1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
5 Copyright (C) 2014-2018 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 /* Generic tree predicates we inherit. */
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
33 tree_expr_nonnegative_p
40 (define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42 (define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44 (define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
48 (define_operator_list simple_comparison lt le eq ne ge gt)
49 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
51 #include "cfn-operators.pd"
53 /* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
57 Also define operand lists:
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
66 (define_operator_list X##FN BUILT_IN_I##FN \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
73 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
78 /* Binary operations and their associated IFN_COND_* function. */
79 (define_operator_list UNCOND_BINARY
81 mult trunc_div trunc_mod rdiv
83 bit_and bit_ior bit_xor)
84 (define_operator_list COND_BINARY
85 IFN_COND_ADD IFN_COND_SUB
86 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
87 IFN_COND_MIN IFN_COND_MAX
88 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR)
90 /* Same for ternary operations. */
91 (define_operator_list UNCOND_TERNARY
92 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
93 (define_operator_list COND_TERNARY
94 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
96 /* As opposed to convert?, this still creates a single pattern, so
97 it is not a suitable replacement for convert? in all cases. */
98 (match (nop_convert @0)
100 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
101 (match (nop_convert @0)
103 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
104 && known_eq (TYPE_VECTOR_SUBPARTS (type),
105 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
106 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
107 /* This one has to be last, or it shadows the others. */
108 (match (nop_convert @0)
111 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
112 ABSU_EXPR returns unsigned absolute value of the operand and the operand
113 of the ABSU_EXPR will have the corresponding signed type. */
114 (simplify (abs (convert @0))
115 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
116 && !TYPE_UNSIGNED (TREE_TYPE (@0))
117 && element_precision (type) > element_precision (TREE_TYPE (@0)))
118 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
119 (convert (absu:utype @0)))))
122 /* Simplifications of operations with one constant operand and
123 simplifications to constants or single values. */
125 (for op (plus pointer_plus minus bit_ior bit_xor)
127 (op @0 integer_zerop)
130 /* 0 +p index -> (type)index */
132 (pointer_plus integer_zerop @1)
133 (non_lvalue (convert @1)))
135 /* ptr - 0 -> (type)ptr */
137 (pointer_diff @0 integer_zerop)
140 /* See if ARG1 is zero and X + ARG1 reduces to X.
141 Likewise if the operands are reversed. */
143 (plus:c @0 real_zerop@1)
144 (if (fold_real_zero_addition_p (type, @1, 0))
147 /* See if ARG1 is zero and X - ARG1 reduces to X. */
149 (minus @0 real_zerop@1)
150 (if (fold_real_zero_addition_p (type, @1, 1))
154 This is unsafe for certain floats even in non-IEEE formats.
155 In IEEE, it is unsafe because it does wrong for NaNs.
156 Also note that operand_equal_p is always false if an operand
160 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
161 { build_zero_cst (type); }))
163 (pointer_diff @@0 @0)
164 { build_zero_cst (type); })
167 (mult @0 integer_zerop@1)
170 /* Maybe fold x * 0 to 0. The expressions aren't the same
171 when x is NaN, since x * 0 is also NaN. Nor are they the
172 same in modes with signed zeros, since multiplying a
173 negative value by 0 gives -0, not +0. */
175 (mult @0 real_zerop@1)
176 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
179 /* In IEEE floating point, x*1 is not equivalent to x for snans.
180 Likewise for complex arithmetic with signed zeros. */
183 (if (!HONOR_SNANS (type)
184 && (!HONOR_SIGNED_ZEROS (type)
185 || !COMPLEX_FLOAT_TYPE_P (type)))
188 /* Transform x * -1.0 into -x. */
190 (mult @0 real_minus_onep)
191 (if (!HONOR_SNANS (type)
192 && (!HONOR_SIGNED_ZEROS (type)
193 || !COMPLEX_FLOAT_TYPE_P (type)))
196 (for cmp (gt ge lt le)
197 outp (convert convert negate negate)
198 outn (negate negate convert convert)
199 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
200 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
201 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
202 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
204 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
205 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
206 && types_match (type, TREE_TYPE (@0)))
208 (if (types_match (type, float_type_node))
209 (BUILT_IN_COPYSIGNF @1 (outp @0)))
210 (if (types_match (type, double_type_node))
211 (BUILT_IN_COPYSIGN @1 (outp @0)))
212 (if (types_match (type, long_double_type_node))
213 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
214 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
215 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
216 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
217 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
219 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
220 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
221 && types_match (type, TREE_TYPE (@0)))
223 (if (types_match (type, float_type_node))
224 (BUILT_IN_COPYSIGNF @1 (outn @0)))
225 (if (types_match (type, double_type_node))
226 (BUILT_IN_COPYSIGN @1 (outn @0)))
227 (if (types_match (type, long_double_type_node))
228 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
230 /* Transform X * copysign (1.0, X) into abs(X). */
232 (mult:c @0 (COPYSIGN_ALL real_onep @0))
233 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
236 /* Transform X * copysign (1.0, -X) into -abs(X). */
238 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
239 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
242 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
244 (COPYSIGN_ALL REAL_CST@0 @1)
245 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
246 (COPYSIGN_ALL (negate @0) @1)))
248 /* X * 1, X / 1 -> X. */
249 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
254 /* (A / (1 << B)) -> (A >> B).
255 Only for unsigned A. For signed A, this would not preserve rounding
257 For example: (-1 / ( 1 << B)) != -1 >> B. */
259 (trunc_div @0 (lshift integer_onep@1 @2))
260 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
261 && (!VECTOR_TYPE_P (type)
262 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
263 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
266 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
267 undefined behavior in constexpr evaluation, and assuming that the division
268 traps enables better optimizations than these anyway. */
269 (for div (trunc_div ceil_div floor_div round_div exact_div)
270 /* 0 / X is always zero. */
272 (div integer_zerop@0 @1)
273 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
274 (if (!integer_zerop (@1))
278 (div @0 integer_minus_onep@1)
279 (if (!TYPE_UNSIGNED (type))
284 /* But not for 0 / 0 so that we can get the proper warnings and errors.
285 And not for _Fract types where we can't build 1. */
286 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
287 { build_one_cst (type); }))
288 /* X / abs (X) is X < 0 ? -1 : 1. */
291 (if (INTEGRAL_TYPE_P (type)
292 && TYPE_OVERFLOW_UNDEFINED (type))
293 (cond (lt @0 { build_zero_cst (type); })
294 { build_minus_one_cst (type); } { build_one_cst (type); })))
297 (div:C @0 (negate @0))
298 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
299 && TYPE_OVERFLOW_UNDEFINED (type))
300 { build_minus_one_cst (type); })))
302 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
303 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
306 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
307 && TYPE_UNSIGNED (type))
310 /* Combine two successive divisions. Note that combining ceil_div
311 and floor_div is trickier and combining round_div even more so. */
312 (for div (trunc_div exact_div)
314 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
316 wi::overflow_type overflow;
317 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
318 TYPE_SIGN (type), &overflow);
321 (div @0 { wide_int_to_tree (type, mul); })
322 (if (TYPE_UNSIGNED (type)
323 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
324 { build_zero_cst (type); })))))
326 /* Combine successive multiplications. Similar to above, but handling
327 overflow is different. */
329 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
331 wi::overflow_type overflow;
332 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
333 TYPE_SIGN (type), &overflow);
335 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
336 otherwise undefined overflow implies that @0 must be zero. */
337 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
338 (mult @0 { wide_int_to_tree (type, mul); }))))
340 /* Optimize A / A to 1.0 if we don't care about
341 NaNs or Infinities. */
344 (if (FLOAT_TYPE_P (type)
345 && ! HONOR_NANS (type)
346 && ! HONOR_INFINITIES (type))
347 { build_one_cst (type); }))
349 /* Optimize -A / A to -1.0 if we don't care about
350 NaNs or Infinities. */
352 (rdiv:C @0 (negate @0))
353 (if (FLOAT_TYPE_P (type)
354 && ! HONOR_NANS (type)
355 && ! HONOR_INFINITIES (type))
356 { build_minus_one_cst (type); }))
358 /* PR71078: x / abs(x) -> copysign (1.0, x) */
360 (rdiv:C (convert? @0) (convert? (abs @0)))
361 (if (SCALAR_FLOAT_TYPE_P (type)
362 && ! HONOR_NANS (type)
363 && ! HONOR_INFINITIES (type))
365 (if (types_match (type, float_type_node))
366 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
367 (if (types_match (type, double_type_node))
368 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
369 (if (types_match (type, long_double_type_node))
370 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
372 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
375 (if (!HONOR_SNANS (type))
378 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
380 (rdiv @0 real_minus_onep)
381 (if (!HONOR_SNANS (type))
384 (if (flag_reciprocal_math)
385 /* Convert (A/B)/C to A/(B*C). */
387 (rdiv (rdiv:s @0 @1) @2)
388 (rdiv @0 (mult @1 @2)))
390 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
392 (rdiv @0 (mult:s @1 REAL_CST@2))
394 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
396 (rdiv (mult @0 { tem; } ) @1))))
398 /* Convert A/(B/C) to (A/B)*C */
400 (rdiv @0 (rdiv:s @1 @2))
401 (mult (rdiv @0 @1) @2)))
403 /* Simplify x / (- y) to -x / y. */
405 (rdiv @0 (negate @1))
406 (rdiv (negate @0) @1))
408 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
409 (for div (trunc_div ceil_div floor_div round_div exact_div)
411 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
412 (if (integer_pow2p (@2)
413 && tree_int_cst_sgn (@2) > 0
414 && tree_nop_conversion_p (type, TREE_TYPE (@0))
415 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
417 { build_int_cst (integer_type_node,
418 wi::exact_log2 (wi::to_wide (@2))); }))))
420 /* If ARG1 is a constant, we can convert this to a multiply by the
421 reciprocal. This does not have the same rounding properties,
422 so only do this if -freciprocal-math. We can actually
423 always safely do it if ARG1 is a power of two, but it's hard to
424 tell if it is or not in a portable manner. */
425 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
429 (if (flag_reciprocal_math
432 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
434 (mult @0 { tem; } )))
435 (if (cst != COMPLEX_CST)
436 (with { tree inverse = exact_inverse (type, @1); }
438 (mult @0 { inverse; } ))))))))
440 (for mod (ceil_mod floor_mod round_mod trunc_mod)
441 /* 0 % X is always zero. */
443 (mod integer_zerop@0 @1)
444 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
445 (if (!integer_zerop (@1))
447 /* X % 1 is always zero. */
449 (mod @0 integer_onep)
450 { build_zero_cst (type); })
451 /* X % -1 is zero. */
453 (mod @0 integer_minus_onep@1)
454 (if (!TYPE_UNSIGNED (type))
455 { build_zero_cst (type); }))
459 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
460 (if (!integer_zerop (@0))
461 { build_zero_cst (type); }))
462 /* (X % Y) % Y is just X % Y. */
464 (mod (mod@2 @0 @1) @1)
466 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
468 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
469 (if (ANY_INTEGRAL_TYPE_P (type)
470 && TYPE_OVERFLOW_UNDEFINED (type)
471 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
473 { build_zero_cst (type); })))
475 /* X % -C is the same as X % C. */
477 (trunc_mod @0 INTEGER_CST@1)
478 (if (TYPE_SIGN (type) == SIGNED
479 && !TREE_OVERFLOW (@1)
480 && wi::neg_p (wi::to_wide (@1))
481 && !TYPE_OVERFLOW_TRAPS (type)
482 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
483 && !sign_bit_p (@1, @1))
484 (trunc_mod @0 (negate @1))))
486 /* X % -Y is the same as X % Y. */
488 (trunc_mod @0 (convert? (negate @1)))
489 (if (INTEGRAL_TYPE_P (type)
490 && !TYPE_UNSIGNED (type)
491 && !TYPE_OVERFLOW_TRAPS (type)
492 && tree_nop_conversion_p (type, TREE_TYPE (@1))
493 /* Avoid this transformation if X might be INT_MIN or
494 Y might be -1, because we would then change valid
495 INT_MIN % -(-1) into invalid INT_MIN % -1. */
496 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
497 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
499 (trunc_mod @0 (convert @1))))
501 /* X - (X / Y) * Y is the same as X % Y. */
503 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
504 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
505 (convert (trunc_mod @0 @1))))
507 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
508 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
509 Also optimize A % (C << N) where C is a power of 2,
510 to A & ((C << N) - 1). */
511 (match (power_of_two_cand @1)
513 (match (power_of_two_cand @1)
514 (lshift INTEGER_CST@1 @2))
515 (for mod (trunc_mod floor_mod)
517 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
518 (if ((TYPE_UNSIGNED (type)
519 || tree_expr_nonnegative_p (@0))
520 && tree_nop_conversion_p (type, TREE_TYPE (@3))
521 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
522 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
524 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
526 (trunc_div (mult @0 integer_pow2p@1) @1)
527 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
528 (bit_and @0 { wide_int_to_tree
529 (type, wi::mask (TYPE_PRECISION (type)
530 - wi::exact_log2 (wi::to_wide (@1)),
531 false, TYPE_PRECISION (type))); })))
533 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
535 (mult (trunc_div @0 integer_pow2p@1) @1)
536 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
537 (bit_and @0 (negate @1))))
539 /* Simplify (t * 2) / 2) -> t. */
540 (for div (trunc_div ceil_div floor_div round_div exact_div)
542 (div (mult:c @0 @1) @1)
543 (if (ANY_INTEGRAL_TYPE_P (type)
544 && TYPE_OVERFLOW_UNDEFINED (type))
548 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
553 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
556 (pows (op @0) REAL_CST@1)
557 (with { HOST_WIDE_INT n; }
558 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
560 /* Likewise for powi. */
563 (pows (op @0) INTEGER_CST@1)
564 (if ((wi::to_wide (@1) & 1) == 0)
566 /* Strip negate and abs from both operands of hypot. */
574 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
575 (for copysigns (COPYSIGN_ALL)
577 (copysigns (op @0) @1)
580 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
585 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
589 (coss (copysigns @0 @1))
592 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
596 (pows (copysigns @0 @2) REAL_CST@1)
597 (with { HOST_WIDE_INT n; }
598 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
600 /* Likewise for powi. */
604 (pows (copysigns @0 @2) INTEGER_CST@1)
605 (if ((wi::to_wide (@1) & 1) == 0)
610 /* hypot(copysign(x, y), z) -> hypot(x, z). */
612 (hypots (copysigns @0 @1) @2)
614 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
616 (hypots @0 (copysigns @1 @2))
619 /* copysign(x, CST) -> [-]abs (x). */
620 (for copysigns (COPYSIGN_ALL)
622 (copysigns @0 REAL_CST@1)
623 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
627 /* copysign(copysign(x, y), z) -> copysign(x, z). */
628 (for copysigns (COPYSIGN_ALL)
630 (copysigns (copysigns @0 @1) @2)
633 /* copysign(x,y)*copysign(x,y) -> x*x. */
634 (for copysigns (COPYSIGN_ALL)
636 (mult (copysigns@2 @0 @1) @2)
639 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
640 (for ccoss (CCOS CCOSH)
645 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
646 (for ops (conj negate)
652 /* Fold (a * (1 << b)) into (a << b) */
654 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
655 (if (! FLOAT_TYPE_P (type)
656 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
659 /* Fold (1 << (C - x)) where C = precision(type) - 1
660 into ((1 << C) >> x). */
662 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
663 (if (INTEGRAL_TYPE_P (type)
664 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
666 (if (TYPE_UNSIGNED (type))
667 (rshift (lshift @0 @2) @3)
669 { tree utype = unsigned_type_for (type); }
670 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
672 /* Fold (C1/X)*C2 into (C1*C2)/X. */
674 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
675 (if (flag_associative_math
678 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
680 (rdiv { tem; } @1)))))
682 /* Simplify ~X & X as zero. */
684 (bit_and:c (convert? @0) (convert? (bit_not @0)))
685 { build_zero_cst (type); })
687 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
689 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
690 (if (TYPE_UNSIGNED (type))
691 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
693 (for bitop (bit_and bit_ior)
695 /* PR35691: Transform
696 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
697 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
699 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
700 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
701 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
702 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
703 (cmp (bit_ior @0 (convert @1)) @2)))
705 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
706 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
708 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
709 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
710 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
711 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
712 (cmp (bit_and @0 (convert @1)) @2))))
714 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
716 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
717 (minus (bit_xor @0 @1) @1))
719 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
720 (if (~wi::to_wide (@2) == wi::to_wide (@1))
721 (minus (bit_xor @0 @1) @1)))
723 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
725 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
726 (minus @1 (bit_xor @0 @1)))
728 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
729 (for op (bit_ior bit_xor plus)
731 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
734 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
735 (if (~wi::to_wide (@2) == wi::to_wide (@1))
738 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
740 (bit_ior:c (bit_xor:c @0 @1) @0)
743 /* (a & ~b) | (a ^ b) --> a ^ b */
745 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
748 /* (a & ~b) ^ ~a --> ~(a & b) */
750 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
751 (bit_not (bit_and @0 @1)))
753 /* (a | b) & ~(a ^ b) --> a & b */
755 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
758 /* a | ~(a ^ b) --> a | ~b */
760 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
761 (bit_ior @0 (bit_not @1)))
763 /* (a | b) | (a &^ b) --> a | b */
764 (for op (bit_and bit_xor)
766 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
769 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
771 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
774 /* ~(~a & b) --> a | ~b */
776 (bit_not (bit_and:cs (bit_not @0) @1))
777 (bit_ior @0 (bit_not @1)))
779 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
782 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
783 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
784 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
788 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
789 ((A & N) + B) & M -> (A + B) & M
790 Similarly if (N & M) == 0,
791 ((A | N) + B) & M -> (A + B) & M
792 and for - instead of + (or unary - instead of +)
793 and/or ^ instead of |.
794 If B is constant and (B & M) == 0, fold into A & M. */
796 (for bitop (bit_and bit_ior bit_xor)
798 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
801 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
802 @3, @4, @1, ERROR_MARK, NULL_TREE,
805 (convert (bit_and (op (convert:utype { pmop[0]; })
806 (convert:utype { pmop[1]; }))
807 (convert:utype @2))))))
809 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
812 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
813 NULL_TREE, NULL_TREE, @1, bitop, @3,
816 (convert (bit_and (op (convert:utype { pmop[0]; })
817 (convert:utype { pmop[1]; }))
818 (convert:utype @2)))))))
820 (bit_and (op:s @0 @1) INTEGER_CST@2)
823 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
824 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
825 NULL_TREE, NULL_TREE, pmop); }
827 (convert (bit_and (op (convert:utype { pmop[0]; })
828 (convert:utype { pmop[1]; }))
829 (convert:utype @2)))))))
830 (for bitop (bit_and bit_ior bit_xor)
832 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
835 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
836 bitop, @2, @3, NULL_TREE, ERROR_MARK,
837 NULL_TREE, NULL_TREE, pmop); }
839 (convert (bit_and (negate (convert:utype { pmop[0]; }))
840 (convert:utype @1)))))))
842 /* X % Y is smaller than Y. */
845 (cmp (trunc_mod @0 @1) @1)
846 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
847 { constant_boolean_node (cmp == LT_EXPR, type); })))
850 (cmp @1 (trunc_mod @0 @1))
851 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
852 { constant_boolean_node (cmp == GT_EXPR, type); })))
856 (bit_ior @0 integer_all_onesp@1)
861 (bit_ior @0 integer_zerop)
866 (bit_and @0 integer_zerop@1)
872 (for op (bit_ior bit_xor plus)
874 (op:c (convert? @0) (convert? (bit_not @0)))
875 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
880 { build_zero_cst (type); })
882 /* Canonicalize X ^ ~0 to ~X. */
884 (bit_xor @0 integer_all_onesp@1)
889 (bit_and @0 integer_all_onesp)
892 /* x & x -> x, x | x -> x */
893 (for bitop (bit_and bit_ior)
898 /* x & C -> x if we know that x & ~C == 0. */
901 (bit_and SSA_NAME@0 INTEGER_CST@1)
902 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
903 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
907 /* x + (x & 1) -> (x + 1) & ~1 */
909 (plus:c @0 (bit_and:s @0 integer_onep@1))
910 (bit_and (plus @0 @1) (bit_not @1)))
912 /* x & ~(x & y) -> x & ~y */
913 /* x | ~(x | y) -> x | ~y */
914 (for bitop (bit_and bit_ior)
916 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
917 (bitop @0 (bit_not @1))))
919 /* (x | y) & ~x -> y & ~x */
920 /* (x & y) | ~x -> y | ~x */
921 (for bitop (bit_and bit_ior)
922 rbitop (bit_ior bit_and)
924 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
927 /* (x & y) ^ (x | y) -> x ^ y */
929 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
932 /* (x ^ y) ^ (x | y) -> x & y */
934 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
937 /* (x & y) + (x ^ y) -> x | y */
938 /* (x & y) | (x ^ y) -> x | y */
939 /* (x & y) ^ (x ^ y) -> x | y */
940 (for op (plus bit_ior bit_xor)
942 (op:c (bit_and @0 @1) (bit_xor @0 @1))
945 /* (x & y) + (x | y) -> x + y */
947 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
950 /* (x + y) - (x | y) -> x & y */
952 (minus (plus @0 @1) (bit_ior @0 @1))
953 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
954 && !TYPE_SATURATING (type))
957 /* (x + y) - (x & y) -> x | y */
959 (minus (plus @0 @1) (bit_and @0 @1))
960 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
961 && !TYPE_SATURATING (type))
964 /* (x | y) - (x ^ y) -> x & y */
966 (minus (bit_ior @0 @1) (bit_xor @0 @1))
969 /* (x | y) - (x & y) -> x ^ y */
971 (minus (bit_ior @0 @1) (bit_and @0 @1))
974 /* (x | y) & ~(x & y) -> x ^ y */
976 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
979 /* (x | y) & (~x ^ y) -> x & y */
981 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
984 /* ~x & ~y -> ~(x | y)
985 ~x | ~y -> ~(x & y) */
986 (for op (bit_and bit_ior)
987 rop (bit_ior bit_and)
989 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
990 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
991 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
992 (bit_not (rop (convert @0) (convert @1))))))
994 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
995 with a constant, and the two constants have no bits in common,
996 we should treat this as a BIT_IOR_EXPR since this may produce more
998 (for op (bit_xor plus)
1000 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1001 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1002 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1003 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1004 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1005 (bit_ior (convert @4) (convert @5)))))
1007 /* (X | Y) ^ X -> Y & ~ X*/
1009 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1010 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1011 (convert (bit_and @1 (bit_not @0)))))
1013 /* Convert ~X ^ ~Y to X ^ Y. */
1015 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1016 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1017 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1018 (bit_xor (convert @0) (convert @1))))
1020 /* Convert ~X ^ C to X ^ ~C. */
1022 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1023 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1024 (bit_xor (convert @0) (bit_not @1))))
1026 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1027 (for opo (bit_and bit_xor)
1028 opi (bit_xor bit_and)
1030 (opo:c (opi:c @0 @1) @1)
1031 (bit_and (bit_not @0) @1)))
1033 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1034 operands are another bit-wise operation with a common input. If so,
1035 distribute the bit operations to save an operation and possibly two if
1036 constants are involved. For example, convert
1037 (A | B) & (A | C) into A | (B & C)
1038 Further simplification will occur if B and C are constants. */
1039 (for op (bit_and bit_ior bit_xor)
1040 rop (bit_ior bit_and bit_and)
1042 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1043 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1044 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1045 (rop (convert @0) (op (convert @1) (convert @2))))))
1047 /* Some simple reassociation for bit operations, also handled in reassoc. */
1048 /* (X & Y) & Y -> X & Y
1049 (X | Y) | Y -> X | Y */
1050 (for op (bit_and bit_ior)
1052 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1054 /* (X ^ Y) ^ Y -> X */
1056 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1058 /* (X & Y) & (X & Z) -> (X & Y) & Z
1059 (X | Y) | (X | Z) -> (X | Y) | Z */
1060 (for op (bit_and bit_ior)
1062 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1063 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1064 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1065 (if (single_use (@5) && single_use (@6))
1066 (op @3 (convert @2))
1067 (if (single_use (@3) && single_use (@4))
1068 (op (convert @1) @5))))))
1069 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1071 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1072 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1073 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1074 (bit_xor (convert @1) (convert @2))))
1083 (abs tree_expr_nonnegative_p@0)
1086 /* A few cases of fold-const.c negate_expr_p predicate. */
1087 (match negate_expr_p
1089 (if ((INTEGRAL_TYPE_P (type)
1090 && TYPE_UNSIGNED (type))
1091 || (!TYPE_OVERFLOW_SANITIZED (type)
1092 && may_negate_without_overflow_p (t)))))
1093 (match negate_expr_p
1095 (match negate_expr_p
1097 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1098 (match negate_expr_p
1100 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1101 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1103 (match negate_expr_p
1105 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1106 (match negate_expr_p
1108 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1109 || (FLOAT_TYPE_P (type)
1110 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1111 && !HONOR_SIGNED_ZEROS (type)))))
1113 /* (-A) * (-B) -> A * B */
1115 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1116 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1117 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1118 (mult (convert @0) (convert (negate @1)))))
1120 /* -(A + B) -> (-B) - A. */
1122 (negate (plus:c @0 negate_expr_p@1))
1123 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1124 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1125 (minus (negate @1) @0)))
1127 /* -(A - B) -> B - A. */
1129 (negate (minus @0 @1))
1130 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1131 || (FLOAT_TYPE_P (type)
1132 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1133 && !HONOR_SIGNED_ZEROS (type)))
1136 (negate (pointer_diff @0 @1))
1137 (if (TYPE_OVERFLOW_UNDEFINED (type))
1138 (pointer_diff @1 @0)))
1140 /* A - B -> A + (-B) if B is easily negatable. */
1142 (minus @0 negate_expr_p@1)
1143 (if (!FIXED_POINT_TYPE_P (type))
1144 (plus @0 (negate @1))))
1146 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1148 For bitwise binary operations apply operand conversions to the
1149 binary operation result instead of to the operands. This allows
1150 to combine successive conversions and bitwise binary operations.
1151 We combine the above two cases by using a conditional convert. */
1152 (for bitop (bit_and bit_ior bit_xor)
1154 (bitop (convert @0) (convert? @1))
1155 (if (((TREE_CODE (@1) == INTEGER_CST
1156 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1157 && int_fits_type_p (@1, TREE_TYPE (@0)))
1158 || types_match (@0, @1))
1159 /* ??? This transform conflicts with fold-const.c doing
1160 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1161 constants (if x has signed type, the sign bit cannot be set
1162 in c). This folds extension into the BIT_AND_EXPR.
1163 Restrict it to GIMPLE to avoid endless recursions. */
1164 && (bitop != BIT_AND_EXPR || GIMPLE)
1165 && (/* That's a good idea if the conversion widens the operand, thus
1166 after hoisting the conversion the operation will be narrower. */
1167 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1168 /* It's also a good idea if the conversion is to a non-integer
1170 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1171 /* Or if the precision of TO is not the same as the precision
1173 || !type_has_mode_precision_p (type)))
1174 (convert (bitop @0 (convert @1))))))
1176 (for bitop (bit_and bit_ior)
1177 rbitop (bit_ior bit_and)
1178 /* (x | y) & x -> x */
1179 /* (x & y) | x -> x */
1181 (bitop:c (rbitop:c @0 @1) @0)
1183 /* (~x | y) & x -> x & y */
1184 /* (~x & y) | x -> x | y */
1186 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1189 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1191 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1192 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1194 /* Combine successive equal operations with constants. */
1195 (for bitop (bit_and bit_ior bit_xor)
1197 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1198 (if (!CONSTANT_CLASS_P (@0))
1199 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1200 folded to a constant. */
1201 (bitop @0 (bitop @1 @2))
1202 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1203 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1204 the values involved are such that the operation can't be decided at
1205 compile time. Try folding one of @0 or @1 with @2 to see whether
1206 that combination can be decided at compile time.
1208 Keep the existing form if both folds fail, to avoid endless
1210 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1212 (bitop @1 { cst1; })
1213 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1215 (bitop @0 { cst2; }))))))))
1217 /* Try simple folding for X op !X, and X op X with the help
1218 of the truth_valued_p and logical_inverted_value predicates. */
1219 (match truth_valued_p
1221 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1222 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1223 (match truth_valued_p
1225 (match truth_valued_p
1228 (match (logical_inverted_value @0)
1230 (match (logical_inverted_value @0)
1231 (bit_not truth_valued_p@0))
1232 (match (logical_inverted_value @0)
1233 (eq @0 integer_zerop))
1234 (match (logical_inverted_value @0)
1235 (ne truth_valued_p@0 integer_truep))
1236 (match (logical_inverted_value @0)
1237 (bit_xor truth_valued_p@0 integer_truep))
1241 (bit_and:c @0 (logical_inverted_value @0))
1242 { build_zero_cst (type); })
1243 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1244 (for op (bit_ior bit_xor)
1246 (op:c truth_valued_p@0 (logical_inverted_value @0))
1247 { constant_boolean_node (true, type); }))
1248 /* X ==/!= !X is false/true. */
1251 (op:c truth_valued_p@0 (logical_inverted_value @0))
1252 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1256 (bit_not (bit_not @0))
1259 /* Convert ~ (-A) to A - 1. */
1261 (bit_not (convert? (negate @0)))
1262 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1263 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1264 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1266 /* Convert - (~A) to A + 1. */
1268 (negate (nop_convert (bit_not @0)))
1269 (plus (view_convert @0) { build_each_one_cst (type); }))
1271 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1273 (bit_not (convert? (minus @0 integer_each_onep)))
1274 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1275 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1276 (convert (negate @0))))
1278 (bit_not (convert? (plus @0 integer_all_onesp)))
1279 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1280 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1281 (convert (negate @0))))
1283 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1285 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1286 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1287 (convert (bit_xor @0 (bit_not @1)))))
1289 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1290 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1291 (convert (bit_xor @0 @1))))
1293 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1295 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1296 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1297 (bit_not (bit_xor (view_convert @0) @1))))
1299 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1301 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1302 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1304 /* Fold A - (A & B) into ~B & A. */
1306 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1307 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1308 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1309 (convert (bit_and (bit_not @1) @0))))
1311 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1312 (for cmp (gt lt ge le)
1314 (mult (convert (cmp @0 @1)) @2)
1315 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1317 /* For integral types with undefined overflow and C != 0 fold
1318 x * C EQ/NE y * C into x EQ/NE y. */
1321 (cmp (mult:c @0 @1) (mult:c @2 @1))
1322 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1323 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1324 && tree_expr_nonzero_p (@1))
1327 /* For integral types with wrapping overflow and C odd fold
1328 x * C EQ/NE y * C into x EQ/NE y. */
1331 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1332 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1333 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1334 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1337 /* For integral types with undefined overflow and C != 0 fold
1338 x * C RELOP y * C into:
1340 x RELOP y for nonnegative C
1341 y RELOP x for negative C */
1342 (for cmp (lt gt le ge)
1344 (cmp (mult:c @0 @1) (mult:c @2 @1))
1345 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1346 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1347 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1349 (if (TREE_CODE (@1) == INTEGER_CST
1350 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1353 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1357 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1358 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1359 && TYPE_UNSIGNED (TREE_TYPE (@0))
1360 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1361 && (wi::to_wide (@2)
1362 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1363 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1364 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1366 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1367 (for cmp (simple_comparison)
1369 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1370 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1373 /* X / C1 op C2 into a simple range test. */
1374 (for cmp (simple_comparison)
1376 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1377 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1378 && integer_nonzerop (@1)
1379 && !TREE_OVERFLOW (@1)
1380 && !TREE_OVERFLOW (@2))
1381 (with { tree lo, hi; bool neg_overflow;
1382 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1385 (if (code == LT_EXPR || code == GE_EXPR)
1386 (if (TREE_OVERFLOW (lo))
1387 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1388 (if (code == LT_EXPR)
1391 (if (code == LE_EXPR || code == GT_EXPR)
1392 (if (TREE_OVERFLOW (hi))
1393 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1394 (if (code == LE_EXPR)
1398 { build_int_cst (type, code == NE_EXPR); })
1399 (if (code == EQ_EXPR && !hi)
1401 (if (code == EQ_EXPR && !lo)
1403 (if (code == NE_EXPR && !hi)
1405 (if (code == NE_EXPR && !lo)
1408 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1412 tree etype = range_check_type (TREE_TYPE (@0));
1415 if (! TYPE_UNSIGNED (etype))
1416 etype = unsigned_type_for (etype);
1417 hi = fold_convert (etype, hi);
1418 lo = fold_convert (etype, lo);
1419 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1422 (if (etype && hi && !TREE_OVERFLOW (hi))
1423 (if (code == EQ_EXPR)
1424 (le (minus (convert:etype @0) { lo; }) { hi; })
1425 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1427 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1428 (for op (lt le ge gt)
1430 (op (plus:c @0 @2) (plus:c @1 @2))
1431 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1432 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1434 /* For equality and subtraction, this is also true with wrapping overflow. */
1435 (for op (eq ne minus)
1437 (op (plus:c @0 @2) (plus:c @1 @2))
1438 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1439 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1440 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1443 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1444 (for op (lt le ge gt)
1446 (op (minus @0 @2) (minus @1 @2))
1447 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1448 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1450 /* For equality and subtraction, this is also true with wrapping overflow. */
1451 (for op (eq ne minus)
1453 (op (minus @0 @2) (minus @1 @2))
1454 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1455 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1456 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1458 /* And for pointers... */
1459 (for op (simple_comparison)
1461 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1462 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1465 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1466 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1467 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1468 (pointer_diff @0 @1)))
1470 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1471 (for op (lt le ge gt)
1473 (op (minus @2 @0) (minus @2 @1))
1474 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1475 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1477 /* For equality and subtraction, this is also true with wrapping overflow. */
1478 (for op (eq ne minus)
1480 (op (minus @2 @0) (minus @2 @1))
1481 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1482 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1483 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1485 /* And for pointers... */
1486 (for op (simple_comparison)
1488 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1489 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1492 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1493 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1494 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1495 (pointer_diff @1 @0)))
1497 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1498 (for op (lt le gt ge)
1500 (op:c (plus:c@2 @0 @1) @1)
1501 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1502 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1503 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1504 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1505 /* For equality, this is also true with wrapping overflow. */
1508 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1509 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1510 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1511 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1512 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1513 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1514 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1515 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1517 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1518 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1519 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1520 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1521 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1523 /* X - Y < X is the same as Y > 0 when there is no overflow.
1524 For equality, this is also true with wrapping overflow. */
1525 (for op (simple_comparison)
1527 (op:c @0 (minus@2 @0 @1))
1528 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1529 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1530 || ((op == EQ_EXPR || op == NE_EXPR)
1531 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1532 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1533 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1536 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1537 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1541 (cmp (trunc_div @0 @1) integer_zerop)
1542 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1543 /* Complex ==/!= is allowed, but not </>=. */
1544 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1545 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1548 /* X == C - X can never be true if C is odd. */
1551 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1552 (if (TREE_INT_CST_LOW (@1) & 1)
1553 { constant_boolean_node (cmp == NE_EXPR, type); })))
1555 /* Arguments on which one can call get_nonzero_bits to get the bits
1557 (match with_possible_nonzero_bits
1559 (match with_possible_nonzero_bits
1561 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1562 /* Slightly extended version, do not make it recursive to keep it cheap. */
1563 (match (with_possible_nonzero_bits2 @0)
1564 with_possible_nonzero_bits@0)
1565 (match (with_possible_nonzero_bits2 @0)
1566 (bit_and:c with_possible_nonzero_bits@0 @2))
1568 /* Same for bits that are known to be set, but we do not have
1569 an equivalent to get_nonzero_bits yet. */
1570 (match (with_certain_nonzero_bits2 @0)
1572 (match (with_certain_nonzero_bits2 @0)
1573 (bit_ior @1 INTEGER_CST@0))
1575 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1578 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1579 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1580 { constant_boolean_node (cmp == NE_EXPR, type); })))
1582 /* ((X inner_op C0) outer_op C1)
1583 With X being a tree where value_range has reasoned certain bits to always be
1584 zero throughout its computed value range,
1585 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1586 where zero_mask has 1's for all bits that are sure to be 0 in
1588 if (inner_op == '^') C0 &= ~C1;
1589 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1590 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1592 (for inner_op (bit_ior bit_xor)
1593 outer_op (bit_xor bit_ior)
1596 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1600 wide_int zero_mask_not;
1604 if (TREE_CODE (@2) == SSA_NAME)
1605 zero_mask_not = get_nonzero_bits (@2);
1609 if (inner_op == BIT_XOR_EXPR)
1611 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1612 cst_emit = C0 | wi::to_wide (@1);
1616 C0 = wi::to_wide (@0);
1617 cst_emit = C0 ^ wi::to_wide (@1);
1620 (if (!fail && (C0 & zero_mask_not) == 0)
1621 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1622 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1623 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1625 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1627 (pointer_plus (pointer_plus:s @0 @1) @3)
1628 (pointer_plus @0 (plus @1 @3)))
1634 tem4 = (unsigned long) tem3;
1639 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1640 /* Conditionally look through a sign-changing conversion. */
1641 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1642 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1643 || (GENERIC && type == TREE_TYPE (@1))))
1646 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1647 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1651 tem = (sizetype) ptr;
1655 and produce the simpler and easier to analyze with respect to alignment
1656 ... = ptr & ~algn; */
1658 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1659 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1660 (bit_and @0 { algn; })))
1662 /* Try folding difference of addresses. */
1664 (minus (convert ADDR_EXPR@0) (convert @1))
1665 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1666 (with { poly_int64 diff; }
1667 (if (ptr_difference_const (@0, @1, &diff))
1668 { build_int_cst_type (type, diff); }))))
1670 (minus (convert @0) (convert ADDR_EXPR@1))
1671 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1672 (with { poly_int64 diff; }
1673 (if (ptr_difference_const (@0, @1, &diff))
1674 { build_int_cst_type (type, diff); }))))
1676 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1677 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1678 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1679 (with { poly_int64 diff; }
1680 (if (ptr_difference_const (@0, @1, &diff))
1681 { build_int_cst_type (type, diff); }))))
1683 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1684 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1685 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1686 (with { poly_int64 diff; }
1687 (if (ptr_difference_const (@0, @1, &diff))
1688 { build_int_cst_type (type, diff); }))))
1690 /* If arg0 is derived from the address of an object or function, we may
1691 be able to fold this expression using the object or function's
1694 (bit_and (convert? @0) INTEGER_CST@1)
1695 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1696 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1700 unsigned HOST_WIDE_INT bitpos;
1701 get_pointer_alignment_1 (@0, &align, &bitpos);
1703 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1704 { wide_int_to_tree (type, (wi::to_wide (@1)
1705 & (bitpos / BITS_PER_UNIT))); }))))
1708 /* We can't reassociate at all for saturating types. */
1709 (if (!TYPE_SATURATING (type))
1711 /* Contract negates. */
1712 /* A + (-B) -> A - B */
1714 (plus:c @0 (convert? (negate @1)))
1715 /* Apply STRIP_NOPS on the negate. */
1716 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1717 && !TYPE_OVERFLOW_SANITIZED (type))
1721 if (INTEGRAL_TYPE_P (type)
1722 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1723 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1725 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1726 /* A - (-B) -> A + B */
1728 (minus @0 (convert? (negate @1)))
1729 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1730 && !TYPE_OVERFLOW_SANITIZED (type))
1734 if (INTEGRAL_TYPE_P (type)
1735 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1736 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1738 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1740 Sign-extension is ok except for INT_MIN, which thankfully cannot
1741 happen without overflow. */
1743 (negate (convert (negate @1)))
1744 (if (INTEGRAL_TYPE_P (type)
1745 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1746 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1747 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1748 && !TYPE_OVERFLOW_SANITIZED (type)
1749 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1752 (negate (convert negate_expr_p@1))
1753 (if (SCALAR_FLOAT_TYPE_P (type)
1754 && ((DECIMAL_FLOAT_TYPE_P (type)
1755 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1756 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1757 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1758 (convert (negate @1))))
1760 (negate (nop_convert (negate @1)))
1761 (if (!TYPE_OVERFLOW_SANITIZED (type)
1762 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1765 /* We can't reassociate floating-point unless -fassociative-math
1766 or fixed-point plus or minus because of saturation to +-Inf. */
1767 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1768 && !FIXED_POINT_TYPE_P (type))
1770 /* Match patterns that allow contracting a plus-minus pair
1771 irrespective of overflow issues. */
1772 /* (A +- B) - A -> +- B */
1773 /* (A +- B) -+ B -> A */
1774 /* A - (A +- B) -> -+ B */
1775 /* A +- (B -+ A) -> +- B */
1777 (minus (plus:c @0 @1) @0)
1780 (minus (minus @0 @1) @0)
1783 (plus:c (minus @0 @1) @1)
1786 (minus @0 (plus:c @0 @1))
1789 (minus @0 (minus @0 @1))
1791 /* (A +- B) + (C - A) -> C +- B */
1792 /* (A + B) - (A - C) -> B + C */
1793 /* More cases are handled with comparisons. */
1795 (plus:c (plus:c @0 @1) (minus @2 @0))
1798 (plus:c (minus @0 @1) (minus @2 @0))
1801 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1802 (if (TYPE_OVERFLOW_UNDEFINED (type)
1803 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1804 (pointer_diff @2 @1)))
1806 (minus (plus:c @0 @1) (minus @0 @2))
1809 /* (A +- CST1) +- CST2 -> A + CST3
1810 Use view_convert because it is safe for vectors and equivalent for
1812 (for outer_op (plus minus)
1813 (for inner_op (plus minus)
1814 neg_inner_op (minus plus)
1816 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1818 /* If one of the types wraps, use that one. */
1819 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1820 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1821 forever if something doesn't simplify into a constant. */
1822 (if (!CONSTANT_CLASS_P (@0))
1823 (if (outer_op == PLUS_EXPR)
1824 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1825 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1826 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1827 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1828 (if (outer_op == PLUS_EXPR)
1829 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1830 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1831 /* If the constant operation overflows we cannot do the transform
1832 directly as we would introduce undefined overflow, for example
1833 with (a - 1) + INT_MIN. */
1834 (if (types_match (type, @0))
1835 (with { tree cst = const_binop (outer_op == inner_op
1836 ? PLUS_EXPR : MINUS_EXPR,
1838 (if (cst && !TREE_OVERFLOW (cst))
1839 (inner_op @0 { cst; } )
1840 /* X+INT_MAX+1 is X-INT_MIN. */
1841 (if (INTEGRAL_TYPE_P (type) && cst
1842 && wi::to_wide (cst) == wi::min_value (type))
1843 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1844 /* Last resort, use some unsigned type. */
1845 (with { tree utype = unsigned_type_for (type); }
1847 (view_convert (inner_op
1848 (view_convert:utype @0)
1850 { drop_tree_overflow (cst); }))))))))))))))
1852 /* (CST1 - A) +- CST2 -> CST3 - A */
1853 (for outer_op (plus minus)
1855 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1856 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1857 (if (cst && !TREE_OVERFLOW (cst))
1858 (minus { cst; } @0)))))
1860 /* CST1 - (CST2 - A) -> CST3 + A */
1862 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1863 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1864 (if (cst && !TREE_OVERFLOW (cst))
1865 (plus { cst; } @0))))
1869 (plus:c (bit_not @0) @0)
1870 (if (!TYPE_OVERFLOW_TRAPS (type))
1871 { build_all_ones_cst (type); }))
1875 (plus (convert? (bit_not @0)) integer_each_onep)
1876 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1877 (negate (convert @0))))
1881 (minus (convert? (negate @0)) integer_each_onep)
1882 (if (!TYPE_OVERFLOW_TRAPS (type)
1883 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1884 (bit_not (convert @0))))
1888 (minus integer_all_onesp @0)
1891 /* (T)(P + A) - (T)P -> (T) A */
1893 (minus (convert (plus:c @@0 @1))
1895 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1896 /* For integer types, if A has a smaller type
1897 than T the result depends on the possible
1899 E.g. T=size_t, A=(unsigned)429497295, P>0.
1900 However, if an overflow in P + A would cause
1901 undefined behavior, we can assume that there
1903 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1904 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1907 (minus (convert (pointer_plus @@0 @1))
1909 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1910 /* For pointer types, if the conversion of A to the
1911 final type requires a sign- or zero-extension,
1912 then we have to punt - it is not defined which
1914 || (POINTER_TYPE_P (TREE_TYPE (@0))
1915 && TREE_CODE (@1) == INTEGER_CST
1916 && tree_int_cst_sign_bit (@1) == 0))
1919 (pointer_diff (pointer_plus @@0 @1) @0)
1920 /* The second argument of pointer_plus must be interpreted as signed, and
1921 thus sign-extended if necessary. */
1922 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1923 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1924 second arg is unsigned even when we need to consider it as signed,
1925 we don't want to diagnose overflow here. */
1926 (convert (view_convert:stype @1))))
1928 /* (T)P - (T)(P + A) -> -(T) A */
1930 (minus (convert? @0)
1931 (convert (plus:c @@0 @1)))
1932 (if (INTEGRAL_TYPE_P (type)
1933 && TYPE_OVERFLOW_UNDEFINED (type)
1934 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1935 (with { tree utype = unsigned_type_for (type); }
1936 (convert (negate (convert:utype @1))))
1937 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1938 /* For integer types, if A has a smaller type
1939 than T the result depends on the possible
1941 E.g. T=size_t, A=(unsigned)429497295, P>0.
1942 However, if an overflow in P + A would cause
1943 undefined behavior, we can assume that there
1945 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1946 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1947 (negate (convert @1)))))
1950 (convert (pointer_plus @@0 @1)))
1951 (if (INTEGRAL_TYPE_P (type)
1952 && TYPE_OVERFLOW_UNDEFINED (type)
1953 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1954 (with { tree utype = unsigned_type_for (type); }
1955 (convert (negate (convert:utype @1))))
1956 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1957 /* For pointer types, if the conversion of A to the
1958 final type requires a sign- or zero-extension,
1959 then we have to punt - it is not defined which
1961 || (POINTER_TYPE_P (TREE_TYPE (@0))
1962 && TREE_CODE (@1) == INTEGER_CST
1963 && tree_int_cst_sign_bit (@1) == 0))
1964 (negate (convert @1)))))
1966 (pointer_diff @0 (pointer_plus @@0 @1))
1967 /* The second argument of pointer_plus must be interpreted as signed, and
1968 thus sign-extended if necessary. */
1969 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1970 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1971 second arg is unsigned even when we need to consider it as signed,
1972 we don't want to diagnose overflow here. */
1973 (negate (convert (view_convert:stype @1)))))
1975 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1977 (minus (convert (plus:c @@0 @1))
1978 (convert (plus:c @0 @2)))
1979 (if (INTEGRAL_TYPE_P (type)
1980 && TYPE_OVERFLOW_UNDEFINED (type)
1981 && element_precision (type) <= element_precision (TREE_TYPE (@1))
1982 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
1983 (with { tree utype = unsigned_type_for (type); }
1984 (convert (minus (convert:utype @1) (convert:utype @2))))
1985 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
1986 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
1987 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
1988 /* For integer types, if A has a smaller type
1989 than T the result depends on the possible
1991 E.g. T=size_t, A=(unsigned)429497295, P>0.
1992 However, if an overflow in P + A would cause
1993 undefined behavior, we can assume that there
1995 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1996 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1997 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
1998 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
1999 (minus (convert @1) (convert @2)))))
2001 (minus (convert (pointer_plus @@0 @1))
2002 (convert (pointer_plus @0 @2)))
2003 (if (INTEGRAL_TYPE_P (type)
2004 && TYPE_OVERFLOW_UNDEFINED (type)
2005 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2006 (with { tree utype = unsigned_type_for (type); }
2007 (convert (minus (convert:utype @1) (convert:utype @2))))
2008 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2009 /* For pointer types, if the conversion of A to the
2010 final type requires a sign- or zero-extension,
2011 then we have to punt - it is not defined which
2013 || (POINTER_TYPE_P (TREE_TYPE (@0))
2014 && TREE_CODE (@1) == INTEGER_CST
2015 && tree_int_cst_sign_bit (@1) == 0
2016 && TREE_CODE (@2) == INTEGER_CST
2017 && tree_int_cst_sign_bit (@2) == 0))
2018 (minus (convert @1) (convert @2)))))
2020 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2021 /* The second argument of pointer_plus must be interpreted as signed, and
2022 thus sign-extended if necessary. */
2023 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2024 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2025 second arg is unsigned even when we need to consider it as signed,
2026 we don't want to diagnose overflow here. */
2027 (minus (convert (view_convert:stype @1))
2028 (convert (view_convert:stype @2)))))))
2030 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2031 Modeled after fold_plusminus_mult_expr. */
2032 (if (!TYPE_SATURATING (type)
2033 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2034 (for plusminus (plus minus)
2036 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2037 (if ((!ANY_INTEGRAL_TYPE_P (type)
2038 || TYPE_OVERFLOW_WRAPS (type)
2039 || (INTEGRAL_TYPE_P (type)
2040 && tree_expr_nonzero_p (@0)
2041 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2042 /* If @1 +- @2 is constant require a hard single-use on either
2043 original operand (but not on both). */
2044 && (single_use (@3) || single_use (@4)))
2045 (mult (plusminus @1 @2) @0)))
2046 /* We cannot generate constant 1 for fract. */
2047 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2049 (plusminus @0 (mult:c@3 @0 @2))
2050 (if ((!ANY_INTEGRAL_TYPE_P (type)
2051 || TYPE_OVERFLOW_WRAPS (type)
2052 || (INTEGRAL_TYPE_P (type)
2053 && tree_expr_nonzero_p (@0)
2054 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2056 (mult (plusminus { build_one_cst (type); } @2) @0)))
2058 (plusminus (mult:c@3 @0 @2) @0)
2059 (if ((!ANY_INTEGRAL_TYPE_P (type)
2060 || TYPE_OVERFLOW_WRAPS (type)
2061 || (INTEGRAL_TYPE_P (type)
2062 && tree_expr_nonzero_p (@0)
2063 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2065 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2067 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2069 (for minmax (min max FMIN_ALL FMAX_ALL)
2073 /* min(max(x,y),y) -> y. */
2075 (min:c (max:c @0 @1) @1)
2077 /* max(min(x,y),y) -> y. */
2079 (max:c (min:c @0 @1) @1)
2081 /* max(a,-a) -> abs(a). */
2083 (max:c @0 (negate @0))
2084 (if (TREE_CODE (type) != COMPLEX_TYPE
2085 && (! ANY_INTEGRAL_TYPE_P (type)
2086 || TYPE_OVERFLOW_UNDEFINED (type)))
2088 /* min(a,-a) -> -abs(a). */
2090 (min:c @0 (negate @0))
2091 (if (TREE_CODE (type) != COMPLEX_TYPE
2092 && (! ANY_INTEGRAL_TYPE_P (type)
2093 || TYPE_OVERFLOW_UNDEFINED (type)))
2098 (if (INTEGRAL_TYPE_P (type)
2099 && TYPE_MIN_VALUE (type)
2100 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2102 (if (INTEGRAL_TYPE_P (type)
2103 && TYPE_MAX_VALUE (type)
2104 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2109 (if (INTEGRAL_TYPE_P (type)
2110 && TYPE_MAX_VALUE (type)
2111 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2113 (if (INTEGRAL_TYPE_P (type)
2114 && TYPE_MIN_VALUE (type)
2115 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2118 /* max (a, a + CST) -> a + CST where CST is positive. */
2119 /* max (a, a + CST) -> a where CST is negative. */
2121 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2122 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2123 (if (tree_int_cst_sgn (@1) > 0)
2127 /* min (a, a + CST) -> a where CST is positive. */
2128 /* min (a, a + CST) -> a + CST where CST is negative. */
2130 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2131 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2132 (if (tree_int_cst_sgn (@1) > 0)
2136 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2137 and the outer convert demotes the expression back to x's type. */
2138 (for minmax (min max)
2140 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2141 (if (INTEGRAL_TYPE_P (type)
2142 && types_match (@1, type) && int_fits_type_p (@2, type)
2143 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2144 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2145 (minmax @1 (convert @2)))))
2147 (for minmax (FMIN_ALL FMAX_ALL)
2148 /* If either argument is NaN, return the other one. Avoid the
2149 transformation if we get (and honor) a signalling NaN. */
2151 (minmax:c @0 REAL_CST@1)
2152 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2153 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2155 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2156 functions to return the numeric arg if the other one is NaN.
2157 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2158 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2159 worry about it either. */
2160 (if (flag_finite_math_only)
2167 /* min (-A, -B) -> -max (A, B) */
2168 (for minmax (min max FMIN_ALL FMAX_ALL)
2169 maxmin (max min FMAX_ALL FMIN_ALL)
2171 (minmax (negate:s@2 @0) (negate:s@3 @1))
2172 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2173 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2174 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2175 (negate (maxmin @0 @1)))))
2176 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2177 MAX (~X, ~Y) -> ~MIN (X, Y) */
2178 (for minmax (min max)
2181 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2182 (bit_not (maxmin @0 @1))))
2184 /* MIN (X, Y) == X -> X <= Y */
2185 (for minmax (min min max max)
2189 (cmp:c (minmax:c @0 @1) @0)
2190 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2192 /* MIN (X, 5) == 0 -> X == 0
2193 MIN (X, 5) == 7 -> false */
2196 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2197 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2198 TYPE_SIGN (TREE_TYPE (@0))))
2199 { constant_boolean_node (cmp == NE_EXPR, type); }
2200 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2201 TYPE_SIGN (TREE_TYPE (@0))))
2205 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2206 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2207 TYPE_SIGN (TREE_TYPE (@0))))
2208 { constant_boolean_node (cmp == NE_EXPR, type); }
2209 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2210 TYPE_SIGN (TREE_TYPE (@0))))
2212 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2213 (for minmax (min min max max min min max max )
2214 cmp (lt le gt ge gt ge lt le )
2215 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2217 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2218 (comb (cmp @0 @2) (cmp @1 @2))))
2220 /* Simplifications of shift and rotates. */
2222 (for rotate (lrotate rrotate)
2224 (rotate integer_all_onesp@0 @1)
2227 /* Optimize -1 >> x for arithmetic right shifts. */
2229 (rshift integer_all_onesp@0 @1)
2230 (if (!TYPE_UNSIGNED (type)
2231 && tree_expr_nonnegative_p (@1))
2234 /* Optimize (x >> c) << c into x & (-1<<c). */
2236 (lshift (rshift @0 INTEGER_CST@1) @1)
2237 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2238 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2240 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2243 (rshift (lshift @0 INTEGER_CST@1) @1)
2244 (if (TYPE_UNSIGNED (type)
2245 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2246 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2248 (for shiftrotate (lrotate rrotate lshift rshift)
2250 (shiftrotate @0 integer_zerop)
2253 (shiftrotate integer_zerop@0 @1)
2255 /* Prefer vector1 << scalar to vector1 << vector2
2256 if vector2 is uniform. */
2257 (for vec (VECTOR_CST CONSTRUCTOR)
2259 (shiftrotate @0 vec@1)
2260 (with { tree tem = uniform_vector_p (@1); }
2262 (shiftrotate @0 { tem; }))))))
2264 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2265 Y is 0. Similarly for X >> Y. */
2267 (for shift (lshift rshift)
2269 (shift @0 SSA_NAME@1)
2270 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2272 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2273 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2275 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2279 /* Rewrite an LROTATE_EXPR by a constant into an
2280 RROTATE_EXPR by a new constant. */
2282 (lrotate @0 INTEGER_CST@1)
2283 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2284 build_int_cst (TREE_TYPE (@1),
2285 element_precision (type)), @1); }))
2287 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2288 (for op (lrotate rrotate rshift lshift)
2290 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2291 (with { unsigned int prec = element_precision (type); }
2292 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2293 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2294 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2295 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2296 (with { unsigned int low = (tree_to_uhwi (@1)
2297 + tree_to_uhwi (@2)); }
2298 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2299 being well defined. */
2301 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2302 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2303 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2304 { build_zero_cst (type); }
2305 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2306 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2309 /* ((1 << A) & 1) != 0 -> A == 0
2310 ((1 << A) & 1) == 0 -> A != 0 */
2314 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2315 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2317 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2318 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2322 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2323 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2325 || (!integer_zerop (@2)
2326 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2327 { constant_boolean_node (cmp == NE_EXPR, type); }
2328 (if (!integer_zerop (@2)
2329 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2330 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2332 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2333 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2334 if the new mask might be further optimized. */
2335 (for shift (lshift rshift)
2337 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2339 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2340 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2341 && tree_fits_uhwi_p (@1)
2342 && tree_to_uhwi (@1) > 0
2343 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2346 unsigned int shiftc = tree_to_uhwi (@1);
2347 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2348 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2349 tree shift_type = TREE_TYPE (@3);
2352 if (shift == LSHIFT_EXPR)
2353 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2354 else if (shift == RSHIFT_EXPR
2355 && type_has_mode_precision_p (shift_type))
2357 prec = TYPE_PRECISION (TREE_TYPE (@3));
2359 /* See if more bits can be proven as zero because of
2362 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2364 tree inner_type = TREE_TYPE (@0);
2365 if (type_has_mode_precision_p (inner_type)
2366 && TYPE_PRECISION (inner_type) < prec)
2368 prec = TYPE_PRECISION (inner_type);
2369 /* See if we can shorten the right shift. */
2371 shift_type = inner_type;
2372 /* Otherwise X >> C1 is all zeros, so we'll optimize
2373 it into (X, 0) later on by making sure zerobits
2377 zerobits = HOST_WIDE_INT_M1U;
2380 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2381 zerobits <<= prec - shiftc;
2383 /* For arithmetic shift if sign bit could be set, zerobits
2384 can contain actually sign bits, so no transformation is
2385 possible, unless MASK masks them all away. In that
2386 case the shift needs to be converted into logical shift. */
2387 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2388 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2390 if ((mask & zerobits) == 0)
2391 shift_type = unsigned_type_for (TREE_TYPE (@3));
2397 /* ((X << 16) & 0xff00) is (X, 0). */
2398 (if ((mask & zerobits) == mask)
2399 { build_int_cst (type, 0); }
2400 (with { newmask = mask | zerobits; }
2401 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2404 /* Only do the transformation if NEWMASK is some integer
2406 for (prec = BITS_PER_UNIT;
2407 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2408 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2411 (if (prec < HOST_BITS_PER_WIDE_INT
2412 || newmask == HOST_WIDE_INT_M1U)
2414 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2415 (if (!tree_int_cst_equal (newmaskt, @2))
2416 (if (shift_type != TREE_TYPE (@3))
2417 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2418 (bit_and @4 { newmaskt; })))))))))))))
2420 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2421 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2422 (for shift (lshift rshift)
2423 (for bit_op (bit_and bit_xor bit_ior)
2425 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2426 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2427 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2428 (bit_op (shift (convert @0) @1) { mask; }))))))
2430 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2432 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2433 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2434 && (element_precision (TREE_TYPE (@0))
2435 <= element_precision (TREE_TYPE (@1))
2436 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2438 { tree shift_type = TREE_TYPE (@0); }
2439 (convert (rshift (convert:shift_type @1) @2)))))
2441 /* ~(~X >>r Y) -> X >>r Y
2442 ~(~X <<r Y) -> X <<r Y */
2443 (for rotate (lrotate rrotate)
2445 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2446 (if ((element_precision (TREE_TYPE (@0))
2447 <= element_precision (TREE_TYPE (@1))
2448 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2449 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2450 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2452 { tree rotate_type = TREE_TYPE (@0); }
2453 (convert (rotate (convert:rotate_type @1) @2))))))
2455 /* Simplifications of conversions. */
2457 /* Basic strip-useless-type-conversions / strip_nops. */
2458 (for cvt (convert view_convert float fix_trunc)
2461 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2462 || (GENERIC && type == TREE_TYPE (@0)))
2465 /* Contract view-conversions. */
2467 (view_convert (view_convert @0))
2470 /* For integral conversions with the same precision or pointer
2471 conversions use a NOP_EXPR instead. */
2474 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2475 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2476 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2479 /* Strip inner integral conversions that do not change precision or size, or
2480 zero-extend while keeping the same size (for bool-to-char). */
2482 (view_convert (convert@0 @1))
2483 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2484 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2485 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2486 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2487 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2488 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2491 /* Re-association barriers around constants and other re-association
2492 barriers can be removed. */
2494 (paren CONSTANT_CLASS_P@0)
2497 (paren (paren@1 @0))
2500 /* Handle cases of two conversions in a row. */
2501 (for ocvt (convert float fix_trunc)
2502 (for icvt (convert float)
2507 tree inside_type = TREE_TYPE (@0);
2508 tree inter_type = TREE_TYPE (@1);
2509 int inside_int = INTEGRAL_TYPE_P (inside_type);
2510 int inside_ptr = POINTER_TYPE_P (inside_type);
2511 int inside_float = FLOAT_TYPE_P (inside_type);
2512 int inside_vec = VECTOR_TYPE_P (inside_type);
2513 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2514 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2515 int inter_int = INTEGRAL_TYPE_P (inter_type);
2516 int inter_ptr = POINTER_TYPE_P (inter_type);
2517 int inter_float = FLOAT_TYPE_P (inter_type);
2518 int inter_vec = VECTOR_TYPE_P (inter_type);
2519 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2520 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2521 int final_int = INTEGRAL_TYPE_P (type);
2522 int final_ptr = POINTER_TYPE_P (type);
2523 int final_float = FLOAT_TYPE_P (type);
2524 int final_vec = VECTOR_TYPE_P (type);
2525 unsigned int final_prec = TYPE_PRECISION (type);
2526 int final_unsignedp = TYPE_UNSIGNED (type);
2529 /* In addition to the cases of two conversions in a row
2530 handled below, if we are converting something to its own
2531 type via an object of identical or wider precision, neither
2532 conversion is needed. */
2533 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2535 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2536 && (((inter_int || inter_ptr) && final_int)
2537 || (inter_float && final_float))
2538 && inter_prec >= final_prec)
2541 /* Likewise, if the intermediate and initial types are either both
2542 float or both integer, we don't need the middle conversion if the
2543 former is wider than the latter and doesn't change the signedness
2544 (for integers). Avoid this if the final type is a pointer since
2545 then we sometimes need the middle conversion. */
2546 (if (((inter_int && inside_int) || (inter_float && inside_float))
2547 && (final_int || final_float)
2548 && inter_prec >= inside_prec
2549 && (inter_float || inter_unsignedp == inside_unsignedp))
2552 /* If we have a sign-extension of a zero-extended value, we can
2553 replace that by a single zero-extension. Likewise if the
2554 final conversion does not change precision we can drop the
2555 intermediate conversion. */
2556 (if (inside_int && inter_int && final_int
2557 && ((inside_prec < inter_prec && inter_prec < final_prec
2558 && inside_unsignedp && !inter_unsignedp)
2559 || final_prec == inter_prec))
2562 /* Two conversions in a row are not needed unless:
2563 - some conversion is floating-point (overstrict for now), or
2564 - some conversion is a vector (overstrict for now), or
2565 - the intermediate type is narrower than both initial and
2567 - the intermediate type and innermost type differ in signedness,
2568 and the outermost type is wider than the intermediate, or
2569 - the initial type is a pointer type and the precisions of the
2570 intermediate and final types differ, or
2571 - the final type is a pointer type and the precisions of the
2572 initial and intermediate types differ. */
2573 (if (! inside_float && ! inter_float && ! final_float
2574 && ! inside_vec && ! inter_vec && ! final_vec
2575 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2576 && ! (inside_int && inter_int
2577 && inter_unsignedp != inside_unsignedp
2578 && inter_prec < final_prec)
2579 && ((inter_unsignedp && inter_prec > inside_prec)
2580 == (final_unsignedp && final_prec > inter_prec))
2581 && ! (inside_ptr && inter_prec != final_prec)
2582 && ! (final_ptr && inside_prec != inter_prec))
2585 /* A truncation to an unsigned type (a zero-extension) should be
2586 canonicalized as bitwise and of a mask. */
2587 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2588 && final_int && inter_int && inside_int
2589 && final_prec == inside_prec
2590 && final_prec > inter_prec
2592 (convert (bit_and @0 { wide_int_to_tree
2594 wi::mask (inter_prec, false,
2595 TYPE_PRECISION (inside_type))); })))
2597 /* If we are converting an integer to a floating-point that can
2598 represent it exactly and back to an integer, we can skip the
2599 floating-point conversion. */
2600 (if (GIMPLE /* PR66211 */
2601 && inside_int && inter_float && final_int &&
2602 (unsigned) significand_size (TYPE_MODE (inter_type))
2603 >= inside_prec - !inside_unsignedp)
2606 /* If we have a narrowing conversion to an integral type that is fed by a
2607 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2608 masks off bits outside the final type (and nothing else). */
2610 (convert (bit_and @0 INTEGER_CST@1))
2611 (if (INTEGRAL_TYPE_P (type)
2612 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2613 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2614 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2615 TYPE_PRECISION (type)), 0))
2619 /* (X /[ex] A) * A -> X. */
2621 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2624 /* Canonicalization of binary operations. */
2626 /* Convert X + -C into X - C. */
2628 (plus @0 REAL_CST@1)
2629 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2630 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2631 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2632 (minus @0 { tem; })))))
2634 /* Convert x+x into x*2. */
2637 (if (SCALAR_FLOAT_TYPE_P (type))
2638 (mult @0 { build_real (type, dconst2); })
2639 (if (INTEGRAL_TYPE_P (type))
2640 (mult @0 { build_int_cst (type, 2); }))))
2644 (minus integer_zerop @1)
2647 (pointer_diff integer_zerop @1)
2648 (negate (convert @1)))
2650 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2651 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2652 (-ARG1 + ARG0) reduces to -ARG1. */
2654 (minus real_zerop@0 @1)
2655 (if (fold_real_zero_addition_p (type, @0, 0))
2658 /* Transform x * -1 into -x. */
2660 (mult @0 integer_minus_onep)
2663 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2664 signed overflow for CST != 0 && CST != -1. */
2666 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
2667 (if (TREE_CODE (@2) != INTEGER_CST
2669 && !integer_zerop (@1) && !integer_minus_onep (@1))
2670 (mult (mult @0 @2) @1)))
2672 /* True if we can easily extract the real and imaginary parts of a complex
2674 (match compositional_complex
2675 (convert? (complex @0 @1)))
2677 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2679 (complex (realpart @0) (imagpart @0))
2682 (realpart (complex @0 @1))
2685 (imagpart (complex @0 @1))
2688 /* Sometimes we only care about half of a complex expression. */
2690 (realpart (convert?:s (conj:s @0)))
2691 (convert (realpart @0)))
2693 (imagpart (convert?:s (conj:s @0)))
2694 (convert (negate (imagpart @0))))
2695 (for part (realpart imagpart)
2696 (for op (plus minus)
2698 (part (convert?:s@2 (op:s @0 @1)))
2699 (convert (op (part @0) (part @1))))))
2701 (realpart (convert?:s (CEXPI:s @0)))
2704 (imagpart (convert?:s (CEXPI:s @0)))
2707 /* conj(conj(x)) -> x */
2709 (conj (convert? (conj @0)))
2710 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2713 /* conj({x,y}) -> {x,-y} */
2715 (conj (convert?:s (complex:s @0 @1)))
2716 (with { tree itype = TREE_TYPE (type); }
2717 (complex (convert:itype @0) (negate (convert:itype @1)))))
2719 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2720 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2725 (bswap (bit_not (bswap @0)))
2727 (for bitop (bit_xor bit_ior bit_and)
2729 (bswap (bitop:c (bswap @0) @1))
2730 (bitop @0 (bswap @1)))))
2733 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2735 /* Simplify constant conditions.
2736 Only optimize constant conditions when the selected branch
2737 has the same type as the COND_EXPR. This avoids optimizing
2738 away "c ? x : throw", where the throw has a void type.
2739 Note that we cannot throw away the fold-const.c variant nor
2740 this one as we depend on doing this transform before possibly
2741 A ? B : B -> B triggers and the fold-const.c one can optimize
2742 0 ? A : B to B even if A has side-effects. Something
2743 genmatch cannot handle. */
2745 (cond INTEGER_CST@0 @1 @2)
2746 (if (integer_zerop (@0))
2747 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2749 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2752 (vec_cond VECTOR_CST@0 @1 @2)
2753 (if (integer_all_onesp (@0))
2755 (if (integer_zerop (@0))
2758 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2760 /* This pattern implements two kinds simplification:
2763 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2764 1) Conversions are type widening from smaller type.
2765 2) Const c1 equals to c2 after canonicalizing comparison.
2766 3) Comparison has tree code LT, LE, GT or GE.
2767 This specific pattern is needed when (cmp (convert x) c) may not
2768 be simplified by comparison patterns because of multiple uses of
2769 x. It also makes sense here because simplifying across multiple
2770 referred var is always benefitial for complicated cases.
2773 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2774 (for cmp (lt le gt ge eq)
2776 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2779 tree from_type = TREE_TYPE (@1);
2780 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2781 enum tree_code code = ERROR_MARK;
2783 if (INTEGRAL_TYPE_P (from_type)
2784 && int_fits_type_p (@2, from_type)
2785 && (types_match (c1_type, from_type)
2786 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2787 && (TYPE_UNSIGNED (from_type)
2788 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2789 && (types_match (c2_type, from_type)
2790 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2791 && (TYPE_UNSIGNED (from_type)
2792 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2796 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2798 /* X <= Y - 1 equals to X < Y. */
2801 /* X > Y - 1 equals to X >= Y. */
2805 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2807 /* X < Y + 1 equals to X <= Y. */
2810 /* X >= Y + 1 equals to X > Y. */
2814 if (code != ERROR_MARK
2815 || wi::to_widest (@2) == wi::to_widest (@3))
2817 if (cmp == LT_EXPR || cmp == LE_EXPR)
2819 if (cmp == GT_EXPR || cmp == GE_EXPR)
2823 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2824 else if (int_fits_type_p (@3, from_type))
2828 (if (code == MAX_EXPR)
2829 (convert (max @1 (convert @2)))
2830 (if (code == MIN_EXPR)
2831 (convert (min @1 (convert @2)))
2832 (if (code == EQ_EXPR)
2833 (convert (cond (eq @1 (convert @3))
2834 (convert:from_type @3) (convert:from_type @2)))))))))
2836 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2838 1) OP is PLUS or MINUS.
2839 2) CMP is LT, LE, GT or GE.
2840 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2842 This pattern also handles special cases like:
2844 A) Operand x is a unsigned to signed type conversion and c1 is
2845 integer zero. In this case,
2846 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2847 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2848 B) Const c1 may not equal to (C3 op' C2). In this case we also
2849 check equality for (c1+1) and (c1-1) by adjusting comparison
2852 TODO: Though signed type is handled by this pattern, it cannot be
2853 simplified at the moment because C standard requires additional
2854 type promotion. In order to match&simplify it here, the IR needs
2855 to be cleaned up by other optimizers, i.e, VRP. */
2856 (for op (plus minus)
2857 (for cmp (lt le gt ge)
2859 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2860 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2861 (if (types_match (from_type, to_type)
2862 /* Check if it is special case A). */
2863 || (TYPE_UNSIGNED (from_type)
2864 && !TYPE_UNSIGNED (to_type)
2865 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2866 && integer_zerop (@1)
2867 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2870 wi::overflow_type overflow = wi::OVF_NONE;
2871 enum tree_code code, cmp_code = cmp;
2873 wide_int c1 = wi::to_wide (@1);
2874 wide_int c2 = wi::to_wide (@2);
2875 wide_int c3 = wi::to_wide (@3);
2876 signop sgn = TYPE_SIGN (from_type);
2878 /* Handle special case A), given x of unsigned type:
2879 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2880 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2881 if (!types_match (from_type, to_type))
2883 if (cmp_code == LT_EXPR)
2885 if (cmp_code == GE_EXPR)
2887 c1 = wi::max_value (to_type);
2889 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2890 compute (c3 op' c2) and check if it equals to c1 with op' being
2891 the inverted operator of op. Make sure overflow doesn't happen
2892 if it is undefined. */
2893 if (op == PLUS_EXPR)
2894 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2896 real_c1 = wi::add (c3, c2, sgn, &overflow);
2899 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2901 /* Check if c1 equals to real_c1. Boundary condition is handled
2902 by adjusting comparison operation if necessary. */
2903 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2906 /* X <= Y - 1 equals to X < Y. */
2907 if (cmp_code == LE_EXPR)
2909 /* X > Y - 1 equals to X >= Y. */
2910 if (cmp_code == GT_EXPR)
2913 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2916 /* X < Y + 1 equals to X <= Y. */
2917 if (cmp_code == LT_EXPR)
2919 /* X >= Y + 1 equals to X > Y. */
2920 if (cmp_code == GE_EXPR)
2923 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2925 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2927 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2932 (if (code == MAX_EXPR)
2933 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2934 { wide_int_to_tree (from_type, c2); })
2935 (if (code == MIN_EXPR)
2936 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2937 { wide_int_to_tree (from_type, c2); })))))))))
2939 (for cnd (cond vec_cond)
2940 /* A ? B : (A ? X : C) -> A ? B : C. */
2942 (cnd @0 (cnd @0 @1 @2) @3)
2945 (cnd @0 @1 (cnd @0 @2 @3))
2947 /* A ? B : (!A ? C : X) -> A ? B : C. */
2948 /* ??? This matches embedded conditions open-coded because genmatch
2949 would generate matching code for conditions in separate stmts only.
2950 The following is still important to merge then and else arm cases
2951 from if-conversion. */
2953 (cnd @0 @1 (cnd @2 @3 @4))
2954 (if (inverse_conditions_p (@0, @2))
2957 (cnd @0 (cnd @1 @2 @3) @4)
2958 (if (inverse_conditions_p (@0, @1))
2961 /* A ? B : B -> B. */
2966 /* !A ? B : C -> A ? C : B. */
2968 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2971 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2972 return all -1 or all 0 results. */
2973 /* ??? We could instead convert all instances of the vec_cond to negate,
2974 but that isn't necessarily a win on its own. */
2976 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2977 (if (VECTOR_TYPE_P (type)
2978 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2979 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2980 && (TYPE_MODE (TREE_TYPE (type))
2981 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2982 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2984 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
2986 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2987 (if (VECTOR_TYPE_P (type)
2988 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2989 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2990 && (TYPE_MODE (TREE_TYPE (type))
2991 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2992 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2995 /* Simplifications of comparisons. */
2997 /* See if we can reduce the magnitude of a constant involved in a
2998 comparison by changing the comparison code. This is a canonicalization
2999 formerly done by maybe_canonicalize_comparison_1. */
3003 (cmp @0 INTEGER_CST@1)
3004 (if (tree_int_cst_sgn (@1) == -1)
3005 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3009 (cmp @0 INTEGER_CST@1)
3010 (if (tree_int_cst_sgn (@1) == 1)
3011 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3014 /* We can simplify a logical negation of a comparison to the
3015 inverted comparison. As we cannot compute an expression
3016 operator using invert_tree_comparison we have to simulate
3017 that with expression code iteration. */
3018 (for cmp (tcc_comparison)
3019 icmp (inverted_tcc_comparison)
3020 ncmp (inverted_tcc_comparison_with_nans)
3021 /* Ideally we'd like to combine the following two patterns
3022 and handle some more cases by using
3023 (logical_inverted_value (cmp @0 @1))
3024 here but for that genmatch would need to "inline" that.
3025 For now implement what forward_propagate_comparison did. */
3027 (bit_not (cmp @0 @1))
3028 (if (VECTOR_TYPE_P (type)
3029 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3030 /* Comparison inversion may be impossible for trapping math,
3031 invert_tree_comparison will tell us. But we can't use
3032 a computed operator in the replacement tree thus we have
3033 to play the trick below. */
3034 (with { enum tree_code ic = invert_tree_comparison
3035 (cmp, HONOR_NANS (@0)); }
3041 (bit_xor (cmp @0 @1) integer_truep)
3042 (with { enum tree_code ic = invert_tree_comparison
3043 (cmp, HONOR_NANS (@0)); }
3049 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3050 ??? The transformation is valid for the other operators if overflow
3051 is undefined for the type, but performing it here badly interacts
3052 with the transformation in fold_cond_expr_with_comparison which
3053 attempts to synthetize ABS_EXPR. */
3055 (for sub (minus pointer_diff)
3057 (cmp (sub@2 @0 @1) integer_zerop)
3058 (if (single_use (@2))
3061 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3062 signed arithmetic case. That form is created by the compiler
3063 often enough for folding it to be of value. One example is in
3064 computing loop trip counts after Operator Strength Reduction. */
3065 (for cmp (simple_comparison)
3066 scmp (swapped_simple_comparison)
3068 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3069 /* Handle unfolded multiplication by zero. */
3070 (if (integer_zerop (@1))
3072 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3073 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3075 /* If @1 is negative we swap the sense of the comparison. */
3076 (if (tree_int_cst_sgn (@1) < 0)
3080 /* Simplify comparison of something with itself. For IEEE
3081 floating-point, we can only do some of these simplifications. */
3085 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3086 || ! HONOR_NANS (@0))
3087 { constant_boolean_node (true, type); }
3088 (if (cmp != EQ_EXPR)
3094 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3095 || ! HONOR_NANS (@0))
3096 { constant_boolean_node (false, type); })))
3097 (for cmp (unle unge uneq)
3100 { constant_boolean_node (true, type); }))
3101 (for cmp (unlt ungt)
3107 (if (!flag_trapping_math)
3108 { constant_boolean_node (false, type); }))
3110 /* Fold ~X op ~Y as Y op X. */
3111 (for cmp (simple_comparison)
3113 (cmp (bit_not@2 @0) (bit_not@3 @1))
3114 (if (single_use (@2) && single_use (@3))
3117 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3118 (for cmp (simple_comparison)
3119 scmp (swapped_simple_comparison)
3121 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3122 (if (single_use (@2)
3123 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3124 (scmp @0 (bit_not @1)))))
3126 (for cmp (simple_comparison)
3127 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3129 (cmp (convert@2 @0) (convert? @1))
3130 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3131 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3132 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3133 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3134 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3137 tree type1 = TREE_TYPE (@1);
3138 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3140 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3141 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3142 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3143 type1 = float_type_node;
3144 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3145 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3146 type1 = double_type_node;
3149 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3150 ? TREE_TYPE (@0) : type1);
3152 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3153 (cmp (convert:newtype @0) (convert:newtype @1))))))
3157 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3159 /* a CMP (-0) -> a CMP 0 */
3160 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3161 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3162 /* x != NaN is always true, other ops are always false. */
3163 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3164 && ! HONOR_SNANS (@1))
3165 { constant_boolean_node (cmp == NE_EXPR, type); })
3166 /* Fold comparisons against infinity. */
3167 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3168 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3171 REAL_VALUE_TYPE max;
3172 enum tree_code code = cmp;
3173 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3175 code = swap_tree_comparison (code);
3178 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3179 (if (code == GT_EXPR
3180 && !(HONOR_NANS (@0) && flag_trapping_math))
3181 { constant_boolean_node (false, type); })
3182 (if (code == LE_EXPR)
3183 /* x <= +Inf is always true, if we don't care about NaNs. */
3184 (if (! HONOR_NANS (@0))
3185 { constant_boolean_node (true, type); }
3186 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3187 an "invalid" exception. */
3188 (if (!flag_trapping_math)
3190 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3191 for == this introduces an exception for x a NaN. */
3192 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3194 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3196 (lt @0 { build_real (TREE_TYPE (@0), max); })
3197 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3198 /* x < +Inf is always equal to x <= DBL_MAX. */
3199 (if (code == LT_EXPR)
3200 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3202 (ge @0 { build_real (TREE_TYPE (@0), max); })
3203 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3204 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3205 an exception for x a NaN so use an unordered comparison. */
3206 (if (code == NE_EXPR)
3207 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3208 (if (! HONOR_NANS (@0))
3210 (ge @0 { build_real (TREE_TYPE (@0), max); })
3211 (le @0 { build_real (TREE_TYPE (@0), max); }))
3213 (unge @0 { build_real (TREE_TYPE (@0), max); })
3214 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3216 /* If this is a comparison of a real constant with a PLUS_EXPR
3217 or a MINUS_EXPR of a real constant, we can convert it into a
3218 comparison with a revised real constant as long as no overflow
3219 occurs when unsafe_math_optimizations are enabled. */
3220 (if (flag_unsafe_math_optimizations)
3221 (for op (plus minus)
3223 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3226 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3227 TREE_TYPE (@1), @2, @1);
3229 (if (tem && !TREE_OVERFLOW (tem))
3230 (cmp @0 { tem; }))))))
3232 /* Likewise, we can simplify a comparison of a real constant with
3233 a MINUS_EXPR whose first operand is also a real constant, i.e.
3234 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3235 floating-point types only if -fassociative-math is set. */
3236 (if (flag_associative_math)
3238 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3239 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3240 (if (tem && !TREE_OVERFLOW (tem))
3241 (cmp { tem; } @1)))))
3243 /* Fold comparisons against built-in math functions. */
3244 (if (flag_unsafe_math_optimizations
3245 && ! flag_errno_math)
3248 (cmp (sq @0) REAL_CST@1)
3250 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3252 /* sqrt(x) < y is always false, if y is negative. */
3253 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3254 { constant_boolean_node (false, type); })
3255 /* sqrt(x) > y is always true, if y is negative and we
3256 don't care about NaNs, i.e. negative values of x. */
3257 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3258 { constant_boolean_node (true, type); })
3259 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3260 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3261 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3263 /* sqrt(x) < 0 is always false. */
3264 (if (cmp == LT_EXPR)
3265 { constant_boolean_node (false, type); })
3266 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3267 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3268 { constant_boolean_node (true, type); })
3269 /* sqrt(x) <= 0 -> x == 0. */
3270 (if (cmp == LE_EXPR)
3272 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3273 == or !=. In the last case:
3275 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3277 if x is negative or NaN. Due to -funsafe-math-optimizations,
3278 the results for other x follow from natural arithmetic. */
3280 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3284 real_arithmetic (&c2, MULT_EXPR,
3285 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3286 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3288 (if (REAL_VALUE_ISINF (c2))
3289 /* sqrt(x) > y is x == +Inf, when y is very large. */
3290 (if (HONOR_INFINITIES (@0))
3291 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3292 { constant_boolean_node (false, type); })
3293 /* sqrt(x) > c is the same as x > c*c. */
3294 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3295 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3299 real_arithmetic (&c2, MULT_EXPR,
3300 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3301 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3303 (if (REAL_VALUE_ISINF (c2))
3305 /* sqrt(x) < y is always true, when y is a very large
3306 value and we don't care about NaNs or Infinities. */
3307 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3308 { constant_boolean_node (true, type); })
3309 /* sqrt(x) < y is x != +Inf when y is very large and we
3310 don't care about NaNs. */
3311 (if (! HONOR_NANS (@0))
3312 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3313 /* sqrt(x) < y is x >= 0 when y is very large and we
3314 don't care about Infinities. */
3315 (if (! HONOR_INFINITIES (@0))
3316 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3317 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3320 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3321 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3322 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3323 (if (! HONOR_NANS (@0))
3324 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3325 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3328 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3329 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3330 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3332 (cmp (sq @0) (sq @1))
3333 (if (! HONOR_NANS (@0))
3336 /* Optimize various special cases of (FTYPE) N CMP CST. */
3337 (for cmp (lt le eq ne ge gt)
3338 icmp (le le eq ne ge ge)
3340 (cmp (float @0) REAL_CST@1)
3341 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3342 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3345 tree itype = TREE_TYPE (@0);
3346 signop isign = TYPE_SIGN (itype);
3347 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3348 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3349 /* Be careful to preserve any potential exceptions due to
3350 NaNs. qNaNs are ok in == or != context.
3351 TODO: relax under -fno-trapping-math or
3352 -fno-signaling-nans. */
3354 = real_isnan (cst) && (cst->signalling
3355 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3356 /* INT?_MIN is power-of-two so it takes
3357 only one mantissa bit. */
3358 bool signed_p = isign == SIGNED;
3359 bool itype_fits_ftype_p
3360 = TYPE_PRECISION (itype) - signed_p <= significand_size (fmt);
3362 /* TODO: allow non-fitting itype and SNaNs when
3363 -fno-trapping-math. */
3364 (if (itype_fits_ftype_p && ! exception_p)
3367 REAL_VALUE_TYPE imin, imax;
3368 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3369 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3371 REAL_VALUE_TYPE icst;
3372 if (cmp == GT_EXPR || cmp == GE_EXPR)
3373 real_ceil (&icst, fmt, cst);
3374 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3375 real_floor (&icst, fmt, cst);
3377 real_trunc (&icst, fmt, cst);
3379 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3381 bool overflow_p = false;
3383 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3386 /* Optimize cases when CST is outside of ITYPE's range. */
3387 (if (real_compare (LT_EXPR, cst, &imin))
3388 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3390 (if (real_compare (GT_EXPR, cst, &imax))
3391 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3393 /* Remove cast if CST is an integer representable by ITYPE. */
3395 (cmp @0 { gcc_assert (!overflow_p);
3396 wide_int_to_tree (itype, icst_val); })
3398 /* When CST is fractional, optimize
3399 (FTYPE) N == CST -> 0
3400 (FTYPE) N != CST -> 1. */
3401 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3402 { constant_boolean_node (cmp == NE_EXPR, type); })
3403 /* Otherwise replace with sensible integer constant. */
3406 gcc_checking_assert (!overflow_p);
3408 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3410 /* Fold A /[ex] B CMP C to A CMP B * C. */
3413 (cmp (exact_div @0 @1) INTEGER_CST@2)
3414 (if (!integer_zerop (@1))
3415 (if (wi::to_wide (@2) == 0)
3417 (if (TREE_CODE (@1) == INTEGER_CST)
3420 wi::overflow_type ovf;
3421 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3422 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3425 { constant_boolean_node (cmp == NE_EXPR, type); }
3426 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3427 (for cmp (lt le gt ge)
3429 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3430 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3433 wi::overflow_type ovf;
3434 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3435 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3438 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3439 TYPE_SIGN (TREE_TYPE (@2)))
3440 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3441 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3443 /* Unordered tests if either argument is a NaN. */
3445 (bit_ior (unordered @0 @0) (unordered @1 @1))
3446 (if (types_match (@0, @1))
3449 (bit_and (ordered @0 @0) (ordered @1 @1))
3450 (if (types_match (@0, @1))
3453 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3456 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3459 /* Simple range test simplifications. */
3460 /* A < B || A >= B -> true. */
3461 (for test1 (lt le le le ne ge)
3462 test2 (ge gt ge ne eq ne)
3464 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3465 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3466 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3467 { constant_boolean_node (true, type); })))
3468 /* A < B && A >= B -> false. */
3469 (for test1 (lt lt lt le ne eq)
3470 test2 (ge gt eq gt eq gt)
3472 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3473 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3474 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3475 { constant_boolean_node (false, type); })))
3477 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3478 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3480 Note that comparisons
3481 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3482 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3483 will be canonicalized to above so there's no need to
3490 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3491 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3494 tree ty = TREE_TYPE (@0);
3495 unsigned prec = TYPE_PRECISION (ty);
3496 wide_int mask = wi::to_wide (@2, prec);
3497 wide_int rhs = wi::to_wide (@3, prec);
3498 signop sgn = TYPE_SIGN (ty);
3500 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3501 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3502 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3503 { build_zero_cst (ty); }))))))
3505 /* -A CMP -B -> B CMP A. */
3506 (for cmp (tcc_comparison)
3507 scmp (swapped_tcc_comparison)
3509 (cmp (negate @0) (negate @1))
3510 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3511 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3512 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3515 (cmp (negate @0) CONSTANT_CLASS_P@1)
3516 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3517 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3518 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3519 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3520 (if (tem && !TREE_OVERFLOW (tem))
3521 (scmp @0 { tem; }))))))
3523 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3526 (op (abs @0) zerop@1)
3529 /* From fold_sign_changed_comparison and fold_widened_comparison.
3530 FIXME: the lack of symmetry is disturbing. */
3531 (for cmp (simple_comparison)
3533 (cmp (convert@0 @00) (convert?@1 @10))
3534 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3535 /* Disable this optimization if we're casting a function pointer
3536 type on targets that require function pointer canonicalization. */
3537 && !(targetm.have_canonicalize_funcptr_for_compare ()
3538 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
3539 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
3541 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3542 && (TREE_CODE (@10) == INTEGER_CST
3544 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3547 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3548 /* ??? The special-casing of INTEGER_CST conversion was in the original
3549 code and here to avoid a spurious overflow flag on the resulting
3550 constant which fold_convert produces. */
3551 (if (TREE_CODE (@1) == INTEGER_CST)
3552 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3553 TREE_OVERFLOW (@1)); })
3554 (cmp @00 (convert @1)))
3556 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3557 /* If possible, express the comparison in the shorter mode. */
3558 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3559 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3560 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3561 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3562 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3563 || ((TYPE_PRECISION (TREE_TYPE (@00))
3564 >= TYPE_PRECISION (TREE_TYPE (@10)))
3565 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3566 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3567 || (TREE_CODE (@10) == INTEGER_CST
3568 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3569 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3570 (cmp @00 (convert @10))
3571 (if (TREE_CODE (@10) == INTEGER_CST
3572 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3573 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3576 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3577 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3578 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3579 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3581 (if (above || below)
3582 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3583 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3584 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3585 { constant_boolean_node (above ? true : false, type); }
3586 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3587 { constant_boolean_node (above ? false : true, type); }))))))))))))
3590 /* A local variable can never be pointed to by
3591 the default SSA name of an incoming parameter.
3592 SSA names are canonicalized to 2nd place. */
3594 (cmp addr@0 SSA_NAME@1)
3595 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3596 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3597 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3598 (if (TREE_CODE (base) == VAR_DECL
3599 && auto_var_in_fn_p (base, current_function_decl))
3600 (if (cmp == NE_EXPR)
3601 { constant_boolean_node (true, type); }
3602 { constant_boolean_node (false, type); }))))))
3604 /* Equality compare simplifications from fold_binary */
3607 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3608 Similarly for NE_EXPR. */
3610 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3611 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3612 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3613 { constant_boolean_node (cmp == NE_EXPR, type); }))
3615 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3617 (cmp (bit_xor @0 @1) integer_zerop)
3620 /* (X ^ Y) == Y becomes X == 0.
3621 Likewise (X ^ Y) == X becomes Y == 0. */
3623 (cmp:c (bit_xor:c @0 @1) @0)
3624 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3626 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3628 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3629 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3630 (cmp @0 (bit_xor @1 (convert @2)))))
3633 (cmp (convert? addr@0) integer_zerop)
3634 (if (tree_single_nonzero_warnv_p (@0, NULL))
3635 { constant_boolean_node (cmp == NE_EXPR, type); })))
3637 /* If we have (A & C) == C where C is a power of 2, convert this into
3638 (A & C) != 0. Similarly for NE_EXPR. */
3642 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3643 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3645 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3646 convert this into a shift followed by ANDing with D. */
3649 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3650 INTEGER_CST@2 integer_zerop)
3651 (if (integer_pow2p (@2))
3653 int shift = (wi::exact_log2 (wi::to_wide (@2))
3654 - wi::exact_log2 (wi::to_wide (@1)));
3658 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3660 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3663 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3664 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3668 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3669 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3670 && type_has_mode_precision_p (TREE_TYPE (@0))
3671 && element_precision (@2) >= element_precision (@0)
3672 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3673 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3674 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3676 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3677 this into a right shift or sign extension followed by ANDing with C. */
3680 (lt @0 integer_zerop)
3681 INTEGER_CST@1 integer_zerop)
3682 (if (integer_pow2p (@1)
3683 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3685 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3689 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3691 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3692 sign extension followed by AND with C will achieve the effect. */
3693 (bit_and (convert @0) @1)))))
3695 /* When the addresses are not directly of decls compare base and offset.
3696 This implements some remaining parts of fold_comparison address
3697 comparisons but still no complete part of it. Still it is good
3698 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3699 (for cmp (simple_comparison)
3701 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3704 poly_int64 off0, off1;
3705 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3706 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3707 if (base0 && TREE_CODE (base0) == MEM_REF)
3709 off0 += mem_ref_offset (base0).force_shwi ();
3710 base0 = TREE_OPERAND (base0, 0);
3712 if (base1 && TREE_CODE (base1) == MEM_REF)
3714 off1 += mem_ref_offset (base1).force_shwi ();
3715 base1 = TREE_OPERAND (base1, 0);
3718 (if (base0 && base1)
3722 /* Punt in GENERIC on variables with value expressions;
3723 the value expressions might point to fields/elements
3724 of other vars etc. */
3726 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3727 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3729 else if (decl_in_symtab_p (base0)
3730 && decl_in_symtab_p (base1))
3731 equal = symtab_node::get_create (base0)
3732 ->equal_address_to (symtab_node::get_create (base1));
3733 else if ((DECL_P (base0)
3734 || TREE_CODE (base0) == SSA_NAME
3735 || TREE_CODE (base0) == STRING_CST)
3737 || TREE_CODE (base1) == SSA_NAME
3738 || TREE_CODE (base1) == STRING_CST))
3739 equal = (base0 == base1);
3742 && (cmp == EQ_EXPR || cmp == NE_EXPR
3743 /* If the offsets are equal we can ignore overflow. */
3744 || known_eq (off0, off1)
3745 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3746 /* Or if we compare using pointers to decls or strings. */
3747 || (POINTER_TYPE_P (TREE_TYPE (@2))
3748 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3750 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3751 { constant_boolean_node (known_eq (off0, off1), type); })
3752 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3753 { constant_boolean_node (known_ne (off0, off1), type); })
3754 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3755 { constant_boolean_node (known_lt (off0, off1), type); })
3756 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3757 { constant_boolean_node (known_le (off0, off1), type); })
3758 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3759 { constant_boolean_node (known_ge (off0, off1), type); })
3760 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3761 { constant_boolean_node (known_gt (off0, off1), type); }))
3763 && DECL_P (base0) && DECL_P (base1)
3764 /* If we compare this as integers require equal offset. */
3765 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3766 || known_eq (off0, off1)))
3768 (if (cmp == EQ_EXPR)
3769 { constant_boolean_node (false, type); })
3770 (if (cmp == NE_EXPR)
3771 { constant_boolean_node (true, type); })))))))))
3773 /* Simplify pointer equality compares using PTA. */
3777 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3778 && ptrs_compare_unequal (@0, @1))
3779 { constant_boolean_node (neeq != EQ_EXPR, type); })))
3781 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
3782 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3783 Disable the transform if either operand is pointer to function.
3784 This broke pr22051-2.c for arm where function pointer
3785 canonicalizaion is not wanted. */
3789 (cmp (convert @0) INTEGER_CST@1)
3790 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
3791 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3792 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3793 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3794 && POINTER_TYPE_P (TREE_TYPE (@1))
3795 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3796 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
3797 (cmp @0 (convert @1)))))
3799 /* Non-equality compare simplifications from fold_binary */
3800 (for cmp (lt gt le ge)
3801 /* Comparisons with the highest or lowest possible integer of
3802 the specified precision will have known values. */
3804 (cmp (convert?@2 @0) INTEGER_CST@1)
3805 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3806 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3809 tree arg1_type = TREE_TYPE (@1);
3810 unsigned int prec = TYPE_PRECISION (arg1_type);
3811 wide_int max = wi::max_value (arg1_type);
3812 wide_int signed_max = wi::max_value (prec, SIGNED);
3813 wide_int min = wi::min_value (arg1_type);
3816 (if (wi::to_wide (@1) == max)
3818 (if (cmp == GT_EXPR)
3819 { constant_boolean_node (false, type); })
3820 (if (cmp == GE_EXPR)
3822 (if (cmp == LE_EXPR)
3823 { constant_boolean_node (true, type); })
3824 (if (cmp == LT_EXPR)
3826 (if (wi::to_wide (@1) == min)
3828 (if (cmp == LT_EXPR)
3829 { constant_boolean_node (false, type); })
3830 (if (cmp == LE_EXPR)
3832 (if (cmp == GE_EXPR)
3833 { constant_boolean_node (true, type); })
3834 (if (cmp == GT_EXPR)
3836 (if (wi::to_wide (@1) == max - 1)
3838 (if (cmp == GT_EXPR)
3839 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
3840 (if (cmp == LE_EXPR)
3841 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3842 (if (wi::to_wide (@1) == min + 1)
3844 (if (cmp == GE_EXPR)
3845 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
3846 (if (cmp == LT_EXPR)
3847 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3848 (if (wi::to_wide (@1) == signed_max
3849 && TYPE_UNSIGNED (arg1_type)
3850 /* We will flip the signedness of the comparison operator
3851 associated with the mode of @1, so the sign bit is
3852 specified by this mode. Check that @1 is the signed
3853 max associated with this sign bit. */
3854 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
3855 /* signed_type does not work on pointer types. */
3856 && INTEGRAL_TYPE_P (arg1_type))
3857 /* The following case also applies to X < signed_max+1
3858 and X >= signed_max+1 because previous transformations. */
3859 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3860 (with { tree st = signed_type_for (arg1_type); }
3861 (if (cmp == LE_EXPR)
3862 (ge (convert:st @0) { build_zero_cst (st); })
3863 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3865 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3866 /* If the second operand is NaN, the result is constant. */
3869 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3870 && (cmp != LTGT_EXPR || ! flag_trapping_math))
3871 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
3872 ? false : true, type); })))
3874 /* bool_var != 0 becomes bool_var. */
3876 (ne @0 integer_zerop)
3877 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3878 && types_match (type, TREE_TYPE (@0)))
3880 /* bool_var == 1 becomes bool_var. */
3882 (eq @0 integer_onep)
3883 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3884 && types_match (type, TREE_TYPE (@0)))
3887 bool_var == 0 becomes !bool_var or
3888 bool_var != 1 becomes !bool_var
3889 here because that only is good in assignment context as long
3890 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3891 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3892 clearly less optimal and which we'll transform again in forwprop. */
3894 /* When one argument is a constant, overflow detection can be simplified.
3895 Currently restricted to single use so as not to interfere too much with
3896 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3897 A + CST CMP A -> A CMP' CST' */
3898 (for cmp (lt le ge gt)
3901 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
3902 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3903 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3904 && wi::to_wide (@1) != 0
3906 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3907 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3908 wi::max_value (prec, UNSIGNED)
3909 - wi::to_wide (@1)); })))))
3911 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3912 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3913 expects the long form, so we restrict the transformation for now. */
3916 (cmp:c (minus@2 @0 @1) @0)
3917 (if (single_use (@2)
3918 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3919 && TYPE_UNSIGNED (TREE_TYPE (@0))
3920 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3923 /* Testing for overflow is unnecessary if we already know the result. */
3928 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3929 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3930 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3931 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3936 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3937 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3938 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3939 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3941 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
3942 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
3946 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
3947 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3948 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3949 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
3951 /* Simplification of math builtins. These rules must all be optimizations
3952 as well as IL simplifications. If there is a possibility that the new
3953 form could be a pessimization, the rule should go in the canonicalization
3954 section that follows this one.
3956 Rules can generally go in this section if they satisfy one of
3959 - the rule describes an identity
3961 - the rule replaces calls with something as simple as addition or
3964 - the rule contains unary calls only and simplifies the surrounding
3965 arithmetic. (The idea here is to exclude non-unary calls in which
3966 one operand is constant and in which the call is known to be cheap
3967 when the operand has that value.) */
3969 (if (flag_unsafe_math_optimizations)
3970 /* Simplify sqrt(x) * sqrt(x) -> x. */
3972 (mult (SQRT_ALL@1 @0) @1)
3973 (if (!HONOR_SNANS (type))
3976 (for op (plus minus)
3977 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
3981 (rdiv (op @0 @2) @1)))
3983 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3984 (for root (SQRT CBRT)
3986 (mult (root:s @0) (root:s @1))
3987 (root (mult @0 @1))))
3989 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3990 (for exps (EXP EXP2 EXP10 POW10)
3992 (mult (exps:s @0) (exps:s @1))
3993 (exps (plus @0 @1))))
3995 /* Simplify a/root(b/c) into a*root(c/b). */
3996 (for root (SQRT CBRT)
3998 (rdiv @0 (root:s (rdiv:s @1 @2)))
3999 (mult @0 (root (rdiv @2 @1)))))
4001 /* Simplify x/expN(y) into x*expN(-y). */
4002 (for exps (EXP EXP2 EXP10 POW10)
4004 (rdiv @0 (exps:s @1))
4005 (mult @0 (exps (negate @1)))))
4007 (for logs (LOG LOG2 LOG10 LOG10)
4008 exps (EXP EXP2 EXP10 POW10)
4009 /* logN(expN(x)) -> x. */
4013 /* expN(logN(x)) -> x. */
4018 /* Optimize logN(func()) for various exponential functions. We
4019 want to determine the value "x" and the power "exponent" in
4020 order to transform logN(x**exponent) into exponent*logN(x). */
4021 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4022 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
4025 (if (SCALAR_FLOAT_TYPE_P (type))
4031 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4032 x = build_real_truncate (type, dconst_e ());
4035 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4036 x = build_real (type, dconst2);
4040 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4042 REAL_VALUE_TYPE dconst10;
4043 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4044 x = build_real (type, dconst10);
4051 (mult (logs { x; }) @0)))))
4059 (if (SCALAR_FLOAT_TYPE_P (type))
4065 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4066 x = build_real (type, dconsthalf);
4069 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4070 x = build_real_truncate (type, dconst_third ());
4076 (mult { x; } (logs @0))))))
4078 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4079 (for logs (LOG LOG2 LOG10)
4083 (mult @1 (logs @0))))
4085 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4086 or if C is a positive power of 2,
4087 pow(C,x) -> exp2(log2(C)*x). */
4095 (pows REAL_CST@0 @1)
4096 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4097 && real_isfinite (TREE_REAL_CST_PTR (@0))
4098 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4099 the use_exp2 case until after vectorization. It seems actually
4100 beneficial for all constants to postpone this until later,
4101 because exp(log(C)*x), while faster, will have worse precision
4102 and if x folds into a constant too, that is unnecessary
4104 && canonicalize_math_after_vectorization_p ())
4106 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4107 bool use_exp2 = false;
4108 if (targetm.libc_has_function (function_c99_misc)
4109 && value->cl == rvc_normal)
4111 REAL_VALUE_TYPE frac_rvt = *value;
4112 SET_REAL_EXP (&frac_rvt, 1);
4113 if (real_equal (&frac_rvt, &dconst1))
4118 (if (optimize_pow_to_exp (@0, @1))
4119 (exps (mult (logs @0) @1)))
4120 (exp2s (mult (log2s @0) @1)))))))
4123 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4125 exps (EXP EXP2 EXP10 POW10)
4126 logs (LOG LOG2 LOG10 LOG10)
4128 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4129 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4130 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4131 (exps (plus (mult (logs @0) @1) @2)))))
4136 exps (EXP EXP2 EXP10 POW10)
4137 /* sqrt(expN(x)) -> expN(x*0.5). */
4140 (exps (mult @0 { build_real (type, dconsthalf); })))
4141 /* cbrt(expN(x)) -> expN(x/3). */
4144 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4145 /* pow(expN(x), y) -> expN(x*y). */
4148 (exps (mult @0 @1))))
4150 /* tan(atan(x)) -> x. */
4157 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4159 (CABS (complex:C @0 real_zerop@1))
4162 /* trunc(trunc(x)) -> trunc(x), etc. */
4163 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4167 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4168 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4170 (fns integer_valued_real_p@0)
4173 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4175 (HYPOT:c @0 real_zerop@1)
4178 /* pow(1,x) -> 1. */
4180 (POW real_onep@0 @1)
4184 /* copysign(x,x) -> x. */
4185 (COPYSIGN_ALL @0 @0)
4189 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4190 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4193 (for scale (LDEXP SCALBN SCALBLN)
4194 /* ldexp(0, x) -> 0. */
4196 (scale real_zerop@0 @1)
4198 /* ldexp(x, 0) -> x. */
4200 (scale @0 integer_zerop@1)
4202 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4204 (scale REAL_CST@0 @1)
4205 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4208 /* Canonicalization of sequences of math builtins. These rules represent
4209 IL simplifications but are not necessarily optimizations.
4211 The sincos pass is responsible for picking "optimal" implementations
4212 of math builtins, which may be more complicated and can sometimes go
4213 the other way, e.g. converting pow into a sequence of sqrts.
4214 We only want to do these canonicalizations before the pass has run. */
4216 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4217 /* Simplify tan(x) * cos(x) -> sin(x). */
4219 (mult:c (TAN:s @0) (COS:s @0))
4222 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4224 (mult:c @0 (POW:s @0 REAL_CST@1))
4225 (if (!TREE_OVERFLOW (@1))
4226 (POW @0 (plus @1 { build_one_cst (type); }))))
4228 /* Simplify sin(x) / cos(x) -> tan(x). */
4230 (rdiv (SIN:s @0) (COS:s @0))
4233 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4235 (rdiv (COS:s @0) (SIN:s @0))
4236 (rdiv { build_one_cst (type); } (TAN @0)))
4238 /* Simplify sin(x) / tan(x) -> cos(x). */
4240 (rdiv (SIN:s @0) (TAN:s @0))
4241 (if (! HONOR_NANS (@0)
4242 && ! HONOR_INFINITIES (@0))
4245 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4247 (rdiv (TAN:s @0) (SIN:s @0))
4248 (if (! HONOR_NANS (@0)
4249 && ! HONOR_INFINITIES (@0))
4250 (rdiv { build_one_cst (type); } (COS @0))))
4252 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4254 (mult (POW:s @0 @1) (POW:s @0 @2))
4255 (POW @0 (plus @1 @2)))
4257 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4259 (mult (POW:s @0 @1) (POW:s @2 @1))
4260 (POW (mult @0 @2) @1))
4262 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4264 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4265 (POWI (mult @0 @2) @1))
4267 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4269 (rdiv (POW:s @0 REAL_CST@1) @0)
4270 (if (!TREE_OVERFLOW (@1))
4271 (POW @0 (minus @1 { build_one_cst (type); }))))
4273 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4275 (rdiv @0 (POW:s @1 @2))
4276 (mult @0 (POW @1 (negate @2))))
4281 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4284 (pows @0 { build_real (type, dconst_quarter ()); }))
4285 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4288 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4289 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4292 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4293 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4295 (cbrts (cbrts tree_expr_nonnegative_p@0))
4296 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4297 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4299 (sqrts (pows @0 @1))
4300 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4301 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4303 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4304 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4305 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4307 (pows (sqrts @0) @1)
4308 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4309 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4311 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4312 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4313 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4315 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4316 (pows @0 (mult @1 @2))))
4318 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4320 (CABS (complex @0 @0))
4321 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4323 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4326 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4328 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4333 (cexps compositional_complex@0)
4334 (if (targetm.libc_has_function (function_c99_math_complex))
4336 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4337 (mult @1 (imagpart @2)))))))
4339 (if (canonicalize_math_p ())
4340 /* floor(x) -> trunc(x) if x is nonnegative. */
4341 (for floors (FLOOR_ALL)
4344 (floors tree_expr_nonnegative_p@0)
4347 (match double_value_p
4349 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4350 (for froms (BUILT_IN_TRUNCL
4362 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4363 (if (optimize && canonicalize_math_p ())
4365 (froms (convert double_value_p@0))
4366 (convert (tos @0)))))
4368 (match float_value_p
4370 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4371 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4372 BUILT_IN_FLOORL BUILT_IN_FLOOR
4373 BUILT_IN_CEILL BUILT_IN_CEIL
4374 BUILT_IN_ROUNDL BUILT_IN_ROUND
4375 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4376 BUILT_IN_RINTL BUILT_IN_RINT)
4377 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4378 BUILT_IN_FLOORF BUILT_IN_FLOORF
4379 BUILT_IN_CEILF BUILT_IN_CEILF
4380 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4381 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4382 BUILT_IN_RINTF BUILT_IN_RINTF)
4383 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4385 (if (optimize && canonicalize_math_p ()
4386 && targetm.libc_has_function (function_c99_misc))
4388 (froms (convert float_value_p@0))
4389 (convert (tos @0)))))
4391 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4392 tos (XFLOOR XCEIL XROUND XRINT)
4393 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4394 (if (optimize && canonicalize_math_p ())
4396 (froms (convert double_value_p@0))
4399 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4400 XFLOOR XCEIL XROUND XRINT)
4401 tos (XFLOORF XCEILF XROUNDF XRINTF)
4402 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4404 (if (optimize && canonicalize_math_p ())
4406 (froms (convert float_value_p@0))
4409 (if (canonicalize_math_p ())
4410 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4411 (for floors (IFLOOR LFLOOR LLFLOOR)
4413 (floors tree_expr_nonnegative_p@0)
4416 (if (canonicalize_math_p ())
4417 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4418 (for fns (IFLOOR LFLOOR LLFLOOR
4420 IROUND LROUND LLROUND)
4422 (fns integer_valued_real_p@0)
4424 (if (!flag_errno_math)
4425 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4426 (for rints (IRINT LRINT LLRINT)
4428 (rints integer_valued_real_p@0)
4431 (if (canonicalize_math_p ())
4432 (for ifn (IFLOOR ICEIL IROUND IRINT)
4433 lfn (LFLOOR LCEIL LROUND LRINT)
4434 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4435 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4436 sizeof (int) == sizeof (long). */
4437 (if (TYPE_PRECISION (integer_type_node)
4438 == TYPE_PRECISION (long_integer_type_node))
4441 (lfn:long_integer_type_node @0)))
4442 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4443 sizeof (long long) == sizeof (long). */
4444 (if (TYPE_PRECISION (long_long_integer_type_node)
4445 == TYPE_PRECISION (long_integer_type_node))
4448 (lfn:long_integer_type_node @0)))))
4450 /* cproj(x) -> x if we're ignoring infinities. */
4453 (if (!HONOR_INFINITIES (type))
4456 /* If the real part is inf and the imag part is known to be
4457 nonnegative, return (inf + 0i). */
4459 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4460 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4461 { build_complex_inf (type, false); }))
4463 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4465 (CPROJ (complex @0 REAL_CST@1))
4466 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4467 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4473 (pows @0 REAL_CST@1)
4475 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4476 REAL_VALUE_TYPE tmp;
4479 /* pow(x,0) -> 1. */
4480 (if (real_equal (value, &dconst0))
4481 { build_real (type, dconst1); })
4482 /* pow(x,1) -> x. */
4483 (if (real_equal (value, &dconst1))
4485 /* pow(x,-1) -> 1/x. */
4486 (if (real_equal (value, &dconstm1))
4487 (rdiv { build_real (type, dconst1); } @0))
4488 /* pow(x,0.5) -> sqrt(x). */
4489 (if (flag_unsafe_math_optimizations
4490 && canonicalize_math_p ()
4491 && real_equal (value, &dconsthalf))
4493 /* pow(x,1/3) -> cbrt(x). */
4494 (if (flag_unsafe_math_optimizations
4495 && canonicalize_math_p ()
4496 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4497 real_equal (value, &tmp)))
4500 /* powi(1,x) -> 1. */
4502 (POWI real_onep@0 @1)
4506 (POWI @0 INTEGER_CST@1)
4508 /* powi(x,0) -> 1. */
4509 (if (wi::to_wide (@1) == 0)
4510 { build_real (type, dconst1); })
4511 /* powi(x,1) -> x. */
4512 (if (wi::to_wide (@1) == 1)
4514 /* powi(x,-1) -> 1/x. */
4515 (if (wi::to_wide (@1) == -1)
4516 (rdiv { build_real (type, dconst1); } @0))))
4518 /* Narrowing of arithmetic and logical operations.
4520 These are conceptually similar to the transformations performed for
4521 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4522 term we want to move all that code out of the front-ends into here. */
4524 /* If we have a narrowing conversion of an arithmetic operation where
4525 both operands are widening conversions from the same type as the outer
4526 narrowing conversion. Then convert the innermost operands to a suitable
4527 unsigned type (to avoid introducing undefined behavior), perform the
4528 operation and convert the result to the desired type. */
4529 (for op (plus minus)
4531 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4532 (if (INTEGRAL_TYPE_P (type)
4533 /* We check for type compatibility between @0 and @1 below,
4534 so there's no need to check that @1/@3 are integral types. */
4535 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4536 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4537 /* The precision of the type of each operand must match the
4538 precision of the mode of each operand, similarly for the
4540 && type_has_mode_precision_p (TREE_TYPE (@0))
4541 && type_has_mode_precision_p (TREE_TYPE (@1))
4542 && type_has_mode_precision_p (type)
4543 /* The inner conversion must be a widening conversion. */
4544 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4545 && types_match (@0, type)
4546 && (types_match (@0, @1)
4547 /* Or the second operand is const integer or converted const
4548 integer from valueize. */
4549 || TREE_CODE (@1) == INTEGER_CST))
4550 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4551 (op @0 (convert @1))
4552 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4553 (convert (op (convert:utype @0)
4554 (convert:utype @1))))))))
4556 /* This is another case of narrowing, specifically when there's an outer
4557 BIT_AND_EXPR which masks off bits outside the type of the innermost
4558 operands. Like the previous case we have to convert the operands
4559 to unsigned types to avoid introducing undefined behavior for the
4560 arithmetic operation. */
4561 (for op (minus plus)
4563 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4564 (if (INTEGRAL_TYPE_P (type)
4565 /* We check for type compatibility between @0 and @1 below,
4566 so there's no need to check that @1/@3 are integral types. */
4567 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4568 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4569 /* The precision of the type of each operand must match the
4570 precision of the mode of each operand, similarly for the
4572 && type_has_mode_precision_p (TREE_TYPE (@0))
4573 && type_has_mode_precision_p (TREE_TYPE (@1))
4574 && type_has_mode_precision_p (type)
4575 /* The inner conversion must be a widening conversion. */
4576 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4577 && types_match (@0, @1)
4578 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4579 <= TYPE_PRECISION (TREE_TYPE (@0)))
4580 && (wi::to_wide (@4)
4581 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4582 true, TYPE_PRECISION (type))) == 0)
4583 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4584 (with { tree ntype = TREE_TYPE (@0); }
4585 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4586 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4587 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4588 (convert:utype @4))))))))
4590 /* Transform (@0 < @1 and @0 < @2) to use min,
4591 (@0 > @1 and @0 > @2) to use max */
4592 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
4593 op (lt le gt ge lt le gt ge )
4594 ext (min min max max max max min min )
4596 (logic (op:cs @0 @1) (op:cs @0 @2))
4597 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4598 && TREE_CODE (@0) != INTEGER_CST)
4599 (op @0 (ext @1 @2)))))
4602 /* signbit(x) -> 0 if x is nonnegative. */
4603 (SIGNBIT tree_expr_nonnegative_p@0)
4604 { integer_zero_node; })
4607 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4609 (if (!HONOR_SIGNED_ZEROS (@0))
4610 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4612 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4614 (for op (plus minus)
4617 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4618 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4619 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4620 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4621 && !TYPE_SATURATING (TREE_TYPE (@0)))
4622 (with { tree res = int_const_binop (rop, @2, @1); }
4623 (if (TREE_OVERFLOW (res)
4624 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4625 { constant_boolean_node (cmp == NE_EXPR, type); }
4626 (if (single_use (@3))
4627 (cmp @0 { TREE_OVERFLOW (res)
4628 ? drop_tree_overflow (res) : res; }))))))))
4629 (for cmp (lt le gt ge)
4630 (for op (plus minus)
4633 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4634 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4635 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4636 (with { tree res = int_const_binop (rop, @2, @1); }
4637 (if (TREE_OVERFLOW (res))
4639 fold_overflow_warning (("assuming signed overflow does not occur "
4640 "when simplifying conditional to constant"),
4641 WARN_STRICT_OVERFLOW_CONDITIONAL);
4642 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4643 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4644 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4645 TYPE_SIGN (TREE_TYPE (@1)))
4646 != (op == MINUS_EXPR);
4647 constant_boolean_node (less == ovf_high, type);
4649 (if (single_use (@3))
4652 fold_overflow_warning (("assuming signed overflow does not occur "
4653 "when changing X +- C1 cmp C2 to "
4655 WARN_STRICT_OVERFLOW_COMPARISON);
4657 (cmp @0 { res; })))))))))
4659 /* Canonicalizations of BIT_FIELD_REFs. */
4662 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
4663 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
4666 (BIT_FIELD_REF (view_convert @0) @1 @2)
4667 (BIT_FIELD_REF @0 @1 @2))
4670 (BIT_FIELD_REF @0 @1 integer_zerop)
4671 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
4675 (BIT_FIELD_REF @0 @1 @2)
4677 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4678 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4680 (if (integer_zerop (@2))
4681 (view_convert (realpart @0)))
4682 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4683 (view_convert (imagpart @0)))))
4684 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4685 && INTEGRAL_TYPE_P (type)
4686 /* On GIMPLE this should only apply to register arguments. */
4687 && (! GIMPLE || is_gimple_reg (@0))
4688 /* A bit-field-ref that referenced the full argument can be stripped. */
4689 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4690 && integer_zerop (@2))
4691 /* Low-parts can be reduced to integral conversions.
4692 ??? The following doesn't work for PDP endian. */
4693 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4694 /* Don't even think about BITS_BIG_ENDIAN. */
4695 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4696 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4697 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4698 ? (TYPE_PRECISION (TREE_TYPE (@0))
4699 - TYPE_PRECISION (type))
4703 /* Simplify vector extracts. */
4706 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4707 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4708 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4709 || (VECTOR_TYPE_P (type)
4710 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4713 tree ctor = (TREE_CODE (@0) == SSA_NAME
4714 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4715 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4716 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4717 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4718 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4721 && (idx % width) == 0
4723 && known_le ((idx + n) / width,
4724 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
4729 /* Constructor elements can be subvectors. */
4731 if (CONSTRUCTOR_NELTS (ctor) != 0)
4733 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4734 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4735 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4737 unsigned HOST_WIDE_INT elt, count, const_k;
4740 /* We keep an exact subset of the constructor elements. */
4741 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
4742 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4743 { build_constructor (type, NULL); }
4745 (if (elt < CONSTRUCTOR_NELTS (ctor))
4746 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
4747 { build_zero_cst (type); })
4749 vec<constructor_elt, va_gc> *vals;
4750 vec_alloc (vals, count);
4751 for (unsigned i = 0;
4752 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4753 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4754 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4755 build_constructor (type, vals);
4757 /* The bitfield references a single constructor element. */
4758 (if (k.is_constant (&const_k)
4759 && idx + n <= (idx / const_k + 1) * const_k)
4761 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
4762 { build_zero_cst (type); })
4764 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
4765 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4766 @1 { bitsize_int ((idx % const_k) * width); })))))))))
4768 /* Simplify a bit extraction from a bit insertion for the cases with
4769 the inserted element fully covering the extraction or the insertion
4770 not touching the extraction. */
4772 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4775 unsigned HOST_WIDE_INT isize;
4776 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4777 isize = TYPE_PRECISION (TREE_TYPE (@1));
4779 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4782 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4783 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4784 wi::to_wide (@ipos) + isize))
4785 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
4787 - wi::to_wide (@ipos)); }))
4788 (if (wi::geu_p (wi::to_wide (@ipos),
4789 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4790 || wi::geu_p (wi::to_wide (@rpos),
4791 wi::to_wide (@ipos) + isize))
4792 (BIT_FIELD_REF @0 @rsize @rpos)))))
4794 (if (canonicalize_math_after_vectorization_p ())
4797 (fmas:c (negate @0) @1 @2)
4798 (IFN_FNMA @0 @1 @2))
4800 (fmas @0 @1 (negate @2))
4803 (fmas:c (negate @0) @1 (negate @2))
4804 (IFN_FNMS @0 @1 @2))
4806 (negate (fmas@3 @0 @1 @2))
4807 (if (single_use (@3))
4808 (IFN_FNMS @0 @1 @2))))
4811 (IFN_FMS:c (negate @0) @1 @2)
4812 (IFN_FNMS @0 @1 @2))
4814 (IFN_FMS @0 @1 (negate @2))
4817 (IFN_FMS:c (negate @0) @1 (negate @2))
4818 (IFN_FNMA @0 @1 @2))
4820 (negate (IFN_FMS@3 @0 @1 @2))
4821 (if (single_use (@3))
4822 (IFN_FNMA @0 @1 @2)))
4825 (IFN_FNMA:c (negate @0) @1 @2)
4828 (IFN_FNMA @0 @1 (negate @2))
4829 (IFN_FNMS @0 @1 @2))
4831 (IFN_FNMA:c (negate @0) @1 (negate @2))
4834 (negate (IFN_FNMA@3 @0 @1 @2))
4835 (if (single_use (@3))
4836 (IFN_FMS @0 @1 @2)))
4839 (IFN_FNMS:c (negate @0) @1 @2)
4842 (IFN_FNMS @0 @1 (negate @2))
4843 (IFN_FNMA @0 @1 @2))
4845 (IFN_FNMS:c (negate @0) @1 (negate @2))
4848 (negate (IFN_FNMS@3 @0 @1 @2))
4849 (if (single_use (@3))
4850 (IFN_FMA @0 @1 @2))))
4852 /* POPCOUNT simplifications. */
4853 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
4854 BUILT_IN_POPCOUNTIMAX)
4855 /* popcount(X&1) is nop_expr(X&1). */
4858 (if (tree_nonzero_bits (@0) == 1)
4860 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
4862 (plus (popcount:s @0) (popcount:s @1))
4863 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
4864 (popcount (bit_ior @0 @1))))
4865 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
4866 (for cmp (le eq ne gt)
4869 (cmp (popcount @0) integer_zerop)
4870 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
4879 r = c ? a1 op a2 : b;
4881 if the target can do it in one go. This makes the operation conditional
4882 on c, so could drop potentially-trapping arithmetic, but that's a valid
4883 simplification if the result of the operation isn't needed. */
4884 (for uncond_op (UNCOND_BINARY)
4885 cond_op (COND_BINARY)
4887 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
4888 (with { tree op_type = TREE_TYPE (@4); }
4889 (if (element_precision (type) == element_precision (op_type))
4890 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
4892 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
4893 (with { tree op_type = TREE_TYPE (@4); }
4894 (if (element_precision (type) == element_precision (op_type))
4895 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
4897 /* Same for ternary operations. */
4898 (for uncond_op (UNCOND_TERNARY)
4899 cond_op (COND_TERNARY)
4901 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
4902 (with { tree op_type = TREE_TYPE (@5); }
4903 (if (element_precision (type) == element_precision (op_type))
4904 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
4906 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
4907 (with { tree op_type = TREE_TYPE (@5); }
4908 (if (element_precision (type) == element_precision (op_type))
4909 (view_convert (cond_op (bit_not @0) @2 @3 @4
4910 (view_convert:op_type @1)))))))
4912 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
4913 "else" value of an IFN_COND_*. */
4914 (for cond_op (COND_BINARY)
4916 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
4917 (with { tree op_type = TREE_TYPE (@3); }
4918 (if (element_precision (type) == element_precision (op_type))
4919 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
4921 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
4922 (with { tree op_type = TREE_TYPE (@5); }
4923 (if (inverse_conditions_p (@0, @2)
4924 && element_precision (type) == element_precision (op_type))
4925 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
4927 /* Same for ternary operations. */
4928 (for cond_op (COND_TERNARY)
4930 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
4931 (with { tree op_type = TREE_TYPE (@4); }
4932 (if (element_precision (type) == element_precision (op_type))
4933 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
4935 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
4936 (with { tree op_type = TREE_TYPE (@6); }
4937 (if (inverse_conditions_p (@0, @2)
4938 && element_precision (type) == element_precision (op_type))
4939 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
4941 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
4944 A: (@0 + @1 < @2) | (@2 + @1 < @0)
4945 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
4947 If pointers are known not to wrap, B checks whether @1 bytes starting
4948 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
4949 bytes. A is more efficiently tested as:
4951 A: (sizetype) (@0 + @1 - @2) > @1 * 2
4953 The equivalent expression for B is given by replacing @1 with @1 - 1:
4955 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
4957 @0 and @2 can be swapped in both expressions without changing the result.
4959 The folds rely on sizetype's being unsigned (which is always true)
4960 and on its being the same width as the pointer (which we have to check).
4962 The fold replaces two pointer_plus expressions, two comparisons and
4963 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
4964 the best case it's a saving of two operations. The A fold retains one
4965 of the original pointer_pluses, so is a win even if both pointer_pluses
4966 are used elsewhere. The B fold is a wash if both pointer_pluses are
4967 used elsewhere, since all we end up doing is replacing a comparison with
4968 a pointer_plus. We do still apply the fold under those circumstances
4969 though, in case applying it to other conditions eventually makes one of the
4970 pointer_pluses dead. */
4971 (for ior (truth_orif truth_or bit_ior)
4974 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
4975 (cmp:cs (pointer_plus@4 @2 @1) @0))
4976 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4977 && TYPE_OVERFLOW_WRAPS (sizetype)
4978 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
4979 /* Calculate the rhs constant. */
4980 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
4981 offset_int rhs = off * 2; }
4982 /* Always fails for negative values. */
4983 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
4984 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
4985 pick a canonical order. This increases the chances of using the
4986 same pointer_plus in multiple checks. */
4987 (with { bool swap_p = tree_swap_operands_p (@0, @2);
4988 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
4989 (if (cmp == LT_EXPR)
4990 (gt (convert:sizetype
4991 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
4992 { swap_p ? @0 : @2; }))
4994 (gt (convert:sizetype
4995 (pointer_diff:ssizetype
4996 (pointer_plus { swap_p ? @2 : @0; }
4997 { wide_int_to_tree (sizetype, off); })
4998 { swap_p ? @0 : @2; }))
4999 { rhs_tree; })))))))))