successful, or 0 if we couldn't find a spill reg and
5436 we didn't change anything. */
5438 static int
5439 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5440 int last_reload)
5442 int i, pass, count;
5444 /* If we put this reload ahead, thinking it is a group,
5445 then insist on finding a group. Otherwise we can grab a
5446 reg that some other reload needs.
5447 (That can happen when we have a 68000 DATA_OR_FP_REG
5448 which is a group of data regs or one fp reg.)
5449 We need not be so restrictive if there are no more reloads
5450 for this insn.
5452 ??? Really it would be nicer to have smarter handling
5453 for that kind of reg class, where a problem like this is normal.
5454 Perhaps those classes should be avoided for reloading
5455 by use of more alternatives. */
5457 int force_group = rld[r].nregs > 1 && ! last_reload;
5459 /* If we want a single register and haven't yet found one,
5460 take any reg in the right class and not in use.
5461 If we want a consecutive group, here is where we look for it.
5463 We use two passes so we can first look for reload regs to
5464 reuse, which are already in use for other reloads in this insn,
5465 and only then use additional registers.
5466 I think that maximizing reuse is needed to make sure we don't
5467 run out of reload regs. Suppose we have three reloads, and
5468 reloads A and B can share regs. These need two regs.
5469 Suppose A and B are given different regs.
5470 That leaves none for C. */
5471 for (pass = 0; pass < 2; pass++)
5473 /* I is the index in spill_regs.
5474 We advance it round-robin between insns to use all spill regs
5475 equally, so that inherited reloads have a chance
5476 of leapfrogging each other. */
5478 i = last_spill_reg;
5480 for (count = 0; count < n_spills; count++)
5482 int class = (int) rld[r].class;
5483 int regnum;
5485 i++;
5486 if (i >= n_spills)
5487 i -= n_spills;
5488 regnum = spill_regs[i];
5490 if ((reload_reg_free_p (regnum, rld[r].opnum,
5491 rld[r].when_needed)
5492 || (rld[r].in
5493 /* We check reload_reg_used to make sure we
5494 don't clobber the return register. */
5495 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5496 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5497 rld[r].when_needed, rld[r].in,
5498 rld[r].out, r, 1)))
5499 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5500 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5501 /* Look first for regs to share, then for unshared. But
5502 don't share regs used for inherited reloads; they are
5503 the ones we want to preserve. */
5504 && (pass
5505 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5506 regnum)
5507 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5508 regnum))))
5510 int nr = hard_regno_nregs[regnum][rld[r].mode];
5511 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5512 (on 68000) got us two FP regs. If NR is 1,
5513 we would reject both of them. */
5514 if (force_group)
5515 nr = rld[r].nregs;
5516 /* If we need only one reg, we have already won. */
5517 if (nr == 1)
5519 /* But reject a single reg if we demand a group. */
5520 if (force_group)
5521 continue;
5522 break;
5524 /* Otherwise check that as many consecutive regs as we need
5525 are available here. */
5526 while (nr > 1)
5528 int regno = regnum + nr - 1;
5529 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5530 && spill_reg_order[regno] >= 0
5531 && reload_reg_free_p (regno, rld[r].opnum,
5532 rld[r].when_needed)))
5533 break;
5534 nr--;
5536 if (nr == 1)
5537 break;
5541 /* If we found something on pass 1, omit pass 2. */
5542 if (count < n_spills)
5543 break;
5546 /* We should have found a spill register by now. */
5547 if (count >= n_spills)
5548 return 0;
5550 /* I is the index in SPILL_REG_RTX of the reload register we are to
5551 allocate. Get an rtx for it and find its register number. */
5553 return set_reload_reg (i, r);
5556 /* Initialize all the tables needed to allocate reload registers.
5557 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5558 is the array we use to restore the reg_rtx field for every reload. */
5560 static void
5561 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5563 int i;
5565 for (i = 0; i < n_reloads; i++)
5566 rld[i].reg_rtx = save_reload_reg_rtx[i];
5568 memset (reload_inherited, 0, MAX_RELOADS);
5569 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5570 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5572 CLEAR_HARD_REG_SET (reload_reg_used);
5573 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5574 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5575 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5576 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5577 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5579 CLEAR_HARD_REG_SET (reg_used_in_insn);
5581 HARD_REG_SET tmp;
5582 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5583 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5584 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5585 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5586 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5587 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5590 for (i = 0; i < reload_n_operands; i++)
5592 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5593 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5594 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5595 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5596 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5597 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5600 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5602 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5604 for (i = 0; i < n_reloads; i++)
5605 /* If we have already decided to use a certain register,
5606 don't use it in another way. */
5607 if (rld[i].reg_rtx)
5608 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5609 rld[i].when_needed, rld[i].mode);
5612 /* Assign hard reg targets for the pseudo-registers we must reload
5613 into hard regs for this insn.
5614 Also output the instructions to copy them in and out of the hard regs.
5616 For machines with register classes, we are responsible for
5617 finding a reload reg in the proper class. */
5619 static void
5620 choose_reload_regs (struct insn_chain *chain)
5622 rtx insn = chain->insn;
5623 int i, j;
5624 unsigned int max_group_size = 1;
5625 enum reg_class group_class = NO_REGS;
5626 int pass, win, inheritance;
5628 rtx save_reload_reg_rtx[MAX_RELOADS];
5630 /* In order to be certain of getting the registers we need,
5631 we must sort the reloads into order of increasing register class.
5632 Then our grabbing of reload registers will parallel the process
5633 that provided the reload registers.
5635 Also note whether any of the reloads wants a consecutive group of regs.
5636 If so, record the maximum size of the group desired and what
5637 register class contains all the groups needed by this insn. */
5639 for (j = 0; j < n_reloads; j++)
5641 reload_order[j] = j;
5642 if (rld[j].reg_rtx != NULL_RTX)
5644 gcc_assert (REG_P (rld[j].reg_rtx)
5645 && HARD_REGISTER_P (rld[j].reg_rtx));
5646 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
5648 else
5649 reload_spill_index[j] = -1;
5651 if (rld[j].nregs > 1)
5653 max_group_size = MAX (rld[j].nregs, max_group_size);
5654 group_class
5655 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5658 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5661 if (n_reloads > 1)
5662 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5664 /* If -O, try first with inheritance, then turning it off.
5665 If not -O, don't do inheritance.
5666 Using inheritance when not optimizing leads to paradoxes
5667 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5668 because one side of the comparison might be inherited. */
5669 win = 0;
5670 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5672 choose_reload_regs_init (chain, save_reload_reg_rtx);
5674 /* Process the reloads in order of preference just found.
5675 Beyond this point, subregs can be found in reload_reg_rtx.
5677 This used to look for an existing reloaded home for all of the
5678 reloads, and only then perform any new reloads. But that could lose
5679 if the reloads were done out of reg-class order because a later
5680 reload with a looser constraint might have an old home in a register
5681 needed by an earlier reload with a tighter constraint.
5683 To solve this, we make two passes over the reloads, in the order
5684 described above. In the first pass we try to inherit a reload
5685 from a previous insn. If there is a later reload that needs a
5686 class that is a proper subset of the class being processed, we must
5687 also allocate a spill register during the first pass.
5689 Then make a second pass over the reloads to allocate any reloads
5690 that haven't been given registers yet. */
5692 for (j = 0; j < n_reloads; j++)
5694 int r = reload_order[j];
5695 rtx search_equiv = NULL_RTX;
5697 /* Ignore reloads that got marked inoperative. */
5698 if (rld[r].out == 0 && rld[r].in == 0
5699 && ! rld[r].secondary_p)
5700 continue;
5702 /* If find_reloads chose to use reload_in or reload_out as a reload
5703 register, we don't need to chose one. Otherwise, try even if it
5704 found one since we might save an insn if we find the value lying
5705 around.
5706 Try also when reload_in is a pseudo without a hard reg. */
5707 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5708 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5709 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5710 && !MEM_P (rld[r].in)
5711 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5712 continue;
5714 #if 0 /* No longer needed for correct operation.
5715 It might give better code, or might not; worth an experiment? */
5716 /* If this is an optional reload, we can't inherit from earlier insns
5717 until we are sure that any non-optional reloads have been allocated.
5718 The following code takes advantage of the fact that optional reloads
5719 are at the end of reload_order. */
5720 if (rld[r].optional != 0)
5721 for (i = 0; i < j; i++)
5722 if ((rld[reload_order[i]].out != 0
5723 || rld[reload_order[i]].in != 0
5724 || rld[reload_order[i]].secondary_p)
5725 && ! rld[reload_order[i]].optional
5726 && rld[reload_order[i]].reg_rtx == 0)
5727 allocate_reload_reg (chain, reload_order[i], 0);
5728 #endif
5730 /* First see if this pseudo is already available as reloaded
5731 for a previous insn. We cannot try to inherit for reloads
5732 that are smaller than the maximum number of registers needed
5733 for groups unless the register we would allocate cannot be used
5734 for the groups.
5736 We could check here to see if this is a secondary reload for
5737 an object that is already in a register of the desired class.
5738 This would avoid the need for the secondary reload register.
5739 But this is complex because we can't easily determine what
5740 objects might want to be loaded via this reload. So let a
5741 register be allocated here. In `emit_reload_insns' we suppress
5742 one of the loads in the case described above. */
5744 if (inheritance)
5746 int byte = 0;
5747 int regno = -1;
5748 enum machine_mode mode = VOIDmode;
5750 if (rld[r].in == 0)
5752 else if (REG_P (rld[r].in))
5754 regno = REGNO (rld[r].in);
5755 mode = GET_MODE (rld[r].in);
5757 else if (REG_P (rld[r].in_reg))
5759 regno = REGNO (rld[r].in_reg);
5760 mode = GET_MODE (rld[r].in_reg);
5762 else if (GET_CODE (rld[r].in_reg) == SUBREG
5763 && REG_P (SUBREG_REG (rld[r].in_reg)))
5765 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5766 if (regno < FIRST_PSEUDO_REGISTER)
5767 regno = subreg_regno (rld[r].in_reg);
5768 else
5769 byte = SUBREG_BYTE (rld[r].in_reg);
5770 mode = GET_MODE (rld[r].in_reg);
5772 #ifdef AUTO_INC_DEC
5773 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
5774 && REG_P (XEXP (rld[r].in_reg, 0)))
5776 regno = REGNO (XEXP (rld[r].in_reg, 0));
5777 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5778 rld[r].out = rld[r].in;
5780 #endif
5781 #if 0
5782 /* This won't work, since REGNO can be a pseudo reg number.
5783 Also, it takes much more hair to keep track of all the things
5784 that can invalidate an inherited reload of part of a pseudoreg. */
5785 else if (GET_CODE (rld[r].in) == SUBREG
5786 && REG_P (SUBREG_REG (rld[r].in)))
5787 regno = subreg_regno (rld[r].in);
5788 #endif
5790 if (regno >= 0
5791 && reg_last_reload_reg[regno] != 0
5792 #ifdef CANNOT_CHANGE_MODE_CLASS
5793 /* Verify that the register it's in can be used in
5794 mode MODE. */
5795 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
5796 GET_MODE (reg_last_reload_reg[regno]),
5797 mode)
5798 #endif
5801 enum reg_class class = rld[r].class, last_class;
5802 rtx last_reg = reg_last_reload_reg[regno];
5803 enum machine_mode need_mode;
5805 i = REGNO (last_reg);
5806 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5807 last_class = REGNO_REG_CLASS (i);
5809 if (byte == 0)
5810 need_mode = mode;
5811 else
5812 need_mode
5813 = smallest_mode_for_size (GET_MODE_BITSIZE (mode)
5814 + byte * BITS_PER_UNIT,
5815 GET_MODE_CLASS (mode));
5817 if ((GET_MODE_SIZE (GET_MODE (last_reg))
5818 >= GET_MODE_SIZE (need_mode))
5819 && reg_reloaded_contents[i] == regno
5820 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5821 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5822 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5823 /* Even if we can't use this register as a reload
5824 register, we might use it for reload_override_in,
5825 if copying it to the desired class is cheap
5826 enough. */
5827 || ((REGISTER_MOVE_COST (mode, last_class, class)
5828 < MEMORY_MOVE_COST (mode, class, 1))
5829 && (secondary_reload_class (1, class, mode,
5830 last_reg)
5831 == NO_REGS)
5832 #ifdef SECONDARY_MEMORY_NEEDED
5833 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5834 mode)
5835 #endif
5838 && (rld[r].nregs == max_group_size
5839 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5841 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5842 rld[r].when_needed, rld[r].in,
5843 const0_rtx, r, 1))
5845 /* If a group is needed, verify that all the subsequent
5846 registers still have their values intact. */
5847 int nr = hard_regno_nregs[i][rld[r].mode];
5848 int k;
5850 for (k = 1; k < nr; k++)
5851 if (reg_reloaded_contents[i + k] != regno
5852 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5853 break;
5855 if (k == nr)
5857 int i1;
5858 int bad_for_class;
5860 last_reg = (GET_MODE (last_reg) == mode
5861 ? last_reg : gen_rtx_REG (mode, i));
5863 bad_for_class = 0;
5864 for (k = 0; k < nr; k++)
5865 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5866 i+k);
5868 /* We found a register that contains the
5869 value we need. If this register is the
5870 same as an `earlyclobber' operand of the
5871 current insn, just mark it as a place to
5872 reload from since we can't use it as the
5873 reload register itself. */
5875 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5876 if (reg_overlap_mentioned_for_reload_p
5877 (reg_last_reload_reg[regno],
5878 reload_earlyclobbers[i1]))
5879 break;
5881 if (i1 != n_earlyclobbers
5882 || ! (free_for_value_p (i, rld[r].mode,
5883 rld[r].opnum,
5884 rld[r].when_needed, rld[r].in,
5885 rld[r].out, r, 1))
5886 /* Don't use it if we'd clobber a pseudo reg. */
5887 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5888 && rld[r].out
5889 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5890 /* Don't clobber the frame pointer. */
5891 || (i == HARD_FRAME_POINTER_REGNUM
5892 && frame_pointer_needed
5893 && rld[r].out)
5894 /* Don't really use the inherited spill reg
5895 if we need it wider than we've got it. */
5896 || (GET_MODE_SIZE (rld[r].mode)
5897 > GET_MODE_SIZE (mode))
5898 || bad_for_class
5900 /* If find_reloads chose reload_out as reload
5901 register, stay with it - that leaves the
5902 inherited register for subsequent reloads. */
5903 || (rld[r].out && rld[r].reg_rtx
5904 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5906 if (! rld[r].optional)
5908 reload_override_in[r] = last_reg;
5909 reload_inheritance_insn[r]
5910 = reg_reloaded_insn[i];
5913 else
5915 int k;
5916 /* We can use this as a reload reg. */
5917 /* Mark the register as in use for this part of
5918 the insn. */
5919 mark_reload_reg_in_use (i,
5920 rld[r].opnum,
5921 rld[r].when_needed,
5922 rld[r].mode);
5923 rld[r].reg_rtx = last_reg;
5924 reload_inherited[r] = 1;
5925 reload_inheritance_insn[r]
5926 = reg_reloaded_insn[i];
5927 reload_spill_index[r] = i;
5928 for (k = 0; k < nr; k++)
5929 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5930 i + k);
5937 /* Here's another way to see if the value is already lying around. */
5938 if (inheritance
5939 && rld[r].in != 0
5940 && ! reload_inherited[r]
5941 && rld[r].out == 0
5942 && (CONSTANT_P (rld[r].in)
5943 || GET_CODE (rld[r].in) == PLUS
5944 || REG_P (rld[r].in)
5945 || MEM_P (rld[r].in))
5946 && (rld[r].nregs == max_group_size
5947 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5948 search_equiv = rld[r].in;
5949 /* If this is an output reload from a simple move insn, look
5950 if an equivalence for the input is available. */
5951 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5953 rtx set = single_set (insn);
5955 if (set
5956 && rtx_equal_p (rld[r].out, SET_DEST (set))
5957 && CONSTANT_P (SET_SRC (set)))
5958 search_equiv = SET_SRC (set);
5961 if (search_equiv)
5963 rtx equiv
5964 = find_equiv_reg (search_equiv, insn, rld[r].class,
5965 -1, NULL, 0, rld[r].mode);
5966 int regno = 0;
5968 if (equiv != 0)
5970 if (REG_P (equiv))
5971 regno = REGNO (equiv);
5972 else
5974 /* This must be a SUBREG of a hard register.
5975 Make a new REG since this might be used in an
5976 address and not all machines support SUBREGs
5977 there. */
5978 gcc_assert (GET_CODE (equiv) == SUBREG);
5979 regno = subreg_regno (equiv);
5980 equiv = gen_rtx_REG (rld[r].mode, regno);
5981 /* If we choose EQUIV as the reload register, but the
5982 loop below decides to cancel the inheritance, we'll
5983 end up reloading EQUIV in rld[r].mode, not the mode
5984 it had originally. That isn't safe when EQUIV isn't
5985 available as a spill register since its value might
5986 still be live at this point. */
5987 for (i = regno; i < regno + (int) rld[r].nregs; i++)
5988 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
5989 equiv = 0;
5993 /* If we found a spill reg, reject it unless it is free
5994 and of the desired class. */
5995 if (equiv != 0)
5997 int regs_used = 0;
5998 int bad_for_class = 0;
5999 int max_regno = regno + rld[r].nregs;
6001 for (i = regno; i < max_regno; i++)
6003 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6005 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
6009 if ((regs_used
6010 && ! free_for_value_p (regno, rld[r].mode,
6011 rld[r].opnum, rld[r].when_needed,
6012 rld[r].in, rld[r].out, r, 1))
6013 || bad_for_class)
6014 equiv = 0;
6017 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6018 equiv = 0;
6020 /* We found a register that contains the value we need.
6021 If this register is the same as an `earlyclobber' operand
6022 of the current insn, just mark it as a place to reload from
6023 since we can't use it as the reload register itself. */
6025 if (equiv != 0)
6026 for (i = 0; i < n_earlyclobbers; i++)
6027 if (reg_overlap_mentioned_for_reload_p (equiv,
6028 reload_earlyclobbers[i]))
6030 if (! rld[r].optional)
6031 reload_override_in[r] = equiv;
6032 equiv = 0;
6033 break;
6036 /* If the equiv register we have found is explicitly clobbered
6037 in the current insn, it depends on the reload type if we
6038 can use it, use it for reload_override_in, or not at all.
6039 In particular, we then can't use EQUIV for a
6040 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6042 if (equiv != 0)
6044 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6045 switch (rld[r].when_needed)
6047 case RELOAD_FOR_OTHER_ADDRESS:
6048 case RELOAD_FOR_INPADDR_ADDRESS:
6049 case RELOAD_FOR_INPUT_ADDRESS:
6050 case RELOAD_FOR_OPADDR_ADDR:
6051 break;
6052 case RELOAD_OTHER:
6053 case RELOAD_FOR_INPUT:
6054 case RELOAD_FOR_OPERAND_ADDRESS:
6055 if (! rld[r].optional)
6056 reload_override_in[r] = equiv;
6057 /* Fall through. */
6058 default:
6059 equiv = 0;
6060 break;
6062 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6063 switch (rld[r].when_needed)
6065 case RELOAD_FOR_OTHER_ADDRESS:
6066 case RELOAD_FOR_INPADDR_ADDRESS:
6067 case RELOAD_FOR_INPUT_ADDRESS:
6068 case RELOAD_FOR_OPADDR_ADDR:
6069 case RELOAD_FOR_OPERAND_ADDRESS:
6070 case RELOAD_FOR_INPUT:
6071 break;
6072 case RELOAD_OTHER:
6073 if (! rld[r].optional)
6074 reload_override_in[r] = equiv;
6075 /* Fall through. */
6076 default:
6077 equiv = 0;
6078 break;
6082 /* If we found an equivalent reg, say no code need be generated
6083 to load it, and use it as our reload reg. */
6084 if (equiv != 0
6085 && (regno != HARD_FRAME_POINTER_REGNUM
6086 || !frame_pointer_needed))
6088 int nr = hard_regno_nregs[regno][rld[r].mode];
6089 int k;
6090 rld[r].reg_rtx = equiv;
6091 reload_inherited[r] = 1;
6093 /* If reg_reloaded_valid is not set for this register,
6094 there might be a stale spill_reg_store lying around.
6095 We must clear it, since otherwise emit_reload_insns
6096 might delete the store. */
6097 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6098 spill_reg_store[regno] = NULL_RTX;
6099 /* If any of the hard registers in EQUIV are spill
6100 registers, mark them as in use for this insn. */
6101 for (k = 0; k < nr; k++)
6103 i = spill_reg_order[regno + k];
6104 if (i >= 0)
6106 mark_reload_reg_in_use (regno, rld[r].opnum,
6107 rld[r].when_needed,
6108 rld[r].mode);
6109 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6110 regno + k);
6116 /* If we found a register to use already, or if this is an optional
6117 reload, we are done. */
6118 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6119 continue;
6121 #if 0
6122 /* No longer needed for correct operation. Might or might
6123 not give better code on the average. Want to experiment? */
6125 /* See if there is a later reload that has a class different from our
6126 class that intersects our class or that requires less register
6127 than our reload. If so, we must allocate a register to this
6128 reload now, since that reload might inherit a previous reload
6129 and take the only available register in our class. Don't do this
6130 for optional reloads since they will force all previous reloads
6131 to be allocated. Also don't do this for reloads that have been
6132 turned off. */
6134 for (i = j + 1; i < n_reloads; i++)
6136 int s = reload_order[i];
6138 if ((rld[s].in == 0 && rld[s].out == 0
6139 && ! rld[s].secondary_p)
6140 || rld[s].optional)
6141 continue;
6143 if ((rld[s].class != rld[r].class
6144 && reg_classes_intersect_p (rld[r].class,
6145 rld[s].class))
6146 || rld[s].nregs < rld[r].nregs)
6147 break;
6150 if (i == n_reloads)
6151 continue;
6153 allocate_reload_reg (chain, r, j == n_reloads - 1);
6154 #endif
6157 /* Now allocate reload registers for anything non-optional that
6158 didn't get one yet. */
6159 for (j = 0; j < n_reloads; j++)
6161 int r = reload_order[j];
6163 /* Ignore reloads that got marked inoperative. */
6164 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6165 continue;
6167 /* Skip reloads that already have a register allocated or are
6168 optional. */
6169 if (rld[r].reg_rtx != 0 || rld[r].optional)
6170 continue;
6172 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6173 break;
6176 /* If that loop got all the way, we have won. */
6177 if (j == n_reloads)
6179 win = 1;
6180 break;
6183 /* Loop around and try without any inheritance. */
6186 if (! win)
6188 /* First undo everything done by the failed attempt
6189 to allocate with inheritance. */
6190 choose_reload_regs_init (chain, save_reload_reg_rtx);
6192 /* Some sanity tests to verify that the reloads found in the first
6193 pass are identical to the ones we have now. */
6194 gcc_assert (chain->n_reloads == n_reloads);
6196 for (i = 0; i < n_reloads; i++)
6198 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6199 continue;
6200 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6201 for (j = 0; j < n_spills; j++)
6202 if (spill_regs[j] == chain->rld[i].regno)
6203 if (! set_reload_reg (j, i))
6204 failed_reload (chain->insn, i);
6208 /* If we thought we could inherit a reload, because it seemed that
6209 nothing else wanted the same reload register earlier in the insn,
6210 verify that assumption, now that all reloads have been assigned.
6211 Likewise for reloads where reload_override_in has been set. */
6213 /* If doing expensive optimizations, do one preliminary pass that doesn't
6214 cancel any inheritance, but removes reloads that have been needed only
6215 for reloads that we know can be inherited. */
6216 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6218 for (j = 0; j < n_reloads; j++)
6220 int r = reload_order[j];
6221 rtx check_reg;
6222 if (reload_inherited[r] && rld[r].reg_rtx)
6223 check_reg = rld[r].reg_rtx;
6224 else if (reload_override_in[r]
6225 && (REG_P (reload_override_in[r])
6226 || GET_CODE (reload_override_in[r]) == SUBREG))
6227 check_reg = reload_override_in[r];
6228 else
6229 continue;
6230 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6231 rld[r].opnum, rld[r].when_needed, rld[r].in,
6232 (reload_inherited[r]
6233 ? rld[r].out : const0_rtx),
6234 r, 1))
6236 if (pass)
6237 continue;
6238 reload_inherited[r] = 0;
6239 reload_override_in[r] = 0;
6241 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6242 reload_override_in, then we do not need its related
6243 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6244 likewise for other reload types.
6245 We handle this by removing a reload when its only replacement
6246 is mentioned in reload_in of the reload we are going to inherit.
6247 A special case are auto_inc expressions; even if the input is
6248 inherited, we still need the address for the output. We can
6249 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6250 If we succeeded removing some reload and we are doing a preliminary
6251 pass just to remove such reloads, make another pass, since the
6252 removal of one reload might allow us to inherit another one. */
6253 else if (rld[r].in
6254 && rld[r].out != rld[r].in
6255 && remove_address_replacements (rld[r].in) && pass)
6256 pass = 2;
6260 /* Now that reload_override_in is known valid,
6261 actually override reload_in. */
6262 for (j = 0; j < n_reloads; j++)
6263 if (reload_override_in[j])
6264 rld[j].in = reload_override_in[j];
6266 /* If this reload won't be done because it has been canceled or is
6267 optional and not inherited, clear reload_reg_rtx so other
6268 routines (such as subst_reloads) don't get confused. */
6269 for (j = 0; j < n_reloads; j++)
6270 if (rld[j].reg_rtx != 0
6271 && ((rld[j].optional && ! reload_inherited[j])
6272 || (rld[j].in == 0 && rld[j].out == 0
6273 && ! rld[j].secondary_p)))
6275 int regno = true_regnum (rld[j].reg_rtx);
6277 if (spill_reg_order[regno] >= 0)
6278 clear_reload_reg_in_use (regno, rld[j].opnum,
6279 rld[j].when_needed, rld[j].mode);
6280 rld[j].reg_rtx = 0;
6281 reload_spill_index[j] = -1;
6284 /* Record which pseudos and which spill regs have output reloads. */
6285 for (j = 0; j < n_reloads; j++)
6287 int r = reload_order[j];
6289 i = reload_spill_index[r];
6291 /* I is nonneg if this reload uses a register.
6292 If rld[r].reg_rtx is 0, this is an optional reload
6293 that we opted to ignore. */
6294 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6295 && rld[r].reg_rtx != 0)
6297 int nregno = REGNO (rld[r].out_reg);
6298 int nr = 1;
6300 if (nregno < FIRST_PSEUDO_REGISTER)
6301 nr = hard_regno_nregs[nregno][rld[r].mode];
6303 while (--nr >= 0)
6304 SET_REGNO_REG_SET (&reg_has_output_reload,
6305 nregno + nr);
6307 if (i >= 0)
6309 nr = hard_regno_nregs[i][rld[r].mode];
6310 while (--nr >= 0)
6311 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
6314 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6315 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6316 || rld[r].when_needed == RELOAD_FOR_INSN);
6321 /* Deallocate the reload register for reload R. This is called from
6322 remove_address_replacements. */
6324 void
6325 deallocate_reload_reg (int r)
6327 int regno;
6329 if (! rld[r].reg_rtx)
6330 return;
6331 regno = true_regnum (rld[r].reg_rtx);
6332 rld[r].reg_rtx = 0;
6333 if (spill_reg_order[regno] >= 0)
6334 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6335 rld[r].mode);
6336 reload_spill_index[r] = -1;
6339 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6340 reloads of the same item for fear that we might not have enough reload
6341 registers. However, normally they will get the same reload register
6342 and hence actually need not be loaded twice.
6344 Here we check for the most common case of this phenomenon: when we have
6345 a number of reloads for the same object, each of which were allocated
6346 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6347 reload, and is not modified in the insn itself. If we find such,
6348 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6349 This will not increase the number of spill registers needed and will
6350 prevent redundant code. */
6352 static void
6353 merge_assigned_reloads (rtx insn)
6355 int i, j;
6357 /* Scan all the reloads looking for ones that only load values and
6358 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6359 assigned and not modified by INSN. */
6361 for (i = 0; i < n_reloads; i++)
6363 int conflicting_input = 0;
6364 int max_input_address_opnum = -1;
6365 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6367 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6368 || rld[i].out != 0 || rld[i].reg_rtx == 0
6369 || reg_set_p (rld[i].reg_rtx, insn))
6370 continue;
6372 /* Look at all other reloads. Ensure that the only use of this
6373 reload_reg_rtx is in a reload that just loads the same value
6374 as we do. Note that any secondary reloads must be of the identical
6375 class since the values, modes, and result registers are the
6376 same, so we need not do anything with any secondary reloads. */
6378 for (j = 0; j < n_reloads; j++)
6380 if (i == j || rld[j].reg_rtx == 0
6381 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6382 rld[i].reg_rtx))
6383 continue;
6385 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6386 && rld[j].opnum > max_input_address_opnum)
6387 max_input_address_opnum = rld[j].opnum;
6389 /* If the reload regs aren't exactly the same (e.g, different modes)
6390 or if the values are different, we can't merge this reload.
6391 But if it is an input reload, we might still merge
6392 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6394 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6395 || rld[j].out != 0 || rld[j].in == 0
6396 || ! rtx_equal_p (rld[i].in, rld[j].in))
6398 if (rld[j].when_needed != RELOAD_FOR_INPUT
6399 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6400 || rld[i].opnum > rld[j].opnum)
6401 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6402 break;
6403 conflicting_input = 1;
6404 if (min_conflicting_input_opnum > rld[j].opnum)
6405 min_conflicting_input_opnum = rld[j].opnum;
6409 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6410 we, in fact, found any matching reloads. */
6412 if (j == n_reloads
6413 && max_input_address_opnum <= min_conflicting_input_opnum)
6415 gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
6417 for (j = 0; j < n_reloads; j++)
6418 if (i != j && rld[j].reg_rtx != 0
6419 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6420 && (! conflicting_input
6421 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6422 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6424 rld[i].when_needed = RELOAD_OTHER;
6425 rld[j].in = 0;
6426 reload_spill_index[j] = -1;
6427 transfer_replacements (i, j);
6430 /* If this is now RELOAD_OTHER, look for any reloads that
6431 load parts of this operand and set them to
6432 RELOAD_FOR_OTHER_ADDRESS if they were for inputs,
6433 RELOAD_OTHER for outputs. Note that this test is
6434 equivalent to looking for reloads for this operand
6435 number.
6437 We must take special care with RELOAD_FOR_OUTPUT_ADDRESS;
6438 it may share registers with a RELOAD_FOR_INPUT, so we can
6439 not change it to RELOAD_FOR_OTHER_ADDRESS. We should
6440 never need to, since we do not modify RELOAD_FOR_OUTPUT.
6442 It is possible that the RELOAD_FOR_OPERAND_ADDRESS
6443 instruction is assigned the same register as the earlier
6444 RELOAD_FOR_OTHER_ADDRESS instruction. Merging these two
6445 instructions will cause the RELOAD_FOR_OTHER_ADDRESS
6446 instruction to be deleted later on. */
6448 if (rld[i].when_needed == RELOAD_OTHER)
6449 for (j = 0; j < n_reloads; j++)
6450 if (rld[j].in != 0
6451 && rld[j].when_needed != RELOAD_OTHER
6452 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6453 && rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
6454 && rld[j].when_needed != RELOAD_FOR_OPERAND_ADDRESS
6455 && (! conflicting_input
6456 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6457 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6458 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6459 rld[i].in))
6461 int k;
6463 rld[j].when_needed
6464 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6465 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6466 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6468 /* Check to see if we accidentally converted two
6469 reloads that use the same reload register with
6470 different inputs to the same type. If so, the
6471 resulting code won't work. */
6472 if (rld[j].reg_rtx)
6473 for (k = 0; k < j; k++)
6474 gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
6475 || rld[k].when_needed != rld[j].when_needed
6476 || !rtx_equal_p (rld[k].reg_rtx,
6477 rld[j].reg_rtx)
6478 || rtx_equal_p (rld[k].in,
6479 rld[j].in));
6485 /* These arrays are filled by emit_reload_insns and its subroutines. */
6486 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6487 static rtx other_input_address_reload_insns = 0;
6488 static rtx other_input_reload_insns = 0;
6489 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6490 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6491 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6492 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6493 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6494 static rtx operand_reload_insns = 0;
6495 static rtx other_operand_reload_insns = 0;
6496 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6498 /* Values to be put in spill_reg_store are put here first. */
6499 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6500 static HARD_REG_SET reg_reloaded_died;
6502 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
6503 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
6504 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
6505 adjusted register, and return true. Otherwise, return false. */
6506 static bool
6507 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
6508 enum reg_class new_class,
6509 enum machine_mode new_mode)
6512 rtx reg;
6514 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
6516 unsigned regno = REGNO (reg);
6518 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
6519 continue;
6520 if (GET_MODE (reg) != new_mode)
6522 if (!HARD_REGNO_MODE_OK (regno, new_mode))
6523 continue;
6524 if (hard_regno_nregs[regno][new_mode]
6525 > hard_regno_nregs[regno][GET_MODE (reg)])
6526 continue;
6527 reg = reload_adjust_reg_for_mode (reg, new_mode);
6529 *reload_reg = reg;
6530 return true;
6532 return false;
6535 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
6536 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
6537 nonzero, if that is suitable. On success, change *RELOAD_REG to the
6538 adjusted register, and return true. Otherwise, return false. */
6539 static bool
6540 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
6541 enum insn_code icode)
6544 enum reg_class new_class = scratch_reload_class (icode);
6545 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
6547 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
6548 new_class, new_mode);
6551 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6552 has the number J. OLD contains the value to be used as input. */
6554 static void
6555 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6556 rtx old, int j)
6558 rtx insn = chain->insn;
6559 rtx reloadreg = rl->reg_rtx;
6560 rtx oldequiv_reg = 0;
6561 rtx oldequiv = 0;
6562 int special = 0;
6563 enum machine_mode mode;
6564 rtx *where;
6566 /* Determine the mode to reload in.
6567 This is very tricky because we have three to choose from.
6568 There is the mode the insn operand wants (rl->inmode).
6569 There is the mode of the reload register RELOADREG.
6570 There is the intrinsic mode of the operand, which we could find
6571 by stripping some SUBREGs.
6572 It turns out that RELOADREG's mode is irrelevant:
6573 we can change that arbitrarily.
6575 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6576 then the reload reg may not support QImode moves, so use SImode.
6577 If foo is in memory due to spilling a pseudo reg, this is safe,
6578 because the QImode value is in the least significant part of a
6579 slot big enough for a SImode. If foo is some other sort of
6580 memory reference, then it is impossible to reload this case,
6581 so previous passes had better make sure this never happens.
6583 Then consider a one-word union which has SImode and one of its
6584 members is a float, being fetched as (SUBREG:SF union:SI).
6585 We must fetch that as SFmode because we could be loading into
6586 a float-only register. In this case OLD's mode is correct.
6588 Consider an immediate integer: it has VOIDmode. Here we need
6589 to get a mode from something else.
6591 In some cases, there is a fourth mode, the operand's
6592 containing mode. If the insn specifies a containing mode for
6593 this operand, it overrides all others.
6595 I am not sure whether the algorithm here is always right,
6596 but it does the right things in those cases. */
6598 mode = GET_MODE (old);
6599 if (mode == VOIDmode)
6600 mode = rl->inmode;
6602 /* delete_output_reload is only invoked properly if old contains
6603 the original pseudo register. Since this is replaced with a
6604 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6605 find the pseudo in RELOAD_IN_REG. */
6606 if (reload_override_in[j]
6607 && REG_P (rl->in_reg))
6609 oldequiv = old;
6610 old = rl->in_reg;
6612 if (oldequiv == 0)
6613 oldequiv = old;
6614 else if (REG_P (oldequiv))
6615 oldequiv_reg = oldequiv;
6616 else if (GET_CODE (oldequiv) == SUBREG)
6617 oldequiv_reg = SUBREG_REG (oldequiv);
6619 /* If we are reloading from a register that was recently stored in
6620 with an output-reload, see if we can prove there was
6621 actually no need to store the old value in it. */
6623 if (optimize && REG_P (oldequiv)
6624 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6625 && spill_reg_store[REGNO (oldequiv)]
6626 && REG_P (old)
6627 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6628 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6629 rl->out_reg)))
6630 delete_output_reload (insn, j, REGNO (oldequiv));
6632 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6633 then load RELOADREG from OLDEQUIV. Note that we cannot use
6634 gen_lowpart_common since it can do the wrong thing when
6635 RELOADREG has a multi-word mode. Note that RELOADREG
6636 must always be a REG here. */
6638 if (GET_MODE (reloadreg) != mode)
6639 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6640 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6641 oldequiv = SUBREG_REG (oldequiv);
6642 if (GET_MODE (oldequiv) != VOIDmode
6643 && mode != GET_MODE (oldequiv))
6644 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6646 /* Switch to the right place to emit the reload insns. */
6647 switch (rl->when_needed)
6649 case RELOAD_OTHER:
6650 where = &other_input_reload_insns;
6651 break;
6652 case RELOAD_FOR_INPUT:
6653 where = &input_reload_insns[rl->opnum];
6654 break;
6655 case RELOAD_FOR_INPUT_ADDRESS:
6656 where = &input_address_reload_insns[rl->opnum];
6657 break;
6658 case RELOAD_FOR_INPADDR_ADDRESS:
6659 where = &inpaddr_address_reload_insns[rl->opnum];
6660 break;
6661 case RELOAD_FOR_OUTPUT_ADDRESS:
6662 where = &output_address_reload_insns[rl->opnum];
6663 break;
6664 case RELOAD_FOR_OUTADDR_ADDRESS:
6665 where = &outaddr_address_reload_insns[rl->opnum];
6666 break;
6667 case RELOAD_FOR_OPERAND_ADDRESS:
6668 where = &operand_reload_insns;
6669 break;
6670 case RELOAD_FOR_OPADDR_ADDR:
6671 where = &other_operand_reload_insns;
6672 break;
6673 case RELOAD_FOR_OTHER_ADDRESS:
6674 where = &other_input_address_reload_insns;
6675 break;
6676 default:
6677 gcc_unreachable ();
6680 push_to_sequence (*where);
6682 /* Auto-increment addresses must be reloaded in a special way. */
6683 if (rl->out && ! rl->out_reg)
6685 /* We are not going to bother supporting the case where a
6686 incremented register can't be copied directly from
6687 OLDEQUIV since this seems highly unlikely. */
6688 gcc_assert (rl->secondary_in_reload < 0);
6690 if (reload_inherited[j])
6691 oldequiv = reloadreg;
6693 old = XEXP (rl->in_reg, 0);
6695 if (optimize && REG_P (oldequiv)
6696 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6697 && spill_reg_store[REGNO (oldequiv)]
6698 && REG_P (old)
6699 && (dead_or_set_p (insn,
6700 spill_reg_stored_to[REGNO (oldequiv)])
6701 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6702 old)))
6703 delete_output_reload (insn, j, REGNO (oldequiv));
6705 /* Prevent normal processing of this reload. */
6706 special = 1;
6707 /* Output a special code sequence for this case. */
6708 new_spill_reg_store[REGNO (reloadreg)]
6709 = inc_for_reload (reloadreg, oldequiv, rl->out,
6710 rl->inc);
6713 /* If we are reloading a pseudo-register that was set by the previous
6714 insn, see if we can get rid of that pseudo-register entirely
6715 by redirecting the previous insn into our reload register. */
6717 else if (optimize && REG_P (old)
6718 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6719 && dead_or_set_p (insn, old)
6720 /* This is unsafe if some other reload
6721 uses the same reg first. */
6722 && ! conflicts_with_override (reloadreg)
6723 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6724 rl->when_needed, old, rl->out, j, 0))
6726 rtx temp = PREV_INSN (insn);
6727 while (temp && NOTE_P (temp))
6728 temp = PREV_INSN (temp);
6729 if (temp
6730 && NONJUMP_INSN_P (temp)
6731 && GET_CODE (PATTERN (temp)) == SET
6732 && SET_DEST (PATTERN (temp)) == old
6733 /* Make sure we can access insn_operand_constraint. */
6734 && asm_noperands (PATTERN (temp)) < 0
6735 /* This is unsafe if operand occurs more than once in current
6736 insn. Perhaps some occurrences aren't reloaded. */
6737 && count_occurrences (PATTERN (insn), old, 0) == 1)
6739 rtx old = SET_DEST (PATTERN (temp));
6740 /* Store into the reload register instead of the pseudo. */
6741 SET_DEST (PATTERN (temp)) = reloadreg;
6743 /* Verify that resulting insn is valid. */
6744 extract_insn (temp);
6745 if (constrain_operands (1))
6747 /* If the previous insn is an output reload, the source is
6748 a reload register, and its spill_reg_store entry will
6749 contain the previous destination. This is now
6750 invalid. */
6751 if (REG_P (SET_SRC (PATTERN (temp)))
6752 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6754 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6755 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6758 /* If these are the only uses of the pseudo reg,
6759 pretend for GDB it lives in the reload reg we used. */
6760 if (REG_N_DEATHS (REGNO (old)) == 1
6761 && REG_N_SETS (REGNO (old)) == 1)
6763 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6764 alter_reg (REGNO (old), -1);
6766 special = 1;
6768 else
6770 SET_DEST (PATTERN (temp)) = old;
6775 /* We can't do that, so output an insn to load RELOADREG. */
6777 /* If we have a secondary reload, pick up the secondary register
6778 and icode, if any. If OLDEQUIV and OLD are different or
6779 if this is an in-out reload, recompute whether or not we
6780 still need a secondary register and what the icode should
6781 be. If we still need a secondary register and the class or
6782 icode is different, go back to reloading from OLD if using
6783 OLDEQUIV means that we got the wrong type of register. We
6784 cannot have different class or icode due to an in-out reload
6785 because we don't make such reloads when both the input and
6786 output need secondary reload registers. */
6788 if (! special && rl->secondary_in_reload >= 0)
6790 rtx second_reload_reg = 0;
6791 rtx third_reload_reg = 0;
6792 int secondary_reload = rl->secondary_in_reload;
6793 rtx real_oldequiv = oldequiv;
6794 rtx real_old = old;
6795 rtx tmp;
6796 enum insn_code icode;
6797 enum insn_code tertiary_icode = CODE_FOR_nothing;
6799 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6800 and similarly for OLD.
6801 See comments in get_secondary_reload in reload.c. */
6802 /* If it is a pseudo that cannot be replaced with its
6803 equivalent MEM, we must fall back to reload_in, which
6804 will have all the necessary substitutions registered.
6805 Likewise for a pseudo that can't be replaced with its
6806 equivalent constant.
6808 Take extra care for subregs of such pseudos. Note that
6809 we cannot use reg_equiv_mem in this case because it is
6810 not in the right mode. */
6812 tmp = oldequiv;
6813 if (GET_CODE (tmp) == SUBREG)
6814 tmp = SUBREG_REG (tmp);
6815 if (REG_P (tmp)
6816 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6817 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6818 || reg_equiv_constant[REGNO (tmp)] != 0))
6820 if (! reg_equiv_mem[REGNO (tmp)]
6821 || num_not_at_initial_offset
6822 || GET_CODE (oldequiv) == SUBREG)
6823 real_oldequiv = rl->in;
6824 else
6825 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6828 tmp = old;
6829 if (GET_CODE (tmp) == SUBREG)
6830 tmp = SUBREG_REG (tmp);
6831 if (REG_P (tmp)
6832 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6833 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6834 || reg_equiv_constant[REGNO (tmp)] != 0))
6836 if (! reg_equiv_mem[REGNO (tmp)]
6837 || num_not_at_initial_offset
6838 || GET_CODE (old) == SUBREG)
6839 real_old = rl->in;
6840 else
6841 real_old = reg_equiv_mem[REGNO (tmp)];
6844 second_reload_reg = rld[secondary_reload].reg_rtx;
6845 if (rld[secondary_reload].secondary_in_reload >= 0)
6847 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
6849 third_reload_reg = rld[tertiary_reload].reg_rtx;
6850 tertiary_icode = rld[secondary_reload].secondary_in_icode;
6851 /* We'd have to add more code for quartary reloads. */
6852 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
6854 icode = rl->secondary_in_icode;
6856 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6857 || (rl->in != 0 && rl->out != 0))
6859 secondary_reload_info sri, sri2;
6860 enum reg_class new_class, new_t_class;
6862 sri.icode = CODE_FOR_nothing;
6863 sri.prev_sri = NULL;
6864 new_class = targetm.secondary_reload (1, real_oldequiv, rl->class,
6865 mode, &sri);
6867 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
6868 second_reload_reg = 0;
6869 else if (new_class == NO_REGS)
6871 if (reload_adjust_reg_for_icode (&second_reload_reg,
6872 third_reload_reg, sri.icode))
6873 icode = sri.icode, third_reload_reg = 0;
6874 else
6875 oldequiv = old, real_oldequiv = real_old;
6877 else if (sri.icode != CODE_FOR_nothing)
6878 /* We currently lack a way to express this in reloads. */
6879 gcc_unreachable ();
6880 else
6882 sri2.icode = CODE_FOR_nothing;
6883 sri2.prev_sri = &sri;
6884 new_t_class = targetm.secondary_reload (1, real_oldequiv,
6885 new_class, mode, &sri);
6886 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
6888 if (reload_adjust_reg_for_temp (&second_reload_reg,
6889 third_reload_reg,
6890 new_class, mode))
6891 third_reload_reg = 0, tertiary_icode = sri2.icode;
6892 else
6893 oldequiv = old, real_oldequiv = real_old;
6895 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
6897 rtx intermediate = second_reload_reg;
6899 if (reload_adjust_reg_for_temp (&intermediate, NULL,
6900 new_class, mode)
6901 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
6902 sri2.icode))
6904 second_reload_reg = intermediate;
6905 tertiary_icode = sri2.icode;
6907 else
6908 oldequiv = old, real_oldequiv = real_old;
6910 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
6912 rtx intermediate = second_reload_reg;
6914 if (reload_adjust_reg_for_temp (&intermediate, NULL,
6915 new_class, mode)
6916 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
6917 new_t_class, mode))
6919 second_reload_reg = intermediate;
6920 tertiary_icode = sri2.icode;
6922 else
6923 oldequiv = old, real_oldequiv = real_old;
6925 else
6926 /* This could be handled more intelligently too. */
6927 oldequiv = old, real_oldequiv = real_old;
6931 /* If we still need a secondary reload register, check
6932 to see if it is being used as a scratch or intermediate
6933 register and generate code appropriately. If we need
6934 a scratch register, use REAL_OLDEQUIV since the form of
6935 the insn may depend on the actual address if it is
6936 a MEM. */
6938 if (second_reload_reg)
6940 if (icode != CODE_FOR_nothing)
6942 /* We'd have to add extra code to handle this case. */
6943 gcc_assert (!third_reload_reg);
6945 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6946 second_reload_reg));
6947 special = 1;
6949 else
6951 /* See if we need a scratch register to load the
6952 intermediate register (a tertiary reload). */
6953 if (tertiary_icode != CODE_FOR_nothing)
6955 emit_insn ((GEN_FCN (tertiary_icode)
6956 (second_reload_reg, real_oldequiv,
6957 third_reload_reg)));
6959 else if (third_reload_reg)
6961 gen_reload (third_reload_reg, real_oldequiv,
6962 rl->opnum,
6963 rl->when_needed);
6964 gen_reload (second_reload_reg, third_reload_reg,
6965 rl->opnum,
6966 rl->when_needed);
6968 else
6969 gen_reload (second_reload_reg, real_oldequiv,
6970 rl->opnum,
6971 rl->when_needed);
6973 oldequiv = second_reload_reg;
6978 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6980 rtx real_oldequiv = oldequiv;
6982 if ((REG_P (oldequiv)
6983 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6984 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6985 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6986 || (GET_CODE (oldequiv) == SUBREG
6987 && REG_P (SUBREG_REG (oldequiv))
6988 && (REGNO (SUBREG_REG (oldequiv))
6989 >= FIRST_PSEUDO_REGISTER)
6990 && ((reg_equiv_memory_loc
6991 [REGNO (SUBREG_REG (oldequiv))] != 0)
6992 || (reg_equiv_constant
6993 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6994 || (CONSTANT_P (oldequiv)
6995 && (PREFERRED_RELOAD_CLASS (oldequiv,
6996 REGNO_REG_CLASS (REGNO (reloadreg)))
6997 == NO_REGS)))
6998 real_oldequiv = rl->in;
6999 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7000 rl->when_needed);
7003 if (flag_non_call_exceptions)
7004 copy_eh_notes (insn, get_insns ());
7006 /* End this sequence. */
7007 *where = get_insns ();
7008 end_sequence ();
7010 /* Update reload_override_in so that delete_address_reloads_1
7011 can see the actual register usage. */
7012 if (oldequiv_reg)
7013 reload_override_in[j] = oldequiv;
7016 /* Generate insns to for the output reload RL, which is for the insn described
7017 by CHAIN and has the number J. */
7018 static void
7019 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7020 int j)
7022 rtx reloadreg = rl->reg_rtx;
7023 rtx insn = chain->insn;
7024 int special = 0;
7025 rtx old = rl->out;
7026 enum machine_mode mode = GET_MODE (old);
7027 rtx p;
7029 if (rl->when_needed == RELOAD_OTHER)
7030 start_sequence ();
7031 else
7032 push_to_sequence (output_reload_insns[rl->opnum]);
7034 /* Determine the mode to reload in.
7035 See comments above (for input reloading). */
7037 if (mode == VOIDmode)
7039 /* VOIDmode should never happen for an output. */
7040 if (asm_noperands (PATTERN (insn)) < 0)
7041 /* It's the compiler's fault. */
7042 fatal_insn ("VOIDmode on an output", insn);
7043 error_for_asm (insn, "output operand is constant in %<asm%>");
7044 /* Prevent crash--use something we know is valid. */
7045 mode = word_mode;
7046 old = gen_rtx_REG (mode, REGNO (reloadreg));
7049 if (GET_MODE (reloadreg) != mode)
7050 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7052 /* If we need two reload regs, set RELOADREG to the intermediate
7053 one, since it will be stored into OLD. We might need a secondary
7054 register only for an input reload, so check again here. */
7056 if (rl->secondary_out_reload >= 0)
7058 rtx real_old = old;
7059 int secondary_reload = rl->secondary_out_reload;
7060 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7062 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7063 && reg_equiv_mem[REGNO (old)] != 0)
7064 real_old = reg_equiv_mem[REGNO (old)];
7066 if (secondary_reload_class (0, rl->class, mode, real_old) != NO_REGS)
7068 rtx second_reloadreg = reloadreg;
7069 reloadreg = rld[secondary_reload].reg_rtx;
7071 /* See if RELOADREG is to be used as a scratch register
7072 or as an intermediate register. */
7073 if (rl->secondary_out_icode != CODE_FOR_nothing)
7075 /* We'd have to add extra code to handle this case. */
7076 gcc_assert (tertiary_reload < 0);
7078 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7079 (real_old, second_reloadreg, reloadreg)));
7080 special = 1;
7082 else
7084 /* See if we need both a scratch and intermediate reload
7085 register. */
7087 enum insn_code tertiary_icode
7088 = rld[secondary_reload].secondary_out_icode;
7090 /* We'd have to add more code for quartary reloads. */
7091 gcc_assert (tertiary_reload < 0
7092 || rld[tertiary_reload].secondary_out_reload < 0);
7094 if (GET_MODE (reloadreg) != mode)
7095 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7097 if (tertiary_icode != CODE_FOR_nothing)
7099 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7100 rtx tem;
7102 /* Copy primary reload reg to secondary reload reg.
7103 (Note that these have been swapped above, then
7104 secondary reload reg to OLD using our insn.) */
7106 /* If REAL_OLD is a paradoxical SUBREG, remove it
7107 and try to put the opposite SUBREG on
7108 RELOADREG. */
7109 if (GET_CODE (real_old) == SUBREG
7110 && (GET_MODE_SIZE (GET_MODE (real_old))
7111 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
7112 && 0 != (tem = gen_lowpart_common
7113 (GET_MODE (SUBREG_REG (real_old)),
7114 reloadreg)))
7115 real_old = SUBREG_REG (real_old), reloadreg = tem;
7117 gen_reload (reloadreg, second_reloadreg,
7118 rl->opnum, rl->when_needed);
7119 emit_insn ((GEN_FCN (tertiary_icode)
7120 (real_old, reloadreg, third_reloadreg)));
7121 special = 1;
7124 else
7126 /* Copy between the reload regs here and then to
7127 OUT later. */
7129 gen_reload (reloadreg, second_reloadreg,
7130 rl->opnum, rl->when_needed);
7131 if (tertiary_reload >= 0)
7133 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7135 gen_reload (third_reloadreg, reloadreg,
7136 rl->opnum, rl->when_needed);
7137 reloadreg = third_reloadreg;
7144 /* Output the last reload insn. */
7145 if (! special)
7147 rtx set;
7149 /* Don't output the last reload if OLD is not the dest of
7150 INSN and is in the src and is clobbered by INSN. */
7151 if (! flag_expensive_optimizations
7152 || !REG_P (old)
7153 || !(set = single_set (insn))
7154 || rtx_equal_p (old, SET_DEST (set))
7155 || !reg_mentioned_p (old, SET_SRC (set))
7156 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7157 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7158 gen_reload (old, reloadreg, rl->opnum,
7159 rl->when_needed);
7162 /* Look at all insns we emitted, just to be safe. */
7163 for (p = get_insns (); p; p = NEXT_INSN (p))
7164 if (INSN_P (p))
7166 rtx pat = PATTERN (p);
7168 /* If this output reload doesn't come from a spill reg,
7169 clear any memory of reloaded copies of the pseudo reg.
7170 If this output reload comes from a spill reg,
7171 reg_has_output_reload will make this do nothing. */
7172 note_stores (pat, forget_old_reloads_1, NULL);
7174 if (reg_mentioned_p (rl->reg_rtx, pat))
7176 rtx set = single_set (insn);
7177 if (reload_spill_index[j] < 0
7178 && set
7179 && SET_SRC (set) == rl->reg_rtx)
7181 int src = REGNO (SET_SRC (set));
7183 reload_spill_index[j] = src;
7184 SET_HARD_REG_BIT (reg_is_output_reload, src);
7185 if (find_regno_note (insn, REG_DEAD, src))
7186 SET_HARD_REG_BIT (reg_reloaded_died, src);
7188 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
7190 int s = rl->secondary_out_reload;
7191 set = single_set (p);
7192 /* If this reload copies only to the secondary reload
7193 register, the secondary reload does the actual
7194 store. */
7195 if (s >= 0 && set == NULL_RTX)
7196 /* We can't tell what function the secondary reload
7197 has and where the actual store to the pseudo is
7198 made; leave new_spill_reg_store alone. */
7200 else if (s >= 0
7201 && SET_SRC (set) == rl->reg_rtx
7202 && SET_DEST (set) == rld[s].reg_rtx)
7204 /* Usually the next instruction will be the
7205 secondary reload insn; if we can confirm
7206 that it is, setting new_spill_reg_store to
7207 that insn will allow an extra optimization. */
7208 rtx s_reg = rld[s].reg_rtx;
7209 rtx next = NEXT_INSN (p);
7210 rld[s].out = rl->out;
7211 rld[s].out_reg = rl->out_reg;
7212 set = single_set (next);
7213 if (set && SET_SRC (set) == s_reg
7214 && ! new_spill_reg_store[REGNO (s_reg)])
7216 SET_HARD_REG_BIT (reg_is_output_reload,
7217 REGNO (s_reg));
7218 new_spill_reg_store[REGNO (s_reg)] = next;
7221 else
7222 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
7227 if (rl->when_needed == RELOAD_OTHER)
7229 emit_insn (other_output_reload_insns[rl->opnum]);
7230 other_output_reload_insns[rl->opnum] = get_insns ();
7232 else
7233 output_reload_insns[rl->opnum] = get_insns ();
7235 if (flag_non_call_exceptions)
7236 copy_eh_notes (insn, get_insns ());
7238 end_sequence ();
7241 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7242 and has the number J. */
7243 static void
7244 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7246 rtx insn = chain->insn;
7247 rtx old = (rl->in && MEM_P (rl->in)
7248 ? rl->in_reg : rl->in);
7250 if (old != 0
7251 /* AUTO_INC reloads need to be handled even if inherited. We got an
7252 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7253 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7254 && ! rtx_equal_p (rl->reg_rtx, old)
7255 && rl->reg_rtx != 0)
7256 emit_input_reload_insns (chain, rld + j, old, j);
7258 /* When inheriting a wider reload, we have a MEM in rl->in,
7259 e.g. inheriting a SImode output reload for
7260 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7261 if (optimize && reload_inherited[j] && rl->in
7262 && MEM_P (rl->in)
7263 && MEM_P (rl->in_reg)
7264 && reload_spill_index[j] >= 0
7265 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7266 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7268 /* If we are reloading a register that was recently stored in with an
7269 output-reload, see if we can prove there was
7270 actually no need to store the old value in it. */
7272 if (optimize
7273 && (reload_inherited[j] || reload_override_in[j])
7274 && rl->reg_rtx
7275 && REG_P (rl->reg_rtx)
7276 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
7277 #if 0
7278 /* There doesn't seem to be any reason to restrict this to pseudos
7279 and doing so loses in the case where we are copying from a
7280 register of the wrong class. */
7281 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
7282 >= FIRST_PSEUDO_REGISTER)
7283 #endif
7284 /* The insn might have already some references to stackslots
7285 replaced by MEMs, while reload_out_reg still names the
7286 original pseudo. */
7287 && (dead_or_set_p (insn,
7288 spill_reg_stored_to[REGNO (rl->reg_rtx)])
7289 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
7290 rl->out_reg)))
7291 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
7294 /* Do output reloading for reload RL, which is for the insn described by
7295 CHAIN and has the number J.
7296 ??? At some point we need to support handling output reloads of
7297 JUMP_INSNs or insns that set cc0. */
7298 static void
7299 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7301 rtx note, old;
7302 rtx insn = chain->insn;
7303 /* If this is an output reload that stores something that is
7304 not loaded in this same reload, see if we can eliminate a previous
7305 store. */
7306 rtx pseudo = rl->out_reg;
7308 if (pseudo
7309 && optimize
7310 && REG_P (pseudo)
7311 && ! rtx_equal_p (rl->in_reg, pseudo)
7312 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7313 && reg_last_reload_reg[REGNO (pseudo)])
7315 int pseudo_no = REGNO (pseudo);
7316 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7318 /* We don't need to test full validity of last_regno for
7319 inherit here; we only want to know if the store actually
7320 matches the pseudo. */
7321 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7322 && reg_reloaded_contents[last_regno] == pseudo_no
7323 && spill_reg_store[last_regno]
7324 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7325 delete_output_reload (insn, j, last_regno);
7328 old = rl->out_reg;
7329 if (old == 0
7330 || rl->reg_rtx == old
7331 || rl->reg_rtx == 0)
7332 return;
7334 /* An output operand that dies right away does need a reload,
7335 but need not be copied from it. Show the new location in the
7336 REG_UNUSED note. */
7337 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7338 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7340 XEXP (note, 0) = rl->reg_rtx;
7341 return;
7343 /* Likewise for a SUBREG of an operand that dies. */
7344 else if (GET_CODE (old) == SUBREG
7345 && REG_P (SUBREG_REG (old))
7346 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7347 SUBREG_REG (old))))
7349 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
7350 rl->reg_rtx);
7351 return;
7353 else if (GET_CODE (old) == SCRATCH)
7354 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7355 but we don't want to make an output reload. */
7356 return;
7358 /* If is a JUMP_INSN, we can't support output reloads yet. */
7359 gcc_assert (NONJUMP_INSN_P (insn));
7361 emit_output_reload_insns (chain, rld + j, j);
7364 /* Reload number R reloads from or to a group of hard registers starting at
7365 register REGNO. Return true if it can be treated for inheritance purposes
7366 like a group of reloads, each one reloading a single hard register.
7367 The caller has already checked that the spill register and REGNO use
7368 the same number of registers to store the reload value. */
7370 static bool
7371 inherit_piecemeal_p (int r ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED)
7373 #ifdef CANNOT_CHANGE_MODE_CLASS
7374 return (!REG_CANNOT_CHANGE_MODE_P (reload_spill_index[r],
7375 GET_MODE (rld[r].reg_rtx),
7376 reg_raw_mode[reload_spill_index[r]])
7377 && !REG_CANNOT_CHANGE_MODE_P (regno,
7378 GET_MODE (rld[r].reg_rtx),
7379 reg_raw_mode[regno]));
7380 #else
7381 return true;
7382 #endif
7385 /* Output insns to reload values in and out of the chosen reload regs. */
7387 static void
7388 emit_reload_insns (struct insn_chain *chain)
7390 rtx insn = chain->insn;
7392 int j;
7394 CLEAR_HARD_REG_SET (reg_reloaded_died);
7396 for (j = 0; j < reload_n_operands; j++)
7397 input_reload_insns[j] = input_address_reload_insns[j]
7398 = inpaddr_address_reload_insns[j]
7399 = output_reload_insns[j] = output_address_reload_insns[j]
7400 = outaddr_address_reload_insns[j]
7401 = other_output_reload_insns[j] = 0;
7402 other_input_address_reload_insns = 0;
7403 other_input_reload_insns = 0;
7404 operand_reload_insns = 0;
7405 other_operand_reload_insns = 0;
7407 /* Dump reloads into the dump file. */
7408 if (dump_file)
7410 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7411 debug_reload_to_stream (dump_file);
7414 /* Now output the instructions to copy the data into and out of the
7415 reload registers. Do these in the order that the reloads were reported,
7416 since reloads of base and index registers precede reloads of operands
7417 and the operands may need the base and index registers reloaded. */
7419 for (j = 0; j < n_reloads; j++)
7421 if (rld[j].reg_rtx
7422 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
7423 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
7425 do_input_reload (chain, rld + j, j);
7426 do_output_reload (chain, rld + j, j);
7429 /* Now write all the insns we made for reloads in the order expected by
7430 the allocation functions. Prior to the insn being reloaded, we write
7431 the following reloads:
7433 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7435 RELOAD_OTHER reloads.
7437 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7438 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7439 RELOAD_FOR_INPUT reload for the operand.
7441 RELOAD_FOR_OPADDR_ADDRS reloads.
7443 RELOAD_FOR_OPERAND_ADDRESS reloads.
7445 After the insn being reloaded, we write the following:
7447 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7448 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7449 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7450 reloads for the operand. The RELOAD_OTHER output reloads are
7451 output in descending order by reload number. */
7453 emit_insn_before (other_input_address_reload_insns, insn);
7454 emit_insn_before (other_input_reload_insns, insn);
7456 for (j = 0; j < reload_n_operands; j++)
7458 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7459 emit_insn_before (input_address_reload_insns[j], insn);
7460 emit_insn_before (input_reload_insns[j], insn);
7463 emit_insn_before (other_operand_reload_insns, insn);
7464 emit_insn_before (operand_reload_insns, insn);
7466 for (j = 0; j < reload_n_operands; j++)
7468 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7469 x = emit_insn_after (output_address_reload_insns[j], x);
7470 x = emit_insn_after (output_reload_insns[j], x);
7471 emit_insn_after (other_output_reload_insns[j], x);
7474 /* For all the spill regs newly reloaded in this instruction,
7475 record what they were reloaded from, so subsequent instructions
7476 can inherit the reloads.
7478 Update spill_reg_store for the reloads of this insn.
7479 Copy the elements that were updated in the loop above. */
7481 for (j = 0; j < n_reloads; j++)
7483 int r = reload_order[j];
7484 int i = reload_spill_index[r];
7486 /* If this is a non-inherited input reload from a pseudo, we must
7487 clear any memory of a previous store to the same pseudo. Only do
7488 something if there will not be an output reload for the pseudo
7489 being reloaded. */
7490 if (rld[r].in_reg != 0
7491 && ! (reload_inherited[r] || reload_override_in[r]))
7493 rtx reg = rld[r].in_reg;
7495 if (GET_CODE (reg) == SUBREG)
7496 reg = SUBREG_REG (reg);
7498 if (REG_P (reg)
7499 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7500 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
7502 int nregno = REGNO (reg);
7504 if (reg_last_reload_reg[nregno])
7506 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7508 if (reg_reloaded_contents[last_regno] == nregno)
7509 spill_reg_store[last_regno] = 0;
7514 /* I is nonneg if this reload used a register.
7515 If rld[r].reg_rtx is 0, this is an optional reload
7516 that we opted to ignore. */
7518 if (i >= 0 && rld[r].reg_rtx != 0)
7520 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
7521 int k;
7522 int part_reaches_end = 0;
7523 int all_reaches_end = 1;
7525 /* For a multi register reload, we need to check if all or part
7526 of the value lives to the end. */
7527 for (k = 0; k < nr; k++)
7529 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7530 rld[r].when_needed))
7531 part_reaches_end = 1;
7532 else
7533 all_reaches_end = 0;
7536 /* Ignore reloads that don't reach the end of the insn in
7537 entirety. */
7538 if (all_reaches_end)
7540 /* First, clear out memory of what used to be in this spill reg.
7541 If consecutive registers are used, clear them all. */
7543 for (k = 0; k < nr; k++)
7545 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7546 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7549 /* Maybe the spill reg contains a copy of reload_out. */
7550 if (rld[r].out != 0
7551 && (REG_P (rld[r].out)
7552 #ifdef AUTO_INC_DEC
7553 || ! rld[r].out_reg
7554 #endif
7555 || REG_P (rld[r].out_reg)))
7557 rtx out = (REG_P (rld[r].out)
7558 ? rld[r].out
7559 : rld[r].out_reg
7560 ? rld[r].out_reg
7561 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7562 int nregno = REGNO (out);
7563 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7564 : hard_regno_nregs[nregno]
7565 [GET_MODE (rld[r].reg_rtx)]);
7566 bool piecemeal;
7568 spill_reg_store[i] = new_spill_reg_store[i];
7569 spill_reg_stored_to[i] = out;
7570 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7572 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7573 && nr == nnr
7574 && inherit_piecemeal_p (r, nregno));
7576 /* If NREGNO is a hard register, it may occupy more than
7577 one register. If it does, say what is in the
7578 rest of the registers assuming that both registers
7579 agree on how many words the object takes. If not,
7580 invalidate the subsequent registers. */
7582 if (nregno < FIRST_PSEUDO_REGISTER)
7583 for (k = 1; k < nnr; k++)
7584 reg_last_reload_reg[nregno + k]
7585 = (piecemeal
7586 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7587 : 0);
7589 /* Now do the inverse operation. */
7590 for (k = 0; k < nr; k++)
7592 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7593 reg_reloaded_contents[i + k]
7594 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7595 ? nregno
7596 : nregno + k);
7597 reg_reloaded_insn[i + k] = insn;
7598 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7599 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
7600 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7604 /* Maybe the spill reg contains a copy of reload_in. Only do
7605 something if there will not be an output reload for
7606 the register being reloaded. */
7607 else if (rld[r].out_reg == 0
7608 && rld[r].in != 0
7609 && ((REG_P (rld[r].in)
7610 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7611 && !REGNO_REG_SET_P (&reg_has_output_reload,
7612 REGNO (rld[r].in)))
7613 || (REG_P (rld[r].in_reg)
7614 && !REGNO_REG_SET_P (&reg_has_output_reload,
7615 REGNO (rld[r].in_reg))))
7616 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7618 int nregno;
7619 int nnr;
7620 rtx in;
7621 bool piecemeal;
7623 if (REG_P (rld[r].in)
7624 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7625 in = rld[r].in;
7626 else if (REG_P (rld[r].in_reg))
7627 in = rld[r].in_reg;
7628 else
7629 in = XEXP (rld[r].in_reg, 0);
7630 nregno = REGNO (in);
7632 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7633 : hard_regno_nregs[nregno]
7634 [GET_MODE (rld[r].reg_rtx)]);
7636 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7638 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7639 && nr == nnr
7640 && inherit_piecemeal_p (r, nregno));
7642 if (nregno < FIRST_PSEUDO_REGISTER)
7643 for (k = 1; k < nnr; k++)
7644 reg_last_reload_reg[nregno + k]
7645 = (piecemeal
7646 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7647 : 0);
7649 /* Unless we inherited this reload, show we haven't
7650 recently done a store.
7651 Previous stores of inherited auto_inc expressions
7652 also have to be discarded. */
7653 if (! reload_inherited[r]
7654 || (rld[r].out && ! rld[r].out_reg))
7655 spill_reg_store[i] = 0;
7657 for (k = 0; k < nr; k++)
7659 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7660 reg_reloaded_contents[i + k]
7661 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7662 ? nregno
7663 : nregno + k);
7664 reg_reloaded_insn[i + k] = insn;
7665 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7666 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
7667 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7672 /* However, if part of the reload reaches the end, then we must
7673 invalidate the old info for the part that survives to the end. */
7674 else if (part_reaches_end)
7676 for (k = 0; k < nr; k++)
7677 if (reload_reg_reaches_end_p (i + k,
7678 rld[r].opnum,
7679 rld[r].when_needed))
7680 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7684 /* The following if-statement was #if 0'd in 1.34 (or before...).
7685 It's reenabled in 1.35 because supposedly nothing else
7686 deals with this problem. */
7688 /* If a register gets output-reloaded from a non-spill register,
7689 that invalidates any previous reloaded copy of it.
7690 But forget_old_reloads_1 won't get to see it, because
7691 it thinks only about the original insn. So invalidate it here.
7692 Also do the same thing for RELOAD_OTHER constraints where the
7693 output is discarded. */
7694 if (i < 0
7695 && ((rld[r].out != 0
7696 && (REG_P (rld[r].out)
7697 || (MEM_P (rld[r].out)
7698 && REG_P (rld[r].out_reg))))
7699 || (rld[r].out == 0 && rld[r].out_reg
7700 && REG_P (rld[r].out_reg))))
7702 rtx out = ((rld[r].out && REG_P (rld[r].out))
7703 ? rld[r].out : rld[r].out_reg);
7704 int nregno = REGNO (out);
7706 /* REG_RTX is now set or clobbered by the main instruction.
7707 As the comment above explains, forget_old_reloads_1 only
7708 sees the original instruction, and there is no guarantee
7709 that the original instruction also clobbered REG_RTX.
7710 For example, if find_reloads sees that the input side of
7711 a matched operand pair dies in this instruction, it may
7712 use the input register as the reload register.
7714 Calling forget_old_reloads_1 is a waste of effort if
7715 REG_RTX is also the output register.
7717 If we know that REG_RTX holds the value of a pseudo
7718 register, the code after the call will record that fact. */
7719 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
7720 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
7722 if (nregno >= FIRST_PSEUDO_REGISTER)
7724 rtx src_reg, store_insn = NULL_RTX;
7726 reg_last_reload_reg[nregno] = 0;
7728 /* If we can find a hard register that is stored, record
7729 the storing insn so that we may delete this insn with
7730 delete_output_reload. */
7731 src_reg = rld[r].reg_rtx;
7733 /* If this is an optional reload, try to find the source reg
7734 from an input reload. */
7735 if (! src_reg)
7737 rtx set = single_set (insn);
7738 if (set && SET_DEST (set) == rld[r].out)
7740 int k;
7742 src_reg = SET_SRC (set);
7743 store_insn = insn;
7744 for (k = 0; k < n_reloads; k++)
7746 if (rld[k].in == src_reg)
7748 src_reg = rld[k].reg_rtx;
7749 break;
7754 else
7755 store_insn = new_spill_reg_store[REGNO (src_reg)];
7756 if (src_reg && REG_P (src_reg)
7757 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7759 int src_regno = REGNO (src_reg);
7760 int nr = hard_regno_nregs[src_regno][rld[r].mode];
7761 /* The place where to find a death note varies with
7762 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7763 necessarily checked exactly in the code that moves
7764 notes, so just check both locations. */
7765 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7766 if (! note && store_insn)
7767 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7768 while (nr-- > 0)
7770 spill_reg_store[src_regno + nr] = store_insn;
7771 spill_reg_stored_to[src_regno + nr] = out;
7772 reg_reloaded_contents[src_regno + nr] = nregno;
7773 reg_reloaded_insn[src_regno + nr] = store_insn;
7774 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7775 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7776 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
7777 GET_MODE (src_reg)))
7778 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7779 src_regno + nr);
7780 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7781 if (note)
7782 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7783 else
7784 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7786 reg_last_reload_reg[nregno] = src_reg;
7787 /* We have to set reg_has_output_reload here, or else
7788 forget_old_reloads_1 will clear reg_last_reload_reg
7789 right away. */
7790 SET_REGNO_REG_SET (&reg_has_output_reload,
7791 nregno);
7794 else
7796 int num_regs = hard_regno_nregs[nregno][GET_MODE (out)];
7798 while (num_regs-- > 0)
7799 reg_last_reload_reg[nregno + num_regs] = 0;
7803 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7806 /* Go through the motions to emit INSN and test if it is strictly valid.
7807 Return the emitted insn if valid, else return NULL. */
7809 static rtx
7810 emit_insn_if_valid_for_reload (rtx insn)
7812 rtx last = get_last_insn ();
7813 int code;
7815 insn = emit_insn (insn);
7816 code = recog_memoized (insn);
7818 if (code >= 0)
7820 extract_insn (insn);
7821 /* We want constrain operands to treat this insn strictly in its
7822 validity determination, i.e., the way it would after reload has
7823 completed. */
7824 if (constrain_operands (1))
7825 return insn;
7828 delete_insns_since (last);
7829 return NULL;
7832 /* Emit code to perform a reload from IN (which may be a reload register) to
7833 OUT (which may also be a reload register). IN or OUT is from operand
7834 OPNUM with reload type TYPE.
7836 Returns first insn emitted. */
7838 static rtx
7839 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
7841 rtx last = get_last_insn ();
7842 rtx tem;
7844 /* If IN is a paradoxical SUBREG, remove it and try to put the
7845 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7846 if (GET_CODE (in) == SUBREG
7847 && (GET_MODE_SIZE (GET_MODE (in))
7848 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7849 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7850 in = SUBREG_REG (in), out = tem;
7851 else if (GET_CODE (out) == SUBREG
7852 && (GET_MODE_SIZE (GET_MODE (out))
7853 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7854 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7855 out = SUBREG_REG (out), in = tem;
7857 /* How to do this reload can get quite tricky. Normally, we are being
7858 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7859 register that didn't get a hard register. In that case we can just
7860 call emit_move_insn.
7862 We can also be asked to reload a PLUS that adds a register or a MEM to
7863 another register, constant or MEM. This can occur during frame pointer
7864 elimination and while reloading addresses. This case is handled by
7865 trying to emit a single insn to perform the add. If it is not valid,
7866 we use a two insn sequence.
7868 Or we can be asked to reload an unary operand that was a fragment of
7869 an addressing mode, into a register. If it isn't recognized as-is,
7870 we try making the unop operand and the reload-register the same:
7871 (set reg:X (unop:X expr:Y))
7872 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
7874 Finally, we could be called to handle an 'o' constraint by putting
7875 an address into a register. In that case, we first try to do this
7876 with a named pattern of "reload_load_address". If no such pattern
7877 exists, we just emit a SET insn and hope for the best (it will normally
7878 be valid on machines that use 'o').
7880 This entire process is made complex because reload will never
7881 process the insns we generate here and so we must ensure that
7882 they will fit their constraints and also by the fact that parts of
7883 IN might be being reloaded separately and replaced with spill registers.
7884 Because of this, we are, in some sense, just guessing the right approach
7885 here. The one listed above seems to work.
7887 ??? At some point, this whole thing needs to be rethought. */
7889 if (GET_CODE (in) == PLUS
7890 && (REG_P (XEXP (in, 0))
7891 || GET_CODE (XEXP (in, 0)) == SUBREG
7892 || MEM_P (XEXP (in, 0)))
7893 && (REG_P (XEXP (in, 1))
7894 || GET_CODE (XEXP (in, 1)) == SUBREG
7895 || CONSTANT_P (XEXP (in, 1))
7896 || MEM_P (XEXP (in, 1))))
7898 /* We need to compute the sum of a register or a MEM and another
7899 register, constant, or MEM, and put it into the reload
7900 register. The best possible way of doing this is if the machine
7901 has a three-operand ADD insn that accepts the required operands.
7903 The simplest approach is to try to generate such an insn and see if it
7904 is recognized and matches its constraints. If so, it can be used.
7906 It might be better not to actually emit the insn unless it is valid,
7907 but we need to pass the insn as an operand to `recog' and
7908 `extract_insn' and it is simpler to emit and then delete the insn if
7909 not valid than to dummy things up. */
7911 rtx op0, op1, tem, insn;
7912 int code;
7914 op0 = find_replacement (&XEXP (in, 0));
7915 op1 = find_replacement (&XEXP (in, 1));
7917 /* Since constraint checking is strict, commutativity won't be
7918 checked, so we need to do that here to avoid spurious failure
7919 if the add instruction is two-address and the second operand
7920 of the add is the same as the reload reg, which is frequently
7921 the case. If the insn would be A = B + A, rearrange it so
7922 it will be A = A + B as constrain_operands expects. */
7924 if (REG_P (XEXP (in, 1))
7925 && REGNO (out) == REGNO (XEXP (in, 1)))
7926 tem = op0, op0 = op1, op1 = tem;
7928 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7929 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7931 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7932 if (insn)
7933 return insn;
7935 /* If that failed, we must use a conservative two-insn sequence.
7937 Use a move to copy one operand into the reload register. Prefer
7938 to reload a constant, MEM or pseudo since the move patterns can
7939 handle an arbitrary operand. If OP1 is not a constant, MEM or
7940 pseudo and OP1 is not a valid operand for an add instruction, then
7941 reload OP1.
7943 After reloading one of the operands into the reload register, add
7944 the reload register to the output register.
7946 If there is another way to do this for a specific machine, a
7947 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7948 we emit below. */
7950 code = (int) optab_handler (add_optab, GET_MODE (out))->insn_code;
7952 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
7953 || (REG_P (op1)
7954 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7955 || (code != CODE_FOR_nothing
7956 && ! ((*insn_data[code].operand[2].predicate)
7957 (op1, insn_data[code].operand[2].mode))))
7958 tem = op0, op0 = op1, op1 = tem;
7960 gen_reload (out, op0, opnum, type);
7962 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7963 This fixes a problem on the 32K where the stack pointer cannot
7964 be used as an operand of an add insn. */
7966 if (rtx_equal_p (op0, op1))
7967 op1 = out;
7969 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
7970 if (insn)
7972 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7973 set_unique_reg_note (insn, REG_EQUIV, in);
7974 return insn;
7977 /* If that failed, copy the address register to the reload register.
7978 Then add the constant to the reload register. */
7980 gcc_assert (!reg_overlap_mentioned_p (out, op0));
7981 gen_reload (out, op1, opnum, type);
7982 insn = emit_insn (gen_add2_insn (out, op0));
7983 set_unique_reg_note (insn, REG_EQUIV, in);
7986 #ifdef SECONDARY_MEMORY_NEEDED
7987 /* If we need a memory location to do the move, do it that way. */
7988 else if ((REG_P (in) || GET_CODE (in) == SUBREG)
7989 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7990 && (REG_P (out) || GET_CODE (out) == SUBREG)
7991 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7992 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7993 REGNO_REG_CLASS (reg_or_subregno (out)),
7994 GET_MODE (out)))
7996 /* Get the memory to use and rewrite both registers to its mode. */
7997 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7999 if (GET_MODE (loc) != GET_MODE (out))
8000 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
8002 if (GET_MODE (loc) != GET_MODE (in))
8003 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
8005 gen_reload (loc, in, opnum, type);
8006 gen_reload (out, loc, opnum, type);
8008 #endif
8009 else if (REG_P (out) && UNARY_P (in))
8011 rtx insn;
8012 rtx op1;
8013 rtx out_moded;
8014 rtx set;
8016 op1 = find_replacement (&XEXP (in, 0));
8017 if (op1 != XEXP (in, 0))
8018 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8020 /* First, try a plain SET. */
8021 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8022 if (set)
8023 return set;
8025 /* If that failed, move the inner operand to the reload
8026 register, and try the same unop with the inner expression
8027 replaced with the reload register. */
8029 if (GET_MODE (op1) != GET_MODE (out))
8030 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8031 else
8032 out_moded = out;
8034 gen_reload (out_moded, op1, opnum, type);
8036 insn
8037 = gen_rtx_SET (VOIDmode, out,
8038 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8039 out_moded));
8040 insn = emit_insn_if_valid_for_reload (insn);
8041 if (insn)
8043 set_unique_reg_note (insn, REG_EQUIV, in);
8044 return insn;
8047 fatal_insn ("Failure trying to reload:", set);
8049 /* If IN is a simple operand, use gen_move_insn. */
8050 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8052 tem = emit_insn (gen_move_insn (out, in));
8053 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8054 mark_jump_label (in, tem, 0);
8057 #ifdef HAVE_reload_load_address
8058 else if (HAVE_reload_load_address)
8059 emit_insn (gen_reload_load_address (out, in));
8060 #endif
8062 /* Otherwise, just write (set OUT IN) and hope for the best. */
8063 else
8064 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8066 /* Return the first insn emitted.
8067 We can not just return get_last_insn, because there may have
8068 been multiple instructions emitted. Also note that gen_move_insn may
8069 emit more than one insn itself, so we can not assume that there is one
8070 insn emitted per emit_insn_before call. */
8072 return last ? NEXT_INSN (last) : get_insns ();
8075 /* Delete a previously made output-reload whose result we now believe
8076 is not needed. First we double-check.
8078 INSN is the insn now being processed.
8079 LAST_RELOAD_REG is the hard register number for which we want to delete
8080 the last output reload.
8081 J is the reload-number that originally used REG. The caller has made
8082 certain that reload J doesn't use REG any longer for input. */
8084 static void
8085 delete_output_reload (rtx insn, int j, int last_reload_reg)
8087 rtx output_reload_insn = spill_reg_store[last_reload_reg];
8088 rtx reg = spill_reg_stored_to[last_reload_reg];
8089 int k;
8090 int n_occurrences;
8091 int n_inherited = 0;
8092 rtx i1;
8093 rtx substed;
8095 /* It is possible that this reload has been only used to set another reload
8096 we eliminated earlier and thus deleted this instruction too. */
8097 if (INSN_DELETED_P (output_reload_insn))
8098 return;
8100 /* Get the raw pseudo-register referred to. */
8102 while (GET_CODE (reg) == SUBREG)
8103 reg = SUBREG_REG (reg);
8104 substed = reg_equiv_memory_loc[REGNO (reg)];
8106 /* This is unsafe if the operand occurs more often in the current
8107 insn than it is inherited. */
8108 for (k = n_reloads - 1; k >= 0; k--)
8110 rtx reg2 = rld[k].in;
8111 if (! reg2)
8112 continue;
8113 if (MEM_P (reg2) || reload_override_in[k])
8114 reg2 = rld[k].in_reg;
8115 #ifdef AUTO_INC_DEC
8116 if (rld[k].out && ! rld[k].out_reg)
8117 reg2 = XEXP (rld[k].in_reg, 0);
8118 #endif
8119 while (GET_CODE (reg2) == SUBREG)
8120 reg2 = SUBREG_REG (reg2);
8121 if (rtx_equal_p (reg2, reg))
8123 if (reload_inherited[k] || reload_override_in[k] || k == j)
8124 n_inherited++;
8125 else
8126 return;
8129 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8130 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8131 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8132 reg, 0);
8133 if (substed)
8134 n_occurrences += count_occurrences (PATTERN (insn),
8135 eliminate_regs (substed, 0,
8136 NULL_RTX), 0);
8137 for (i1 = reg_equiv_alt_mem_list [REGNO (reg)]; i1; i1 = XEXP (i1, 1))
8139 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8140 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8142 if (n_occurrences > n_inherited)
8143 return;
8145 /* If the pseudo-reg we are reloading is no longer referenced
8146 anywhere between the store into it and here,
8147 and we're within the same basic block, then the value can only
8148 pass through the reload reg and end up here.
8149 Otherwise, give up--return. */
8150 for (i1 = NEXT_INSN (output_reload_insn);
8151 i1 != insn; i1 = NEXT_INSN (i1))
8153 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8154 return;
8155 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8156 && reg_mentioned_p (reg, PATTERN (i1)))
8158 /* If this is USE in front of INSN, we only have to check that
8159 there are no more references than accounted for by inheritance. */
8160 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8162 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8163 i1 = NEXT_INSN (i1);
8165 if (n_occurrences <= n_inherited && i1 == insn)
8166 break;
8167 return;
8171 /* We will be deleting the insn. Remove the spill reg information. */
8172 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8174 spill_reg_store[last_reload_reg + k] = 0;
8175 spill_reg_stored_to[last_reload_reg + k] = 0;
8178 /* The caller has already checked that REG dies or is set in INSN.
8179 It has also checked that we are optimizing, and thus some
8180 inaccuracies in the debugging information are acceptable.
8181 So we could just delete output_reload_insn. But in some cases
8182 we can improve the debugging information without sacrificing
8183 optimization - maybe even improving the code: See if the pseudo
8184 reg has been completely replaced with reload regs. If so, delete
8185 the store insn and forget we had a stack slot for the pseudo. */
8186 if (rld[j].out != rld[j].in
8187 && REG_N_DEATHS (REGNO (reg)) == 1
8188 && REG_N_SETS (REGNO (reg)) == 1
8189 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8190 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8192 rtx i2;
8194 /* We know that it was used only between here and the beginning of
8195 the current basic block. (We also know that the last use before
8196 INSN was the output reload we are thinking of deleting, but never
8197 mind that.) Search that range; see if any ref remains. */
8198 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8200 rtx set = single_set (i2);
8202 /* Uses which just store in the pseudo don't count,
8203 since if they are the only uses, they are dead. */
8204 if (set != 0 && SET_DEST (set) == reg)
8205 continue;
8206 if (LABEL_P (i2)
8207 || JUMP_P (i2))
8208 break;
8209 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8210 && reg_mentioned_p (reg, PATTERN (i2)))
8212 /* Some other ref remains; just delete the output reload we
8213 know to be dead. */
8214 delete_address_reloads (output_reload_insn, insn);
8215 delete_insn (output_reload_insn);
8216 return;
8220 /* Delete the now-dead stores into this pseudo. Note that this
8221 loop also takes care of deleting output_reload_insn. */
8222 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8224 rtx set = single_set (i2);
8226 if (set != 0 && SET_DEST (set) == reg)
8228 delete_address_reloads (i2, insn);
8229 delete_insn (i2);
8231 if (LABEL_P (i2)
8232 || JUMP_P (i2))
8233 break;
8236 /* For the debugging info, say the pseudo lives in this reload reg. */
8237 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
8238 alter_reg (REGNO (reg), -1);
8240 else
8242 delete_address_reloads (output_reload_insn, insn);
8243 delete_insn (output_reload_insn);
8247 /* We are going to delete DEAD_INSN. Recursively delete loads of
8248 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8249 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8250 static void
8251 delete_address_reloads (rtx dead_insn, rtx current_insn)
8253 rtx set = single_set (dead_insn);
8254 rtx set2, dst, prev, next;
8255 if (set)
8257 rtx dst = SET_DEST (set);
8258 if (MEM_P (dst))
8259 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8261 /* If we deleted the store from a reloaded post_{in,de}c expression,
8262 we can delete the matching adds. */
8263 prev = PREV_INSN (dead_insn);
8264 next = NEXT_INSN (dead_insn);
8265 if (! prev || ! next)
8266 return;
8267 set = single_set (next);
8268 set2 = single_set (prev);
8269 if (! set || ! set2
8270 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8271 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
8272 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
8273 return;
8274 dst = SET_DEST (set);
8275 if (! rtx_equal_p (dst, SET_DEST (set2))
8276 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8277 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8278 || (INTVAL (XEXP (SET_SRC (set), 1))
8279 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8280 return;
8281 delete_related_insns (prev);
8282 delete_related_insns (next);
8285 /* Subfunction of delete_address_reloads: process registers found in X. */
8286 static void
8287 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8289 rtx prev, set, dst, i2;
8290 int i, j;
8291 enum rtx_code code = GET_CODE (x);
8293 if (code != REG)
8295 const char *fmt = GET_RTX_FORMAT (code);
8296 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8298 if (fmt[i] == 'e')
8299 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8300 else if (fmt[i] == 'E')
8302 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8303 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8304 current_insn);
8307 return;
8310 if (spill_reg_order[REGNO (x)] < 0)
8311 return;
8313 /* Scan backwards for the insn that sets x. This might be a way back due
8314 to inheritance. */
8315 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8317 code = GET_CODE (prev);
8318 if (code == CODE_LABEL || code == JUMP_INSN)
8319 return;
8320 if (!INSN_P (prev))
8321 continue;
8322 if (reg_set_p (x, PATTERN (prev)))
8323 break;
8324 if (reg_referenced_p (x, PATTERN (prev)))
8325 return;
8327 if (! prev || INSN_UID (prev) < reload_first_uid)
8328 return;
8329 /* Check that PREV only sets the reload register. */
8330 set = single_set (prev);
8331 if (! set)
8332 return;
8333 dst = SET_DEST (set);
8334 if (!REG_P (dst)
8335 || ! rtx_equal_p (dst, x))
8336 return;
8337 if (! reg_set_p (dst, PATTERN (dead_insn)))
8339 /* Check if DST was used in a later insn -
8340 it might have been inherited. */
8341 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8343 if (LABEL_P (i2))
8344 break;
8345 if (! INSN_P (i2))
8346 continue;
8347 if (reg_referenced_p (dst, PATTERN (i2)))
8349 /* If there is a reference to the register in the current insn,
8350 it might be loaded in a non-inherited reload. If no other
8351 reload uses it, that means the register is set before
8352 referenced. */
8353 if (i2 == current_insn)
8355 for (j = n_reloads - 1; j >= 0; j--)
8356 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8357 || reload_override_in[j] == dst)
8358 return;
8359 for (j = n_reloads - 1; j >= 0; j--)
8360 if (rld[j].in && rld[j].reg_rtx == dst)
8361 break;
8362 if (j >= 0)
8363 break;
8365 return;
8367 if (JUMP_P (i2))
8368 break;
8369 /* If DST is still live at CURRENT_INSN, check if it is used for
8370 any reload. Note that even if CURRENT_INSN sets DST, we still
8371 have to check the reloads. */
8372 if (i2 == current_insn)
8374 for (j = n_reloads - 1; j >= 0; j--)
8375 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8376 || reload_override_in[j] == dst)
8377 return;
8378 /* ??? We can't finish the loop here, because dst might be
8379 allocated to a pseudo in this block if no reload in this
8380 block needs any of the classes containing DST - see
8381 spill_hard_reg. There is no easy way to tell this, so we
8382 have to scan till the end of the basic block. */
8384 if (reg_set_p (dst, PATTERN (i2)))
8385 break;
8388 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8389 reg_reloaded_contents[REGNO (dst)] = -1;
8390 delete_insn (prev);
8393 /* Output reload-insns to reload VALUE into RELOADREG.
8394 VALUE is an autoincrement or autodecrement RTX whose operand
8395 is a register or memory location;
8396 so reloading involves incrementing that location.
8397 IN is either identical to VALUE, or some cheaper place to reload from.
8399 INC_AMOUNT is the number to increment or decrement by (always positive).
8400 This cannot be deduced from VALUE.
8402 Return the instruction that stores into RELOADREG. */
8404 static rtx
8405 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
8407 /* REG or MEM to be copied and incremented. */
8408 rtx incloc = find_replacement (&XEXP (value, 0));
8409 /* Nonzero if increment after copying. */
8410 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
8411 || GET_CODE (value) == POST_MODIFY);
8412 rtx last;
8413 rtx inc;
8414 rtx add_insn;
8415 int code;
8416 rtx store;
8417 rtx real_in = in == value ? incloc : in;
8419 /* No hard register is equivalent to this register after
8420 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
8421 we could inc/dec that register as well (maybe even using it for
8422 the source), but I'm not sure it's worth worrying about. */
8423 if (REG_P (incloc))
8424 reg_last_reload_reg[REGNO (incloc)] = 0;
8426 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
8428 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
8429 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
8431 else
8433 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
8434 inc_amount = -inc_amount;
8436 inc = GEN_INT (inc_amount);
8439 /* If this is post-increment, first copy the location to the reload reg. */
8440 if (post && real_in != reloadreg)
8441 emit_insn (gen_move_insn (reloadreg, real_in));
8443 if (in == value)
8445 /* See if we can directly increment INCLOC. Use a method similar to
8446 that in gen_reload. */
8448 last = get_last_insn ();
8449 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
8450 gen_rtx_PLUS (GET_MODE (incloc),
8451 incloc, inc)));
8453 code = recog_memoized (add_insn);
8454 if (code >= 0)
8456 extract_insn (add_insn);
8457 if (constrain_operands (1))
8459 /* If this is a pre-increment and we have incremented the value
8460 where it lives, copy the incremented value to RELOADREG to
8461 be used as an address. */
8463 if (! post)
8464 emit_insn (gen_move_insn (reloadreg, incloc));
8466 return add_insn;
8469 delete_insns_since (last);
8472 /* If couldn't do the increment directly, must increment in RELOADREG.
8473 The way we do this depends on whether this is pre- or post-increment.
8474 For pre-increment, copy INCLOC to the reload register, increment it
8475 there, then save back. */
8477 if (! post)
8479 if (in != reloadreg)
8480 emit_insn (gen_move_insn (reloadreg, real_in));
8481 emit_insn (gen_add2_insn (reloadreg, inc));
8482 store = emit_insn (gen_move_insn (incloc, reloadreg));
8484 else
8486 /* Postincrement.
8487 Because this might be a jump insn or a compare, and because RELOADREG
8488 may not be available after the insn in an input reload, we must do
8489 the incrementation before the insn being reloaded for.
8491 We have already copied IN to RELOADREG. Increment the copy in
8492 RELOADREG, save that back, then decrement RELOADREG so it has
8493 the original value. */
8495 emit_insn (gen_add2_insn (reloadreg, inc));
8496 store = emit_insn (gen_move_insn (incloc, reloadreg));
8497 if (GET_CODE (inc) == CONST_INT)
8498 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
8499 else
8500 emit_insn (gen_sub2_insn (reloadreg, inc));
8503 return store;
8506 #ifdef AUTO_INC_DEC
8507 static void
8508 add_auto_inc_notes (rtx insn, rtx x)
8510 enum rtx_code code = GET_CODE (x);
8511 const char *fmt;
8512 int i, j;
8514 if (code == MEM && auto_inc_p (XEXP (x, 0)))
8516 REG_NOTES (insn)
8517 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
8518 return;
8521 /* Scan all the operand sub-expressions. */
8522 fmt = GET_RTX_FORMAT (code);
8523 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8525 if (fmt[i] == 'e')
8526 add_auto_inc_notes (insn, XEXP (x, i));
8527 else if (fmt[i] == 'E')
8528 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8529 add_auto_inc_notes (insn, XVECEXP (x, i, j));
8532 #endif
8534 /* Copy EH notes from an insn to its reloads. */
8535 static void
8536 copy_eh_notes (rtx insn, rtx x)
8538 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8539 if (eh_note)
8541 for (; x != 0; x = NEXT_INSN (x))
8543 if (may_trap_p (PATTERN (x)))
8544 REG_NOTES (x)
8545 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
8546 REG_NOTES (x));
8551 /* This is used by reload pass, that does emit some instructions after
8552 abnormal calls moving basic block end, but in fact it wants to emit
8553 them on the edge. Looks for abnormal call edges, find backward the
8554 proper call and fix the damage.
8556 Similar handle instructions throwing exceptions internally. */
8557 void
8558 fixup_abnormal_edges (void)
8560 bool inserted = false;
8561 basic_block bb;
8563 FOR_EACH_BB (bb)
8565 edge e;
8566 edge_iterator ei;
8568 /* Look for cases we are interested in - calls or instructions causing
8569 exceptions. */
8570 FOR_EACH_EDGE (e, ei, bb->succs)
8572 if (e->flags & EDGE_ABNORMAL_CALL)
8573 break;
8574 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8575 == (EDGE_ABNORMAL | EDGE_EH))
8576 break;
8578 if (e && !CALL_P (BB_END (bb))
8579 && !can_throw_internal (BB_END (bb)))
8581 rtx insn;
8583 /* Get past the new insns generated. Allow notes, as the insns
8584 may be already deleted. */
8585 insn = BB_END (bb);
8586 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
8587 && !can_throw_internal (insn)
8588 && insn != BB_HEAD (bb))
8589 insn = PREV_INSN (insn);
8591 if (CALL_P (insn) || can_throw_internal (insn))
8593 rtx stop, next;
8595 stop = NEXT_INSN (BB_END (bb));
8596 BB_END (bb) = insn;
8597 insn = NEXT_INSN (insn);
8599 FOR_EACH_EDGE (e, ei, bb->succs)
8600 if (e->flags & EDGE_FALLTHRU)
8601 break;
8603 while (insn && insn != stop)
8605 next = NEXT_INSN (insn);
8606 if (INSN_P (insn))
8608 delete_insn (insn);
8610 /* Sometimes there's still the return value USE.
8611 If it's placed after a trapping call (i.e. that
8612 call is the last insn anyway), we have no fallthru
8613 edge. Simply delete this use and don't try to insert
8614 on the non-existent edge. */
8615 if (GET_CODE (PATTERN (insn)) != USE)
8617 /* We're not deleting it, we're moving it. */
8618 INSN_DELETED_P (insn) = 0;
8619 PREV_INSN (insn) = NULL_RTX;
8620 NEXT_INSN (insn) = NULL_RTX;
8622 insert_insn_on_edge (insn, e);
8623 inserted = true;
8626 else if (!BARRIER_P (insn))
8627 set_block_for_insn (insn, NULL);
8628 insn = next;
8632 /* It may be that we don't find any such trapping insn. In this
8633 case we discovered quite late that the insn that had been
8634 marked as can_throw_internal in fact couldn't trap at all.
8635 So we should in fact delete the EH edges out of the block. */
8636 else
8637 purge_dead_edges (bb);
8641 /* We've possibly turned single trapping insn into multiple ones. */
8642 if (flag_non_call_exceptions)
8644 sbitmap blocks;
8645 blocks = sbitmap_alloc (last_basic_block);
8646 sbitmap_ones (blocks);
8647 find_many_sub_basic_blocks (blocks);
8648 sbitmap_free (blocks);
8651 if (inserted)
8652 commit_edge_insertions ();
8654 #ifdef ENABLE_CHECKING
8655 /* Verify that we didn't turn one trapping insn into many, and that
8656 we found and corrected all of the problems wrt fixups on the
8657 fallthru edge. */
8658 verify_flow_info ();
8659 #endif