2012-08-15 Janus Weil <janus@gcc.gnu.org>
[official-gcc.git] / gcc / tree-into-ssa.c
bloba9de96f992e429edc740d55cbd3e0ce8213c2644
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "langhooks.h"
30 #include "basic-block.h"
31 #include "function.h"
32 #include "gimple-pretty-print.h"
33 #include "bitmap.h"
34 #include "tree-flow.h"
35 #include "gimple.h"
36 #include "tree-inline.h"
37 #include "hashtab.h"
38 #include "tree-pass.h"
39 #include "cfgloop.h"
40 #include "domwalk.h"
41 #include "params.h"
42 #include "vecprim.h"
43 #include "diagnostic-core.h"
46 /* This file builds the SSA form for a function as described in:
47 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
48 Computing Static Single Assignment Form and the Control Dependence
49 Graph. ACM Transactions on Programming Languages and Systems,
50 13(4):451-490, October 1991. */
52 /* Structure to map a variable VAR to the set of blocks that contain
53 definitions for VAR. */
54 struct def_blocks_d
56 /* Blocks that contain definitions of VAR. Bit I will be set if the
57 Ith block contains a definition of VAR. */
58 bitmap def_blocks;
60 /* Blocks that contain a PHI node for VAR. */
61 bitmap phi_blocks;
63 /* Blocks where VAR is live-on-entry. Similar semantics as
64 DEF_BLOCKS. */
65 bitmap livein_blocks;
68 typedef struct def_blocks_d *def_blocks_p;
71 /* Stack of trees used to restore the global currdefs to its original
72 state after completing rewriting of a block and its dominator
73 children. Its elements have the following properties:
75 - An SSA_NAME (N) indicates that the current definition of the
76 underlying variable should be set to the given SSA_NAME. If the
77 symbol associated with the SSA_NAME is not a GIMPLE register, the
78 next slot in the stack must be a _DECL node (SYM). In this case,
79 the name N in the previous slot is the current reaching
80 definition for SYM.
82 - A _DECL node indicates that the underlying variable has no
83 current definition.
85 - A NULL node at the top entry is used to mark the last slot
86 associated with the current block. */
87 static VEC(tree,heap) *block_defs_stack;
90 /* Set of existing SSA names being replaced by update_ssa. */
91 static sbitmap old_ssa_names;
93 /* Set of new SSA names being added by update_ssa. Note that both
94 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
95 the operations done on them are presence tests. */
96 static sbitmap new_ssa_names;
98 sbitmap interesting_blocks;
100 /* Set of SSA names that have been marked to be released after they
101 were registered in the replacement table. They will be finally
102 released after we finish updating the SSA web. */
103 static bitmap names_to_release;
105 /* VEC of VECs of PHIs to rewrite in a basic block. Element I corresponds
106 the to basic block with index I. Allocated once per compilation, *not*
107 released between different functions. */
108 static VEC(gimple_vec, heap) *phis_to_rewrite;
110 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
111 static bitmap blocks_with_phis_to_rewrite;
113 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
114 to grow as the callers to register_new_name_mapping will typically
115 create new names on the fly. FIXME. Currently set to 1/3 to avoid
116 frequent reallocations but still need to find a reasonable growth
117 strategy. */
118 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
121 /* The function the SSA updating data structures have been initialized for.
122 NULL if they need to be initialized by register_new_name_mapping. */
123 static struct function *update_ssa_initialized_fn = NULL;
125 /* Global data to attach to the main dominator walk structure. */
126 struct mark_def_sites_global_data
128 /* This bitmap contains the variables which are set before they
129 are used in a basic block. */
130 bitmap kills;
133 /* Information stored for both SSA names and decls. */
134 struct common_info_d
136 /* This field indicates whether or not the variable may need PHI nodes.
137 See the enum's definition for more detailed information about the
138 states. */
139 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
141 /* The current reaching definition replacing this var. */
142 tree current_def;
144 /* Definitions for this var. */
145 struct def_blocks_d def_blocks;
148 /* The information associated with decls and SSA names. */
149 typedef struct common_info_d *common_info_p;
151 /* Information stored for decls. */
152 struct var_info_d
154 /* The variable. */
155 tree var;
157 /* Information stored for both SSA names and decls. */
158 struct common_info_d info;
161 /* The information associated with decls. */
162 typedef struct var_info_d *var_info_p;
164 DEF_VEC_P(var_info_p);
165 DEF_VEC_ALLOC_P(var_info_p,heap);
167 /* Each entry in VAR_INFOS contains an element of type STRUCT
168 VAR_INFO_D. */
169 static htab_t var_infos;
172 /* Information stored for SSA names. */
173 struct ssa_name_info
175 /* Age of this record (so that info_for_ssa_name table can be cleared
176 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
177 are assumed to be null. */
178 unsigned age;
180 /* Replacement mappings, allocated from update_ssa_obstack. */
181 bitmap repl_set;
183 /* Information stored for both SSA names and decls. */
184 struct common_info_d info;
187 /* The information associated with names. */
188 typedef struct ssa_name_info *ssa_name_info_p;
189 DEF_VEC_P (ssa_name_info_p);
190 DEF_VEC_ALLOC_P (ssa_name_info_p, heap);
192 static VEC(ssa_name_info_p, heap) *info_for_ssa_name;
193 static unsigned current_info_for_ssa_name_age;
195 static bitmap_obstack update_ssa_obstack;
197 /* The set of blocks affected by update_ssa. */
198 static bitmap blocks_to_update;
200 /* The main entry point to the SSA renamer (rewrite_blocks) may be
201 called several times to do different, but related, tasks.
202 Initially, we need it to rename the whole program into SSA form.
203 At other times, we may need it to only rename into SSA newly
204 exposed symbols. Finally, we can also call it to incrementally fix
205 an already built SSA web. */
206 enum rewrite_mode {
207 /* Convert the whole function into SSA form. */
208 REWRITE_ALL,
210 /* Incrementally update the SSA web by replacing existing SSA
211 names with new ones. See update_ssa for details. */
212 REWRITE_UPDATE
218 /* Prototypes for debugging functions. */
219 extern void dump_tree_ssa (FILE *);
220 extern void debug_tree_ssa (void);
221 extern void debug_def_blocks (void);
222 extern void dump_tree_ssa_stats (FILE *);
223 extern void debug_tree_ssa_stats (void);
224 extern void dump_update_ssa (FILE *);
225 extern void debug_update_ssa (void);
226 extern void dump_names_replaced_by (FILE *, tree);
227 extern void debug_names_replaced_by (tree);
228 extern void dump_var_infos (FILE *);
229 extern void debug_var_infos (void);
230 extern void dump_defs_stack (FILE *, int);
231 extern void debug_defs_stack (int);
232 extern void dump_currdefs (FILE *);
233 extern void debug_currdefs (void);
236 /* The set of symbols we ought to re-write into SSA form in update_ssa. */
237 static bitmap symbols_to_rename_set;
238 static VEC(tree,heap) *symbols_to_rename;
240 /* Mark SYM for renaming. */
242 static void
243 mark_for_renaming (tree sym)
245 if (!symbols_to_rename_set)
246 symbols_to_rename_set = BITMAP_ALLOC (NULL);
247 if (bitmap_set_bit (symbols_to_rename_set, DECL_UID (sym)))
248 VEC_safe_push (tree, heap, symbols_to_rename, sym);
251 /* Return true if SYM is marked for renaming. */
253 static bool
254 marked_for_renaming (tree sym)
256 if (!symbols_to_rename_set || sym == NULL_TREE)
257 return false;
258 return bitmap_bit_p (symbols_to_rename_set, DECL_UID (sym));
262 /* Return true if STMT needs to be rewritten. When renaming a subset
263 of the variables, not all statements will be processed. This is
264 decided in mark_def_sites. */
266 static inline bool
267 rewrite_uses_p (gimple stmt)
269 return gimple_visited_p (stmt);
273 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
275 static inline void
276 set_rewrite_uses (gimple stmt, bool rewrite_p)
278 gimple_set_visited (stmt, rewrite_p);
282 /* Return true if the DEFs created by statement STMT should be
283 registered when marking new definition sites. This is slightly
284 different than rewrite_uses_p: it's used by update_ssa to
285 distinguish statements that need to have both uses and defs
286 processed from those that only need to have their defs processed.
287 Statements that define new SSA names only need to have their defs
288 registered, but they don't need to have their uses renamed. */
290 static inline bool
291 register_defs_p (gimple stmt)
293 return gimple_plf (stmt, GF_PLF_1) != 0;
297 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
299 static inline void
300 set_register_defs (gimple stmt, bool register_defs_p)
302 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
306 /* Get the information associated with NAME. */
308 static inline ssa_name_info_p
309 get_ssa_name_ann (tree name)
311 unsigned ver = SSA_NAME_VERSION (name);
312 unsigned len = VEC_length (ssa_name_info_p, info_for_ssa_name);
313 struct ssa_name_info *info;
315 if (ver >= len)
317 unsigned old_len = VEC_length (ssa_name_info_p, info_for_ssa_name);
318 unsigned new_len = num_ssa_names;
320 VEC_reserve (ssa_name_info_p, heap, info_for_ssa_name,
321 new_len - old_len);
322 while (len++ < new_len)
324 struct ssa_name_info *info = XCNEW (struct ssa_name_info);
325 info->age = current_info_for_ssa_name_age;
326 VEC_quick_push (ssa_name_info_p, info_for_ssa_name, info);
330 info = VEC_index (ssa_name_info_p, info_for_ssa_name, ver);
331 if (info->age < current_info_for_ssa_name_age)
333 info->age = current_info_for_ssa_name_age;
334 info->repl_set = NULL;
335 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
336 info->info.current_def = NULL_TREE;
337 info->info.def_blocks.def_blocks = NULL;
338 info->info.def_blocks.phi_blocks = NULL;
339 info->info.def_blocks.livein_blocks = NULL;
342 return info;
345 /* Return and allocate the auxiliar information for DECL. */
347 static inline var_info_p
348 get_var_info (tree decl)
350 struct var_info_d vi;
351 void **slot;
352 vi.var = decl;
353 slot = htab_find_slot_with_hash (var_infos, &vi, DECL_UID (decl), INSERT);
354 if (*slot == NULL)
356 var_info_p v = XCNEW (struct var_info_d);
357 v->var = decl;
358 *slot = (void *)v;
359 return v;
361 return (var_info_p) *slot;
365 /* Clears info for SSA names. */
367 static void
368 clear_ssa_name_info (void)
370 current_info_for_ssa_name_age++;
372 /* If current_info_for_ssa_name_age wraps we use stale information.
373 Asser that this does not happen. */
374 gcc_assert (current_info_for_ssa_name_age != 0);
378 /* Get access to the auxiliar information stored per SSA name or decl. */
380 static inline common_info_p
381 get_common_info (tree var)
383 if (TREE_CODE (var) == SSA_NAME)
384 return &get_ssa_name_ann (var)->info;
385 else
386 return &get_var_info (var)->info;
390 /* Return the current definition for VAR. */
392 tree
393 get_current_def (tree var)
395 return get_common_info (var)->current_def;
399 /* Sets current definition of VAR to DEF. */
401 void
402 set_current_def (tree var, tree def)
404 get_common_info (var)->current_def = def;
408 /* Compute global livein information given the set of blocks where
409 an object is locally live at the start of the block (LIVEIN)
410 and the set of blocks where the object is defined (DEF_BLOCKS).
412 Note: This routine augments the existing local livein information
413 to include global livein (i.e., it modifies the underlying bitmap
414 for LIVEIN). */
416 void
417 compute_global_livein (bitmap livein, bitmap def_blocks)
419 unsigned i;
420 bitmap_iterator bi;
421 VEC (basic_block, heap) *worklist;
423 /* Normally the work list size is bounded by the number of basic
424 blocks in the largest loop. We don't know this number, but we
425 can be fairly sure that it will be relatively small. */
426 worklist = VEC_alloc (basic_block, heap, MAX (8, n_basic_blocks / 128));
428 EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
429 VEC_safe_push (basic_block, heap, worklist, BASIC_BLOCK (i));
431 /* Iterate until the worklist is empty. */
432 while (! VEC_empty (basic_block, worklist))
434 edge e;
435 edge_iterator ei;
437 /* Pull a block off the worklist. */
438 basic_block bb = VEC_pop (basic_block, worklist);
440 /* Make sure we have at least enough room in the work list
441 for all predecessors of this block. */
442 VEC_reserve (basic_block, heap, worklist, EDGE_COUNT (bb->preds));
444 /* For each predecessor block. */
445 FOR_EACH_EDGE (e, ei, bb->preds)
447 basic_block pred = e->src;
448 int pred_index = pred->index;
450 /* None of this is necessary for the entry block. */
451 if (pred != ENTRY_BLOCK_PTR
452 && ! bitmap_bit_p (def_blocks, pred_index)
453 && bitmap_set_bit (livein, pred_index))
455 VEC_quick_push (basic_block, worklist, pred);
460 VEC_free (basic_block, heap, worklist);
464 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
465 all statements in basic block BB. */
467 static void
468 initialize_flags_in_bb (basic_block bb)
470 gimple stmt;
471 gimple_stmt_iterator gsi;
473 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
475 gimple phi = gsi_stmt (gsi);
476 set_rewrite_uses (phi, false);
477 set_register_defs (phi, false);
480 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
482 stmt = gsi_stmt (gsi);
484 /* We are going to use the operand cache API, such as
485 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
486 cache for each statement should be up-to-date. */
487 gcc_assert (!gimple_modified_p (stmt));
488 set_rewrite_uses (stmt, false);
489 set_register_defs (stmt, false);
493 /* Mark block BB as interesting for update_ssa. */
495 static void
496 mark_block_for_update (basic_block bb)
498 gcc_assert (blocks_to_update != NULL);
499 if (!bitmap_set_bit (blocks_to_update, bb->index))
500 return;
501 initialize_flags_in_bb (bb);
504 /* Return the set of blocks where variable VAR is defined and the blocks
505 where VAR is live on entry (livein). If no entry is found in
506 DEF_BLOCKS, a new one is created and returned. */
508 static inline struct def_blocks_d *
509 get_def_blocks_for (common_info_p info)
511 struct def_blocks_d *db_p = &info->def_blocks;
512 if (!db_p->def_blocks)
514 db_p->def_blocks = BITMAP_ALLOC (&update_ssa_obstack);
515 db_p->phi_blocks = BITMAP_ALLOC (&update_ssa_obstack);
516 db_p->livein_blocks = BITMAP_ALLOC (&update_ssa_obstack);
519 return db_p;
523 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
524 VAR is defined by a PHI node. */
526 static void
527 set_def_block (tree var, basic_block bb, bool phi_p)
529 struct def_blocks_d *db_p;
530 common_info_p info;
532 info = get_common_info (var);
533 db_p = get_def_blocks_for (info);
535 /* Set the bit corresponding to the block where VAR is defined. */
536 bitmap_set_bit (db_p->def_blocks, bb->index);
537 if (phi_p)
538 bitmap_set_bit (db_p->phi_blocks, bb->index);
540 /* Keep track of whether or not we may need to insert PHI nodes.
542 If we are in the UNKNOWN state, then this is the first definition
543 of VAR. Additionally, we have not seen any uses of VAR yet, so
544 we do not need a PHI node for this variable at this time (i.e.,
545 transition to NEED_PHI_STATE_NO).
547 If we are in any other state, then we either have multiple definitions
548 of this variable occurring in different blocks or we saw a use of the
549 variable which was not dominated by the block containing the
550 definition(s). In this case we may need a PHI node, so enter
551 state NEED_PHI_STATE_MAYBE. */
552 if (info->need_phi_state == NEED_PHI_STATE_UNKNOWN)
553 info->need_phi_state = NEED_PHI_STATE_NO;
554 else
555 info->need_phi_state = NEED_PHI_STATE_MAYBE;
559 /* Mark block BB as having VAR live at the entry to BB. */
561 static void
562 set_livein_block (tree var, basic_block bb)
564 common_info_p info;
565 struct def_blocks_d *db_p;
567 info = get_common_info (var);
568 db_p = get_def_blocks_for (info);
570 /* Set the bit corresponding to the block where VAR is live in. */
571 bitmap_set_bit (db_p->livein_blocks, bb->index);
573 /* Keep track of whether or not we may need to insert PHI nodes.
575 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
576 by the single block containing the definition(s) of this variable. If
577 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
578 NEED_PHI_STATE_MAYBE. */
579 if (info->need_phi_state == NEED_PHI_STATE_NO)
581 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
583 if (def_block_index == -1
584 || ! dominated_by_p (CDI_DOMINATORS, bb,
585 BASIC_BLOCK (def_block_index)))
586 info->need_phi_state = NEED_PHI_STATE_MAYBE;
588 else
589 info->need_phi_state = NEED_PHI_STATE_MAYBE;
593 /* Return true if NAME is in OLD_SSA_NAMES. */
595 static inline bool
596 is_old_name (tree name)
598 unsigned ver = SSA_NAME_VERSION (name);
599 if (!new_ssa_names)
600 return false;
601 return (ver < SBITMAP_SIZE (new_ssa_names)
602 && TEST_BIT (old_ssa_names, ver));
606 /* Return true if NAME is in NEW_SSA_NAMES. */
608 static inline bool
609 is_new_name (tree name)
611 unsigned ver = SSA_NAME_VERSION (name);
612 if (!new_ssa_names)
613 return false;
614 return (ver < SBITMAP_SIZE (new_ssa_names)
615 && TEST_BIT (new_ssa_names, ver));
619 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
621 static inline bitmap
622 names_replaced_by (tree new_tree)
624 return get_ssa_name_ann (new_tree)->repl_set;
628 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
630 static inline void
631 add_to_repl_tbl (tree new_tree, tree old)
633 bitmap *set = &get_ssa_name_ann (new_tree)->repl_set;
634 if (!*set)
635 *set = BITMAP_ALLOC (&update_ssa_obstack);
636 bitmap_set_bit (*set, SSA_NAME_VERSION (old));
640 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
641 represents the set of names O_1 ... O_j replaced by N_i. This is
642 used by update_ssa and its helpers to introduce new SSA names in an
643 already formed SSA web. */
645 static void
646 add_new_name_mapping (tree new_tree, tree old)
648 timevar_push (TV_TREE_SSA_INCREMENTAL);
650 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
651 gcc_assert (new_tree != old && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
653 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
654 caller may have created new names since the set was created. */
655 if (SBITMAP_SIZE (new_ssa_names) <= num_ssa_names - 1)
657 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
658 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
659 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
662 /* Update the REPL_TBL table. */
663 add_to_repl_tbl (new_tree, old);
665 /* If OLD had already been registered as a new name, then all the
666 names that OLD replaces should also be replaced by NEW_TREE. */
667 if (is_new_name (old))
668 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
670 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
671 respectively. */
672 SET_BIT (new_ssa_names, SSA_NAME_VERSION (new_tree));
673 SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
675 timevar_pop (TV_TREE_SSA_INCREMENTAL);
679 /* Call back for walk_dominator_tree used to collect definition sites
680 for every variable in the function. For every statement S in block
683 1- Variables defined by S in the DEFS of S are marked in the bitmap
684 KILLS.
686 2- If S uses a variable VAR and there is no preceding kill of VAR,
687 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
689 This information is used to determine which variables are live
690 across block boundaries to reduce the number of PHI nodes
691 we create. */
693 static void
694 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
696 tree def;
697 use_operand_p use_p;
698 ssa_op_iter iter;
700 /* Since this is the first time that we rewrite the program into SSA
701 form, force an operand scan on every statement. */
702 update_stmt (stmt);
704 gcc_assert (blocks_to_update == NULL);
705 set_register_defs (stmt, false);
706 set_rewrite_uses (stmt, false);
708 if (is_gimple_debug (stmt))
710 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
712 tree sym = USE_FROM_PTR (use_p);
713 gcc_assert (DECL_P (sym));
714 set_rewrite_uses (stmt, true);
716 if (rewrite_uses_p (stmt))
717 SET_BIT (interesting_blocks, bb->index);
718 return;
721 /* If a variable is used before being set, then the variable is live
722 across a block boundary, so mark it live-on-entry to BB. */
723 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
725 tree sym = USE_FROM_PTR (use_p);
726 gcc_assert (DECL_P (sym));
727 if (!bitmap_bit_p (kills, DECL_UID (sym)))
728 set_livein_block (sym, bb);
729 set_rewrite_uses (stmt, true);
732 /* Now process the defs. Mark BB as the definition block and add
733 each def to the set of killed symbols. */
734 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
736 gcc_assert (DECL_P (def));
737 set_def_block (def, bb, false);
738 bitmap_set_bit (kills, DECL_UID (def));
739 set_register_defs (stmt, true);
742 /* If we found the statement interesting then also mark the block BB
743 as interesting. */
744 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
745 SET_BIT (interesting_blocks, bb->index);
748 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
749 in the dfs numbering of the dominance tree. */
751 struct dom_dfsnum
753 /* Basic block whose index this entry corresponds to. */
754 unsigned bb_index;
756 /* The dfs number of this node. */
757 unsigned dfs_num;
760 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
761 for qsort. */
763 static int
764 cmp_dfsnum (const void *a, const void *b)
766 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
767 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
769 return (int) da->dfs_num - (int) db->dfs_num;
772 /* Among the intervals starting at the N points specified in DEFS, find
773 the one that contains S, and return its bb_index. */
775 static unsigned
776 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
778 unsigned f = 0, t = n, m;
780 while (t > f + 1)
782 m = (f + t) / 2;
783 if (defs[m].dfs_num <= s)
784 f = m;
785 else
786 t = m;
789 return defs[f].bb_index;
792 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
793 KILLS is a bitmap of blocks where the value is defined before any use. */
795 static void
796 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
798 VEC(int, heap) *worklist;
799 bitmap_iterator bi;
800 unsigned i, b, p, u, top;
801 bitmap live_phis;
802 basic_block def_bb, use_bb;
803 edge e;
804 edge_iterator ei;
805 bitmap to_remove;
806 struct dom_dfsnum *defs;
807 unsigned n_defs, adef;
809 if (bitmap_empty_p (uses))
811 bitmap_clear (phis);
812 return;
815 /* The phi must dominate a use, or an argument of a live phi. Also, we
816 do not create any phi nodes in def blocks, unless they are also livein. */
817 to_remove = BITMAP_ALLOC (NULL);
818 bitmap_and_compl (to_remove, kills, uses);
819 bitmap_and_compl_into (phis, to_remove);
820 if (bitmap_empty_p (phis))
822 BITMAP_FREE (to_remove);
823 return;
826 /* We want to remove the unnecessary phi nodes, but we do not want to compute
827 liveness information, as that may be linear in the size of CFG, and if
828 there are lot of different variables to rewrite, this may lead to quadratic
829 behavior.
831 Instead, we basically emulate standard dce. We put all uses to worklist,
832 then for each of them find the nearest def that dominates them. If this
833 def is a phi node, we mark it live, and if it was not live before, we
834 add the predecessors of its basic block to the worklist.
836 To quickly locate the nearest def that dominates use, we use dfs numbering
837 of the dominance tree (that is already available in order to speed up
838 queries). For each def, we have the interval given by the dfs number on
839 entry to and on exit from the corresponding subtree in the dominance tree.
840 The nearest dominator for a given use is the smallest of these intervals
841 that contains entry and exit dfs numbers for the basic block with the use.
842 If we store the bounds for all the uses to an array and sort it, we can
843 locate the nearest dominating def in logarithmic time by binary search.*/
844 bitmap_ior (to_remove, kills, phis);
845 n_defs = bitmap_count_bits (to_remove);
846 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
847 defs[0].bb_index = 1;
848 defs[0].dfs_num = 0;
849 adef = 1;
850 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
852 def_bb = BASIC_BLOCK (i);
853 defs[adef].bb_index = i;
854 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
855 defs[adef + 1].bb_index = i;
856 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
857 adef += 2;
859 BITMAP_FREE (to_remove);
860 gcc_assert (adef == 2 * n_defs + 1);
861 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
862 gcc_assert (defs[0].bb_index == 1);
864 /* Now each DEFS entry contains the number of the basic block to that the
865 dfs number corresponds. Change them to the number of basic block that
866 corresponds to the interval following the dfs number. Also, for the
867 dfs_out numbers, increase the dfs number by one (so that it corresponds
868 to the start of the following interval, not to the end of the current
869 one). We use WORKLIST as a stack. */
870 worklist = VEC_alloc (int, heap, n_defs + 1);
871 VEC_quick_push (int, worklist, 1);
872 top = 1;
873 n_defs = 1;
874 for (i = 1; i < adef; i++)
876 b = defs[i].bb_index;
877 if (b == top)
879 /* This is a closing element. Interval corresponding to the top
880 of the stack after removing it follows. */
881 VEC_pop (int, worklist);
882 top = VEC_index (int, worklist, VEC_length (int, worklist) - 1);
883 defs[n_defs].bb_index = top;
884 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
886 else
888 /* Opening element. Nothing to do, just push it to the stack and move
889 it to the correct position. */
890 defs[n_defs].bb_index = defs[i].bb_index;
891 defs[n_defs].dfs_num = defs[i].dfs_num;
892 VEC_quick_push (int, worklist, b);
893 top = b;
896 /* If this interval starts at the same point as the previous one, cancel
897 the previous one. */
898 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
899 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
900 else
901 n_defs++;
903 VEC_pop (int, worklist);
904 gcc_assert (VEC_empty (int, worklist));
906 /* Now process the uses. */
907 live_phis = BITMAP_ALLOC (NULL);
908 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
910 VEC_safe_push (int, heap, worklist, i);
913 while (!VEC_empty (int, worklist))
915 b = VEC_pop (int, worklist);
916 if (b == ENTRY_BLOCK)
917 continue;
919 /* If there is a phi node in USE_BB, it is made live. Otherwise,
920 find the def that dominates the immediate dominator of USE_BB
921 (the kill in USE_BB does not dominate the use). */
922 if (bitmap_bit_p (phis, b))
923 p = b;
924 else
926 use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
927 p = find_dfsnum_interval (defs, n_defs,
928 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
929 if (!bitmap_bit_p (phis, p))
930 continue;
933 /* If the phi node is already live, there is nothing to do. */
934 if (!bitmap_set_bit (live_phis, p))
935 continue;
937 /* Add the new uses to the worklist. */
938 def_bb = BASIC_BLOCK (p);
939 FOR_EACH_EDGE (e, ei, def_bb->preds)
941 u = e->src->index;
942 if (bitmap_bit_p (uses, u))
943 continue;
945 /* In case there is a kill directly in the use block, do not record
946 the use (this is also necessary for correctness, as we assume that
947 uses dominated by a def directly in their block have been filtered
948 out before). */
949 if (bitmap_bit_p (kills, u))
950 continue;
952 bitmap_set_bit (uses, u);
953 VEC_safe_push (int, heap, worklist, u);
957 VEC_free (int, heap, worklist);
958 bitmap_copy (phis, live_phis);
959 BITMAP_FREE (live_phis);
960 free (defs);
963 /* Return the set of blocks where variable VAR is defined and the blocks
964 where VAR is live on entry (livein). Return NULL, if no entry is
965 found in DEF_BLOCKS. */
967 static inline struct def_blocks_d *
968 find_def_blocks_for (tree var)
970 def_blocks_p p = &get_common_info (var)->def_blocks;
971 if (!p->def_blocks)
972 return NULL;
973 return p;
977 /* Marks phi node PHI in basic block BB for rewrite. */
979 static void
980 mark_phi_for_rewrite (basic_block bb, gimple phi)
982 gimple_vec phis;
983 unsigned n, idx = bb->index;
985 if (rewrite_uses_p (phi))
986 return;
988 set_rewrite_uses (phi, true);
990 if (!blocks_with_phis_to_rewrite)
991 return;
993 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
995 n = (unsigned) last_basic_block + 1;
996 if (VEC_length (gimple_vec, phis_to_rewrite) < n)
997 VEC_safe_grow_cleared (gimple_vec, heap, phis_to_rewrite, n);
999 phis = VEC_index (gimple_vec, phis_to_rewrite, idx);
1000 if (!phis)
1001 phis = VEC_alloc (gimple, heap, 10);
1003 VEC_safe_push (gimple, heap, phis, phi);
1004 VEC_replace (gimple_vec, phis_to_rewrite, idx, phis);
1007 /* Insert PHI nodes for variable VAR using the iterated dominance
1008 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
1009 function assumes that the caller is incrementally updating the
1010 existing SSA form, in which case VAR may be an SSA name instead of
1011 a symbol.
1013 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
1014 PHI node for VAR. On exit, only the nodes that received a PHI node
1015 for VAR will be present in PHI_INSERTION_POINTS. */
1017 static void
1018 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
1020 unsigned bb_index;
1021 edge e;
1022 gimple phi;
1023 basic_block bb;
1024 bitmap_iterator bi;
1025 struct def_blocks_d *def_map;
1027 def_map = find_def_blocks_for (var);
1028 gcc_assert (def_map);
1030 /* Remove the blocks where we already have PHI nodes for VAR. */
1031 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
1033 /* Remove obviously useless phi nodes. */
1034 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1035 def_map->livein_blocks);
1037 /* And insert the PHI nodes. */
1038 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1040 bb = BASIC_BLOCK (bb_index);
1041 if (update_p)
1042 mark_block_for_update (bb);
1044 phi = NULL;
1046 if (TREE_CODE (var) == SSA_NAME)
1048 /* If we are rewriting SSA names, create the LHS of the PHI
1049 node by duplicating VAR. This is useful in the case of
1050 pointers, to also duplicate pointer attributes (alias
1051 information, in particular). */
1052 edge_iterator ei;
1053 tree new_lhs;
1055 gcc_assert (update_p);
1056 new_lhs = duplicate_ssa_name (var, NULL);
1057 phi = create_phi_node (new_lhs, bb);
1058 add_new_name_mapping (new_lhs, var);
1060 /* Add VAR to every argument slot of PHI. We need VAR in
1061 every argument so that rewrite_update_phi_arguments knows
1062 which name is this PHI node replacing. If VAR is a
1063 symbol marked for renaming, this is not necessary, the
1064 renamer will use the symbol on the LHS to get its
1065 reaching definition. */
1066 FOR_EACH_EDGE (e, ei, bb->preds)
1067 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1069 else
1071 tree tracked_var;
1073 gcc_assert (DECL_P (var));
1074 phi = create_phi_node (var, bb);
1076 tracked_var = target_for_debug_bind (var);
1077 if (tracked_var)
1079 gimple note = gimple_build_debug_bind (tracked_var,
1080 PHI_RESULT (phi),
1081 phi);
1082 gimple_stmt_iterator si = gsi_after_labels (bb);
1083 gsi_insert_before (&si, note, GSI_SAME_STMT);
1087 /* Mark this PHI node as interesting for update_ssa. */
1088 set_register_defs (phi, true);
1089 mark_phi_for_rewrite (bb, phi);
1093 /* Sort var_infos after DECL_UID of their var. */
1095 static int
1096 insert_phi_nodes_compare_var_infos (const void *a, const void *b)
1098 const struct var_info_d *defa = *(struct var_info_d * const *)a;
1099 const struct var_info_d *defb = *(struct var_info_d * const *)b;
1100 if (DECL_UID (defa->var) < DECL_UID (defb->var))
1101 return -1;
1102 else
1103 return 1;
1106 /* Insert PHI nodes at the dominance frontier of blocks with variable
1107 definitions. DFS contains the dominance frontier information for
1108 the flowgraph. */
1110 static void
1111 insert_phi_nodes (bitmap_head *dfs)
1113 htab_iterator hi;
1114 unsigned i;
1115 var_info_p info;
1116 VEC(var_info_p,heap) *vars;
1118 timevar_push (TV_TREE_INSERT_PHI_NODES);
1120 vars = VEC_alloc (var_info_p, heap, htab_elements (var_infos));
1121 FOR_EACH_HTAB_ELEMENT (var_infos, info, var_info_p, hi)
1122 if (info->info.need_phi_state != NEED_PHI_STATE_NO)
1123 VEC_quick_push (var_info_p, vars, info);
1125 /* Do two stages to avoid code generation differences for UID
1126 differences but no UID ordering differences. */
1127 VEC_qsort (var_info_p, vars, insert_phi_nodes_compare_var_infos);
1129 FOR_EACH_VEC_ELT (var_info_p, vars, i, info)
1131 bitmap idf = compute_idf (info->info.def_blocks.def_blocks, dfs);
1132 insert_phi_nodes_for (info->var, idf, false);
1133 BITMAP_FREE (idf);
1136 VEC_free(var_info_p, heap, vars);
1138 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1142 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1143 register DEF (an SSA_NAME) to be a new definition for SYM. */
1145 static void
1146 register_new_def (tree def, tree sym)
1148 common_info_p info = get_common_info (sym);
1149 tree currdef;
1151 /* If this variable is set in a single basic block and all uses are
1152 dominated by the set(s) in that single basic block, then there is
1153 no reason to record anything for this variable in the block local
1154 definition stacks. Doing so just wastes time and memory.
1156 This is the same test to prune the set of variables which may
1157 need PHI nodes. So we just use that information since it's already
1158 computed and available for us to use. */
1159 if (info->need_phi_state == NEED_PHI_STATE_NO)
1161 info->current_def = def;
1162 return;
1165 currdef = info->current_def;
1167 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1168 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1169 in the stack so that we know which symbol is being defined by
1170 this SSA name when we unwind the stack. */
1171 if (currdef && !is_gimple_reg (sym))
1172 VEC_safe_push (tree, heap, block_defs_stack, sym);
1174 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1175 stack is later used by the dominator tree callbacks to restore
1176 the reaching definitions for all the variables defined in the
1177 block after a recursive visit to all its immediately dominated
1178 blocks. If there is no current reaching definition, then just
1179 record the underlying _DECL node. */
1180 VEC_safe_push (tree, heap, block_defs_stack, currdef ? currdef : sym);
1182 /* Set the current reaching definition for SYM to be DEF. */
1183 info->current_def = def;
1187 /* Perform a depth-first traversal of the dominator tree looking for
1188 variables to rename. BB is the block where to start searching.
1189 Renaming is a five step process:
1191 1- Every definition made by PHI nodes at the start of the blocks is
1192 registered as the current definition for the corresponding variable.
1194 2- Every statement in BB is rewritten. USE and VUSE operands are
1195 rewritten with their corresponding reaching definition. DEF and
1196 VDEF targets are registered as new definitions.
1198 3- All the PHI nodes in successor blocks of BB are visited. The
1199 argument corresponding to BB is replaced with its current reaching
1200 definition.
1202 4- Recursively rewrite every dominator child block of BB.
1204 5- Restore (in reverse order) the current reaching definition for every
1205 new definition introduced in this block. This is done so that when
1206 we return from the recursive call, all the current reaching
1207 definitions are restored to the names that were valid in the
1208 dominator parent of BB. */
1210 /* Return the current definition for variable VAR. If none is found,
1211 create a new SSA name to act as the zeroth definition for VAR. */
1213 static tree
1214 get_reaching_def (tree var)
1216 common_info_p info = get_common_info (var);
1217 tree currdef;
1219 /* Lookup the current reaching definition for VAR. */
1220 currdef = info->current_def;
1222 /* If there is no reaching definition for VAR, create and register a
1223 default definition for it (if needed). */
1224 if (currdef == NULL_TREE)
1226 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1227 currdef = get_or_create_ssa_default_def (cfun, sym);
1230 /* Return the current reaching definition for VAR, or the default
1231 definition, if we had to create one. */
1232 return currdef;
1236 /* Helper function for rewrite_stmt. Rewrite uses in a debug stmt. */
1238 static void
1239 rewrite_debug_stmt_uses (gimple stmt)
1241 use_operand_p use_p;
1242 ssa_op_iter iter;
1243 bool update = false;
1245 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1247 tree var = USE_FROM_PTR (use_p), def;
1248 common_info_p info = get_common_info (var);
1249 gcc_assert (DECL_P (var));
1250 def = info->current_def;
1251 if (!def)
1253 if (TREE_CODE (var) == PARM_DECL && single_succ_p (ENTRY_BLOCK_PTR))
1255 gimple_stmt_iterator gsi
1256 = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1257 int lim;
1258 /* Search a few source bind stmts at the start of first bb to
1259 see if a DEBUG_EXPR_DECL can't be reused. */
1260 for (lim = 32;
1261 !gsi_end_p (gsi) && lim > 0;
1262 gsi_next (&gsi), lim--)
1264 gimple gstmt = gsi_stmt (gsi);
1265 if (!gimple_debug_source_bind_p (gstmt))
1266 break;
1267 if (gimple_debug_source_bind_get_value (gstmt) == var)
1269 def = gimple_debug_source_bind_get_var (gstmt);
1270 if (TREE_CODE (def) == DEBUG_EXPR_DECL)
1271 break;
1272 else
1273 def = NULL_TREE;
1276 /* If not, add a new source bind stmt. */
1277 if (def == NULL_TREE)
1279 gimple def_temp;
1280 def = make_node (DEBUG_EXPR_DECL);
1281 def_temp = gimple_build_debug_source_bind (def, var, NULL);
1282 DECL_ARTIFICIAL (def) = 1;
1283 TREE_TYPE (def) = TREE_TYPE (var);
1284 DECL_MODE (def) = DECL_MODE (var);
1285 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1286 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
1288 update = true;
1291 else
1293 /* Check if info->current_def can be trusted. */
1294 basic_block bb = gimple_bb (stmt);
1295 basic_block def_bb
1296 = SSA_NAME_IS_DEFAULT_DEF (def)
1297 ? NULL : gimple_bb (SSA_NAME_DEF_STMT (def));
1299 /* If definition is in current bb, it is fine. */
1300 if (bb == def_bb)
1302 /* If definition bb doesn't dominate the current bb,
1303 it can't be used. */
1304 else if (def_bb && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1305 def = NULL;
1306 /* If there is just one definition and dominates the current
1307 bb, it is fine. */
1308 else if (info->need_phi_state == NEED_PHI_STATE_NO)
1310 else
1312 struct def_blocks_d *db_p = get_def_blocks_for (info);
1314 /* If there are some non-debug uses in the current bb,
1315 it is fine. */
1316 if (bitmap_bit_p (db_p->livein_blocks, bb->index))
1318 /* Otherwise give up for now. */
1319 else
1320 def = NULL;
1323 if (def == NULL)
1325 gimple_debug_bind_reset_value (stmt);
1326 update_stmt (stmt);
1327 return;
1329 SET_USE (use_p, def);
1331 if (update)
1332 update_stmt (stmt);
1335 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1336 the block with its immediate reaching definitions. Update the current
1337 definition of a variable when a new real or virtual definition is found. */
1339 static void
1340 rewrite_stmt (gimple_stmt_iterator *si)
1342 use_operand_p use_p;
1343 def_operand_p def_p;
1344 ssa_op_iter iter;
1345 gimple stmt = gsi_stmt (*si);
1347 /* If mark_def_sites decided that we don't need to rewrite this
1348 statement, ignore it. */
1349 gcc_assert (blocks_to_update == NULL);
1350 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1351 return;
1353 if (dump_file && (dump_flags & TDF_DETAILS))
1355 fprintf (dump_file, "Renaming statement ");
1356 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1357 fprintf (dump_file, "\n");
1360 /* Step 1. Rewrite USES in the statement. */
1361 if (rewrite_uses_p (stmt))
1363 if (is_gimple_debug (stmt))
1364 rewrite_debug_stmt_uses (stmt);
1365 else
1366 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1368 tree var = USE_FROM_PTR (use_p);
1369 gcc_assert (DECL_P (var));
1370 SET_USE (use_p, get_reaching_def (var));
1374 /* Step 2. Register the statement's DEF operands. */
1375 if (register_defs_p (stmt))
1376 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1378 tree var = DEF_FROM_PTR (def_p);
1379 tree name;
1380 tree tracked_var;
1382 gcc_assert (DECL_P (var));
1384 if (gimple_clobber_p (stmt)
1385 && is_gimple_reg (var))
1387 /* If we rewrite a DECL into SSA form then drop its
1388 clobber stmts and replace uses with a new default def. */
1389 gcc_assert (TREE_CODE (var) == VAR_DECL
1390 && !gimple_vdef (stmt));
1391 gsi_replace (si, gimple_build_nop (), true);
1392 register_new_def (get_or_create_ssa_default_def (cfun, var), var);
1393 break;
1396 name = make_ssa_name (var, stmt);
1397 SET_DEF (def_p, name);
1398 register_new_def (DEF_FROM_PTR (def_p), var);
1400 tracked_var = target_for_debug_bind (var);
1401 if (tracked_var)
1403 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1404 gsi_insert_after (si, note, GSI_SAME_STMT);
1410 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1411 PHI nodes. For every PHI node found, add a new argument containing the
1412 current reaching definition for the variable and the edge through which
1413 that definition is reaching the PHI node. */
1415 static void
1416 rewrite_add_phi_arguments (basic_block bb)
1418 edge e;
1419 edge_iterator ei;
1421 FOR_EACH_EDGE (e, ei, bb->succs)
1423 gimple phi;
1424 gimple_stmt_iterator gsi;
1426 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1427 gsi_next (&gsi))
1429 tree currdef;
1430 gimple stmt;
1432 phi = gsi_stmt (gsi);
1433 currdef = get_reaching_def (SSA_NAME_VAR (gimple_phi_result (phi)));
1434 stmt = SSA_NAME_DEF_STMT (currdef);
1435 add_phi_arg (phi, currdef, e, gimple_location (stmt));
1440 /* SSA Rewriting Step 1. Initialization, create a block local stack
1441 of reaching definitions for new SSA names produced in this block
1442 (BLOCK_DEFS). Register new definitions for every PHI node in the
1443 block. */
1445 static void
1446 rewrite_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1447 basic_block bb)
1449 gimple_stmt_iterator gsi;
1451 if (dump_file && (dump_flags & TDF_DETAILS))
1452 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1454 /* Mark the unwind point for this block. */
1455 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1457 /* Step 1. Register new definitions for every PHI node in the block.
1458 Conceptually, all the PHI nodes are executed in parallel and each PHI
1459 node introduces a new version for the associated variable. */
1460 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1462 tree result = gimple_phi_result (gsi_stmt (gsi));
1463 register_new_def (result, SSA_NAME_VAR (result));
1466 /* Step 2. Rewrite every variable used in each statement in the block
1467 with its immediate reaching definitions. Update the current definition
1468 of a variable when a new real or virtual definition is found. */
1469 if (TEST_BIT (interesting_blocks, bb->index))
1470 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1471 rewrite_stmt (&gsi);
1473 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1474 For every PHI node found, add a new argument containing the current
1475 reaching definition for the variable and the edge through which that
1476 definition is reaching the PHI node. */
1477 rewrite_add_phi_arguments (bb);
1482 /* Called after visiting all the statements in basic block BB and all
1483 of its dominator children. Restore CURRDEFS to its original value. */
1485 static void
1486 rewrite_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1487 basic_block bb ATTRIBUTE_UNUSED)
1489 /* Restore CURRDEFS to its original state. */
1490 while (VEC_length (tree, block_defs_stack) > 0)
1492 tree tmp = VEC_pop (tree, block_defs_stack);
1493 tree saved_def, var;
1495 if (tmp == NULL_TREE)
1496 break;
1498 if (TREE_CODE (tmp) == SSA_NAME)
1500 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1501 current definition of its underlying variable. Note that
1502 if the SSA_NAME is not for a GIMPLE register, the symbol
1503 being defined is stored in the next slot in the stack.
1504 This mechanism is needed because an SSA name for a
1505 non-register symbol may be the definition for more than
1506 one symbol (e.g., SFTs, aliased variables, etc). */
1507 saved_def = tmp;
1508 var = SSA_NAME_VAR (saved_def);
1509 if (!is_gimple_reg (var))
1510 var = VEC_pop (tree, block_defs_stack);
1512 else
1514 /* If we recorded anything else, it must have been a _DECL
1515 node and its current reaching definition must have been
1516 NULL. */
1517 saved_def = NULL;
1518 var = tmp;
1521 get_common_info (var)->current_def = saved_def;
1526 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1528 void
1529 dump_decl_set (FILE *file, bitmap set)
1531 if (set)
1533 bitmap_iterator bi;
1534 unsigned i;
1536 fprintf (file, "{ ");
1538 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1540 fprintf (file, "D.%u", i);
1541 fprintf (file, " ");
1544 fprintf (file, "}");
1546 else
1547 fprintf (file, "NIL");
1551 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1553 DEBUG_FUNCTION void
1554 debug_decl_set (bitmap set)
1556 dump_decl_set (stderr, set);
1557 fprintf (stderr, "\n");
1561 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1562 stack up to a maximum of N levels. If N is -1, the whole stack is
1563 dumped. New levels are created when the dominator tree traversal
1564 used for renaming enters a new sub-tree. */
1566 void
1567 dump_defs_stack (FILE *file, int n)
1569 int i, j;
1571 fprintf (file, "\n\nRenaming stack");
1572 if (n > 0)
1573 fprintf (file, " (up to %d levels)", n);
1574 fprintf (file, "\n\n");
1576 i = 1;
1577 fprintf (file, "Level %d (current level)\n", i);
1578 for (j = (int) VEC_length (tree, block_defs_stack) - 1; j >= 0; j--)
1580 tree name, var;
1582 name = VEC_index (tree, block_defs_stack, j);
1583 if (name == NULL_TREE)
1585 i++;
1586 if (n > 0 && i > n)
1587 break;
1588 fprintf (file, "\nLevel %d\n", i);
1589 continue;
1592 if (DECL_P (name))
1594 var = name;
1595 name = NULL_TREE;
1597 else
1599 var = SSA_NAME_VAR (name);
1600 if (!is_gimple_reg (var))
1602 j--;
1603 var = VEC_index (tree, block_defs_stack, j);
1607 fprintf (file, " Previous CURRDEF (");
1608 print_generic_expr (file, var, 0);
1609 fprintf (file, ") = ");
1610 if (name)
1611 print_generic_expr (file, name, 0);
1612 else
1613 fprintf (file, "<NIL>");
1614 fprintf (file, "\n");
1619 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1620 stack up to a maximum of N levels. If N is -1, the whole stack is
1621 dumped. New levels are created when the dominator tree traversal
1622 used for renaming enters a new sub-tree. */
1624 DEBUG_FUNCTION void
1625 debug_defs_stack (int n)
1627 dump_defs_stack (stderr, n);
1631 /* Dump the current reaching definition of every symbol to FILE. */
1633 void
1634 dump_currdefs (FILE *file)
1636 unsigned i;
1637 tree var;
1639 if (VEC_empty (tree, symbols_to_rename))
1640 return;
1642 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1643 FOR_EACH_VEC_ELT (tree, symbols_to_rename, i, var)
1645 common_info_p info = get_common_info (var);
1646 fprintf (file, "CURRDEF (");
1647 print_generic_expr (file, var, 0);
1648 fprintf (file, ") = ");
1649 if (info->current_def)
1650 print_generic_expr (file, info->current_def, 0);
1651 else
1652 fprintf (file, "<NIL>");
1653 fprintf (file, "\n");
1658 /* Dump the current reaching definition of every symbol to stderr. */
1660 DEBUG_FUNCTION void
1661 debug_currdefs (void)
1663 dump_currdefs (stderr);
1667 /* Dump SSA information to FILE. */
1669 void
1670 dump_tree_ssa (FILE *file)
1672 const char *funcname
1673 = lang_hooks.decl_printable_name (current_function_decl, 2);
1675 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1677 dump_var_infos (file);
1678 dump_defs_stack (file, -1);
1679 dump_currdefs (file);
1680 dump_tree_ssa_stats (file);
1684 /* Dump SSA information to stderr. */
1686 DEBUG_FUNCTION void
1687 debug_tree_ssa (void)
1689 dump_tree_ssa (stderr);
1693 /* Dump statistics for the hash table HTAB. */
1695 static void
1696 htab_statistics (FILE *file, htab_t htab)
1698 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1699 (long) htab_size (htab),
1700 (long) htab_elements (htab),
1701 htab_collisions (htab));
1705 /* Dump SSA statistics on FILE. */
1707 void
1708 dump_tree_ssa_stats (FILE *file)
1710 if (var_infos)
1712 fprintf (file, "\nHash table statistics:\n");
1713 fprintf (file, " var_infos: ");
1714 htab_statistics (file, var_infos);
1715 fprintf (file, "\n");
1720 /* Dump SSA statistics on stderr. */
1722 DEBUG_FUNCTION void
1723 debug_tree_ssa_stats (void)
1725 dump_tree_ssa_stats (stderr);
1729 /* Hashing and equality functions for VAR_INFOS. */
1731 static hashval_t
1732 var_info_hash (const void *p)
1734 return DECL_UID (((const struct var_info_d *)p)->var);
1737 static int
1738 var_info_eq (const void *p1, const void *p2)
1740 return ((const struct var_info_d *)p1)->var
1741 == ((const struct var_info_d *)p2)->var;
1745 /* Callback for htab_traverse to dump the VAR_INFOS hash table. */
1747 static int
1748 debug_var_infos_r (void **slot, void *data)
1750 FILE *file = (FILE *) data;
1751 struct var_info_d *info = (struct var_info_d *) *slot;
1753 fprintf (file, "VAR: ");
1754 print_generic_expr (file, info->var, dump_flags);
1755 bitmap_print (file, info->info.def_blocks.def_blocks,
1756 ", DEF_BLOCKS: { ", "}");
1757 bitmap_print (file, info->info.def_blocks.livein_blocks,
1758 ", LIVEIN_BLOCKS: { ", "}");
1759 bitmap_print (file, info->info.def_blocks.phi_blocks,
1760 ", PHI_BLOCKS: { ", "}\n");
1762 return 1;
1766 /* Dump the VAR_INFOS hash table on FILE. */
1768 void
1769 dump_var_infos (FILE *file)
1771 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1772 if (var_infos)
1773 htab_traverse (var_infos, debug_var_infos_r, file);
1777 /* Dump the VAR_INFOS hash table on stderr. */
1779 DEBUG_FUNCTION void
1780 debug_var_infos (void)
1782 dump_var_infos (stderr);
1786 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1788 static inline void
1789 register_new_update_single (tree new_name, tree old_name)
1791 common_info_p info = get_common_info (old_name);
1792 tree currdef = info->current_def;
1794 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1795 This stack is later used by the dominator tree callbacks to
1796 restore the reaching definitions for all the variables
1797 defined in the block after a recursive visit to all its
1798 immediately dominated blocks. */
1799 VEC_reserve (tree, heap, block_defs_stack, 2);
1800 VEC_quick_push (tree, block_defs_stack, currdef);
1801 VEC_quick_push (tree, block_defs_stack, old_name);
1803 /* Set the current reaching definition for OLD_NAME to be
1804 NEW_NAME. */
1805 info->current_def = new_name;
1809 /* Register NEW_NAME to be the new reaching definition for all the
1810 names in OLD_NAMES. Used by the incremental SSA update routines to
1811 replace old SSA names with new ones. */
1813 static inline void
1814 register_new_update_set (tree new_name, bitmap old_names)
1816 bitmap_iterator bi;
1817 unsigned i;
1819 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1820 register_new_update_single (new_name, ssa_name (i));
1825 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1826 it is a symbol marked for renaming, replace it with USE_P's current
1827 reaching definition. */
1829 static inline void
1830 maybe_replace_use (use_operand_p use_p)
1832 tree rdef = NULL_TREE;
1833 tree use = USE_FROM_PTR (use_p);
1834 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1836 if (marked_for_renaming (sym))
1837 rdef = get_reaching_def (sym);
1838 else if (is_old_name (use))
1839 rdef = get_reaching_def (use);
1841 if (rdef && rdef != use)
1842 SET_USE (use_p, rdef);
1846 /* Same as maybe_replace_use, but without introducing default stmts,
1847 returning false to indicate a need to do so. */
1849 static inline bool
1850 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1852 tree rdef = NULL_TREE;
1853 tree use = USE_FROM_PTR (use_p);
1854 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1856 if (marked_for_renaming (sym))
1857 rdef = get_var_info (sym)->info.current_def;
1858 else if (is_old_name (use))
1860 rdef = get_ssa_name_ann (use)->info.current_def;
1861 /* We can't assume that, if there's no current definition, the
1862 default one should be used. It could be the case that we've
1863 rearranged blocks so that the earlier definition no longer
1864 dominates the use. */
1865 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1866 rdef = use;
1868 else
1869 rdef = use;
1871 if (rdef && rdef != use)
1872 SET_USE (use_p, rdef);
1874 return rdef != NULL_TREE;
1878 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1879 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1880 register it as the current definition for the names replaced by
1881 DEF_P. */
1883 static inline void
1884 maybe_register_def (def_operand_p def_p, gimple stmt,
1885 gimple_stmt_iterator gsi)
1887 tree def = DEF_FROM_PTR (def_p);
1888 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1890 /* If DEF is a naked symbol that needs renaming, create a new
1891 name for it. */
1892 if (marked_for_renaming (sym))
1894 if (DECL_P (def))
1896 tree tracked_var;
1898 def = make_ssa_name (def, stmt);
1899 SET_DEF (def_p, def);
1901 tracked_var = target_for_debug_bind (sym);
1902 if (tracked_var)
1904 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1905 /* If stmt ends the bb, insert the debug stmt on the single
1906 non-EH edge from the stmt. */
1907 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1909 basic_block bb = gsi_bb (gsi);
1910 edge_iterator ei;
1911 edge e, ef = NULL;
1912 FOR_EACH_EDGE (e, ei, bb->succs)
1913 if (!(e->flags & EDGE_EH))
1915 gcc_assert (!ef);
1916 ef = e;
1918 /* If there are other predecessors to ef->dest, then
1919 there must be PHI nodes for the modified
1920 variable, and therefore there will be debug bind
1921 stmts after the PHI nodes. The debug bind notes
1922 we'd insert would force the creation of a new
1923 block (diverging codegen) and be redundant with
1924 the post-PHI bind stmts, so don't add them.
1926 As for the exit edge, there wouldn't be redundant
1927 bind stmts, but there wouldn't be a PC to bind
1928 them to either, so avoid diverging the CFG. */
1929 if (ef && single_pred_p (ef->dest)
1930 && ef->dest != EXIT_BLOCK_PTR)
1932 /* If there were PHI nodes in the node, we'd
1933 have to make sure the value we're binding
1934 doesn't need rewriting. But there shouldn't
1935 be PHI nodes in a single-predecessor block,
1936 so we just add the note. */
1937 gsi_insert_on_edge_immediate (ef, note);
1940 else
1941 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1945 register_new_update_single (def, sym);
1947 else
1949 /* If DEF is a new name, register it as a new definition
1950 for all the names replaced by DEF. */
1951 if (is_new_name (def))
1952 register_new_update_set (def, names_replaced_by (def));
1954 /* If DEF is an old name, register DEF as a new
1955 definition for itself. */
1956 if (is_old_name (def))
1957 register_new_update_single (def, def);
1962 /* Update every variable used in the statement pointed-to by SI. The
1963 statement is assumed to be in SSA form already. Names in
1964 OLD_SSA_NAMES used by SI will be updated to their current reaching
1965 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1966 will be registered as a new definition for their corresponding name
1967 in OLD_SSA_NAMES. */
1969 static void
1970 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1972 use_operand_p use_p;
1973 def_operand_p def_p;
1974 ssa_op_iter iter;
1976 /* Only update marked statements. */
1977 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1978 return;
1980 if (dump_file && (dump_flags & TDF_DETAILS))
1982 fprintf (dump_file, "Updating SSA information for statement ");
1983 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1986 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1987 symbol is marked for renaming. */
1988 if (rewrite_uses_p (stmt))
1990 if (is_gimple_debug (stmt))
1992 bool failed = false;
1994 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1995 if (!maybe_replace_use_in_debug_stmt (use_p))
1997 failed = true;
1998 break;
2001 if (failed)
2003 /* DOM sometimes threads jumps in such a way that a
2004 debug stmt ends up referencing a SSA variable that no
2005 longer dominates the debug stmt, but such that all
2006 incoming definitions refer to the same definition in
2007 an earlier dominator. We could try to recover that
2008 definition somehow, but this will have to do for now.
2010 Introducing a default definition, which is what
2011 maybe_replace_use() would do in such cases, may
2012 modify code generation, for the otherwise-unused
2013 default definition would never go away, modifying SSA
2014 version numbers all over. */
2015 gimple_debug_bind_reset_value (stmt);
2016 update_stmt (stmt);
2019 else
2021 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
2022 maybe_replace_use (use_p);
2026 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
2027 Also register definitions for names whose underlying symbol is
2028 marked for renaming. */
2029 if (register_defs_p (stmt))
2030 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
2031 maybe_register_def (def_p, stmt, gsi);
2035 /* Visit all the successor blocks of BB looking for PHI nodes. For
2036 every PHI node found, check if any of its arguments is in
2037 OLD_SSA_NAMES. If so, and if the argument has a current reaching
2038 definition, replace it. */
2040 static void
2041 rewrite_update_phi_arguments (basic_block bb)
2043 edge e;
2044 edge_iterator ei;
2045 unsigned i;
2047 FOR_EACH_EDGE (e, ei, bb->succs)
2049 gimple phi;
2050 gimple_vec phis;
2052 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
2053 continue;
2055 phis = VEC_index (gimple_vec, phis_to_rewrite, e->dest->index);
2056 FOR_EACH_VEC_ELT (gimple, phis, i, phi)
2058 tree arg, lhs_sym, reaching_def = NULL;
2059 use_operand_p arg_p;
2061 gcc_assert (rewrite_uses_p (phi));
2063 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2064 arg = USE_FROM_PTR (arg_p);
2066 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2067 continue;
2069 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2071 if (arg == NULL_TREE)
2073 /* When updating a PHI node for a recently introduced
2074 symbol we may find NULL arguments. That's why we
2075 take the symbol from the LHS of the PHI node. */
2076 reaching_def = get_reaching_def (lhs_sym);
2079 else
2081 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2083 if (marked_for_renaming (sym))
2084 reaching_def = get_reaching_def (sym);
2085 else if (is_old_name (arg))
2086 reaching_def = get_reaching_def (arg);
2089 /* Update the argument if there is a reaching def. */
2090 if (reaching_def)
2092 gimple stmt;
2093 source_location locus;
2094 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2096 SET_USE (arg_p, reaching_def);
2097 stmt = SSA_NAME_DEF_STMT (reaching_def);
2099 /* Single element PHI nodes behave like copies, so get the
2100 location from the phi argument. */
2101 if (gimple_code (stmt) == GIMPLE_PHI &&
2102 gimple_phi_num_args (stmt) == 1)
2103 locus = gimple_phi_arg_location (stmt, 0);
2104 else
2105 locus = gimple_location (stmt);
2107 gimple_phi_arg_set_location (phi, arg_i, locus);
2111 if (e->flags & EDGE_ABNORMAL)
2112 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2118 /* Initialization of block data structures for the incremental SSA
2119 update pass. Create a block local stack of reaching definitions
2120 for new SSA names produced in this block (BLOCK_DEFS). Register
2121 new definitions for every PHI node in the block. */
2123 static void
2124 rewrite_update_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2125 basic_block bb)
2127 bool is_abnormal_phi;
2128 gimple_stmt_iterator gsi;
2130 if (dump_file && (dump_flags & TDF_DETAILS))
2131 fprintf (dump_file, "Registering new PHI nodes in block #%d\n",
2132 bb->index);
2134 /* Mark the unwind point for this block. */
2135 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
2137 if (!bitmap_bit_p (blocks_to_update, bb->index))
2138 return;
2140 /* Mark the LHS if any of the arguments flows through an abnormal
2141 edge. */
2142 is_abnormal_phi = bb_has_abnormal_pred (bb);
2144 /* If any of the PHI nodes is a replacement for a name in
2145 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2146 register it as a new definition for its corresponding name. Also
2147 register definitions for names whose underlying symbols are
2148 marked for renaming. */
2149 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2151 tree lhs, lhs_sym;
2152 gimple phi = gsi_stmt (gsi);
2154 if (!register_defs_p (phi))
2155 continue;
2157 lhs = gimple_phi_result (phi);
2158 lhs_sym = SSA_NAME_VAR (lhs);
2160 if (marked_for_renaming (lhs_sym))
2161 register_new_update_single (lhs, lhs_sym);
2162 else
2165 /* If LHS is a new name, register a new definition for all
2166 the names replaced by LHS. */
2167 if (is_new_name (lhs))
2168 register_new_update_set (lhs, names_replaced_by (lhs));
2170 /* If LHS is an OLD name, register it as a new definition
2171 for itself. */
2172 if (is_old_name (lhs))
2173 register_new_update_single (lhs, lhs);
2176 if (is_abnormal_phi)
2177 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2180 /* Step 2. Rewrite every variable used in each statement in the block. */
2181 if (TEST_BIT (interesting_blocks, bb->index))
2183 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2184 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2185 rewrite_update_stmt (gsi_stmt (gsi), gsi);
2188 /* Step 3. Update PHI nodes. */
2189 rewrite_update_phi_arguments (bb);
2192 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2193 the current reaching definition of every name re-written in BB to
2194 the original reaching definition before visiting BB. This
2195 unwinding must be done in the opposite order to what is done in
2196 register_new_update_set. */
2198 static void
2199 rewrite_update_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2200 basic_block bb ATTRIBUTE_UNUSED)
2202 while (VEC_length (tree, block_defs_stack) > 0)
2204 tree var = VEC_pop (tree, block_defs_stack);
2205 tree saved_def;
2207 /* NULL indicates the unwind stop point for this block (see
2208 rewrite_update_enter_block). */
2209 if (var == NULL)
2210 return;
2212 saved_def = VEC_pop (tree, block_defs_stack);
2213 get_common_info (var)->current_def = saved_def;
2218 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2219 form.
2221 ENTRY indicates the block where to start. Every block dominated by
2222 ENTRY will be rewritten.
2224 WHAT indicates what actions will be taken by the renamer (see enum
2225 rewrite_mode).
2227 BLOCKS are the set of interesting blocks for the dominator walker
2228 to process. If this set is NULL, then all the nodes dominated
2229 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2230 are not present in BLOCKS are ignored. */
2232 static void
2233 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2235 struct dom_walk_data walk_data;
2237 /* Rewrite all the basic blocks in the program. */
2238 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2240 /* Setup callbacks for the generic dominator tree walker. */
2241 memset (&walk_data, 0, sizeof (walk_data));
2243 walk_data.dom_direction = CDI_DOMINATORS;
2245 if (what == REWRITE_ALL)
2247 walk_data.before_dom_children = rewrite_enter_block;
2248 walk_data.after_dom_children = rewrite_leave_block;
2250 else if (what == REWRITE_UPDATE)
2252 walk_data.before_dom_children = rewrite_update_enter_block;
2253 walk_data.after_dom_children = rewrite_update_leave_block;
2255 else
2256 gcc_unreachable ();
2258 block_defs_stack = VEC_alloc (tree, heap, 10);
2260 /* Initialize the dominator walker. */
2261 init_walk_dominator_tree (&walk_data);
2263 /* Recursively walk the dominator tree rewriting each statement in
2264 each basic block. */
2265 walk_dominator_tree (&walk_data, entry);
2267 /* Finalize the dominator walker. */
2268 fini_walk_dominator_tree (&walk_data);
2270 /* Debugging dumps. */
2271 if (dump_file && (dump_flags & TDF_STATS))
2273 dump_dfa_stats (dump_file);
2274 if (var_infos)
2275 dump_tree_ssa_stats (dump_file);
2278 VEC_free (tree, heap, block_defs_stack);
2280 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2284 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2285 at the start of each block, and call mark_def_sites for each statement. */
2287 static void
2288 mark_def_sites_block (struct dom_walk_data *walk_data, basic_block bb)
2290 struct mark_def_sites_global_data *gd;
2291 bitmap kills;
2292 gimple_stmt_iterator gsi;
2294 gd = (struct mark_def_sites_global_data *) walk_data->global_data;
2295 kills = gd->kills;
2297 bitmap_clear (kills);
2298 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2299 mark_def_sites (bb, gsi_stmt (gsi), kills);
2303 /* Mark the definition site blocks for each variable, so that we know
2304 where the variable is actually live.
2306 The INTERESTING_BLOCKS global will be filled in with all the blocks
2307 that should be processed by the renamer. It is assumed that the
2308 caller has already initialized and zeroed it. */
2310 static void
2311 mark_def_site_blocks (void)
2313 struct dom_walk_data walk_data;
2314 struct mark_def_sites_global_data mark_def_sites_global_data;
2316 /* Setup callbacks for the generic dominator tree walker to find and
2317 mark definition sites. */
2318 walk_data.dom_direction = CDI_DOMINATORS;
2319 walk_data.initialize_block_local_data = NULL;
2320 walk_data.before_dom_children = mark_def_sites_block;
2321 walk_data.after_dom_children = NULL;
2323 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2324 large enough to accommodate all the variables referenced in the
2325 function, not just the ones we are renaming. */
2326 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
2327 walk_data.global_data = &mark_def_sites_global_data;
2329 /* We do not have any local data. */
2330 walk_data.block_local_data_size = 0;
2332 /* Initialize the dominator walker. */
2333 init_walk_dominator_tree (&walk_data);
2335 /* Recursively walk the dominator tree. */
2336 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
2338 /* Finalize the dominator walker. */
2339 fini_walk_dominator_tree (&walk_data);
2341 /* We no longer need this bitmap, clear and free it. */
2342 BITMAP_FREE (mark_def_sites_global_data.kills);
2346 /* Initialize internal data needed during renaming. */
2348 static void
2349 init_ssa_renamer (void)
2351 cfun->gimple_df->in_ssa_p = false;
2353 /* Allocate memory for the DEF_BLOCKS hash table. */
2354 gcc_assert (var_infos == NULL);
2355 var_infos = htab_create (VEC_length (tree, cfun->local_decls),
2356 var_info_hash, var_info_eq, NULL);
2358 bitmap_obstack_initialize (&update_ssa_obstack);
2362 /* Deallocate internal data structures used by the renamer. */
2364 static void
2365 fini_ssa_renamer (void)
2367 if (var_infos)
2369 htab_delete (var_infos);
2370 var_infos = NULL;
2373 bitmap_obstack_release (&update_ssa_obstack);
2375 cfun->gimple_df->ssa_renaming_needed = 0;
2376 cfun->gimple_df->rename_vops = 0;
2377 cfun->gimple_df->in_ssa_p = true;
2380 /* Main entry point into the SSA builder. The renaming process
2381 proceeds in four main phases:
2383 1- Compute dominance frontier and immediate dominators, needed to
2384 insert PHI nodes and rename the function in dominator tree
2385 order.
2387 2- Find and mark all the blocks that define variables
2388 (mark_def_site_blocks).
2390 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2392 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2394 Steps 3 and 4 are done using the dominator tree walker
2395 (walk_dominator_tree). */
2397 static unsigned int
2398 rewrite_into_ssa (void)
2400 bitmap_head *dfs;
2401 basic_block bb;
2402 unsigned i;
2404 /* Initialize operand data structures. */
2405 init_ssa_operands (cfun);
2407 /* Initialize internal data needed by the renamer. */
2408 init_ssa_renamer ();
2410 /* Initialize the set of interesting blocks. The callback
2411 mark_def_sites will add to this set those blocks that the renamer
2412 should process. */
2413 interesting_blocks = sbitmap_alloc (last_basic_block);
2414 sbitmap_zero (interesting_blocks);
2416 /* Initialize dominance frontier. */
2417 dfs = XNEWVEC (bitmap_head, last_basic_block);
2418 FOR_EACH_BB (bb)
2419 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
2421 /* 1- Compute dominance frontiers. */
2422 calculate_dominance_info (CDI_DOMINATORS);
2423 compute_dominance_frontiers (dfs);
2425 /* 2- Find and mark definition sites. */
2426 mark_def_site_blocks ();
2428 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2429 insert_phi_nodes (dfs);
2431 /* 4- Rename all the blocks. */
2432 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL);
2434 /* Free allocated memory. */
2435 FOR_EACH_BB (bb)
2436 bitmap_clear (&dfs[bb->index]);
2437 free (dfs);
2439 sbitmap_free (interesting_blocks);
2441 fini_ssa_renamer ();
2443 /* Try to get rid of all gimplifier generated temporaries by making
2444 its SSA names anonymous. This way we can garbage collect them
2445 all after removing unused locals which we do in our TODO. */
2446 for (i = 1; i < num_ssa_names; ++i)
2448 tree decl, name = ssa_name (i);
2449 if (!name
2450 || SSA_NAME_IS_DEFAULT_DEF (name))
2451 continue;
2452 decl = SSA_NAME_VAR (name);
2453 if (decl
2454 && TREE_CODE (decl) == VAR_DECL
2455 && !VAR_DECL_IS_VIRTUAL_OPERAND (decl)
2456 && DECL_ARTIFICIAL (decl)
2457 && DECL_IGNORED_P (decl)
2458 && !DECL_NAME (decl))
2459 SET_SSA_NAME_VAR_OR_IDENTIFIER (name, NULL_TREE);
2462 return 0;
2466 struct gimple_opt_pass pass_build_ssa =
2469 GIMPLE_PASS,
2470 "ssa", /* name */
2471 NULL, /* gate */
2472 rewrite_into_ssa, /* execute */
2473 NULL, /* sub */
2474 NULL, /* next */
2475 0, /* static_pass_number */
2476 TV_TREE_SSA_OTHER, /* tv_id */
2477 PROP_cfg, /* properties_required */
2478 PROP_ssa, /* properties_provided */
2479 0, /* properties_destroyed */
2480 0, /* todo_flags_start */
2481 TODO_verify_ssa
2482 | TODO_remove_unused_locals /* todo_flags_finish */
2487 /* Mark the definition of VAR at STMT and BB as interesting for the
2488 renamer. BLOCKS is the set of blocks that need updating. */
2490 static void
2491 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2493 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2494 set_register_defs (stmt, true);
2496 if (insert_phi_p)
2498 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2500 set_def_block (var, bb, is_phi_p);
2502 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2503 site for both itself and all the old names replaced by it. */
2504 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2506 bitmap_iterator bi;
2507 unsigned i;
2508 bitmap set = names_replaced_by (var);
2509 if (set)
2510 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2511 set_def_block (ssa_name (i), bb, is_phi_p);
2517 /* Mark the use of VAR at STMT and BB as interesting for the
2518 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2519 nodes. */
2521 static inline void
2522 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2524 basic_block def_bb = gimple_bb (stmt);
2526 mark_block_for_update (def_bb);
2527 mark_block_for_update (bb);
2529 if (gimple_code (stmt) == GIMPLE_PHI)
2530 mark_phi_for_rewrite (def_bb, stmt);
2531 else
2533 set_rewrite_uses (stmt, true);
2535 if (is_gimple_debug (stmt))
2536 return;
2539 /* If VAR has not been defined in BB, then it is live-on-entry
2540 to BB. Note that we cannot just use the block holding VAR's
2541 definition because if VAR is one of the names in OLD_SSA_NAMES,
2542 it will have several definitions (itself and all the names that
2543 replace it). */
2544 if (insert_phi_p)
2546 struct def_blocks_d *db_p = get_def_blocks_for (get_common_info (var));
2547 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2548 set_livein_block (var, bb);
2553 /* Do a dominator walk starting at BB processing statements that
2554 reference symbols in SSA operands. This is very similar to
2555 mark_def_sites, but the scan handles statements whose operands may
2556 already be SSA names.
2558 If INSERT_PHI_P is true, mark those uses as live in the
2559 corresponding block. This is later used by the PHI placement
2560 algorithm to make PHI pruning decisions.
2562 FIXME. Most of this would be unnecessary if we could associate a
2563 symbol to all the SSA names that reference it. But that
2564 sounds like it would be expensive to maintain. Still, it
2565 would be interesting to see if it makes better sense to do
2566 that. */
2568 static void
2569 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2571 basic_block son;
2572 gimple_stmt_iterator si;
2573 edge e;
2574 edge_iterator ei;
2576 mark_block_for_update (bb);
2578 /* Process PHI nodes marking interesting those that define or use
2579 the symbols that we are interested in. */
2580 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2582 gimple phi = gsi_stmt (si);
2583 tree lhs_sym, lhs = gimple_phi_result (phi);
2585 if (TREE_CODE (lhs) == SSA_NAME
2586 && (! virtual_operand_p (lhs)
2587 || ! cfun->gimple_df->rename_vops))
2588 continue;
2590 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2591 mark_for_renaming (lhs_sym);
2592 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2594 /* Mark the uses in phi nodes as interesting. It would be more correct
2595 to process the arguments of the phi nodes of the successor edges of
2596 BB at the end of prepare_block_for_update, however, that turns out
2597 to be significantly more expensive. Doing it here is conservatively
2598 correct -- it may only cause us to believe a value to be live in a
2599 block that also contains its definition, and thus insert a few more
2600 phi nodes for it. */
2601 FOR_EACH_EDGE (e, ei, bb->preds)
2602 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2605 /* Process the statements. */
2606 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2608 gimple stmt;
2609 ssa_op_iter i;
2610 use_operand_p use_p;
2611 def_operand_p def_p;
2613 stmt = gsi_stmt (si);
2615 if (cfun->gimple_df->rename_vops
2616 && gimple_vuse (stmt))
2618 tree use = gimple_vuse (stmt);
2619 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2620 mark_for_renaming (sym);
2621 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2624 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
2626 tree use = USE_FROM_PTR (use_p);
2627 if (!DECL_P (use))
2628 continue;
2629 mark_for_renaming (use);
2630 mark_use_interesting (use, stmt, bb, insert_phi_p);
2633 if (cfun->gimple_df->rename_vops
2634 && gimple_vdef (stmt))
2636 tree def = gimple_vdef (stmt);
2637 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2638 mark_for_renaming (sym);
2639 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2642 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
2644 tree def = DEF_FROM_PTR (def_p);
2645 if (!DECL_P (def))
2646 continue;
2647 mark_for_renaming (def);
2648 mark_def_interesting (def, stmt, bb, insert_phi_p);
2652 /* Now visit all the blocks dominated by BB. */
2653 for (son = first_dom_son (CDI_DOMINATORS, bb);
2654 son;
2655 son = next_dom_son (CDI_DOMINATORS, son))
2656 prepare_block_for_update (son, insert_phi_p);
2660 /* Helper for prepare_names_to_update. Mark all the use sites for
2661 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2662 prepare_names_to_update. */
2664 static void
2665 prepare_use_sites_for (tree name, bool insert_phi_p)
2667 use_operand_p use_p;
2668 imm_use_iterator iter;
2670 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2672 gimple stmt = USE_STMT (use_p);
2673 basic_block bb = gimple_bb (stmt);
2675 if (gimple_code (stmt) == GIMPLE_PHI)
2677 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2678 edge e = gimple_phi_arg_edge (stmt, ix);
2679 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2681 else
2683 /* For regular statements, mark this as an interesting use
2684 for NAME. */
2685 mark_use_interesting (name, stmt, bb, insert_phi_p);
2691 /* Helper for prepare_names_to_update. Mark the definition site for
2692 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2693 prepare_names_to_update. */
2695 static void
2696 prepare_def_site_for (tree name, bool insert_phi_p)
2698 gimple stmt;
2699 basic_block bb;
2701 gcc_assert (names_to_release == NULL
2702 || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
2704 stmt = SSA_NAME_DEF_STMT (name);
2705 bb = gimple_bb (stmt);
2706 if (bb)
2708 gcc_assert (bb->index < last_basic_block);
2709 mark_block_for_update (bb);
2710 mark_def_interesting (name, stmt, bb, insert_phi_p);
2715 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2716 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2717 PHI nodes for newly created names. */
2719 static void
2720 prepare_names_to_update (bool insert_phi_p)
2722 unsigned i = 0;
2723 bitmap_iterator bi;
2724 sbitmap_iterator sbi;
2726 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2727 remove it from NEW_SSA_NAMES so that we don't try to visit its
2728 defining basic block (which most likely doesn't exist). Notice
2729 that we cannot do the same with names in OLD_SSA_NAMES because we
2730 want to replace existing instances. */
2731 if (names_to_release)
2732 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2733 RESET_BIT (new_ssa_names, i);
2735 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2736 names may be considered to be live-in on blocks that contain
2737 definitions for their replacements. */
2738 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2739 prepare_def_site_for (ssa_name (i), insert_phi_p);
2741 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2742 OLD_SSA_NAMES, but we have to ignore its definition site. */
2743 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2745 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2746 prepare_def_site_for (ssa_name (i), insert_phi_p);
2747 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2752 /* Dump all the names replaced by NAME to FILE. */
2754 void
2755 dump_names_replaced_by (FILE *file, tree name)
2757 unsigned i;
2758 bitmap old_set;
2759 bitmap_iterator bi;
2761 print_generic_expr (file, name, 0);
2762 fprintf (file, " -> { ");
2764 old_set = names_replaced_by (name);
2765 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2767 print_generic_expr (file, ssa_name (i), 0);
2768 fprintf (file, " ");
2771 fprintf (file, "}\n");
2775 /* Dump all the names replaced by NAME to stderr. */
2777 DEBUG_FUNCTION void
2778 debug_names_replaced_by (tree name)
2780 dump_names_replaced_by (stderr, name);
2784 /* Dump SSA update information to FILE. */
2786 void
2787 dump_update_ssa (FILE *file)
2789 unsigned i = 0;
2790 bitmap_iterator bi;
2792 if (!need_ssa_update_p (cfun))
2793 return;
2795 if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2797 sbitmap_iterator sbi;
2799 fprintf (file, "\nSSA replacement table\n");
2800 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2801 "O_1, ..., O_j\n\n");
2803 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2804 dump_names_replaced_by (file, ssa_name (i));
2807 if (symbols_to_rename_set && !bitmap_empty_p (symbols_to_rename_set))
2809 fprintf (file, "\nSymbols to be put in SSA form\n");
2810 dump_decl_set (file, symbols_to_rename_set);
2811 fprintf (file, "\n");
2814 if (names_to_release && !bitmap_empty_p (names_to_release))
2816 fprintf (file, "\nSSA names to release after updating the SSA web\n\n");
2817 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2819 print_generic_expr (file, ssa_name (i), 0);
2820 fprintf (file, " ");
2822 fprintf (file, "\n");
2827 /* Dump SSA update information to stderr. */
2829 DEBUG_FUNCTION void
2830 debug_update_ssa (void)
2832 dump_update_ssa (stderr);
2836 /* Initialize data structures used for incremental SSA updates. */
2838 static void
2839 init_update_ssa (struct function *fn)
2841 /* Reserve more space than the current number of names. The calls to
2842 add_new_name_mapping are typically done after creating new SSA
2843 names, so we'll need to reallocate these arrays. */
2844 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2845 sbitmap_zero (old_ssa_names);
2847 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2848 sbitmap_zero (new_ssa_names);
2850 bitmap_obstack_initialize (&update_ssa_obstack);
2852 names_to_release = NULL;
2853 update_ssa_initialized_fn = fn;
2857 /* Deallocate data structures used for incremental SSA updates. */
2859 void
2860 delete_update_ssa (void)
2862 unsigned i;
2863 bitmap_iterator bi;
2865 sbitmap_free (old_ssa_names);
2866 old_ssa_names = NULL;
2868 sbitmap_free (new_ssa_names);
2869 new_ssa_names = NULL;
2871 BITMAP_FREE (symbols_to_rename_set);
2872 symbols_to_rename_set = NULL;
2873 VEC_free (tree, heap, symbols_to_rename);
2875 if (names_to_release)
2877 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2878 release_ssa_name (ssa_name (i));
2879 BITMAP_FREE (names_to_release);
2882 clear_ssa_name_info ();
2884 fini_ssa_renamer ();
2886 if (blocks_with_phis_to_rewrite)
2887 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2889 gimple_vec phis = VEC_index (gimple_vec, phis_to_rewrite, i);
2891 VEC_free (gimple, heap, phis);
2892 VEC_replace (gimple_vec, phis_to_rewrite, i, NULL);
2895 BITMAP_FREE (blocks_with_phis_to_rewrite);
2896 BITMAP_FREE (blocks_to_update);
2898 update_ssa_initialized_fn = NULL;
2902 /* Create a new name for OLD_NAME in statement STMT and replace the
2903 operand pointed to by DEF_P with the newly created name. Return
2904 the new name and register the replacement mapping <NEW, OLD> in
2905 update_ssa's tables. */
2907 tree
2908 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2910 tree new_name = duplicate_ssa_name (old_name, stmt);
2912 SET_DEF (def, new_name);
2914 if (gimple_code (stmt) == GIMPLE_PHI)
2916 basic_block bb = gimple_bb (stmt);
2918 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2919 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = bb_has_abnormal_pred (bb);
2922 register_new_name_mapping (new_name, old_name);
2924 /* For the benefit of passes that will be updating the SSA form on
2925 their own, set the current reaching definition of OLD_NAME to be
2926 NEW_NAME. */
2927 get_ssa_name_ann (old_name)->info.current_def = new_name;
2929 return new_name;
2933 /* Register name NEW to be a replacement for name OLD. This function
2934 must be called for every replacement that should be performed by
2935 update_ssa. */
2937 void
2938 register_new_name_mapping (tree new_tree, tree old)
2940 if (!update_ssa_initialized_fn)
2941 init_update_ssa (cfun);
2943 gcc_assert (update_ssa_initialized_fn == cfun);
2945 add_new_name_mapping (new_tree, old);
2949 /* Mark virtual operands of FN for renaming by update_ssa. */
2951 void
2952 mark_virtual_operands_for_renaming (struct function *fn)
2954 fn->gimple_df->ssa_renaming_needed = 1;
2955 fn->gimple_df->rename_vops = 1;
2959 /* Return true if there is any work to be done by update_ssa
2960 for function FN. */
2962 bool
2963 need_ssa_update_p (struct function *fn)
2965 gcc_assert (fn != NULL);
2966 return (update_ssa_initialized_fn == fn
2967 || (fn->gimple_df && fn->gimple_df->ssa_renaming_needed));
2970 /* Return true if name N has been registered in the replacement table. */
2972 bool
2973 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2975 if (!update_ssa_initialized_fn)
2976 return false;
2978 gcc_assert (update_ssa_initialized_fn == cfun);
2980 return is_new_name (n) || is_old_name (n);
2984 /* Mark NAME to be released after update_ssa has finished. */
2986 void
2987 release_ssa_name_after_update_ssa (tree name)
2989 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2991 if (names_to_release == NULL)
2992 names_to_release = BITMAP_ALLOC (NULL);
2994 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2998 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2999 frontier information. BLOCKS is the set of blocks to be updated.
3001 This is slightly different than the regular PHI insertion
3002 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
3003 real names (i.e., GIMPLE registers) are inserted:
3005 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
3006 nodes inside the region affected by the block that defines VAR
3007 and the blocks that define all its replacements. All these
3008 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
3010 First, we compute the entry point to the region (ENTRY). This is
3011 given by the nearest common dominator to all the definition
3012 blocks. When computing the iterated dominance frontier (IDF), any
3013 block not strictly dominated by ENTRY is ignored.
3015 We then call the standard PHI insertion algorithm with the pruned
3016 IDF.
3018 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
3019 names is not pruned. PHI nodes are inserted at every IDF block. */
3021 static void
3022 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks,
3023 unsigned update_flags)
3025 basic_block entry;
3026 struct def_blocks_d *db;
3027 bitmap idf, pruned_idf;
3028 bitmap_iterator bi;
3029 unsigned i;
3031 if (TREE_CODE (var) == SSA_NAME)
3032 gcc_checking_assert (is_old_name (var));
3033 else
3034 gcc_checking_assert (marked_for_renaming (var));
3036 /* Get all the definition sites for VAR. */
3037 db = find_def_blocks_for (var);
3039 /* No need to do anything if there were no definitions to VAR. */
3040 if (db == NULL || bitmap_empty_p (db->def_blocks))
3041 return;
3043 /* Compute the initial iterated dominance frontier. */
3044 idf = compute_idf (db->def_blocks, dfs);
3045 pruned_idf = BITMAP_ALLOC (NULL);
3047 if (TREE_CODE (var) == SSA_NAME)
3049 if (update_flags == TODO_update_ssa)
3051 /* If doing regular SSA updates for GIMPLE registers, we are
3052 only interested in IDF blocks dominated by the nearest
3053 common dominator of all the definition blocks. */
3054 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
3055 db->def_blocks);
3056 if (entry != ENTRY_BLOCK_PTR)
3057 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3058 if (BASIC_BLOCK (i) != entry
3059 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
3060 bitmap_set_bit (pruned_idf, i);
3062 else
3064 /* Otherwise, do not prune the IDF for VAR. */
3065 gcc_assert (update_flags == TODO_update_ssa_full_phi);
3066 bitmap_copy (pruned_idf, idf);
3069 else
3071 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3072 for the first time, so we need to compute the full IDF for
3073 it. */
3074 bitmap_copy (pruned_idf, idf);
3077 if (!bitmap_empty_p (pruned_idf))
3079 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3080 are included in the region to be updated. The feeding blocks
3081 are important to guarantee that the PHI arguments are renamed
3082 properly. */
3084 /* FIXME, this is not needed if we are updating symbols. We are
3085 already starting at the ENTRY block anyway. */
3086 bitmap_ior_into (blocks, pruned_idf);
3087 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3089 edge e;
3090 edge_iterator ei;
3091 basic_block bb = BASIC_BLOCK (i);
3093 FOR_EACH_EDGE (e, ei, bb->preds)
3094 if (e->src->index >= 0)
3095 bitmap_set_bit (blocks, e->src->index);
3098 insert_phi_nodes_for (var, pruned_idf, true);
3101 BITMAP_FREE (pruned_idf);
3102 BITMAP_FREE (idf);
3106 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3107 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3109 1- The names in OLD_SSA_NAMES dominated by the definitions of
3110 NEW_SSA_NAMES are all re-written to be reached by the
3111 appropriate definition from NEW_SSA_NAMES.
3113 2- If needed, new PHI nodes are added to the iterated dominance
3114 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3116 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3117 calling register_new_name_mapping for every pair of names that the
3118 caller wants to replace.
3120 The caller identifies the new names that have been inserted and the
3121 names that need to be replaced by calling register_new_name_mapping
3122 for every pair <NEW, OLD>. Note that the function assumes that the
3123 new names have already been inserted in the IL.
3125 For instance, given the following code:
3127 1 L0:
3128 2 x_1 = PHI (0, x_5)
3129 3 if (x_1 < 10)
3130 4 if (x_1 > 7)
3131 5 y_2 = 0
3132 6 else
3133 7 y_3 = x_1 + x_7
3134 8 endif
3135 9 x_5 = x_1 + 1
3136 10 goto L0;
3137 11 endif
3139 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3141 1 L0:
3142 2 x_1 = PHI (0, x_5)
3143 3 if (x_1 < 10)
3144 4 x_10 = ...
3145 5 if (x_1 > 7)
3146 6 y_2 = 0
3147 7 else
3148 8 x_11 = ...
3149 9 y_3 = x_1 + x_7
3150 10 endif
3151 11 x_5 = x_1 + 1
3152 12 goto L0;
3153 13 endif
3155 We want to replace all the uses of x_1 with the new definitions of
3156 x_10 and x_11. Note that the only uses that should be replaced are
3157 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3158 *not* be replaced (this is why we cannot just mark symbol 'x' for
3159 renaming).
3161 Additionally, we may need to insert a PHI node at line 11 because
3162 that is a merge point for x_10 and x_11. So the use of x_1 at line
3163 11 will be replaced with the new PHI node. The insertion of PHI
3164 nodes is optional. They are not strictly necessary to preserve the
3165 SSA form, and depending on what the caller inserted, they may not
3166 even be useful for the optimizers. UPDATE_FLAGS controls various
3167 aspects of how update_ssa operates, see the documentation for
3168 TODO_update_ssa*. */
3170 void
3171 update_ssa (unsigned update_flags)
3173 basic_block bb, start_bb;
3174 bitmap_iterator bi;
3175 unsigned i = 0;
3176 bool insert_phi_p;
3177 sbitmap_iterator sbi;
3178 tree sym;
3180 /* Only one update flag should be set. */
3181 gcc_assert (update_flags == TODO_update_ssa
3182 || update_flags == TODO_update_ssa_no_phi
3183 || update_flags == TODO_update_ssa_full_phi
3184 || update_flags == TODO_update_ssa_only_virtuals);
3186 if (!need_ssa_update_p (cfun))
3187 return;
3189 timevar_push (TV_TREE_SSA_INCREMENTAL);
3191 if (dump_file && (dump_flags & TDF_DETAILS))
3192 fprintf (dump_file, "\nUpdating SSA:\n");
3194 if (!update_ssa_initialized_fn)
3195 init_update_ssa (cfun);
3196 else if (update_flags == TODO_update_ssa_only_virtuals)
3198 /* If we only need to update virtuals, remove all the mappings for
3199 real names before proceeding. The caller is responsible for
3200 having dealt with the name mappings before calling update_ssa. */
3201 sbitmap_zero (old_ssa_names);
3202 sbitmap_zero (new_ssa_names);
3205 gcc_assert (update_ssa_initialized_fn == cfun);
3207 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3208 if (!phis_to_rewrite)
3209 phis_to_rewrite = VEC_alloc (gimple_vec, heap, last_basic_block + 1);
3210 blocks_to_update = BITMAP_ALLOC (NULL);
3212 /* Ensure that the dominance information is up-to-date. */
3213 calculate_dominance_info (CDI_DOMINATORS);
3215 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3217 /* If there are names defined in the replacement table, prepare
3218 definition and use sites for all the names in NEW_SSA_NAMES and
3219 OLD_SSA_NAMES. */
3220 if (sbitmap_first_set_bit (new_ssa_names) >= 0)
3222 prepare_names_to_update (insert_phi_p);
3224 /* If all the names in NEW_SSA_NAMES had been marked for
3225 removal, and there are no symbols to rename, then there's
3226 nothing else to do. */
3227 if (sbitmap_first_set_bit (new_ssa_names) < 0
3228 && !cfun->gimple_df->ssa_renaming_needed)
3229 goto done;
3232 /* Next, determine the block at which to start the renaming process. */
3233 if (cfun->gimple_df->ssa_renaming_needed)
3235 /* If we rename bare symbols initialize the mapping to
3236 auxiliar info we need to keep track of. */
3237 var_infos = htab_create (47, var_info_hash, var_info_eq, NULL);
3239 /* If we have to rename some symbols from scratch, we need to
3240 start the process at the root of the CFG. FIXME, it should
3241 be possible to determine the nearest block that had a
3242 definition for each of the symbols that are marked for
3243 updating. For now this seems more work than it's worth. */
3244 start_bb = ENTRY_BLOCK_PTR;
3246 /* Traverse the CFG looking for existing definitions and uses of
3247 symbols in SSA operands. Mark interesting blocks and
3248 statements and set local live-in information for the PHI
3249 placement heuristics. */
3250 prepare_block_for_update (start_bb, insert_phi_p);
3252 #ifdef ENABLE_CHECKING
3253 for (i = 1; i < num_ssa_names; ++i)
3255 tree name = ssa_name (i);
3256 if (!name
3257 || virtual_operand_p (name))
3258 continue;
3260 /* For all but virtual operands, which do not have SSA names
3261 with overlapping life ranges, ensure that symbols marked
3262 for renaming do not have existing SSA names associated with
3263 them as we do not re-write them out-of-SSA before going
3264 into SSA for the remaining symbol uses. */
3265 if (marked_for_renaming (SSA_NAME_VAR (name)))
3267 fprintf (stderr, "Existing SSA name for symbol marked for "
3268 "renaming: ");
3269 print_generic_expr (stderr, name, TDF_SLIM);
3270 fprintf (stderr, "\n");
3271 internal_error ("SSA corruption");
3274 #endif
3276 else
3278 /* Otherwise, the entry block to the region is the nearest
3279 common dominator for the blocks in BLOCKS. */
3280 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3281 blocks_to_update);
3284 /* If requested, insert PHI nodes at the iterated dominance frontier
3285 of every block, creating new definitions for names in OLD_SSA_NAMES
3286 and for symbols found. */
3287 if (insert_phi_p)
3289 bitmap_head *dfs;
3291 /* If the caller requested PHI nodes to be added, compute
3292 dominance frontiers. */
3293 dfs = XNEWVEC (bitmap_head, last_basic_block);
3294 FOR_EACH_BB (bb)
3295 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
3296 compute_dominance_frontiers (dfs);
3298 if (sbitmap_first_set_bit (old_ssa_names) >= 0)
3300 sbitmap_iterator sbi;
3302 /* insert_update_phi_nodes_for will call add_new_name_mapping
3303 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3304 will grow while we are traversing it (but it will not
3305 gain any new members). Copy OLD_SSA_NAMES to a temporary
3306 for traversal. */
3307 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (old_ssa_names));
3308 sbitmap_copy (tmp, old_ssa_names);
3309 EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
3310 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3311 update_flags);
3312 sbitmap_free (tmp);
3315 FOR_EACH_VEC_ELT (tree, symbols_to_rename, i, sym)
3316 insert_updated_phi_nodes_for (sym, dfs, blocks_to_update,
3317 update_flags);
3319 FOR_EACH_BB (bb)
3320 bitmap_clear (&dfs[bb->index]);
3321 free (dfs);
3323 /* Insertion of PHI nodes may have added blocks to the region.
3324 We need to re-compute START_BB to include the newly added
3325 blocks. */
3326 if (start_bb != ENTRY_BLOCK_PTR)
3327 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3328 blocks_to_update);
3331 /* Reset the current definition for name and symbol before renaming
3332 the sub-graph. */
3333 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3334 get_ssa_name_ann (ssa_name (i))->info.current_def = NULL_TREE;
3336 FOR_EACH_VEC_ELT (tree, symbols_to_rename, i, sym)
3337 get_var_info (sym)->info.current_def = NULL_TREE;
3339 /* Now start the renaming process at START_BB. */
3340 interesting_blocks = sbitmap_alloc (last_basic_block);
3341 sbitmap_zero (interesting_blocks);
3342 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3343 SET_BIT (interesting_blocks, i);
3345 rewrite_blocks (start_bb, REWRITE_UPDATE);
3347 sbitmap_free (interesting_blocks);
3349 /* Debugging dumps. */
3350 if (dump_file)
3352 int c;
3353 unsigned i;
3355 dump_update_ssa (dump_file);
3357 fprintf (dump_file, "Incremental SSA update started at block: %d\n",
3358 start_bb->index);
3360 c = 0;
3361 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3362 c++;
3363 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3364 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n",
3365 c, PERCENT (c, last_basic_block));
3367 if (dump_flags & TDF_DETAILS)
3369 fprintf (dump_file, "Affected blocks:");
3370 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3371 fprintf (dump_file, " %u", i);
3372 fprintf (dump_file, "\n");
3375 fprintf (dump_file, "\n\n");
3378 /* Free allocated memory. */
3379 done:
3380 delete_update_ssa ();
3382 timevar_pop (TV_TREE_SSA_INCREMENTAL);