* tree-ssa-pre.c (grand_bitmap_obstack): New.
[official-gcc.git] / gcc / tree-ssa-live.c
blob014ec2d552623c7f1402db237add76b0c92a448c
1 /* Liveness for SSA trees.
2 Copyright (C) 2003 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "basic-block.h"
29 #include "function.h"
30 #include "diagnostic.h"
31 #include "bitmap.h"
32 #include "tree-flow.h"
33 #include "tree-gimple.h"
34 #include "tree-inline.h"
35 #include "varray.h"
36 #include "timevar.h"
37 #include "tree-alias-common.h"
38 #include "hashtab.h"
39 #include "tree-dump.h"
40 #include "tree-ssa-live.h"
42 static void live_worklist (tree_live_info_p, varray_type, int);
43 static tree_live_info_p new_tree_live_info (var_map);
44 static inline void set_if_valid (var_map, bitmap, tree);
45 static inline void add_livein_if_notdef (tree_live_info_p, bitmap,
46 tree, basic_block);
47 static inline void register_ssa_partition (var_map, tree, bool);
48 static inline void add_conflicts_if_valid (tpa_p, conflict_graph,
49 var_map, bitmap, tree);
50 static partition_pair_p find_partition_pair (coalesce_list_p, int, int, bool);
52 /* This is where the mapping from SSA version number to real storage variable
53 is tracked.
55 All SSA versions of the same variable may not ultimately be mapped back to
56 the same real variable. In that instance, we need to detect the live
57 range overlap, and give one of the variable new storage. The vector
58 'partition_to_var' tracks which partition maps to which variable.
60 Given a VAR, it is sometimes desirable to know which partition that VAR
61 represents. There is an additional field in the variable annotation to
62 track that information. */
64 /* Create a variable partition map of SIZE, initialize and return it. */
66 var_map
67 init_var_map (int size)
69 var_map map;
71 map = (var_map) xmalloc (sizeof (struct _var_map));
72 map->var_partition = partition_new (size);
73 map->partition_to_var
74 = (tree *)xmalloc (size * sizeof (tree));
75 memset (map->partition_to_var, 0, size * sizeof (tree));
77 map->partition_to_compact = NULL;
78 map->compact_to_partition = NULL;
79 map->num_partitions = size;
80 map->partition_size = size;
81 map->ref_count = NULL;
82 return map;
86 /* Free memory associated with MAP. */
88 void
89 delete_var_map (var_map map)
91 free (map->partition_to_var);
92 partition_delete (map->var_partition);
93 if (map->partition_to_compact)
94 free (map->partition_to_compact);
95 if (map->compact_to_partition)
96 free (map->compact_to_partition);
97 if (map->ref_count)
98 free (map->ref_count);
99 free (map);
103 /* This function will combine the partitions in MAP for VAR1 and VAR2. It
104 Returns the partition which represents the new partition. If the two
105 partitions cannot be combined, NO_PARTITION is returned. */
108 var_union (var_map map, tree var1, tree var2)
110 int p1, p2, p3;
111 tree root_var = NULL_TREE;
112 tree other_var = NULL_TREE;
114 /* This is independent of partition_to_compact. If partition_to_compact is
115 on, then whichever one of these partitions is absorbed will never have a
116 dereference into the partition_to_compact array any more. */
118 if (TREE_CODE (var1) == SSA_NAME)
119 p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
120 else
122 p1 = var_to_partition (map, var1);
123 if (map->compact_to_partition)
124 p1 = map->compact_to_partition[p1];
125 root_var = var1;
128 if (TREE_CODE (var2) == SSA_NAME)
129 p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
130 else
132 p2 = var_to_partition (map, var2);
133 if (map->compact_to_partition)
134 p2 = map->compact_to_partition[p2];
136 /* If there is no root_var set, or its not a user variable, set the
137 root_var to this one. */
138 if (!root_var || (DECL_P (root_var) && DECL_IGNORED_P (root_var)))
140 other_var = root_var;
141 root_var = var2;
143 else
144 other_var = var2;
147 if (p1 == NO_PARTITION || p2 == NO_PARTITION)
148 abort ();
150 if (p1 == p2)
151 p3 = p1;
152 else
153 p3 = partition_union (map->var_partition, p1, p2);
155 if (map->partition_to_compact)
156 p3 = map->partition_to_compact[p3];
158 if (root_var)
159 change_partition_var (map, root_var, p3);
160 if (other_var)
161 change_partition_var (map, other_var, p3);
163 return p3;
167 /* Compress the partition numbers in MAP such that they fall in the range
168 0..(num_partitions-1) instead of wherever they turned out during
169 the partitioning exercise. This removes any references to unused
170 partitions, thereby allowing bitmaps and other vectors to be much
171 denser. Compression type is controlled by FLAGS.
173 This is implemented such that compaction doesn't affect partitioning.
174 Ie., once partitions are created and possibly merged, running one
175 or more different kind of compaction will not affect the partitions
176 themselves. Their index might change, but all the same variables will
177 still be members of the same partition group. This allows work on reduced
178 sets, and no loss of information when a larger set is later desired.
180 In particular, coalescing can work on partitions which have 2 or more
181 definitions, and then 'recompact' later to include all the single
182 definitions for assignment to program variables. */
184 void
185 compact_var_map (var_map map, int flags)
187 sbitmap used;
188 int x, limit, count, tmp, root, root_i;
189 tree var;
190 root_var_p rv = NULL;
192 limit = map->partition_size;
193 used = sbitmap_alloc (limit);
194 sbitmap_zero (used);
196 /* Already compressed? Abandon the old one. */
197 if (map->partition_to_compact)
199 free (map->partition_to_compact);
200 map->partition_to_compact = NULL;
202 if (map->compact_to_partition)
204 free (map->compact_to_partition);
205 map->compact_to_partition = NULL;
208 map->num_partitions = map->partition_size;
210 if (flags & VARMAP_NO_SINGLE_DEFS)
211 rv = root_var_init (map);
213 map->partition_to_compact = (int *)xmalloc (limit * sizeof (int));
214 memset (map->partition_to_compact, 0xff, (limit * sizeof (int)));
216 /* Find out which partitions are actually referenced. */
217 count = 0;
218 for (x = 0; x < limit; x++)
220 tmp = partition_find (map->var_partition, x);
221 if (!TEST_BIT (used, tmp) && map->partition_to_var[tmp] != NULL_TREE)
223 /* It is referenced, check to see if there is more than one version
224 in the root_var table, if one is available. */
225 if (rv)
227 root = root_var_find (rv, tmp);
228 root_i = root_var_first_partition (rv, root);
229 /* If there is only one, don't include this in the compaction. */
230 if (root_var_next_partition (rv, root_i) == ROOT_VAR_NONE)
231 continue;
233 SET_BIT (used, tmp);
234 count++;
238 /* Build a compacted partitioning. */
239 if (count != limit)
241 map->compact_to_partition = (int *)xmalloc (count * sizeof (int));
242 count = 0;
243 /* SSA renaming begins at 1, so skip 0 when compacting. */
244 EXECUTE_IF_SET_IN_SBITMAP (used, 1, x,
246 map->partition_to_compact[x] = count;
247 map->compact_to_partition[count] = x;
248 var = map->partition_to_var[x];
249 if (TREE_CODE (var) != SSA_NAME)
250 change_partition_var (map, var, count);
251 count++;
254 else
256 free (map->partition_to_compact);
257 map->partition_to_compact = NULL;
260 map->num_partitions = count;
262 if (rv)
263 root_var_delete (rv);
264 sbitmap_free (used);
268 /* This function is used to change the representative variable in MAP for VAR's
269 partition from an SSA_NAME variable to a regular variable. This allows
270 partitions to be mapped back to real variables. */
272 void
273 change_partition_var (var_map map, tree var, int part)
275 var_ann_t ann;
277 if (TREE_CODE (var) == SSA_NAME)
278 abort();
280 ann = var_ann (var);
281 ann->out_of_ssa_tag = 1;
282 VAR_ANN_PARTITION (ann) = part;
283 if (map->compact_to_partition)
284 map->partition_to_var[map->compact_to_partition[part]] = var;
288 /* Helper function for mark_all_vars_used, called via walk_tree. */
290 static tree
291 mark_all_vars_used_1 (tree *tp, int *walk_subtrees,
292 void *data ATTRIBUTE_UNUSED)
294 tree t = *tp;
296 /* Only need to mark VAR_DECLS; parameters and return results are not
297 eliminated as unused. */
298 if (TREE_CODE (t) == VAR_DECL)
299 set_is_used (t);
301 if (DECL_P (t) || TYPE_P (t))
302 *walk_subtrees = 0;
304 return NULL;
307 /* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be
308 eliminated during the tree->rtl conversion process. */
310 static inline void
311 mark_all_vars_used (tree *expr_p)
313 walk_tree (expr_p, mark_all_vars_used_1, NULL, NULL);
316 /* This function looks through the program and uses FLAGS to determine what
317 SSA versioned variables are given entries in a new partition table. This
318 new partition map is returned. */
320 var_map
321 create_ssa_var_map (int flags)
323 block_stmt_iterator bsi;
324 basic_block bb;
325 tree dest, use;
326 tree stmt;
327 stmt_ann_t ann;
328 var_map map;
329 ssa_op_iter iter;
330 #ifdef ENABLE_CHECKING
331 sbitmap used_in_real_ops;
332 sbitmap used_in_virtual_ops;
333 #endif
335 map = init_var_map (num_ssa_names + 1);
337 #ifdef ENABLE_CHECKING
338 used_in_real_ops = sbitmap_alloc (num_referenced_vars);
339 sbitmap_zero (used_in_real_ops);
341 used_in_virtual_ops = sbitmap_alloc (num_referenced_vars);
342 sbitmap_zero (used_in_virtual_ops);
343 #endif
345 if (flags & SSA_VAR_MAP_REF_COUNT)
347 map->ref_count
348 = (int *)xmalloc (((num_ssa_names + 1) * sizeof (int)));
349 memset (map->ref_count, 0, (num_ssa_names + 1) * sizeof (int));
352 FOR_EACH_BB (bb)
354 tree phi, arg;
355 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
357 int i;
358 register_ssa_partition (map, PHI_RESULT (phi), false);
359 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
361 arg = PHI_ARG_DEF (phi, i);
362 if (TREE_CODE (arg) == SSA_NAME)
363 register_ssa_partition (map, arg, true);
365 mark_all_vars_used (&PHI_ARG_DEF_TREE (phi, i));
369 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
371 stmt = bsi_stmt (bsi);
372 get_stmt_operands (stmt);
373 ann = stmt_ann (stmt);
375 /* Register USE and DEF operands in each statement. */
376 FOR_EACH_SSA_TREE_OPERAND (use , stmt, iter, SSA_OP_USE)
378 register_ssa_partition (map, use, true);
380 #ifdef ENABLE_CHECKING
381 SET_BIT (used_in_real_ops, var_ann (SSA_NAME_VAR (use))->uid);
382 #endif
385 FOR_EACH_SSA_TREE_OPERAND (dest, stmt, iter, SSA_OP_DEF)
387 register_ssa_partition (map, dest, false);
389 #ifdef ENABLE_CHECKING
390 SET_BIT (used_in_real_ops, var_ann (SSA_NAME_VAR (dest))->uid);
391 #endif
394 #ifdef ENABLE_CHECKING
395 /* Validate that virtual ops don't get used in funny ways. */
396 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter,
397 SSA_OP_VIRTUAL_USES | SSA_OP_VMUSTDEF)
399 SET_BIT (used_in_virtual_ops, var_ann (SSA_NAME_VAR (use))->uid);
402 #endif /* ENABLE_CHECKING */
404 mark_all_vars_used (bsi_stmt_ptr (bsi));
408 #if defined ENABLE_CHECKING
410 unsigned i;
411 sbitmap both = sbitmap_alloc (num_referenced_vars);
412 sbitmap_a_and_b (both, used_in_real_ops, used_in_virtual_ops);
413 if (sbitmap_first_set_bit (both) >= 0)
415 EXECUTE_IF_SET_IN_SBITMAP (both, 0, i,
416 fprintf (stderr, "Variable %s used in real and virtual operands\n",
417 get_name (referenced_var (i))));
418 abort ();
421 sbitmap_free (used_in_real_ops);
422 sbitmap_free (used_in_virtual_ops);
423 sbitmap_free (both);
425 #endif
427 return map;
431 /* Allocate and return a new live range information object base on MAP. */
433 static tree_live_info_p
434 new_tree_live_info (var_map map)
436 tree_live_info_p live;
437 int x;
439 live = (tree_live_info_p) xmalloc (sizeof (struct tree_live_info_d));
440 live->map = map;
441 live->num_blocks = last_basic_block;
443 live->global = BITMAP_XMALLOC ();
445 live->livein = (bitmap *)xmalloc (num_var_partitions (map) * sizeof (bitmap));
446 for (x = 0; x < num_var_partitions (map); x++)
447 live->livein[x] = BITMAP_XMALLOC ();
449 /* liveout is deferred until it is actually requested. */
450 live->liveout = NULL;
451 return live;
455 /* Free storage for live range info object LIVE. */
457 void
458 delete_tree_live_info (tree_live_info_p live)
460 int x;
461 if (live->liveout)
463 for (x = live->num_blocks - 1; x >= 0; x--)
464 BITMAP_XFREE (live->liveout[x]);
465 free (live->liveout);
467 if (live->livein)
469 for (x = num_var_partitions (live->map) - 1; x >= 0; x--)
470 BITMAP_XFREE (live->livein[x]);
471 free (live->livein);
473 if (live->global)
474 BITMAP_XFREE (live->global);
476 free (live);
480 /* Using LIVE, fill in all the live-on-entry blocks between the defs and uses
481 for partition I. STACK is a varray used for temporary memory which is
482 passed in rather than being allocated on every call. */
484 static void
485 live_worklist (tree_live_info_p live, varray_type stack, int i)
487 int b;
488 tree var;
489 basic_block def_bb = NULL;
490 edge e;
491 var_map map = live->map;
493 var = partition_to_var (map, i);
494 if (SSA_NAME_DEF_STMT (var))
495 def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (var));
497 EXECUTE_IF_SET_IN_BITMAP (live->livein[i], 0, b,
499 VARRAY_PUSH_INT (stack, b);
502 while (VARRAY_ACTIVE_SIZE (stack) > 0)
504 b = VARRAY_TOP_INT (stack);
505 VARRAY_POP (stack);
507 for (e = BASIC_BLOCK (b)->pred; e; e = e->pred_next)
508 if (e->src != ENTRY_BLOCK_PTR)
510 /* Its not live on entry to the block its defined in. */
511 if (e->src == def_bb)
512 continue;
513 if (!bitmap_bit_p (live->livein[i], e->src->index))
515 bitmap_set_bit (live->livein[i], e->src->index);
516 VARRAY_PUSH_INT (stack, e->src->index);
523 /* If VAR is in a partition of MAP, set the bit for that partition in VEC. */
525 static inline void
526 set_if_valid (var_map map, bitmap vec, tree var)
528 int p = var_to_partition (map, var);
529 if (p != NO_PARTITION)
530 bitmap_set_bit (vec, p);
534 /* If VAR is in a partition and it isn't defined in DEF_VEC, set the livein and
535 global bit for it in the LIVE object. BB is the block being processed. */
537 static inline void
538 add_livein_if_notdef (tree_live_info_p live, bitmap def_vec,
539 tree var, basic_block bb)
541 int p = var_to_partition (live->map, var);
542 if (p == NO_PARTITION || bb == ENTRY_BLOCK_PTR)
543 return;
544 if (!bitmap_bit_p (def_vec, p))
546 bitmap_set_bit (live->livein[p], bb->index);
547 bitmap_set_bit (live->global, p);
552 /* Given partition map MAP, calculate all the live on entry bitmaps for
553 each basic block. Return a live info object. */
555 tree_live_info_p
556 calculate_live_on_entry (var_map map)
558 tree_live_info_p live;
559 int i;
560 basic_block bb;
561 bitmap saw_def;
562 tree phi, var, stmt;
563 tree op;
564 edge e;
565 varray_type stack;
566 block_stmt_iterator bsi;
567 stmt_ann_t ann;
568 ssa_op_iter iter;
569 #ifdef ENABLE_CHECKING
570 int num;
571 #endif
574 saw_def = BITMAP_XMALLOC ();
576 live = new_tree_live_info (map);
578 FOR_EACH_BB (bb)
580 bitmap_clear (saw_def);
582 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
584 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
586 var = PHI_ARG_DEF (phi, i);
587 if (!phi_ssa_name_p (var))
588 continue;
589 stmt = SSA_NAME_DEF_STMT (var);
590 e = PHI_ARG_EDGE (phi, i);
592 /* Any uses in PHIs which either don't have def's or are not
593 defined in the block from which the def comes, will be live
594 on entry to that block. */
595 if (!stmt || e->src != bb_for_stmt (stmt))
596 add_livein_if_notdef (live, saw_def, var, e->src);
600 /* Don't mark PHI results as defined until all the PHI nodes have
601 been processed. If the PHI sequence is:
602 a_3 = PHI <a_1, a_2>
603 b_3 = PHI <b_1, a_3>
604 The a_3 referred to in b_3's PHI node is the one incoming on the
605 edge, *not* the PHI node just seen. */
607 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
609 var = PHI_RESULT (phi);
610 set_if_valid (map, saw_def, var);
613 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
615 stmt = bsi_stmt (bsi);
616 get_stmt_operands (stmt);
617 ann = stmt_ann (stmt);
619 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
621 add_livein_if_notdef (live, saw_def, op, bb);
624 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
626 set_if_valid (map, saw_def, op);
631 VARRAY_INT_INIT (stack, last_basic_block, "stack");
632 EXECUTE_IF_SET_IN_BITMAP (live->global, 0, i,
634 live_worklist (live, stack, i);
637 #ifdef ENABLE_CHECKING
638 /* Check for live on entry partitions and report those with a DEF in
639 the program. This will typically mean an optimization has done
640 something wrong. */
642 bb = ENTRY_BLOCK_PTR;
643 num = 0;
644 for (e = bb->succ; e; e = e->succ_next)
646 int entry_block = e->dest->index;
647 if (e->dest == EXIT_BLOCK_PTR)
648 continue;
649 for (i = 0; i < num_var_partitions (map); i++)
651 basic_block tmp;
652 tree d;
653 var = partition_to_var (map, i);
654 stmt = SSA_NAME_DEF_STMT (var);
655 tmp = bb_for_stmt (stmt);
656 d = default_def (SSA_NAME_VAR (var));
658 if (bitmap_bit_p (live_entry_blocks (live, i), entry_block))
660 if (!IS_EMPTY_STMT (stmt))
662 num++;
663 print_generic_expr (stderr, var, TDF_SLIM);
664 fprintf (stderr, " is defined ");
665 if (tmp)
666 fprintf (stderr, " in BB%d, ", tmp->index);
667 fprintf (stderr, "by:\n");
668 print_generic_expr (stderr, stmt, TDF_SLIM);
669 fprintf (stderr, "\nIt is also live-on-entry to entry BB %d",
670 entry_block);
671 fprintf (stderr, " So it appears to have multiple defs.\n");
673 else
675 if (d != var)
677 num++;
678 print_generic_expr (stderr, var, TDF_SLIM);
679 fprintf (stderr, " is live-on-entry to BB%d ",entry_block);
680 if (d)
682 fprintf (stderr, " but is not the default def of ");
683 print_generic_expr (stderr, d, TDF_SLIM);
684 fprintf (stderr, "\n");
686 else
687 fprintf (stderr, " and there is no default def.\n");
691 else
692 if (d == var)
694 /* The only way this var shouldn't be marked live on entry is
695 if it occurs in a PHI argument of the block. */
696 int z, ok = 0;
697 for (phi = phi_nodes (e->dest);
698 phi && !ok;
699 phi = PHI_CHAIN (phi))
701 for (z = 0; z < PHI_NUM_ARGS (phi); z++)
702 if (var == PHI_ARG_DEF (phi, z))
704 ok = 1;
705 break;
708 if (ok)
709 continue;
710 num++;
711 print_generic_expr (stderr, var, TDF_SLIM);
712 fprintf (stderr, " is not marked live-on-entry to entry BB%d ",
713 entry_block);
714 fprintf (stderr, "but it is a default def so it should be.\n");
718 if (num > 0)
719 abort ();
720 #endif
722 BITMAP_XFREE (saw_def);
724 return live;
728 /* Calculate the live on exit vectors based on the entry info in LIVEINFO. */
730 void
731 calculate_live_on_exit (tree_live_info_p liveinfo)
733 unsigned b;
734 int i, x;
735 bitmap *on_exit;
736 basic_block bb;
737 edge e;
738 tree t, phi;
739 bitmap on_entry;
740 var_map map = liveinfo->map;
742 on_exit = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
743 for (x = 0; x < last_basic_block; x++)
744 on_exit[x] = BITMAP_XMALLOC ();
746 /* Set all the live-on-exit bits for uses in PHIs. */
747 FOR_EACH_BB (bb)
749 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
750 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
752 t = PHI_ARG_DEF (phi, i);
753 e = PHI_ARG_EDGE (phi, i);
754 if (!phi_ssa_name_p (t) || e->src == ENTRY_BLOCK_PTR)
755 continue;
756 set_if_valid (map, on_exit[e->src->index], t);
760 /* Set live on exit for all predecessors of live on entry's. */
761 for (i = 0; i < num_var_partitions (map); i++)
763 on_entry = live_entry_blocks (liveinfo, i);
764 EXECUTE_IF_SET_IN_BITMAP (on_entry, 0, b,
766 for (e = BASIC_BLOCK(b)->pred; e; e = e->pred_next)
767 if (e->src != ENTRY_BLOCK_PTR)
768 bitmap_set_bit (on_exit[e->src->index], i);
772 liveinfo->liveout = on_exit;
776 /* Initialize a tree_partition_associator object using MAP. */
778 tpa_p
779 tpa_init (var_map map)
781 tpa_p tpa;
782 int num_partitions = num_var_partitions (map);
783 int x;
785 if (num_partitions == 0)
786 return NULL;
788 tpa = (tpa_p) xmalloc (sizeof (struct tree_partition_associator_d));
789 tpa->num_trees = 0;
790 tpa->uncompressed_num = -1;
791 tpa->map = map;
792 tpa->next_partition = (int *)xmalloc (num_partitions * sizeof (int));
793 memset (tpa->next_partition, TPA_NONE, num_partitions * sizeof (int));
795 tpa->partition_to_tree_map = (int *)xmalloc (num_partitions * sizeof (int));
796 memset (tpa->partition_to_tree_map, TPA_NONE, num_partitions * sizeof (int));
798 x = MAX (40, (num_partitions / 20));
799 VARRAY_TREE_INIT (tpa->trees, x, "trees");
800 VARRAY_INT_INIT (tpa->first_partition, x, "first_partition");
802 return tpa;
807 /* Remove PARTITION_INDEX from TREE_INDEX's list in the tpa structure TPA. */
809 void
810 tpa_remove_partition (tpa_p tpa, int tree_index, int partition_index)
812 int i;
814 i = tpa_first_partition (tpa, tree_index);
815 if (i == partition_index)
817 VARRAY_INT (tpa->first_partition, tree_index) = tpa->next_partition[i];
819 else
821 for ( ; i != TPA_NONE; i = tpa_next_partition (tpa, i))
823 if (tpa->next_partition[i] == partition_index)
825 tpa->next_partition[i] = tpa->next_partition[partition_index];
826 break;
833 /* Free the memory used by tree_partition_associator object TPA. */
835 void
836 tpa_delete (tpa_p tpa)
838 if (!tpa)
839 return;
841 free (tpa->partition_to_tree_map);
842 free (tpa->next_partition);
843 free (tpa);
847 /* This function will remove any tree entries from TPA which have only a single
848 element. This will help keep the size of the conflict graph down. The
849 function returns the number of remaining tree lists. */
851 int
852 tpa_compact (tpa_p tpa)
854 int last, x, y, first, swap_i;
855 tree swap_t;
857 /* Find the last list which has more than 1 partition. */
858 for (last = tpa->num_trees - 1; last > 0; last--)
860 first = tpa_first_partition (tpa, last);
861 if (tpa_next_partition (tpa, first) != NO_PARTITION)
862 break;
865 x = 0;
866 while (x < last)
868 first = tpa_first_partition (tpa, x);
870 /* If there is not more than one partition, swap with the current end
871 of the tree list. */
872 if (tpa_next_partition (tpa, first) == NO_PARTITION)
874 swap_t = VARRAY_TREE (tpa->trees, last);
875 swap_i = VARRAY_INT (tpa->first_partition, last);
877 /* Update the last entry. Since it is known to only have one
878 partition, there is nothing else to update. */
879 VARRAY_TREE (tpa->trees, last) = VARRAY_TREE (tpa->trees, x);
880 VARRAY_INT (tpa->first_partition, last)
881 = VARRAY_INT (tpa->first_partition, x);
882 tpa->partition_to_tree_map[tpa_first_partition (tpa, last)] = last;
884 /* Since this list is known to have more than one partition, update
885 the list owner entries. */
886 VARRAY_TREE (tpa->trees, x) = swap_t;
887 VARRAY_INT (tpa->first_partition, x) = swap_i;
888 for (y = tpa_first_partition (tpa, x);
889 y != NO_PARTITION;
890 y = tpa_next_partition (tpa, y))
891 tpa->partition_to_tree_map[y] = x;
893 /* Ensure last is a list with more than one partition. */
894 last--;
895 for (; last > x; last--)
897 first = tpa_first_partition (tpa, last);
898 if (tpa_next_partition (tpa, first) != NO_PARTITION)
899 break;
902 x++;
905 first = tpa_first_partition (tpa, x);
906 if (tpa_next_partition (tpa, first) != NO_PARTITION)
907 x++;
908 tpa->uncompressed_num = tpa->num_trees;
909 tpa->num_trees = x;
910 return last;
914 /* Initialize a root_var object with SSA partitions from MAP which are based
915 on each root variable. */
917 root_var_p
918 root_var_init (var_map map)
920 root_var_p rv;
921 int num_partitions = num_var_partitions (map);
922 int x, p;
923 tree t;
924 var_ann_t ann;
925 sbitmap seen;
927 rv = tpa_init (map);
928 if (!rv)
929 return NULL;
931 seen = sbitmap_alloc (num_partitions);
932 sbitmap_zero (seen);
934 /* Start at the end and work towards the front. This will provide a list
935 that is ordered from smallest to largest. */
936 for (x = num_partitions - 1; x >= 0; x--)
938 t = partition_to_var (map, x);
940 /* The var map may not be compacted yet, so check for NULL. */
941 if (!t)
942 continue;
944 p = var_to_partition (map, t);
946 #ifdef ENABLE_CHECKING
947 if (p == NO_PARTITION)
948 abort ();
949 #endif
951 /* Make sure we only put coalesced partitions into the list once. */
952 if (TEST_BIT (seen, p))
953 continue;
954 SET_BIT (seen, p);
955 if (TREE_CODE (t) == SSA_NAME)
956 t = SSA_NAME_VAR (t);
957 ann = var_ann (t);
958 if (ann->root_var_processed)
960 rv->next_partition[p] = VARRAY_INT (rv->first_partition,
961 VAR_ANN_ROOT_INDEX (ann));
962 VARRAY_INT (rv->first_partition, VAR_ANN_ROOT_INDEX (ann)) = p;
964 else
966 ann->root_var_processed = 1;
967 VAR_ANN_ROOT_INDEX (ann) = rv->num_trees++;
968 VARRAY_PUSH_TREE (rv->trees, t);
969 VARRAY_PUSH_INT (rv->first_partition, p);
971 rv->partition_to_tree_map[p] = VAR_ANN_ROOT_INDEX (ann);
974 /* Reset the out_of_ssa_tag flag on each variable for later use. */
975 for (x = 0; x < rv->num_trees; x++)
977 t = VARRAY_TREE (rv->trees, x);
978 var_ann (t)->root_var_processed = 0;
981 sbitmap_free (seen);
982 return rv;
986 /* Initialize a type_var structure which associates all the partitions in MAP
987 of the same type to the type node's index. Volatiles are ignored. */
989 type_var_p
990 type_var_init (var_map map)
992 type_var_p tv;
993 int x, y, p;
994 int num_partitions = num_var_partitions (map);
995 tree t;
996 sbitmap seen;
998 seen = sbitmap_alloc (num_partitions);
999 sbitmap_zero (seen);
1001 tv = tpa_init (map);
1002 if (!tv)
1003 return NULL;
1005 for (x = num_partitions - 1; x >= 0; x--)
1007 t = partition_to_var (map, x);
1009 /* Disallow coalescing of these types of variables. */
1010 if (!t
1011 || TREE_THIS_VOLATILE (t)
1012 || TREE_CODE (t) == RESULT_DECL
1013 || TREE_CODE (t) == PARM_DECL
1014 || (DECL_P (t)
1015 && (DECL_REGISTER (t)
1016 || !DECL_IGNORED_P (t)
1017 || DECL_RTL_SET_P (t))))
1018 continue;
1020 p = var_to_partition (map, t);
1022 #ifdef ENABLE_CHECKING
1023 if (p == NO_PARTITION)
1024 abort ();
1025 #endif
1027 /* If partitions have been coalesced, only add the representative
1028 for the partition to the list once. */
1029 if (TEST_BIT (seen, p))
1030 continue;
1031 SET_BIT (seen, p);
1032 t = TREE_TYPE (t);
1034 /* Find the list for this type. */
1035 for (y = 0; y < tv->num_trees; y++)
1036 if (t == VARRAY_TREE (tv->trees, y))
1037 break;
1038 if (y == tv->num_trees)
1040 tv->num_trees++;
1041 VARRAY_PUSH_TREE (tv->trees, t);
1042 VARRAY_PUSH_INT (tv->first_partition, p);
1044 else
1046 tv->next_partition[p] = VARRAY_INT (tv->first_partition, y);
1047 VARRAY_INT (tv->first_partition, y) = p;
1049 tv->partition_to_tree_map[p] = y;
1051 sbitmap_free (seen);
1052 return tv;
1056 /* Create a new coalesce list object from MAP and return it. */
1058 coalesce_list_p
1059 create_coalesce_list (var_map map)
1061 coalesce_list_p list;
1063 list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
1065 list->map = map;
1066 list->add_mode = true;
1067 list->list = (partition_pair_p *) xcalloc (num_var_partitions (map),
1068 sizeof (struct partition_pair_d));
1069 return list;
1073 /* Delete coalesce list CL. */
1075 void
1076 delete_coalesce_list (coalesce_list_p cl)
1078 free (cl->list);
1079 free (cl);
1083 /* Find a matching coalesce pair object in CL for partitions P1 and P2. If
1084 one isn't found, return NULL if CREATE is false, otherwise create a new
1085 coalesce pair object and return it. */
1087 static partition_pair_p
1088 find_partition_pair (coalesce_list_p cl, int p1, int p2, bool create)
1090 partition_pair_p node, tmp;
1091 int s;
1093 /* Normalize so that p1 is the smaller value. */
1094 if (p2 < p1)
1096 s = p1;
1097 p1 = p2;
1098 p2 = s;
1101 tmp = NULL;
1103 /* The list is sorted such that if we find a value greater than p2,
1104 p2 is not in the list. */
1105 for (node = cl->list[p1]; node; node = node->next)
1107 if (node->second_partition == p2)
1108 return node;
1109 else
1110 if (node->second_partition > p2)
1111 break;
1112 tmp = node;
1115 if (!create)
1116 return NULL;
1118 node = (partition_pair_p) xmalloc (sizeof (struct partition_pair_d));
1119 node->first_partition = p1;
1120 node->second_partition = p2;
1121 node->cost = 0;
1123 if (tmp != NULL)
1125 node->next = tmp->next;
1126 tmp->next = node;
1128 else
1130 /* This is now the first node in the list. */
1131 node->next = cl->list[p1];
1132 cl->list[p1] = node;
1135 return node;
1139 /* Add a potential coalesce between P1 and P2 in CL with a cost of VALUE. */
1141 void
1142 add_coalesce (coalesce_list_p cl, int p1, int p2, int value)
1144 partition_pair_p node;
1146 #ifdef ENABLE_CHECKING
1147 if (!cl->add_mode)
1148 abort();
1149 #endif
1151 if (p1 == p2)
1152 return;
1154 node = find_partition_pair (cl, p1, p2, true);
1156 node->cost += value;
1160 /* Comparison function to allow qsort to sort P1 and P2 in descending order. */
1162 static
1163 int compare_pairs (const void *p1, const void *p2)
1165 return (*(partition_pair_p *)p2)->cost - (*(partition_pair_p *)p1)->cost;
1169 /* Prepare CL for removal of preferred pairs. When finished, list element
1170 0 has all the coalesce pairs, sorted in order from most important coalesce
1171 to least important. */
1173 void
1174 sort_coalesce_list (coalesce_list_p cl)
1176 int x, num, count;
1177 partition_pair_p chain, p;
1178 partition_pair_p *list;
1180 if (!cl->add_mode)
1181 abort();
1183 cl->add_mode = false;
1185 /* Compact the array of lists to a single list, and count the elements. */
1186 num = 0;
1187 chain = NULL;
1188 for (x = 0; x < num_var_partitions (cl->map); x++)
1189 if (cl->list[x] != NULL)
1191 for (p = cl->list[x]; p->next != NULL; p = p->next)
1192 num++;
1193 num++;
1194 p->next = chain;
1195 chain = cl->list[x];
1196 cl->list[x] = NULL;
1199 /* Only call qsort if there are more than 2 items. */
1200 if (num > 2)
1202 list = xmalloc (sizeof (partition_pair_p) * num);
1203 count = 0;
1204 for (p = chain; p != NULL; p = p->next)
1205 list[count++] = p;
1207 #ifdef ENABLE_CHECKING
1208 if (count != num)
1209 abort ();
1210 #endif
1212 qsort (list, count, sizeof (partition_pair_p), compare_pairs);
1214 p = list[0];
1215 for (x = 1; x < num; x++)
1217 p->next = list[x];
1218 p = list[x];
1220 p->next = NULL;
1221 cl->list[0] = list[0];
1222 free (list);
1224 else
1226 cl->list[0] = chain;
1227 if (num == 2)
1229 /* Simply swap the two elements if they are in the wrong order. */
1230 if (chain->cost < chain->next->cost)
1232 cl->list[0] = chain->next;
1233 cl->list[0]->next = chain;
1234 chain->next = NULL;
1241 /* Retrieve the best remaining pair to coalesce from CL. Returns the 2
1242 partitions via P1 and P2. Their calculated cost is returned by the function.
1243 NO_BEST_COALESCE is returned if the coalesce list is empty. */
1245 int
1246 pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
1248 partition_pair_p node;
1249 int ret;
1251 if (cl->add_mode)
1252 abort();
1254 node = cl->list[0];
1255 if (!node)
1256 return NO_BEST_COALESCE;
1258 cl->list[0] = node->next;
1260 *p1 = node->first_partition;
1261 *p2 = node->second_partition;
1262 ret = node->cost;
1263 free (node);
1265 return ret;
1269 /* If variable VAR is in a partition in MAP, add a conflict in GRAPH between
1270 VAR and any other live partitions in VEC which are associated via TPA.
1271 Reset the live bit in VEC. */
1273 static inline void
1274 add_conflicts_if_valid (tpa_p tpa, conflict_graph graph,
1275 var_map map, bitmap vec, tree var)
1277 int p, y, first;
1278 p = var_to_partition (map, var);
1279 if (p != NO_PARTITION)
1281 bitmap_clear_bit (vec, p);
1282 first = tpa_find_tree (tpa, p);
1283 /* If find returns nothing, this object isn't interesting. */
1284 if (first == TPA_NONE)
1285 return;
1286 /* Only add interferences between objects in the same list. */
1287 for (y = tpa_first_partition (tpa, first);
1288 y != TPA_NONE;
1289 y = tpa_next_partition (tpa, y))
1291 if (bitmap_bit_p (vec, y))
1292 conflict_graph_add (graph, p, y);
1298 /* Return a conflict graph for the information contained in LIVE_INFO. Only
1299 conflicts between items in the same TPA list are added. If optional
1300 coalesce list CL is passed in, any copies encountered are added. */
1302 conflict_graph
1303 build_tree_conflict_graph (tree_live_info_p liveinfo, tpa_p tpa,
1304 coalesce_list_p cl)
1306 conflict_graph graph;
1307 var_map map;
1308 bitmap live;
1309 int x, y, i;
1310 basic_block bb;
1311 varray_type partition_link, tpa_to_clear, tpa_nodes;
1312 unsigned l;
1313 ssa_op_iter iter;
1315 map = live_var_map (liveinfo);
1316 graph = conflict_graph_new (num_var_partitions (map));
1318 if (tpa_num_trees (tpa) == 0)
1319 return graph;
1321 live = BITMAP_XMALLOC ();
1323 VARRAY_INT_INIT (partition_link, num_var_partitions (map) + 1, "part_link");
1324 VARRAY_INT_INIT (tpa_nodes, tpa_num_trees (tpa), "tpa nodes");
1325 VARRAY_INT_INIT (tpa_to_clear, 50, "tpa to clear");
1327 FOR_EACH_BB (bb)
1329 block_stmt_iterator bsi;
1330 tree phi;
1332 /* Start with live on exit temporaries. */
1333 bitmap_copy (live, live_on_exit (liveinfo, bb));
1335 for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
1337 bool is_a_copy = false;
1338 tree stmt = bsi_stmt (bsi);
1339 stmt_ann_t ann;
1341 get_stmt_operands (stmt);
1342 ann = stmt_ann (stmt);
1344 /* A copy between 2 partitions does not introduce an interference
1345 by itself. If they did, you would never be able to coalesce
1346 two things which are copied. If the two variables really do
1347 conflict, they will conflict elsewhere in the program.
1349 This is handled specially here since we may also be interested
1350 in copies between real variables and SSA_NAME variables. We may
1351 be interested in trying to coalesce SSA_NAME variables with
1352 root variables in some cases. */
1354 if (TREE_CODE (stmt) == MODIFY_EXPR)
1356 tree lhs = TREE_OPERAND (stmt, 0);
1357 tree rhs = TREE_OPERAND (stmt, 1);
1358 int p1, p2;
1359 int bit;
1361 if (DECL_P (lhs) || TREE_CODE (lhs) == SSA_NAME)
1362 p1 = var_to_partition (map, lhs);
1363 else
1364 p1 = NO_PARTITION;
1366 if (DECL_P (rhs) || TREE_CODE (rhs) == SSA_NAME)
1367 p2 = var_to_partition (map, rhs);
1368 else
1369 p2 = NO_PARTITION;
1371 if (p1 != NO_PARTITION && p2 != NO_PARTITION)
1373 is_a_copy = true;
1374 bit = bitmap_bit_p (live, p2);
1375 /* If the RHS is live, make it not live while we add
1376 the conflicts, then make it live again. */
1377 if (bit)
1378 bitmap_clear_bit (live, p2);
1379 add_conflicts_if_valid (tpa, graph, map, live, lhs);
1380 if (bit)
1381 bitmap_set_bit (live, p2);
1382 if (cl)
1383 add_coalesce (cl, p1, p2, 1);
1384 set_if_valid (map, live, rhs);
1388 if (!is_a_copy)
1390 tree var;
1391 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
1393 add_conflicts_if_valid (tpa, graph, map, live, var);
1396 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
1398 set_if_valid (map, live, var);
1403 /* If result of a PHI is unused, then the loops over the statements
1404 will not record any conflicts. However, since the PHI node is
1405 going to be translated out of SSA form we must record a conflict
1406 between the result of the PHI and any variables with are live.
1407 Otherwise the out-of-ssa translation may create incorrect code. */
1408 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1410 tree result = PHI_RESULT (phi);
1411 int p = var_to_partition (map, result);
1413 if (p != NO_PARTITION && ! bitmap_bit_p (live, p))
1414 add_conflicts_if_valid (tpa, graph, map, live, result);
1417 /* Anything which is still live at this point interferes.
1418 In order to implement this efficiently, only conflicts between
1419 partitions which have the same TPA root need be added.
1420 TPA roots which have been seen are tracked in 'tpa_nodes'. A nonzero
1421 entry points to an index into 'partition_link', which then indexes
1422 into itself forming a linked list of partitions sharing a tpa root
1423 which have been seen as live up to this point. Since partitions start
1424 at index zero, all entries in partition_link are (partition + 1).
1426 Conflicts are added between the current partition and any already seen.
1427 tpa_clear contains all the tpa_roots processed, and these are the only
1428 entries which need to be zero'd out for a clean restart. */
1430 EXECUTE_IF_SET_IN_BITMAP (live, 0, x,
1432 i = tpa_find_tree (tpa, x);
1433 if (i != TPA_NONE)
1435 int start = VARRAY_INT (tpa_nodes, i);
1436 /* If start is 0, a new root reference list is being started.
1437 Register it to be cleared. */
1438 if (!start)
1439 VARRAY_PUSH_INT (tpa_to_clear, i);
1441 /* Add interferences to other tpa members seen. */
1442 for (y = start; y != 0; y = VARRAY_INT (partition_link, y))
1443 conflict_graph_add (graph, x, y - 1);
1444 VARRAY_INT (tpa_nodes, i) = x + 1;
1445 VARRAY_INT (partition_link, x + 1) = start;
1449 /* Now clear the used tpa root references. */
1450 for (l = 0; l < VARRAY_ACTIVE_SIZE (tpa_to_clear); l++)
1451 VARRAY_INT (tpa_nodes, VARRAY_INT (tpa_to_clear, l)) = 0;
1452 VARRAY_POP_ALL (tpa_to_clear);
1455 BITMAP_XFREE (live);
1456 return graph;
1460 /* This routine will attempt to coalesce the elements in TPA subject to the
1461 conflicts found in GRAPH. If optional coalesce_list CL is provided,
1462 only coalesces specified within the coalesce list are attempted. Otherwise
1463 an attempt is made to coalesce as many partitions within each TPA grouping
1464 as possible. If DEBUG is provided, debug output will be sent there. */
1466 void
1467 coalesce_tpa_members (tpa_p tpa, conflict_graph graph, var_map map,
1468 coalesce_list_p cl, FILE *debug)
1470 int x, y, z, w;
1471 tree var, tmp;
1473 /* Attempt to coalesce any items in a coalesce list. */
1474 if (cl)
1476 while (pop_best_coalesce (cl, &x, &y) != NO_BEST_COALESCE)
1478 if (debug)
1480 fprintf (debug, "Coalesce list: (%d)", x);
1481 print_generic_expr (debug, partition_to_var (map, x), TDF_SLIM);
1482 fprintf (debug, " & (%d)", y);
1483 print_generic_expr (debug, partition_to_var (map, y), TDF_SLIM);
1486 w = tpa_find_tree (tpa, x);
1487 z = tpa_find_tree (tpa, y);
1488 if (w != z || w == TPA_NONE || z == TPA_NONE)
1490 if (debug)
1492 if (w != z)
1493 fprintf (debug, ": Fail, Non-matching TPA's\n");
1494 if (w == TPA_NONE)
1495 fprintf (debug, ": Fail %d non TPA.\n", x);
1496 else
1497 fprintf (debug, ": Fail %d non TPA.\n", y);
1499 continue;
1501 var = partition_to_var (map, x);
1502 tmp = partition_to_var (map, y);
1503 x = var_to_partition (map, var);
1504 y = var_to_partition (map, tmp);
1505 if (debug)
1506 fprintf (debug, " [map: %d, %d] ", x, y);
1507 if (x == y)
1509 if (debug)
1510 fprintf (debug, ": Already Coalesced.\n");
1511 continue;
1513 if (!conflict_graph_conflict_p (graph, x, y))
1515 z = var_union (map, var, tmp);
1516 if (z == NO_PARTITION)
1518 if (debug)
1519 fprintf (debug, ": Unable to perform partition union.\n");
1520 continue;
1523 /* z is the new combined partition. We need to remove the other
1524 partition from the list. Set x to be that other partition. */
1525 if (z == x)
1527 conflict_graph_merge_regs (graph, x, y);
1528 w = tpa_find_tree (tpa, y);
1529 tpa_remove_partition (tpa, w, y);
1531 else
1533 conflict_graph_merge_regs (graph, y, x);
1534 w = tpa_find_tree (tpa, x);
1535 tpa_remove_partition (tpa, w, x);
1538 if (debug)
1539 fprintf (debug, ": Success -> %d\n", z);
1541 else
1542 if (debug)
1543 fprintf (debug, ": Fail due to conflict\n");
1545 /* If using a coalesce list, don't try to coalesce anything else. */
1546 return;
1549 for (x = 0; x < tpa_num_trees (tpa); x++)
1551 while (tpa_first_partition (tpa, x) != TPA_NONE)
1553 int p1, p2;
1554 /* Coalesce first partition with anything that doesn't conflict. */
1555 y = tpa_first_partition (tpa, x);
1556 tpa_remove_partition (tpa, x, y);
1558 var = partition_to_var (map, y);
1559 /* p1 is the partition representative to which y belongs. */
1560 p1 = var_to_partition (map, var);
1562 for (z = tpa_next_partition (tpa, y);
1563 z != TPA_NONE;
1564 z = tpa_next_partition (tpa, z))
1566 tmp = partition_to_var (map, z);
1567 /* p2 is the partition representative to which z belongs. */
1568 p2 = var_to_partition (map, tmp);
1569 if (debug)
1571 fprintf (debug, "Coalesce : ");
1572 print_generic_expr (debug, var, TDF_SLIM);
1573 fprintf (debug, " &");
1574 print_generic_expr (debug, tmp, TDF_SLIM);
1575 fprintf (debug, " (%d ,%d)", p1, p2);
1578 /* If partitions are already merged, don't check for conflict. */
1579 if (tmp == var)
1581 tpa_remove_partition (tpa, x, z);
1582 if (debug)
1583 fprintf (debug, ": Already coalesced\n");
1585 else
1586 if (!conflict_graph_conflict_p (graph, p1, p2))
1588 int v;
1589 if (tpa_find_tree (tpa, y) == TPA_NONE
1590 || tpa_find_tree (tpa, z) == TPA_NONE)
1592 if (debug)
1593 fprintf (debug, ": Fail non-TPA member\n");
1594 continue;
1596 if ((v = var_union (map, var, tmp)) == NO_PARTITION)
1598 if (debug)
1599 fprintf (debug, ": Fail cannot combine partitions\n");
1600 continue;
1603 tpa_remove_partition (tpa, x, z);
1604 if (v == p1)
1605 conflict_graph_merge_regs (graph, v, z);
1606 else
1608 /* Update the first partition's representative. */
1609 conflict_graph_merge_regs (graph, v, y);
1610 p1 = v;
1613 /* The root variable of the partition may be changed
1614 now. */
1615 var = partition_to_var (map, p1);
1617 if (debug)
1618 fprintf (debug, ": Success -> %d\n", v);
1620 else
1621 if (debug)
1622 fprintf (debug, ": Fail, Conflict\n");
1629 /* Send debug info for coalesce list CL to file F. */
1631 void
1632 dump_coalesce_list (FILE *f, coalesce_list_p cl)
1634 partition_pair_p node;
1635 int x, num;
1636 tree var;
1638 if (cl->add_mode)
1640 fprintf (f, "Coalesce List:\n");
1641 num = num_var_partitions (cl->map);
1642 for (x = 0; x < num; x++)
1644 node = cl->list[x];
1645 if (node)
1647 fprintf (f, "[");
1648 print_generic_expr (f, partition_to_var (cl->map, x), TDF_SLIM);
1649 fprintf (f, "] - ");
1650 for ( ; node; node = node->next)
1652 var = partition_to_var (cl->map, node->second_partition);
1653 print_generic_expr (f, var, TDF_SLIM);
1654 fprintf (f, "(%1d), ", node->cost);
1656 fprintf (f, "\n");
1660 else
1662 fprintf (f, "Sorted Coalesce list:\n");
1663 for (node = cl->list[0]; node; node = node->next)
1665 fprintf (f, "(%d) ", node->cost);
1666 var = partition_to_var (cl->map, node->first_partition);
1667 print_generic_expr (f, var, TDF_SLIM);
1668 fprintf (f, " : ");
1669 var = partition_to_var (cl->map, node->second_partition);
1670 print_generic_expr (f, var, TDF_SLIM);
1671 fprintf (f, "\n");
1677 /* Output tree_partition_associator object TPA to file F.. */
1679 void
1680 tpa_dump (FILE *f, tpa_p tpa)
1682 int x, i;
1684 if (!tpa)
1685 return;
1687 for (x = 0; x < tpa_num_trees (tpa); x++)
1689 print_generic_expr (f, tpa_tree (tpa, x), TDF_SLIM);
1690 fprintf (f, " : (");
1691 for (i = tpa_first_partition (tpa, x);
1692 i != TPA_NONE;
1693 i = tpa_next_partition (tpa, i))
1695 fprintf (f, "(%d)",i);
1696 print_generic_expr (f, partition_to_var (tpa->map, i), TDF_SLIM);
1697 fprintf (f, " ");
1699 #ifdef ENABLE_CHECKING
1700 if (tpa_find_tree (tpa, i) != x)
1701 fprintf (f, "**find tree incorrectly set** ");
1702 #endif
1705 fprintf (f, ")\n");
1707 fflush (f);
1711 /* Output partition map MAP to file F. */
1713 void
1714 dump_var_map (FILE *f, var_map map)
1716 int t;
1717 unsigned x, y;
1718 int p;
1720 fprintf (f, "\nPartition map \n\n");
1722 for (x = 0; x < map->num_partitions; x++)
1724 if (map->compact_to_partition != NULL)
1725 p = map->compact_to_partition[x];
1726 else
1727 p = x;
1729 if (map->partition_to_var[p] == NULL_TREE)
1730 continue;
1732 t = 0;
1733 for (y = 1; y < num_ssa_names; y++)
1735 p = partition_find (map->var_partition, y);
1736 if (map->partition_to_compact)
1737 p = map->partition_to_compact[p];
1738 if (p == (int)x)
1740 if (t++ == 0)
1742 fprintf(f, "Partition %d (", x);
1743 print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
1744 fprintf (f, " - ");
1746 fprintf (f, "%d ", y);
1749 if (t != 0)
1750 fprintf (f, ")\n");
1752 fprintf (f, "\n");
1756 /* Output live range info LIVE to file F, controlled by FLAG. */
1758 void
1759 dump_live_info (FILE *f, tree_live_info_p live, int flag)
1761 basic_block bb;
1762 int i;
1763 var_map map = live->map;
1765 if ((flag & LIVEDUMP_ENTRY) && live->livein)
1767 FOR_EACH_BB (bb)
1769 fprintf (f, "\nLive on entry to BB%d : ", bb->index);
1770 for (i = 0; i < num_var_partitions (map); i++)
1772 if (bitmap_bit_p (live_entry_blocks (live, i), bb->index))
1774 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1775 fprintf (f, " ");
1778 fprintf (f, "\n");
1782 if ((flag & LIVEDUMP_EXIT) && live->liveout)
1784 FOR_EACH_BB (bb)
1786 fprintf (f, "\nLive on exit from BB%d : ", bb->index);
1787 EXECUTE_IF_SET_IN_BITMAP (live->liveout[bb->index], 0, i,
1789 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1790 fprintf (f, " ");
1792 fprintf (f, "\n");