2014-08-01 Robert Dewar <dewar@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch3.adb
blobadbfd5011df7bbbeac26b72ca60d10006fbccc4f
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Itypes; use Itypes;
43 with Layout; use Layout;
44 with Lib; use Lib;
45 with Lib.Xref; use Lib.Xref;
46 with Namet; use Namet;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Aux; use Sem_Aux;
54 with Sem_Case; use Sem_Case;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch6; use Sem_Ch6;
57 with Sem_Ch7; use Sem_Ch7;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch10; use Sem_Ch10;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
83 package body Sem_Ch3 is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
94 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
95 -- Analyze all delayed aspects chained on the contract of object Obj_Id as
96 -- if they appeared at the end of the declarative region. The aspects to be
97 -- considered are:
98 -- Async_Readers
99 -- Async_Writers
100 -- Effective_Reads
101 -- Effective_Writes
102 -- Part_Of
104 procedure Build_Derived_Type
105 (N : Node_Id;
106 Parent_Type : Entity_Id;
107 Derived_Type : Entity_Id;
108 Is_Completion : Boolean;
109 Derive_Subps : Boolean := True);
110 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
111 -- the N_Full_Type_Declaration node containing the derived type definition.
112 -- Parent_Type is the entity for the parent type in the derived type
113 -- definition and Derived_Type the actual derived type. Is_Completion must
114 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
115 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
116 -- completion of a private type declaration. If Is_Completion is set to
117 -- True, N is the completion of a private type declaration and Derived_Type
118 -- is different from the defining identifier inside N (i.e. Derived_Type /=
119 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
120 -- subprograms should be derived. The only case where this parameter is
121 -- False is when Build_Derived_Type is recursively called to process an
122 -- implicit derived full type for a type derived from a private type (in
123 -- that case the subprograms must only be derived for the private view of
124 -- the type).
126 -- ??? These flags need a bit of re-examination and re-documentation:
127 -- ??? are they both necessary (both seem related to the recursion)?
129 procedure Build_Derived_Access_Type
130 (N : Node_Id;
131 Parent_Type : Entity_Id;
132 Derived_Type : Entity_Id);
133 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
134 -- create an implicit base if the parent type is constrained or if the
135 -- subtype indication has a constraint.
137 procedure Build_Derived_Array_Type
138 (N : Node_Id;
139 Parent_Type : Entity_Id;
140 Derived_Type : Entity_Id);
141 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
142 -- create an implicit base if the parent type is constrained or if the
143 -- subtype indication has a constraint.
145 procedure Build_Derived_Concurrent_Type
146 (N : Node_Id;
147 Parent_Type : Entity_Id;
148 Derived_Type : Entity_Id);
149 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
150 -- protected type, inherit entries and protected subprograms, check
151 -- legality of discriminant constraints if any.
153 procedure Build_Derived_Enumeration_Type
154 (N : Node_Id;
155 Parent_Type : Entity_Id;
156 Derived_Type : Entity_Id);
157 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
158 -- type, we must create a new list of literals. Types derived from
159 -- Character and [Wide_]Wide_Character are special-cased.
161 procedure Build_Derived_Numeric_Type
162 (N : Node_Id;
163 Parent_Type : Entity_Id;
164 Derived_Type : Entity_Id);
165 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
166 -- an anonymous base type, and propagate constraint to subtype if needed.
168 procedure Build_Derived_Private_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Is_Completion : Boolean;
173 Derive_Subps : Boolean := True);
174 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
175 -- because the parent may or may not have a completion, and the derivation
176 -- may itself be a completion.
178 procedure Build_Derived_Record_Type
179 (N : Node_Id;
180 Parent_Type : Entity_Id;
181 Derived_Type : Entity_Id;
182 Derive_Subps : Boolean := True);
183 -- Subsidiary procedure used for tagged and untagged record types
184 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
185 -- All parameters are as in Build_Derived_Type except that N, in
186 -- addition to being an N_Full_Type_Declaration node, can also be an
187 -- N_Private_Extension_Declaration node. See the definition of this routine
188 -- for much more info. Derive_Subps indicates whether subprograms should be
189 -- derived from the parent type. The only case where Derive_Subps is False
190 -- is for an implicit derived full type for a type derived from a private
191 -- type (see Build_Derived_Type).
193 procedure Build_Discriminal (Discrim : Entity_Id);
194 -- Create the discriminal corresponding to discriminant Discrim, that is
195 -- the parameter corresponding to Discrim to be used in initialization
196 -- procedures for the type where Discrim is a discriminant. Discriminals
197 -- are not used during semantic analysis, and are not fully defined
198 -- entities until expansion. Thus they are not given a scope until
199 -- initialization procedures are built.
201 function Build_Discriminant_Constraints
202 (T : Entity_Id;
203 Def : Node_Id;
204 Derived_Def : Boolean := False) return Elist_Id;
205 -- Validate discriminant constraints and return the list of the constraints
206 -- in order of discriminant declarations, where T is the discriminated
207 -- unconstrained type. Def is the N_Subtype_Indication node where the
208 -- discriminants constraints for T are specified. Derived_Def is True
209 -- when building the discriminant constraints in a derived type definition
210 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
211 -- type and Def is the constraint "(xxx)" on T and this routine sets the
212 -- Corresponding_Discriminant field of the discriminants in the derived
213 -- type D to point to the corresponding discriminants in the parent type T.
215 procedure Build_Discriminated_Subtype
216 (T : Entity_Id;
217 Def_Id : Entity_Id;
218 Elist : Elist_Id;
219 Related_Nod : Node_Id;
220 For_Access : Boolean := False);
221 -- Subsidiary procedure to Constrain_Discriminated_Type and to
222 -- Process_Incomplete_Dependents. Given
224 -- T (a possibly discriminated base type)
225 -- Def_Id (a very partially built subtype for T),
227 -- the call completes Def_Id to be the appropriate E_*_Subtype.
229 -- The Elist is the list of discriminant constraints if any (it is set
230 -- to No_Elist if T is not a discriminated type, and to an empty list if
231 -- T has discriminants but there are no discriminant constraints). The
232 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
233 -- The For_Access says whether or not this subtype is really constraining
234 -- an access type. That is its sole purpose is the designated type of an
235 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
236 -- is built to avoid freezing T when the access subtype is frozen.
238 function Build_Scalar_Bound
239 (Bound : Node_Id;
240 Par_T : Entity_Id;
241 Der_T : Entity_Id) return Node_Id;
242 -- The bounds of a derived scalar type are conversions of the bounds of
243 -- the parent type. Optimize the representation if the bounds are literals.
244 -- Needs a more complete spec--what are the parameters exactly, and what
245 -- exactly is the returned value, and how is Bound affected???
247 procedure Build_Underlying_Full_View
248 (N : Node_Id;
249 Typ : Entity_Id;
250 Par : Entity_Id);
251 -- If the completion of a private type is itself derived from a private
252 -- type, or if the full view of a private subtype is itself private, the
253 -- back-end has no way to compute the actual size of this type. We build
254 -- an internal subtype declaration of the proper parent type to convey
255 -- this information. This extra mechanism is needed because a full
256 -- view cannot itself have a full view (it would get clobbered during
257 -- view exchanges).
259 procedure Check_Access_Discriminant_Requires_Limited
260 (D : Node_Id;
261 Loc : Node_Id);
262 -- Check the restriction that the type to which an access discriminant
263 -- belongs must be a concurrent type or a descendant of a type with
264 -- the reserved word 'limited' in its declaration.
266 procedure Check_Anonymous_Access_Components
267 (Typ_Decl : Node_Id;
268 Typ : Entity_Id;
269 Prev : Entity_Id;
270 Comp_List : Node_Id);
271 -- Ada 2005 AI-382: an access component in a record definition can refer to
272 -- the enclosing record, in which case it denotes the type itself, and not
273 -- the current instance of the type. We create an anonymous access type for
274 -- the component, and flag it as an access to a component, so accessibility
275 -- checks are properly performed on it. The declaration of the access type
276 -- is placed ahead of that of the record to prevent order-of-elaboration
277 -- circularity issues in Gigi. We create an incomplete type for the record
278 -- declaration, which is the designated type of the anonymous access.
280 procedure Check_Delta_Expression (E : Node_Id);
281 -- Check that the expression represented by E is suitable for use as a
282 -- delta expression, i.e. it is of real type and is static.
284 procedure Check_Digits_Expression (E : Node_Id);
285 -- Check that the expression represented by E is suitable for use as a
286 -- digits expression, i.e. it is of integer type, positive and static.
288 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
289 -- Validate the initialization of an object declaration. T is the required
290 -- type, and Exp is the initialization expression.
292 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
293 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
295 procedure Check_Or_Process_Discriminants
296 (N : Node_Id;
297 T : Entity_Id;
298 Prev : Entity_Id := Empty);
299 -- If N is the full declaration of the completion T of an incomplete or
300 -- private type, check its discriminants (which are already known to be
301 -- conformant with those of the partial view, see Find_Type_Name),
302 -- otherwise process them. Prev is the entity of the partial declaration,
303 -- if any.
305 procedure Check_Real_Bound (Bound : Node_Id);
306 -- Check given bound for being of real type and static. If not, post an
307 -- appropriate message, and rewrite the bound with the real literal zero.
309 procedure Constant_Redeclaration
310 (Id : Entity_Id;
311 N : Node_Id;
312 T : out Entity_Id);
313 -- Various checks on legality of full declaration of deferred constant.
314 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
315 -- node. The caller has not yet set any attributes of this entity.
317 function Contain_Interface
318 (Iface : Entity_Id;
319 Ifaces : Elist_Id) return Boolean;
320 -- Ada 2005: Determine whether Iface is present in the list Ifaces
322 procedure Convert_Scalar_Bounds
323 (N : Node_Id;
324 Parent_Type : Entity_Id;
325 Derived_Type : Entity_Id;
326 Loc : Source_Ptr);
327 -- For derived scalar types, convert the bounds in the type definition to
328 -- the derived type, and complete their analysis. Given a constraint of the
329 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
330 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
331 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
332 -- subtype are conversions of those bounds to the derived_type, so that
333 -- their typing is consistent.
335 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
336 -- Copies attributes from array base type T2 to array base type T1. Copies
337 -- only attributes that apply to base types, but not subtypes.
339 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
340 -- Copies attributes from array subtype T2 to array subtype T1. Copies
341 -- attributes that apply to both subtypes and base types.
343 procedure Create_Constrained_Components
344 (Subt : Entity_Id;
345 Decl_Node : Node_Id;
346 Typ : Entity_Id;
347 Constraints : Elist_Id);
348 -- Build the list of entities for a constrained discriminated record
349 -- subtype. If a component depends on a discriminant, replace its subtype
350 -- using the discriminant values in the discriminant constraint. Subt
351 -- is the defining identifier for the subtype whose list of constrained
352 -- entities we will create. Decl_Node is the type declaration node where
353 -- we will attach all the itypes created. Typ is the base discriminated
354 -- type for the subtype Subt. Constraints is the list of discriminant
355 -- constraints for Typ.
357 function Constrain_Component_Type
358 (Comp : Entity_Id;
359 Constrained_Typ : Entity_Id;
360 Related_Node : Node_Id;
361 Typ : Entity_Id;
362 Constraints : Elist_Id) return Entity_Id;
363 -- Given a discriminated base type Typ, a list of discriminant constraints,
364 -- Constraints, for Typ and a component Comp of Typ, create and return the
365 -- type corresponding to Etype (Comp) where all discriminant references
366 -- are replaced with the corresponding constraint. If Etype (Comp) contains
367 -- no discriminant references then it is returned as-is. Constrained_Typ
368 -- is the final constrained subtype to which the constrained component
369 -- belongs. Related_Node is the node where we attach all created itypes.
371 procedure Constrain_Access
372 (Def_Id : in out Entity_Id;
373 S : Node_Id;
374 Related_Nod : Node_Id);
375 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
376 -- an anonymous type created for a subtype indication. In that case it is
377 -- created in the procedure and attached to Related_Nod.
379 procedure Constrain_Array
380 (Def_Id : in out Entity_Id;
381 SI : Node_Id;
382 Related_Nod : Node_Id;
383 Related_Id : Entity_Id;
384 Suffix : Character);
385 -- Apply a list of index constraints to an unconstrained array type. The
386 -- first parameter is the entity for the resulting subtype. A value of
387 -- Empty for Def_Id indicates that an implicit type must be created, but
388 -- creation is delayed (and must be done by this procedure) because other
389 -- subsidiary implicit types must be created first (which is why Def_Id
390 -- is an in/out parameter). The second parameter is a subtype indication
391 -- node for the constrained array to be created (e.g. something of the
392 -- form string (1 .. 10)). Related_Nod gives the place where this type
393 -- has to be inserted in the tree. The Related_Id and Suffix parameters
394 -- are used to build the associated Implicit type name.
396 procedure Constrain_Concurrent
397 (Def_Id : in out Entity_Id;
398 SI : Node_Id;
399 Related_Nod : Node_Id;
400 Related_Id : Entity_Id;
401 Suffix : Character);
402 -- Apply list of discriminant constraints to an unconstrained concurrent
403 -- type.
405 -- SI is the N_Subtype_Indication node containing the constraint and
406 -- the unconstrained type to constrain.
408 -- Def_Id is the entity for the resulting constrained subtype. A value
409 -- of Empty for Def_Id indicates that an implicit type must be created,
410 -- but creation is delayed (and must be done by this procedure) because
411 -- other subsidiary implicit types must be created first (which is why
412 -- Def_Id is an in/out parameter).
414 -- Related_Nod gives the place where this type has to be inserted
415 -- in the tree.
417 -- The last two arguments are used to create its external name if needed.
419 function Constrain_Corresponding_Record
420 (Prot_Subt : Entity_Id;
421 Corr_Rec : Entity_Id;
422 Related_Nod : Node_Id) return Entity_Id;
423 -- When constraining a protected type or task type with discriminants,
424 -- constrain the corresponding record with the same discriminant values.
426 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
427 -- Constrain a decimal fixed point type with a digits constraint and/or a
428 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
430 procedure Constrain_Discriminated_Type
431 (Def_Id : Entity_Id;
432 S : Node_Id;
433 Related_Nod : Node_Id;
434 For_Access : Boolean := False);
435 -- Process discriminant constraints of composite type. Verify that values
436 -- have been provided for all discriminants, that the original type is
437 -- unconstrained, and that the types of the supplied expressions match
438 -- the discriminant types. The first three parameters are like in routine
439 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
440 -- of For_Access.
442 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
443 -- Constrain an enumeration type with a range constraint. This is identical
444 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
446 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
447 -- Constrain a floating point type with either a digits constraint
448 -- and/or a range constraint, building a E_Floating_Point_Subtype.
450 procedure Constrain_Index
451 (Index : Node_Id;
452 S : Node_Id;
453 Related_Nod : Node_Id;
454 Related_Id : Entity_Id;
455 Suffix : Character;
456 Suffix_Index : Nat);
457 -- Process an index constraint S in a constrained array declaration. The
458 -- constraint can be a subtype name, or a range with or without an explicit
459 -- subtype mark. The index is the corresponding index of the unconstrained
460 -- array. The Related_Id and Suffix parameters are used to build the
461 -- associated Implicit type name.
463 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
464 -- Build subtype of a signed or modular integer type
466 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
467 -- Constrain an ordinary fixed point type with a range constraint, and
468 -- build an E_Ordinary_Fixed_Point_Subtype entity.
470 procedure Copy_And_Swap (Priv, Full : Entity_Id);
471 -- Copy the Priv entity into the entity of its full declaration then swap
472 -- the two entities in such a manner that the former private type is now
473 -- seen as a full type.
475 procedure Decimal_Fixed_Point_Type_Declaration
476 (T : Entity_Id;
477 Def : Node_Id);
478 -- Create a new decimal fixed point type, and apply the constraint to
479 -- obtain a subtype of this new type.
481 procedure Complete_Private_Subtype
482 (Priv : Entity_Id;
483 Full : Entity_Id;
484 Full_Base : Entity_Id;
485 Related_Nod : Node_Id);
486 -- Complete the implicit full view of a private subtype by setting the
487 -- appropriate semantic fields. If the full view of the parent is a record
488 -- type, build constrained components of subtype.
490 procedure Derive_Progenitor_Subprograms
491 (Parent_Type : Entity_Id;
492 Tagged_Type : Entity_Id);
493 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
494 -- operations of progenitors of Tagged_Type, and replace the subsidiary
495 -- subtypes with Tagged_Type, to build the specs of the inherited interface
496 -- primitives. The derived primitives are aliased to those of the
497 -- interface. This routine takes care also of transferring to the full view
498 -- subprograms associated with the partial view of Tagged_Type that cover
499 -- interface primitives.
501 procedure Derived_Standard_Character
502 (N : Node_Id;
503 Parent_Type : Entity_Id;
504 Derived_Type : Entity_Id);
505 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
506 -- derivations from types Standard.Character and Standard.Wide_Character.
508 procedure Derived_Type_Declaration
509 (T : Entity_Id;
510 N : Node_Id;
511 Is_Completion : Boolean);
512 -- Process a derived type declaration. Build_Derived_Type is invoked
513 -- to process the actual derived type definition. Parameters N and
514 -- Is_Completion have the same meaning as in Build_Derived_Type.
515 -- T is the N_Defining_Identifier for the entity defined in the
516 -- N_Full_Type_Declaration node N, that is T is the derived type.
518 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
519 -- Insert each literal in symbol table, as an overloadable identifier. Each
520 -- enumeration type is mapped into a sequence of integers, and each literal
521 -- is defined as a constant with integer value. If any of the literals are
522 -- character literals, the type is a character type, which means that
523 -- strings are legal aggregates for arrays of components of the type.
525 function Expand_To_Stored_Constraint
526 (Typ : Entity_Id;
527 Constraint : Elist_Id) return Elist_Id;
528 -- Given a constraint (i.e. a list of expressions) on the discriminants of
529 -- Typ, expand it into a constraint on the stored discriminants and return
530 -- the new list of expressions constraining the stored discriminants.
532 function Find_Type_Of_Object
533 (Obj_Def : Node_Id;
534 Related_Nod : Node_Id) return Entity_Id;
535 -- Get type entity for object referenced by Obj_Def, attaching the
536 -- implicit types generated to Related_Nod
538 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
539 -- Create a new float and apply the constraint to obtain subtype of it
541 function Has_Range_Constraint (N : Node_Id) return Boolean;
542 -- Given an N_Subtype_Indication node N, return True if a range constraint
543 -- is present, either directly, or as part of a digits or delta constraint.
544 -- In addition, a digits constraint in the decimal case returns True, since
545 -- it establishes a default range if no explicit range is present.
547 function Inherit_Components
548 (N : Node_Id;
549 Parent_Base : Entity_Id;
550 Derived_Base : Entity_Id;
551 Is_Tagged : Boolean;
552 Inherit_Discr : Boolean;
553 Discs : Elist_Id) return Elist_Id;
554 -- Called from Build_Derived_Record_Type to inherit the components of
555 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
556 -- For more information on derived types and component inheritance please
557 -- consult the comment above the body of Build_Derived_Record_Type.
559 -- N is the original derived type declaration
561 -- Is_Tagged is set if we are dealing with tagged types
563 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
564 -- Parent_Base, otherwise no discriminants are inherited.
566 -- Discs gives the list of constraints that apply to Parent_Base in the
567 -- derived type declaration. If Discs is set to No_Elist, then we have
568 -- the following situation:
570 -- type Parent (D1..Dn : ..) is [tagged] record ...;
571 -- type Derived is new Parent [with ...];
573 -- which gets treated as
575 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
577 -- For untagged types the returned value is an association list. The list
578 -- starts from the association (Parent_Base => Derived_Base), and then it
579 -- contains a sequence of the associations of the form
581 -- (Old_Component => New_Component),
583 -- where Old_Component is the Entity_Id of a component in Parent_Base and
584 -- New_Component is the Entity_Id of the corresponding component in
585 -- Derived_Base. For untagged records, this association list is needed when
586 -- copying the record declaration for the derived base. In the tagged case
587 -- the value returned is irrelevant.
589 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
590 -- Propagate static and dynamic predicate flags from a parent to the
591 -- subtype in a subtype declaration with and without constraints.
593 function Is_Valid_Constraint_Kind
594 (T_Kind : Type_Kind;
595 Constraint_Kind : Node_Kind) return Boolean;
596 -- Returns True if it is legal to apply the given kind of constraint to the
597 -- given kind of type (index constraint to an array type, for example).
599 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
600 -- Create new modular type. Verify that modulus is in bounds
602 procedure New_Concatenation_Op (Typ : Entity_Id);
603 -- Create an abbreviated declaration for an operator in order to
604 -- materialize concatenation on array types.
606 procedure Ordinary_Fixed_Point_Type_Declaration
607 (T : Entity_Id;
608 Def : Node_Id);
609 -- Create a new ordinary fixed point type, and apply the constraint to
610 -- obtain subtype of it.
612 procedure Prepare_Private_Subtype_Completion
613 (Id : Entity_Id;
614 Related_Nod : Node_Id);
615 -- Id is a subtype of some private type. Creates the full declaration
616 -- associated with Id whenever possible, i.e. when the full declaration
617 -- of the base type is already known. Records each subtype into
618 -- Private_Dependents of the base type.
620 procedure Process_Incomplete_Dependents
621 (N : Node_Id;
622 Full_T : Entity_Id;
623 Inc_T : Entity_Id);
624 -- Process all entities that depend on an incomplete type. There include
625 -- subtypes, subprogram types that mention the incomplete type in their
626 -- profiles, and subprogram with access parameters that designate the
627 -- incomplete type.
629 -- Inc_T is the defining identifier of an incomplete type declaration, its
630 -- Ekind is E_Incomplete_Type.
632 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
634 -- Full_T is N's defining identifier.
636 -- Subtypes of incomplete types with discriminants are completed when the
637 -- parent type is. This is simpler than private subtypes, because they can
638 -- only appear in the same scope, and there is no need to exchange views.
639 -- Similarly, access_to_subprogram types may have a parameter or a return
640 -- type that is an incomplete type, and that must be replaced with the
641 -- full type.
643 -- If the full type is tagged, subprogram with access parameters that
644 -- designated the incomplete may be primitive operations of the full type,
645 -- and have to be processed accordingly.
647 procedure Process_Real_Range_Specification (Def : Node_Id);
648 -- Given the type definition for a real type, this procedure processes and
649 -- checks the real range specification of this type definition if one is
650 -- present. If errors are found, error messages are posted, and the
651 -- Real_Range_Specification of Def is reset to Empty.
653 procedure Record_Type_Declaration
654 (T : Entity_Id;
655 N : Node_Id;
656 Prev : Entity_Id);
657 -- Process a record type declaration (for both untagged and tagged
658 -- records). Parameters T and N are exactly like in procedure
659 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
660 -- for this routine. If this is the completion of an incomplete type
661 -- declaration, Prev is the entity of the incomplete declaration, used for
662 -- cross-referencing. Otherwise Prev = T.
664 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
665 -- This routine is used to process the actual record type definition (both
666 -- for untagged and tagged records). Def is a record type definition node.
667 -- This procedure analyzes the components in this record type definition.
668 -- Prev_T is the entity for the enclosing record type. It is provided so
669 -- that its Has_Task flag can be set if any of the component have Has_Task
670 -- set. If the declaration is the completion of an incomplete type
671 -- declaration, Prev_T is the original incomplete type, whose full view is
672 -- the record type.
674 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
675 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
676 -- build a copy of the declaration tree of the parent, and we create
677 -- independently the list of components for the derived type. Semantic
678 -- information uses the component entities, but record representation
679 -- clauses are validated on the declaration tree. This procedure replaces
680 -- discriminants and components in the declaration with those that have
681 -- been created by Inherit_Components.
683 procedure Set_Fixed_Range
684 (E : Entity_Id;
685 Loc : Source_Ptr;
686 Lo : Ureal;
687 Hi : Ureal);
688 -- Build a range node with the given bounds and set it as the Scalar_Range
689 -- of the given fixed-point type entity. Loc is the source location used
690 -- for the constructed range. See body for further details.
692 procedure Set_Scalar_Range_For_Subtype
693 (Def_Id : Entity_Id;
694 R : Node_Id;
695 Subt : Entity_Id);
696 -- This routine is used to set the scalar range field for a subtype given
697 -- Def_Id, the entity for the subtype, and R, the range expression for the
698 -- scalar range. Subt provides the parent subtype to be used to analyze,
699 -- resolve, and check the given range.
701 procedure Set_Default_SSO (T : Entity_Id);
702 -- T is the entity for an array or record being declared. This procedure
703 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
704 -- to the setting of Opt.Default_SSO.
706 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
707 -- Create a new signed integer entity, and apply the constraint to obtain
708 -- the required first named subtype of this type.
710 procedure Set_Stored_Constraint_From_Discriminant_Constraint
711 (E : Entity_Id);
712 -- E is some record type. This routine computes E's Stored_Constraint
713 -- from its Discriminant_Constraint.
715 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
716 -- Check that an entity in a list of progenitors is an interface,
717 -- emit error otherwise.
719 -----------------------
720 -- Access_Definition --
721 -----------------------
723 function Access_Definition
724 (Related_Nod : Node_Id;
725 N : Node_Id) return Entity_Id
727 Anon_Type : Entity_Id;
728 Anon_Scope : Entity_Id;
729 Desig_Type : Entity_Id;
730 Enclosing_Prot_Type : Entity_Id := Empty;
732 begin
733 Check_SPARK_Restriction ("access type is not allowed", N);
735 if Is_Entry (Current_Scope)
736 and then Is_Task_Type (Etype (Scope (Current_Scope)))
737 then
738 Error_Msg_N ("task entries cannot have access parameters", N);
739 return Empty;
740 end if;
742 -- Ada 2005: For an object declaration the corresponding anonymous
743 -- type is declared in the current scope.
745 -- If the access definition is the return type of another access to
746 -- function, scope is the current one, because it is the one of the
747 -- current type declaration, except for the pathological case below.
749 if Nkind_In (Related_Nod, N_Object_Declaration,
750 N_Access_Function_Definition)
751 then
752 Anon_Scope := Current_Scope;
754 -- A pathological case: function returning access functions that
755 -- return access functions, etc. Each anonymous access type created
756 -- is in the enclosing scope of the outermost function.
758 declare
759 Par : Node_Id;
761 begin
762 Par := Related_Nod;
763 while Nkind_In (Par, N_Access_Function_Definition,
764 N_Access_Definition)
765 loop
766 Par := Parent (Par);
767 end loop;
769 if Nkind (Par) = N_Function_Specification then
770 Anon_Scope := Scope (Defining_Entity (Par));
771 end if;
772 end;
774 -- For the anonymous function result case, retrieve the scope of the
775 -- function specification's associated entity rather than using the
776 -- current scope. The current scope will be the function itself if the
777 -- formal part is currently being analyzed, but will be the parent scope
778 -- in the case of a parameterless function, and we always want to use
779 -- the function's parent scope. Finally, if the function is a child
780 -- unit, we must traverse the tree to retrieve the proper entity.
782 elsif Nkind (Related_Nod) = N_Function_Specification
783 and then Nkind (Parent (N)) /= N_Parameter_Specification
784 then
785 -- If the current scope is a protected type, the anonymous access
786 -- is associated with one of the protected operations, and must
787 -- be available in the scope that encloses the protected declaration.
788 -- Otherwise the type is in the scope enclosing the subprogram.
790 -- If the function has formals, The return type of a subprogram
791 -- declaration is analyzed in the scope of the subprogram (see
792 -- Process_Formals) and thus the protected type, if present, is
793 -- the scope of the current function scope.
795 if Ekind (Current_Scope) = E_Protected_Type then
796 Enclosing_Prot_Type := Current_Scope;
798 elsif Ekind (Current_Scope) = E_Function
799 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
800 then
801 Enclosing_Prot_Type := Scope (Current_Scope);
802 end if;
804 if Present (Enclosing_Prot_Type) then
805 Anon_Scope := Scope (Enclosing_Prot_Type);
807 else
808 Anon_Scope := Scope (Defining_Entity (Related_Nod));
809 end if;
811 -- For an access type definition, if the current scope is a child
812 -- unit it is the scope of the type.
814 elsif Is_Compilation_Unit (Current_Scope) then
815 Anon_Scope := Current_Scope;
817 -- For access formals, access components, and access discriminants, the
818 -- scope is that of the enclosing declaration,
820 else
821 Anon_Scope := Scope (Current_Scope);
822 end if;
824 Anon_Type :=
825 Create_Itype
826 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
828 if All_Present (N)
829 and then Ada_Version >= Ada_2005
830 then
831 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
832 end if;
834 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
835 -- the corresponding semantic routine
837 if Present (Access_To_Subprogram_Definition (N)) then
839 -- Compiler runtime units are compiled in Ada 2005 mode when building
840 -- the runtime library but must also be compilable in Ada 95 mode
841 -- (when bootstrapping the compiler).
843 Check_Compiler_Unit ("anonymous access to subprogram", N);
845 Access_Subprogram_Declaration
846 (T_Name => Anon_Type,
847 T_Def => Access_To_Subprogram_Definition (N));
849 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
850 Set_Ekind
851 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
852 else
853 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
854 end if;
856 Set_Can_Use_Internal_Rep
857 (Anon_Type, not Always_Compatible_Rep_On_Target);
859 -- If the anonymous access is associated with a protected operation,
860 -- create a reference to it after the enclosing protected definition
861 -- because the itype will be used in the subsequent bodies.
863 if Ekind (Current_Scope) = E_Protected_Type then
864 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
865 end if;
867 return Anon_Type;
868 end if;
870 Find_Type (Subtype_Mark (N));
871 Desig_Type := Entity (Subtype_Mark (N));
873 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
874 Set_Etype (Anon_Type, Anon_Type);
876 -- Make sure the anonymous access type has size and alignment fields
877 -- set, as required by gigi. This is necessary in the case of the
878 -- Task_Body_Procedure.
880 if not Has_Private_Component (Desig_Type) then
881 Layout_Type (Anon_Type);
882 end if;
884 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
885 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
886 -- the null value is allowed. In Ada 95 the null value is never allowed.
888 if Ada_Version >= Ada_2005 then
889 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
890 else
891 Set_Can_Never_Be_Null (Anon_Type, True);
892 end if;
894 -- The anonymous access type is as public as the discriminated type or
895 -- subprogram that defines it. It is imported (for back-end purposes)
896 -- if the designated type is.
898 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
900 -- Ada 2005 (AI-231): Propagate the access-constant attribute
902 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
904 -- The context is either a subprogram declaration, object declaration,
905 -- or an access discriminant, in a private or a full type declaration.
906 -- In the case of a subprogram, if the designated type is incomplete,
907 -- the operation will be a primitive operation of the full type, to be
908 -- updated subsequently. If the type is imported through a limited_with
909 -- clause, the subprogram is not a primitive operation of the type
910 -- (which is declared elsewhere in some other scope).
912 if Ekind (Desig_Type) = E_Incomplete_Type
913 and then not From_Limited_With (Desig_Type)
914 and then Is_Overloadable (Current_Scope)
915 then
916 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
917 Set_Has_Delayed_Freeze (Current_Scope);
918 end if;
920 -- Ada 2005: If the designated type is an interface that may contain
921 -- tasks, create a Master entity for the declaration. This must be done
922 -- before expansion of the full declaration, because the declaration may
923 -- include an expression that is an allocator, whose expansion needs the
924 -- proper Master for the created tasks.
926 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
927 then
928 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
929 then
930 Build_Class_Wide_Master (Anon_Type);
932 -- Similarly, if the type is an anonymous access that designates
933 -- tasks, create a master entity for it in the current context.
935 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
936 then
937 Build_Master_Entity (Defining_Identifier (Related_Nod));
938 Build_Master_Renaming (Anon_Type);
939 end if;
940 end if;
942 -- For a private component of a protected type, it is imperative that
943 -- the back-end elaborate the type immediately after the protected
944 -- declaration, because this type will be used in the declarations
945 -- created for the component within each protected body, so we must
946 -- create an itype reference for it now.
948 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
949 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
951 -- Similarly, if the access definition is the return result of a
952 -- function, create an itype reference for it because it will be used
953 -- within the function body. For a regular function that is not a
954 -- compilation unit, insert reference after the declaration. For a
955 -- protected operation, insert it after the enclosing protected type
956 -- declaration. In either case, do not create a reference for a type
957 -- obtained through a limited_with clause, because this would introduce
958 -- semantic dependencies.
960 -- Similarly, do not create a reference if the designated type is a
961 -- generic formal, because no use of it will reach the backend.
963 elsif Nkind (Related_Nod) = N_Function_Specification
964 and then not From_Limited_With (Desig_Type)
965 and then not Is_Generic_Type (Desig_Type)
966 then
967 if Present (Enclosing_Prot_Type) then
968 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
970 elsif Is_List_Member (Parent (Related_Nod))
971 and then Nkind (Parent (N)) /= N_Parameter_Specification
972 then
973 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
974 end if;
976 -- Finally, create an itype reference for an object declaration of an
977 -- anonymous access type. This is strictly necessary only for deferred
978 -- constants, but in any case will avoid out-of-scope problems in the
979 -- back-end.
981 elsif Nkind (Related_Nod) = N_Object_Declaration then
982 Build_Itype_Reference (Anon_Type, Related_Nod);
983 end if;
985 return Anon_Type;
986 end Access_Definition;
988 -----------------------------------
989 -- Access_Subprogram_Declaration --
990 -----------------------------------
992 procedure Access_Subprogram_Declaration
993 (T_Name : Entity_Id;
994 T_Def : Node_Id)
996 procedure Check_For_Premature_Usage (Def : Node_Id);
997 -- Check that type T_Name is not used, directly or recursively, as a
998 -- parameter or a return type in Def. Def is either a subtype, an
999 -- access_definition, or an access_to_subprogram_definition.
1001 -------------------------------
1002 -- Check_For_Premature_Usage --
1003 -------------------------------
1005 procedure Check_For_Premature_Usage (Def : Node_Id) is
1006 Param : Node_Id;
1008 begin
1009 -- Check for a subtype mark
1011 if Nkind (Def) in N_Has_Etype then
1012 if Etype (Def) = T_Name then
1013 Error_Msg_N
1014 ("type& cannot be used before end of its declaration", Def);
1015 end if;
1017 -- If this is not a subtype, then this is an access_definition
1019 elsif Nkind (Def) = N_Access_Definition then
1020 if Present (Access_To_Subprogram_Definition (Def)) then
1021 Check_For_Premature_Usage
1022 (Access_To_Subprogram_Definition (Def));
1023 else
1024 Check_For_Premature_Usage (Subtype_Mark (Def));
1025 end if;
1027 -- The only cases left are N_Access_Function_Definition and
1028 -- N_Access_Procedure_Definition.
1030 else
1031 if Present (Parameter_Specifications (Def)) then
1032 Param := First (Parameter_Specifications (Def));
1033 while Present (Param) loop
1034 Check_For_Premature_Usage (Parameter_Type (Param));
1035 Param := Next (Param);
1036 end loop;
1037 end if;
1039 if Nkind (Def) = N_Access_Function_Definition then
1040 Check_For_Premature_Usage (Result_Definition (Def));
1041 end if;
1042 end if;
1043 end Check_For_Premature_Usage;
1045 -- Local variables
1047 Formals : constant List_Id := Parameter_Specifications (T_Def);
1048 Formal : Entity_Id;
1049 D_Ityp : Node_Id;
1050 Desig_Type : constant Entity_Id :=
1051 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1053 -- Start of processing for Access_Subprogram_Declaration
1055 begin
1056 Check_SPARK_Restriction ("access type is not allowed", T_Def);
1058 -- Associate the Itype node with the inner full-type declaration or
1059 -- subprogram spec or entry body. This is required to handle nested
1060 -- anonymous declarations. For example:
1062 -- procedure P
1063 -- (X : access procedure
1064 -- (Y : access procedure
1065 -- (Z : access T)))
1067 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1068 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1069 N_Private_Type_Declaration,
1070 N_Private_Extension_Declaration,
1071 N_Procedure_Specification,
1072 N_Function_Specification,
1073 N_Entry_Body)
1075 or else
1076 Nkind_In (D_Ityp, N_Object_Declaration,
1077 N_Object_Renaming_Declaration,
1078 N_Formal_Object_Declaration,
1079 N_Formal_Type_Declaration,
1080 N_Task_Type_Declaration,
1081 N_Protected_Type_Declaration))
1082 loop
1083 D_Ityp := Parent (D_Ityp);
1084 pragma Assert (D_Ityp /= Empty);
1085 end loop;
1087 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1089 if Nkind_In (D_Ityp, N_Procedure_Specification,
1090 N_Function_Specification)
1091 then
1092 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1094 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1095 N_Object_Declaration,
1096 N_Object_Renaming_Declaration,
1097 N_Formal_Type_Declaration)
1098 then
1099 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1100 end if;
1102 if Nkind (T_Def) = N_Access_Function_Definition then
1103 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1104 declare
1105 Acc : constant Node_Id := Result_Definition (T_Def);
1107 begin
1108 if Present (Access_To_Subprogram_Definition (Acc))
1109 and then
1110 Protected_Present (Access_To_Subprogram_Definition (Acc))
1111 then
1112 Set_Etype
1113 (Desig_Type,
1114 Replace_Anonymous_Access_To_Protected_Subprogram
1115 (T_Def));
1117 else
1118 Set_Etype
1119 (Desig_Type,
1120 Access_Definition (T_Def, Result_Definition (T_Def)));
1121 end if;
1122 end;
1124 else
1125 Analyze (Result_Definition (T_Def));
1127 declare
1128 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1130 begin
1131 -- If a null exclusion is imposed on the result type, then
1132 -- create a null-excluding itype (an access subtype) and use
1133 -- it as the function's Etype.
1135 if Is_Access_Type (Typ)
1136 and then Null_Exclusion_In_Return_Present (T_Def)
1137 then
1138 Set_Etype (Desig_Type,
1139 Create_Null_Excluding_Itype
1140 (T => Typ,
1141 Related_Nod => T_Def,
1142 Scope_Id => Current_Scope));
1144 else
1145 if From_Limited_With (Typ) then
1147 -- AI05-151: Incomplete types are allowed in all basic
1148 -- declarations, including access to subprograms.
1150 if Ada_Version >= Ada_2012 then
1151 null;
1153 else
1154 Error_Msg_NE
1155 ("illegal use of incomplete type&",
1156 Result_Definition (T_Def), Typ);
1157 end if;
1159 elsif Ekind (Current_Scope) = E_Package
1160 and then In_Private_Part (Current_Scope)
1161 then
1162 if Ekind (Typ) = E_Incomplete_Type then
1163 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1165 elsif Is_Class_Wide_Type (Typ)
1166 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1167 then
1168 Append_Elmt
1169 (Desig_Type, Private_Dependents (Etype (Typ)));
1170 end if;
1171 end if;
1173 Set_Etype (Desig_Type, Typ);
1174 end if;
1175 end;
1176 end if;
1178 if not (Is_Type (Etype (Desig_Type))) then
1179 Error_Msg_N
1180 ("expect type in function specification",
1181 Result_Definition (T_Def));
1182 end if;
1184 else
1185 Set_Etype (Desig_Type, Standard_Void_Type);
1186 end if;
1188 if Present (Formals) then
1189 Push_Scope (Desig_Type);
1191 -- Some special tests here. These special tests can be removed
1192 -- if and when Itypes always have proper parent pointers to their
1193 -- declarations???
1195 -- Special test 1) Link defining_identifier of formals. Required by
1196 -- First_Formal to provide its functionality.
1198 declare
1199 F : Node_Id;
1201 begin
1202 F := First (Formals);
1204 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1205 -- when it is part of an unconstrained type and subtype expansion
1206 -- is disabled. To avoid back-end problems with shared profiles,
1207 -- use previous subprogram type as the designated type, and then
1208 -- remove scope added above.
1210 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1211 then
1212 Set_Etype (T_Name, T_Name);
1213 Init_Size_Align (T_Name);
1214 Set_Directly_Designated_Type (T_Name,
1215 Scope (Defining_Identifier (F)));
1216 End_Scope;
1217 return;
1218 end if;
1220 while Present (F) loop
1221 if No (Parent (Defining_Identifier (F))) then
1222 Set_Parent (Defining_Identifier (F), F);
1223 end if;
1225 Next (F);
1226 end loop;
1227 end;
1229 Process_Formals (Formals, Parent (T_Def));
1231 -- Special test 2) End_Scope requires that the parent pointer be set
1232 -- to something reasonable, but Itypes don't have parent pointers. So
1233 -- we set it and then unset it ???
1235 Set_Parent (Desig_Type, T_Name);
1236 End_Scope;
1237 Set_Parent (Desig_Type, Empty);
1238 end if;
1240 -- Check for premature usage of the type being defined
1242 Check_For_Premature_Usage (T_Def);
1244 -- The return type and/or any parameter type may be incomplete. Mark the
1245 -- subprogram_type as depending on the incomplete type, so that it can
1246 -- be updated when the full type declaration is seen. This only applies
1247 -- to incomplete types declared in some enclosing scope, not to limited
1248 -- views from other packages.
1250 -- Prior to Ada 2012, access to functions can only have in_parameters.
1252 if Present (Formals) then
1253 Formal := First_Formal (Desig_Type);
1254 while Present (Formal) loop
1255 if Ekind (Formal) /= E_In_Parameter
1256 and then Nkind (T_Def) = N_Access_Function_Definition
1257 and then Ada_Version < Ada_2012
1258 then
1259 Error_Msg_N ("functions can only have IN parameters", Formal);
1260 end if;
1262 if Ekind (Etype (Formal)) = E_Incomplete_Type
1263 and then In_Open_Scopes (Scope (Etype (Formal)))
1264 then
1265 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1266 Set_Has_Delayed_Freeze (Desig_Type);
1267 end if;
1269 Next_Formal (Formal);
1270 end loop;
1271 end if;
1273 -- Check whether an indirect call without actuals may be possible. This
1274 -- is used when resolving calls whose result is then indexed.
1276 May_Need_Actuals (Desig_Type);
1278 -- If the return type is incomplete, this is legal as long as the type
1279 -- is declared in the current scope and will be completed in it (rather
1280 -- than being part of limited view).
1282 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1283 and then not Has_Delayed_Freeze (Desig_Type)
1284 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1285 then
1286 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1287 Set_Has_Delayed_Freeze (Desig_Type);
1288 end if;
1290 Check_Delayed_Subprogram (Desig_Type);
1292 if Protected_Present (T_Def) then
1293 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1294 Set_Convention (Desig_Type, Convention_Protected);
1295 else
1296 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1297 end if;
1299 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1301 Set_Etype (T_Name, T_Name);
1302 Init_Size_Align (T_Name);
1303 Set_Directly_Designated_Type (T_Name, Desig_Type);
1305 Generate_Reference_To_Formals (T_Name);
1307 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1309 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1311 Check_Restriction (No_Access_Subprograms, T_Def);
1312 end Access_Subprogram_Declaration;
1314 ----------------------------
1315 -- Access_Type_Declaration --
1316 ----------------------------
1318 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1319 P : constant Node_Id := Parent (Def);
1320 S : constant Node_Id := Subtype_Indication (Def);
1322 Full_Desig : Entity_Id;
1324 begin
1325 Check_SPARK_Restriction ("access type is not allowed", Def);
1327 -- Check for permissible use of incomplete type
1329 if Nkind (S) /= N_Subtype_Indication then
1330 Analyze (S);
1332 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1333 Set_Directly_Designated_Type (T, Entity (S));
1334 else
1335 Set_Directly_Designated_Type (T,
1336 Process_Subtype (S, P, T, 'P'));
1337 end if;
1339 -- If the access definition is of the form: ACCESS NOT NULL ..
1340 -- the subtype indication must be of an access type. Create
1341 -- a null-excluding subtype of it.
1343 if Null_Excluding_Subtype (Def) then
1344 if not Is_Access_Type (Entity (S)) then
1345 Error_Msg_N ("null exclusion must apply to access type", Def);
1347 else
1348 declare
1349 Loc : constant Source_Ptr := Sloc (S);
1350 Decl : Node_Id;
1351 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1353 begin
1354 Decl :=
1355 Make_Subtype_Declaration (Loc,
1356 Defining_Identifier => Nam,
1357 Subtype_Indication =>
1358 New_Occurrence_Of (Entity (S), Loc));
1359 Set_Null_Exclusion_Present (Decl);
1360 Insert_Before (Parent (Def), Decl);
1361 Analyze (Decl);
1362 Set_Entity (S, Nam);
1363 end;
1364 end if;
1365 end if;
1367 else
1368 Set_Directly_Designated_Type (T,
1369 Process_Subtype (S, P, T, 'P'));
1370 end if;
1372 if All_Present (Def) or Constant_Present (Def) then
1373 Set_Ekind (T, E_General_Access_Type);
1374 else
1375 Set_Ekind (T, E_Access_Type);
1376 end if;
1378 Full_Desig := Designated_Type (T);
1380 if Base_Type (Full_Desig) = T then
1381 Error_Msg_N ("access type cannot designate itself", S);
1383 -- In Ada 2005, the type may have a limited view through some unit in
1384 -- its own context, allowing the following circularity that cannot be
1385 -- detected earlier.
1387 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1388 then
1389 Error_Msg_N
1390 ("access type cannot designate its own classwide type", S);
1392 -- Clean up indication of tagged status to prevent cascaded errors
1394 Set_Is_Tagged_Type (T, False);
1395 end if;
1397 Set_Etype (T, T);
1399 -- If the type has appeared already in a with_type clause, it is frozen
1400 -- and the pointer size is already set. Else, initialize.
1402 if not From_Limited_With (T) then
1403 Init_Size_Align (T);
1404 end if;
1406 -- Note that Has_Task is always false, since the access type itself
1407 -- is not a task type. See Einfo for more description on this point.
1408 -- Exactly the same consideration applies to Has_Controlled_Component
1409 -- and to Has_Protected.
1411 Set_Has_Task (T, False);
1412 Set_Has_Controlled_Component (T, False);
1413 Set_Has_Protected (T, False);
1415 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1416 -- problems where an incomplete view of this entity has been previously
1417 -- established by a limited with and an overlaid version of this field
1418 -- (Stored_Constraint) was initialized for the incomplete view.
1420 -- This reset is performed in most cases except where the access type
1421 -- has been created for the purposes of allocating or deallocating a
1422 -- build-in-place object. Such access types have explicitly set pools
1423 -- and finalization masters.
1425 if No (Associated_Storage_Pool (T)) then
1426 Set_Finalization_Master (T, Empty);
1427 end if;
1429 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1430 -- attributes
1432 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1433 Set_Is_Access_Constant (T, Constant_Present (Def));
1434 end Access_Type_Declaration;
1436 ----------------------------------
1437 -- Add_Interface_Tag_Components --
1438 ----------------------------------
1440 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1441 Loc : constant Source_Ptr := Sloc (N);
1442 L : List_Id;
1443 Last_Tag : Node_Id;
1445 procedure Add_Tag (Iface : Entity_Id);
1446 -- Add tag for one of the progenitor interfaces
1448 -------------
1449 -- Add_Tag --
1450 -------------
1452 procedure Add_Tag (Iface : Entity_Id) is
1453 Decl : Node_Id;
1454 Def : Node_Id;
1455 Tag : Entity_Id;
1456 Offset : Entity_Id;
1458 begin
1459 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1461 -- This is a reasonable place to propagate predicates
1463 if Has_Predicates (Iface) then
1464 Set_Has_Predicates (Typ);
1465 end if;
1467 Def :=
1468 Make_Component_Definition (Loc,
1469 Aliased_Present => True,
1470 Subtype_Indication =>
1471 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1473 Tag := Make_Temporary (Loc, 'V');
1475 Decl :=
1476 Make_Component_Declaration (Loc,
1477 Defining_Identifier => Tag,
1478 Component_Definition => Def);
1480 Analyze_Component_Declaration (Decl);
1482 Set_Analyzed (Decl);
1483 Set_Ekind (Tag, E_Component);
1484 Set_Is_Tag (Tag);
1485 Set_Is_Aliased (Tag);
1486 Set_Related_Type (Tag, Iface);
1487 Init_Component_Location (Tag);
1489 pragma Assert (Is_Frozen (Iface));
1491 Set_DT_Entry_Count (Tag,
1492 DT_Entry_Count (First_Entity (Iface)));
1494 if No (Last_Tag) then
1495 Prepend (Decl, L);
1496 else
1497 Insert_After (Last_Tag, Decl);
1498 end if;
1500 Last_Tag := Decl;
1502 -- If the ancestor has discriminants we need to give special support
1503 -- to store the offset_to_top value of the secondary dispatch tables.
1504 -- For this purpose we add a supplementary component just after the
1505 -- field that contains the tag associated with each secondary DT.
1507 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1508 Def :=
1509 Make_Component_Definition (Loc,
1510 Subtype_Indication =>
1511 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1513 Offset := Make_Temporary (Loc, 'V');
1515 Decl :=
1516 Make_Component_Declaration (Loc,
1517 Defining_Identifier => Offset,
1518 Component_Definition => Def);
1520 Analyze_Component_Declaration (Decl);
1522 Set_Analyzed (Decl);
1523 Set_Ekind (Offset, E_Component);
1524 Set_Is_Aliased (Offset);
1525 Set_Related_Type (Offset, Iface);
1526 Init_Component_Location (Offset);
1527 Insert_After (Last_Tag, Decl);
1528 Last_Tag := Decl;
1529 end if;
1530 end Add_Tag;
1532 -- Local variables
1534 Elmt : Elmt_Id;
1535 Ext : Node_Id;
1536 Comp : Node_Id;
1538 -- Start of processing for Add_Interface_Tag_Components
1540 begin
1541 if not RTE_Available (RE_Interface_Tag) then
1542 Error_Msg
1543 ("(Ada 2005) interface types not supported by this run-time!",
1544 Sloc (N));
1545 return;
1546 end if;
1548 if Ekind (Typ) /= E_Record_Type
1549 or else (Is_Concurrent_Record_Type (Typ)
1550 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1551 or else (not Is_Concurrent_Record_Type (Typ)
1552 and then No (Interfaces (Typ))
1553 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1554 then
1555 return;
1556 end if;
1558 -- Find the current last tag
1560 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1561 Ext := Record_Extension_Part (Type_Definition (N));
1562 else
1563 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1564 Ext := Type_Definition (N);
1565 end if;
1567 Last_Tag := Empty;
1569 if not (Present (Component_List (Ext))) then
1570 Set_Null_Present (Ext, False);
1571 L := New_List;
1572 Set_Component_List (Ext,
1573 Make_Component_List (Loc,
1574 Component_Items => L,
1575 Null_Present => False));
1576 else
1577 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1578 L := Component_Items
1579 (Component_List
1580 (Record_Extension_Part
1581 (Type_Definition (N))));
1582 else
1583 L := Component_Items
1584 (Component_List
1585 (Type_Definition (N)));
1586 end if;
1588 -- Find the last tag component
1590 Comp := First (L);
1591 while Present (Comp) loop
1592 if Nkind (Comp) = N_Component_Declaration
1593 and then Is_Tag (Defining_Identifier (Comp))
1594 then
1595 Last_Tag := Comp;
1596 end if;
1598 Next (Comp);
1599 end loop;
1600 end if;
1602 -- At this point L references the list of components and Last_Tag
1603 -- references the current last tag (if any). Now we add the tag
1604 -- corresponding with all the interfaces that are not implemented
1605 -- by the parent.
1607 if Present (Interfaces (Typ)) then
1608 Elmt := First_Elmt (Interfaces (Typ));
1609 while Present (Elmt) loop
1610 Add_Tag (Node (Elmt));
1611 Next_Elmt (Elmt);
1612 end loop;
1613 end if;
1614 end Add_Interface_Tag_Components;
1616 -------------------------------------
1617 -- Add_Internal_Interface_Entities --
1618 -------------------------------------
1620 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1621 Elmt : Elmt_Id;
1622 Iface : Entity_Id;
1623 Iface_Elmt : Elmt_Id;
1624 Iface_Prim : Entity_Id;
1625 Ifaces_List : Elist_Id;
1626 New_Subp : Entity_Id := Empty;
1627 Prim : Entity_Id;
1628 Restore_Scope : Boolean := False;
1630 begin
1631 pragma Assert (Ada_Version >= Ada_2005
1632 and then Is_Record_Type (Tagged_Type)
1633 and then Is_Tagged_Type (Tagged_Type)
1634 and then Has_Interfaces (Tagged_Type)
1635 and then not Is_Interface (Tagged_Type));
1637 -- Ensure that the internal entities are added to the scope of the type
1639 if Scope (Tagged_Type) /= Current_Scope then
1640 Push_Scope (Scope (Tagged_Type));
1641 Restore_Scope := True;
1642 end if;
1644 Collect_Interfaces (Tagged_Type, Ifaces_List);
1646 Iface_Elmt := First_Elmt (Ifaces_List);
1647 while Present (Iface_Elmt) loop
1648 Iface := Node (Iface_Elmt);
1650 -- Originally we excluded here from this processing interfaces that
1651 -- are parents of Tagged_Type because their primitives are located
1652 -- in the primary dispatch table (and hence no auxiliary internal
1653 -- entities are required to handle secondary dispatch tables in such
1654 -- case). However, these auxiliary entities are also required to
1655 -- handle derivations of interfaces in formals of generics (see
1656 -- Derive_Subprograms).
1658 Elmt := First_Elmt (Primitive_Operations (Iface));
1659 while Present (Elmt) loop
1660 Iface_Prim := Node (Elmt);
1662 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1663 Prim :=
1664 Find_Primitive_Covering_Interface
1665 (Tagged_Type => Tagged_Type,
1666 Iface_Prim => Iface_Prim);
1668 if No (Prim) and then Serious_Errors_Detected > 0 then
1669 goto Continue;
1670 end if;
1672 pragma Assert (Present (Prim));
1674 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1675 -- differs from the name of the interface primitive then it is
1676 -- a private primitive inherited from a parent type. In such
1677 -- case, given that Tagged_Type covers the interface, the
1678 -- inherited private primitive becomes visible. For such
1679 -- purpose we add a new entity that renames the inherited
1680 -- private primitive.
1682 if Chars (Prim) /= Chars (Iface_Prim) then
1683 pragma Assert (Has_Suffix (Prim, 'P'));
1684 Derive_Subprogram
1685 (New_Subp => New_Subp,
1686 Parent_Subp => Iface_Prim,
1687 Derived_Type => Tagged_Type,
1688 Parent_Type => Iface);
1689 Set_Alias (New_Subp, Prim);
1690 Set_Is_Abstract_Subprogram
1691 (New_Subp, Is_Abstract_Subprogram (Prim));
1692 end if;
1694 Derive_Subprogram
1695 (New_Subp => New_Subp,
1696 Parent_Subp => Iface_Prim,
1697 Derived_Type => Tagged_Type,
1698 Parent_Type => Iface);
1700 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1701 -- associated with interface types. These entities are
1702 -- only registered in the list of primitives of its
1703 -- corresponding tagged type because they are only used
1704 -- to fill the contents of the secondary dispatch tables.
1705 -- Therefore they are removed from the homonym chains.
1707 Set_Is_Hidden (New_Subp);
1708 Set_Is_Internal (New_Subp);
1709 Set_Alias (New_Subp, Prim);
1710 Set_Is_Abstract_Subprogram
1711 (New_Subp, Is_Abstract_Subprogram (Prim));
1712 Set_Interface_Alias (New_Subp, Iface_Prim);
1714 -- If the returned type is an interface then propagate it to
1715 -- the returned type. Needed by the thunk to generate the code
1716 -- which displaces "this" to reference the corresponding
1717 -- secondary dispatch table in the returned object.
1719 if Is_Interface (Etype (Iface_Prim)) then
1720 Set_Etype (New_Subp, Etype (Iface_Prim));
1721 end if;
1723 -- Internal entities associated with interface types are
1724 -- only registered in the list of primitives of the tagged
1725 -- type. They are only used to fill the contents of the
1726 -- secondary dispatch tables. Therefore they are not needed
1727 -- in the homonym chains.
1729 Remove_Homonym (New_Subp);
1731 -- Hidden entities associated with interfaces must have set
1732 -- the Has_Delay_Freeze attribute to ensure that, in case of
1733 -- locally defined tagged types (or compiling with static
1734 -- dispatch tables generation disabled) the corresponding
1735 -- entry of the secondary dispatch table is filled when
1736 -- such an entity is frozen.
1738 Set_Has_Delayed_Freeze (New_Subp);
1739 end if;
1741 <<Continue>>
1742 Next_Elmt (Elmt);
1743 end loop;
1745 Next_Elmt (Iface_Elmt);
1746 end loop;
1748 if Restore_Scope then
1749 Pop_Scope;
1750 end if;
1751 end Add_Internal_Interface_Entities;
1753 -----------------------------------
1754 -- Analyze_Component_Declaration --
1755 -----------------------------------
1757 procedure Analyze_Component_Declaration (N : Node_Id) is
1758 Id : constant Entity_Id := Defining_Identifier (N);
1759 E : constant Node_Id := Expression (N);
1760 Typ : constant Node_Id :=
1761 Subtype_Indication (Component_Definition (N));
1762 T : Entity_Id;
1763 P : Entity_Id;
1765 function Contains_POC (Constr : Node_Id) return Boolean;
1766 -- Determines whether a constraint uses the discriminant of a record
1767 -- type thus becoming a per-object constraint (POC).
1769 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1770 -- Typ is the type of the current component, check whether this type is
1771 -- a limited type. Used to validate declaration against that of
1772 -- enclosing record.
1774 ------------------
1775 -- Contains_POC --
1776 ------------------
1778 function Contains_POC (Constr : Node_Id) return Boolean is
1779 begin
1780 -- Prevent cascaded errors
1782 if Error_Posted (Constr) then
1783 return False;
1784 end if;
1786 case Nkind (Constr) is
1787 when N_Attribute_Reference =>
1788 return Attribute_Name (Constr) = Name_Access
1789 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1791 when N_Discriminant_Association =>
1792 return Denotes_Discriminant (Expression (Constr));
1794 when N_Identifier =>
1795 return Denotes_Discriminant (Constr);
1797 when N_Index_Or_Discriminant_Constraint =>
1798 declare
1799 IDC : Node_Id;
1801 begin
1802 IDC := First (Constraints (Constr));
1803 while Present (IDC) loop
1805 -- One per-object constraint is sufficient
1807 if Contains_POC (IDC) then
1808 return True;
1809 end if;
1811 Next (IDC);
1812 end loop;
1814 return False;
1815 end;
1817 when N_Range =>
1818 return Denotes_Discriminant (Low_Bound (Constr))
1819 or else
1820 Denotes_Discriminant (High_Bound (Constr));
1822 when N_Range_Constraint =>
1823 return Denotes_Discriminant (Range_Expression (Constr));
1825 when others =>
1826 return False;
1828 end case;
1829 end Contains_POC;
1831 ----------------------
1832 -- Is_Known_Limited --
1833 ----------------------
1835 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1836 P : constant Entity_Id := Etype (Typ);
1837 R : constant Entity_Id := Root_Type (Typ);
1839 begin
1840 if Is_Limited_Record (Typ) then
1841 return True;
1843 -- If the root type is limited (and not a limited interface)
1844 -- so is the current type
1846 elsif Is_Limited_Record (R)
1847 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1848 then
1849 return True;
1851 -- Else the type may have a limited interface progenitor, but a
1852 -- limited record parent.
1854 elsif R /= P and then Is_Limited_Record (P) then
1855 return True;
1857 else
1858 return False;
1859 end if;
1860 end Is_Known_Limited;
1862 -- Start of processing for Analyze_Component_Declaration
1864 begin
1865 Generate_Definition (Id);
1866 Enter_Name (Id);
1868 if Present (Typ) then
1869 T := Find_Type_Of_Object
1870 (Subtype_Indication (Component_Definition (N)), N);
1872 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1873 Check_SPARK_Restriction ("subtype mark required", Typ);
1874 end if;
1876 -- Ada 2005 (AI-230): Access Definition case
1878 else
1879 pragma Assert (Present
1880 (Access_Definition (Component_Definition (N))));
1882 T := Access_Definition
1883 (Related_Nod => N,
1884 N => Access_Definition (Component_Definition (N)));
1885 Set_Is_Local_Anonymous_Access (T);
1887 -- Ada 2005 (AI-254)
1889 if Present (Access_To_Subprogram_Definition
1890 (Access_Definition (Component_Definition (N))))
1891 and then Protected_Present (Access_To_Subprogram_Definition
1892 (Access_Definition
1893 (Component_Definition (N))))
1894 then
1895 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1896 end if;
1897 end if;
1899 -- If the subtype is a constrained subtype of the enclosing record,
1900 -- (which must have a partial view) the back-end does not properly
1901 -- handle the recursion. Rewrite the component declaration with an
1902 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1903 -- the tree directly because side effects have already been removed from
1904 -- discriminant constraints.
1906 if Ekind (T) = E_Access_Subtype
1907 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1908 and then Comes_From_Source (T)
1909 and then Nkind (Parent (T)) = N_Subtype_Declaration
1910 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1911 then
1912 Rewrite
1913 (Subtype_Indication (Component_Definition (N)),
1914 New_Copy_Tree (Subtype_Indication (Parent (T))));
1915 T := Find_Type_Of_Object
1916 (Subtype_Indication (Component_Definition (N)), N);
1917 end if;
1919 -- If the component declaration includes a default expression, then we
1920 -- check that the component is not of a limited type (RM 3.7(5)),
1921 -- and do the special preanalysis of the expression (see section on
1922 -- "Handling of Default and Per-Object Expressions" in the spec of
1923 -- package Sem).
1925 if Present (E) then
1926 Check_SPARK_Restriction ("default expression is not allowed", E);
1927 Preanalyze_Spec_Expression (E, T);
1928 Check_Initialization (T, E);
1930 if Ada_Version >= Ada_2005
1931 and then Ekind (T) = E_Anonymous_Access_Type
1932 and then Etype (E) /= Any_Type
1933 then
1934 -- Check RM 3.9.2(9): "if the expected type for an expression is
1935 -- an anonymous access-to-specific tagged type, then the object
1936 -- designated by the expression shall not be dynamically tagged
1937 -- unless it is a controlling operand in a call on a dispatching
1938 -- operation"
1940 if Is_Tagged_Type (Directly_Designated_Type (T))
1941 and then
1942 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1943 and then
1944 Ekind (Directly_Designated_Type (Etype (E))) =
1945 E_Class_Wide_Type
1946 then
1947 Error_Msg_N
1948 ("access to specific tagged type required (RM 3.9.2(9))", E);
1949 end if;
1951 -- (Ada 2005: AI-230): Accessibility check for anonymous
1952 -- components
1954 if Type_Access_Level (Etype (E)) >
1955 Deepest_Type_Access_Level (T)
1956 then
1957 Error_Msg_N
1958 ("expression has deeper access level than component " &
1959 "(RM 3.10.2 (12.2))", E);
1960 end if;
1962 -- The initialization expression is a reference to an access
1963 -- discriminant. The type of the discriminant is always deeper
1964 -- than any access type.
1966 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1967 and then Is_Entity_Name (E)
1968 and then Ekind (Entity (E)) = E_In_Parameter
1969 and then Present (Discriminal_Link (Entity (E)))
1970 then
1971 Error_Msg_N
1972 ("discriminant has deeper accessibility level than target",
1974 end if;
1975 end if;
1976 end if;
1978 -- The parent type may be a private view with unknown discriminants,
1979 -- and thus unconstrained. Regular components must be constrained.
1981 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1982 if Is_Class_Wide_Type (T) then
1983 Error_Msg_N
1984 ("class-wide subtype with unknown discriminants" &
1985 " in component declaration",
1986 Subtype_Indication (Component_Definition (N)));
1987 else
1988 Error_Msg_N
1989 ("unconstrained subtype in component declaration",
1990 Subtype_Indication (Component_Definition (N)));
1991 end if;
1993 -- Components cannot be abstract, except for the special case of
1994 -- the _Parent field (case of extending an abstract tagged type)
1996 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
1997 Error_Msg_N ("type of a component cannot be abstract", N);
1998 end if;
2000 Set_Etype (Id, T);
2001 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2003 -- The component declaration may have a per-object constraint, set
2004 -- the appropriate flag in the defining identifier of the subtype.
2006 if Present (Subtype_Indication (Component_Definition (N))) then
2007 declare
2008 Sindic : constant Node_Id :=
2009 Subtype_Indication (Component_Definition (N));
2010 begin
2011 if Nkind (Sindic) = N_Subtype_Indication
2012 and then Present (Constraint (Sindic))
2013 and then Contains_POC (Constraint (Sindic))
2014 then
2015 Set_Has_Per_Object_Constraint (Id);
2016 end if;
2017 end;
2018 end if;
2020 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2021 -- out some static checks.
2023 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2024 Null_Exclusion_Static_Checks (N);
2025 end if;
2027 -- If this component is private (or depends on a private type), flag the
2028 -- record type to indicate that some operations are not available.
2030 P := Private_Component (T);
2032 if Present (P) then
2034 -- Check for circular definitions
2036 if P = Any_Type then
2037 Set_Etype (Id, Any_Type);
2039 -- There is a gap in the visibility of operations only if the
2040 -- component type is not defined in the scope of the record type.
2042 elsif Scope (P) = Scope (Current_Scope) then
2043 null;
2045 elsif Is_Limited_Type (P) then
2046 Set_Is_Limited_Composite (Current_Scope);
2048 else
2049 Set_Is_Private_Composite (Current_Scope);
2050 end if;
2051 end if;
2053 if P /= Any_Type
2054 and then Is_Limited_Type (T)
2055 and then Chars (Id) /= Name_uParent
2056 and then Is_Tagged_Type (Current_Scope)
2057 then
2058 if Is_Derived_Type (Current_Scope)
2059 and then not Is_Known_Limited (Current_Scope)
2060 then
2061 Error_Msg_N
2062 ("extension of nonlimited type cannot have limited components",
2065 if Is_Interface (Root_Type (Current_Scope)) then
2066 Error_Msg_N
2067 ("\limitedness is not inherited from limited interface", N);
2068 Error_Msg_N ("\add LIMITED to type indication", N);
2069 end if;
2071 Explain_Limited_Type (T, N);
2072 Set_Etype (Id, Any_Type);
2073 Set_Is_Limited_Composite (Current_Scope, False);
2075 elsif not Is_Derived_Type (Current_Scope)
2076 and then not Is_Limited_Record (Current_Scope)
2077 and then not Is_Concurrent_Type (Current_Scope)
2078 then
2079 Error_Msg_N
2080 ("nonlimited tagged type cannot have limited components", N);
2081 Explain_Limited_Type (T, N);
2082 Set_Etype (Id, Any_Type);
2083 Set_Is_Limited_Composite (Current_Scope, False);
2084 end if;
2085 end if;
2087 Set_Original_Record_Component (Id, Id);
2089 if Has_Aspects (N) then
2090 Analyze_Aspect_Specifications (N, Id);
2091 end if;
2093 Analyze_Dimension (N);
2094 end Analyze_Component_Declaration;
2096 --------------------------
2097 -- Analyze_Declarations --
2098 --------------------------
2100 procedure Analyze_Declarations (L : List_Id) is
2101 Decl : Node_Id;
2103 procedure Adjust_Decl;
2104 -- Adjust Decl not to include implicit label declarations, since these
2105 -- have strange Sloc values that result in elaboration check problems.
2106 -- (They have the sloc of the label as found in the source, and that
2107 -- is ahead of the current declarative part).
2109 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2110 -- Determine whether Body_Decl denotes the body of a late controlled
2111 -- primitive (either Initialize, Adjust or Finalize). If this is the
2112 -- case, add a proper spec if the body lacks one. The spec is inserted
2113 -- before Body_Decl and immedately analyzed.
2115 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2116 -- Spec_Id is the entity of a package that may define abstract states.
2117 -- If the states have visible refinement, remove the visibility of each
2118 -- constituent at the end of the package body declarations.
2120 -----------------
2121 -- Adjust_Decl --
2122 -----------------
2124 procedure Adjust_Decl is
2125 begin
2126 while Present (Prev (Decl))
2127 and then Nkind (Decl) = N_Implicit_Label_Declaration
2128 loop
2129 Prev (Decl);
2130 end loop;
2131 end Adjust_Decl;
2133 --------------------------------------
2134 -- Handle_Late_Controlled_Primitive --
2135 --------------------------------------
2137 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2138 Body_Spec : constant Node_Id := Specification (Body_Decl);
2139 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2140 Loc : constant Source_Ptr := Sloc (Body_Id);
2141 Params : constant List_Id :=
2142 Parameter_Specifications (Body_Spec);
2143 Spec : Node_Id;
2144 Spec_Id : Entity_Id;
2146 Dummy : Entity_Id;
2147 -- A dummy variable used to capture the unused result of subprogram
2148 -- spec analysis.
2150 begin
2151 -- Consider only procedure bodies whose name matches one of the three
2152 -- controlled primitives.
2154 if Nkind (Body_Spec) /= N_Procedure_Specification
2155 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2156 Name_Finalize,
2157 Name_Initialize)
2158 then
2159 return;
2161 -- A controlled primitive must have exactly one formal
2163 elsif List_Length (Params) /= 1 then
2164 return;
2165 end if;
2167 Dummy := Analyze_Subprogram_Specification (Body_Spec);
2169 -- The type of the formal must be derived from [Limited_]Controlled
2171 if not Is_Controlled (Etype (Defining_Entity (First (Params)))) then
2172 return;
2173 end if;
2175 Spec_Id := Find_Corresponding_Spec (Body_Decl, Post_Error => False);
2177 -- The body has a matching spec, therefore it cannot be a late
2178 -- primitive.
2180 if Present (Spec_Id) then
2181 return;
2182 end if;
2184 -- At this point the body is known to be a late controlled primitive.
2185 -- Generate a matching spec and insert it before the body. Note the
2186 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2187 -- tree in this case.
2189 Spec := Copy_Separate_Tree (Body_Spec);
2191 -- Ensure that the subprogram declaration does not inherit the null
2192 -- indicator from the body as we now have a proper spec/body pair.
2194 Set_Null_Present (Spec, False);
2196 Insert_Before_And_Analyze (Body_Decl,
2197 Make_Subprogram_Declaration (Loc,
2198 Specification => Spec));
2199 end Handle_Late_Controlled_Primitive;
2201 --------------------------------
2202 -- Remove_Visible_Refinements --
2203 --------------------------------
2205 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2206 State_Elmt : Elmt_Id;
2207 begin
2208 if Present (Abstract_States (Spec_Id)) then
2209 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2210 while Present (State_Elmt) loop
2211 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2212 Next_Elmt (State_Elmt);
2213 end loop;
2214 end if;
2215 end Remove_Visible_Refinements;
2217 -- Local variables
2219 Context : Node_Id;
2220 Freeze_From : Entity_Id := Empty;
2221 Next_Decl : Node_Id;
2222 Spec_Id : Entity_Id;
2224 Body_Seen : Boolean := False;
2225 -- Flag set when the first body [stub] is encountered
2227 In_Package_Body : Boolean := False;
2228 -- Flag set when the current declaration list belongs to a package body
2230 -- Start of processing for Analyze_Declarations
2232 begin
2233 if Restriction_Check_Required (SPARK_05) then
2234 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2235 end if;
2237 Decl := First (L);
2238 while Present (Decl) loop
2240 -- Package spec cannot contain a package declaration in SPARK
2242 if Nkind (Decl) = N_Package_Declaration
2243 and then Nkind (Parent (L)) = N_Package_Specification
2244 then
2245 Check_SPARK_Restriction
2246 ("package specification cannot contain a package declaration",
2247 Decl);
2248 end if;
2250 -- Complete analysis of declaration
2252 Analyze (Decl);
2253 Next_Decl := Next (Decl);
2255 if No (Freeze_From) then
2256 Freeze_From := First_Entity (Current_Scope);
2257 end if;
2259 -- At the end of a declarative part, freeze remaining entities
2260 -- declared in it. The end of the visible declarations of package
2261 -- specification is not the end of a declarative part if private
2262 -- declarations are present. The end of a package declaration is a
2263 -- freezing point only if it a library package. A task definition or
2264 -- protected type definition is not a freeze point either. Finally,
2265 -- we do not freeze entities in generic scopes, because there is no
2266 -- code generated for them and freeze nodes will be generated for
2267 -- the instance.
2269 -- The end of a package instantiation is not a freeze point, but
2270 -- for now we make it one, because the generic body is inserted
2271 -- (currently) immediately after. Generic instantiations will not
2272 -- be a freeze point once delayed freezing of bodies is implemented.
2273 -- (This is needed in any case for early instantiations ???).
2275 if No (Next_Decl) then
2276 if Nkind_In (Parent (L), N_Component_List,
2277 N_Task_Definition,
2278 N_Protected_Definition)
2279 then
2280 null;
2282 elsif Nkind (Parent (L)) /= N_Package_Specification then
2283 if Nkind (Parent (L)) = N_Package_Body then
2284 Freeze_From := First_Entity (Current_Scope);
2285 end if;
2287 -- There may have been several freezing points previously,
2288 -- for example object declarations or subprogram bodies, but
2289 -- at the end of a declarative part we check freezing from
2290 -- the beginning, even though entities may already be frozen,
2291 -- in order to perform visibility checks on delayed aspects.
2293 Adjust_Decl;
2294 Freeze_All (First_Entity (Current_Scope), Decl);
2295 Freeze_From := Last_Entity (Current_Scope);
2297 elsif Scope (Current_Scope) /= Standard_Standard
2298 and then not Is_Child_Unit (Current_Scope)
2299 and then No (Generic_Parent (Parent (L)))
2300 then
2301 null;
2303 elsif L /= Visible_Declarations (Parent (L))
2304 or else No (Private_Declarations (Parent (L)))
2305 or else Is_Empty_List (Private_Declarations (Parent (L)))
2306 then
2307 Adjust_Decl;
2308 Freeze_All (First_Entity (Current_Scope), Decl);
2309 Freeze_From := Last_Entity (Current_Scope);
2310 end if;
2312 -- If next node is a body then freeze all types before the body.
2313 -- An exception occurs for some expander-generated bodies. If these
2314 -- are generated at places where in general language rules would not
2315 -- allow a freeze point, then we assume that the expander has
2316 -- explicitly checked that all required types are properly frozen,
2317 -- and we do not cause general freezing here. This special circuit
2318 -- is used when the encountered body is marked as having already
2319 -- been analyzed.
2321 -- In all other cases (bodies that come from source, and expander
2322 -- generated bodies that have not been analyzed yet), freeze all
2323 -- types now. Note that in the latter case, the expander must take
2324 -- care to attach the bodies at a proper place in the tree so as to
2325 -- not cause unwanted freezing at that point.
2327 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2329 -- When a controlled type is frozen, the expander generates stream
2330 -- and controlled type support routines. If the freeze is caused
2331 -- by the stand alone body of Initialize, Adjust and Finalize, the
2332 -- expander will end up using the wrong version of these routines
2333 -- as the body has not been processed yet. To remedy this, detect
2334 -- a late controlled primitive and create a proper spec for it.
2335 -- This ensures that the primitive will override its inherited
2336 -- counterpart before the freeze takes place.
2338 -- If the declaration we just processed is a body, do not attempt
2339 -- to examine Next_Decl as the late primitive idiom can only apply
2340 -- to the first encountered body.
2342 -- The spec of the late primitive is not generated in ASIS mode to
2343 -- ensure a consistent list of primitives that indicates the true
2344 -- semantic structure of the program (which is not relevant when
2345 -- generating executable code.
2347 -- ??? a cleaner approach may be possible and/or this solution
2348 -- could be extended to general-purpose late primitives, TBD.
2350 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2351 then
2352 Body_Seen := True;
2354 if Nkind (Next_Decl) = N_Subprogram_Body then
2355 Handle_Late_Controlled_Primitive (Next_Decl);
2356 end if;
2357 end if;
2359 Adjust_Decl;
2360 Freeze_All (Freeze_From, Decl);
2361 Freeze_From := Last_Entity (Current_Scope);
2362 end if;
2364 Decl := Next_Decl;
2365 end loop;
2367 -- Analyze the contracts of packages and their bodies
2369 if Present (L) then
2370 Context := Parent (L);
2372 if Nkind (Context) = N_Package_Specification then
2374 -- When a package has private declarations, its contract must be
2375 -- analyzed at the end of the said declarations. This way both the
2376 -- analysis and freeze actions are properly synchronized in case
2377 -- of private type use within the contract.
2379 if L = Private_Declarations (Context) then
2380 Analyze_Package_Contract (Defining_Entity (Context));
2382 -- Otherwise the contract is analyzed at the end of the visible
2383 -- declarations.
2385 elsif L = Visible_Declarations (Context)
2386 and then No (Private_Declarations (Context))
2387 then
2388 Analyze_Package_Contract (Defining_Entity (Context));
2389 end if;
2391 elsif Nkind (Context) = N_Package_Body then
2392 In_Package_Body := True;
2393 Spec_Id := Corresponding_Spec (Context);
2395 Analyze_Package_Body_Contract (Defining_Entity (Context));
2396 end if;
2397 end if;
2399 -- Analyze the contracts of subprogram declarations, subprogram bodies
2400 -- and variables now due to the delayed visibility requirements of their
2401 -- aspects.
2403 Decl := First (L);
2404 while Present (Decl) loop
2405 if Nkind (Decl) = N_Object_Declaration then
2406 Analyze_Object_Contract (Defining_Entity (Decl));
2408 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2409 N_Subprogram_Declaration)
2410 then
2411 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2413 elsif Nkind (Decl) = N_Subprogram_Body then
2414 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2416 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2417 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2418 end if;
2420 Next (Decl);
2421 end loop;
2423 -- State refinements are visible upto the end the of the package body
2424 -- declarations. Hide the refinements from visibility to restore the
2425 -- original state conditions.
2427 if In_Package_Body then
2428 Remove_Visible_Refinements (Spec_Id);
2429 end if;
2430 end Analyze_Declarations;
2432 -----------------------------------
2433 -- Analyze_Full_Type_Declaration --
2434 -----------------------------------
2436 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2437 Def : constant Node_Id := Type_Definition (N);
2438 Def_Id : constant Entity_Id := Defining_Identifier (N);
2439 T : Entity_Id;
2440 Prev : Entity_Id;
2442 Is_Remote : constant Boolean :=
2443 (Is_Remote_Types (Current_Scope)
2444 or else Is_Remote_Call_Interface (Current_Scope))
2445 and then not (In_Private_Part (Current_Scope)
2446 or else In_Package_Body (Current_Scope));
2448 procedure Check_Ops_From_Incomplete_Type;
2449 -- If there is a tagged incomplete partial view of the type, traverse
2450 -- the primitives of the incomplete view and change the type of any
2451 -- controlling formals and result to indicate the full view. The
2452 -- primitives will be added to the full type's primitive operations
2453 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2454 -- is called from Process_Incomplete_Dependents).
2456 ------------------------------------
2457 -- Check_Ops_From_Incomplete_Type --
2458 ------------------------------------
2460 procedure Check_Ops_From_Incomplete_Type is
2461 Elmt : Elmt_Id;
2462 Formal : Entity_Id;
2463 Op : Entity_Id;
2465 begin
2466 if Prev /= T
2467 and then Ekind (Prev) = E_Incomplete_Type
2468 and then Is_Tagged_Type (Prev)
2469 and then Is_Tagged_Type (T)
2470 then
2471 Elmt := First_Elmt (Primitive_Operations (Prev));
2472 while Present (Elmt) loop
2473 Op := Node (Elmt);
2475 Formal := First_Formal (Op);
2476 while Present (Formal) loop
2477 if Etype (Formal) = Prev then
2478 Set_Etype (Formal, T);
2479 end if;
2481 Next_Formal (Formal);
2482 end loop;
2484 if Etype (Op) = Prev then
2485 Set_Etype (Op, T);
2486 end if;
2488 Next_Elmt (Elmt);
2489 end loop;
2490 end if;
2491 end Check_Ops_From_Incomplete_Type;
2493 -- Start of processing for Analyze_Full_Type_Declaration
2495 begin
2496 Prev := Find_Type_Name (N);
2498 -- The full view, if present, now points to the current type
2499 -- If there is an incomplete partial view, set a link to it, to
2500 -- simplify the retrieval of primitive operations of the type.
2502 -- Ada 2005 (AI-50217): If the type was previously decorated when
2503 -- imported through a LIMITED WITH clause, it appears as incomplete
2504 -- but has no full view.
2506 if Ekind (Prev) = E_Incomplete_Type and then Present (Full_View (Prev))
2507 then
2508 T := Full_View (Prev);
2509 Set_Incomplete_View (N, Parent (Prev));
2510 else
2511 T := Prev;
2512 end if;
2514 Set_Is_Pure (T, Is_Pure (Current_Scope));
2516 -- We set the flag Is_First_Subtype here. It is needed to set the
2517 -- corresponding flag for the Implicit class-wide-type created
2518 -- during tagged types processing.
2520 Set_Is_First_Subtype (T, True);
2522 -- Only composite types other than array types are allowed to have
2523 -- discriminants.
2525 case Nkind (Def) is
2527 -- For derived types, the rule will be checked once we've figured
2528 -- out the parent type.
2530 when N_Derived_Type_Definition =>
2531 null;
2533 -- For record types, discriminants are allowed, unless we are in
2534 -- SPARK.
2536 when N_Record_Definition =>
2537 if Present (Discriminant_Specifications (N)) then
2538 Check_SPARK_Restriction
2539 ("discriminant type is not allowed",
2540 Defining_Identifier
2541 (First (Discriminant_Specifications (N))));
2542 end if;
2544 when others =>
2545 if Present (Discriminant_Specifications (N)) then
2546 Error_Msg_N
2547 ("elementary or array type cannot have discriminants",
2548 Defining_Identifier
2549 (First (Discriminant_Specifications (N))));
2550 end if;
2551 end case;
2553 -- Elaborate the type definition according to kind, and generate
2554 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2555 -- already done (this happens during the reanalysis that follows a call
2556 -- to the high level optimizer).
2558 if not Analyzed (T) then
2559 Set_Analyzed (T);
2561 case Nkind (Def) is
2563 when N_Access_To_Subprogram_Definition =>
2564 Access_Subprogram_Declaration (T, Def);
2566 -- If this is a remote access to subprogram, we must create the
2567 -- equivalent fat pointer type, and related subprograms.
2569 if Is_Remote then
2570 Process_Remote_AST_Declaration (N);
2571 end if;
2573 -- Validate categorization rule against access type declaration
2574 -- usually a violation in Pure unit, Shared_Passive unit.
2576 Validate_Access_Type_Declaration (T, N);
2578 when N_Access_To_Object_Definition =>
2579 Access_Type_Declaration (T, Def);
2581 -- Validate categorization rule against access type declaration
2582 -- usually a violation in Pure unit, Shared_Passive unit.
2584 Validate_Access_Type_Declaration (T, N);
2586 -- If we are in a Remote_Call_Interface package and define a
2587 -- RACW, then calling stubs and specific stream attributes
2588 -- must be added.
2590 if Is_Remote
2591 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2592 then
2593 Add_RACW_Features (Def_Id);
2594 end if;
2596 -- Set no strict aliasing flag if config pragma seen
2598 if Opt.No_Strict_Aliasing then
2599 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2600 end if;
2602 when N_Array_Type_Definition =>
2603 Array_Type_Declaration (T, Def);
2605 when N_Derived_Type_Definition =>
2606 Derived_Type_Declaration (T, N, T /= Def_Id);
2608 when N_Enumeration_Type_Definition =>
2609 Enumeration_Type_Declaration (T, Def);
2611 when N_Floating_Point_Definition =>
2612 Floating_Point_Type_Declaration (T, Def);
2614 when N_Decimal_Fixed_Point_Definition =>
2615 Decimal_Fixed_Point_Type_Declaration (T, Def);
2617 when N_Ordinary_Fixed_Point_Definition =>
2618 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2620 when N_Signed_Integer_Type_Definition =>
2621 Signed_Integer_Type_Declaration (T, Def);
2623 when N_Modular_Type_Definition =>
2624 Modular_Type_Declaration (T, Def);
2626 when N_Record_Definition =>
2627 Record_Type_Declaration (T, N, Prev);
2629 -- If declaration has a parse error, nothing to elaborate.
2631 when N_Error =>
2632 null;
2634 when others =>
2635 raise Program_Error;
2637 end case;
2638 end if;
2640 if Etype (T) = Any_Type then
2641 return;
2642 end if;
2644 -- Controlled type is not allowed in SPARK
2646 if Is_Visibly_Controlled (T) then
2647 Check_SPARK_Restriction ("controlled type is not allowed", N);
2648 end if;
2650 -- Some common processing for all types
2652 Set_Depends_On_Private (T, Has_Private_Component (T));
2653 Check_Ops_From_Incomplete_Type;
2655 -- Both the declared entity, and its anonymous base type if one
2656 -- was created, need freeze nodes allocated.
2658 declare
2659 B : constant Entity_Id := Base_Type (T);
2661 begin
2662 -- In the case where the base type differs from the first subtype, we
2663 -- pre-allocate a freeze node, and set the proper link to the first
2664 -- subtype. Freeze_Entity will use this preallocated freeze node when
2665 -- it freezes the entity.
2667 -- This does not apply if the base type is a generic type, whose
2668 -- declaration is independent of the current derived definition.
2670 if B /= T and then not Is_Generic_Type (B) then
2671 Ensure_Freeze_Node (B);
2672 Set_First_Subtype_Link (Freeze_Node (B), T);
2673 end if;
2675 -- A type that is imported through a limited_with clause cannot
2676 -- generate any code, and thus need not be frozen. However, an access
2677 -- type with an imported designated type needs a finalization list,
2678 -- which may be referenced in some other package that has non-limited
2679 -- visibility on the designated type. Thus we must create the
2680 -- finalization list at the point the access type is frozen, to
2681 -- prevent unsatisfied references at link time.
2683 if not From_Limited_With (T) or else Is_Access_Type (T) then
2684 Set_Has_Delayed_Freeze (T);
2685 end if;
2686 end;
2688 -- Case where T is the full declaration of some private type which has
2689 -- been swapped in Defining_Identifier (N).
2691 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2692 Process_Full_View (N, T, Def_Id);
2694 -- Record the reference. The form of this is a little strange, since
2695 -- the full declaration has been swapped in. So the first parameter
2696 -- here represents the entity to which a reference is made which is
2697 -- the "real" entity, i.e. the one swapped in, and the second
2698 -- parameter provides the reference location.
2700 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2701 -- since we don't want a complaint about the full type being an
2702 -- unwanted reference to the private type
2704 declare
2705 B : constant Boolean := Has_Pragma_Unreferenced (T);
2706 begin
2707 Set_Has_Pragma_Unreferenced (T, False);
2708 Generate_Reference (T, T, 'c');
2709 Set_Has_Pragma_Unreferenced (T, B);
2710 end;
2712 Set_Completion_Referenced (Def_Id);
2714 -- For completion of incomplete type, process incomplete dependents
2715 -- and always mark the full type as referenced (it is the incomplete
2716 -- type that we get for any real reference).
2718 elsif Ekind (Prev) = E_Incomplete_Type then
2719 Process_Incomplete_Dependents (N, T, Prev);
2720 Generate_Reference (Prev, Def_Id, 'c');
2721 Set_Completion_Referenced (Def_Id);
2723 -- If not private type or incomplete type completion, this is a real
2724 -- definition of a new entity, so record it.
2726 else
2727 Generate_Definition (Def_Id);
2728 end if;
2730 if Chars (Scope (Def_Id)) = Name_System
2731 and then Chars (Def_Id) = Name_Address
2732 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2733 then
2734 Set_Is_Descendent_Of_Address (Def_Id);
2735 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2736 Set_Is_Descendent_Of_Address (Prev);
2737 end if;
2739 Set_Optimize_Alignment_Flags (Def_Id);
2740 Check_Eliminated (Def_Id);
2742 -- If the declaration is a completion and aspects are present, apply
2743 -- them to the entity for the type which is currently the partial
2744 -- view, but which is the one that will be frozen.
2746 if Has_Aspects (N) then
2747 if Prev /= Def_Id then
2748 Analyze_Aspect_Specifications (N, Prev);
2749 else
2750 Analyze_Aspect_Specifications (N, Def_Id);
2751 end if;
2752 end if;
2753 end Analyze_Full_Type_Declaration;
2755 ----------------------------------
2756 -- Analyze_Incomplete_Type_Decl --
2757 ----------------------------------
2759 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2760 F : constant Boolean := Is_Pure (Current_Scope);
2761 T : Entity_Id;
2763 begin
2764 Check_SPARK_Restriction ("incomplete type is not allowed", N);
2766 Generate_Definition (Defining_Identifier (N));
2768 -- Process an incomplete declaration. The identifier must not have been
2769 -- declared already in the scope. However, an incomplete declaration may
2770 -- appear in the private part of a package, for a private type that has
2771 -- already been declared.
2773 -- In this case, the discriminants (if any) must match
2775 T := Find_Type_Name (N);
2777 Set_Ekind (T, E_Incomplete_Type);
2778 Init_Size_Align (T);
2779 Set_Is_First_Subtype (T, True);
2780 Set_Etype (T, T);
2782 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2783 -- incomplete types.
2785 if Tagged_Present (N) then
2786 Set_Is_Tagged_Type (T);
2787 Make_Class_Wide_Type (T);
2788 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2789 end if;
2791 Push_Scope (T);
2793 Set_Stored_Constraint (T, No_Elist);
2795 if Present (Discriminant_Specifications (N)) then
2796 Process_Discriminants (N);
2797 end if;
2799 End_Scope;
2801 -- If the type has discriminants, non-trivial subtypes may be
2802 -- declared before the full view of the type. The full views of those
2803 -- subtypes will be built after the full view of the type.
2805 Set_Private_Dependents (T, New_Elmt_List);
2806 Set_Is_Pure (T, F);
2807 end Analyze_Incomplete_Type_Decl;
2809 -----------------------------------
2810 -- Analyze_Interface_Declaration --
2811 -----------------------------------
2813 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2814 CW : constant Entity_Id := Class_Wide_Type (T);
2816 begin
2817 Set_Is_Tagged_Type (T);
2819 Set_Is_Limited_Record (T, Limited_Present (Def)
2820 or else Task_Present (Def)
2821 or else Protected_Present (Def)
2822 or else Synchronized_Present (Def));
2824 -- Type is abstract if full declaration carries keyword, or if previous
2825 -- partial view did.
2827 Set_Is_Abstract_Type (T);
2828 Set_Is_Interface (T);
2830 -- Type is a limited interface if it includes the keyword limited, task,
2831 -- protected, or synchronized.
2833 Set_Is_Limited_Interface
2834 (T, Limited_Present (Def)
2835 or else Protected_Present (Def)
2836 or else Synchronized_Present (Def)
2837 or else Task_Present (Def));
2839 Set_Interfaces (T, New_Elmt_List);
2840 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2842 -- Complete the decoration of the class-wide entity if it was already
2843 -- built (i.e. during the creation of the limited view)
2845 if Present (CW) then
2846 Set_Is_Interface (CW);
2847 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2848 end if;
2850 -- Check runtime support for synchronized interfaces
2852 if VM_Target = No_VM
2853 and then (Is_Task_Interface (T)
2854 or else Is_Protected_Interface (T)
2855 or else Is_Synchronized_Interface (T))
2856 and then not RTE_Available (RE_Select_Specific_Data)
2857 then
2858 Error_Msg_CRT ("synchronized interfaces", T);
2859 end if;
2860 end Analyze_Interface_Declaration;
2862 -----------------------------
2863 -- Analyze_Itype_Reference --
2864 -----------------------------
2866 -- Nothing to do. This node is placed in the tree only for the benefit of
2867 -- back end processing, and has no effect on the semantic processing.
2869 procedure Analyze_Itype_Reference (N : Node_Id) is
2870 begin
2871 pragma Assert (Is_Itype (Itype (N)));
2872 null;
2873 end Analyze_Itype_Reference;
2875 --------------------------------
2876 -- Analyze_Number_Declaration --
2877 --------------------------------
2879 procedure Analyze_Number_Declaration (N : Node_Id) is
2880 Id : constant Entity_Id := Defining_Identifier (N);
2881 E : constant Node_Id := Expression (N);
2882 T : Entity_Id;
2883 Index : Interp_Index;
2884 It : Interp;
2886 begin
2887 Generate_Definition (Id);
2888 Enter_Name (Id);
2890 -- This is an optimization of a common case of an integer literal
2892 if Nkind (E) = N_Integer_Literal then
2893 Set_Is_Static_Expression (E, True);
2894 Set_Etype (E, Universal_Integer);
2896 Set_Etype (Id, Universal_Integer);
2897 Set_Ekind (Id, E_Named_Integer);
2898 Set_Is_Frozen (Id, True);
2899 return;
2900 end if;
2902 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2904 -- Process expression, replacing error by integer zero, to avoid
2905 -- cascaded errors or aborts further along in the processing
2907 -- Replace Error by integer zero, which seems least likely to cause
2908 -- cascaded errors.
2910 if E = Error then
2911 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2912 Set_Error_Posted (E);
2913 end if;
2915 Analyze (E);
2917 -- Verify that the expression is static and numeric. If
2918 -- the expression is overloaded, we apply the preference
2919 -- rule that favors root numeric types.
2921 if not Is_Overloaded (E) then
2922 T := Etype (E);
2924 else
2925 T := Any_Type;
2927 Get_First_Interp (E, Index, It);
2928 while Present (It.Typ) loop
2929 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
2930 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
2931 then
2932 if T = Any_Type then
2933 T := It.Typ;
2935 elsif It.Typ = Universal_Real
2936 or else It.Typ = Universal_Integer
2937 then
2938 -- Choose universal interpretation over any other
2940 T := It.Typ;
2941 exit;
2942 end if;
2943 end if;
2945 Get_Next_Interp (Index, It);
2946 end loop;
2947 end if;
2949 if Is_Integer_Type (T) then
2950 Resolve (E, T);
2951 Set_Etype (Id, Universal_Integer);
2952 Set_Ekind (Id, E_Named_Integer);
2954 elsif Is_Real_Type (T) then
2956 -- Because the real value is converted to universal_real, this is a
2957 -- legal context for a universal fixed expression.
2959 if T = Universal_Fixed then
2960 declare
2961 Loc : constant Source_Ptr := Sloc (N);
2962 Conv : constant Node_Id := Make_Type_Conversion (Loc,
2963 Subtype_Mark =>
2964 New_Occurrence_Of (Universal_Real, Loc),
2965 Expression => Relocate_Node (E));
2967 begin
2968 Rewrite (E, Conv);
2969 Analyze (E);
2970 end;
2972 elsif T = Any_Fixed then
2973 Error_Msg_N ("illegal context for mixed mode operation", E);
2975 -- Expression is of the form : universal_fixed * integer. Try to
2976 -- resolve as universal_real.
2978 T := Universal_Real;
2979 Set_Etype (E, T);
2980 end if;
2982 Resolve (E, T);
2983 Set_Etype (Id, Universal_Real);
2984 Set_Ekind (Id, E_Named_Real);
2986 else
2987 Wrong_Type (E, Any_Numeric);
2988 Resolve (E, T);
2990 Set_Etype (Id, T);
2991 Set_Ekind (Id, E_Constant);
2992 Set_Never_Set_In_Source (Id, True);
2993 Set_Is_True_Constant (Id, True);
2994 return;
2995 end if;
2997 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
2998 Set_Etype (E, Etype (Id));
2999 end if;
3001 if not Is_OK_Static_Expression (E) then
3002 Flag_Non_Static_Expr
3003 ("non-static expression used in number declaration!", E);
3004 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3005 Set_Etype (E, Any_Type);
3006 end if;
3007 end Analyze_Number_Declaration;
3009 -----------------------------
3010 -- Analyze_Object_Contract --
3011 -----------------------------
3013 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
3014 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3015 AR_Val : Boolean := False;
3016 AW_Val : Boolean := False;
3017 ER_Val : Boolean := False;
3018 EW_Val : Boolean := False;
3019 Prag : Node_Id;
3020 Seen : Boolean := False;
3022 begin
3023 if Ekind (Obj_Id) = E_Constant then
3025 -- A constant cannot be effectively volatile. This check is only
3026 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3027 -- rule. Do not flag internally-generated constants that map generic
3028 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3030 if SPARK_Mode = On
3031 and then Is_Effectively_Volatile (Obj_Id)
3032 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3033 then
3034 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3035 end if;
3037 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3039 -- The following checks are only relevant when SPARK_Mode is on as
3040 -- they are not standard Ada legality rules. Internally generated
3041 -- temporaries are ignored.
3043 if SPARK_Mode = On and then Comes_From_Source (Obj_Id) then
3044 if Is_Effectively_Volatile (Obj_Id) then
3046 -- The declaration of an effectively volatile object must
3047 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3049 if not Is_Library_Level_Entity (Obj_Id) then
3050 Error_Msg_N
3051 ("volatile variable & must be declared at library level",
3052 Obj_Id);
3054 -- An object of a discriminated type cannot be effectively
3055 -- volatile (SPARK RM C.6(4)).
3057 elsif Has_Discriminants (Obj_Typ) then
3058 Error_Msg_N
3059 ("discriminated object & cannot be volatile", Obj_Id);
3061 -- An object of a tagged type cannot be effectively volatile
3062 -- (SPARK RM C.6(5)).
3064 elsif Is_Tagged_Type (Obj_Typ) then
3065 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3066 end if;
3068 -- The object is not effectively volatile
3070 else
3071 -- A non-effectively volatile object cannot have effectively
3072 -- volatile components (SPARK RM 7.1.3(7)).
3074 if not Is_Effectively_Volatile (Obj_Id)
3075 and then Has_Volatile_Component (Obj_Typ)
3076 then
3077 Error_Msg_N
3078 ("non-volatile object & cannot have volatile components",
3079 Obj_Id);
3080 end if;
3081 end if;
3082 end if;
3084 -- Analyze all external properties
3086 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3088 if Present (Prag) then
3089 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3090 Seen := True;
3091 end if;
3093 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3095 if Present (Prag) then
3096 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3097 Seen := True;
3098 end if;
3100 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3102 if Present (Prag) then
3103 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3104 Seen := True;
3105 end if;
3107 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3109 if Present (Prag) then
3110 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3111 Seen := True;
3112 end if;
3114 -- Verify the mutual interaction of the various external properties
3116 if Seen then
3117 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3118 end if;
3120 -- Check whether the lack of indicator Part_Of agrees with the
3121 -- placement of the variable with respect to the state space.
3123 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3125 if No (Prag) then
3126 Check_Missing_Part_Of (Obj_Id);
3127 end if;
3128 end if;
3129 end Analyze_Object_Contract;
3131 --------------------------------
3132 -- Analyze_Object_Declaration --
3133 --------------------------------
3135 procedure Analyze_Object_Declaration (N : Node_Id) is
3136 Loc : constant Source_Ptr := Sloc (N);
3137 Id : constant Entity_Id := Defining_Identifier (N);
3138 T : Entity_Id;
3139 Act_T : Entity_Id;
3141 E : Node_Id := Expression (N);
3142 -- E is set to Expression (N) throughout this routine. When
3143 -- Expression (N) is modified, E is changed accordingly.
3145 Prev_Entity : Entity_Id := Empty;
3147 function Count_Tasks (T : Entity_Id) return Uint;
3148 -- This function is called when a non-generic library level object of a
3149 -- task type is declared. Its function is to count the static number of
3150 -- tasks declared within the type (it is only called if Has_Tasks is set
3151 -- for T). As a side effect, if an array of tasks with non-static bounds
3152 -- or a variant record type is encountered, Check_Restrictions is called
3153 -- indicating the count is unknown.
3155 -----------------
3156 -- Count_Tasks --
3157 -----------------
3159 function Count_Tasks (T : Entity_Id) return Uint is
3160 C : Entity_Id;
3161 X : Node_Id;
3162 V : Uint;
3164 begin
3165 if Is_Task_Type (T) then
3166 return Uint_1;
3168 elsif Is_Record_Type (T) then
3169 if Has_Discriminants (T) then
3170 Check_Restriction (Max_Tasks, N);
3171 return Uint_0;
3173 else
3174 V := Uint_0;
3175 C := First_Component (T);
3176 while Present (C) loop
3177 V := V + Count_Tasks (Etype (C));
3178 Next_Component (C);
3179 end loop;
3181 return V;
3182 end if;
3184 elsif Is_Array_Type (T) then
3185 X := First_Index (T);
3186 V := Count_Tasks (Component_Type (T));
3187 while Present (X) loop
3188 C := Etype (X);
3190 if not Is_OK_Static_Subtype (C) then
3191 Check_Restriction (Max_Tasks, N);
3192 return Uint_0;
3193 else
3194 V := V * (UI_Max (Uint_0,
3195 Expr_Value (Type_High_Bound (C)) -
3196 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3197 end if;
3199 Next_Index (X);
3200 end loop;
3202 return V;
3204 else
3205 return Uint_0;
3206 end if;
3207 end Count_Tasks;
3209 -- Start of processing for Analyze_Object_Declaration
3211 begin
3212 -- There are three kinds of implicit types generated by an
3213 -- object declaration:
3215 -- 1. Those generated by the original Object Definition
3217 -- 2. Those generated by the Expression
3219 -- 3. Those used to constrain the Object Definition with the
3220 -- expression constraints when the definition is unconstrained.
3222 -- They must be generated in this order to avoid order of elaboration
3223 -- issues. Thus the first step (after entering the name) is to analyze
3224 -- the object definition.
3226 if Constant_Present (N) then
3227 Prev_Entity := Current_Entity_In_Scope (Id);
3229 if Present (Prev_Entity)
3230 and then
3231 -- If the homograph is an implicit subprogram, it is overridden
3232 -- by the current declaration.
3234 ((Is_Overloadable (Prev_Entity)
3235 and then Is_Inherited_Operation (Prev_Entity))
3237 -- The current object is a discriminal generated for an entry
3238 -- family index. Even though the index is a constant, in this
3239 -- particular context there is no true constant redeclaration.
3240 -- Enter_Name will handle the visibility.
3242 or else
3243 (Is_Discriminal (Id)
3244 and then Ekind (Discriminal_Link (Id)) =
3245 E_Entry_Index_Parameter)
3247 -- The current object is the renaming for a generic declared
3248 -- within the instance.
3250 or else
3251 (Ekind (Prev_Entity) = E_Package
3252 and then Nkind (Parent (Prev_Entity)) =
3253 N_Package_Renaming_Declaration
3254 and then not Comes_From_Source (Prev_Entity)
3255 and then Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3256 then
3257 Prev_Entity := Empty;
3258 end if;
3259 end if;
3261 if Present (Prev_Entity) then
3262 Constant_Redeclaration (Id, N, T);
3264 Generate_Reference (Prev_Entity, Id, 'c');
3265 Set_Completion_Referenced (Id);
3267 if Error_Posted (N) then
3269 -- Type mismatch or illegal redeclaration, Do not analyze
3270 -- expression to avoid cascaded errors.
3272 T := Find_Type_Of_Object (Object_Definition (N), N);
3273 Set_Etype (Id, T);
3274 Set_Ekind (Id, E_Variable);
3275 goto Leave;
3276 end if;
3278 -- In the normal case, enter identifier at the start to catch premature
3279 -- usage in the initialization expression.
3281 else
3282 Generate_Definition (Id);
3283 Enter_Name (Id);
3285 Mark_Coextensions (N, Object_Definition (N));
3287 T := Find_Type_Of_Object (Object_Definition (N), N);
3289 if Nkind (Object_Definition (N)) = N_Access_Definition
3290 and then Present
3291 (Access_To_Subprogram_Definition (Object_Definition (N)))
3292 and then Protected_Present
3293 (Access_To_Subprogram_Definition (Object_Definition (N)))
3294 then
3295 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3296 end if;
3298 if Error_Posted (Id) then
3299 Set_Etype (Id, T);
3300 Set_Ekind (Id, E_Variable);
3301 goto Leave;
3302 end if;
3303 end if;
3305 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3306 -- out some static checks
3308 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3310 -- In case of aggregates we must also take care of the correct
3311 -- initialization of nested aggregates bug this is done at the
3312 -- point of the analysis of the aggregate (see sem_aggr.adb).
3314 if Present (Expression (N))
3315 and then Nkind (Expression (N)) = N_Aggregate
3316 then
3317 null;
3319 else
3320 declare
3321 Save_Typ : constant Entity_Id := Etype (Id);
3322 begin
3323 Set_Etype (Id, T); -- Temp. decoration for static checks
3324 Null_Exclusion_Static_Checks (N);
3325 Set_Etype (Id, Save_Typ);
3326 end;
3327 end if;
3328 end if;
3330 -- Object is marked pure if it is in a pure scope
3332 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3334 -- If deferred constant, make sure context is appropriate. We detect
3335 -- a deferred constant as a constant declaration with no expression.
3336 -- A deferred constant can appear in a package body if its completion
3337 -- is by means of an interface pragma.
3339 if Constant_Present (N) and then No (E) then
3341 -- A deferred constant may appear in the declarative part of the
3342 -- following constructs:
3344 -- blocks
3345 -- entry bodies
3346 -- extended return statements
3347 -- package specs
3348 -- package bodies
3349 -- subprogram bodies
3350 -- task bodies
3352 -- When declared inside a package spec, a deferred constant must be
3353 -- completed by a full constant declaration or pragma Import. In all
3354 -- other cases, the only proper completion is pragma Import. Extended
3355 -- return statements are flagged as invalid contexts because they do
3356 -- not have a declarative part and so cannot accommodate the pragma.
3358 if Ekind (Current_Scope) = E_Return_Statement then
3359 Error_Msg_N
3360 ("invalid context for deferred constant declaration (RM 7.4)",
3362 Error_Msg_N
3363 ("\declaration requires an initialization expression",
3365 Set_Constant_Present (N, False);
3367 -- In Ada 83, deferred constant must be of private type
3369 elsif not Is_Private_Type (T) then
3370 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3371 Error_Msg_N
3372 ("(Ada 83) deferred constant must be private type", N);
3373 end if;
3374 end if;
3376 -- If not a deferred constant, then object declaration freezes its type
3378 else
3379 Check_Fully_Declared (T, N);
3380 Freeze_Before (N, T);
3381 end if;
3383 -- If the object was created by a constrained array definition, then
3384 -- set the link in both the anonymous base type and anonymous subtype
3385 -- that are built to represent the array type to point to the object.
3387 if Nkind (Object_Definition (Declaration_Node (Id))) =
3388 N_Constrained_Array_Definition
3389 then
3390 Set_Related_Array_Object (T, Id);
3391 Set_Related_Array_Object (Base_Type (T), Id);
3392 end if;
3394 -- Special checks for protected objects not at library level
3396 if Is_Protected_Type (T)
3397 and then not Is_Library_Level_Entity (Id)
3398 then
3399 Check_Restriction (No_Local_Protected_Objects, Id);
3401 -- Protected objects with interrupt handlers must be at library level
3403 -- Ada 2005: This test is not needed (and the corresponding clause
3404 -- in the RM is removed) because accessibility checks are sufficient
3405 -- to make handlers not at the library level illegal.
3407 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3408 -- applies to the '95 version of the language as well.
3410 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3411 Error_Msg_N
3412 ("interrupt object can only be declared at library level", Id);
3413 end if;
3414 end if;
3416 -- The actual subtype of the object is the nominal subtype, unless
3417 -- the nominal one is unconstrained and obtained from the expression.
3419 Act_T := T;
3421 -- These checks should be performed before the initialization expression
3422 -- is considered, so that the Object_Definition node is still the same
3423 -- as in source code.
3425 -- In SPARK, the nominal subtype is always given by a subtype mark
3426 -- and must not be unconstrained. (The only exception to this is the
3427 -- acceptance of declarations of constants of type String.)
3429 if not
3430 Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
3431 then
3432 Check_SPARK_Restriction
3433 ("subtype mark required", Object_Definition (N));
3435 elsif Is_Array_Type (T)
3436 and then not Is_Constrained (T)
3437 and then T /= Standard_String
3438 then
3439 Check_SPARK_Restriction
3440 ("subtype mark of constrained type expected",
3441 Object_Definition (N));
3442 end if;
3444 -- There are no aliased objects in SPARK
3446 if Aliased_Present (N) then
3447 Check_SPARK_Restriction ("aliased object is not allowed", N);
3448 end if;
3450 -- Process initialization expression if present and not in error
3452 if Present (E) and then E /= Error then
3454 -- Generate an error in case of CPP class-wide object initialization.
3455 -- Required because otherwise the expansion of the class-wide
3456 -- assignment would try to use 'size to initialize the object
3457 -- (primitive that is not available in CPP tagged types).
3459 if Is_Class_Wide_Type (Act_T)
3460 and then
3461 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3462 or else
3463 (Present (Full_View (Root_Type (Etype (Act_T))))
3464 and then
3465 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3466 then
3467 Error_Msg_N
3468 ("predefined assignment not available for 'C'P'P tagged types",
3470 end if;
3472 Mark_Coextensions (N, E);
3473 Analyze (E);
3475 -- In case of errors detected in the analysis of the expression,
3476 -- decorate it with the expected type to avoid cascaded errors
3478 if No (Etype (E)) then
3479 Set_Etype (E, T);
3480 end if;
3482 -- If an initialization expression is present, then we set the
3483 -- Is_True_Constant flag. It will be reset if this is a variable
3484 -- and it is indeed modified.
3486 Set_Is_True_Constant (Id, True);
3488 -- If we are analyzing a constant declaration, set its completion
3489 -- flag after analyzing and resolving the expression.
3491 if Constant_Present (N) then
3492 Set_Has_Completion (Id);
3493 end if;
3495 -- Set type and resolve (type may be overridden later on). Note:
3496 -- Ekind (Id) must still be E_Void at this point so that incorrect
3497 -- early usage within E is properly diagnosed.
3499 Set_Etype (Id, T);
3501 -- If the expression is an aggregate we must look ahead to detect
3502 -- the possible presence of an address clause, and defer resolution
3503 -- and expansion of the aggregate to the freeze point of the entity.
3505 if Comes_From_Source (N)
3506 and then Expander_Active
3507 and then Has_Following_Address_Clause (N)
3508 and then Nkind (E) = N_Aggregate
3509 then
3510 Set_Etype (E, T);
3512 else
3513 Resolve (E, T);
3514 end if;
3516 -- No further action needed if E is a call to an inlined function
3517 -- which returns an unconstrained type and it has been expanded into
3518 -- a procedure call. In that case N has been replaced by an object
3519 -- declaration without initializing expression and it has been
3520 -- analyzed (see Expand_Inlined_Call).
3522 if Back_End_Inlining
3523 and then Expander_Active
3524 and then Nkind (E) = N_Function_Call
3525 and then Nkind (Name (E)) in N_Has_Entity
3526 and then Is_Inlined (Entity (Name (E)))
3527 and then not Is_Constrained (Etype (E))
3528 and then Analyzed (N)
3529 and then No (Expression (N))
3530 then
3531 return;
3532 end if;
3534 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3535 -- node (which was marked already-analyzed), we need to set the type
3536 -- to something other than Any_Access in order to keep gigi happy.
3538 if Etype (E) = Any_Access then
3539 Set_Etype (E, T);
3540 end if;
3542 -- If the object is an access to variable, the initialization
3543 -- expression cannot be an access to constant.
3545 if Is_Access_Type (T)
3546 and then not Is_Access_Constant (T)
3547 and then Is_Access_Type (Etype (E))
3548 and then Is_Access_Constant (Etype (E))
3549 then
3550 Error_Msg_N
3551 ("access to variable cannot be initialized "
3552 & "with an access-to-constant expression", E);
3553 end if;
3555 if not Assignment_OK (N) then
3556 Check_Initialization (T, E);
3557 end if;
3559 Check_Unset_Reference (E);
3561 -- If this is a variable, then set current value. If this is a
3562 -- declared constant of a scalar type with a static expression,
3563 -- indicate that it is always valid.
3565 if not Constant_Present (N) then
3566 if Compile_Time_Known_Value (E) then
3567 Set_Current_Value (Id, E);
3568 end if;
3570 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3571 Set_Is_Known_Valid (Id);
3572 end if;
3574 -- Deal with setting of null flags
3576 if Is_Access_Type (T) then
3577 if Known_Non_Null (E) then
3578 Set_Is_Known_Non_Null (Id, True);
3579 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3580 Set_Is_Known_Null (Id, True);
3581 end if;
3582 end if;
3584 -- Check incorrect use of dynamically tagged expressions
3586 if Is_Tagged_Type (T) then
3587 Check_Dynamically_Tagged_Expression
3588 (Expr => E,
3589 Typ => T,
3590 Related_Nod => N);
3591 end if;
3593 Apply_Scalar_Range_Check (E, T);
3594 Apply_Static_Length_Check (E, T);
3596 if Nkind (Original_Node (N)) = N_Object_Declaration
3597 and then Comes_From_Source (Original_Node (N))
3599 -- Only call test if needed
3601 and then Restriction_Check_Required (SPARK_05)
3602 and then not Is_SPARK_Initialization_Expr (Original_Node (E))
3603 then
3604 Check_SPARK_Restriction
3605 ("initialization expression is not appropriate", E);
3606 end if;
3607 end if;
3609 -- If the No_Streams restriction is set, check that the type of the
3610 -- object is not, and does not contain, any subtype derived from
3611 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3612 -- Has_Stream just for efficiency reasons. There is no point in
3613 -- spending time on a Has_Stream check if the restriction is not set.
3615 if Restriction_Check_Required (No_Streams) then
3616 if Has_Stream (T) then
3617 Check_Restriction (No_Streams, N);
3618 end if;
3619 end if;
3621 -- Deal with predicate check before we start to do major rewriting. It
3622 -- is OK to initialize and then check the initialized value, since the
3623 -- object goes out of scope if we get a predicate failure. Note that we
3624 -- do this in the analyzer and not the expander because the analyzer
3625 -- does some substantial rewriting in some cases.
3627 -- We need a predicate check if the type has predicates, and if either
3628 -- there is an initializing expression, or for default initialization
3629 -- when we have at least one case of an explicit default initial value
3630 -- and then this is not an internal declaration whose initialization
3631 -- comes later (as for an aggregate expansion).
3633 if not Suppress_Assignment_Checks (N)
3634 and then Present (Predicate_Function (T))
3635 and then not No_Initialization (N)
3636 and then
3637 (Present (E)
3638 or else
3639 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3640 then
3641 -- If the type has a static predicate and the expression is known at
3642 -- compile time, see if the expression satisfies the predicate.
3644 if Present (E) then
3645 Check_Expression_Against_Static_Predicate (E, T);
3646 end if;
3648 Insert_After (N,
3649 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3650 end if;
3652 -- Case of unconstrained type
3654 if Is_Indefinite_Subtype (T) then
3656 -- In SPARK, a declaration of unconstrained type is allowed
3657 -- only for constants of type string.
3659 if Is_String_Type (T) and then not Constant_Present (N) then
3660 Check_SPARK_Restriction
3661 ("declaration of object of unconstrained type not allowed", N);
3662 end if;
3664 -- Nothing to do in deferred constant case
3666 if Constant_Present (N) and then No (E) then
3667 null;
3669 -- Case of no initialization present
3671 elsif No (E) then
3672 if No_Initialization (N) then
3673 null;
3675 elsif Is_Class_Wide_Type (T) then
3676 Error_Msg_N
3677 ("initialization required in class-wide declaration ", N);
3679 else
3680 Error_Msg_N
3681 ("unconstrained subtype not allowed (need initialization)",
3682 Object_Definition (N));
3684 if Is_Record_Type (T) and then Has_Discriminants (T) then
3685 Error_Msg_N
3686 ("\provide initial value or explicit discriminant values",
3687 Object_Definition (N));
3689 Error_Msg_NE
3690 ("\or give default discriminant values for type&",
3691 Object_Definition (N), T);
3693 elsif Is_Array_Type (T) then
3694 Error_Msg_N
3695 ("\provide initial value or explicit array bounds",
3696 Object_Definition (N));
3697 end if;
3698 end if;
3700 -- Case of initialization present but in error. Set initial
3701 -- expression as absent (but do not make above complaints)
3703 elsif E = Error then
3704 Set_Expression (N, Empty);
3705 E := Empty;
3707 -- Case of initialization present
3709 else
3710 -- Check restrictions in Ada 83
3712 if not Constant_Present (N) then
3714 -- Unconstrained variables not allowed in Ada 83 mode
3716 if Ada_Version = Ada_83
3717 and then Comes_From_Source (Object_Definition (N))
3718 then
3719 Error_Msg_N
3720 ("(Ada 83) unconstrained variable not allowed",
3721 Object_Definition (N));
3722 end if;
3723 end if;
3725 -- Now we constrain the variable from the initializing expression
3727 -- If the expression is an aggregate, it has been expanded into
3728 -- individual assignments. Retrieve the actual type from the
3729 -- expanded construct.
3731 if Is_Array_Type (T)
3732 and then No_Initialization (N)
3733 and then Nkind (Original_Node (E)) = N_Aggregate
3734 then
3735 Act_T := Etype (E);
3737 -- In case of class-wide interface object declarations we delay
3738 -- the generation of the equivalent record type declarations until
3739 -- its expansion because there are cases in they are not required.
3741 elsif Is_Interface (T) then
3742 null;
3744 else
3745 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3746 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3747 end if;
3749 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3751 if Aliased_Present (N) then
3752 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3753 end if;
3755 Freeze_Before (N, Act_T);
3756 Freeze_Before (N, T);
3757 end if;
3759 elsif Is_Array_Type (T)
3760 and then No_Initialization (N)
3761 and then Nkind (Original_Node (E)) = N_Aggregate
3762 then
3763 if not Is_Entity_Name (Object_Definition (N)) then
3764 Act_T := Etype (E);
3765 Check_Compile_Time_Size (Act_T);
3767 if Aliased_Present (N) then
3768 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3769 end if;
3770 end if;
3772 -- When the given object definition and the aggregate are specified
3773 -- independently, and their lengths might differ do a length check.
3774 -- This cannot happen if the aggregate is of the form (others =>...)
3776 if not Is_Constrained (T) then
3777 null;
3779 elsif Nkind (E) = N_Raise_Constraint_Error then
3781 -- Aggregate is statically illegal. Place back in declaration
3783 Set_Expression (N, E);
3784 Set_No_Initialization (N, False);
3786 elsif T = Etype (E) then
3787 null;
3789 elsif Nkind (E) = N_Aggregate
3790 and then Present (Component_Associations (E))
3791 and then Present (Choices (First (Component_Associations (E))))
3792 and then Nkind (First
3793 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3794 then
3795 null;
3797 else
3798 Apply_Length_Check (E, T);
3799 end if;
3801 -- If the type is limited unconstrained with defaulted discriminants and
3802 -- there is no expression, then the object is constrained by the
3803 -- defaults, so it is worthwhile building the corresponding subtype.
3805 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
3806 and then not Is_Constrained (T)
3807 and then Has_Discriminants (T)
3808 then
3809 if No (E) then
3810 Act_T := Build_Default_Subtype (T, N);
3811 else
3812 -- Ada 2005: A limited object may be initialized by means of an
3813 -- aggregate. If the type has default discriminants it has an
3814 -- unconstrained nominal type, Its actual subtype will be obtained
3815 -- from the aggregate, and not from the default discriminants.
3817 Act_T := Etype (E);
3818 end if;
3820 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
3822 elsif Nkind (E) = N_Function_Call
3823 and then Constant_Present (N)
3824 and then Has_Unconstrained_Elements (Etype (E))
3825 then
3826 -- The back-end has problems with constants of a discriminated type
3827 -- with defaults, if the initial value is a function call. We
3828 -- generate an intermediate temporary that will receive a reference
3829 -- to the result of the call. The initialization expression then
3830 -- becomes a dereference of that temporary.
3832 Remove_Side_Effects (E);
3834 -- If this is a constant declaration of an unconstrained type and
3835 -- the initialization is an aggregate, we can use the subtype of the
3836 -- aggregate for the declared entity because it is immutable.
3838 elsif not Is_Constrained (T)
3839 and then Has_Discriminants (T)
3840 and then Constant_Present (N)
3841 and then not Has_Unchecked_Union (T)
3842 and then Nkind (E) = N_Aggregate
3843 then
3844 Act_T := Etype (E);
3845 end if;
3847 -- Check No_Wide_Characters restriction
3849 Check_Wide_Character_Restriction (T, Object_Definition (N));
3851 -- Indicate this is not set in source. Certainly true for constants, and
3852 -- true for variables so far (will be reset for a variable if and when
3853 -- we encounter a modification in the source).
3855 Set_Never_Set_In_Source (Id, True);
3857 -- Now establish the proper kind and type of the object
3859 if Constant_Present (N) then
3860 Set_Ekind (Id, E_Constant);
3861 Set_Is_True_Constant (Id);
3863 else
3864 Set_Ekind (Id, E_Variable);
3866 -- A variable is set as shared passive if it appears in a shared
3867 -- passive package, and is at the outer level. This is not done for
3868 -- entities generated during expansion, because those are always
3869 -- manipulated locally.
3871 if Is_Shared_Passive (Current_Scope)
3872 and then Is_Library_Level_Entity (Id)
3873 and then Comes_From_Source (Id)
3874 then
3875 Set_Is_Shared_Passive (Id);
3876 Check_Shared_Var (Id, T, N);
3877 end if;
3879 -- Set Has_Initial_Value if initializing expression present. Note
3880 -- that if there is no initializing expression, we leave the state
3881 -- of this flag unchanged (usually it will be False, but notably in
3882 -- the case of exception choice variables, it will already be true).
3884 if Present (E) then
3885 Set_Has_Initial_Value (Id, True);
3886 end if;
3888 Set_Contract (Id, Make_Contract (Sloc (Id)));
3889 end if;
3891 -- Initialize alignment and size and capture alignment setting
3893 Init_Alignment (Id);
3894 Init_Esize (Id);
3895 Set_Optimize_Alignment_Flags (Id);
3897 -- Deal with aliased case
3899 if Aliased_Present (N) then
3900 Set_Is_Aliased (Id);
3902 -- If the object is aliased and the type is unconstrained with
3903 -- defaulted discriminants and there is no expression, then the
3904 -- object is constrained by the defaults, so it is worthwhile
3905 -- building the corresponding subtype.
3907 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3908 -- unconstrained, then only establish an actual subtype if the
3909 -- nominal subtype is indefinite. In definite cases the object is
3910 -- unconstrained in Ada 2005.
3912 if No (E)
3913 and then Is_Record_Type (T)
3914 and then not Is_Constrained (T)
3915 and then Has_Discriminants (T)
3916 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
3917 then
3918 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
3919 end if;
3920 end if;
3922 -- Now we can set the type of the object
3924 Set_Etype (Id, Act_T);
3926 -- Non-constant object is marked to be treated as volatile if type is
3927 -- volatile and we clear the Current_Value setting that may have been
3928 -- set above. Doing so for constants isn't required and might interfere
3929 -- with possible uses of the object as a static expression in contexts
3930 -- incompatible with volatility (e.g. as a case-statement alternative).
3932 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
3933 Set_Treat_As_Volatile (Id);
3934 Set_Current_Value (Id, Empty);
3935 end if;
3937 -- Deal with controlled types
3939 if Has_Controlled_Component (Etype (Id))
3940 or else Is_Controlled (Etype (Id))
3941 then
3942 if not Is_Library_Level_Entity (Id) then
3943 Check_Restriction (No_Nested_Finalization, N);
3944 else
3945 Validate_Controlled_Object (Id);
3946 end if;
3947 end if;
3949 if Has_Task (Etype (Id)) then
3950 Check_Restriction (No_Tasking, N);
3952 -- Deal with counting max tasks
3954 -- Nothing to do if inside a generic
3956 if Inside_A_Generic then
3957 null;
3959 -- If library level entity, then count tasks
3961 elsif Is_Library_Level_Entity (Id) then
3962 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
3964 -- If not library level entity, then indicate we don't know max
3965 -- tasks and also check task hierarchy restriction and blocking
3966 -- operation (since starting a task is definitely blocking).
3968 else
3969 Check_Restriction (Max_Tasks, N);
3970 Check_Restriction (No_Task_Hierarchy, N);
3971 Check_Potentially_Blocking_Operation (N);
3972 end if;
3974 -- A rather specialized test. If we see two tasks being declared
3975 -- of the same type in the same object declaration, and the task
3976 -- has an entry with an address clause, we know that program error
3977 -- will be raised at run time since we can't have two tasks with
3978 -- entries at the same address.
3980 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
3981 declare
3982 E : Entity_Id;
3984 begin
3985 E := First_Entity (Etype (Id));
3986 while Present (E) loop
3987 if Ekind (E) = E_Entry
3988 and then Present (Get_Attribute_Definition_Clause
3989 (E, Attribute_Address))
3990 then
3991 Error_Msg_Warn := SPARK_Mode /= On;
3992 Error_Msg_N
3993 ("more than one task with same entry address<<", N);
3994 Error_Msg_N ("\Program_Error [<<", N);
3995 Insert_Action (N,
3996 Make_Raise_Program_Error (Loc,
3997 Reason => PE_Duplicated_Entry_Address));
3998 exit;
3999 end if;
4001 Next_Entity (E);
4002 end loop;
4003 end;
4004 end if;
4005 end if;
4007 -- Some simple constant-propagation: if the expression is a constant
4008 -- string initialized with a literal, share the literal. This avoids
4009 -- a run-time copy.
4011 if Present (E)
4012 and then Is_Entity_Name (E)
4013 and then Ekind (Entity (E)) = E_Constant
4014 and then Base_Type (Etype (E)) = Standard_String
4015 then
4016 declare
4017 Val : constant Node_Id := Constant_Value (Entity (E));
4018 begin
4019 if Present (Val) and then Nkind (Val) = N_String_Literal then
4020 Rewrite (E, New_Copy (Val));
4021 end if;
4022 end;
4023 end if;
4025 -- Another optimization: if the nominal subtype is unconstrained and
4026 -- the expression is a function call that returns an unconstrained
4027 -- type, rewrite the declaration as a renaming of the result of the
4028 -- call. The exceptions below are cases where the copy is expected,
4029 -- either by the back end (Aliased case) or by the semantics, as for
4030 -- initializing controlled types or copying tags for classwide types.
4032 if Present (E)
4033 and then Nkind (E) = N_Explicit_Dereference
4034 and then Nkind (Original_Node (E)) = N_Function_Call
4035 and then not Is_Library_Level_Entity (Id)
4036 and then not Is_Constrained (Underlying_Type (T))
4037 and then not Is_Aliased (Id)
4038 and then not Is_Class_Wide_Type (T)
4039 and then not Is_Controlled (T)
4040 and then not Has_Controlled_Component (Base_Type (T))
4041 and then Expander_Active
4042 then
4043 Rewrite (N,
4044 Make_Object_Renaming_Declaration (Loc,
4045 Defining_Identifier => Id,
4046 Access_Definition => Empty,
4047 Subtype_Mark => New_Occurrence_Of
4048 (Base_Type (Etype (Id)), Loc),
4049 Name => E));
4051 Set_Renamed_Object (Id, E);
4053 -- Force generation of debugging information for the constant and for
4054 -- the renamed function call.
4056 Set_Debug_Info_Needed (Id);
4057 Set_Debug_Info_Needed (Entity (Prefix (E)));
4058 end if;
4060 if Present (Prev_Entity)
4061 and then Is_Frozen (Prev_Entity)
4062 and then not Error_Posted (Id)
4063 then
4064 Error_Msg_N ("full constant declaration appears too late", N);
4065 end if;
4067 Check_Eliminated (Id);
4069 -- Deal with setting In_Private_Part flag if in private part
4071 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4072 then
4073 Set_In_Private_Part (Id);
4074 end if;
4076 -- Check for violation of No_Local_Timing_Events
4078 if Restriction_Check_Required (No_Local_Timing_Events)
4079 and then not Is_Library_Level_Entity (Id)
4080 and then Is_RTE (Etype (Id), RE_Timing_Event)
4081 then
4082 Check_Restriction (No_Local_Timing_Events, N);
4083 end if;
4085 <<Leave>>
4086 -- Initialize the refined state of a variable here because this is a
4087 -- common destination for legal and illegal object declarations.
4089 if Ekind (Id) = E_Variable then
4090 Set_Encapsulating_State (Id, Empty);
4091 end if;
4093 if Has_Aspects (N) then
4094 Analyze_Aspect_Specifications (N, Id);
4095 end if;
4097 Analyze_Dimension (N);
4099 -- Verify whether the object declaration introduces an illegal hidden
4100 -- state within a package subject to a null abstract state.
4102 if Ekind (Id) = E_Variable then
4103 Check_No_Hidden_State (Id);
4104 end if;
4105 end Analyze_Object_Declaration;
4107 ---------------------------
4108 -- Analyze_Others_Choice --
4109 ---------------------------
4111 -- Nothing to do for the others choice node itself, the semantic analysis
4112 -- of the others choice will occur as part of the processing of the parent
4114 procedure Analyze_Others_Choice (N : Node_Id) is
4115 pragma Warnings (Off, N);
4116 begin
4117 null;
4118 end Analyze_Others_Choice;
4120 -------------------------------------------
4121 -- Analyze_Private_Extension_Declaration --
4122 -------------------------------------------
4124 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4125 T : constant Entity_Id := Defining_Identifier (N);
4126 Indic : constant Node_Id := Subtype_Indication (N);
4127 Parent_Type : Entity_Id;
4128 Parent_Base : Entity_Id;
4130 begin
4131 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4133 if Is_Non_Empty_List (Interface_List (N)) then
4134 declare
4135 Intf : Node_Id;
4136 T : Entity_Id;
4138 begin
4139 Intf := First (Interface_List (N));
4140 while Present (Intf) loop
4141 T := Find_Type_Of_Subtype_Indic (Intf);
4143 Diagnose_Interface (Intf, T);
4144 Next (Intf);
4145 end loop;
4146 end;
4147 end if;
4149 Generate_Definition (T);
4151 -- For other than Ada 2012, just enter the name in the current scope
4153 if Ada_Version < Ada_2012 then
4154 Enter_Name (T);
4156 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4157 -- case of private type that completes an incomplete type.
4159 else
4160 declare
4161 Prev : Entity_Id;
4163 begin
4164 Prev := Find_Type_Name (N);
4166 pragma Assert (Prev = T
4167 or else (Ekind (Prev) = E_Incomplete_Type
4168 and then Present (Full_View (Prev))
4169 and then Full_View (Prev) = T));
4170 end;
4171 end if;
4173 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4174 Parent_Base := Base_Type (Parent_Type);
4176 if Parent_Type = Any_Type
4177 or else Etype (Parent_Type) = Any_Type
4178 then
4179 Set_Ekind (T, Ekind (Parent_Type));
4180 Set_Etype (T, Any_Type);
4181 goto Leave;
4183 elsif not Is_Tagged_Type (Parent_Type) then
4184 Error_Msg_N
4185 ("parent of type extension must be a tagged type ", Indic);
4186 goto Leave;
4188 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4189 Error_Msg_N ("premature derivation of incomplete type", Indic);
4190 goto Leave;
4192 elsif Is_Concurrent_Type (Parent_Type) then
4193 Error_Msg_N
4194 ("parent type of a private extension cannot be "
4195 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4197 Set_Etype (T, Any_Type);
4198 Set_Ekind (T, E_Limited_Private_Type);
4199 Set_Private_Dependents (T, New_Elmt_List);
4200 Set_Error_Posted (T);
4201 goto Leave;
4202 end if;
4204 -- Perhaps the parent type should be changed to the class-wide type's
4205 -- specific type in this case to prevent cascading errors ???
4207 if Is_Class_Wide_Type (Parent_Type) then
4208 Error_Msg_N
4209 ("parent of type extension must not be a class-wide type", Indic);
4210 goto Leave;
4211 end if;
4213 if (not Is_Package_Or_Generic_Package (Current_Scope)
4214 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4215 or else In_Private_Part (Current_Scope)
4217 then
4218 Error_Msg_N ("invalid context for private extension", N);
4219 end if;
4221 -- Set common attributes
4223 Set_Is_Pure (T, Is_Pure (Current_Scope));
4224 Set_Scope (T, Current_Scope);
4225 Set_Ekind (T, E_Record_Type_With_Private);
4226 Init_Size_Align (T);
4227 Set_Default_SSO (T);
4229 Set_Etype (T, Parent_Base);
4230 Set_Has_Task (T, Has_Task (Parent_Base));
4231 Set_Has_Protected (T, Has_Task (Parent_Base));
4233 Set_Convention (T, Convention (Parent_Type));
4234 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4235 Set_Is_First_Subtype (T);
4236 Make_Class_Wide_Type (T);
4238 if Unknown_Discriminants_Present (N) then
4239 Set_Discriminant_Constraint (T, No_Elist);
4240 end if;
4242 Build_Derived_Record_Type (N, Parent_Type, T);
4244 -- Propagate inherited invariant information. The new type has
4245 -- invariants, if the parent type has inheritable invariants,
4246 -- and these invariants can in turn be inherited.
4248 if Has_Inheritable_Invariants (Parent_Type) then
4249 Set_Has_Inheritable_Invariants (T);
4250 Set_Has_Invariants (T);
4251 end if;
4253 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4254 -- synchronized formal derived type.
4256 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4257 Set_Is_Limited_Record (T);
4259 -- Formal derived type case
4261 if Is_Generic_Type (T) then
4263 -- The parent must be a tagged limited type or a synchronized
4264 -- interface.
4266 if (not Is_Tagged_Type (Parent_Type)
4267 or else not Is_Limited_Type (Parent_Type))
4268 and then
4269 (not Is_Interface (Parent_Type)
4270 or else not Is_Synchronized_Interface (Parent_Type))
4271 then
4272 Error_Msg_NE ("parent type of & must be tagged limited " &
4273 "or synchronized", N, T);
4274 end if;
4276 -- The progenitors (if any) must be limited or synchronized
4277 -- interfaces.
4279 if Present (Interfaces (T)) then
4280 declare
4281 Iface : Entity_Id;
4282 Iface_Elmt : Elmt_Id;
4284 begin
4285 Iface_Elmt := First_Elmt (Interfaces (T));
4286 while Present (Iface_Elmt) loop
4287 Iface := Node (Iface_Elmt);
4289 if not Is_Limited_Interface (Iface)
4290 and then not Is_Synchronized_Interface (Iface)
4291 then
4292 Error_Msg_NE ("progenitor & must be limited " &
4293 "or synchronized", N, Iface);
4294 end if;
4296 Next_Elmt (Iface_Elmt);
4297 end loop;
4298 end;
4299 end if;
4301 -- Regular derived extension, the parent must be a limited or
4302 -- synchronized interface.
4304 else
4305 if not Is_Interface (Parent_Type)
4306 or else (not Is_Limited_Interface (Parent_Type)
4307 and then not Is_Synchronized_Interface (Parent_Type))
4308 then
4309 Error_Msg_NE
4310 ("parent type of & must be limited interface", N, T);
4311 end if;
4312 end if;
4314 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4315 -- extension with a synchronized parent must be explicitly declared
4316 -- synchronized, because the full view will be a synchronized type.
4317 -- This must be checked before the check for limited types below,
4318 -- to ensure that types declared limited are not allowed to extend
4319 -- synchronized interfaces.
4321 elsif Is_Interface (Parent_Type)
4322 and then Is_Synchronized_Interface (Parent_Type)
4323 and then not Synchronized_Present (N)
4324 then
4325 Error_Msg_NE
4326 ("private extension of& must be explicitly synchronized",
4327 N, Parent_Type);
4329 elsif Limited_Present (N) then
4330 Set_Is_Limited_Record (T);
4332 if not Is_Limited_Type (Parent_Type)
4333 and then
4334 (not Is_Interface (Parent_Type)
4335 or else not Is_Limited_Interface (Parent_Type))
4336 then
4337 Error_Msg_NE ("parent type& of limited extension must be limited",
4338 N, Parent_Type);
4339 end if;
4340 end if;
4342 <<Leave>>
4343 if Has_Aspects (N) then
4344 Analyze_Aspect_Specifications (N, T);
4345 end if;
4346 end Analyze_Private_Extension_Declaration;
4348 ---------------------------------
4349 -- Analyze_Subtype_Declaration --
4350 ---------------------------------
4352 procedure Analyze_Subtype_Declaration
4353 (N : Node_Id;
4354 Skip : Boolean := False)
4356 Id : constant Entity_Id := Defining_Identifier (N);
4357 T : Entity_Id;
4358 R_Checks : Check_Result;
4360 begin
4361 Generate_Definition (Id);
4362 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4363 Init_Size_Align (Id);
4365 -- The following guard condition on Enter_Name is to handle cases where
4366 -- the defining identifier has already been entered into the scope but
4367 -- the declaration as a whole needs to be analyzed.
4369 -- This case in particular happens for derived enumeration types. The
4370 -- derived enumeration type is processed as an inserted enumeration type
4371 -- declaration followed by a rewritten subtype declaration. The defining
4372 -- identifier, however, is entered into the name scope very early in the
4373 -- processing of the original type declaration and therefore needs to be
4374 -- avoided here, when the created subtype declaration is analyzed. (See
4375 -- Build_Derived_Types)
4377 -- This also happens when the full view of a private type is derived
4378 -- type with constraints. In this case the entity has been introduced
4379 -- in the private declaration.
4381 -- Finally this happens in some complex cases when validity checks are
4382 -- enabled, where the same subtype declaration may be analyzed twice.
4383 -- This can happen if the subtype is created by the pre-analysis of
4384 -- an attribute tht gives the range of a loop statement, and the loop
4385 -- itself appears within an if_statement that will be rewritten during
4386 -- expansion.
4388 if Skip
4389 or else (Present (Etype (Id))
4390 and then (Is_Private_Type (Etype (Id))
4391 or else Is_Task_Type (Etype (Id))
4392 or else Is_Rewrite_Substitution (N)))
4393 then
4394 null;
4396 elsif Current_Entity (Id) = Id then
4397 null;
4399 else
4400 Enter_Name (Id);
4401 end if;
4403 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4405 -- Class-wide equivalent types of records with unknown discriminants
4406 -- involve the generation of an itype which serves as the private view
4407 -- of a constrained record subtype. In such cases the base type of the
4408 -- current subtype we are processing is the private itype. Use the full
4409 -- of the private itype when decorating various attributes.
4411 if Is_Itype (T)
4412 and then Is_Private_Type (T)
4413 and then Present (Full_View (T))
4414 then
4415 T := Full_View (T);
4416 end if;
4418 -- Inherit common attributes
4420 Set_Is_Volatile (Id, Is_Volatile (T));
4421 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4422 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4423 Set_Convention (Id, Convention (T));
4425 -- If ancestor has predicates then so does the subtype, and in addition
4426 -- we must delay the freeze to properly arrange predicate inheritance.
4428 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4429 -- in which T = ID, so the above tests and assignments do nothing???
4431 if Has_Predicates (T)
4432 or else (Present (Ancestor_Subtype (T))
4433 and then Has_Predicates (Ancestor_Subtype (T)))
4434 then
4435 Set_Has_Predicates (Id);
4436 Set_Has_Delayed_Freeze (Id);
4437 end if;
4439 -- Subtype of Boolean cannot have a constraint in SPARK
4441 if Is_Boolean_Type (T)
4442 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4443 then
4444 Check_SPARK_Restriction
4445 ("subtype of Boolean cannot have constraint", N);
4446 end if;
4448 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4449 declare
4450 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4451 One_Cstr : Node_Id;
4452 Low : Node_Id;
4453 High : Node_Id;
4455 begin
4456 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4457 One_Cstr := First (Constraints (Cstr));
4458 while Present (One_Cstr) loop
4460 -- Index or discriminant constraint in SPARK must be a
4461 -- subtype mark.
4463 if not
4464 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4465 then
4466 Check_SPARK_Restriction
4467 ("subtype mark required", One_Cstr);
4469 -- String subtype must have a lower bound of 1 in SPARK.
4470 -- Note that we do not need to test for the non-static case
4471 -- here, since that was already taken care of in
4472 -- Process_Range_Expr_In_Decl.
4474 elsif Base_Type (T) = Standard_String then
4475 Get_Index_Bounds (One_Cstr, Low, High);
4477 if Is_OK_Static_Expression (Low)
4478 and then Expr_Value (Low) /= 1
4479 then
4480 Check_SPARK_Restriction
4481 ("String subtype must have lower bound of 1", N);
4482 end if;
4483 end if;
4485 Next (One_Cstr);
4486 end loop;
4487 end if;
4488 end;
4489 end if;
4491 -- In the case where there is no constraint given in the subtype
4492 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4493 -- semantic attributes must be established here.
4495 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4496 Set_Etype (Id, Base_Type (T));
4498 -- Subtype of unconstrained array without constraint is not allowed
4499 -- in SPARK.
4501 if Is_Array_Type (T) and then not Is_Constrained (T) then
4502 Check_SPARK_Restriction
4503 ("subtype of unconstrained array must have constraint", N);
4504 end if;
4506 case Ekind (T) is
4507 when Array_Kind =>
4508 Set_Ekind (Id, E_Array_Subtype);
4509 Copy_Array_Subtype_Attributes (Id, T);
4511 when Decimal_Fixed_Point_Kind =>
4512 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4513 Set_Digits_Value (Id, Digits_Value (T));
4514 Set_Delta_Value (Id, Delta_Value (T));
4515 Set_Scale_Value (Id, Scale_Value (T));
4516 Set_Small_Value (Id, Small_Value (T));
4517 Set_Scalar_Range (Id, Scalar_Range (T));
4518 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4519 Set_Is_Constrained (Id, Is_Constrained (T));
4520 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4521 Set_RM_Size (Id, RM_Size (T));
4523 when Enumeration_Kind =>
4524 Set_Ekind (Id, E_Enumeration_Subtype);
4525 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4526 Set_Scalar_Range (Id, Scalar_Range (T));
4527 Set_Is_Character_Type (Id, Is_Character_Type (T));
4528 Set_Is_Constrained (Id, Is_Constrained (T));
4529 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4530 Set_RM_Size (Id, RM_Size (T));
4531 Inherit_Predicate_Flags (Id, T);
4533 when Ordinary_Fixed_Point_Kind =>
4534 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4535 Set_Scalar_Range (Id, Scalar_Range (T));
4536 Set_Small_Value (Id, Small_Value (T));
4537 Set_Delta_Value (Id, Delta_Value (T));
4538 Set_Is_Constrained (Id, Is_Constrained (T));
4539 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4540 Set_RM_Size (Id, RM_Size (T));
4542 when Float_Kind =>
4543 Set_Ekind (Id, E_Floating_Point_Subtype);
4544 Set_Scalar_Range (Id, Scalar_Range (T));
4545 Set_Digits_Value (Id, Digits_Value (T));
4546 Set_Is_Constrained (Id, Is_Constrained (T));
4548 when Signed_Integer_Kind =>
4549 Set_Ekind (Id, E_Signed_Integer_Subtype);
4550 Set_Scalar_Range (Id, Scalar_Range (T));
4551 Set_Is_Constrained (Id, Is_Constrained (T));
4552 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4553 Set_RM_Size (Id, RM_Size (T));
4554 Inherit_Predicate_Flags (Id, T);
4556 when Modular_Integer_Kind =>
4557 Set_Ekind (Id, E_Modular_Integer_Subtype);
4558 Set_Scalar_Range (Id, Scalar_Range (T));
4559 Set_Is_Constrained (Id, Is_Constrained (T));
4560 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4561 Set_RM_Size (Id, RM_Size (T));
4562 Inherit_Predicate_Flags (Id, T);
4564 when Class_Wide_Kind =>
4565 Set_Ekind (Id, E_Class_Wide_Subtype);
4566 Set_First_Entity (Id, First_Entity (T));
4567 Set_Last_Entity (Id, Last_Entity (T));
4568 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4569 Set_Cloned_Subtype (Id, T);
4570 Set_Is_Tagged_Type (Id, True);
4571 Set_Has_Unknown_Discriminants
4572 (Id, True);
4574 if Ekind (T) = E_Class_Wide_Subtype then
4575 Set_Equivalent_Type (Id, Equivalent_Type (T));
4576 end if;
4578 when E_Record_Type | E_Record_Subtype =>
4579 Set_Ekind (Id, E_Record_Subtype);
4581 if Ekind (T) = E_Record_Subtype
4582 and then Present (Cloned_Subtype (T))
4583 then
4584 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4585 else
4586 Set_Cloned_Subtype (Id, T);
4587 end if;
4589 Set_First_Entity (Id, First_Entity (T));
4590 Set_Last_Entity (Id, Last_Entity (T));
4591 Set_Has_Discriminants (Id, Has_Discriminants (T));
4592 Set_Is_Constrained (Id, Is_Constrained (T));
4593 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4594 Set_Has_Implicit_Dereference
4595 (Id, Has_Implicit_Dereference (T));
4596 Set_Has_Unknown_Discriminants
4597 (Id, Has_Unknown_Discriminants (T));
4599 if Has_Discriminants (T) then
4600 Set_Discriminant_Constraint
4601 (Id, Discriminant_Constraint (T));
4602 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4604 elsif Has_Unknown_Discriminants (Id) then
4605 Set_Discriminant_Constraint (Id, No_Elist);
4606 end if;
4608 if Is_Tagged_Type (T) then
4609 Set_Is_Tagged_Type (Id);
4610 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4611 Set_Direct_Primitive_Operations
4612 (Id, Direct_Primitive_Operations (T));
4613 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4615 if Is_Interface (T) then
4616 Set_Is_Interface (Id);
4617 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4618 end if;
4619 end if;
4621 when Private_Kind =>
4622 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4623 Set_Has_Discriminants (Id, Has_Discriminants (T));
4624 Set_Is_Constrained (Id, Is_Constrained (T));
4625 Set_First_Entity (Id, First_Entity (T));
4626 Set_Last_Entity (Id, Last_Entity (T));
4627 Set_Private_Dependents (Id, New_Elmt_List);
4628 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4629 Set_Has_Implicit_Dereference
4630 (Id, Has_Implicit_Dereference (T));
4631 Set_Has_Unknown_Discriminants
4632 (Id, Has_Unknown_Discriminants (T));
4633 Set_Known_To_Have_Preelab_Init
4634 (Id, Known_To_Have_Preelab_Init (T));
4636 if Is_Tagged_Type (T) then
4637 Set_Is_Tagged_Type (Id);
4638 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4639 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4640 Set_Direct_Primitive_Operations (Id,
4641 Direct_Primitive_Operations (T));
4642 end if;
4644 -- In general the attributes of the subtype of a private type
4645 -- are the attributes of the partial view of parent. However,
4646 -- the full view may be a discriminated type, and the subtype
4647 -- must share the discriminant constraint to generate correct
4648 -- calls to initialization procedures.
4650 if Has_Discriminants (T) then
4651 Set_Discriminant_Constraint
4652 (Id, Discriminant_Constraint (T));
4653 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4655 elsif Present (Full_View (T))
4656 and then Has_Discriminants (Full_View (T))
4657 then
4658 Set_Discriminant_Constraint
4659 (Id, Discriminant_Constraint (Full_View (T)));
4660 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4662 -- This would seem semantically correct, but apparently
4663 -- generates spurious errors about missing components ???
4665 -- Set_Has_Discriminants (Id);
4666 end if;
4668 Prepare_Private_Subtype_Completion (Id, N);
4670 -- If this is the subtype of a constrained private type with
4671 -- discriminants that has got a full view and we also have
4672 -- built a completion just above, show that the completion
4673 -- is a clone of the full view to the back-end.
4675 if Has_Discriminants (T)
4676 and then not Has_Unknown_Discriminants (T)
4677 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4678 and then Present (Full_View (T))
4679 and then Present (Full_View (Id))
4680 then
4681 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4682 end if;
4684 when Access_Kind =>
4685 Set_Ekind (Id, E_Access_Subtype);
4686 Set_Is_Constrained (Id, Is_Constrained (T));
4687 Set_Is_Access_Constant
4688 (Id, Is_Access_Constant (T));
4689 Set_Directly_Designated_Type
4690 (Id, Designated_Type (T));
4691 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4693 -- A Pure library_item must not contain the declaration of a
4694 -- named access type, except within a subprogram, generic
4695 -- subprogram, task unit, or protected unit, or if it has
4696 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4698 if Comes_From_Source (Id)
4699 and then In_Pure_Unit
4700 and then not In_Subprogram_Task_Protected_Unit
4701 and then not No_Pool_Assigned (Id)
4702 then
4703 Error_Msg_N
4704 ("named access types not allowed in pure unit", N);
4705 end if;
4707 when Concurrent_Kind =>
4708 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4709 Set_Corresponding_Record_Type (Id,
4710 Corresponding_Record_Type (T));
4711 Set_First_Entity (Id, First_Entity (T));
4712 Set_First_Private_Entity (Id, First_Private_Entity (T));
4713 Set_Has_Discriminants (Id, Has_Discriminants (T));
4714 Set_Is_Constrained (Id, Is_Constrained (T));
4715 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4716 Set_Last_Entity (Id, Last_Entity (T));
4718 if Has_Discriminants (T) then
4719 Set_Discriminant_Constraint (Id,
4720 Discriminant_Constraint (T));
4721 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4722 end if;
4724 when E_Incomplete_Type =>
4725 if Ada_Version >= Ada_2005 then
4727 -- In Ada 2005 an incomplete type can be explicitly tagged:
4728 -- propagate indication.
4730 Set_Ekind (Id, E_Incomplete_Subtype);
4731 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4732 Set_Private_Dependents (Id, New_Elmt_List);
4734 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4735 -- incomplete type visible through a limited with clause.
4737 if From_Limited_With (T)
4738 and then Present (Non_Limited_View (T))
4739 then
4740 Set_From_Limited_With (Id);
4741 Set_Non_Limited_View (Id, Non_Limited_View (T));
4743 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4744 -- to the private dependents of the original incomplete
4745 -- type for future transformation.
4747 else
4748 Append_Elmt (Id, Private_Dependents (T));
4749 end if;
4751 -- If the subtype name denotes an incomplete type an error
4752 -- was already reported by Process_Subtype.
4754 else
4755 Set_Etype (Id, Any_Type);
4756 end if;
4758 when others =>
4759 raise Program_Error;
4760 end case;
4761 end if;
4763 if Etype (Id) = Any_Type then
4764 goto Leave;
4765 end if;
4767 -- Some common processing on all types
4769 Set_Size_Info (Id, T);
4770 Set_First_Rep_Item (Id, First_Rep_Item (T));
4772 -- If the parent type is a generic actual, so is the subtype. This may
4773 -- happen in a nested instance. Why Comes_From_Source test???
4775 if not Comes_From_Source (N) then
4776 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
4777 end if;
4779 T := Etype (Id);
4781 Set_Is_Immediately_Visible (Id, True);
4782 Set_Depends_On_Private (Id, Has_Private_Component (T));
4783 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
4785 if Is_Interface (T) then
4786 Set_Is_Interface (Id);
4787 end if;
4789 if Present (Generic_Parent_Type (N))
4790 and then
4791 (Nkind (Parent (Generic_Parent_Type (N))) /=
4792 N_Formal_Type_Declaration
4793 or else Nkind
4794 (Formal_Type_Definition (Parent (Generic_Parent_Type (N)))) /=
4795 N_Formal_Private_Type_Definition)
4796 then
4797 if Is_Tagged_Type (Id) then
4799 -- If this is a generic actual subtype for a synchronized type,
4800 -- the primitive operations are those of the corresponding record
4801 -- for which there is a separate subtype declaration.
4803 if Is_Concurrent_Type (Id) then
4804 null;
4805 elsif Is_Class_Wide_Type (Id) then
4806 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
4807 else
4808 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
4809 end if;
4811 elsif Scope (Etype (Id)) /= Standard_Standard then
4812 Derive_Subprograms (Generic_Parent_Type (N), Id);
4813 end if;
4814 end if;
4816 if Is_Private_Type (T) and then Present (Full_View (T)) then
4817 Conditional_Delay (Id, Full_View (T));
4819 -- The subtypes of components or subcomponents of protected types
4820 -- do not need freeze nodes, which would otherwise appear in the
4821 -- wrong scope (before the freeze node for the protected type). The
4822 -- proper subtypes are those of the subcomponents of the corresponding
4823 -- record.
4825 elsif Ekind (Scope (Id)) /= E_Protected_Type
4826 and then Present (Scope (Scope (Id))) -- error defense
4827 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
4828 then
4829 Conditional_Delay (Id, T);
4830 end if;
4832 -- Check that Constraint_Error is raised for a scalar subtype indication
4833 -- when the lower or upper bound of a non-null range lies outside the
4834 -- range of the type mark.
4836 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4837 if Is_Scalar_Type (Etype (Id))
4838 and then Scalar_Range (Id) /=
4839 Scalar_Range (Etype (Subtype_Mark
4840 (Subtype_Indication (N))))
4841 then
4842 Apply_Range_Check
4843 (Scalar_Range (Id),
4844 Etype (Subtype_Mark (Subtype_Indication (N))));
4846 -- In the array case, check compatibility for each index
4848 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
4849 then
4850 -- This really should be a subprogram that finds the indications
4851 -- to check???
4853 declare
4854 Subt_Index : Node_Id := First_Index (Id);
4855 Target_Index : Node_Id :=
4856 First_Index (Etype
4857 (Subtype_Mark (Subtype_Indication (N))));
4858 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
4860 begin
4861 while Present (Subt_Index) loop
4862 if ((Nkind (Subt_Index) = N_Identifier
4863 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
4864 or else Nkind (Subt_Index) = N_Subtype_Indication)
4865 and then
4866 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
4867 then
4868 declare
4869 Target_Typ : constant Entity_Id :=
4870 Etype (Target_Index);
4871 begin
4872 R_Checks :=
4873 Get_Range_Checks
4874 (Scalar_Range (Etype (Subt_Index)),
4875 Target_Typ,
4876 Etype (Subt_Index),
4877 Defining_Identifier (N));
4879 -- Reset Has_Dynamic_Range_Check on the subtype to
4880 -- prevent elision of the index check due to a dynamic
4881 -- check generated for a preceding index (needed since
4882 -- Insert_Range_Checks tries to avoid generating
4883 -- redundant checks on a given declaration).
4885 Set_Has_Dynamic_Range_Check (N, False);
4887 Insert_Range_Checks
4888 (R_Checks,
4890 Target_Typ,
4891 Sloc (Defining_Identifier (N)));
4893 -- Record whether this index involved a dynamic check
4895 Has_Dyn_Chk :=
4896 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
4897 end;
4898 end if;
4900 Next_Index (Subt_Index);
4901 Next_Index (Target_Index);
4902 end loop;
4904 -- Finally, mark whether the subtype involves dynamic checks
4906 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
4907 end;
4908 end if;
4909 end if;
4911 -- Make sure that generic actual types are properly frozen. The subtype
4912 -- is marked as a generic actual type when the enclosing instance is
4913 -- analyzed, so here we identify the subtype from the tree structure.
4915 if Expander_Active
4916 and then Is_Generic_Actual_Type (Id)
4917 and then In_Instance
4918 and then not Comes_From_Source (N)
4919 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
4920 and then Is_Frozen (T)
4921 then
4922 Freeze_Before (N, Id);
4923 end if;
4925 Set_Optimize_Alignment_Flags (Id);
4926 Check_Eliminated (Id);
4928 <<Leave>>
4929 if Has_Aspects (N) then
4930 Analyze_Aspect_Specifications (N, Id);
4931 end if;
4933 Analyze_Dimension (N);
4934 end Analyze_Subtype_Declaration;
4936 --------------------------------
4937 -- Analyze_Subtype_Indication --
4938 --------------------------------
4940 procedure Analyze_Subtype_Indication (N : Node_Id) is
4941 T : constant Entity_Id := Subtype_Mark (N);
4942 R : constant Node_Id := Range_Expression (Constraint (N));
4944 begin
4945 Analyze (T);
4947 if R /= Error then
4948 Analyze (R);
4949 Set_Etype (N, Etype (R));
4950 Resolve (R, Entity (T));
4951 else
4952 Set_Error_Posted (R);
4953 Set_Error_Posted (T);
4954 end if;
4955 end Analyze_Subtype_Indication;
4957 --------------------------
4958 -- Analyze_Variant_Part --
4959 --------------------------
4961 procedure Analyze_Variant_Part (N : Node_Id) is
4962 Discr_Name : Node_Id;
4963 Discr_Type : Entity_Id;
4965 procedure Process_Variant (A : Node_Id);
4966 -- Analyze declarations for a single variant
4968 package Analyze_Variant_Choices is
4969 new Generic_Analyze_Choices (Process_Variant);
4970 use Analyze_Variant_Choices;
4972 ---------------------
4973 -- Process_Variant --
4974 ---------------------
4976 procedure Process_Variant (A : Node_Id) is
4977 CL : constant Node_Id := Component_List (A);
4978 begin
4979 if not Null_Present (CL) then
4980 Analyze_Declarations (Component_Items (CL));
4982 if Present (Variant_Part (CL)) then
4983 Analyze (Variant_Part (CL));
4984 end if;
4985 end if;
4986 end Process_Variant;
4988 -- Start of processing for Analyze_Variant_Part
4990 begin
4991 Discr_Name := Name (N);
4992 Analyze (Discr_Name);
4994 -- If Discr_Name bad, get out (prevent cascaded errors)
4996 if Etype (Discr_Name) = Any_Type then
4997 return;
4998 end if;
5000 -- Check invalid discriminant in variant part
5002 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5003 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5004 end if;
5006 Discr_Type := Etype (Entity (Discr_Name));
5008 if not Is_Discrete_Type (Discr_Type) then
5009 Error_Msg_N
5010 ("discriminant in a variant part must be of a discrete type",
5011 Name (N));
5012 return;
5013 end if;
5015 -- Now analyze the choices, which also analyzes the declarations that
5016 -- are associated with each choice.
5018 Analyze_Choices (Variants (N), Discr_Type);
5020 -- Note: we used to instantiate and call Check_Choices here to check
5021 -- that the choices covered the discriminant, but it's too early to do
5022 -- that because of statically predicated subtypes, whose analysis may
5023 -- be deferred to their freeze point which may be as late as the freeze
5024 -- point of the containing record. So this call is now to be found in
5025 -- Freeze_Record_Declaration.
5027 end Analyze_Variant_Part;
5029 ----------------------------
5030 -- Array_Type_Declaration --
5031 ----------------------------
5033 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5034 Component_Def : constant Node_Id := Component_Definition (Def);
5035 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5036 Element_Type : Entity_Id;
5037 Implicit_Base : Entity_Id;
5038 Index : Node_Id;
5039 Related_Id : Entity_Id := Empty;
5040 Nb_Index : Nat;
5041 P : constant Node_Id := Parent (Def);
5042 Priv : Entity_Id;
5044 begin
5045 if Nkind (Def) = N_Constrained_Array_Definition then
5046 Index := First (Discrete_Subtype_Definitions (Def));
5047 else
5048 Index := First (Subtype_Marks (Def));
5049 end if;
5051 -- Find proper names for the implicit types which may be public. In case
5052 -- of anonymous arrays we use the name of the first object of that type
5053 -- as prefix.
5055 if No (T) then
5056 Related_Id := Defining_Identifier (P);
5057 else
5058 Related_Id := T;
5059 end if;
5061 Nb_Index := 1;
5062 while Present (Index) loop
5063 Analyze (Index);
5065 -- Test for odd case of trying to index a type by the type itself
5067 if Is_Entity_Name (Index) and then Entity (Index) = T then
5068 Error_Msg_N ("type& cannot be indexed by itself", Index);
5069 Set_Entity (Index, Standard_Boolean);
5070 Set_Etype (Index, Standard_Boolean);
5071 end if;
5073 -- Check SPARK restriction requiring a subtype mark
5075 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5076 Check_SPARK_Restriction ("subtype mark required", Index);
5077 end if;
5079 -- Add a subtype declaration for each index of private array type
5080 -- declaration whose etype is also private. For example:
5082 -- package Pkg is
5083 -- type Index is private;
5084 -- private
5085 -- type Table is array (Index) of ...
5086 -- end;
5088 -- This is currently required by the expander for the internally
5089 -- generated equality subprogram of records with variant parts in
5090 -- which the etype of some component is such private type.
5092 if Ekind (Current_Scope) = E_Package
5093 and then In_Private_Part (Current_Scope)
5094 and then Has_Private_Declaration (Etype (Index))
5095 then
5096 declare
5097 Loc : constant Source_Ptr := Sloc (Def);
5098 New_E : Entity_Id;
5099 Decl : Entity_Id;
5101 begin
5102 New_E := Make_Temporary (Loc, 'T');
5103 Set_Is_Internal (New_E);
5105 Decl :=
5106 Make_Subtype_Declaration (Loc,
5107 Defining_Identifier => New_E,
5108 Subtype_Indication =>
5109 New_Occurrence_Of (Etype (Index), Loc));
5111 Insert_Before (Parent (Def), Decl);
5112 Analyze (Decl);
5113 Set_Etype (Index, New_E);
5115 -- If the index is a range the Entity attribute is not
5116 -- available. Example:
5118 -- package Pkg is
5119 -- type T is private;
5120 -- private
5121 -- type T is new Natural;
5122 -- Table : array (T(1) .. T(10)) of Boolean;
5123 -- end Pkg;
5125 if Nkind (Index) /= N_Range then
5126 Set_Entity (Index, New_E);
5127 end if;
5128 end;
5129 end if;
5131 Make_Index (Index, P, Related_Id, Nb_Index);
5133 -- Check error of subtype with predicate for index type
5135 Bad_Predicated_Subtype_Use
5136 ("subtype& has predicate, not allowed as index subtype",
5137 Index, Etype (Index));
5139 -- Move to next index
5141 Next_Index (Index);
5142 Nb_Index := Nb_Index + 1;
5143 end loop;
5145 -- Process subtype indication if one is present
5147 if Present (Component_Typ) then
5148 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5150 Set_Etype (Component_Typ, Element_Type);
5152 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5153 Check_SPARK_Restriction ("subtype mark required", Component_Typ);
5154 end if;
5156 -- Ada 2005 (AI-230): Access Definition case
5158 else pragma Assert (Present (Access_Definition (Component_Def)));
5160 -- Indicate that the anonymous access type is created by the
5161 -- array type declaration.
5163 Element_Type := Access_Definition
5164 (Related_Nod => P,
5165 N => Access_Definition (Component_Def));
5166 Set_Is_Local_Anonymous_Access (Element_Type);
5168 -- Propagate the parent. This field is needed if we have to generate
5169 -- the master_id associated with an anonymous access to task type
5170 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5172 Set_Parent (Element_Type, Parent (T));
5174 -- Ada 2005 (AI-230): In case of components that are anonymous access
5175 -- types the level of accessibility depends on the enclosing type
5176 -- declaration
5178 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5180 -- Ada 2005 (AI-254)
5182 declare
5183 CD : constant Node_Id :=
5184 Access_To_Subprogram_Definition
5185 (Access_Definition (Component_Def));
5186 begin
5187 if Present (CD) and then Protected_Present (CD) then
5188 Element_Type :=
5189 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5190 end if;
5191 end;
5192 end if;
5194 -- Constrained array case
5196 if No (T) then
5197 T := Create_Itype (E_Void, P, Related_Id, 'T');
5198 end if;
5200 if Nkind (Def) = N_Constrained_Array_Definition then
5202 -- Establish Implicit_Base as unconstrained base type
5204 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5206 Set_Etype (Implicit_Base, Implicit_Base);
5207 Set_Scope (Implicit_Base, Current_Scope);
5208 Set_Has_Delayed_Freeze (Implicit_Base);
5209 Set_Default_SSO (Implicit_Base);
5211 -- The constrained array type is a subtype of the unconstrained one
5213 Set_Ekind (T, E_Array_Subtype);
5214 Init_Size_Align (T);
5215 Set_Etype (T, Implicit_Base);
5216 Set_Scope (T, Current_Scope);
5217 Set_Is_Constrained (T, True);
5218 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
5219 Set_Has_Delayed_Freeze (T);
5221 -- Complete setup of implicit base type
5223 Set_First_Index (Implicit_Base, First_Index (T));
5224 Set_Component_Type (Implicit_Base, Element_Type);
5225 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5226 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5227 Set_Component_Size (Implicit_Base, Uint_0);
5228 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5229 Set_Has_Controlled_Component
5230 (Implicit_Base, Has_Controlled_Component
5231 (Element_Type)
5232 or else Is_Controlled
5233 (Element_Type));
5234 Set_Finalize_Storage_Only
5235 (Implicit_Base, Finalize_Storage_Only
5236 (Element_Type));
5238 -- Unconstrained array case
5240 else
5241 Set_Ekind (T, E_Array_Type);
5242 Init_Size_Align (T);
5243 Set_Etype (T, T);
5244 Set_Scope (T, Current_Scope);
5245 Set_Component_Size (T, Uint_0);
5246 Set_Is_Constrained (T, False);
5247 Set_First_Index (T, First (Subtype_Marks (Def)));
5248 Set_Has_Delayed_Freeze (T, True);
5249 Set_Has_Task (T, Has_Task (Element_Type));
5250 Set_Has_Protected (T, Has_Protected (Element_Type));
5251 Set_Has_Controlled_Component (T, Has_Controlled_Component
5252 (Element_Type)
5253 or else
5254 Is_Controlled (Element_Type));
5255 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5256 (Element_Type));
5257 Set_Default_SSO (T);
5258 end if;
5260 -- Common attributes for both cases
5262 Set_Component_Type (Base_Type (T), Element_Type);
5263 Set_Packed_Array_Impl_Type (T, Empty);
5265 if Aliased_Present (Component_Definition (Def)) then
5266 Check_SPARK_Restriction
5267 ("aliased is not allowed", Component_Definition (Def));
5268 Set_Has_Aliased_Components (Etype (T));
5269 end if;
5271 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5272 -- array type to ensure that objects of this type are initialized.
5274 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5275 Set_Can_Never_Be_Null (T);
5277 if Null_Exclusion_Present (Component_Definition (Def))
5279 -- No need to check itypes because in their case this check was
5280 -- done at their point of creation
5282 and then not Is_Itype (Element_Type)
5283 then
5284 Error_Msg_N
5285 ("`NOT NULL` not allowed (null already excluded)",
5286 Subtype_Indication (Component_Definition (Def)));
5287 end if;
5288 end if;
5290 Priv := Private_Component (Element_Type);
5292 if Present (Priv) then
5294 -- Check for circular definitions
5296 if Priv = Any_Type then
5297 Set_Component_Type (Etype (T), Any_Type);
5299 -- There is a gap in the visibility of operations on the composite
5300 -- type only if the component type is defined in a different scope.
5302 elsif Scope (Priv) = Current_Scope then
5303 null;
5305 elsif Is_Limited_Type (Priv) then
5306 Set_Is_Limited_Composite (Etype (T));
5307 Set_Is_Limited_Composite (T);
5308 else
5309 Set_Is_Private_Composite (Etype (T));
5310 Set_Is_Private_Composite (T);
5311 end if;
5312 end if;
5314 -- A syntax error in the declaration itself may lead to an empty index
5315 -- list, in which case do a minimal patch.
5317 if No (First_Index (T)) then
5318 Error_Msg_N ("missing index definition in array type declaration", T);
5320 declare
5321 Indexes : constant List_Id :=
5322 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5323 begin
5324 Set_Discrete_Subtype_Definitions (Def, Indexes);
5325 Set_First_Index (T, First (Indexes));
5326 return;
5327 end;
5328 end if;
5330 -- Create a concatenation operator for the new type. Internal array
5331 -- types created for packed entities do not need such, they are
5332 -- compatible with the user-defined type.
5334 if Number_Dimensions (T) = 1
5335 and then not Is_Packed_Array_Impl_Type (T)
5336 then
5337 New_Concatenation_Op (T);
5338 end if;
5340 -- In the case of an unconstrained array the parser has already verified
5341 -- that all the indexes are unconstrained but we still need to make sure
5342 -- that the element type is constrained.
5344 if Is_Indefinite_Subtype (Element_Type) then
5345 Error_Msg_N
5346 ("unconstrained element type in array declaration",
5347 Subtype_Indication (Component_Def));
5349 elsif Is_Abstract_Type (Element_Type) then
5350 Error_Msg_N
5351 ("the type of a component cannot be abstract",
5352 Subtype_Indication (Component_Def));
5353 end if;
5355 -- There may be an invariant declared for the component type, but
5356 -- the construction of the component invariant checking procedure
5357 -- takes place during expansion.
5358 end Array_Type_Declaration;
5360 ------------------------------------------------------
5361 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5362 ------------------------------------------------------
5364 function Replace_Anonymous_Access_To_Protected_Subprogram
5365 (N : Node_Id) return Entity_Id
5367 Loc : constant Source_Ptr := Sloc (N);
5369 Curr_Scope : constant Scope_Stack_Entry :=
5370 Scope_Stack.Table (Scope_Stack.Last);
5372 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5374 Acc : Node_Id;
5375 -- Access definition in declaration
5377 Comp : Node_Id;
5378 -- Object definition or formal definition with an access definition
5380 Decl : Node_Id;
5381 -- Declaration of anonymous access to subprogram type
5383 Spec : Node_Id;
5384 -- Original specification in access to subprogram
5386 P : Node_Id;
5388 begin
5389 Set_Is_Internal (Anon);
5391 case Nkind (N) is
5392 when N_Component_Declaration |
5393 N_Unconstrained_Array_Definition |
5394 N_Constrained_Array_Definition =>
5395 Comp := Component_Definition (N);
5396 Acc := Access_Definition (Comp);
5398 when N_Discriminant_Specification =>
5399 Comp := Discriminant_Type (N);
5400 Acc := Comp;
5402 when N_Parameter_Specification =>
5403 Comp := Parameter_Type (N);
5404 Acc := Comp;
5406 when N_Access_Function_Definition =>
5407 Comp := Result_Definition (N);
5408 Acc := Comp;
5410 when N_Object_Declaration =>
5411 Comp := Object_Definition (N);
5412 Acc := Comp;
5414 when N_Function_Specification =>
5415 Comp := Result_Definition (N);
5416 Acc := Comp;
5418 when others =>
5419 raise Program_Error;
5420 end case;
5422 Spec := Access_To_Subprogram_Definition (Acc);
5424 Decl :=
5425 Make_Full_Type_Declaration (Loc,
5426 Defining_Identifier => Anon,
5427 Type_Definition => Copy_Separate_Tree (Spec));
5429 Mark_Rewrite_Insertion (Decl);
5431 -- In ASIS mode, analyze the profile on the original node, because
5432 -- the separate copy does not provide enough links to recover the
5433 -- original tree. Analysis is limited to type annotations, within
5434 -- a temporary scope that serves as an anonymous subprogram to collect
5435 -- otherwise useless temporaries and itypes.
5437 if ASIS_Mode then
5438 declare
5439 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5441 begin
5442 if Nkind (Spec) = N_Access_Function_Definition then
5443 Set_Ekind (Typ, E_Function);
5444 else
5445 Set_Ekind (Typ, E_Procedure);
5446 end if;
5448 Set_Parent (Typ, N);
5449 Set_Scope (Typ, Current_Scope);
5450 Push_Scope (Typ);
5452 Process_Formals (Parameter_Specifications (Spec), Spec);
5454 if Nkind (Spec) = N_Access_Function_Definition then
5455 declare
5456 Def : constant Node_Id := Result_Definition (Spec);
5458 begin
5459 -- The result might itself be an anonymous access type, so
5460 -- have to recurse.
5462 if Nkind (Def) = N_Access_Definition then
5463 if Present (Access_To_Subprogram_Definition (Def)) then
5464 Set_Etype
5465 (Def,
5466 Replace_Anonymous_Access_To_Protected_Subprogram
5467 (Spec));
5468 else
5469 Find_Type (Subtype_Mark (Def));
5470 end if;
5472 else
5473 Find_Type (Def);
5474 end if;
5475 end;
5476 end if;
5478 End_Scope;
5479 end;
5480 end if;
5482 -- Insert the new declaration in the nearest enclosing scope. If the
5483 -- node is a body and N is its return type, the declaration belongs in
5484 -- the enclosing scope.
5486 P := Parent (N);
5488 if Nkind (P) = N_Subprogram_Body
5489 and then Nkind (N) = N_Function_Specification
5490 then
5491 P := Parent (P);
5492 end if;
5494 while Present (P) and then not Has_Declarations (P) loop
5495 P := Parent (P);
5496 end loop;
5498 pragma Assert (Present (P));
5500 if Nkind (P) = N_Package_Specification then
5501 Prepend (Decl, Visible_Declarations (P));
5502 else
5503 Prepend (Decl, Declarations (P));
5504 end if;
5506 -- Replace the anonymous type with an occurrence of the new declaration.
5507 -- In all cases the rewritten node does not have the null-exclusion
5508 -- attribute because (if present) it was already inherited by the
5509 -- anonymous entity (Anon). Thus, in case of components we do not
5510 -- inherit this attribute.
5512 if Nkind (N) = N_Parameter_Specification then
5513 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5514 Set_Etype (Defining_Identifier (N), Anon);
5515 Set_Null_Exclusion_Present (N, False);
5517 elsif Nkind (N) = N_Object_Declaration then
5518 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5519 Set_Etype (Defining_Identifier (N), Anon);
5521 elsif Nkind (N) = N_Access_Function_Definition then
5522 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5524 elsif Nkind (N) = N_Function_Specification then
5525 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5526 Set_Etype (Defining_Unit_Name (N), Anon);
5528 else
5529 Rewrite (Comp,
5530 Make_Component_Definition (Loc,
5531 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5532 end if;
5534 Mark_Rewrite_Insertion (Comp);
5536 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5537 Analyze (Decl);
5539 else
5540 -- Temporarily remove the current scope (record or subprogram) from
5541 -- the stack to add the new declarations to the enclosing scope.
5543 Scope_Stack.Decrement_Last;
5544 Analyze (Decl);
5545 Set_Is_Itype (Anon);
5546 Scope_Stack.Append (Curr_Scope);
5547 end if;
5549 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5550 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5551 return Anon;
5552 end Replace_Anonymous_Access_To_Protected_Subprogram;
5554 -------------------------------
5555 -- Build_Derived_Access_Type --
5556 -------------------------------
5558 procedure Build_Derived_Access_Type
5559 (N : Node_Id;
5560 Parent_Type : Entity_Id;
5561 Derived_Type : Entity_Id)
5563 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5565 Desig_Type : Entity_Id;
5566 Discr : Entity_Id;
5567 Discr_Con_Elist : Elist_Id;
5568 Discr_Con_El : Elmt_Id;
5569 Subt : Entity_Id;
5571 begin
5572 -- Set the designated type so it is available in case this is an access
5573 -- to a self-referential type, e.g. a standard list type with a next
5574 -- pointer. Will be reset after subtype is built.
5576 Set_Directly_Designated_Type
5577 (Derived_Type, Designated_Type (Parent_Type));
5579 Subt := Process_Subtype (S, N);
5581 if Nkind (S) /= N_Subtype_Indication
5582 and then Subt /= Base_Type (Subt)
5583 then
5584 Set_Ekind (Derived_Type, E_Access_Subtype);
5585 end if;
5587 if Ekind (Derived_Type) = E_Access_Subtype then
5588 declare
5589 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5590 Ibase : constant Entity_Id :=
5591 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5592 Svg_Chars : constant Name_Id := Chars (Ibase);
5593 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5595 begin
5596 Copy_Node (Pbase, Ibase);
5598 Set_Chars (Ibase, Svg_Chars);
5599 Set_Next_Entity (Ibase, Svg_Next_E);
5600 Set_Sloc (Ibase, Sloc (Derived_Type));
5601 Set_Scope (Ibase, Scope (Derived_Type));
5602 Set_Freeze_Node (Ibase, Empty);
5603 Set_Is_Frozen (Ibase, False);
5604 Set_Comes_From_Source (Ibase, False);
5605 Set_Is_First_Subtype (Ibase, False);
5607 Set_Etype (Ibase, Pbase);
5608 Set_Etype (Derived_Type, Ibase);
5609 end;
5610 end if;
5612 Set_Directly_Designated_Type
5613 (Derived_Type, Designated_Type (Subt));
5615 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5616 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5617 Set_Size_Info (Derived_Type, Parent_Type);
5618 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5619 Set_Depends_On_Private (Derived_Type,
5620 Has_Private_Component (Derived_Type));
5621 Conditional_Delay (Derived_Type, Subt);
5623 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5624 -- that it is not redundant.
5626 if Null_Exclusion_Present (Type_Definition (N)) then
5627 Set_Can_Never_Be_Null (Derived_Type);
5629 -- What is with the "AND THEN FALSE" here ???
5631 if Can_Never_Be_Null (Parent_Type)
5632 and then False
5633 then
5634 Error_Msg_NE
5635 ("`NOT NULL` not allowed (& already excludes null)",
5636 N, Parent_Type);
5637 end if;
5639 elsif Can_Never_Be_Null (Parent_Type) then
5640 Set_Can_Never_Be_Null (Derived_Type);
5641 end if;
5643 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5644 -- the root type for this information.
5646 -- Apply range checks to discriminants for derived record case
5647 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5649 Desig_Type := Designated_Type (Derived_Type);
5650 if Is_Composite_Type (Desig_Type)
5651 and then (not Is_Array_Type (Desig_Type))
5652 and then Has_Discriminants (Desig_Type)
5653 and then Base_Type (Desig_Type) /= Desig_Type
5654 then
5655 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5656 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5658 Discr := First_Discriminant (Base_Type (Desig_Type));
5659 while Present (Discr_Con_El) loop
5660 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5661 Next_Elmt (Discr_Con_El);
5662 Next_Discriminant (Discr);
5663 end loop;
5664 end if;
5665 end Build_Derived_Access_Type;
5667 ------------------------------
5668 -- Build_Derived_Array_Type --
5669 ------------------------------
5671 procedure Build_Derived_Array_Type
5672 (N : Node_Id;
5673 Parent_Type : Entity_Id;
5674 Derived_Type : Entity_Id)
5676 Loc : constant Source_Ptr := Sloc (N);
5677 Tdef : constant Node_Id := Type_Definition (N);
5678 Indic : constant Node_Id := Subtype_Indication (Tdef);
5679 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5680 Implicit_Base : Entity_Id;
5681 New_Indic : Node_Id;
5683 procedure Make_Implicit_Base;
5684 -- If the parent subtype is constrained, the derived type is a subtype
5685 -- of an implicit base type derived from the parent base.
5687 ------------------------
5688 -- Make_Implicit_Base --
5689 ------------------------
5691 procedure Make_Implicit_Base is
5692 begin
5693 Implicit_Base :=
5694 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5696 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5697 Set_Etype (Implicit_Base, Parent_Base);
5699 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5700 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5702 Set_Has_Delayed_Freeze (Implicit_Base, True);
5703 end Make_Implicit_Base;
5705 -- Start of processing for Build_Derived_Array_Type
5707 begin
5708 if not Is_Constrained (Parent_Type) then
5709 if Nkind (Indic) /= N_Subtype_Indication then
5710 Set_Ekind (Derived_Type, E_Array_Type);
5712 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5713 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5715 Set_Has_Delayed_Freeze (Derived_Type, True);
5717 else
5718 Make_Implicit_Base;
5719 Set_Etype (Derived_Type, Implicit_Base);
5721 New_Indic :=
5722 Make_Subtype_Declaration (Loc,
5723 Defining_Identifier => Derived_Type,
5724 Subtype_Indication =>
5725 Make_Subtype_Indication (Loc,
5726 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5727 Constraint => Constraint (Indic)));
5729 Rewrite (N, New_Indic);
5730 Analyze (N);
5731 end if;
5733 else
5734 if Nkind (Indic) /= N_Subtype_Indication then
5735 Make_Implicit_Base;
5737 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5738 Set_Etype (Derived_Type, Implicit_Base);
5739 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5741 else
5742 Error_Msg_N ("illegal constraint on constrained type", Indic);
5743 end if;
5744 end if;
5746 -- If parent type is not a derived type itself, and is declared in
5747 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5748 -- the new type's concatenation operator since Derive_Subprograms
5749 -- will not inherit the parent's operator. If the parent type is
5750 -- unconstrained, the operator is of the unconstrained base type.
5752 if Number_Dimensions (Parent_Type) = 1
5753 and then not Is_Limited_Type (Parent_Type)
5754 and then not Is_Derived_Type (Parent_Type)
5755 and then not Is_Package_Or_Generic_Package
5756 (Scope (Base_Type (Parent_Type)))
5757 then
5758 if not Is_Constrained (Parent_Type)
5759 and then Is_Constrained (Derived_Type)
5760 then
5761 New_Concatenation_Op (Implicit_Base);
5762 else
5763 New_Concatenation_Op (Derived_Type);
5764 end if;
5765 end if;
5766 end Build_Derived_Array_Type;
5768 -----------------------------------
5769 -- Build_Derived_Concurrent_Type --
5770 -----------------------------------
5772 procedure Build_Derived_Concurrent_Type
5773 (N : Node_Id;
5774 Parent_Type : Entity_Id;
5775 Derived_Type : Entity_Id)
5777 Loc : constant Source_Ptr := Sloc (N);
5779 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
5780 Corr_Decl : Node_Id;
5781 Corr_Decl_Needed : Boolean;
5782 -- If the derived type has fewer discriminants than its parent, the
5783 -- corresponding record is also a derived type, in order to account for
5784 -- the bound discriminants. We create a full type declaration for it in
5785 -- this case.
5787 Constraint_Present : constant Boolean :=
5788 Nkind (Subtype_Indication (Type_Definition (N))) =
5789 N_Subtype_Indication;
5791 D_Constraint : Node_Id;
5792 New_Constraint : Elist_Id;
5793 Old_Disc : Entity_Id;
5794 New_Disc : Entity_Id;
5795 New_N : Node_Id;
5797 begin
5798 Set_Stored_Constraint (Derived_Type, No_Elist);
5799 Corr_Decl_Needed := False;
5800 Old_Disc := Empty;
5802 if Present (Discriminant_Specifications (N))
5803 and then Constraint_Present
5804 then
5805 Old_Disc := First_Discriminant (Parent_Type);
5806 New_Disc := First (Discriminant_Specifications (N));
5807 while Present (New_Disc) and then Present (Old_Disc) loop
5808 Next_Discriminant (Old_Disc);
5809 Next (New_Disc);
5810 end loop;
5811 end if;
5813 if Present (Old_Disc) and then Expander_Active then
5815 -- The new type has fewer discriminants, so we need to create a new
5816 -- corresponding record, which is derived from the corresponding
5817 -- record of the parent, and has a stored constraint that captures
5818 -- the values of the discriminant constraints. The corresponding
5819 -- record is needed only if expander is active and code generation is
5820 -- enabled.
5822 -- The type declaration for the derived corresponding record has the
5823 -- same discriminant part and constraints as the current declaration.
5824 -- Copy the unanalyzed tree to build declaration.
5826 Corr_Decl_Needed := True;
5827 New_N := Copy_Separate_Tree (N);
5829 Corr_Decl :=
5830 Make_Full_Type_Declaration (Loc,
5831 Defining_Identifier => Corr_Record,
5832 Discriminant_Specifications =>
5833 Discriminant_Specifications (New_N),
5834 Type_Definition =>
5835 Make_Derived_Type_Definition (Loc,
5836 Subtype_Indication =>
5837 Make_Subtype_Indication (Loc,
5838 Subtype_Mark =>
5839 New_Occurrence_Of
5840 (Corresponding_Record_Type (Parent_Type), Loc),
5841 Constraint =>
5842 Constraint
5843 (Subtype_Indication (Type_Definition (New_N))))));
5844 end if;
5846 -- Copy Storage_Size and Relative_Deadline variables if task case
5848 if Is_Task_Type (Parent_Type) then
5849 Set_Storage_Size_Variable (Derived_Type,
5850 Storage_Size_Variable (Parent_Type));
5851 Set_Relative_Deadline_Variable (Derived_Type,
5852 Relative_Deadline_Variable (Parent_Type));
5853 end if;
5855 if Present (Discriminant_Specifications (N)) then
5856 Push_Scope (Derived_Type);
5857 Check_Or_Process_Discriminants (N, Derived_Type);
5859 if Constraint_Present then
5860 New_Constraint :=
5861 Expand_To_Stored_Constraint
5862 (Parent_Type,
5863 Build_Discriminant_Constraints
5864 (Parent_Type,
5865 Subtype_Indication (Type_Definition (N)), True));
5866 end if;
5868 End_Scope;
5870 elsif Constraint_Present then
5872 -- Build constrained subtype, copying the constraint, and derive
5873 -- from it to create a derived constrained type.
5875 declare
5876 Loc : constant Source_Ptr := Sloc (N);
5877 Anon : constant Entity_Id :=
5878 Make_Defining_Identifier (Loc,
5879 Chars => New_External_Name (Chars (Derived_Type), 'T'));
5880 Decl : Node_Id;
5882 begin
5883 Decl :=
5884 Make_Subtype_Declaration (Loc,
5885 Defining_Identifier => Anon,
5886 Subtype_Indication =>
5887 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
5888 Insert_Before (N, Decl);
5889 Analyze (Decl);
5891 Rewrite (Subtype_Indication (Type_Definition (N)),
5892 New_Occurrence_Of (Anon, Loc));
5893 Set_Analyzed (Derived_Type, False);
5894 Analyze (N);
5895 return;
5896 end;
5897 end if;
5899 -- By default, operations and private data are inherited from parent.
5900 -- However, in the presence of bound discriminants, a new corresponding
5901 -- record will be created, see below.
5903 Set_Has_Discriminants
5904 (Derived_Type, Has_Discriminants (Parent_Type));
5905 Set_Corresponding_Record_Type
5906 (Derived_Type, Corresponding_Record_Type (Parent_Type));
5908 -- Is_Constrained is set according the parent subtype, but is set to
5909 -- False if the derived type is declared with new discriminants.
5911 Set_Is_Constrained
5912 (Derived_Type,
5913 (Is_Constrained (Parent_Type) or else Constraint_Present)
5914 and then not Present (Discriminant_Specifications (N)));
5916 if Constraint_Present then
5917 if not Has_Discriminants (Parent_Type) then
5918 Error_Msg_N ("untagged parent must have discriminants", N);
5920 elsif Present (Discriminant_Specifications (N)) then
5922 -- Verify that new discriminants are used to constrain old ones
5924 D_Constraint :=
5925 First
5926 (Constraints
5927 (Constraint (Subtype_Indication (Type_Definition (N)))));
5929 Old_Disc := First_Discriminant (Parent_Type);
5931 while Present (D_Constraint) loop
5932 if Nkind (D_Constraint) /= N_Discriminant_Association then
5934 -- Positional constraint. If it is a reference to a new
5935 -- discriminant, it constrains the corresponding old one.
5937 if Nkind (D_Constraint) = N_Identifier then
5938 New_Disc := First_Discriminant (Derived_Type);
5939 while Present (New_Disc) loop
5940 exit when Chars (New_Disc) = Chars (D_Constraint);
5941 Next_Discriminant (New_Disc);
5942 end loop;
5944 if Present (New_Disc) then
5945 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
5946 end if;
5947 end if;
5949 Next_Discriminant (Old_Disc);
5951 -- if this is a named constraint, search by name for the old
5952 -- discriminants constrained by the new one.
5954 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
5956 -- Find new discriminant with that name
5958 New_Disc := First_Discriminant (Derived_Type);
5959 while Present (New_Disc) loop
5960 exit when
5961 Chars (New_Disc) = Chars (Expression (D_Constraint));
5962 Next_Discriminant (New_Disc);
5963 end loop;
5965 if Present (New_Disc) then
5967 -- Verify that new discriminant renames some discriminant
5968 -- of the parent type, and associate the new discriminant
5969 -- with one or more old ones that it renames.
5971 declare
5972 Selector : Node_Id;
5974 begin
5975 Selector := First (Selector_Names (D_Constraint));
5976 while Present (Selector) loop
5977 Old_Disc := First_Discriminant (Parent_Type);
5978 while Present (Old_Disc) loop
5979 exit when Chars (Old_Disc) = Chars (Selector);
5980 Next_Discriminant (Old_Disc);
5981 end loop;
5983 if Present (Old_Disc) then
5984 Set_Corresponding_Discriminant
5985 (New_Disc, Old_Disc);
5986 end if;
5988 Next (Selector);
5989 end loop;
5990 end;
5991 end if;
5992 end if;
5994 Next (D_Constraint);
5995 end loop;
5997 New_Disc := First_Discriminant (Derived_Type);
5998 while Present (New_Disc) loop
5999 if No (Corresponding_Discriminant (New_Disc)) then
6000 Error_Msg_NE
6001 ("new discriminant& must constrain old one", N, New_Disc);
6003 elsif not
6004 Subtypes_Statically_Compatible
6005 (Etype (New_Disc),
6006 Etype (Corresponding_Discriminant (New_Disc)))
6007 then
6008 Error_Msg_NE
6009 ("& not statically compatible with parent discriminant",
6010 N, New_Disc);
6011 end if;
6013 Next_Discriminant (New_Disc);
6014 end loop;
6015 end if;
6017 elsif Present (Discriminant_Specifications (N)) then
6018 Error_Msg_N
6019 ("missing discriminant constraint in untagged derivation", N);
6020 end if;
6022 -- The entity chain of the derived type includes the new discriminants
6023 -- but shares operations with the parent.
6025 if Present (Discriminant_Specifications (N)) then
6026 Old_Disc := First_Discriminant (Parent_Type);
6027 while Present (Old_Disc) loop
6028 if No (Next_Entity (Old_Disc))
6029 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6030 then
6031 Set_Next_Entity
6032 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6033 exit;
6034 end if;
6036 Next_Discriminant (Old_Disc);
6037 end loop;
6039 else
6040 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6041 if Has_Discriminants (Parent_Type) then
6042 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6043 Set_Discriminant_Constraint (
6044 Derived_Type, Discriminant_Constraint (Parent_Type));
6045 end if;
6046 end if;
6048 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6050 Set_Has_Completion (Derived_Type);
6052 if Corr_Decl_Needed then
6053 Set_Stored_Constraint (Derived_Type, New_Constraint);
6054 Insert_After (N, Corr_Decl);
6055 Analyze (Corr_Decl);
6056 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6057 end if;
6058 end Build_Derived_Concurrent_Type;
6060 ------------------------------------
6061 -- Build_Derived_Enumeration_Type --
6062 ------------------------------------
6064 procedure Build_Derived_Enumeration_Type
6065 (N : Node_Id;
6066 Parent_Type : Entity_Id;
6067 Derived_Type : Entity_Id)
6069 Loc : constant Source_Ptr := Sloc (N);
6070 Def : constant Node_Id := Type_Definition (N);
6071 Indic : constant Node_Id := Subtype_Indication (Def);
6072 Implicit_Base : Entity_Id;
6073 Literal : Entity_Id;
6074 New_Lit : Entity_Id;
6075 Literals_List : List_Id;
6076 Type_Decl : Node_Id;
6077 Hi, Lo : Node_Id;
6078 Rang_Expr : Node_Id;
6080 begin
6081 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6082 -- not have explicit literals lists we need to process types derived
6083 -- from them specially. This is handled by Derived_Standard_Character.
6084 -- If the parent type is a generic type, there are no literals either,
6085 -- and we construct the same skeletal representation as for the generic
6086 -- parent type.
6088 if Is_Standard_Character_Type (Parent_Type) then
6089 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6091 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6092 declare
6093 Lo : Node_Id;
6094 Hi : Node_Id;
6096 begin
6097 if Nkind (Indic) /= N_Subtype_Indication then
6098 Lo :=
6099 Make_Attribute_Reference (Loc,
6100 Attribute_Name => Name_First,
6101 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6102 Set_Etype (Lo, Derived_Type);
6104 Hi :=
6105 Make_Attribute_Reference (Loc,
6106 Attribute_Name => Name_Last,
6107 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6108 Set_Etype (Hi, Derived_Type);
6110 Set_Scalar_Range (Derived_Type,
6111 Make_Range (Loc,
6112 Low_Bound => Lo,
6113 High_Bound => Hi));
6114 else
6116 -- Analyze subtype indication and verify compatibility
6117 -- with parent type.
6119 if Base_Type (Process_Subtype (Indic, N)) /=
6120 Base_Type (Parent_Type)
6121 then
6122 Error_Msg_N
6123 ("illegal constraint for formal discrete type", N);
6124 end if;
6125 end if;
6126 end;
6128 else
6129 -- If a constraint is present, analyze the bounds to catch
6130 -- premature usage of the derived literals.
6132 if Nkind (Indic) = N_Subtype_Indication
6133 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6134 then
6135 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6136 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6137 end if;
6139 -- Introduce an implicit base type for the derived type even if there
6140 -- is no constraint attached to it, since this seems closer to the
6141 -- Ada semantics. Build a full type declaration tree for the derived
6142 -- type using the implicit base type as the defining identifier. The
6143 -- build a subtype declaration tree which applies the constraint (if
6144 -- any) have it replace the derived type declaration.
6146 Literal := First_Literal (Parent_Type);
6147 Literals_List := New_List;
6148 while Present (Literal)
6149 and then Ekind (Literal) = E_Enumeration_Literal
6150 loop
6151 -- Literals of the derived type have the same representation as
6152 -- those of the parent type, but this representation can be
6153 -- overridden by an explicit representation clause. Indicate
6154 -- that there is no explicit representation given yet. These
6155 -- derived literals are implicit operations of the new type,
6156 -- and can be overridden by explicit ones.
6158 if Nkind (Literal) = N_Defining_Character_Literal then
6159 New_Lit :=
6160 Make_Defining_Character_Literal (Loc, Chars (Literal));
6161 else
6162 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6163 end if;
6165 Set_Ekind (New_Lit, E_Enumeration_Literal);
6166 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6167 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6168 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6169 Set_Alias (New_Lit, Literal);
6170 Set_Is_Known_Valid (New_Lit, True);
6172 Append (New_Lit, Literals_List);
6173 Next_Literal (Literal);
6174 end loop;
6176 Implicit_Base :=
6177 Make_Defining_Identifier (Sloc (Derived_Type),
6178 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6180 -- Indicate the proper nature of the derived type. This must be done
6181 -- before analysis of the literals, to recognize cases when a literal
6182 -- may be hidden by a previous explicit function definition (cf.
6183 -- c83031a).
6185 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6186 Set_Etype (Derived_Type, Implicit_Base);
6188 Type_Decl :=
6189 Make_Full_Type_Declaration (Loc,
6190 Defining_Identifier => Implicit_Base,
6191 Discriminant_Specifications => No_List,
6192 Type_Definition =>
6193 Make_Enumeration_Type_Definition (Loc, Literals_List));
6195 Mark_Rewrite_Insertion (Type_Decl);
6196 Insert_Before (N, Type_Decl);
6197 Analyze (Type_Decl);
6199 -- After the implicit base is analyzed its Etype needs to be changed
6200 -- to reflect the fact that it is derived from the parent type which
6201 -- was ignored during analysis. We also set the size at this point.
6203 Set_Etype (Implicit_Base, Parent_Type);
6205 Set_Size_Info (Implicit_Base, Parent_Type);
6206 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6207 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6209 -- Copy other flags from parent type
6211 Set_Has_Non_Standard_Rep
6212 (Implicit_Base, Has_Non_Standard_Rep
6213 (Parent_Type));
6214 Set_Has_Pragma_Ordered
6215 (Implicit_Base, Has_Pragma_Ordered
6216 (Parent_Type));
6217 Set_Has_Delayed_Freeze (Implicit_Base);
6219 -- Process the subtype indication including a validation check on the
6220 -- constraint, if any. If a constraint is given, its bounds must be
6221 -- implicitly converted to the new type.
6223 if Nkind (Indic) = N_Subtype_Indication then
6224 declare
6225 R : constant Node_Id :=
6226 Range_Expression (Constraint (Indic));
6228 begin
6229 if Nkind (R) = N_Range then
6230 Hi := Build_Scalar_Bound
6231 (High_Bound (R), Parent_Type, Implicit_Base);
6232 Lo := Build_Scalar_Bound
6233 (Low_Bound (R), Parent_Type, Implicit_Base);
6235 else
6236 -- Constraint is a Range attribute. Replace with explicit
6237 -- mention of the bounds of the prefix, which must be a
6238 -- subtype.
6240 Analyze (Prefix (R));
6241 Hi :=
6242 Convert_To (Implicit_Base,
6243 Make_Attribute_Reference (Loc,
6244 Attribute_Name => Name_Last,
6245 Prefix =>
6246 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6248 Lo :=
6249 Convert_To (Implicit_Base,
6250 Make_Attribute_Reference (Loc,
6251 Attribute_Name => Name_First,
6252 Prefix =>
6253 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6254 end if;
6255 end;
6257 else
6258 Hi :=
6259 Build_Scalar_Bound
6260 (Type_High_Bound (Parent_Type),
6261 Parent_Type, Implicit_Base);
6262 Lo :=
6263 Build_Scalar_Bound
6264 (Type_Low_Bound (Parent_Type),
6265 Parent_Type, Implicit_Base);
6266 end if;
6268 Rang_Expr :=
6269 Make_Range (Loc,
6270 Low_Bound => Lo,
6271 High_Bound => Hi);
6273 -- If we constructed a default range for the case where no range
6274 -- was given, then the expressions in the range must not freeze
6275 -- since they do not correspond to expressions in the source.
6277 if Nkind (Indic) /= N_Subtype_Indication then
6278 Set_Must_Not_Freeze (Lo);
6279 Set_Must_Not_Freeze (Hi);
6280 Set_Must_Not_Freeze (Rang_Expr);
6281 end if;
6283 Rewrite (N,
6284 Make_Subtype_Declaration (Loc,
6285 Defining_Identifier => Derived_Type,
6286 Subtype_Indication =>
6287 Make_Subtype_Indication (Loc,
6288 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6289 Constraint =>
6290 Make_Range_Constraint (Loc,
6291 Range_Expression => Rang_Expr))));
6293 Analyze (N);
6295 -- Apply a range check. Since this range expression doesn't have an
6296 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6297 -- this right???
6299 if Nkind (Indic) = N_Subtype_Indication then
6300 Apply_Range_Check (Range_Expression (Constraint (Indic)),
6301 Parent_Type,
6302 Source_Typ => Entity (Subtype_Mark (Indic)));
6303 end if;
6304 end if;
6305 end Build_Derived_Enumeration_Type;
6307 --------------------------------
6308 -- Build_Derived_Numeric_Type --
6309 --------------------------------
6311 procedure Build_Derived_Numeric_Type
6312 (N : Node_Id;
6313 Parent_Type : Entity_Id;
6314 Derived_Type : Entity_Id)
6316 Loc : constant Source_Ptr := Sloc (N);
6317 Tdef : constant Node_Id := Type_Definition (N);
6318 Indic : constant Node_Id := Subtype_Indication (Tdef);
6319 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6320 No_Constraint : constant Boolean := Nkind (Indic) /=
6321 N_Subtype_Indication;
6322 Implicit_Base : Entity_Id;
6324 Lo : Node_Id;
6325 Hi : Node_Id;
6327 begin
6328 -- Process the subtype indication including a validation check on
6329 -- the constraint if any.
6331 Discard_Node (Process_Subtype (Indic, N));
6333 -- Introduce an implicit base type for the derived type even if there
6334 -- is no constraint attached to it, since this seems closer to the Ada
6335 -- semantics.
6337 Implicit_Base :=
6338 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6340 Set_Etype (Implicit_Base, Parent_Base);
6341 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6342 Set_Size_Info (Implicit_Base, Parent_Base);
6343 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6344 Set_Parent (Implicit_Base, Parent (Derived_Type));
6345 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6347 -- Set RM Size for discrete type or decimal fixed-point type
6348 -- Ordinary fixed-point is excluded, why???
6350 if Is_Discrete_Type (Parent_Base)
6351 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6352 then
6353 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6354 end if;
6356 Set_Has_Delayed_Freeze (Implicit_Base);
6358 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6359 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6361 Set_Scalar_Range (Implicit_Base,
6362 Make_Range (Loc,
6363 Low_Bound => Lo,
6364 High_Bound => Hi));
6366 if Has_Infinities (Parent_Base) then
6367 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6368 end if;
6370 -- The Derived_Type, which is the entity of the declaration, is a
6371 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6372 -- absence of an explicit constraint.
6374 Set_Etype (Derived_Type, Implicit_Base);
6376 -- If we did not have a constraint, then the Ekind is set from the
6377 -- parent type (otherwise Process_Subtype has set the bounds)
6379 if No_Constraint then
6380 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6381 end if;
6383 -- If we did not have a range constraint, then set the range from the
6384 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6386 if No_Constraint
6387 or else not Has_Range_Constraint (Indic)
6388 then
6389 Set_Scalar_Range (Derived_Type,
6390 Make_Range (Loc,
6391 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6392 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6393 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6395 if Has_Infinities (Parent_Type) then
6396 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6397 end if;
6399 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6400 end if;
6402 Set_Is_Descendent_Of_Address (Derived_Type,
6403 Is_Descendent_Of_Address (Parent_Type));
6404 Set_Is_Descendent_Of_Address (Implicit_Base,
6405 Is_Descendent_Of_Address (Parent_Type));
6407 -- Set remaining type-specific fields, depending on numeric type
6409 if Is_Modular_Integer_Type (Parent_Type) then
6410 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6412 Set_Non_Binary_Modulus
6413 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6415 Set_Is_Known_Valid
6416 (Implicit_Base, Is_Known_Valid (Parent_Base));
6418 elsif Is_Floating_Point_Type (Parent_Type) then
6420 -- Digits of base type is always copied from the digits value of
6421 -- the parent base type, but the digits of the derived type will
6422 -- already have been set if there was a constraint present.
6424 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6425 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6427 if No_Constraint then
6428 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6429 end if;
6431 elsif Is_Fixed_Point_Type (Parent_Type) then
6433 -- Small of base type and derived type are always copied from the
6434 -- parent base type, since smalls never change. The delta of the
6435 -- base type is also copied from the parent base type. However the
6436 -- delta of the derived type will have been set already if a
6437 -- constraint was present.
6439 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6440 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6441 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6443 if No_Constraint then
6444 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6445 end if;
6447 -- The scale and machine radix in the decimal case are always
6448 -- copied from the parent base type.
6450 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6451 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6452 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6454 Set_Machine_Radix_10
6455 (Derived_Type, Machine_Radix_10 (Parent_Base));
6456 Set_Machine_Radix_10
6457 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6459 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6461 if No_Constraint then
6462 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6464 else
6465 -- the analysis of the subtype_indication sets the
6466 -- digits value of the derived type.
6468 null;
6469 end if;
6470 end if;
6471 end if;
6473 if Is_Integer_Type (Parent_Type) then
6474 Set_Has_Shift_Operator
6475 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6476 end if;
6478 -- The type of the bounds is that of the parent type, and they
6479 -- must be converted to the derived type.
6481 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6483 -- The implicit_base should be frozen when the derived type is frozen,
6484 -- but note that it is used in the conversions of the bounds. For fixed
6485 -- types we delay the determination of the bounds until the proper
6486 -- freezing point. For other numeric types this is rejected by GCC, for
6487 -- reasons that are currently unclear (???), so we choose to freeze the
6488 -- implicit base now. In the case of integers and floating point types
6489 -- this is harmless because subsequent representation clauses cannot
6490 -- affect anything, but it is still baffling that we cannot use the
6491 -- same mechanism for all derived numeric types.
6493 -- There is a further complication: actually some representation
6494 -- clauses can affect the implicit base type. For example, attribute
6495 -- definition clauses for stream-oriented attributes need to set the
6496 -- corresponding TSS entries on the base type, and this normally
6497 -- cannot be done after the base type is frozen, so the circuitry in
6498 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6499 -- and not use Set_TSS in this case.
6501 -- There are also consequences for the case of delayed representation
6502 -- aspects for some cases. For example, a Size aspect is delayed and
6503 -- should not be evaluated to the freeze point. This early freezing
6504 -- means that the size attribute evaluation happens too early???
6506 if Is_Fixed_Point_Type (Parent_Type) then
6507 Conditional_Delay (Implicit_Base, Parent_Type);
6508 else
6509 Freeze_Before (N, Implicit_Base);
6510 end if;
6511 end Build_Derived_Numeric_Type;
6513 --------------------------------
6514 -- Build_Derived_Private_Type --
6515 --------------------------------
6517 procedure Build_Derived_Private_Type
6518 (N : Node_Id;
6519 Parent_Type : Entity_Id;
6520 Derived_Type : Entity_Id;
6521 Is_Completion : Boolean;
6522 Derive_Subps : Boolean := True)
6524 Loc : constant Source_Ptr := Sloc (N);
6525 Der_Base : Entity_Id;
6526 Discr : Entity_Id;
6527 Full_Decl : Node_Id := Empty;
6528 Full_Der : Entity_Id;
6529 Full_P : Entity_Id;
6530 Last_Discr : Entity_Id;
6531 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
6532 Swapped : Boolean := False;
6534 procedure Copy_And_Build;
6535 -- Copy derived type declaration, replace parent with its full view,
6536 -- and analyze new declaration.
6538 --------------------
6539 -- Copy_And_Build --
6540 --------------------
6542 procedure Copy_And_Build is
6543 Full_N : Node_Id;
6545 begin
6546 if Ekind (Parent_Type) in Record_Kind
6547 or else
6548 (Ekind (Parent_Type) in Enumeration_Kind
6549 and then not Is_Standard_Character_Type (Parent_Type)
6550 and then not Is_Generic_Type (Root_Type (Parent_Type)))
6551 then
6552 Full_N := New_Copy_Tree (N);
6553 Insert_After (N, Full_N);
6554 Build_Derived_Type (
6555 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
6557 else
6558 Build_Derived_Type (
6559 N, Parent_Type, Full_Der, True, Derive_Subps => False);
6560 end if;
6561 end Copy_And_Build;
6563 -- Start of processing for Build_Derived_Private_Type
6565 begin
6566 if Is_Tagged_Type (Parent_Type) then
6567 Full_P := Full_View (Parent_Type);
6569 -- A type extension of a type with unknown discriminants is an
6570 -- indefinite type that the back-end cannot handle directly.
6571 -- We treat it as a private type, and build a completion that is
6572 -- derived from the full view of the parent, and hopefully has
6573 -- known discriminants.
6575 -- If the full view of the parent type has an underlying record view,
6576 -- use it to generate the underlying record view of this derived type
6577 -- (required for chains of derivations with unknown discriminants).
6579 -- Minor optimization: we avoid the generation of useless underlying
6580 -- record view entities if the private type declaration has unknown
6581 -- discriminants but its corresponding full view has no
6582 -- discriminants.
6584 if Has_Unknown_Discriminants (Parent_Type)
6585 and then Present (Full_P)
6586 and then (Has_Discriminants (Full_P)
6587 or else Present (Underlying_Record_View (Full_P)))
6588 and then not In_Open_Scopes (Par_Scope)
6589 and then Expander_Active
6590 then
6591 declare
6592 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6593 New_Ext : constant Node_Id :=
6594 Copy_Separate_Tree
6595 (Record_Extension_Part (Type_Definition (N)));
6596 Decl : Node_Id;
6598 begin
6599 Build_Derived_Record_Type
6600 (N, Parent_Type, Derived_Type, Derive_Subps);
6602 -- Build anonymous completion, as a derivation from the full
6603 -- view of the parent. This is not a completion in the usual
6604 -- sense, because the current type is not private.
6606 Decl :=
6607 Make_Full_Type_Declaration (Loc,
6608 Defining_Identifier => Full_Der,
6609 Type_Definition =>
6610 Make_Derived_Type_Definition (Loc,
6611 Subtype_Indication =>
6612 New_Copy_Tree
6613 (Subtype_Indication (Type_Definition (N))),
6614 Record_Extension_Part => New_Ext));
6616 -- If the parent type has an underlying record view, use it
6617 -- here to build the new underlying record view.
6619 if Present (Underlying_Record_View (Full_P)) then
6620 pragma Assert
6621 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6622 = N_Identifier);
6623 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
6624 Underlying_Record_View (Full_P));
6625 end if;
6627 Install_Private_Declarations (Par_Scope);
6628 Install_Visible_Declarations (Par_Scope);
6629 Insert_Before (N, Decl);
6631 -- Mark entity as an underlying record view before analysis,
6632 -- to avoid generating the list of its primitive operations
6633 -- (which is not really required for this entity) and thus
6634 -- prevent spurious errors associated with missing overriding
6635 -- of abstract primitives (overridden only for Derived_Type).
6637 Set_Ekind (Full_Der, E_Record_Type);
6638 Set_Is_Underlying_Record_View (Full_Der);
6639 Set_Default_SSO (Full_Der);
6641 Analyze (Decl);
6643 pragma Assert (Has_Discriminants (Full_Der)
6644 and then not Has_Unknown_Discriminants (Full_Der));
6646 Uninstall_Declarations (Par_Scope);
6648 -- Freeze the underlying record view, to prevent generation of
6649 -- useless dispatching information, which is simply shared with
6650 -- the real derived type.
6652 Set_Is_Frozen (Full_Der);
6654 -- Set up links between real entity and underlying record view
6656 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
6657 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
6658 end;
6660 -- If discriminants are known, build derived record
6662 else
6663 Build_Derived_Record_Type
6664 (N, Parent_Type, Derived_Type, Derive_Subps);
6665 end if;
6667 return;
6669 elsif Has_Discriminants (Parent_Type) then
6670 if Present (Full_View (Parent_Type)) then
6671 if not Is_Completion then
6673 -- Copy declaration for subsequent analysis, to provide a
6674 -- completion for what is a private declaration. Indicate that
6675 -- the full type is internally generated.
6677 Full_Decl := New_Copy_Tree (N);
6678 Full_Der := New_Copy (Derived_Type);
6679 Set_Comes_From_Source (Full_Decl, False);
6680 Set_Comes_From_Source (Full_Der, False);
6681 Set_Parent (Full_Der, Full_Decl);
6683 Insert_After (N, Full_Decl);
6685 else
6686 -- If this is a completion, the full view being built is itself
6687 -- private. We build a subtype of the parent with the same
6688 -- constraints as this full view, to convey to the back end the
6689 -- constrained components and the size of this subtype. If the
6690 -- parent is constrained, its full view can serve as the
6691 -- underlying full view of the derived type.
6693 if No (Discriminant_Specifications (N)) then
6694 if Nkind (Subtype_Indication (Type_Definition (N))) =
6695 N_Subtype_Indication
6696 then
6697 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
6699 elsif Is_Constrained (Full_View (Parent_Type)) then
6700 Set_Underlying_Full_View
6701 (Derived_Type, Full_View (Parent_Type));
6702 end if;
6704 else
6705 -- If there are new discriminants, the parent subtype is
6706 -- constrained by them, but it is not clear how to build
6707 -- the Underlying_Full_View in this case???
6709 null;
6710 end if;
6711 end if;
6712 end if;
6714 -- Build partial view of derived type from partial view of parent
6716 Build_Derived_Record_Type
6717 (N, Parent_Type, Derived_Type, Derive_Subps);
6719 if Present (Full_View (Parent_Type)) and then not Is_Completion then
6720 if not In_Open_Scopes (Par_Scope)
6721 or else not In_Same_Source_Unit (N, Parent_Type)
6722 then
6723 -- Swap partial and full views temporarily
6725 Install_Private_Declarations (Par_Scope);
6726 Install_Visible_Declarations (Par_Scope);
6727 Swapped := True;
6728 end if;
6730 -- Build full view of derived type from full view of parent which
6731 -- is now installed. Subprograms have been derived on the partial
6732 -- view, the completion does not derive them anew.
6734 if not Is_Tagged_Type (Parent_Type) then
6736 -- If the parent is itself derived from another private type,
6737 -- installing the private declarations has not affected its
6738 -- privacy status, so use its own full view explicitly.
6740 if Is_Private_Type (Parent_Type) then
6741 Build_Derived_Record_Type
6742 (Full_Decl, Full_View (Parent_Type), Full_Der, False);
6743 else
6744 Build_Derived_Record_Type
6745 (Full_Decl, Parent_Type, Full_Der, False);
6746 end if;
6748 else
6749 -- If full view of parent is tagged, the completion inherits
6750 -- the proper primitive operations.
6752 Set_Defining_Identifier (Full_Decl, Full_Der);
6753 Build_Derived_Record_Type
6754 (Full_Decl, Parent_Type, Full_Der, Derive_Subps);
6755 end if;
6757 -- The full declaration has been introduced into the tree and
6758 -- processed in the step above. It should not be analyzed again
6759 -- (when encountered later in the current list of declarations)
6760 -- to prevent spurious name conflicts. The full entity remains
6761 -- invisible.
6763 Set_Analyzed (Full_Decl);
6765 if Swapped then
6766 Uninstall_Declarations (Par_Scope);
6768 if In_Open_Scopes (Par_Scope) then
6769 Install_Visible_Declarations (Par_Scope);
6770 end if;
6771 end if;
6773 Der_Base := Base_Type (Derived_Type);
6774 Set_Full_View (Derived_Type, Full_Der);
6775 Set_Full_View (Der_Base, Base_Type (Full_Der));
6777 -- Copy the discriminant list from full view to the partial views
6778 -- (base type and its subtype). Gigi requires that the partial and
6779 -- full views have the same discriminants.
6781 -- Note that since the partial view is pointing to discriminants
6782 -- in the full view, their scope will be that of the full view.
6783 -- This might cause some front end problems and need adjustment???
6785 Discr := First_Discriminant (Base_Type (Full_Der));
6786 Set_First_Entity (Der_Base, Discr);
6788 loop
6789 Last_Discr := Discr;
6790 Next_Discriminant (Discr);
6791 exit when No (Discr);
6792 end loop;
6794 Set_Last_Entity (Der_Base, Last_Discr);
6796 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
6797 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
6798 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
6800 else
6801 -- If this is a completion, the derived type stays private and
6802 -- there is no need to create a further full view, except in the
6803 -- unusual case when the derivation is nested within a child unit,
6804 -- see below.
6806 null;
6807 end if;
6809 elsif Present (Full_View (Parent_Type))
6810 and then Has_Discriminants (Full_View (Parent_Type))
6811 then
6812 if Has_Unknown_Discriminants (Parent_Type)
6813 and then Nkind (Subtype_Indication (Type_Definition (N))) =
6814 N_Subtype_Indication
6815 then
6816 Error_Msg_N
6817 ("cannot constrain type with unknown discriminants",
6818 Subtype_Indication (Type_Definition (N)));
6819 return;
6820 end if;
6822 -- If full view of parent is a record type, build full view as a
6823 -- derivation from the parent's full view. Partial view remains
6824 -- private. For code generation and linking, the full view must have
6825 -- the same public status as the partial one. This full view is only
6826 -- needed if the parent type is in an enclosing scope, so that the
6827 -- full view may actually become visible, e.g. in a child unit. This
6828 -- is both more efficient, and avoids order of freezing problems with
6829 -- the added entities.
6831 if not Is_Private_Type (Full_View (Parent_Type))
6832 and then (In_Open_Scopes (Scope (Parent_Type)))
6833 then
6834 Full_Der :=
6835 Make_Defining_Identifier (Sloc (Derived_Type),
6836 Chars => Chars (Derived_Type));
6838 Set_Is_Itype (Full_Der);
6839 Set_Has_Private_Declaration (Full_Der);
6840 Set_Has_Private_Declaration (Derived_Type);
6841 Set_Associated_Node_For_Itype (Full_Der, N);
6842 Set_Parent (Full_Der, Parent (Derived_Type));
6843 Set_Full_View (Derived_Type, Full_Der);
6844 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6845 Full_P := Full_View (Parent_Type);
6846 Exchange_Declarations (Parent_Type);
6847 Copy_And_Build;
6848 Exchange_Declarations (Full_P);
6850 else
6851 Build_Derived_Record_Type
6852 (N, Full_View (Parent_Type), Derived_Type,
6853 Derive_Subps => False);
6855 -- Except in the context of the full view of the parent, there
6856 -- are no non-extension aggregates for the derived type.
6858 Set_Has_Private_Ancestor (Derived_Type);
6859 end if;
6861 -- In any case, the primitive operations are inherited from the
6862 -- parent type, not from the internal full view.
6864 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
6866 if Derive_Subps then
6867 Derive_Subprograms (Parent_Type, Derived_Type);
6868 end if;
6870 else
6871 -- Untagged type, No discriminants on either view
6873 if Nkind (Subtype_Indication (Type_Definition (N))) =
6874 N_Subtype_Indication
6875 then
6876 Error_Msg_N
6877 ("illegal constraint on type without discriminants", N);
6878 end if;
6880 if Present (Discriminant_Specifications (N))
6881 and then Present (Full_View (Parent_Type))
6882 and then not Is_Tagged_Type (Full_View (Parent_Type))
6883 then
6884 Error_Msg_N ("cannot add discriminants to untagged type", N);
6885 end if;
6887 Set_Stored_Constraint (Derived_Type, No_Elist);
6888 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6889 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6890 Set_Has_Controlled_Component
6891 (Derived_Type, Has_Controlled_Component
6892 (Parent_Type));
6894 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6896 if not Is_Controlled (Parent_Type) then
6897 Set_Finalize_Storage_Only
6898 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
6899 end if;
6901 -- Construct the implicit full view by deriving from full view of the
6902 -- parent type. In order to get proper visibility, we install the
6903 -- parent scope and its declarations.
6905 -- ??? If the parent is untagged private and its completion is
6906 -- tagged, this mechanism will not work because we cannot derive from
6907 -- the tagged full view unless we have an extension.
6909 if Present (Full_View (Parent_Type))
6910 and then not Is_Tagged_Type (Full_View (Parent_Type))
6911 and then not Is_Completion
6912 then
6913 Full_Der :=
6914 Make_Defining_Identifier
6915 (Sloc (Derived_Type), Chars (Derived_Type));
6916 Set_Is_Itype (Full_Der);
6917 Set_Has_Private_Declaration (Full_Der);
6918 Set_Has_Private_Declaration (Derived_Type);
6919 Set_Associated_Node_For_Itype (Full_Der, N);
6920 Set_Parent (Full_Der, Parent (Derived_Type));
6921 Set_Full_View (Derived_Type, Full_Der);
6923 if not In_Open_Scopes (Par_Scope) then
6924 Install_Private_Declarations (Par_Scope);
6925 Install_Visible_Declarations (Par_Scope);
6926 Copy_And_Build;
6927 Uninstall_Declarations (Par_Scope);
6929 -- If parent scope is open and in another unit, and parent has a
6930 -- completion, then the derivation is taking place in the visible
6931 -- part of a child unit. In that case retrieve the full view of
6932 -- the parent momentarily.
6934 elsif not In_Same_Source_Unit (N, Parent_Type) then
6935 Full_P := Full_View (Parent_Type);
6936 Exchange_Declarations (Parent_Type);
6937 Copy_And_Build;
6938 Exchange_Declarations (Full_P);
6940 -- Otherwise it is a local derivation
6942 else
6943 Copy_And_Build;
6944 end if;
6946 Set_Scope (Full_Der, Current_Scope);
6947 Set_Is_First_Subtype (Full_Der,
6948 Is_First_Subtype (Derived_Type));
6949 Set_Has_Size_Clause (Full_Der, False);
6950 Set_Has_Alignment_Clause (Full_Der, False);
6951 Set_Next_Entity (Full_Der, Empty);
6952 Set_Has_Delayed_Freeze (Full_Der);
6953 Set_Is_Frozen (Full_Der, False);
6954 Set_Freeze_Node (Full_Der, Empty);
6955 Set_Depends_On_Private (Full_Der,
6956 Has_Private_Component (Full_Der));
6957 Set_Public_Status (Full_Der);
6958 end if;
6959 end if;
6961 Set_Has_Unknown_Discriminants (Derived_Type,
6962 Has_Unknown_Discriminants (Parent_Type));
6964 if Is_Private_Type (Derived_Type) then
6965 Set_Private_Dependents (Derived_Type, New_Elmt_List);
6966 end if;
6968 if Is_Private_Type (Parent_Type)
6969 and then Base_Type (Parent_Type) = Parent_Type
6970 and then In_Open_Scopes (Scope (Parent_Type))
6971 then
6972 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
6974 -- Check for unusual case where a type completed by a private
6975 -- derivation occurs within a package nested in a child unit, and
6976 -- the parent is declared in an ancestor.
6978 if Is_Child_Unit (Scope (Current_Scope))
6979 and then Is_Completion
6980 and then In_Private_Part (Current_Scope)
6981 and then Scope (Parent_Type) /= Current_Scope
6983 -- Note that if the parent has a completion in the private part,
6984 -- (which is itself a derivation from some other private type)
6985 -- it is that completion that is visible, there is no full view
6986 -- available, and no special processing is needed.
6988 and then Present (Full_View (Parent_Type))
6989 then
6990 -- In this case, the full view of the parent type will become
6991 -- visible in the body of the enclosing child, and only then will
6992 -- the current type be possibly non-private. We build an
6993 -- underlying full view that will be installed when the enclosing
6994 -- child body is compiled.
6996 Full_Der :=
6997 Make_Defining_Identifier
6998 (Sloc (Derived_Type), Chars (Derived_Type));
6999 Set_Is_Itype (Full_Der);
7000 Build_Itype_Reference (Full_Der, N);
7002 -- The full view will be used to swap entities on entry/exit to
7003 -- the body, and must appear in the entity list for the package.
7005 Append_Entity (Full_Der, Scope (Derived_Type));
7006 Set_Has_Private_Declaration (Full_Der);
7007 Set_Has_Private_Declaration (Derived_Type);
7008 Set_Associated_Node_For_Itype (Full_Der, N);
7009 Set_Parent (Full_Der, Parent (Derived_Type));
7010 Full_P := Full_View (Parent_Type);
7011 Exchange_Declarations (Parent_Type);
7012 Copy_And_Build;
7013 Exchange_Declarations (Full_P);
7014 Set_Underlying_Full_View (Derived_Type, Full_Der);
7015 end if;
7016 end if;
7017 end Build_Derived_Private_Type;
7019 -------------------------------
7020 -- Build_Derived_Record_Type --
7021 -------------------------------
7023 -- 1. INTRODUCTION
7025 -- Ideally we would like to use the same model of type derivation for
7026 -- tagged and untagged record types. Unfortunately this is not quite
7027 -- possible because the semantics of representation clauses is different
7028 -- for tagged and untagged records under inheritance. Consider the
7029 -- following:
7031 -- type R (...) is [tagged] record ... end record;
7032 -- type T (...) is new R (...) [with ...];
7034 -- The representation clauses for T can specify a completely different
7035 -- record layout from R's. Hence the same component can be placed in two
7036 -- very different positions in objects of type T and R. If R and T are
7037 -- tagged types, representation clauses for T can only specify the layout
7038 -- of non inherited components, thus components that are common in R and T
7039 -- have the same position in objects of type R and T.
7041 -- This has two implications. The first is that the entire tree for R's
7042 -- declaration needs to be copied for T in the untagged case, so that T
7043 -- can be viewed as a record type of its own with its own representation
7044 -- clauses. The second implication is the way we handle discriminants.
7045 -- Specifically, in the untagged case we need a way to communicate to Gigi
7046 -- what are the real discriminants in the record, while for the semantics
7047 -- we need to consider those introduced by the user to rename the
7048 -- discriminants in the parent type. This is handled by introducing the
7049 -- notion of stored discriminants. See below for more.
7051 -- Fortunately the way regular components are inherited can be handled in
7052 -- the same way in tagged and untagged types.
7054 -- To complicate things a bit more the private view of a private extension
7055 -- cannot be handled in the same way as the full view (for one thing the
7056 -- semantic rules are somewhat different). We will explain what differs
7057 -- below.
7059 -- 2. DISCRIMINANTS UNDER INHERITANCE
7061 -- The semantic rules governing the discriminants of derived types are
7062 -- quite subtle.
7064 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7065 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7067 -- If parent type has discriminants, then the discriminants that are
7068 -- declared in the derived type are [3.4 (11)]:
7070 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7071 -- there is one;
7073 -- o Otherwise, each discriminant of the parent type (implicitly declared
7074 -- in the same order with the same specifications). In this case, the
7075 -- discriminants are said to be "inherited", or if unknown in the parent
7076 -- are also unknown in the derived type.
7078 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7080 -- o The parent subtype must be constrained;
7082 -- o If the parent type is not a tagged type, then each discriminant of
7083 -- the derived type must be used in the constraint defining a parent
7084 -- subtype. [Implementation note: This ensures that the new discriminant
7085 -- can share storage with an existing discriminant.]
7087 -- For the derived type each discriminant of the parent type is either
7088 -- inherited, constrained to equal some new discriminant of the derived
7089 -- type, or constrained to the value of an expression.
7091 -- When inherited or constrained to equal some new discriminant, the
7092 -- parent discriminant and the discriminant of the derived type are said
7093 -- to "correspond".
7095 -- If a discriminant of the parent type is constrained to a specific value
7096 -- in the derived type definition, then the discriminant is said to be
7097 -- "specified" by that derived type definition.
7099 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7101 -- We have spoken about stored discriminants in point 1 (introduction)
7102 -- above. There are two sort of stored discriminants: implicit and
7103 -- explicit. As long as the derived type inherits the same discriminants as
7104 -- the root record type, stored discriminants are the same as regular
7105 -- discriminants, and are said to be implicit. However, if any discriminant
7106 -- in the root type was renamed in the derived type, then the derived
7107 -- type will contain explicit stored discriminants. Explicit stored
7108 -- discriminants are discriminants in addition to the semantically visible
7109 -- discriminants defined for the derived type. Stored discriminants are
7110 -- used by Gigi to figure out what are the physical discriminants in
7111 -- objects of the derived type (see precise definition in einfo.ads).
7112 -- As an example, consider the following:
7114 -- type R (D1, D2, D3 : Int) is record ... end record;
7115 -- type T1 is new R;
7116 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7117 -- type T3 is new T2;
7118 -- type T4 (Y : Int) is new T3 (Y, 99);
7120 -- The following table summarizes the discriminants and stored
7121 -- discriminants in R and T1 through T4.
7123 -- Type Discrim Stored Discrim Comment
7124 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7125 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7126 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7127 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7128 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7130 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7131 -- find the corresponding discriminant in the parent type, while
7132 -- Original_Record_Component (abbreviated ORC below), the actual physical
7133 -- component that is renamed. Finally the field Is_Completely_Hidden
7134 -- (abbreviated ICH below) is set for all explicit stored discriminants
7135 -- (see einfo.ads for more info). For the above example this gives:
7137 -- Discrim CD ORC ICH
7138 -- ^^^^^^^ ^^ ^^^ ^^^
7139 -- D1 in R empty itself no
7140 -- D2 in R empty itself no
7141 -- D3 in R empty itself no
7143 -- D1 in T1 D1 in R itself no
7144 -- D2 in T1 D2 in R itself no
7145 -- D3 in T1 D3 in R itself no
7147 -- X1 in T2 D3 in T1 D3 in T2 no
7148 -- X2 in T2 D1 in T1 D1 in T2 no
7149 -- D1 in T2 empty itself yes
7150 -- D2 in T2 empty itself yes
7151 -- D3 in T2 empty itself yes
7153 -- X1 in T3 X1 in T2 D3 in T3 no
7154 -- X2 in T3 X2 in T2 D1 in T3 no
7155 -- D1 in T3 empty itself yes
7156 -- D2 in T3 empty itself yes
7157 -- D3 in T3 empty itself yes
7159 -- Y in T4 X1 in T3 D3 in T3 no
7160 -- D1 in T3 empty itself yes
7161 -- D2 in T3 empty itself yes
7162 -- D3 in T3 empty itself yes
7164 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7166 -- Type derivation for tagged types is fairly straightforward. If no
7167 -- discriminants are specified by the derived type, these are inherited
7168 -- from the parent. No explicit stored discriminants are ever necessary.
7169 -- The only manipulation that is done to the tree is that of adding a
7170 -- _parent field with parent type and constrained to the same constraint
7171 -- specified for the parent in the derived type definition. For instance:
7173 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7174 -- type T1 is new R with null record;
7175 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7177 -- are changed into:
7179 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7180 -- _parent : R (D1, D2, D3);
7181 -- end record;
7183 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7184 -- _parent : T1 (X2, 88, X1);
7185 -- end record;
7187 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7188 -- ORC and ICH fields are:
7190 -- Discrim CD ORC ICH
7191 -- ^^^^^^^ ^^ ^^^ ^^^
7192 -- D1 in R empty itself no
7193 -- D2 in R empty itself no
7194 -- D3 in R empty itself no
7196 -- D1 in T1 D1 in R D1 in R no
7197 -- D2 in T1 D2 in R D2 in R no
7198 -- D3 in T1 D3 in R D3 in R no
7200 -- X1 in T2 D3 in T1 D3 in R no
7201 -- X2 in T2 D1 in T1 D1 in R no
7203 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7205 -- Regardless of whether we dealing with a tagged or untagged type
7206 -- we will transform all derived type declarations of the form
7208 -- type T is new R (...) [with ...];
7209 -- or
7210 -- subtype S is R (...);
7211 -- type T is new S [with ...];
7212 -- into
7213 -- type BT is new R [with ...];
7214 -- subtype T is BT (...);
7216 -- That is, the base derived type is constrained only if it has no
7217 -- discriminants. The reason for doing this is that GNAT's semantic model
7218 -- assumes that a base type with discriminants is unconstrained.
7220 -- Note that, strictly speaking, the above transformation is not always
7221 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7223 -- procedure B34011A is
7224 -- type REC (D : integer := 0) is record
7225 -- I : Integer;
7226 -- end record;
7228 -- package P is
7229 -- type T6 is new Rec;
7230 -- function F return T6;
7231 -- end P;
7233 -- use P;
7234 -- package Q6 is
7235 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7236 -- end Q6;
7238 -- The definition of Q6.U is illegal. However transforming Q6.U into
7240 -- type BaseU is new T6;
7241 -- subtype U is BaseU (Q6.F.I)
7243 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7244 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7245 -- the transformation described above.
7247 -- There is another instance where the above transformation is incorrect.
7248 -- Consider:
7250 -- package Pack is
7251 -- type Base (D : Integer) is tagged null record;
7252 -- procedure P (X : Base);
7254 -- type Der is new Base (2) with null record;
7255 -- procedure P (X : Der);
7256 -- end Pack;
7258 -- Then the above transformation turns this into
7260 -- type Der_Base is new Base with null record;
7261 -- -- procedure P (X : Base) is implicitly inherited here
7262 -- -- as procedure P (X : Der_Base).
7264 -- subtype Der is Der_Base (2);
7265 -- procedure P (X : Der);
7266 -- -- The overriding of P (X : Der_Base) is illegal since we
7267 -- -- have a parameter conformance problem.
7269 -- To get around this problem, after having semantically processed Der_Base
7270 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7271 -- Discriminant_Constraint from Der so that when parameter conformance is
7272 -- checked when P is overridden, no semantic errors are flagged.
7274 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7276 -- Regardless of whether we are dealing with a tagged or untagged type
7277 -- we will transform all derived type declarations of the form
7279 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7280 -- type T is new R [with ...];
7281 -- into
7282 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7284 -- The reason for such transformation is that it allows us to implement a
7285 -- very clean form of component inheritance as explained below.
7287 -- Note that this transformation is not achieved by direct tree rewriting
7288 -- and manipulation, but rather by redoing the semantic actions that the
7289 -- above transformation will entail. This is done directly in routine
7290 -- Inherit_Components.
7292 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7294 -- In both tagged and untagged derived types, regular non discriminant
7295 -- components are inherited in the derived type from the parent type. In
7296 -- the absence of discriminants component, inheritance is straightforward
7297 -- as components can simply be copied from the parent.
7299 -- If the parent has discriminants, inheriting components constrained with
7300 -- these discriminants requires caution. Consider the following example:
7302 -- type R (D1, D2 : Positive) is [tagged] record
7303 -- S : String (D1 .. D2);
7304 -- end record;
7306 -- type T1 is new R [with null record];
7307 -- type T2 (X : positive) is new R (1, X) [with null record];
7309 -- As explained in 6. above, T1 is rewritten as
7310 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7311 -- which makes the treatment for T1 and T2 identical.
7313 -- What we want when inheriting S, is that references to D1 and D2 in R are
7314 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7315 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7316 -- with either discriminant references in the derived type or expressions.
7317 -- This replacement is achieved as follows: before inheriting R's
7318 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7319 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7320 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7321 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7322 -- by String (1 .. X).
7324 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7326 -- We explain here the rules governing private type extensions relevant to
7327 -- type derivation. These rules are explained on the following example:
7329 -- type D [(...)] is new A [(...)] with private; <-- partial view
7330 -- type D [(...)] is new P [(...)] with null record; <-- full view
7332 -- Type A is called the ancestor subtype of the private extension.
7333 -- Type P is the parent type of the full view of the private extension. It
7334 -- must be A or a type derived from A.
7336 -- The rules concerning the discriminants of private type extensions are
7337 -- [7.3(10-13)]:
7339 -- o If a private extension inherits known discriminants from the ancestor
7340 -- subtype, then the full view must also inherit its discriminants from
7341 -- the ancestor subtype and the parent subtype of the full view must be
7342 -- constrained if and only if the ancestor subtype is constrained.
7344 -- o If a partial view has unknown discriminants, then the full view may
7345 -- define a definite or an indefinite subtype, with or without
7346 -- discriminants.
7348 -- o If a partial view has neither known nor unknown discriminants, then
7349 -- the full view must define a definite subtype.
7351 -- o If the ancestor subtype of a private extension has constrained
7352 -- discriminants, then the parent subtype of the full view must impose a
7353 -- statically matching constraint on those discriminants.
7355 -- This means that only the following forms of private extensions are
7356 -- allowed:
7358 -- type D is new A with private; <-- partial view
7359 -- type D is new P with null record; <-- full view
7361 -- If A has no discriminants than P has no discriminants, otherwise P must
7362 -- inherit A's discriminants.
7364 -- type D is new A (...) with private; <-- partial view
7365 -- type D is new P (:::) with null record; <-- full view
7367 -- P must inherit A's discriminants and (...) and (:::) must statically
7368 -- match.
7370 -- subtype A is R (...);
7371 -- type D is new A with private; <-- partial view
7372 -- type D is new P with null record; <-- full view
7374 -- P must have inherited R's discriminants and must be derived from A or
7375 -- any of its subtypes.
7377 -- type D (..) is new A with private; <-- partial view
7378 -- type D (..) is new P [(:::)] with null record; <-- full view
7380 -- No specific constraints on P's discriminants or constraint (:::).
7381 -- Note that A can be unconstrained, but the parent subtype P must either
7382 -- be constrained or (:::) must be present.
7384 -- type D (..) is new A [(...)] with private; <-- partial view
7385 -- type D (..) is new P [(:::)] with null record; <-- full view
7387 -- P's constraints on A's discriminants must statically match those
7388 -- imposed by (...).
7390 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7392 -- The full view of a private extension is handled exactly as described
7393 -- above. The model chose for the private view of a private extension is
7394 -- the same for what concerns discriminants (i.e. they receive the same
7395 -- treatment as in the tagged case). However, the private view of the
7396 -- private extension always inherits the components of the parent base,
7397 -- without replacing any discriminant reference. Strictly speaking this is
7398 -- incorrect. However, Gigi never uses this view to generate code so this
7399 -- is a purely semantic issue. In theory, a set of transformations similar
7400 -- to those given in 5. and 6. above could be applied to private views of
7401 -- private extensions to have the same model of component inheritance as
7402 -- for non private extensions. However, this is not done because it would
7403 -- further complicate private type processing. Semantically speaking, this
7404 -- leaves us in an uncomfortable situation. As an example consider:
7406 -- package Pack is
7407 -- type R (D : integer) is tagged record
7408 -- S : String (1 .. D);
7409 -- end record;
7410 -- procedure P (X : R);
7411 -- type T is new R (1) with private;
7412 -- private
7413 -- type T is new R (1) with null record;
7414 -- end;
7416 -- This is transformed into:
7418 -- package Pack is
7419 -- type R (D : integer) is tagged record
7420 -- S : String (1 .. D);
7421 -- end record;
7422 -- procedure P (X : R);
7423 -- type T is new R (1) with private;
7424 -- private
7425 -- type BaseT is new R with null record;
7426 -- subtype T is BaseT (1);
7427 -- end;
7429 -- (strictly speaking the above is incorrect Ada)
7431 -- From the semantic standpoint the private view of private extension T
7432 -- should be flagged as constrained since one can clearly have
7434 -- Obj : T;
7436 -- in a unit withing Pack. However, when deriving subprograms for the
7437 -- private view of private extension T, T must be seen as unconstrained
7438 -- since T has discriminants (this is a constraint of the current
7439 -- subprogram derivation model). Thus, when processing the private view of
7440 -- a private extension such as T, we first mark T as unconstrained, we
7441 -- process it, we perform program derivation and just before returning from
7442 -- Build_Derived_Record_Type we mark T as constrained.
7444 -- ??? Are there are other uncomfortable cases that we will have to
7445 -- deal with.
7447 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7449 -- Types that are derived from a visible record type and have a private
7450 -- extension present other peculiarities. They behave mostly like private
7451 -- types, but if they have primitive operations defined, these will not
7452 -- have the proper signatures for further inheritance, because other
7453 -- primitive operations will use the implicit base that we define for
7454 -- private derivations below. This affect subprogram inheritance (see
7455 -- Derive_Subprograms for details). We also derive the implicit base from
7456 -- the base type of the full view, so that the implicit base is a record
7457 -- type and not another private type, This avoids infinite loops.
7459 procedure Build_Derived_Record_Type
7460 (N : Node_Id;
7461 Parent_Type : Entity_Id;
7462 Derived_Type : Entity_Id;
7463 Derive_Subps : Boolean := True)
7465 Discriminant_Specs : constant Boolean :=
7466 Present (Discriminant_Specifications (N));
7467 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7468 Loc : constant Source_Ptr := Sloc (N);
7469 Private_Extension : constant Boolean :=
7470 Nkind (N) = N_Private_Extension_Declaration;
7471 Assoc_List : Elist_Id;
7472 Constraint_Present : Boolean;
7473 Constrs : Elist_Id;
7474 Discrim : Entity_Id;
7475 Indic : Node_Id;
7476 Inherit_Discrims : Boolean := False;
7477 Last_Discrim : Entity_Id;
7478 New_Base : Entity_Id;
7479 New_Decl : Node_Id;
7480 New_Discrs : Elist_Id;
7481 New_Indic : Node_Id;
7482 Parent_Base : Entity_Id;
7483 Save_Etype : Entity_Id;
7484 Save_Discr_Constr : Elist_Id;
7485 Save_Next_Entity : Entity_Id;
7486 Type_Def : Node_Id;
7488 Discs : Elist_Id := New_Elmt_List;
7489 -- An empty Discs list means that there were no constraints in the
7490 -- subtype indication or that there was an error processing it.
7492 begin
7493 if Ekind (Parent_Type) = E_Record_Type_With_Private
7494 and then Present (Full_View (Parent_Type))
7495 and then Has_Discriminants (Parent_Type)
7496 then
7497 Parent_Base := Base_Type (Full_View (Parent_Type));
7498 else
7499 Parent_Base := Base_Type (Parent_Type);
7500 end if;
7502 -- AI05-0115 : if this is a derivation from a private type in some
7503 -- other scope that may lead to invisible components for the derived
7504 -- type, mark it accordingly.
7506 if Is_Private_Type (Parent_Type) then
7507 if Scope (Parent_Type) = Scope (Derived_Type) then
7508 null;
7510 elsif In_Open_Scopes (Scope (Parent_Type))
7511 and then In_Private_Part (Scope (Parent_Type))
7512 then
7513 null;
7515 else
7516 Set_Has_Private_Ancestor (Derived_Type);
7517 end if;
7519 else
7520 Set_Has_Private_Ancestor
7521 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7522 end if;
7524 -- Before we start the previously documented transformations, here is
7525 -- little fix for size and alignment of tagged types. Normally when we
7526 -- derive type D from type P, we copy the size and alignment of P as the
7527 -- default for D, and in the absence of explicit representation clauses
7528 -- for D, the size and alignment are indeed the same as the parent.
7530 -- But this is wrong for tagged types, since fields may be added, and
7531 -- the default size may need to be larger, and the default alignment may
7532 -- need to be larger.
7534 -- We therefore reset the size and alignment fields in the tagged case.
7535 -- Note that the size and alignment will in any case be at least as
7536 -- large as the parent type (since the derived type has a copy of the
7537 -- parent type in the _parent field)
7539 -- The type is also marked as being tagged here, which is needed when
7540 -- processing components with a self-referential anonymous access type
7541 -- in the call to Check_Anonymous_Access_Components below. Note that
7542 -- this flag is also set later on for completeness.
7544 if Is_Tagged then
7545 Set_Is_Tagged_Type (Derived_Type);
7546 Init_Size_Align (Derived_Type);
7547 end if;
7549 -- STEP 0a: figure out what kind of derived type declaration we have
7551 if Private_Extension then
7552 Type_Def := N;
7553 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7554 Set_Default_SSO (Derived_Type);
7556 else
7557 Type_Def := Type_Definition (N);
7559 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7560 -- Parent_Base can be a private type or private extension. However,
7561 -- for tagged types with an extension the newly added fields are
7562 -- visible and hence the Derived_Type is always an E_Record_Type.
7563 -- (except that the parent may have its own private fields).
7564 -- For untagged types we preserve the Ekind of the Parent_Base.
7566 if Present (Record_Extension_Part (Type_Def)) then
7567 Set_Ekind (Derived_Type, E_Record_Type);
7568 Set_Default_SSO (Derived_Type);
7570 -- Create internal access types for components with anonymous
7571 -- access types.
7573 if Ada_Version >= Ada_2005 then
7574 Check_Anonymous_Access_Components
7575 (N, Derived_Type, Derived_Type,
7576 Component_List (Record_Extension_Part (Type_Def)));
7577 end if;
7579 else
7580 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7581 end if;
7582 end if;
7584 -- Indic can either be an N_Identifier if the subtype indication
7585 -- contains no constraint or an N_Subtype_Indication if the subtype
7586 -- indication has a constraint.
7588 Indic := Subtype_Indication (Type_Def);
7589 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7591 -- Check that the type has visible discriminants. The type may be
7592 -- a private type with unknown discriminants whose full view has
7593 -- discriminants which are invisible.
7595 if Constraint_Present then
7596 if not Has_Discriminants (Parent_Base)
7597 or else
7598 (Has_Unknown_Discriminants (Parent_Base)
7599 and then Is_Private_Type (Parent_Base))
7600 then
7601 Error_Msg_N
7602 ("invalid constraint: type has no discriminant",
7603 Constraint (Indic));
7605 Constraint_Present := False;
7606 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7608 elsif Is_Constrained (Parent_Type) then
7609 Error_Msg_N
7610 ("invalid constraint: parent type is already constrained",
7611 Constraint (Indic));
7613 Constraint_Present := False;
7614 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7615 end if;
7616 end if;
7618 -- STEP 0b: If needed, apply transformation given in point 5. above
7620 if not Private_Extension
7621 and then Has_Discriminants (Parent_Type)
7622 and then not Discriminant_Specs
7623 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7624 then
7625 -- First, we must analyze the constraint (see comment in point 5.)
7626 -- The constraint may come from the subtype indication of the full
7627 -- declaration.
7629 if Constraint_Present then
7630 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7632 -- If there is no explicit constraint, there might be one that is
7633 -- inherited from a constrained parent type. In that case verify that
7634 -- it conforms to the constraint in the partial view. In perverse
7635 -- cases the parent subtypes of the partial and full view can have
7636 -- different constraints.
7638 elsif Present (Stored_Constraint (Parent_Type)) then
7639 New_Discrs := Stored_Constraint (Parent_Type);
7641 else
7642 New_Discrs := No_Elist;
7643 end if;
7645 if Has_Discriminants (Derived_Type)
7646 and then Has_Private_Declaration (Derived_Type)
7647 and then Present (Discriminant_Constraint (Derived_Type))
7648 and then Present (New_Discrs)
7649 then
7650 -- Verify that constraints of the full view statically match
7651 -- those given in the partial view.
7653 declare
7654 C1, C2 : Elmt_Id;
7656 begin
7657 C1 := First_Elmt (New_Discrs);
7658 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7659 while Present (C1) and then Present (C2) loop
7660 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7661 or else
7662 (Is_OK_Static_Expression (Node (C1))
7663 and then Is_OK_Static_Expression (Node (C2))
7664 and then
7665 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7666 then
7667 null;
7669 else
7670 if Constraint_Present then
7671 Error_Msg_N
7672 ("constraint not conformant to previous declaration",
7673 Node (C1));
7674 else
7675 Error_Msg_N
7676 ("constraint of full view is incompatible "
7677 & "with partial view", N);
7678 end if;
7679 end if;
7681 Next_Elmt (C1);
7682 Next_Elmt (C2);
7683 end loop;
7684 end;
7685 end if;
7687 -- Insert and analyze the declaration for the unconstrained base type
7689 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7691 New_Decl :=
7692 Make_Full_Type_Declaration (Loc,
7693 Defining_Identifier => New_Base,
7694 Type_Definition =>
7695 Make_Derived_Type_Definition (Loc,
7696 Abstract_Present => Abstract_Present (Type_Def),
7697 Limited_Present => Limited_Present (Type_Def),
7698 Subtype_Indication =>
7699 New_Occurrence_Of (Parent_Base, Loc),
7700 Record_Extension_Part =>
7701 Relocate_Node (Record_Extension_Part (Type_Def)),
7702 Interface_List => Interface_List (Type_Def)));
7704 Set_Parent (New_Decl, Parent (N));
7705 Mark_Rewrite_Insertion (New_Decl);
7706 Insert_Before (N, New_Decl);
7708 -- In the extension case, make sure ancestor is frozen appropriately
7709 -- (see also non-discriminated case below).
7711 if Present (Record_Extension_Part (Type_Def))
7712 or else Is_Interface (Parent_Base)
7713 then
7714 Freeze_Before (New_Decl, Parent_Type);
7715 end if;
7717 -- Note that this call passes False for the Derive_Subps parameter
7718 -- because subprogram derivation is deferred until after creating
7719 -- the subtype (see below).
7721 Build_Derived_Type
7722 (New_Decl, Parent_Base, New_Base,
7723 Is_Completion => True, Derive_Subps => False);
7725 -- ??? This needs re-examination to determine whether the
7726 -- above call can simply be replaced by a call to Analyze.
7728 Set_Analyzed (New_Decl);
7730 -- Insert and analyze the declaration for the constrained subtype
7732 if Constraint_Present then
7733 New_Indic :=
7734 Make_Subtype_Indication (Loc,
7735 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7736 Constraint => Relocate_Node (Constraint (Indic)));
7738 else
7739 declare
7740 Constr_List : constant List_Id := New_List;
7741 C : Elmt_Id;
7742 Expr : Node_Id;
7744 begin
7745 C := First_Elmt (Discriminant_Constraint (Parent_Type));
7746 while Present (C) loop
7747 Expr := Node (C);
7749 -- It is safe here to call New_Copy_Tree since
7750 -- Force_Evaluation was called on each constraint in
7751 -- Build_Discriminant_Constraints.
7753 Append (New_Copy_Tree (Expr), To => Constr_List);
7755 Next_Elmt (C);
7756 end loop;
7758 New_Indic :=
7759 Make_Subtype_Indication (Loc,
7760 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7761 Constraint =>
7762 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
7763 end;
7764 end if;
7766 Rewrite (N,
7767 Make_Subtype_Declaration (Loc,
7768 Defining_Identifier => Derived_Type,
7769 Subtype_Indication => New_Indic));
7771 Analyze (N);
7773 -- Derivation of subprograms must be delayed until the full subtype
7774 -- has been established, to ensure proper overriding of subprograms
7775 -- inherited by full types. If the derivations occurred as part of
7776 -- the call to Build_Derived_Type above, then the check for type
7777 -- conformance would fail because earlier primitive subprograms
7778 -- could still refer to the full type prior the change to the new
7779 -- subtype and hence would not match the new base type created here.
7780 -- Subprograms are not derived, however, when Derive_Subps is False
7781 -- (since otherwise there could be redundant derivations).
7783 if Derive_Subps then
7784 Derive_Subprograms (Parent_Type, Derived_Type);
7785 end if;
7787 -- For tagged types the Discriminant_Constraint of the new base itype
7788 -- is inherited from the first subtype so that no subtype conformance
7789 -- problem arise when the first subtype overrides primitive
7790 -- operations inherited by the implicit base type.
7792 if Is_Tagged then
7793 Set_Discriminant_Constraint
7794 (New_Base, Discriminant_Constraint (Derived_Type));
7795 end if;
7797 return;
7798 end if;
7800 -- If we get here Derived_Type will have no discriminants or it will be
7801 -- a discriminated unconstrained base type.
7803 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7805 if Is_Tagged then
7807 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7808 -- The declaration of a specific descendant of an interface type
7809 -- freezes the interface type (RM 13.14).
7811 if not Private_Extension or else Is_Interface (Parent_Base) then
7812 Freeze_Before (N, Parent_Type);
7813 end if;
7815 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7816 -- cannot be declared at a deeper level than its parent type is
7817 -- removed. The check on derivation within a generic body is also
7818 -- relaxed, but there's a restriction that a derived tagged type
7819 -- cannot be declared in a generic body if it's derived directly
7820 -- or indirectly from a formal type of that generic.
7822 if Ada_Version >= Ada_2005 then
7823 if Present (Enclosing_Generic_Body (Derived_Type)) then
7824 declare
7825 Ancestor_Type : Entity_Id;
7827 begin
7828 -- Check to see if any ancestor of the derived type is a
7829 -- formal type.
7831 Ancestor_Type := Parent_Type;
7832 while not Is_Generic_Type (Ancestor_Type)
7833 and then Etype (Ancestor_Type) /= Ancestor_Type
7834 loop
7835 Ancestor_Type := Etype (Ancestor_Type);
7836 end loop;
7838 -- If the derived type does have a formal type as an
7839 -- ancestor, then it's an error if the derived type is
7840 -- declared within the body of the generic unit that
7841 -- declares the formal type in its generic formal part. It's
7842 -- sufficient to check whether the ancestor type is declared
7843 -- inside the same generic body as the derived type (such as
7844 -- within a nested generic spec), in which case the
7845 -- derivation is legal. If the formal type is declared
7846 -- outside of that generic body, then it's guaranteed that
7847 -- the derived type is declared within the generic body of
7848 -- the generic unit declaring the formal type.
7850 if Is_Generic_Type (Ancestor_Type)
7851 and then Enclosing_Generic_Body (Ancestor_Type) /=
7852 Enclosing_Generic_Body (Derived_Type)
7853 then
7854 Error_Msg_NE
7855 ("parent type of& must not be descendant of formal type"
7856 & " of an enclosing generic body",
7857 Indic, Derived_Type);
7858 end if;
7859 end;
7860 end if;
7862 elsif Type_Access_Level (Derived_Type) /=
7863 Type_Access_Level (Parent_Type)
7864 and then not Is_Generic_Type (Derived_Type)
7865 then
7866 if Is_Controlled (Parent_Type) then
7867 Error_Msg_N
7868 ("controlled type must be declared at the library level",
7869 Indic);
7870 else
7871 Error_Msg_N
7872 ("type extension at deeper accessibility level than parent",
7873 Indic);
7874 end if;
7876 else
7877 declare
7878 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
7879 begin
7880 if Present (GB)
7881 and then GB /= Enclosing_Generic_Body (Parent_Base)
7882 then
7883 Error_Msg_NE
7884 ("parent type of& must not be outside generic body"
7885 & " (RM 3.9.1(4))",
7886 Indic, Derived_Type);
7887 end if;
7888 end;
7889 end if;
7890 end if;
7892 -- Ada 2005 (AI-251)
7894 if Ada_Version >= Ada_2005 and then Is_Tagged then
7896 -- "The declaration of a specific descendant of an interface type
7897 -- freezes the interface type" (RM 13.14).
7899 declare
7900 Iface : Node_Id;
7901 begin
7902 if Is_Non_Empty_List (Interface_List (Type_Def)) then
7903 Iface := First (Interface_List (Type_Def));
7904 while Present (Iface) loop
7905 Freeze_Before (N, Etype (Iface));
7906 Next (Iface);
7907 end loop;
7908 end if;
7909 end;
7910 end if;
7912 -- STEP 1b : preliminary cleanup of the full view of private types
7914 -- If the type is already marked as having discriminants, then it's the
7915 -- completion of a private type or private extension and we need to
7916 -- retain the discriminants from the partial view if the current
7917 -- declaration has Discriminant_Specifications so that we can verify
7918 -- conformance. However, we must remove any existing components that
7919 -- were inherited from the parent (and attached in Copy_And_Swap)
7920 -- because the full type inherits all appropriate components anyway, and
7921 -- we do not want the partial view's components interfering.
7923 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
7924 Discrim := First_Discriminant (Derived_Type);
7925 loop
7926 Last_Discrim := Discrim;
7927 Next_Discriminant (Discrim);
7928 exit when No (Discrim);
7929 end loop;
7931 Set_Last_Entity (Derived_Type, Last_Discrim);
7933 -- In all other cases wipe out the list of inherited components (even
7934 -- inherited discriminants), it will be properly rebuilt here.
7936 else
7937 Set_First_Entity (Derived_Type, Empty);
7938 Set_Last_Entity (Derived_Type, Empty);
7939 end if;
7941 -- STEP 1c: Initialize some flags for the Derived_Type
7943 -- The following flags must be initialized here so that
7944 -- Process_Discriminants can check that discriminants of tagged types do
7945 -- not have a default initial value and that access discriminants are
7946 -- only specified for limited records. For completeness, these flags are
7947 -- also initialized along with all the other flags below.
7949 -- AI-419: Limitedness is not inherited from an interface parent, so to
7950 -- be limited in that case the type must be explicitly declared as
7951 -- limited. However, task and protected interfaces are always limited.
7953 if Limited_Present (Type_Def) then
7954 Set_Is_Limited_Record (Derived_Type);
7956 elsif Is_Limited_Record (Parent_Type)
7957 or else (Present (Full_View (Parent_Type))
7958 and then Is_Limited_Record (Full_View (Parent_Type)))
7959 then
7960 if not Is_Interface (Parent_Type)
7961 or else Is_Synchronized_Interface (Parent_Type)
7962 or else Is_Protected_Interface (Parent_Type)
7963 or else Is_Task_Interface (Parent_Type)
7964 then
7965 Set_Is_Limited_Record (Derived_Type);
7966 end if;
7967 end if;
7969 -- STEP 2a: process discriminants of derived type if any
7971 Push_Scope (Derived_Type);
7973 if Discriminant_Specs then
7974 Set_Has_Unknown_Discriminants (Derived_Type, False);
7976 -- The following call initializes fields Has_Discriminants and
7977 -- Discriminant_Constraint, unless we are processing the completion
7978 -- of a private type declaration.
7980 Check_Or_Process_Discriminants (N, Derived_Type);
7982 -- For untagged types, the constraint on the Parent_Type must be
7983 -- present and is used to rename the discriminants.
7985 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
7986 Error_Msg_N ("untagged parent must have discriminants", Indic);
7988 elsif not Is_Tagged and then not Constraint_Present then
7989 Error_Msg_N
7990 ("discriminant constraint needed for derived untagged records",
7991 Indic);
7993 -- Otherwise the parent subtype must be constrained unless we have a
7994 -- private extension.
7996 elsif not Constraint_Present
7997 and then not Private_Extension
7998 and then not Is_Constrained (Parent_Type)
7999 then
8000 Error_Msg_N
8001 ("unconstrained type not allowed in this context", Indic);
8003 elsif Constraint_Present then
8004 -- The following call sets the field Corresponding_Discriminant
8005 -- for the discriminants in the Derived_Type.
8007 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8009 -- For untagged types all new discriminants must rename
8010 -- discriminants in the parent. For private extensions new
8011 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8013 Discrim := First_Discriminant (Derived_Type);
8014 while Present (Discrim) loop
8015 if not Is_Tagged
8016 and then No (Corresponding_Discriminant (Discrim))
8017 then
8018 Error_Msg_N
8019 ("new discriminants must constrain old ones", Discrim);
8021 elsif Private_Extension
8022 and then Present (Corresponding_Discriminant (Discrim))
8023 then
8024 Error_Msg_N
8025 ("only static constraints allowed for parent"
8026 & " discriminants in the partial view", Indic);
8027 exit;
8028 end if;
8030 -- If a new discriminant is used in the constraint, then its
8031 -- subtype must be statically compatible with the parent
8032 -- discriminant's subtype (3.7(15)).
8034 -- However, if the record contains an array constrained by
8035 -- the discriminant but with some different bound, the compiler
8036 -- attemps to create a smaller range for the discriminant type.
8037 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8038 -- the discriminant type is a scalar type, the check must use
8039 -- the original discriminant type in the parent declaration.
8041 declare
8042 Corr_Disc : constant Entity_Id :=
8043 Corresponding_Discriminant (Discrim);
8044 Disc_Type : constant Entity_Id := Etype (Discrim);
8045 Corr_Type : Entity_Id;
8047 begin
8048 if Present (Corr_Disc) then
8049 if Is_Scalar_Type (Disc_Type) then
8050 Corr_Type :=
8051 Entity (Discriminant_Type (Parent (Corr_Disc)));
8052 else
8053 Corr_Type := Etype (Corr_Disc);
8054 end if;
8056 if not
8057 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8058 then
8059 Error_Msg_N
8060 ("subtype must be compatible "
8061 & "with parent discriminant",
8062 Discrim);
8063 end if;
8064 end if;
8065 end;
8067 Next_Discriminant (Discrim);
8068 end loop;
8070 -- Check whether the constraints of the full view statically
8071 -- match those imposed by the parent subtype [7.3(13)].
8073 if Present (Stored_Constraint (Derived_Type)) then
8074 declare
8075 C1, C2 : Elmt_Id;
8077 begin
8078 C1 := First_Elmt (Discs);
8079 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8080 while Present (C1) and then Present (C2) loop
8081 if not
8082 Fully_Conformant_Expressions (Node (C1), Node (C2))
8083 then
8084 Error_Msg_N
8085 ("not conformant with previous declaration",
8086 Node (C1));
8087 end if;
8089 Next_Elmt (C1);
8090 Next_Elmt (C2);
8091 end loop;
8092 end;
8093 end if;
8094 end if;
8096 -- STEP 2b: No new discriminants, inherit discriminants if any
8098 else
8099 if Private_Extension then
8100 Set_Has_Unknown_Discriminants
8101 (Derived_Type,
8102 Has_Unknown_Discriminants (Parent_Type)
8103 or else Unknown_Discriminants_Present (N));
8105 -- The partial view of the parent may have unknown discriminants,
8106 -- but if the full view has discriminants and the parent type is
8107 -- in scope they must be inherited.
8109 elsif Has_Unknown_Discriminants (Parent_Type)
8110 and then
8111 (not Has_Discriminants (Parent_Type)
8112 or else not In_Open_Scopes (Scope (Parent_Type)))
8113 then
8114 Set_Has_Unknown_Discriminants (Derived_Type);
8115 end if;
8117 if not Has_Unknown_Discriminants (Derived_Type)
8118 and then not Has_Unknown_Discriminants (Parent_Base)
8119 and then Has_Discriminants (Parent_Type)
8120 then
8121 Inherit_Discrims := True;
8122 Set_Has_Discriminants
8123 (Derived_Type, True);
8124 Set_Discriminant_Constraint
8125 (Derived_Type, Discriminant_Constraint (Parent_Base));
8126 end if;
8128 -- The following test is true for private types (remember
8129 -- transformation 5. is not applied to those) and in an error
8130 -- situation.
8132 if Constraint_Present then
8133 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8134 end if;
8136 -- For now mark a new derived type as constrained only if it has no
8137 -- discriminants. At the end of Build_Derived_Record_Type we properly
8138 -- set this flag in the case of private extensions. See comments in
8139 -- point 9. just before body of Build_Derived_Record_Type.
8141 Set_Is_Constrained
8142 (Derived_Type,
8143 not (Inherit_Discrims
8144 or else Has_Unknown_Discriminants (Derived_Type)));
8145 end if;
8147 -- STEP 3: initialize fields of derived type
8149 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8150 Set_Stored_Constraint (Derived_Type, No_Elist);
8152 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8153 -- but cannot be interfaces
8155 if not Private_Extension
8156 and then Ekind (Derived_Type) /= E_Private_Type
8157 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8158 then
8159 if Interface_Present (Type_Def) then
8160 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8161 end if;
8163 Set_Interfaces (Derived_Type, No_Elist);
8164 end if;
8166 -- Fields inherited from the Parent_Type
8168 Set_Has_Specified_Layout
8169 (Derived_Type, Has_Specified_Layout (Parent_Type));
8170 Set_Is_Limited_Composite
8171 (Derived_Type, Is_Limited_Composite (Parent_Type));
8172 Set_Is_Private_Composite
8173 (Derived_Type, Is_Private_Composite (Parent_Type));
8175 -- Fields inherited from the Parent_Base
8177 Set_Has_Controlled_Component
8178 (Derived_Type, Has_Controlled_Component (Parent_Base));
8179 Set_Has_Non_Standard_Rep
8180 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8181 Set_Has_Primitive_Operations
8182 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8184 -- Fields inherited from the Parent_Base in the non-private case
8186 if Ekind (Derived_Type) = E_Record_Type then
8187 Set_Has_Complex_Representation
8188 (Derived_Type, Has_Complex_Representation (Parent_Base));
8189 end if;
8191 -- Fields inherited from the Parent_Base for record types
8193 if Is_Record_Type (Derived_Type) then
8195 declare
8196 Parent_Full : Entity_Id;
8198 begin
8199 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8200 -- Parent_Base can be a private type or private extension. Go
8201 -- to the full view here to get the E_Record_Type specific flags.
8203 if Present (Full_View (Parent_Base)) then
8204 Parent_Full := Full_View (Parent_Base);
8205 else
8206 Parent_Full := Parent_Base;
8207 end if;
8209 Set_OK_To_Reorder_Components
8210 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8211 end;
8212 end if;
8214 -- Set fields for private derived types
8216 if Is_Private_Type (Derived_Type) then
8217 Set_Depends_On_Private (Derived_Type, True);
8218 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8220 -- Inherit fields from non private record types. If this is the
8221 -- completion of a derivation from a private type, the parent itself
8222 -- is private, and the attributes come from its full view, which must
8223 -- be present.
8225 else
8226 if Is_Private_Type (Parent_Base)
8227 and then not Is_Record_Type (Parent_Base)
8228 then
8229 Set_Component_Alignment
8230 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8231 Set_C_Pass_By_Copy
8232 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8233 else
8234 Set_Component_Alignment
8235 (Derived_Type, Component_Alignment (Parent_Base));
8236 Set_C_Pass_By_Copy
8237 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8238 end if;
8239 end if;
8241 -- Set fields for tagged types
8243 if Is_Tagged then
8244 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8246 -- All tagged types defined in Ada.Finalization are controlled
8248 if Chars (Scope (Derived_Type)) = Name_Finalization
8249 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8250 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8251 then
8252 Set_Is_Controlled (Derived_Type);
8253 else
8254 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8255 end if;
8257 -- Minor optimization: there is no need to generate the class-wide
8258 -- entity associated with an underlying record view.
8260 if not Is_Underlying_Record_View (Derived_Type) then
8261 Make_Class_Wide_Type (Derived_Type);
8262 end if;
8264 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8266 if Has_Discriminants (Derived_Type)
8267 and then Constraint_Present
8268 then
8269 Set_Stored_Constraint
8270 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8271 end if;
8273 if Ada_Version >= Ada_2005 then
8274 declare
8275 Ifaces_List : Elist_Id;
8277 begin
8278 -- Checks rules 3.9.4 (13/2 and 14/2)
8280 if Comes_From_Source (Derived_Type)
8281 and then not Is_Private_Type (Derived_Type)
8282 and then Is_Interface (Parent_Type)
8283 and then not Is_Interface (Derived_Type)
8284 then
8285 if Is_Task_Interface (Parent_Type) then
8286 Error_Msg_N
8287 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8288 Derived_Type);
8290 elsif Is_Protected_Interface (Parent_Type) then
8291 Error_Msg_N
8292 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8293 Derived_Type);
8294 end if;
8295 end if;
8297 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8299 Check_Interfaces (N, Type_Def);
8301 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8302 -- not already in the parents.
8304 Collect_Interfaces
8305 (T => Derived_Type,
8306 Ifaces_List => Ifaces_List,
8307 Exclude_Parents => True);
8309 Set_Interfaces (Derived_Type, Ifaces_List);
8311 -- If the derived type is the anonymous type created for
8312 -- a declaration whose parent has a constraint, propagate
8313 -- the interface list to the source type. This must be done
8314 -- prior to the completion of the analysis of the source type
8315 -- because the components in the extension may contain current
8316 -- instances whose legality depends on some ancestor.
8318 if Is_Itype (Derived_Type) then
8319 declare
8320 Def : constant Node_Id :=
8321 Associated_Node_For_Itype (Derived_Type);
8322 begin
8323 if Present (Def)
8324 and then Nkind (Def) = N_Full_Type_Declaration
8325 then
8326 Set_Interfaces
8327 (Defining_Identifier (Def), Ifaces_List);
8328 end if;
8329 end;
8330 end if;
8331 end;
8332 end if;
8334 else
8335 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8336 Set_Has_Non_Standard_Rep
8337 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8338 end if;
8340 -- STEP 4: Inherit components from the parent base and constrain them.
8341 -- Apply the second transformation described in point 6. above.
8343 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8344 or else not Has_Discriminants (Parent_Type)
8345 or else not Is_Constrained (Parent_Type)
8346 then
8347 Constrs := Discs;
8348 else
8349 Constrs := Discriminant_Constraint (Parent_Type);
8350 end if;
8352 Assoc_List :=
8353 Inherit_Components
8354 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8356 -- STEP 5a: Copy the parent record declaration for untagged types
8358 if not Is_Tagged then
8360 -- Discriminant_Constraint (Derived_Type) has been properly
8361 -- constructed. Save it and temporarily set it to Empty because we
8362 -- do not want the call to New_Copy_Tree below to mess this list.
8364 if Has_Discriminants (Derived_Type) then
8365 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8366 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8367 else
8368 Save_Discr_Constr := No_Elist;
8369 end if;
8371 -- Save the Etype field of Derived_Type. It is correctly set now,
8372 -- but the call to New_Copy tree may remap it to point to itself,
8373 -- which is not what we want. Ditto for the Next_Entity field.
8375 Save_Etype := Etype (Derived_Type);
8376 Save_Next_Entity := Next_Entity (Derived_Type);
8378 -- Assoc_List maps all stored discriminants in the Parent_Base to
8379 -- stored discriminants in the Derived_Type. It is fundamental that
8380 -- no types or itypes with discriminants other than the stored
8381 -- discriminants appear in the entities declared inside
8382 -- Derived_Type, since the back end cannot deal with it.
8384 New_Decl :=
8385 New_Copy_Tree
8386 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8388 -- Restore the fields saved prior to the New_Copy_Tree call
8389 -- and compute the stored constraint.
8391 Set_Etype (Derived_Type, Save_Etype);
8392 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8394 if Has_Discriminants (Derived_Type) then
8395 Set_Discriminant_Constraint
8396 (Derived_Type, Save_Discr_Constr);
8397 Set_Stored_Constraint
8398 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8399 Replace_Components (Derived_Type, New_Decl);
8400 Set_Has_Implicit_Dereference
8401 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8402 end if;
8404 -- Insert the new derived type declaration
8406 Rewrite (N, New_Decl);
8408 -- STEP 5b: Complete the processing for record extensions in generics
8410 -- There is no completion for record extensions declared in the
8411 -- parameter part of a generic, so we need to complete processing for
8412 -- these generic record extensions here. The Record_Type_Definition call
8413 -- will change the Ekind of the components from E_Void to E_Component.
8415 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8416 Record_Type_Definition (Empty, Derived_Type);
8418 -- STEP 5c: Process the record extension for non private tagged types
8420 elsif not Private_Extension then
8422 -- Add the _parent field in the derived type. In ASIS mode there is
8423 -- not enough semantic information for full expansion, but set the
8424 -- parent subtype to allow resolution of selected components in
8425 -- instance bodies.
8427 if ASIS_Mode then
8428 Set_Parent_Subtype (Derived_Type, Parent_Type);
8429 else
8430 Expand_Record_Extension (Derived_Type, Type_Def);
8431 end if;
8433 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8434 -- implemented interfaces if we are in expansion mode
8436 if Expander_Active
8437 and then Has_Interfaces (Derived_Type)
8438 then
8439 Add_Interface_Tag_Components (N, Derived_Type);
8440 end if;
8442 -- Analyze the record extension
8444 Record_Type_Definition
8445 (Record_Extension_Part (Type_Def), Derived_Type);
8446 end if;
8448 End_Scope;
8450 -- Nothing else to do if there is an error in the derivation.
8451 -- An unusual case: the full view may be derived from a type in an
8452 -- instance, when the partial view was used illegally as an actual
8453 -- in that instance, leading to a circular definition.
8455 if Etype (Derived_Type) = Any_Type
8456 or else Etype (Parent_Type) = Derived_Type
8457 then
8458 return;
8459 end if;
8461 -- Set delayed freeze and then derive subprograms, we need to do
8462 -- this in this order so that derived subprograms inherit the
8463 -- derived freeze if necessary.
8465 Set_Has_Delayed_Freeze (Derived_Type);
8467 if Derive_Subps then
8468 Derive_Subprograms (Parent_Type, Derived_Type);
8469 end if;
8471 -- If we have a private extension which defines a constrained derived
8472 -- type mark as constrained here after we have derived subprograms. See
8473 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8475 if Private_Extension and then Inherit_Discrims then
8476 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8477 Set_Is_Constrained (Derived_Type, True);
8478 Set_Discriminant_Constraint (Derived_Type, Discs);
8480 elsif Is_Constrained (Parent_Type) then
8481 Set_Is_Constrained
8482 (Derived_Type, True);
8483 Set_Discriminant_Constraint
8484 (Derived_Type, Discriminant_Constraint (Parent_Type));
8485 end if;
8486 end if;
8488 -- Update the class-wide type, which shares the now-completed entity
8489 -- list with its specific type. In case of underlying record views,
8490 -- we do not generate the corresponding class wide entity.
8492 if Is_Tagged
8493 and then not Is_Underlying_Record_View (Derived_Type)
8494 then
8495 Set_First_Entity
8496 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8497 Set_Last_Entity
8498 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8499 end if;
8501 Check_Function_Writable_Actuals (N);
8502 end Build_Derived_Record_Type;
8504 ------------------------
8505 -- Build_Derived_Type --
8506 ------------------------
8508 procedure Build_Derived_Type
8509 (N : Node_Id;
8510 Parent_Type : Entity_Id;
8511 Derived_Type : Entity_Id;
8512 Is_Completion : Boolean;
8513 Derive_Subps : Boolean := True)
8515 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8517 begin
8518 -- Set common attributes
8520 Set_Scope (Derived_Type, Current_Scope);
8522 Set_Etype (Derived_Type, Parent_Base);
8523 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8524 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8525 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8527 Set_Size_Info (Derived_Type, Parent_Type);
8528 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8529 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8530 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8532 -- If the parent has primitive routines, set the derived type link
8534 if Has_Primitive_Operations (Parent_Type) then
8535 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8536 end if;
8538 -- If the parent type is a private subtype, the convention on the base
8539 -- type may be set in the private part, and not propagated to the
8540 -- subtype until later, so we obtain the convention from the base type.
8542 Set_Convention (Derived_Type, Convention (Parent_Base));
8544 -- Set SSO default for record or array type
8546 if (Is_Array_Type (Derived_Type)
8547 or else Is_Record_Type (Derived_Type))
8548 and then Is_Base_Type (Derived_Type)
8549 then
8550 Set_Default_SSO (Derived_Type);
8551 end if;
8553 -- Propagate invariant information. The new type has invariants if
8554 -- they are inherited from the parent type, and these invariants can
8555 -- be further inherited, so both flags are set.
8557 -- We similarly inherit predicates
8559 if Has_Predicates (Parent_Type) then
8560 Set_Has_Predicates (Derived_Type);
8561 end if;
8563 -- The derived type inherits the representation clauses of the parent.
8564 -- However, for a private type that is completed by a derivation, there
8565 -- may be operation attributes that have been specified already (stream
8566 -- attributes and External_Tag) and those must be provided. Finally,
8567 -- if the partial view is a private extension, the representation items
8568 -- of the parent have been inherited already, and should not be chained
8569 -- twice to the derived type.
8571 if Is_Tagged_Type (Parent_Type)
8572 and then Present (First_Rep_Item (Derived_Type))
8573 then
8574 -- The existing items are either operational items or items inherited
8575 -- from a private extension declaration.
8577 declare
8578 Rep : Node_Id;
8579 -- Used to iterate over representation items of the derived type
8581 Last_Rep : Node_Id;
8582 -- Last representation item of the (non-empty) representation
8583 -- item list of the derived type.
8585 Found : Boolean := False;
8587 begin
8588 Rep := First_Rep_Item (Derived_Type);
8589 Last_Rep := Rep;
8590 while Present (Rep) loop
8591 if Rep = First_Rep_Item (Parent_Type) then
8592 Found := True;
8593 exit;
8595 else
8596 Rep := Next_Rep_Item (Rep);
8598 if Present (Rep) then
8599 Last_Rep := Rep;
8600 end if;
8601 end if;
8602 end loop;
8604 -- Here if we either encountered the parent type's first rep
8605 -- item on the derived type's rep item list (in which case
8606 -- Found is True, and we have nothing else to do), or if we
8607 -- reached the last rep item of the derived type, which is
8608 -- Last_Rep, in which case we further chain the parent type's
8609 -- rep items to those of the derived type.
8611 if not Found then
8612 Set_Next_Rep_Item (Last_Rep, First_Rep_Item (Parent_Type));
8613 end if;
8614 end;
8616 else
8617 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
8618 end if;
8620 -- If the parent type has delayed rep aspects, then mark the derived
8621 -- type as possibly inheriting a delayed rep aspect.
8623 if Has_Delayed_Rep_Aspects (Parent_Type) then
8624 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8625 end if;
8627 -- Type dependent processing
8629 case Ekind (Parent_Type) is
8630 when Numeric_Kind =>
8631 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8633 when Array_Kind =>
8634 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8636 when E_Record_Type
8637 | E_Record_Subtype
8638 | Class_Wide_Kind =>
8639 Build_Derived_Record_Type
8640 (N, Parent_Type, Derived_Type, Derive_Subps);
8641 return;
8643 when Enumeration_Kind =>
8644 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8646 when Access_Kind =>
8647 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8649 when Incomplete_Or_Private_Kind =>
8650 Build_Derived_Private_Type
8651 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8653 -- For discriminated types, the derivation includes deriving
8654 -- primitive operations. For others it is done below.
8656 if Is_Tagged_Type (Parent_Type)
8657 or else Has_Discriminants (Parent_Type)
8658 or else (Present (Full_View (Parent_Type))
8659 and then Has_Discriminants (Full_View (Parent_Type)))
8660 then
8661 return;
8662 end if;
8664 when Concurrent_Kind =>
8665 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8667 when others =>
8668 raise Program_Error;
8669 end case;
8671 -- Nothing more to do if some error occurred
8673 if Etype (Derived_Type) = Any_Type then
8674 return;
8675 end if;
8677 -- Set delayed freeze and then derive subprograms, we need to do this
8678 -- in this order so that derived subprograms inherit the derived freeze
8679 -- if necessary.
8681 Set_Has_Delayed_Freeze (Derived_Type);
8683 if Derive_Subps then
8684 Derive_Subprograms (Parent_Type, Derived_Type);
8685 end if;
8687 Set_Has_Primitive_Operations
8688 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8689 end Build_Derived_Type;
8691 -----------------------
8692 -- Build_Discriminal --
8693 -----------------------
8695 procedure Build_Discriminal (Discrim : Entity_Id) is
8696 D_Minal : Entity_Id;
8697 CR_Disc : Entity_Id;
8699 begin
8700 -- A discriminal has the same name as the discriminant
8702 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8704 Set_Ekind (D_Minal, E_In_Parameter);
8705 Set_Mechanism (D_Minal, Default_Mechanism);
8706 Set_Etype (D_Minal, Etype (Discrim));
8707 Set_Scope (D_Minal, Current_Scope);
8709 Set_Discriminal (Discrim, D_Minal);
8710 Set_Discriminal_Link (D_Minal, Discrim);
8712 -- For task types, build at once the discriminants of the corresponding
8713 -- record, which are needed if discriminants are used in entry defaults
8714 -- and in family bounds.
8716 if Is_Concurrent_Type (Current_Scope)
8717 or else Is_Limited_Type (Current_Scope)
8718 then
8719 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8721 Set_Ekind (CR_Disc, E_In_Parameter);
8722 Set_Mechanism (CR_Disc, Default_Mechanism);
8723 Set_Etype (CR_Disc, Etype (Discrim));
8724 Set_Scope (CR_Disc, Current_Scope);
8725 Set_Discriminal_Link (CR_Disc, Discrim);
8726 Set_CR_Discriminant (Discrim, CR_Disc);
8727 end if;
8728 end Build_Discriminal;
8730 ------------------------------------
8731 -- Build_Discriminant_Constraints --
8732 ------------------------------------
8734 function Build_Discriminant_Constraints
8735 (T : Entity_Id;
8736 Def : Node_Id;
8737 Derived_Def : Boolean := False) return Elist_Id
8739 C : constant Node_Id := Constraint (Def);
8740 Nb_Discr : constant Nat := Number_Discriminants (T);
8742 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
8743 -- Saves the expression corresponding to a given discriminant in T
8745 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
8746 -- Return the Position number within array Discr_Expr of a discriminant
8747 -- D within the discriminant list of the discriminated type T.
8749 procedure Process_Discriminant_Expression
8750 (Expr : Node_Id;
8751 D : Entity_Id);
8752 -- If this is a discriminant constraint on a partial view, do not
8753 -- generate an overflow check on the discriminant expression. The check
8754 -- will be generated when constraining the full view. Otherwise the
8755 -- backend creates duplicate symbols for the temporaries corresponding
8756 -- to the expressions to be checked, causing spurious assembler errors.
8758 ------------------
8759 -- Pos_Of_Discr --
8760 ------------------
8762 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
8763 Disc : Entity_Id;
8765 begin
8766 Disc := First_Discriminant (T);
8767 for J in Discr_Expr'Range loop
8768 if Disc = D then
8769 return J;
8770 end if;
8772 Next_Discriminant (Disc);
8773 end loop;
8775 -- Note: Since this function is called on discriminants that are
8776 -- known to belong to the discriminated type, falling through the
8777 -- loop with no match signals an internal compiler error.
8779 raise Program_Error;
8780 end Pos_Of_Discr;
8782 -------------------------------------
8783 -- Process_Discriminant_Expression --
8784 -------------------------------------
8786 procedure Process_Discriminant_Expression
8787 (Expr : Node_Id;
8788 D : Entity_Id)
8790 BDT : constant Entity_Id := Base_Type (Etype (D));
8792 begin
8793 -- If this is a discriminant constraint on a partial view, do
8794 -- not generate an overflow on the discriminant expression. The
8795 -- check will be generated when constraining the full view.
8797 if Is_Private_Type (T)
8798 and then Present (Full_View (T))
8799 then
8800 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
8801 else
8802 Analyze_And_Resolve (Expr, BDT);
8803 end if;
8804 end Process_Discriminant_Expression;
8806 -- Declarations local to Build_Discriminant_Constraints
8808 Discr : Entity_Id;
8809 E : Entity_Id;
8810 Elist : constant Elist_Id := New_Elmt_List;
8812 Constr : Node_Id;
8813 Expr : Node_Id;
8814 Id : Node_Id;
8815 Position : Nat;
8816 Found : Boolean;
8818 Discrim_Present : Boolean := False;
8820 -- Start of processing for Build_Discriminant_Constraints
8822 begin
8823 -- The following loop will process positional associations only.
8824 -- For a positional association, the (single) discriminant is
8825 -- implicitly specified by position, in textual order (RM 3.7.2).
8827 Discr := First_Discriminant (T);
8828 Constr := First (Constraints (C));
8829 for D in Discr_Expr'Range loop
8830 exit when Nkind (Constr) = N_Discriminant_Association;
8832 if No (Constr) then
8833 Error_Msg_N ("too few discriminants given in constraint", C);
8834 return New_Elmt_List;
8836 elsif Nkind (Constr) = N_Range
8837 or else (Nkind (Constr) = N_Attribute_Reference
8838 and then
8839 Attribute_Name (Constr) = Name_Range)
8840 then
8841 Error_Msg_N
8842 ("a range is not a valid discriminant constraint", Constr);
8843 Discr_Expr (D) := Error;
8845 else
8846 Process_Discriminant_Expression (Constr, Discr);
8847 Discr_Expr (D) := Constr;
8848 end if;
8850 Next_Discriminant (Discr);
8851 Next (Constr);
8852 end loop;
8854 if No (Discr) and then Present (Constr) then
8855 Error_Msg_N ("too many discriminants given in constraint", Constr);
8856 return New_Elmt_List;
8857 end if;
8859 -- Named associations can be given in any order, but if both positional
8860 -- and named associations are used in the same discriminant constraint,
8861 -- then positional associations must occur first, at their normal
8862 -- position. Hence once a named association is used, the rest of the
8863 -- discriminant constraint must use only named associations.
8865 while Present (Constr) loop
8867 -- Positional association forbidden after a named association
8869 if Nkind (Constr) /= N_Discriminant_Association then
8870 Error_Msg_N ("positional association follows named one", Constr);
8871 return New_Elmt_List;
8873 -- Otherwise it is a named association
8875 else
8876 -- E records the type of the discriminants in the named
8877 -- association. All the discriminants specified in the same name
8878 -- association must have the same type.
8880 E := Empty;
8882 -- Search the list of discriminants in T to see if the simple name
8883 -- given in the constraint matches any of them.
8885 Id := First (Selector_Names (Constr));
8886 while Present (Id) loop
8887 Found := False;
8889 -- If Original_Discriminant is present, we are processing a
8890 -- generic instantiation and this is an instance node. We need
8891 -- to find the name of the corresponding discriminant in the
8892 -- actual record type T and not the name of the discriminant in
8893 -- the generic formal. Example:
8895 -- generic
8896 -- type G (D : int) is private;
8897 -- package P is
8898 -- subtype W is G (D => 1);
8899 -- end package;
8900 -- type Rec (X : int) is record ... end record;
8901 -- package Q is new P (G => Rec);
8903 -- At the point of the instantiation, formal type G is Rec
8904 -- and therefore when reanalyzing "subtype W is G (D => 1);"
8905 -- which really looks like "subtype W is Rec (D => 1);" at
8906 -- the point of instantiation, we want to find the discriminant
8907 -- that corresponds to D in Rec, i.e. X.
8909 if Present (Original_Discriminant (Id))
8910 and then In_Instance
8911 then
8912 Discr := Find_Corresponding_Discriminant (Id, T);
8913 Found := True;
8915 else
8916 Discr := First_Discriminant (T);
8917 while Present (Discr) loop
8918 if Chars (Discr) = Chars (Id) then
8919 Found := True;
8920 exit;
8921 end if;
8923 Next_Discriminant (Discr);
8924 end loop;
8926 if not Found then
8927 Error_Msg_N ("& does not match any discriminant", Id);
8928 return New_Elmt_List;
8930 -- If the parent type is a generic formal, preserve the
8931 -- name of the discriminant for subsequent instances.
8932 -- see comment at the beginning of this if statement.
8934 elsif Is_Generic_Type (Root_Type (T)) then
8935 Set_Original_Discriminant (Id, Discr);
8936 end if;
8937 end if;
8939 Position := Pos_Of_Discr (T, Discr);
8941 if Present (Discr_Expr (Position)) then
8942 Error_Msg_N ("duplicate constraint for discriminant&", Id);
8944 else
8945 -- Each discriminant specified in the same named association
8946 -- must be associated with a separate copy of the
8947 -- corresponding expression.
8949 if Present (Next (Id)) then
8950 Expr := New_Copy_Tree (Expression (Constr));
8951 Set_Parent (Expr, Parent (Expression (Constr)));
8952 else
8953 Expr := Expression (Constr);
8954 end if;
8956 Discr_Expr (Position) := Expr;
8957 Process_Discriminant_Expression (Expr, Discr);
8958 end if;
8960 -- A discriminant association with more than one discriminant
8961 -- name is only allowed if the named discriminants are all of
8962 -- the same type (RM 3.7.1(8)).
8964 if E = Empty then
8965 E := Base_Type (Etype (Discr));
8967 elsif Base_Type (Etype (Discr)) /= E then
8968 Error_Msg_N
8969 ("all discriminants in an association " &
8970 "must have the same type", Id);
8971 end if;
8973 Next (Id);
8974 end loop;
8975 end if;
8977 Next (Constr);
8978 end loop;
8980 -- A discriminant constraint must provide exactly one value for each
8981 -- discriminant of the type (RM 3.7.1(8)).
8983 for J in Discr_Expr'Range loop
8984 if No (Discr_Expr (J)) then
8985 Error_Msg_N ("too few discriminants given in constraint", C);
8986 return New_Elmt_List;
8987 end if;
8988 end loop;
8990 -- Determine if there are discriminant expressions in the constraint
8992 for J in Discr_Expr'Range loop
8993 if Denotes_Discriminant
8994 (Discr_Expr (J), Check_Concurrent => True)
8995 then
8996 Discrim_Present := True;
8997 end if;
8998 end loop;
9000 -- Build an element list consisting of the expressions given in the
9001 -- discriminant constraint and apply the appropriate checks. The list
9002 -- is constructed after resolving any named discriminant associations
9003 -- and therefore the expressions appear in the textual order of the
9004 -- discriminants.
9006 Discr := First_Discriminant (T);
9007 for J in Discr_Expr'Range loop
9008 if Discr_Expr (J) /= Error then
9009 Append_Elmt (Discr_Expr (J), Elist);
9011 -- If any of the discriminant constraints is given by a
9012 -- discriminant and we are in a derived type declaration we
9013 -- have a discriminant renaming. Establish link between new
9014 -- and old discriminant.
9016 if Denotes_Discriminant (Discr_Expr (J)) then
9017 if Derived_Def then
9018 Set_Corresponding_Discriminant
9019 (Entity (Discr_Expr (J)), Discr);
9020 end if;
9022 -- Force the evaluation of non-discriminant expressions.
9023 -- If we have found a discriminant in the constraint 3.4(26)
9024 -- and 3.8(18) demand that no range checks are performed are
9025 -- after evaluation. If the constraint is for a component
9026 -- definition that has a per-object constraint, expressions are
9027 -- evaluated but not checked either. In all other cases perform
9028 -- a range check.
9030 else
9031 if Discrim_Present then
9032 null;
9034 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9035 and then
9036 Has_Per_Object_Constraint
9037 (Defining_Identifier (Parent (Parent (Def))))
9038 then
9039 null;
9041 elsif Is_Access_Type (Etype (Discr)) then
9042 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9044 else
9045 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9046 end if;
9048 Force_Evaluation (Discr_Expr (J));
9049 end if;
9051 -- Check that the designated type of an access discriminant's
9052 -- expression is not a class-wide type unless the discriminant's
9053 -- designated type is also class-wide.
9055 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9056 and then not Is_Class_Wide_Type
9057 (Designated_Type (Etype (Discr)))
9058 and then Etype (Discr_Expr (J)) /= Any_Type
9059 and then Is_Class_Wide_Type
9060 (Designated_Type (Etype (Discr_Expr (J))))
9061 then
9062 Wrong_Type (Discr_Expr (J), Etype (Discr));
9064 elsif Is_Access_Type (Etype (Discr))
9065 and then not Is_Access_Constant (Etype (Discr))
9066 and then Is_Access_Type (Etype (Discr_Expr (J)))
9067 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9068 then
9069 Error_Msg_NE
9070 ("constraint for discriminant& must be access to variable",
9071 Def, Discr);
9072 end if;
9073 end if;
9075 Next_Discriminant (Discr);
9076 end loop;
9078 return Elist;
9079 end Build_Discriminant_Constraints;
9081 ---------------------------------
9082 -- Build_Discriminated_Subtype --
9083 ---------------------------------
9085 procedure Build_Discriminated_Subtype
9086 (T : Entity_Id;
9087 Def_Id : Entity_Id;
9088 Elist : Elist_Id;
9089 Related_Nod : Node_Id;
9090 For_Access : Boolean := False)
9092 Has_Discrs : constant Boolean := Has_Discriminants (T);
9093 Constrained : constant Boolean :=
9094 (Has_Discrs
9095 and then not Is_Empty_Elmt_List (Elist)
9096 and then not Is_Class_Wide_Type (T))
9097 or else Is_Constrained (T);
9099 begin
9100 if Ekind (T) = E_Record_Type then
9101 if For_Access then
9102 Set_Ekind (Def_Id, E_Private_Subtype);
9103 Set_Is_For_Access_Subtype (Def_Id, True);
9104 else
9105 Set_Ekind (Def_Id, E_Record_Subtype);
9106 end if;
9108 -- Inherit preelaboration flag from base, for types for which it
9109 -- may have been set: records, private types, protected types.
9111 Set_Known_To_Have_Preelab_Init
9112 (Def_Id, Known_To_Have_Preelab_Init (T));
9114 elsif Ekind (T) = E_Task_Type then
9115 Set_Ekind (Def_Id, E_Task_Subtype);
9117 elsif Ekind (T) = E_Protected_Type then
9118 Set_Ekind (Def_Id, E_Protected_Subtype);
9119 Set_Known_To_Have_Preelab_Init
9120 (Def_Id, Known_To_Have_Preelab_Init (T));
9122 elsif Is_Private_Type (T) then
9123 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9124 Set_Known_To_Have_Preelab_Init
9125 (Def_Id, Known_To_Have_Preelab_Init (T));
9127 -- Private subtypes may have private dependents
9129 Set_Private_Dependents (Def_Id, New_Elmt_List);
9131 elsif Is_Class_Wide_Type (T) then
9132 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9134 else
9135 -- Incomplete type. Attach subtype to list of dependents, to be
9136 -- completed with full view of parent type, unless is it the
9137 -- designated subtype of a record component within an init_proc.
9138 -- This last case arises for a component of an access type whose
9139 -- designated type is incomplete (e.g. a Taft Amendment type).
9140 -- The designated subtype is within an inner scope, and needs no
9141 -- elaboration, because only the access type is needed in the
9142 -- initialization procedure.
9144 Set_Ekind (Def_Id, Ekind (T));
9146 if For_Access and then Within_Init_Proc then
9147 null;
9148 else
9149 Append_Elmt (Def_Id, Private_Dependents (T));
9150 end if;
9151 end if;
9153 Set_Etype (Def_Id, T);
9154 Init_Size_Align (Def_Id);
9155 Set_Has_Discriminants (Def_Id, Has_Discrs);
9156 Set_Is_Constrained (Def_Id, Constrained);
9158 Set_First_Entity (Def_Id, First_Entity (T));
9159 Set_Last_Entity (Def_Id, Last_Entity (T));
9160 Set_Has_Implicit_Dereference
9161 (Def_Id, Has_Implicit_Dereference (T));
9163 -- If the subtype is the completion of a private declaration, there may
9164 -- have been representation clauses for the partial view, and they must
9165 -- be preserved. Build_Derived_Type chains the inherited clauses with
9166 -- the ones appearing on the extension. If this comes from a subtype
9167 -- declaration, all clauses are inherited.
9169 if No (First_Rep_Item (Def_Id)) then
9170 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9171 end if;
9173 if Is_Tagged_Type (T) then
9174 Set_Is_Tagged_Type (Def_Id);
9175 Make_Class_Wide_Type (Def_Id);
9176 end if;
9178 Set_Stored_Constraint (Def_Id, No_Elist);
9180 if Has_Discrs then
9181 Set_Discriminant_Constraint (Def_Id, Elist);
9182 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9183 end if;
9185 if Is_Tagged_Type (T) then
9187 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9188 -- concurrent record type (which has the list of primitive
9189 -- operations).
9191 if Ada_Version >= Ada_2005
9192 and then Is_Concurrent_Type (T)
9193 then
9194 Set_Corresponding_Record_Type (Def_Id,
9195 Corresponding_Record_Type (T));
9196 else
9197 Set_Direct_Primitive_Operations (Def_Id,
9198 Direct_Primitive_Operations (T));
9199 end if;
9201 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9202 end if;
9204 -- Subtypes introduced by component declarations do not need to be
9205 -- marked as delayed, and do not get freeze nodes, because the semantics
9206 -- verifies that the parents of the subtypes are frozen before the
9207 -- enclosing record is frozen.
9209 if not Is_Type (Scope (Def_Id)) then
9210 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9212 if Is_Private_Type (T)
9213 and then Present (Full_View (T))
9214 then
9215 Conditional_Delay (Def_Id, Full_View (T));
9216 else
9217 Conditional_Delay (Def_Id, T);
9218 end if;
9219 end if;
9221 if Is_Record_Type (T) then
9222 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9224 if Has_Discrs
9225 and then not Is_Empty_Elmt_List (Elist)
9226 and then not For_Access
9227 then
9228 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9229 elsif not For_Access then
9230 Set_Cloned_Subtype (Def_Id, T);
9231 end if;
9232 end if;
9233 end Build_Discriminated_Subtype;
9235 ---------------------------
9236 -- Build_Itype_Reference --
9237 ---------------------------
9239 procedure Build_Itype_Reference
9240 (Ityp : Entity_Id;
9241 Nod : Node_Id)
9243 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9244 begin
9246 -- Itype references are only created for use by the back-end
9248 if Inside_A_Generic then
9249 return;
9250 else
9251 Set_Itype (IR, Ityp);
9252 Insert_After (Nod, IR);
9253 end if;
9254 end Build_Itype_Reference;
9256 ------------------------
9257 -- Build_Scalar_Bound --
9258 ------------------------
9260 function Build_Scalar_Bound
9261 (Bound : Node_Id;
9262 Par_T : Entity_Id;
9263 Der_T : Entity_Id) return Node_Id
9265 New_Bound : Entity_Id;
9267 begin
9268 -- Note: not clear why this is needed, how can the original bound
9269 -- be unanalyzed at this point? and if it is, what business do we
9270 -- have messing around with it? and why is the base type of the
9271 -- parent type the right type for the resolution. It probably is
9272 -- not. It is OK for the new bound we are creating, but not for
9273 -- the old one??? Still if it never happens, no problem.
9275 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9277 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9278 New_Bound := New_Copy (Bound);
9279 Set_Etype (New_Bound, Der_T);
9280 Set_Analyzed (New_Bound);
9282 elsif Is_Entity_Name (Bound) then
9283 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9285 -- The following is almost certainly wrong. What business do we have
9286 -- relocating a node (Bound) that is presumably still attached to
9287 -- the tree elsewhere???
9289 else
9290 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9291 end if;
9293 Set_Etype (New_Bound, Der_T);
9294 return New_Bound;
9295 end Build_Scalar_Bound;
9297 --------------------------------
9298 -- Build_Underlying_Full_View --
9299 --------------------------------
9301 procedure Build_Underlying_Full_View
9302 (N : Node_Id;
9303 Typ : Entity_Id;
9304 Par : Entity_Id)
9306 Loc : constant Source_Ptr := Sloc (N);
9307 Subt : constant Entity_Id :=
9308 Make_Defining_Identifier
9309 (Loc, New_External_Name (Chars (Typ), 'S'));
9311 Constr : Node_Id;
9312 Indic : Node_Id;
9313 C : Node_Id;
9314 Id : Node_Id;
9316 procedure Set_Discriminant_Name (Id : Node_Id);
9317 -- If the derived type has discriminants, they may rename discriminants
9318 -- of the parent. When building the full view of the parent, we need to
9319 -- recover the names of the original discriminants if the constraint is
9320 -- given by named associations.
9322 ---------------------------
9323 -- Set_Discriminant_Name --
9324 ---------------------------
9326 procedure Set_Discriminant_Name (Id : Node_Id) is
9327 Disc : Entity_Id;
9329 begin
9330 Set_Original_Discriminant (Id, Empty);
9332 if Has_Discriminants (Typ) then
9333 Disc := First_Discriminant (Typ);
9334 while Present (Disc) loop
9335 if Chars (Disc) = Chars (Id)
9336 and then Present (Corresponding_Discriminant (Disc))
9337 then
9338 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9339 end if;
9340 Next_Discriminant (Disc);
9341 end loop;
9342 end if;
9343 end Set_Discriminant_Name;
9345 -- Start of processing for Build_Underlying_Full_View
9347 begin
9348 if Nkind (N) = N_Full_Type_Declaration then
9349 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9351 elsif Nkind (N) = N_Subtype_Declaration then
9352 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9354 elsif Nkind (N) = N_Component_Declaration then
9355 Constr :=
9356 New_Copy_Tree
9357 (Constraint (Subtype_Indication (Component_Definition (N))));
9359 else
9360 raise Program_Error;
9361 end if;
9363 C := First (Constraints (Constr));
9364 while Present (C) loop
9365 if Nkind (C) = N_Discriminant_Association then
9366 Id := First (Selector_Names (C));
9367 while Present (Id) loop
9368 Set_Discriminant_Name (Id);
9369 Next (Id);
9370 end loop;
9371 end if;
9373 Next (C);
9374 end loop;
9376 Indic :=
9377 Make_Subtype_Declaration (Loc,
9378 Defining_Identifier => Subt,
9379 Subtype_Indication =>
9380 Make_Subtype_Indication (Loc,
9381 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9382 Constraint => New_Copy_Tree (Constr)));
9384 -- If this is a component subtype for an outer itype, it is not
9385 -- a list member, so simply set the parent link for analysis: if
9386 -- the enclosing type does not need to be in a declarative list,
9387 -- neither do the components.
9389 if Is_List_Member (N)
9390 and then Nkind (N) /= N_Component_Declaration
9391 then
9392 Insert_Before (N, Indic);
9393 else
9394 Set_Parent (Indic, Parent (N));
9395 end if;
9397 Analyze (Indic);
9398 Set_Underlying_Full_View (Typ, Full_View (Subt));
9399 end Build_Underlying_Full_View;
9401 -------------------------------
9402 -- Check_Abstract_Overriding --
9403 -------------------------------
9405 procedure Check_Abstract_Overriding (T : Entity_Id) is
9406 Alias_Subp : Entity_Id;
9407 Elmt : Elmt_Id;
9408 Op_List : Elist_Id;
9409 Subp : Entity_Id;
9410 Type_Def : Node_Id;
9412 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9413 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9414 -- which has pragma Implemented already set. Check whether Subp's entity
9415 -- kind conforms to the implementation kind of the overridden routine.
9417 procedure Check_Pragma_Implemented
9418 (Subp : Entity_Id;
9419 Iface_Subp : Entity_Id);
9420 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9421 -- Iface_Subp and both entities have pragma Implemented already set on
9422 -- them. Check whether the two implementation kinds are conforming.
9424 procedure Inherit_Pragma_Implemented
9425 (Subp : Entity_Id;
9426 Iface_Subp : Entity_Id);
9427 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9428 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9429 -- Propagate the implementation kind of Iface_Subp to Subp.
9431 ------------------------------
9432 -- Check_Pragma_Implemented --
9433 ------------------------------
9435 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9436 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9437 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9438 Subp_Alias : constant Entity_Id := Alias (Subp);
9439 Contr_Typ : Entity_Id;
9440 Impl_Subp : Entity_Id;
9442 begin
9443 -- Subp must have an alias since it is a hidden entity used to link
9444 -- an interface subprogram to its overriding counterpart.
9446 pragma Assert (Present (Subp_Alias));
9448 -- Handle aliases to synchronized wrappers
9450 Impl_Subp := Subp_Alias;
9452 if Is_Primitive_Wrapper (Impl_Subp) then
9453 Impl_Subp := Wrapped_Entity (Impl_Subp);
9454 end if;
9456 -- Extract the type of the controlling formal
9458 Contr_Typ := Etype (First_Formal (Subp_Alias));
9460 if Is_Concurrent_Record_Type (Contr_Typ) then
9461 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9462 end if;
9464 -- An interface subprogram whose implementation kind is By_Entry must
9465 -- be implemented by an entry.
9467 if Impl_Kind = Name_By_Entry
9468 and then Ekind (Impl_Subp) /= E_Entry
9469 then
9470 Error_Msg_Node_2 := Iface_Alias;
9471 Error_Msg_NE
9472 ("type & must implement abstract subprogram & with an entry",
9473 Subp_Alias, Contr_Typ);
9475 elsif Impl_Kind = Name_By_Protected_Procedure then
9477 -- An interface subprogram whose implementation kind is By_
9478 -- Protected_Procedure cannot be implemented by a primitive
9479 -- procedure of a task type.
9481 if Ekind (Contr_Typ) /= E_Protected_Type then
9482 Error_Msg_Node_2 := Contr_Typ;
9483 Error_Msg_NE
9484 ("interface subprogram & cannot be implemented by a " &
9485 "primitive procedure of task type &", Subp_Alias,
9486 Iface_Alias);
9488 -- An interface subprogram whose implementation kind is By_
9489 -- Protected_Procedure must be implemented by a procedure.
9491 elsif Ekind (Impl_Subp) /= E_Procedure then
9492 Error_Msg_Node_2 := Iface_Alias;
9493 Error_Msg_NE
9494 ("type & must implement abstract subprogram & with a " &
9495 "procedure", Subp_Alias, Contr_Typ);
9497 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9498 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9499 then
9500 Error_Msg_Name_1 := Impl_Kind;
9501 Error_Msg_N
9502 ("overriding operation& must have synchronization%",
9503 Subp_Alias);
9504 end if;
9506 -- If primitive has Optional synchronization, overriding operation
9507 -- must match if it has an explicit synchronization..
9509 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9510 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9511 then
9512 Error_Msg_Name_1 := Impl_Kind;
9513 Error_Msg_N
9514 ("overriding operation& must have syncrhonization%",
9515 Subp_Alias);
9516 end if;
9517 end Check_Pragma_Implemented;
9519 ------------------------------
9520 -- Check_Pragma_Implemented --
9521 ------------------------------
9523 procedure Check_Pragma_Implemented
9524 (Subp : Entity_Id;
9525 Iface_Subp : Entity_Id)
9527 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9528 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9530 begin
9531 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9532 -- and overriding subprogram are different. In general this is an
9533 -- error except when the implementation kind of the overridden
9534 -- subprograms is By_Any or Optional.
9536 if Iface_Kind /= Subp_Kind
9537 and then Iface_Kind /= Name_By_Any
9538 and then Iface_Kind /= Name_Optional
9539 then
9540 if Iface_Kind = Name_By_Entry then
9541 Error_Msg_N
9542 ("incompatible implementation kind, overridden subprogram " &
9543 "is marked By_Entry", Subp);
9544 else
9545 Error_Msg_N
9546 ("incompatible implementation kind, overridden subprogram " &
9547 "is marked By_Protected_Procedure", Subp);
9548 end if;
9549 end if;
9550 end Check_Pragma_Implemented;
9552 --------------------------------
9553 -- Inherit_Pragma_Implemented --
9554 --------------------------------
9556 procedure Inherit_Pragma_Implemented
9557 (Subp : Entity_Id;
9558 Iface_Subp : Entity_Id)
9560 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9561 Loc : constant Source_Ptr := Sloc (Subp);
9562 Impl_Prag : Node_Id;
9564 begin
9565 -- Since the implementation kind is stored as a representation item
9566 -- rather than a flag, create a pragma node.
9568 Impl_Prag :=
9569 Make_Pragma (Loc,
9570 Chars => Name_Implemented,
9571 Pragma_Argument_Associations => New_List (
9572 Make_Pragma_Argument_Association (Loc,
9573 Expression => New_Occurrence_Of (Subp, Loc)),
9575 Make_Pragma_Argument_Association (Loc,
9576 Expression => Make_Identifier (Loc, Iface_Kind))));
9578 -- The pragma doesn't need to be analyzed because it is internally
9579 -- built. It is safe to directly register it as a rep item since we
9580 -- are only interested in the characters of the implementation kind.
9582 Record_Rep_Item (Subp, Impl_Prag);
9583 end Inherit_Pragma_Implemented;
9585 -- Start of processing for Check_Abstract_Overriding
9587 begin
9588 Op_List := Primitive_Operations (T);
9590 -- Loop to check primitive operations
9592 Elmt := First_Elmt (Op_List);
9593 while Present (Elmt) loop
9594 Subp := Node (Elmt);
9595 Alias_Subp := Alias (Subp);
9597 -- Inherited subprograms are identified by the fact that they do not
9598 -- come from source, and the associated source location is the
9599 -- location of the first subtype of the derived type.
9601 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9602 -- subprograms that "require overriding".
9604 -- Special exception, do not complain about failure to override the
9605 -- stream routines _Input and _Output, as well as the primitive
9606 -- operations used in dispatching selects since we always provide
9607 -- automatic overridings for these subprograms.
9609 -- Also ignore this rule for convention CIL since .NET libraries
9610 -- do bizarre things with interfaces???
9612 -- The partial view of T may have been a private extension, for
9613 -- which inherited functions dispatching on result are abstract.
9614 -- If the full view is a null extension, there is no need for
9615 -- overriding in Ada 2005, but wrappers need to be built for them
9616 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9618 if Is_Null_Extension (T)
9619 and then Has_Controlling_Result (Subp)
9620 and then Ada_Version >= Ada_2005
9621 and then Present (Alias_Subp)
9622 and then not Comes_From_Source (Subp)
9623 and then not Is_Abstract_Subprogram (Alias_Subp)
9624 and then not Is_Access_Type (Etype (Subp))
9625 then
9626 null;
9628 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9629 -- processing because this check is done with the aliased
9630 -- entity
9632 elsif Present (Interface_Alias (Subp)) then
9633 null;
9635 elsif (Is_Abstract_Subprogram (Subp)
9636 or else Requires_Overriding (Subp)
9637 or else
9638 (Has_Controlling_Result (Subp)
9639 and then Present (Alias_Subp)
9640 and then not Comes_From_Source (Subp)
9641 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9642 and then not Is_TSS (Subp, TSS_Stream_Input)
9643 and then not Is_TSS (Subp, TSS_Stream_Output)
9644 and then not Is_Abstract_Type (T)
9645 and then Convention (T) /= Convention_CIL
9646 and then not Is_Predefined_Interface_Primitive (Subp)
9648 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9649 -- with abstract interface types because the check will be done
9650 -- with the aliased entity (otherwise we generate a duplicated
9651 -- error message).
9653 and then not Present (Interface_Alias (Subp))
9654 then
9655 if Present (Alias_Subp) then
9657 -- Only perform the check for a derived subprogram when the
9658 -- type has an explicit record extension. This avoids incorrect
9659 -- flagging of abstract subprograms for the case of a type
9660 -- without an extension that is derived from a formal type
9661 -- with a tagged actual (can occur within a private part).
9663 -- Ada 2005 (AI-391): In the case of an inherited function with
9664 -- a controlling result of the type, the rule does not apply if
9665 -- the type is a null extension (unless the parent function
9666 -- itself is abstract, in which case the function must still be
9667 -- be overridden). The expander will generate an overriding
9668 -- wrapper function calling the parent subprogram (see
9669 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9671 Type_Def := Type_Definition (Parent (T));
9673 if Nkind (Type_Def) = N_Derived_Type_Definition
9674 and then Present (Record_Extension_Part (Type_Def))
9675 and then
9676 (Ada_Version < Ada_2005
9677 or else not Is_Null_Extension (T)
9678 or else Ekind (Subp) = E_Procedure
9679 or else not Has_Controlling_Result (Subp)
9680 or else Is_Abstract_Subprogram (Alias_Subp)
9681 or else Requires_Overriding (Subp)
9682 or else Is_Access_Type (Etype (Subp)))
9683 then
9684 -- Avoid reporting error in case of abstract predefined
9685 -- primitive inherited from interface type because the
9686 -- body of internally generated predefined primitives
9687 -- of tagged types are generated later by Freeze_Type
9689 if Is_Interface (Root_Type (T))
9690 and then Is_Abstract_Subprogram (Subp)
9691 and then Is_Predefined_Dispatching_Operation (Subp)
9692 and then not Comes_From_Source (Ultimate_Alias (Subp))
9693 then
9694 null;
9696 else
9697 Error_Msg_NE
9698 ("type must be declared abstract or & overridden",
9699 T, Subp);
9701 -- Traverse the whole chain of aliased subprograms to
9702 -- complete the error notification. This is especially
9703 -- useful for traceability of the chain of entities when
9704 -- the subprogram corresponds with an interface
9705 -- subprogram (which may be defined in another package).
9707 if Present (Alias_Subp) then
9708 declare
9709 E : Entity_Id;
9711 begin
9712 E := Subp;
9713 while Present (Alias (E)) loop
9715 -- Avoid reporting redundant errors on entities
9716 -- inherited from interfaces
9718 if Sloc (E) /= Sloc (T) then
9719 Error_Msg_Sloc := Sloc (E);
9720 Error_Msg_NE
9721 ("\& has been inherited #", T, Subp);
9722 end if;
9724 E := Alias (E);
9725 end loop;
9727 Error_Msg_Sloc := Sloc (E);
9729 -- AI05-0068: report if there is an overriding
9730 -- non-abstract subprogram that is invisible.
9732 if Is_Hidden (E)
9733 and then not Is_Abstract_Subprogram (E)
9734 then
9735 Error_Msg_NE
9736 ("\& subprogram# is not visible",
9737 T, Subp);
9739 else
9740 Error_Msg_NE
9741 ("\& has been inherited from subprogram #",
9742 T, Subp);
9743 end if;
9744 end;
9745 end if;
9746 end if;
9748 -- Ada 2005 (AI-345): Protected or task type implementing
9749 -- abstract interfaces.
9751 elsif Is_Concurrent_Record_Type (T)
9752 and then Present (Interfaces (T))
9753 then
9754 -- If an inherited subprogram is implemented by a protected
9755 -- procedure or an entry, then the first parameter of the
9756 -- inherited subprogram shall be of mode OUT or IN OUT, or
9757 -- an access-to-variable parameter (RM 9.4(11.9/3))
9759 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
9760 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9761 and then Ekind (Subp) /= E_Function
9762 and then not Is_Predefined_Dispatching_Operation (Subp)
9763 then
9764 Error_Msg_PT (T, Subp);
9766 -- Some other kind of overriding failure
9768 else
9769 Error_Msg_NE
9770 ("interface subprogram & must be overridden",
9771 T, Subp);
9773 -- Examine primitive operations of synchronized type,
9774 -- to find homonyms that have the wrong profile.
9776 declare
9777 Prim : Entity_Id;
9779 begin
9780 Prim :=
9781 First_Entity (Corresponding_Concurrent_Type (T));
9782 while Present (Prim) loop
9783 if Chars (Prim) = Chars (Subp) then
9784 Error_Msg_NE
9785 ("profile is not type conformant with "
9786 & "prefixed view profile of "
9787 & "inherited operation&", Prim, Subp);
9788 end if;
9790 Next_Entity (Prim);
9791 end loop;
9792 end;
9793 end if;
9794 end if;
9796 else
9797 Error_Msg_Node_2 := T;
9798 Error_Msg_N
9799 ("abstract subprogram& not allowed for type&", Subp);
9801 -- Also post unconditional warning on the type (unconditional
9802 -- so that if there are more than one of these cases, we get
9803 -- them all, and not just the first one).
9805 Error_Msg_Node_2 := Subp;
9806 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
9807 end if;
9808 end if;
9810 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
9812 -- Subp is an expander-generated procedure which maps an interface
9813 -- alias to a protected wrapper. The interface alias is flagged by
9814 -- pragma Implemented. Ensure that Subp is a procedure when the
9815 -- implementation kind is By_Protected_Procedure or an entry when
9816 -- By_Entry.
9818 if Ada_Version >= Ada_2012
9819 and then Is_Hidden (Subp)
9820 and then Present (Interface_Alias (Subp))
9821 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
9822 then
9823 Check_Pragma_Implemented (Subp);
9824 end if;
9826 -- Subp is an interface primitive which overrides another interface
9827 -- primitive marked with pragma Implemented.
9829 if Ada_Version >= Ada_2012
9830 and then Present (Overridden_Operation (Subp))
9831 and then Has_Rep_Pragma
9832 (Overridden_Operation (Subp), Name_Implemented)
9833 then
9834 -- If the overriding routine is also marked by Implemented, check
9835 -- that the two implementation kinds are conforming.
9837 if Has_Rep_Pragma (Subp, Name_Implemented) then
9838 Check_Pragma_Implemented
9839 (Subp => Subp,
9840 Iface_Subp => Overridden_Operation (Subp));
9842 -- Otherwise the overriding routine inherits the implementation
9843 -- kind from the overridden subprogram.
9845 else
9846 Inherit_Pragma_Implemented
9847 (Subp => Subp,
9848 Iface_Subp => Overridden_Operation (Subp));
9849 end if;
9850 end if;
9852 -- If the operation is a wrapper for a synchronized primitive, it
9853 -- may be called indirectly through a dispatching select. We assume
9854 -- that it will be referenced elsewhere indirectly, and suppress
9855 -- warnings about an unused entity.
9857 if Is_Primitive_Wrapper (Subp)
9858 and then Present (Wrapped_Entity (Subp))
9859 then
9860 Set_Referenced (Wrapped_Entity (Subp));
9861 end if;
9863 Next_Elmt (Elmt);
9864 end loop;
9865 end Check_Abstract_Overriding;
9867 ------------------------------------------------
9868 -- Check_Access_Discriminant_Requires_Limited --
9869 ------------------------------------------------
9871 procedure Check_Access_Discriminant_Requires_Limited
9872 (D : Node_Id;
9873 Loc : Node_Id)
9875 begin
9876 -- A discriminant_specification for an access discriminant shall appear
9877 -- only in the declaration for a task or protected type, or for a type
9878 -- with the reserved word 'limited' in its definition or in one of its
9879 -- ancestors (RM 3.7(10)).
9881 -- AI-0063: The proper condition is that type must be immutably limited,
9882 -- or else be a partial view.
9884 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
9885 if Is_Limited_View (Current_Scope)
9886 or else
9887 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
9888 and then Limited_Present (Parent (Current_Scope)))
9889 then
9890 null;
9892 else
9893 Error_Msg_N
9894 ("access discriminants allowed only for limited types", Loc);
9895 end if;
9896 end if;
9897 end Check_Access_Discriminant_Requires_Limited;
9899 -----------------------------------
9900 -- Check_Aliased_Component_Types --
9901 -----------------------------------
9903 procedure Check_Aliased_Component_Types (T : Entity_Id) is
9904 C : Entity_Id;
9906 begin
9907 -- ??? Also need to check components of record extensions, but not
9908 -- components of protected types (which are always limited).
9910 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
9911 -- types to be unconstrained. This is safe because it is illegal to
9912 -- create access subtypes to such types with explicit discriminant
9913 -- constraints.
9915 if not Is_Limited_Type (T) then
9916 if Ekind (T) = E_Record_Type then
9917 C := First_Component (T);
9918 while Present (C) loop
9919 if Is_Aliased (C)
9920 and then Has_Discriminants (Etype (C))
9921 and then not Is_Constrained (Etype (C))
9922 and then not In_Instance_Body
9923 and then Ada_Version < Ada_2005
9924 then
9925 Error_Msg_N
9926 ("aliased component must be constrained (RM 3.6(11))",
9928 end if;
9930 Next_Component (C);
9931 end loop;
9933 elsif Ekind (T) = E_Array_Type then
9934 if Has_Aliased_Components (T)
9935 and then Has_Discriminants (Component_Type (T))
9936 and then not Is_Constrained (Component_Type (T))
9937 and then not In_Instance_Body
9938 and then Ada_Version < Ada_2005
9939 then
9940 Error_Msg_N
9941 ("aliased component type must be constrained (RM 3.6(11))",
9943 end if;
9944 end if;
9945 end if;
9946 end Check_Aliased_Component_Types;
9948 ----------------------
9949 -- Check_Completion --
9950 ----------------------
9952 procedure Check_Completion (Body_Id : Node_Id := Empty) is
9953 E : Entity_Id;
9955 procedure Post_Error;
9956 -- Post error message for lack of completion for entity E
9958 ----------------
9959 -- Post_Error --
9960 ----------------
9962 procedure Post_Error is
9964 procedure Missing_Body;
9965 -- Output missing body message
9967 ------------------
9968 -- Missing_Body --
9969 ------------------
9971 procedure Missing_Body is
9972 begin
9973 -- Spec is in same unit, so we can post on spec
9975 if In_Same_Source_Unit (Body_Id, E) then
9976 Error_Msg_N ("missing body for &", E);
9978 -- Spec is in a separate unit, so we have to post on the body
9980 else
9981 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
9982 end if;
9983 end Missing_Body;
9985 -- Start of processing for Post_Error
9987 begin
9988 if not Comes_From_Source (E) then
9990 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
9991 -- It may be an anonymous protected type created for a
9992 -- single variable. Post error on variable, if present.
9994 declare
9995 Var : Entity_Id;
9997 begin
9998 Var := First_Entity (Current_Scope);
9999 while Present (Var) loop
10000 exit when Etype (Var) = E
10001 and then Comes_From_Source (Var);
10003 Next_Entity (Var);
10004 end loop;
10006 if Present (Var) then
10007 E := Var;
10008 end if;
10009 end;
10010 end if;
10011 end if;
10013 -- If a generated entity has no completion, then either previous
10014 -- semantic errors have disabled the expansion phase, or else we had
10015 -- missing subunits, or else we are compiling without expansion,
10016 -- or else something is very wrong.
10018 if not Comes_From_Source (E) then
10019 pragma Assert
10020 (Serious_Errors_Detected > 0
10021 or else Configurable_Run_Time_Violations > 0
10022 or else Subunits_Missing
10023 or else not Expander_Active);
10024 return;
10026 -- Here for source entity
10028 else
10029 -- Here if no body to post the error message, so we post the error
10030 -- on the declaration that has no completion. This is not really
10031 -- the right place to post it, think about this later ???
10033 if No (Body_Id) then
10034 if Is_Type (E) then
10035 Error_Msg_NE
10036 ("missing full declaration for }", Parent (E), E);
10037 else
10038 Error_Msg_NE ("missing body for &", Parent (E), E);
10039 end if;
10041 -- Package body has no completion for a declaration that appears
10042 -- in the corresponding spec. Post error on the body, with a
10043 -- reference to the non-completed declaration.
10045 else
10046 Error_Msg_Sloc := Sloc (E);
10048 if Is_Type (E) then
10049 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10051 elsif Is_Overloadable (E)
10052 and then Current_Entity_In_Scope (E) /= E
10053 then
10054 -- It may be that the completion is mistyped and appears as
10055 -- a distinct overloading of the entity.
10057 declare
10058 Candidate : constant Entity_Id :=
10059 Current_Entity_In_Scope (E);
10060 Decl : constant Node_Id :=
10061 Unit_Declaration_Node (Candidate);
10063 begin
10064 if Is_Overloadable (Candidate)
10065 and then Ekind (Candidate) = Ekind (E)
10066 and then Nkind (Decl) = N_Subprogram_Body
10067 and then Acts_As_Spec (Decl)
10068 then
10069 Check_Type_Conformant (Candidate, E);
10071 else
10072 Missing_Body;
10073 end if;
10074 end;
10076 else
10077 Missing_Body;
10078 end if;
10079 end if;
10080 end if;
10081 end Post_Error;
10083 -- Start of processing for Check_Completion
10085 begin
10086 E := First_Entity (Current_Scope);
10087 while Present (E) loop
10088 if Is_Intrinsic_Subprogram (E) then
10089 null;
10091 -- The following situation requires special handling: a child unit
10092 -- that appears in the context clause of the body of its parent:
10094 -- procedure Parent.Child (...);
10096 -- with Parent.Child;
10097 -- package body Parent is
10099 -- Here Parent.Child appears as a local entity, but should not be
10100 -- flagged as requiring completion, because it is a compilation
10101 -- unit.
10103 -- Ignore missing completion for a subprogram that does not come from
10104 -- source (including the _Call primitive operation of RAS types,
10105 -- which has to have the flag Comes_From_Source for other purposes):
10106 -- we assume that the expander will provide the missing completion.
10107 -- In case of previous errors, other expansion actions that provide
10108 -- bodies for null procedures with not be invoked, so inhibit message
10109 -- in those cases.
10111 -- Note that E_Operator is not in the list that follows, because
10112 -- this kind is reserved for predefined operators, that are
10113 -- intrinsic and do not need completion.
10115 elsif Ekind (E) = E_Function
10116 or else Ekind (E) = E_Procedure
10117 or else Ekind (E) = E_Generic_Function
10118 or else Ekind (E) = E_Generic_Procedure
10119 then
10120 if Has_Completion (E) then
10121 null;
10123 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10124 null;
10126 elsif Is_Subprogram (E)
10127 and then (not Comes_From_Source (E)
10128 or else Chars (E) = Name_uCall)
10129 then
10130 null;
10132 elsif
10133 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10134 then
10135 null;
10137 elsif Nkind (Parent (E)) = N_Procedure_Specification
10138 and then Null_Present (Parent (E))
10139 and then Serious_Errors_Detected > 0
10140 then
10141 null;
10143 else
10144 Post_Error;
10145 end if;
10147 elsif Is_Entry (E) then
10148 if not Has_Completion (E) and then
10149 (Ekind (Scope (E)) = E_Protected_Object
10150 or else Ekind (Scope (E)) = E_Protected_Type)
10151 then
10152 Post_Error;
10153 end if;
10155 elsif Is_Package_Or_Generic_Package (E) then
10156 if Unit_Requires_Body (E) then
10157 if not Has_Completion (E)
10158 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10159 N_Compilation_Unit
10160 then
10161 Post_Error;
10162 end if;
10164 elsif not Is_Child_Unit (E) then
10165 May_Need_Implicit_Body (E);
10166 end if;
10168 -- A formal incomplete type (Ada 2012) does not require a completion;
10169 -- other incomplete type declarations do.
10171 elsif Ekind (E) = E_Incomplete_Type
10172 and then No (Underlying_Type (E))
10173 and then not Is_Generic_Type (E)
10174 then
10175 Post_Error;
10177 elsif (Ekind (E) = E_Task_Type or else
10178 Ekind (E) = E_Protected_Type)
10179 and then not Has_Completion (E)
10180 then
10181 Post_Error;
10183 -- A single task declared in the current scope is a constant, verify
10184 -- that the body of its anonymous type is in the same scope. If the
10185 -- task is defined elsewhere, this may be a renaming declaration for
10186 -- which no completion is needed.
10188 elsif Ekind (E) = E_Constant
10189 and then Ekind (Etype (E)) = E_Task_Type
10190 and then not Has_Completion (Etype (E))
10191 and then Scope (Etype (E)) = Current_Scope
10192 then
10193 Post_Error;
10195 elsif Ekind (E) = E_Protected_Object
10196 and then not Has_Completion (Etype (E))
10197 then
10198 Post_Error;
10200 elsif Ekind (E) = E_Record_Type then
10201 if Is_Tagged_Type (E) then
10202 Check_Abstract_Overriding (E);
10203 Check_Conventions (E);
10204 end if;
10206 Check_Aliased_Component_Types (E);
10208 elsif Ekind (E) = E_Array_Type then
10209 Check_Aliased_Component_Types (E);
10211 end if;
10213 Next_Entity (E);
10214 end loop;
10215 end Check_Completion;
10217 ------------------------------------
10218 -- Check_CPP_Type_Has_No_Defaults --
10219 ------------------------------------
10221 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10222 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10223 Clist : Node_Id;
10224 Comp : Node_Id;
10226 begin
10227 -- Obtain the component list
10229 if Nkind (Tdef) = N_Record_Definition then
10230 Clist := Component_List (Tdef);
10231 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
10232 Clist := Component_List (Record_Extension_Part (Tdef));
10233 end if;
10235 -- Check all components to ensure no default expressions
10237 if Present (Clist) then
10238 Comp := First (Component_Items (Clist));
10239 while Present (Comp) loop
10240 if Present (Expression (Comp)) then
10241 Error_Msg_N
10242 ("component of imported 'C'P'P type cannot have "
10243 & "default expression", Expression (Comp));
10244 end if;
10246 Next (Comp);
10247 end loop;
10248 end if;
10249 end Check_CPP_Type_Has_No_Defaults;
10251 ----------------------------
10252 -- Check_Delta_Expression --
10253 ----------------------------
10255 procedure Check_Delta_Expression (E : Node_Id) is
10256 begin
10257 if not (Is_Real_Type (Etype (E))) then
10258 Wrong_Type (E, Any_Real);
10260 elsif not Is_OK_Static_Expression (E) then
10261 Flag_Non_Static_Expr
10262 ("non-static expression used for delta value!", E);
10264 elsif not UR_Is_Positive (Expr_Value_R (E)) then
10265 Error_Msg_N ("delta expression must be positive", E);
10267 else
10268 return;
10269 end if;
10271 -- If any of above errors occurred, then replace the incorrect
10272 -- expression by the real 0.1, which should prevent further errors.
10274 Rewrite (E,
10275 Make_Real_Literal (Sloc (E), Ureal_Tenth));
10276 Analyze_And_Resolve (E, Standard_Float);
10277 end Check_Delta_Expression;
10279 -----------------------------
10280 -- Check_Digits_Expression --
10281 -----------------------------
10283 procedure Check_Digits_Expression (E : Node_Id) is
10284 begin
10285 if not (Is_Integer_Type (Etype (E))) then
10286 Wrong_Type (E, Any_Integer);
10288 elsif not Is_OK_Static_Expression (E) then
10289 Flag_Non_Static_Expr
10290 ("non-static expression used for digits value!", E);
10292 elsif Expr_Value (E) <= 0 then
10293 Error_Msg_N ("digits value must be greater than zero", E);
10295 else
10296 return;
10297 end if;
10299 -- If any of above errors occurred, then replace the incorrect
10300 -- expression by the integer 1, which should prevent further errors.
10302 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
10303 Analyze_And_Resolve (E, Standard_Integer);
10305 end Check_Digits_Expression;
10307 --------------------------
10308 -- Check_Initialization --
10309 --------------------------
10311 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
10312 begin
10313 if Is_Limited_Type (T)
10314 and then not In_Instance
10315 and then not In_Inlined_Body
10316 then
10317 if not OK_For_Limited_Init (T, Exp) then
10319 -- In GNAT mode, this is just a warning, to allow it to be evilly
10320 -- turned off. Otherwise it is a real error.
10322 if GNAT_Mode then
10323 Error_Msg_N
10324 ("??cannot initialize entities of limited type!", Exp);
10326 elsif Ada_Version < Ada_2005 then
10328 -- The side effect removal machinery may generate illegal Ada
10329 -- code to avoid the usage of access types and 'reference in
10330 -- SPARK mode. Since this is legal code with respect to theorem
10331 -- proving, do not emit the error.
10333 if GNATprove_Mode
10334 and then Nkind (Exp) = N_Function_Call
10335 and then Nkind (Parent (Exp)) = N_Object_Declaration
10336 and then not Comes_From_Source
10337 (Defining_Identifier (Parent (Exp)))
10338 then
10339 null;
10341 else
10342 Error_Msg_N
10343 ("cannot initialize entities of limited type", Exp);
10344 Explain_Limited_Type (T, Exp);
10345 end if;
10347 else
10348 -- Specialize error message according to kind of illegal
10349 -- initial expression.
10351 if Nkind (Exp) = N_Type_Conversion
10352 and then Nkind (Expression (Exp)) = N_Function_Call
10353 then
10354 Error_Msg_N
10355 ("illegal context for call"
10356 & " to function with limited result", Exp);
10358 else
10359 Error_Msg_N
10360 ("initialization of limited object requires aggregate "
10361 & "or function call", Exp);
10362 end if;
10363 end if;
10364 end if;
10365 end if;
10366 end Check_Initialization;
10368 ----------------------
10369 -- Check_Interfaces --
10370 ----------------------
10372 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
10373 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
10375 Iface : Node_Id;
10376 Iface_Def : Node_Id;
10377 Iface_Typ : Entity_Id;
10378 Parent_Node : Node_Id;
10380 Is_Task : Boolean := False;
10381 -- Set True if parent type or any progenitor is a task interface
10383 Is_Protected : Boolean := False;
10384 -- Set True if parent type or any progenitor is a protected interface
10386 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
10387 -- Check that a progenitor is compatible with declaration.
10388 -- Error is posted on Error_Node.
10390 ------------------
10391 -- Check_Ifaces --
10392 ------------------
10394 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
10395 Iface_Id : constant Entity_Id :=
10396 Defining_Identifier (Parent (Iface_Def));
10397 Type_Def : Node_Id;
10399 begin
10400 if Nkind (N) = N_Private_Extension_Declaration then
10401 Type_Def := N;
10402 else
10403 Type_Def := Type_Definition (N);
10404 end if;
10406 if Is_Task_Interface (Iface_Id) then
10407 Is_Task := True;
10409 elsif Is_Protected_Interface (Iface_Id) then
10410 Is_Protected := True;
10411 end if;
10413 if Is_Synchronized_Interface (Iface_Id) then
10415 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
10416 -- extension derived from a synchronized interface must explicitly
10417 -- be declared synchronized, because the full view will be a
10418 -- synchronized type.
10420 if Nkind (N) = N_Private_Extension_Declaration then
10421 if not Synchronized_Present (N) then
10422 Error_Msg_NE
10423 ("private extension of& must be explicitly synchronized",
10424 N, Iface_Id);
10425 end if;
10427 -- However, by 3.9.4(16/2), a full type that is a record extension
10428 -- is never allowed to derive from a synchronized interface (note
10429 -- that interfaces must be excluded from this check, because those
10430 -- are represented by derived type definitions in some cases).
10432 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10433 and then not Interface_Present (Type_Definition (N))
10434 then
10435 Error_Msg_N ("record extension cannot derive from synchronized"
10436 & " interface", Error_Node);
10437 end if;
10438 end if;
10440 -- Check that the characteristics of the progenitor are compatible
10441 -- with the explicit qualifier in the declaration.
10442 -- The check only applies to qualifiers that come from source.
10443 -- Limited_Present also appears in the declaration of corresponding
10444 -- records, and the check does not apply to them.
10446 if Limited_Present (Type_Def)
10447 and then not
10448 Is_Concurrent_Record_Type (Defining_Identifier (N))
10449 then
10450 if Is_Limited_Interface (Parent_Type)
10451 and then not Is_Limited_Interface (Iface_Id)
10452 then
10453 Error_Msg_NE
10454 ("progenitor& must be limited interface",
10455 Error_Node, Iface_Id);
10457 elsif
10458 (Task_Present (Iface_Def)
10459 or else Protected_Present (Iface_Def)
10460 or else Synchronized_Present (Iface_Def))
10461 and then Nkind (N) /= N_Private_Extension_Declaration
10462 and then not Error_Posted (N)
10463 then
10464 Error_Msg_NE
10465 ("progenitor& must be limited interface",
10466 Error_Node, Iface_Id);
10467 end if;
10469 -- Protected interfaces can only inherit from limited, synchronized
10470 -- or protected interfaces.
10472 elsif Nkind (N) = N_Full_Type_Declaration
10473 and then Protected_Present (Type_Def)
10474 then
10475 if Limited_Present (Iface_Def)
10476 or else Synchronized_Present (Iface_Def)
10477 or else Protected_Present (Iface_Def)
10478 then
10479 null;
10481 elsif Task_Present (Iface_Def) then
10482 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10483 & " from task interface", Error_Node);
10485 else
10486 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10487 & " from non-limited interface", Error_Node);
10488 end if;
10490 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
10491 -- limited and synchronized.
10493 elsif Synchronized_Present (Type_Def) then
10494 if Limited_Present (Iface_Def)
10495 or else Synchronized_Present (Iface_Def)
10496 then
10497 null;
10499 elsif Protected_Present (Iface_Def)
10500 and then Nkind (N) /= N_Private_Extension_Declaration
10501 then
10502 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10503 & " from protected interface", Error_Node);
10505 elsif Task_Present (Iface_Def)
10506 and then Nkind (N) /= N_Private_Extension_Declaration
10507 then
10508 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10509 & " from task interface", Error_Node);
10511 elsif not Is_Limited_Interface (Iface_Id) then
10512 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10513 & " from non-limited interface", Error_Node);
10514 end if;
10516 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
10517 -- synchronized or task interfaces.
10519 elsif Nkind (N) = N_Full_Type_Declaration
10520 and then Task_Present (Type_Def)
10521 then
10522 if Limited_Present (Iface_Def)
10523 or else Synchronized_Present (Iface_Def)
10524 or else Task_Present (Iface_Def)
10525 then
10526 null;
10528 elsif Protected_Present (Iface_Def) then
10529 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10530 & " protected interface", Error_Node);
10532 else
10533 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10534 & " non-limited interface", Error_Node);
10535 end if;
10536 end if;
10537 end Check_Ifaces;
10539 -- Start of processing for Check_Interfaces
10541 begin
10542 if Is_Interface (Parent_Type) then
10543 if Is_Task_Interface (Parent_Type) then
10544 Is_Task := True;
10546 elsif Is_Protected_Interface (Parent_Type) then
10547 Is_Protected := True;
10548 end if;
10549 end if;
10551 if Nkind (N) = N_Private_Extension_Declaration then
10553 -- Check that progenitors are compatible with declaration
10555 Iface := First (Interface_List (Def));
10556 while Present (Iface) loop
10557 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10559 Parent_Node := Parent (Base_Type (Iface_Typ));
10560 Iface_Def := Type_Definition (Parent_Node);
10562 if not Is_Interface (Iface_Typ) then
10563 Diagnose_Interface (Iface, Iface_Typ);
10565 else
10566 Check_Ifaces (Iface_Def, Iface);
10567 end if;
10569 Next (Iface);
10570 end loop;
10572 if Is_Task and Is_Protected then
10573 Error_Msg_N
10574 ("type cannot derive from task and protected interface", N);
10575 end if;
10577 return;
10578 end if;
10580 -- Full type declaration of derived type.
10581 -- Check compatibility with parent if it is interface type
10583 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10584 and then Is_Interface (Parent_Type)
10585 then
10586 Parent_Node := Parent (Parent_Type);
10588 -- More detailed checks for interface varieties
10590 Check_Ifaces
10591 (Iface_Def => Type_Definition (Parent_Node),
10592 Error_Node => Subtype_Indication (Type_Definition (N)));
10593 end if;
10595 Iface := First (Interface_List (Def));
10596 while Present (Iface) loop
10597 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10599 Parent_Node := Parent (Base_Type (Iface_Typ));
10600 Iface_Def := Type_Definition (Parent_Node);
10602 if not Is_Interface (Iface_Typ) then
10603 Diagnose_Interface (Iface, Iface_Typ);
10605 else
10606 -- "The declaration of a specific descendant of an interface
10607 -- type freezes the interface type" RM 13.14
10609 Freeze_Before (N, Iface_Typ);
10610 Check_Ifaces (Iface_Def, Error_Node => Iface);
10611 end if;
10613 Next (Iface);
10614 end loop;
10616 if Is_Task and Is_Protected then
10617 Error_Msg_N
10618 ("type cannot derive from task and protected interface", N);
10619 end if;
10620 end Check_Interfaces;
10622 ------------------------------------
10623 -- Check_Or_Process_Discriminants --
10624 ------------------------------------
10626 -- If an incomplete or private type declaration was already given for the
10627 -- type, the discriminants may have already been processed if they were
10628 -- present on the incomplete declaration. In this case a full conformance
10629 -- check has been performed in Find_Type_Name, and we then recheck here
10630 -- some properties that can't be checked on the partial view alone.
10631 -- Otherwise we call Process_Discriminants.
10633 procedure Check_Or_Process_Discriminants
10634 (N : Node_Id;
10635 T : Entity_Id;
10636 Prev : Entity_Id := Empty)
10638 begin
10639 if Has_Discriminants (T) then
10641 -- Discriminants are already set on T if they were already present
10642 -- on the partial view. Make them visible to component declarations.
10644 declare
10645 D : Entity_Id;
10646 -- Discriminant on T (full view) referencing expr on partial view
10648 Prev_D : Entity_Id;
10649 -- Entity of corresponding discriminant on partial view
10651 New_D : Node_Id;
10652 -- Discriminant specification for full view, expression is the
10653 -- syntactic copy on full view (which has been checked for
10654 -- conformance with partial view), only used here to post error
10655 -- message.
10657 begin
10658 D := First_Discriminant (T);
10659 New_D := First (Discriminant_Specifications (N));
10660 while Present (D) loop
10661 Prev_D := Current_Entity (D);
10662 Set_Current_Entity (D);
10663 Set_Is_Immediately_Visible (D);
10664 Set_Homonym (D, Prev_D);
10666 -- Handle the case where there is an untagged partial view and
10667 -- the full view is tagged: must disallow discriminants with
10668 -- defaults, unless compiling for Ada 2012, which allows a
10669 -- limited tagged type to have defaulted discriminants (see
10670 -- AI05-0214). However, suppress error here if it was already
10671 -- reported on the default expression of the partial view.
10673 if Is_Tagged_Type (T)
10674 and then Present (Expression (Parent (D)))
10675 and then (not Is_Limited_Type (Current_Scope)
10676 or else Ada_Version < Ada_2012)
10677 and then not Error_Posted (Expression (Parent (D)))
10678 then
10679 if Ada_Version >= Ada_2012 then
10680 Error_Msg_N
10681 ("discriminants of nonlimited tagged type cannot have"
10682 & " defaults",
10683 Expression (New_D));
10684 else
10685 Error_Msg_N
10686 ("discriminants of tagged type cannot have defaults",
10687 Expression (New_D));
10688 end if;
10689 end if;
10691 -- Ada 2005 (AI-230): Access discriminant allowed in
10692 -- non-limited record types.
10694 if Ada_Version < Ada_2005 then
10696 -- This restriction gets applied to the full type here. It
10697 -- has already been applied earlier to the partial view.
10699 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
10700 end if;
10702 Next_Discriminant (D);
10703 Next (New_D);
10704 end loop;
10705 end;
10707 elsif Present (Discriminant_Specifications (N)) then
10708 Process_Discriminants (N, Prev);
10709 end if;
10710 end Check_Or_Process_Discriminants;
10712 ----------------------
10713 -- Check_Real_Bound --
10714 ----------------------
10716 procedure Check_Real_Bound (Bound : Node_Id) is
10717 begin
10718 if not Is_Real_Type (Etype (Bound)) then
10719 Error_Msg_N
10720 ("bound in real type definition must be of real type", Bound);
10722 elsif not Is_OK_Static_Expression (Bound) then
10723 Flag_Non_Static_Expr
10724 ("non-static expression used for real type bound!", Bound);
10726 else
10727 return;
10728 end if;
10730 Rewrite
10731 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
10732 Analyze (Bound);
10733 Resolve (Bound, Standard_Float);
10734 end Check_Real_Bound;
10736 ------------------------------
10737 -- Complete_Private_Subtype --
10738 ------------------------------
10740 procedure Complete_Private_Subtype
10741 (Priv : Entity_Id;
10742 Full : Entity_Id;
10743 Full_Base : Entity_Id;
10744 Related_Nod : Node_Id)
10746 Save_Next_Entity : Entity_Id;
10747 Save_Homonym : Entity_Id;
10749 begin
10750 -- Set semantic attributes for (implicit) private subtype completion.
10751 -- If the full type has no discriminants, then it is a copy of the full
10752 -- view of the base. Otherwise, it is a subtype of the base with a
10753 -- possible discriminant constraint. Save and restore the original
10754 -- Next_Entity field of full to ensure that the calls to Copy_Node
10755 -- do not corrupt the entity chain.
10757 -- Note that the type of the full view is the same entity as the type of
10758 -- the partial view. In this fashion, the subtype has access to the
10759 -- correct view of the parent.
10761 Save_Next_Entity := Next_Entity (Full);
10762 Save_Homonym := Homonym (Priv);
10764 case Ekind (Full_Base) is
10765 when E_Record_Type |
10766 E_Record_Subtype |
10767 Class_Wide_Kind |
10768 Private_Kind |
10769 Task_Kind |
10770 Protected_Kind =>
10771 Copy_Node (Priv, Full);
10773 Set_Has_Discriminants
10774 (Full, Has_Discriminants (Full_Base));
10775 Set_Has_Unknown_Discriminants
10776 (Full, Has_Unknown_Discriminants (Full_Base));
10777 Set_First_Entity (Full, First_Entity (Full_Base));
10778 Set_Last_Entity (Full, Last_Entity (Full_Base));
10780 -- If the underlying base type is constrained, we know that the
10781 -- full view of the subtype is constrained as well (the converse
10782 -- is not necessarily true).
10784 if Is_Constrained (Full_Base) then
10785 Set_Is_Constrained (Full);
10786 end if;
10788 when others =>
10789 Copy_Node (Full_Base, Full);
10791 Set_Chars (Full, Chars (Priv));
10792 Conditional_Delay (Full, Priv);
10793 Set_Sloc (Full, Sloc (Priv));
10794 end case;
10796 Set_Next_Entity (Full, Save_Next_Entity);
10797 Set_Homonym (Full, Save_Homonym);
10798 Set_Associated_Node_For_Itype (Full, Related_Nod);
10800 -- Set common attributes for all subtypes: kind, convention, etc.
10802 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
10803 Set_Convention (Full, Convention (Full_Base));
10805 -- The Etype of the full view is inconsistent. Gigi needs to see the
10806 -- structural full view, which is what the current scheme gives:
10807 -- the Etype of the full view is the etype of the full base. However,
10808 -- if the full base is a derived type, the full view then looks like
10809 -- a subtype of the parent, not a subtype of the full base. If instead
10810 -- we write:
10812 -- Set_Etype (Full, Full_Base);
10814 -- then we get inconsistencies in the front-end (confusion between
10815 -- views). Several outstanding bugs are related to this ???
10817 Set_Is_First_Subtype (Full, False);
10818 Set_Scope (Full, Scope (Priv));
10819 Set_Size_Info (Full, Full_Base);
10820 Set_RM_Size (Full, RM_Size (Full_Base));
10821 Set_Is_Itype (Full);
10823 -- A subtype of a private-type-without-discriminants, whose full-view
10824 -- has discriminants with default expressions, is not constrained.
10826 if not Has_Discriminants (Priv) then
10827 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
10829 if Has_Discriminants (Full_Base) then
10830 Set_Discriminant_Constraint
10831 (Full, Discriminant_Constraint (Full_Base));
10833 -- The partial view may have been indefinite, the full view
10834 -- might not be.
10836 Set_Has_Unknown_Discriminants
10837 (Full, Has_Unknown_Discriminants (Full_Base));
10838 end if;
10839 end if;
10841 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
10842 Set_Depends_On_Private (Full, Has_Private_Component (Full));
10844 -- Freeze the private subtype entity if its parent is delayed, and not
10845 -- already frozen. We skip this processing if the type is an anonymous
10846 -- subtype of a record component, or is the corresponding record of a
10847 -- protected type, since ???
10849 if not Is_Type (Scope (Full)) then
10850 Set_Has_Delayed_Freeze (Full,
10851 Has_Delayed_Freeze (Full_Base)
10852 and then (not Is_Frozen (Full_Base)));
10853 end if;
10855 Set_Freeze_Node (Full, Empty);
10856 Set_Is_Frozen (Full, False);
10857 Set_Full_View (Priv, Full);
10859 if Has_Discriminants (Full) then
10860 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
10861 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
10863 if Has_Unknown_Discriminants (Full) then
10864 Set_Discriminant_Constraint (Full, No_Elist);
10865 end if;
10866 end if;
10868 if Ekind (Full_Base) = E_Record_Type
10869 and then Has_Discriminants (Full_Base)
10870 and then Has_Discriminants (Priv) -- might not, if errors
10871 and then not Has_Unknown_Discriminants (Priv)
10872 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
10873 then
10874 Create_Constrained_Components
10875 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
10877 -- If the full base is itself derived from private, build a congruent
10878 -- subtype of its underlying type, for use by the back end. For a
10879 -- constrained record component, the declaration cannot be placed on
10880 -- the component list, but it must nevertheless be built an analyzed, to
10881 -- supply enough information for Gigi to compute the size of component.
10883 elsif Ekind (Full_Base) in Private_Kind
10884 and then Is_Derived_Type (Full_Base)
10885 and then Has_Discriminants (Full_Base)
10886 and then (Ekind (Current_Scope) /= E_Record_Subtype)
10887 then
10888 if not Is_Itype (Priv)
10889 and then
10890 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
10891 then
10892 Build_Underlying_Full_View
10893 (Parent (Priv), Full, Etype (Full_Base));
10895 elsif Nkind (Related_Nod) = N_Component_Declaration then
10896 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
10897 end if;
10899 elsif Is_Record_Type (Full_Base) then
10901 -- Show Full is simply a renaming of Full_Base
10903 Set_Cloned_Subtype (Full, Full_Base);
10904 end if;
10906 -- It is unsafe to share the bounds of a scalar type, because the Itype
10907 -- is elaborated on demand, and if a bound is non-static then different
10908 -- orders of elaboration in different units will lead to different
10909 -- external symbols.
10911 if Is_Scalar_Type (Full_Base) then
10912 Set_Scalar_Range (Full,
10913 Make_Range (Sloc (Related_Nod),
10914 Low_Bound =>
10915 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
10916 High_Bound =>
10917 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
10919 -- This completion inherits the bounds of the full parent, but if
10920 -- the parent is an unconstrained floating point type, so is the
10921 -- completion.
10923 if Is_Floating_Point_Type (Full_Base) then
10924 Set_Includes_Infinities
10925 (Scalar_Range (Full), Has_Infinities (Full_Base));
10926 end if;
10927 end if;
10929 -- ??? It seems that a lot of fields are missing that should be copied
10930 -- from Full_Base to Full. Here are some that are introduced in a
10931 -- non-disruptive way but a cleanup is necessary.
10933 if Is_Tagged_Type (Full_Base) then
10934 Set_Is_Tagged_Type (Full);
10935 Set_Direct_Primitive_Operations (Full,
10936 Direct_Primitive_Operations (Full_Base));
10938 -- Inherit class_wide type of full_base in case the partial view was
10939 -- not tagged. Otherwise it has already been created when the private
10940 -- subtype was analyzed.
10942 if No (Class_Wide_Type (Full)) then
10943 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
10944 end if;
10946 -- If this is a subtype of a protected or task type, constrain its
10947 -- corresponding record, unless this is a subtype without constraints,
10948 -- i.e. a simple renaming as with an actual subtype in an instance.
10950 elsif Is_Concurrent_Type (Full_Base) then
10951 if Has_Discriminants (Full)
10952 and then Present (Corresponding_Record_Type (Full_Base))
10953 and then
10954 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
10955 then
10956 Set_Corresponding_Record_Type (Full,
10957 Constrain_Corresponding_Record
10958 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
10960 else
10961 Set_Corresponding_Record_Type (Full,
10962 Corresponding_Record_Type (Full_Base));
10963 end if;
10964 end if;
10966 -- Link rep item chain, and also setting of Has_Predicates from private
10967 -- subtype to full subtype, since we will need these on the full subtype
10968 -- to create the predicate function. Note that the full subtype may
10969 -- already have rep items, inherited from the full view of the base
10970 -- type, so we must be sure not to overwrite these entries.
10972 declare
10973 Append : Boolean;
10974 Item : Node_Id;
10975 Next_Item : Node_Id;
10977 begin
10978 Item := First_Rep_Item (Full);
10980 -- If no existing rep items on full type, we can just link directly
10981 -- to the list of items on the private type.
10983 if No (Item) then
10984 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
10986 -- Otherwise, search to the end of items currently linked to the full
10987 -- subtype and append the private items to the end. However, if Priv
10988 -- and Full already have the same list of rep items, then the append
10989 -- is not done, as that would create a circularity.
10991 elsif Item /= First_Rep_Item (Priv) then
10992 Append := True;
10994 loop
10995 Next_Item := Next_Rep_Item (Item);
10996 exit when No (Next_Item);
10997 Item := Next_Item;
10999 -- If the private view has aspect specifications, the full view
11000 -- inherits them. Since these aspects may already have been
11001 -- attached to the full view during derivation, do not append
11002 -- them if already present.
11004 if Item = First_Rep_Item (Priv) then
11005 Append := False;
11006 exit;
11007 end if;
11008 end loop;
11010 -- And link the private type items at the end of the chain
11012 if Append then
11013 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11014 end if;
11015 end if;
11016 end;
11018 -- Make sure Has_Predicates is set on full type if it is set on the
11019 -- private type. Note that it may already be set on the full type and
11020 -- if so, we don't want to unset it.
11022 if Has_Predicates (Priv) then
11023 Set_Has_Predicates (Full);
11024 end if;
11025 end Complete_Private_Subtype;
11027 ----------------------------
11028 -- Constant_Redeclaration --
11029 ----------------------------
11031 procedure Constant_Redeclaration
11032 (Id : Entity_Id;
11033 N : Node_Id;
11034 T : out Entity_Id)
11036 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11037 Obj_Def : constant Node_Id := Object_Definition (N);
11038 New_T : Entity_Id;
11040 procedure Check_Possible_Deferred_Completion
11041 (Prev_Id : Entity_Id;
11042 Prev_Obj_Def : Node_Id;
11043 Curr_Obj_Def : Node_Id);
11044 -- Determine whether the two object definitions describe the partial
11045 -- and the full view of a constrained deferred constant. Generate
11046 -- a subtype for the full view and verify that it statically matches
11047 -- the subtype of the partial view.
11049 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11050 -- If deferred constant is an access type initialized with an allocator,
11051 -- check whether there is an illegal recursion in the definition,
11052 -- through a default value of some record subcomponent. This is normally
11053 -- detected when generating init procs, but requires this additional
11054 -- mechanism when expansion is disabled.
11056 ----------------------------------------
11057 -- Check_Possible_Deferred_Completion --
11058 ----------------------------------------
11060 procedure Check_Possible_Deferred_Completion
11061 (Prev_Id : Entity_Id;
11062 Prev_Obj_Def : Node_Id;
11063 Curr_Obj_Def : Node_Id)
11065 begin
11066 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11067 and then Present (Constraint (Prev_Obj_Def))
11068 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11069 and then Present (Constraint (Curr_Obj_Def))
11070 then
11071 declare
11072 Loc : constant Source_Ptr := Sloc (N);
11073 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11074 Decl : constant Node_Id :=
11075 Make_Subtype_Declaration (Loc,
11076 Defining_Identifier => Def_Id,
11077 Subtype_Indication =>
11078 Relocate_Node (Curr_Obj_Def));
11080 begin
11081 Insert_Before_And_Analyze (N, Decl);
11082 Set_Etype (Id, Def_Id);
11084 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11085 Error_Msg_Sloc := Sloc (Prev_Id);
11086 Error_Msg_N ("subtype does not statically match deferred " &
11087 "declaration#", N);
11088 end if;
11089 end;
11090 end if;
11091 end Check_Possible_Deferred_Completion;
11093 ---------------------------------
11094 -- Check_Recursive_Declaration --
11095 ---------------------------------
11097 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11098 Comp : Entity_Id;
11100 begin
11101 if Is_Record_Type (Typ) then
11102 Comp := First_Component (Typ);
11103 while Present (Comp) loop
11104 if Comes_From_Source (Comp) then
11105 if Present (Expression (Parent (Comp)))
11106 and then Is_Entity_Name (Expression (Parent (Comp)))
11107 and then Entity (Expression (Parent (Comp))) = Prev
11108 then
11109 Error_Msg_Sloc := Sloc (Parent (Comp));
11110 Error_Msg_NE
11111 ("illegal circularity with declaration for&#",
11112 N, Comp);
11113 return;
11115 elsif Is_Record_Type (Etype (Comp)) then
11116 Check_Recursive_Declaration (Etype (Comp));
11117 end if;
11118 end if;
11120 Next_Component (Comp);
11121 end loop;
11122 end if;
11123 end Check_Recursive_Declaration;
11125 -- Start of processing for Constant_Redeclaration
11127 begin
11128 if Nkind (Parent (Prev)) = N_Object_Declaration then
11129 if Nkind (Object_Definition
11130 (Parent (Prev))) = N_Subtype_Indication
11131 then
11132 -- Find type of new declaration. The constraints of the two
11133 -- views must match statically, but there is no point in
11134 -- creating an itype for the full view.
11136 if Nkind (Obj_Def) = N_Subtype_Indication then
11137 Find_Type (Subtype_Mark (Obj_Def));
11138 New_T := Entity (Subtype_Mark (Obj_Def));
11140 else
11141 Find_Type (Obj_Def);
11142 New_T := Entity (Obj_Def);
11143 end if;
11145 T := Etype (Prev);
11147 else
11148 -- The full view may impose a constraint, even if the partial
11149 -- view does not, so construct the subtype.
11151 New_T := Find_Type_Of_Object (Obj_Def, N);
11152 T := New_T;
11153 end if;
11155 else
11156 -- Current declaration is illegal, diagnosed below in Enter_Name
11158 T := Empty;
11159 New_T := Any_Type;
11160 end if;
11162 -- If previous full declaration or a renaming declaration exists, or if
11163 -- a homograph is present, let Enter_Name handle it, either with an
11164 -- error or with the removal of an overridden implicit subprogram.
11165 -- The previous one is a full declaration if it has an expression
11166 -- (which in the case of an aggregate is indicated by the Init flag).
11168 if Ekind (Prev) /= E_Constant
11169 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11170 or else Present (Expression (Parent (Prev)))
11171 or else Has_Init_Expression (Parent (Prev))
11172 or else Present (Full_View (Prev))
11173 then
11174 Enter_Name (Id);
11176 -- Verify that types of both declarations match, or else that both types
11177 -- are anonymous access types whose designated subtypes statically match
11178 -- (as allowed in Ada 2005 by AI-385).
11180 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11181 and then
11182 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11183 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11184 or else Is_Access_Constant (Etype (New_T)) /=
11185 Is_Access_Constant (Etype (Prev))
11186 or else Can_Never_Be_Null (Etype (New_T)) /=
11187 Can_Never_Be_Null (Etype (Prev))
11188 or else Null_Exclusion_Present (Parent (Prev)) /=
11189 Null_Exclusion_Present (Parent (Id))
11190 or else not Subtypes_Statically_Match
11191 (Designated_Type (Etype (Prev)),
11192 Designated_Type (Etype (New_T))))
11193 then
11194 Error_Msg_Sloc := Sloc (Prev);
11195 Error_Msg_N ("type does not match declaration#", N);
11196 Set_Full_View (Prev, Id);
11197 Set_Etype (Id, Any_Type);
11199 elsif
11200 Null_Exclusion_Present (Parent (Prev))
11201 and then not Null_Exclusion_Present (N)
11202 then
11203 Error_Msg_Sloc := Sloc (Prev);
11204 Error_Msg_N ("null-exclusion does not match declaration#", N);
11205 Set_Full_View (Prev, Id);
11206 Set_Etype (Id, Any_Type);
11208 -- If so, process the full constant declaration
11210 else
11211 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11212 -- the deferred declaration is constrained, then the subtype defined
11213 -- by the subtype_indication in the full declaration shall match it
11214 -- statically.
11216 Check_Possible_Deferred_Completion
11217 (Prev_Id => Prev,
11218 Prev_Obj_Def => Object_Definition (Parent (Prev)),
11219 Curr_Obj_Def => Obj_Def);
11221 Set_Full_View (Prev, Id);
11222 Set_Is_Public (Id, Is_Public (Prev));
11223 Set_Is_Internal (Id);
11224 Append_Entity (Id, Current_Scope);
11226 -- Check ALIASED present if present before (RM 7.4(7))
11228 if Is_Aliased (Prev)
11229 and then not Aliased_Present (N)
11230 then
11231 Error_Msg_Sloc := Sloc (Prev);
11232 Error_Msg_N ("ALIASED required (see declaration#)", N);
11233 end if;
11235 -- Check that placement is in private part and that the incomplete
11236 -- declaration appeared in the visible part.
11238 if Ekind (Current_Scope) = E_Package
11239 and then not In_Private_Part (Current_Scope)
11240 then
11241 Error_Msg_Sloc := Sloc (Prev);
11242 Error_Msg_N
11243 ("full constant for declaration#"
11244 & " must be in private part", N);
11246 elsif Ekind (Current_Scope) = E_Package
11247 and then
11248 List_Containing (Parent (Prev)) /=
11249 Visible_Declarations (Package_Specification (Current_Scope))
11250 then
11251 Error_Msg_N
11252 ("deferred constant must be declared in visible part",
11253 Parent (Prev));
11254 end if;
11256 if Is_Access_Type (T)
11257 and then Nkind (Expression (N)) = N_Allocator
11258 then
11259 Check_Recursive_Declaration (Designated_Type (T));
11260 end if;
11262 -- A deferred constant is a visible entity. If type has invariants,
11263 -- verify that the initial value satisfies them.
11265 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
11266 Insert_After (N,
11267 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
11268 end if;
11269 end if;
11270 end Constant_Redeclaration;
11272 ----------------------
11273 -- Constrain_Access --
11274 ----------------------
11276 procedure Constrain_Access
11277 (Def_Id : in out Entity_Id;
11278 S : Node_Id;
11279 Related_Nod : Node_Id)
11281 T : constant Entity_Id := Entity (Subtype_Mark (S));
11282 Desig_Type : constant Entity_Id := Designated_Type (T);
11283 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
11284 Constraint_OK : Boolean := True;
11286 begin
11287 if Is_Array_Type (Desig_Type) then
11288 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
11290 elsif (Is_Record_Type (Desig_Type)
11291 or else Is_Incomplete_Or_Private_Type (Desig_Type))
11292 and then not Is_Constrained (Desig_Type)
11293 then
11294 -- ??? The following code is a temporary bypass to ignore a
11295 -- discriminant constraint on access type if it is constraining
11296 -- the current record. Avoid creating the implicit subtype of the
11297 -- record we are currently compiling since right now, we cannot
11298 -- handle these. For now, just return the access type itself.
11300 if Desig_Type = Current_Scope
11301 and then No (Def_Id)
11302 then
11303 Set_Ekind (Desig_Subtype, E_Record_Subtype);
11304 Def_Id := Entity (Subtype_Mark (S));
11306 -- This call added to ensure that the constraint is analyzed
11307 -- (needed for a B test). Note that we still return early from
11308 -- this procedure to avoid recursive processing. ???
11310 Constrain_Discriminated_Type
11311 (Desig_Subtype, S, Related_Nod, For_Access => True);
11312 return;
11313 end if;
11315 -- Enforce rule that the constraint is illegal if there is an
11316 -- unconstrained view of the designated type. This means that the
11317 -- partial view (either a private type declaration or a derivation
11318 -- from a private type) has no discriminants. (Defect Report
11319 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
11321 -- Rule updated for Ada 2005: The private type is said to have
11322 -- a constrained partial view, given that objects of the type
11323 -- can be declared. Furthermore, the rule applies to all access
11324 -- types, unlike the rule concerning default discriminants (see
11325 -- RM 3.7.1(7/3))
11327 if (Ekind (T) = E_General_Access_Type
11328 or else Ada_Version >= Ada_2005)
11329 and then Has_Private_Declaration (Desig_Type)
11330 and then In_Open_Scopes (Scope (Desig_Type))
11331 and then Has_Discriminants (Desig_Type)
11332 then
11333 declare
11334 Pack : constant Node_Id :=
11335 Unit_Declaration_Node (Scope (Desig_Type));
11336 Decls : List_Id;
11337 Decl : Node_Id;
11339 begin
11340 if Nkind (Pack) = N_Package_Declaration then
11341 Decls := Visible_Declarations (Specification (Pack));
11342 Decl := First (Decls);
11343 while Present (Decl) loop
11344 if (Nkind (Decl) = N_Private_Type_Declaration
11345 and then
11346 Chars (Defining_Identifier (Decl)) =
11347 Chars (Desig_Type))
11349 or else
11350 (Nkind (Decl) = N_Full_Type_Declaration
11351 and then
11352 Chars (Defining_Identifier (Decl)) =
11353 Chars (Desig_Type)
11354 and then Is_Derived_Type (Desig_Type)
11355 and then
11356 Has_Private_Declaration (Etype (Desig_Type)))
11357 then
11358 if No (Discriminant_Specifications (Decl)) then
11359 Error_Msg_N
11360 ("cannot constrain access type if designated " &
11361 "type has constrained partial view", S);
11362 end if;
11364 exit;
11365 end if;
11367 Next (Decl);
11368 end loop;
11369 end if;
11370 end;
11371 end if;
11373 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
11374 For_Access => True);
11376 elsif (Is_Task_Type (Desig_Type)
11377 or else Is_Protected_Type (Desig_Type))
11378 and then not Is_Constrained (Desig_Type)
11379 then
11380 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
11382 else
11383 Error_Msg_N ("invalid constraint on access type", S);
11384 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
11385 Constraint_OK := False;
11386 end if;
11388 if No (Def_Id) then
11389 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
11390 else
11391 Set_Ekind (Def_Id, E_Access_Subtype);
11392 end if;
11394 if Constraint_OK then
11395 Set_Etype (Def_Id, Base_Type (T));
11397 if Is_Private_Type (Desig_Type) then
11398 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
11399 end if;
11400 else
11401 Set_Etype (Def_Id, Any_Type);
11402 end if;
11404 Set_Size_Info (Def_Id, T);
11405 Set_Is_Constrained (Def_Id, Constraint_OK);
11406 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
11407 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11408 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
11410 Conditional_Delay (Def_Id, T);
11412 -- AI-363 : Subtypes of general access types whose designated types have
11413 -- default discriminants are disallowed. In instances, the rule has to
11414 -- be checked against the actual, of which T is the subtype. In a
11415 -- generic body, the rule is checked assuming that the actual type has
11416 -- defaulted discriminants.
11418 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
11419 if Ekind (Base_Type (T)) = E_General_Access_Type
11420 and then Has_Defaulted_Discriminants (Desig_Type)
11421 then
11422 if Ada_Version < Ada_2005 then
11423 Error_Msg_N
11424 ("access subtype of general access type would not " &
11425 "be allowed in Ada 2005?y?", S);
11426 else
11427 Error_Msg_N
11428 ("access subtype of general access type not allowed", S);
11429 end if;
11431 Error_Msg_N ("\discriminants have defaults", S);
11433 elsif Is_Access_Type (T)
11434 and then Is_Generic_Type (Desig_Type)
11435 and then Has_Discriminants (Desig_Type)
11436 and then In_Package_Body (Current_Scope)
11437 then
11438 if Ada_Version < Ada_2005 then
11439 Error_Msg_N
11440 ("access subtype would not be allowed in generic body " &
11441 "in Ada 2005?y?", S);
11442 else
11443 Error_Msg_N
11444 ("access subtype not allowed in generic body", S);
11445 end if;
11447 Error_Msg_N
11448 ("\designated type is a discriminated formal", S);
11449 end if;
11450 end if;
11451 end Constrain_Access;
11453 ---------------------
11454 -- Constrain_Array --
11455 ---------------------
11457 procedure Constrain_Array
11458 (Def_Id : in out Entity_Id;
11459 SI : Node_Id;
11460 Related_Nod : Node_Id;
11461 Related_Id : Entity_Id;
11462 Suffix : Character)
11464 C : constant Node_Id := Constraint (SI);
11465 Number_Of_Constraints : Nat := 0;
11466 Index : Node_Id;
11467 S, T : Entity_Id;
11468 Constraint_OK : Boolean := True;
11470 begin
11471 T := Entity (Subtype_Mark (SI));
11473 if Is_Access_Type (T) then
11474 T := Designated_Type (T);
11475 end if;
11477 -- If an index constraint follows a subtype mark in a subtype indication
11478 -- then the type or subtype denoted by the subtype mark must not already
11479 -- impose an index constraint. The subtype mark must denote either an
11480 -- unconstrained array type or an access type whose designated type
11481 -- is such an array type... (RM 3.6.1)
11483 if Is_Constrained (T) then
11484 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
11485 Constraint_OK := False;
11487 else
11488 S := First (Constraints (C));
11489 while Present (S) loop
11490 Number_Of_Constraints := Number_Of_Constraints + 1;
11491 Next (S);
11492 end loop;
11494 -- In either case, the index constraint must provide a discrete
11495 -- range for each index of the array type and the type of each
11496 -- discrete range must be the same as that of the corresponding
11497 -- index. (RM 3.6.1)
11499 if Number_Of_Constraints /= Number_Dimensions (T) then
11500 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
11501 Constraint_OK := False;
11503 else
11504 S := First (Constraints (C));
11505 Index := First_Index (T);
11506 Analyze (Index);
11508 -- Apply constraints to each index type
11510 for J in 1 .. Number_Of_Constraints loop
11511 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
11512 Next (Index);
11513 Next (S);
11514 end loop;
11516 end if;
11517 end if;
11519 if No (Def_Id) then
11520 Def_Id :=
11521 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
11522 Set_Parent (Def_Id, Related_Nod);
11524 else
11525 Set_Ekind (Def_Id, E_Array_Subtype);
11526 end if;
11528 Set_Size_Info (Def_Id, (T));
11529 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11530 Set_Etype (Def_Id, Base_Type (T));
11532 if Constraint_OK then
11533 Set_First_Index (Def_Id, First (Constraints (C)));
11534 else
11535 Set_First_Index (Def_Id, First_Index (T));
11536 end if;
11538 Set_Is_Constrained (Def_Id, True);
11539 Set_Is_Aliased (Def_Id, Is_Aliased (T));
11540 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11542 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
11543 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
11545 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
11546 -- We need to initialize the attribute because if Def_Id is previously
11547 -- analyzed through a limited_with clause, it will have the attributes
11548 -- of an incomplete type, one of which is an Elist that overlaps the
11549 -- Packed_Array_Impl_Type field.
11551 Set_Packed_Array_Impl_Type (Def_Id, Empty);
11553 -- Build a freeze node if parent still needs one. Also make sure that
11554 -- the Depends_On_Private status is set because the subtype will need
11555 -- reprocessing at the time the base type does, and also we must set a
11556 -- conditional delay.
11558 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
11559 Conditional_Delay (Def_Id, T);
11560 end Constrain_Array;
11562 ------------------------------
11563 -- Constrain_Component_Type --
11564 ------------------------------
11566 function Constrain_Component_Type
11567 (Comp : Entity_Id;
11568 Constrained_Typ : Entity_Id;
11569 Related_Node : Node_Id;
11570 Typ : Entity_Id;
11571 Constraints : Elist_Id) return Entity_Id
11573 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
11574 Compon_Type : constant Entity_Id := Etype (Comp);
11576 function Build_Constrained_Array_Type
11577 (Old_Type : Entity_Id) return Entity_Id;
11578 -- If Old_Type is an array type, one of whose indexes is constrained
11579 -- by a discriminant, build an Itype whose constraint replaces the
11580 -- discriminant with its value in the constraint.
11582 function Build_Constrained_Discriminated_Type
11583 (Old_Type : Entity_Id) return Entity_Id;
11584 -- Ditto for record components
11586 function Build_Constrained_Access_Type
11587 (Old_Type : Entity_Id) return Entity_Id;
11588 -- Ditto for access types. Makes use of previous two functions, to
11589 -- constrain designated type.
11591 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
11592 -- T is an array or discriminated type, C is a list of constraints
11593 -- that apply to T. This routine builds the constrained subtype.
11595 function Is_Discriminant (Expr : Node_Id) return Boolean;
11596 -- Returns True if Expr is a discriminant
11598 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
11599 -- Find the value of discriminant Discrim in Constraint
11601 -----------------------------------
11602 -- Build_Constrained_Access_Type --
11603 -----------------------------------
11605 function Build_Constrained_Access_Type
11606 (Old_Type : Entity_Id) return Entity_Id
11608 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
11609 Itype : Entity_Id;
11610 Desig_Subtype : Entity_Id;
11611 Scop : Entity_Id;
11613 begin
11614 -- if the original access type was not embedded in the enclosing
11615 -- type definition, there is no need to produce a new access
11616 -- subtype. In fact every access type with an explicit constraint
11617 -- generates an itype whose scope is the enclosing record.
11619 if not Is_Type (Scope (Old_Type)) then
11620 return Old_Type;
11622 elsif Is_Array_Type (Desig_Type) then
11623 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
11625 elsif Has_Discriminants (Desig_Type) then
11627 -- This may be an access type to an enclosing record type for
11628 -- which we are constructing the constrained components. Return
11629 -- the enclosing record subtype. This is not always correct,
11630 -- but avoids infinite recursion. ???
11632 Desig_Subtype := Any_Type;
11634 for J in reverse 0 .. Scope_Stack.Last loop
11635 Scop := Scope_Stack.Table (J).Entity;
11637 if Is_Type (Scop)
11638 and then Base_Type (Scop) = Base_Type (Desig_Type)
11639 then
11640 Desig_Subtype := Scop;
11641 end if;
11643 exit when not Is_Type (Scop);
11644 end loop;
11646 if Desig_Subtype = Any_Type then
11647 Desig_Subtype :=
11648 Build_Constrained_Discriminated_Type (Desig_Type);
11649 end if;
11651 else
11652 return Old_Type;
11653 end if;
11655 if Desig_Subtype /= Desig_Type then
11657 -- The Related_Node better be here or else we won't be able
11658 -- to attach new itypes to a node in the tree.
11660 pragma Assert (Present (Related_Node));
11662 Itype := Create_Itype (E_Access_Subtype, Related_Node);
11664 Set_Etype (Itype, Base_Type (Old_Type));
11665 Set_Size_Info (Itype, (Old_Type));
11666 Set_Directly_Designated_Type (Itype, Desig_Subtype);
11667 Set_Depends_On_Private (Itype, Has_Private_Component
11668 (Old_Type));
11669 Set_Is_Access_Constant (Itype, Is_Access_Constant
11670 (Old_Type));
11672 -- The new itype needs freezing when it depends on a not frozen
11673 -- type and the enclosing subtype needs freezing.
11675 if Has_Delayed_Freeze (Constrained_Typ)
11676 and then not Is_Frozen (Constrained_Typ)
11677 then
11678 Conditional_Delay (Itype, Base_Type (Old_Type));
11679 end if;
11681 return Itype;
11683 else
11684 return Old_Type;
11685 end if;
11686 end Build_Constrained_Access_Type;
11688 ----------------------------------
11689 -- Build_Constrained_Array_Type --
11690 ----------------------------------
11692 function Build_Constrained_Array_Type
11693 (Old_Type : Entity_Id) return Entity_Id
11695 Lo_Expr : Node_Id;
11696 Hi_Expr : Node_Id;
11697 Old_Index : Node_Id;
11698 Range_Node : Node_Id;
11699 Constr_List : List_Id;
11701 Need_To_Create_Itype : Boolean := False;
11703 begin
11704 Old_Index := First_Index (Old_Type);
11705 while Present (Old_Index) loop
11706 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11708 if Is_Discriminant (Lo_Expr)
11709 or else Is_Discriminant (Hi_Expr)
11710 then
11711 Need_To_Create_Itype := True;
11712 end if;
11714 Next_Index (Old_Index);
11715 end loop;
11717 if Need_To_Create_Itype then
11718 Constr_List := New_List;
11720 Old_Index := First_Index (Old_Type);
11721 while Present (Old_Index) loop
11722 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11724 if Is_Discriminant (Lo_Expr) then
11725 Lo_Expr := Get_Discr_Value (Lo_Expr);
11726 end if;
11728 if Is_Discriminant (Hi_Expr) then
11729 Hi_Expr := Get_Discr_Value (Hi_Expr);
11730 end if;
11732 Range_Node :=
11733 Make_Range
11734 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
11736 Append (Range_Node, To => Constr_List);
11738 Next_Index (Old_Index);
11739 end loop;
11741 return Build_Subtype (Old_Type, Constr_List);
11743 else
11744 return Old_Type;
11745 end if;
11746 end Build_Constrained_Array_Type;
11748 ------------------------------------------
11749 -- Build_Constrained_Discriminated_Type --
11750 ------------------------------------------
11752 function Build_Constrained_Discriminated_Type
11753 (Old_Type : Entity_Id) return Entity_Id
11755 Expr : Node_Id;
11756 Constr_List : List_Id;
11757 Old_Constraint : Elmt_Id;
11759 Need_To_Create_Itype : Boolean := False;
11761 begin
11762 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11763 while Present (Old_Constraint) loop
11764 Expr := Node (Old_Constraint);
11766 if Is_Discriminant (Expr) then
11767 Need_To_Create_Itype := True;
11768 end if;
11770 Next_Elmt (Old_Constraint);
11771 end loop;
11773 if Need_To_Create_Itype then
11774 Constr_List := New_List;
11776 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11777 while Present (Old_Constraint) loop
11778 Expr := Node (Old_Constraint);
11780 if Is_Discriminant (Expr) then
11781 Expr := Get_Discr_Value (Expr);
11782 end if;
11784 Append (New_Copy_Tree (Expr), To => Constr_List);
11786 Next_Elmt (Old_Constraint);
11787 end loop;
11789 return Build_Subtype (Old_Type, Constr_List);
11791 else
11792 return Old_Type;
11793 end if;
11794 end Build_Constrained_Discriminated_Type;
11796 -------------------
11797 -- Build_Subtype --
11798 -------------------
11800 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
11801 Indic : Node_Id;
11802 Subtyp_Decl : Node_Id;
11803 Def_Id : Entity_Id;
11804 Btyp : Entity_Id := Base_Type (T);
11806 begin
11807 -- The Related_Node better be here or else we won't be able to
11808 -- attach new itypes to a node in the tree.
11810 pragma Assert (Present (Related_Node));
11812 -- If the view of the component's type is incomplete or private
11813 -- with unknown discriminants, then the constraint must be applied
11814 -- to the full type.
11816 if Has_Unknown_Discriminants (Btyp)
11817 and then Present (Underlying_Type (Btyp))
11818 then
11819 Btyp := Underlying_Type (Btyp);
11820 end if;
11822 Indic :=
11823 Make_Subtype_Indication (Loc,
11824 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
11825 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
11827 Def_Id := Create_Itype (Ekind (T), Related_Node);
11829 Subtyp_Decl :=
11830 Make_Subtype_Declaration (Loc,
11831 Defining_Identifier => Def_Id,
11832 Subtype_Indication => Indic);
11834 Set_Parent (Subtyp_Decl, Parent (Related_Node));
11836 -- Itypes must be analyzed with checks off (see package Itypes)
11838 Analyze (Subtyp_Decl, Suppress => All_Checks);
11840 return Def_Id;
11841 end Build_Subtype;
11843 ---------------------
11844 -- Get_Discr_Value --
11845 ---------------------
11847 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
11848 D : Entity_Id;
11849 E : Elmt_Id;
11851 begin
11852 -- The discriminant may be declared for the type, in which case we
11853 -- find it by iterating over the list of discriminants. If the
11854 -- discriminant is inherited from a parent type, it appears as the
11855 -- corresponding discriminant of the current type. This will be the
11856 -- case when constraining an inherited component whose constraint is
11857 -- given by a discriminant of the parent.
11859 D := First_Discriminant (Typ);
11860 E := First_Elmt (Constraints);
11862 while Present (D) loop
11863 if D = Entity (Discrim)
11864 or else D = CR_Discriminant (Entity (Discrim))
11865 or else Corresponding_Discriminant (D) = Entity (Discrim)
11866 then
11867 return Node (E);
11868 end if;
11870 Next_Discriminant (D);
11871 Next_Elmt (E);
11872 end loop;
11874 -- The Corresponding_Discriminant mechanism is incomplete, because
11875 -- the correspondence between new and old discriminants is not one
11876 -- to one: one new discriminant can constrain several old ones. In
11877 -- that case, scan sequentially the stored_constraint, the list of
11878 -- discriminants of the parents, and the constraints.
11880 -- Previous code checked for the present of the Stored_Constraint
11881 -- list for the derived type, but did not use it at all. Should it
11882 -- be present when the component is a discriminated task type?
11884 if Is_Derived_Type (Typ)
11885 and then Scope (Entity (Discrim)) = Etype (Typ)
11886 then
11887 D := First_Discriminant (Etype (Typ));
11888 E := First_Elmt (Constraints);
11889 while Present (D) loop
11890 if D = Entity (Discrim) then
11891 return Node (E);
11892 end if;
11894 Next_Discriminant (D);
11895 Next_Elmt (E);
11896 end loop;
11897 end if;
11899 -- Something is wrong if we did not find the value
11901 raise Program_Error;
11902 end Get_Discr_Value;
11904 ---------------------
11905 -- Is_Discriminant --
11906 ---------------------
11908 function Is_Discriminant (Expr : Node_Id) return Boolean is
11909 Discrim_Scope : Entity_Id;
11911 begin
11912 if Denotes_Discriminant (Expr) then
11913 Discrim_Scope := Scope (Entity (Expr));
11915 -- Either we have a reference to one of Typ's discriminants,
11917 pragma Assert (Discrim_Scope = Typ
11919 -- or to the discriminants of the parent type, in the case
11920 -- of a derivation of a tagged type with variants.
11922 or else Discrim_Scope = Etype (Typ)
11923 or else Full_View (Discrim_Scope) = Etype (Typ)
11925 -- or same as above for the case where the discriminants
11926 -- were declared in Typ's private view.
11928 or else (Is_Private_Type (Discrim_Scope)
11929 and then Chars (Discrim_Scope) = Chars (Typ))
11931 -- or else we are deriving from the full view and the
11932 -- discriminant is declared in the private entity.
11934 or else (Is_Private_Type (Typ)
11935 and then Chars (Discrim_Scope) = Chars (Typ))
11937 -- Or we are constrained the corresponding record of a
11938 -- synchronized type that completes a private declaration.
11940 or else (Is_Concurrent_Record_Type (Typ)
11941 and then
11942 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
11944 -- or we have a class-wide type, in which case make sure the
11945 -- discriminant found belongs to the root type.
11947 or else (Is_Class_Wide_Type (Typ)
11948 and then Etype (Typ) = Discrim_Scope));
11950 return True;
11951 end if;
11953 -- In all other cases we have something wrong
11955 return False;
11956 end Is_Discriminant;
11958 -- Start of processing for Constrain_Component_Type
11960 begin
11961 if Nkind (Parent (Comp)) = N_Component_Declaration
11962 and then Comes_From_Source (Parent (Comp))
11963 and then Comes_From_Source
11964 (Subtype_Indication (Component_Definition (Parent (Comp))))
11965 and then
11966 Is_Entity_Name
11967 (Subtype_Indication (Component_Definition (Parent (Comp))))
11968 then
11969 return Compon_Type;
11971 elsif Is_Array_Type (Compon_Type) then
11972 return Build_Constrained_Array_Type (Compon_Type);
11974 elsif Has_Discriminants (Compon_Type) then
11975 return Build_Constrained_Discriminated_Type (Compon_Type);
11977 elsif Is_Access_Type (Compon_Type) then
11978 return Build_Constrained_Access_Type (Compon_Type);
11980 else
11981 return Compon_Type;
11982 end if;
11983 end Constrain_Component_Type;
11985 --------------------------
11986 -- Constrain_Concurrent --
11987 --------------------------
11989 -- For concurrent types, the associated record value type carries the same
11990 -- discriminants, so when we constrain a concurrent type, we must constrain
11991 -- the corresponding record type as well.
11993 procedure Constrain_Concurrent
11994 (Def_Id : in out Entity_Id;
11995 SI : Node_Id;
11996 Related_Nod : Node_Id;
11997 Related_Id : Entity_Id;
11998 Suffix : Character)
12000 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12001 -- case of a private subtype (needed when only doing semantic analysis).
12003 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12004 T_Val : Entity_Id;
12006 begin
12007 if Is_Access_Type (T_Ent) then
12008 T_Ent := Designated_Type (T_Ent);
12009 end if;
12011 T_Val := Corresponding_Record_Type (T_Ent);
12013 if Present (T_Val) then
12015 if No (Def_Id) then
12016 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12017 end if;
12019 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12021 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12022 Set_Corresponding_Record_Type (Def_Id,
12023 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12025 else
12026 -- If there is no associated record, expansion is disabled and this
12027 -- is a generic context. Create a subtype in any case, so that
12028 -- semantic analysis can proceed.
12030 if No (Def_Id) then
12031 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12032 end if;
12034 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12035 end if;
12036 end Constrain_Concurrent;
12038 ------------------------------------
12039 -- Constrain_Corresponding_Record --
12040 ------------------------------------
12042 function Constrain_Corresponding_Record
12043 (Prot_Subt : Entity_Id;
12044 Corr_Rec : Entity_Id;
12045 Related_Nod : Node_Id) return Entity_Id
12047 T_Sub : constant Entity_Id :=
12048 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12050 begin
12051 Set_Etype (T_Sub, Corr_Rec);
12052 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12053 Set_Is_Constrained (T_Sub, True);
12054 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12055 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12057 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12058 Set_Discriminant_Constraint
12059 (T_Sub, Discriminant_Constraint (Prot_Subt));
12060 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12061 Create_Constrained_Components
12062 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12063 end if;
12065 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12067 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12068 Conditional_Delay (T_Sub, Corr_Rec);
12070 else
12071 -- This is a component subtype: it will be frozen in the context of
12072 -- the enclosing record's init_proc, so that discriminant references
12073 -- are resolved to discriminals. (Note: we used to skip freezing
12074 -- altogether in that case, which caused errors downstream for
12075 -- components of a bit packed array type).
12077 Set_Has_Delayed_Freeze (T_Sub);
12078 end if;
12080 return T_Sub;
12081 end Constrain_Corresponding_Record;
12083 -----------------------
12084 -- Constrain_Decimal --
12085 -----------------------
12087 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12088 T : constant Entity_Id := Entity (Subtype_Mark (S));
12089 C : constant Node_Id := Constraint (S);
12090 Loc : constant Source_Ptr := Sloc (C);
12091 Range_Expr : Node_Id;
12092 Digits_Expr : Node_Id;
12093 Digits_Val : Uint;
12094 Bound_Val : Ureal;
12096 begin
12097 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12099 if Nkind (C) = N_Range_Constraint then
12100 Range_Expr := Range_Expression (C);
12101 Digits_Val := Digits_Value (T);
12103 else
12104 pragma Assert (Nkind (C) = N_Digits_Constraint);
12106 Check_SPARK_Restriction ("digits constraint is not allowed", S);
12108 Digits_Expr := Digits_Expression (C);
12109 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12111 Check_Digits_Expression (Digits_Expr);
12112 Digits_Val := Expr_Value (Digits_Expr);
12114 if Digits_Val > Digits_Value (T) then
12115 Error_Msg_N
12116 ("digits expression is incompatible with subtype", C);
12117 Digits_Val := Digits_Value (T);
12118 end if;
12120 if Present (Range_Constraint (C)) then
12121 Range_Expr := Range_Expression (Range_Constraint (C));
12122 else
12123 Range_Expr := Empty;
12124 end if;
12125 end if;
12127 Set_Etype (Def_Id, Base_Type (T));
12128 Set_Size_Info (Def_Id, (T));
12129 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12130 Set_Delta_Value (Def_Id, Delta_Value (T));
12131 Set_Scale_Value (Def_Id, Scale_Value (T));
12132 Set_Small_Value (Def_Id, Small_Value (T));
12133 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12134 Set_Digits_Value (Def_Id, Digits_Val);
12136 -- Manufacture range from given digits value if no range present
12138 if No (Range_Expr) then
12139 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12140 Range_Expr :=
12141 Make_Range (Loc,
12142 Low_Bound =>
12143 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12144 High_Bound =>
12145 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12146 end if;
12148 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12149 Set_Discrete_RM_Size (Def_Id);
12151 -- Unconditionally delay the freeze, since we cannot set size
12152 -- information in all cases correctly until the freeze point.
12154 Set_Has_Delayed_Freeze (Def_Id);
12155 end Constrain_Decimal;
12157 ----------------------------------
12158 -- Constrain_Discriminated_Type --
12159 ----------------------------------
12161 procedure Constrain_Discriminated_Type
12162 (Def_Id : Entity_Id;
12163 S : Node_Id;
12164 Related_Nod : Node_Id;
12165 For_Access : Boolean := False)
12167 E : constant Entity_Id := Entity (Subtype_Mark (S));
12168 T : Entity_Id;
12169 C : Node_Id;
12170 Elist : Elist_Id := New_Elmt_List;
12172 procedure Fixup_Bad_Constraint;
12173 -- This is called after finding a bad constraint, and after having
12174 -- posted an appropriate error message. The mission is to leave the
12175 -- entity T in as reasonable state as possible.
12177 --------------------------
12178 -- Fixup_Bad_Constraint --
12179 --------------------------
12181 procedure Fixup_Bad_Constraint is
12182 begin
12183 -- Set a reasonable Ekind for the entity. For an incomplete type,
12184 -- we can't do much, but for other types, we can set the proper
12185 -- corresponding subtype kind.
12187 if Ekind (T) = E_Incomplete_Type then
12188 Set_Ekind (Def_Id, Ekind (T));
12189 else
12190 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12191 end if;
12193 -- Set Etype to the known type, to reduce chances of cascaded errors
12195 Set_Etype (Def_Id, E);
12196 Set_Error_Posted (Def_Id);
12197 end Fixup_Bad_Constraint;
12199 -- Start of processing for Constrain_Discriminated_Type
12201 begin
12202 C := Constraint (S);
12204 -- A discriminant constraint is only allowed in a subtype indication,
12205 -- after a subtype mark. This subtype mark must denote either a type
12206 -- with discriminants, or an access type whose designated type is a
12207 -- type with discriminants. A discriminant constraint specifies the
12208 -- values of these discriminants (RM 3.7.2(5)).
12210 T := Base_Type (Entity (Subtype_Mark (S)));
12212 if Is_Access_Type (T) then
12213 T := Designated_Type (T);
12214 end if;
12216 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12217 -- Avoid generating an error for access-to-incomplete subtypes.
12219 if Ada_Version >= Ada_2005
12220 and then Ekind (T) = E_Incomplete_Type
12221 and then Nkind (Parent (S)) = N_Subtype_Declaration
12222 and then not Is_Itype (Def_Id)
12223 then
12224 -- A little sanity check, emit an error message if the type
12225 -- has discriminants to begin with. Type T may be a regular
12226 -- incomplete type or imported via a limited with clause.
12228 if Has_Discriminants (T)
12229 or else (From_Limited_With (T)
12230 and then Present (Non_Limited_View (T))
12231 and then Nkind (Parent (Non_Limited_View (T))) =
12232 N_Full_Type_Declaration
12233 and then Present (Discriminant_Specifications
12234 (Parent (Non_Limited_View (T)))))
12235 then
12236 Error_Msg_N
12237 ("(Ada 2005) incomplete subtype may not be constrained", C);
12238 else
12239 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12240 end if;
12242 Fixup_Bad_Constraint;
12243 return;
12245 -- Check that the type has visible discriminants. The type may be
12246 -- a private type with unknown discriminants whose full view has
12247 -- discriminants which are invisible.
12249 elsif not Has_Discriminants (T)
12250 or else
12251 (Has_Unknown_Discriminants (T)
12252 and then Is_Private_Type (T))
12253 then
12254 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12255 Fixup_Bad_Constraint;
12256 return;
12258 elsif Is_Constrained (E)
12259 or else (Ekind (E) = E_Class_Wide_Subtype
12260 and then Present (Discriminant_Constraint (E)))
12261 then
12262 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
12263 Fixup_Bad_Constraint;
12264 return;
12265 end if;
12267 -- T may be an unconstrained subtype (e.g. a generic actual).
12268 -- Constraint applies to the base type.
12270 T := Base_Type (T);
12272 Elist := Build_Discriminant_Constraints (T, S);
12274 -- If the list returned was empty we had an error in building the
12275 -- discriminant constraint. We have also already signalled an error
12276 -- in the incomplete type case
12278 if Is_Empty_Elmt_List (Elist) then
12279 Fixup_Bad_Constraint;
12280 return;
12281 end if;
12283 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
12284 end Constrain_Discriminated_Type;
12286 ---------------------------
12287 -- Constrain_Enumeration --
12288 ---------------------------
12290 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
12291 T : constant Entity_Id := Entity (Subtype_Mark (S));
12292 C : constant Node_Id := Constraint (S);
12294 begin
12295 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12297 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
12299 Set_Etype (Def_Id, Base_Type (T));
12300 Set_Size_Info (Def_Id, (T));
12301 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12302 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12304 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12306 Set_Discrete_RM_Size (Def_Id);
12307 end Constrain_Enumeration;
12309 ----------------------
12310 -- Constrain_Float --
12311 ----------------------
12313 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
12314 T : constant Entity_Id := Entity (Subtype_Mark (S));
12315 C : Node_Id;
12316 D : Node_Id;
12317 Rais : Node_Id;
12319 begin
12320 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
12322 Set_Etype (Def_Id, Base_Type (T));
12323 Set_Size_Info (Def_Id, (T));
12324 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12326 -- Process the constraint
12328 C := Constraint (S);
12330 -- Digits constraint present
12332 if Nkind (C) = N_Digits_Constraint then
12334 Check_SPARK_Restriction ("digits constraint is not allowed", S);
12335 Check_Restriction (No_Obsolescent_Features, C);
12337 if Warn_On_Obsolescent_Feature then
12338 Error_Msg_N
12339 ("subtype digits constraint is an " &
12340 "obsolescent feature (RM J.3(8))?j?", C);
12341 end if;
12343 D := Digits_Expression (C);
12344 Analyze_And_Resolve (D, Any_Integer);
12345 Check_Digits_Expression (D);
12346 Set_Digits_Value (Def_Id, Expr_Value (D));
12348 -- Check that digits value is in range. Obviously we can do this
12349 -- at compile time, but it is strictly a runtime check, and of
12350 -- course there is an ACVC test that checks this.
12352 if Digits_Value (Def_Id) > Digits_Value (T) then
12353 Error_Msg_Uint_1 := Digits_Value (T);
12354 Error_Msg_N ("??digits value is too large, maximum is ^", D);
12355 Rais :=
12356 Make_Raise_Constraint_Error (Sloc (D),
12357 Reason => CE_Range_Check_Failed);
12358 Insert_Action (Declaration_Node (Def_Id), Rais);
12359 end if;
12361 C := Range_Constraint (C);
12363 -- No digits constraint present
12365 else
12366 Set_Digits_Value (Def_Id, Digits_Value (T));
12367 end if;
12369 -- Range constraint present
12371 if Nkind (C) = N_Range_Constraint then
12372 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12374 -- No range constraint present
12376 else
12377 pragma Assert (No (C));
12378 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12379 end if;
12381 Set_Is_Constrained (Def_Id);
12382 end Constrain_Float;
12384 ---------------------
12385 -- Constrain_Index --
12386 ---------------------
12388 procedure Constrain_Index
12389 (Index : Node_Id;
12390 S : Node_Id;
12391 Related_Nod : Node_Id;
12392 Related_Id : Entity_Id;
12393 Suffix : Character;
12394 Suffix_Index : Nat)
12396 Def_Id : Entity_Id;
12397 R : Node_Id := Empty;
12398 T : constant Entity_Id := Etype (Index);
12400 begin
12401 if Nkind (S) = N_Range
12402 or else
12403 (Nkind (S) = N_Attribute_Reference
12404 and then Attribute_Name (S) = Name_Range)
12405 then
12406 -- A Range attribute will be transformed into N_Range by Resolve
12408 Analyze (S);
12409 Set_Etype (S, T);
12410 R := S;
12412 Process_Range_Expr_In_Decl (R, T);
12414 if not Error_Posted (S)
12415 and then
12416 (Nkind (S) /= N_Range
12417 or else not Covers (T, (Etype (Low_Bound (S))))
12418 or else not Covers (T, (Etype (High_Bound (S)))))
12419 then
12420 if Base_Type (T) /= Any_Type
12421 and then Etype (Low_Bound (S)) /= Any_Type
12422 and then Etype (High_Bound (S)) /= Any_Type
12423 then
12424 Error_Msg_N ("range expected", S);
12425 end if;
12426 end if;
12428 elsif Nkind (S) = N_Subtype_Indication then
12430 -- The parser has verified that this is a discrete indication
12432 Resolve_Discrete_Subtype_Indication (S, T);
12433 R := Range_Expression (Constraint (S));
12435 -- Capture values of bounds and generate temporaries for them if
12436 -- needed, since checks may cause duplication of the expressions
12437 -- which must not be reevaluated.
12439 -- The forced evaluation removes side effects from expressions, which
12440 -- should occur also in GNATprove mode. Otherwise, we end up with
12441 -- unexpected insertions of actions at places where this is not
12442 -- supposed to occur, e.g. on default parameters of a call.
12444 if Expander_Active or GNATprove_Mode then
12445 Force_Evaluation (Low_Bound (R));
12446 Force_Evaluation (High_Bound (R));
12447 end if;
12449 elsif Nkind (S) = N_Discriminant_Association then
12451 -- Syntactically valid in subtype indication
12453 Error_Msg_N ("invalid index constraint", S);
12454 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12455 return;
12457 -- Subtype_Mark case, no anonymous subtypes to construct
12459 else
12460 Analyze (S);
12462 if Is_Entity_Name (S) then
12463 if not Is_Type (Entity (S)) then
12464 Error_Msg_N ("expect subtype mark for index constraint", S);
12466 elsif Base_Type (Entity (S)) /= Base_Type (T) then
12467 Wrong_Type (S, Base_Type (T));
12469 -- Check error of subtype with predicate in index constraint
12471 else
12472 Bad_Predicated_Subtype_Use
12473 ("subtype& has predicate, not allowed in index constraint",
12474 S, Entity (S));
12475 end if;
12477 return;
12479 else
12480 Error_Msg_N ("invalid index constraint", S);
12481 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12482 return;
12483 end if;
12484 end if;
12486 Def_Id :=
12487 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
12489 Set_Etype (Def_Id, Base_Type (T));
12491 if Is_Modular_Integer_Type (T) then
12492 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12494 elsif Is_Integer_Type (T) then
12495 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12497 else
12498 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12499 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12500 Set_First_Literal (Def_Id, First_Literal (T));
12501 end if;
12503 Set_Size_Info (Def_Id, (T));
12504 Set_RM_Size (Def_Id, RM_Size (T));
12505 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12507 Set_Scalar_Range (Def_Id, R);
12509 Set_Etype (S, Def_Id);
12510 Set_Discrete_RM_Size (Def_Id);
12511 end Constrain_Index;
12513 -----------------------
12514 -- Constrain_Integer --
12515 -----------------------
12517 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
12518 T : constant Entity_Id := Entity (Subtype_Mark (S));
12519 C : constant Node_Id := Constraint (S);
12521 begin
12522 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12524 if Is_Modular_Integer_Type (T) then
12525 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12526 else
12527 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12528 end if;
12530 Set_Etype (Def_Id, Base_Type (T));
12531 Set_Size_Info (Def_Id, (T));
12532 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12533 Set_Discrete_RM_Size (Def_Id);
12534 end Constrain_Integer;
12536 ------------------------------
12537 -- Constrain_Ordinary_Fixed --
12538 ------------------------------
12540 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
12541 T : constant Entity_Id := Entity (Subtype_Mark (S));
12542 C : Node_Id;
12543 D : Node_Id;
12544 Rais : Node_Id;
12546 begin
12547 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
12548 Set_Etype (Def_Id, Base_Type (T));
12549 Set_Size_Info (Def_Id, (T));
12550 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12551 Set_Small_Value (Def_Id, Small_Value (T));
12553 -- Process the constraint
12555 C := Constraint (S);
12557 -- Delta constraint present
12559 if Nkind (C) = N_Delta_Constraint then
12561 Check_SPARK_Restriction ("delta constraint is not allowed", S);
12562 Check_Restriction (No_Obsolescent_Features, C);
12564 if Warn_On_Obsolescent_Feature then
12565 Error_Msg_S
12566 ("subtype delta constraint is an " &
12567 "obsolescent feature (RM J.3(7))?j?");
12568 end if;
12570 D := Delta_Expression (C);
12571 Analyze_And_Resolve (D, Any_Real);
12572 Check_Delta_Expression (D);
12573 Set_Delta_Value (Def_Id, Expr_Value_R (D));
12575 -- Check that delta value is in range. Obviously we can do this
12576 -- at compile time, but it is strictly a runtime check, and of
12577 -- course there is an ACVC test that checks this.
12579 if Delta_Value (Def_Id) < Delta_Value (T) then
12580 Error_Msg_N ("??delta value is too small", D);
12581 Rais :=
12582 Make_Raise_Constraint_Error (Sloc (D),
12583 Reason => CE_Range_Check_Failed);
12584 Insert_Action (Declaration_Node (Def_Id), Rais);
12585 end if;
12587 C := Range_Constraint (C);
12589 -- No delta constraint present
12591 else
12592 Set_Delta_Value (Def_Id, Delta_Value (T));
12593 end if;
12595 -- Range constraint present
12597 if Nkind (C) = N_Range_Constraint then
12598 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12600 -- No range constraint present
12602 else
12603 pragma Assert (No (C));
12604 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12606 end if;
12608 Set_Discrete_RM_Size (Def_Id);
12610 -- Unconditionally delay the freeze, since we cannot set size
12611 -- information in all cases correctly until the freeze point.
12613 Set_Has_Delayed_Freeze (Def_Id);
12614 end Constrain_Ordinary_Fixed;
12616 -----------------------
12617 -- Contain_Interface --
12618 -----------------------
12620 function Contain_Interface
12621 (Iface : Entity_Id;
12622 Ifaces : Elist_Id) return Boolean
12624 Iface_Elmt : Elmt_Id;
12626 begin
12627 if Present (Ifaces) then
12628 Iface_Elmt := First_Elmt (Ifaces);
12629 while Present (Iface_Elmt) loop
12630 if Node (Iface_Elmt) = Iface then
12631 return True;
12632 end if;
12634 Next_Elmt (Iface_Elmt);
12635 end loop;
12636 end if;
12638 return False;
12639 end Contain_Interface;
12641 ---------------------------
12642 -- Convert_Scalar_Bounds --
12643 ---------------------------
12645 procedure Convert_Scalar_Bounds
12646 (N : Node_Id;
12647 Parent_Type : Entity_Id;
12648 Derived_Type : Entity_Id;
12649 Loc : Source_Ptr)
12651 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
12653 Lo : Node_Id;
12654 Hi : Node_Id;
12655 Rng : Node_Id;
12657 begin
12658 -- Defend against previous errors
12660 if No (Scalar_Range (Derived_Type)) then
12661 Check_Error_Detected;
12662 return;
12663 end if;
12665 Lo := Build_Scalar_Bound
12666 (Type_Low_Bound (Derived_Type),
12667 Parent_Type, Implicit_Base);
12669 Hi := Build_Scalar_Bound
12670 (Type_High_Bound (Derived_Type),
12671 Parent_Type, Implicit_Base);
12673 Rng :=
12674 Make_Range (Loc,
12675 Low_Bound => Lo,
12676 High_Bound => Hi);
12678 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
12680 Set_Parent (Rng, N);
12681 Set_Scalar_Range (Derived_Type, Rng);
12683 -- Analyze the bounds
12685 Analyze_And_Resolve (Lo, Implicit_Base);
12686 Analyze_And_Resolve (Hi, Implicit_Base);
12688 -- Analyze the range itself, except that we do not analyze it if
12689 -- the bounds are real literals, and we have a fixed-point type.
12690 -- The reason for this is that we delay setting the bounds in this
12691 -- case till we know the final Small and Size values (see circuit
12692 -- in Freeze.Freeze_Fixed_Point_Type for further details).
12694 if Is_Fixed_Point_Type (Parent_Type)
12695 and then Nkind (Lo) = N_Real_Literal
12696 and then Nkind (Hi) = N_Real_Literal
12697 then
12698 return;
12700 -- Here we do the analysis of the range
12702 -- Note: we do this manually, since if we do a normal Analyze and
12703 -- Resolve call, there are problems with the conversions used for
12704 -- the derived type range.
12706 else
12707 Set_Etype (Rng, Implicit_Base);
12708 Set_Analyzed (Rng, True);
12709 end if;
12710 end Convert_Scalar_Bounds;
12712 -------------------
12713 -- Copy_And_Swap --
12714 -------------------
12716 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
12717 begin
12718 -- Initialize new full declaration entity by copying the pertinent
12719 -- fields of the corresponding private declaration entity.
12721 -- We temporarily set Ekind to a value appropriate for a type to
12722 -- avoid assert failures in Einfo from checking for setting type
12723 -- attributes on something that is not a type. Ekind (Priv) is an
12724 -- appropriate choice, since it allowed the attributes to be set
12725 -- in the first place. This Ekind value will be modified later.
12727 Set_Ekind (Full, Ekind (Priv));
12729 -- Also set Etype temporarily to Any_Type, again, in the absence
12730 -- of errors, it will be properly reset, and if there are errors,
12731 -- then we want a value of Any_Type to remain.
12733 Set_Etype (Full, Any_Type);
12735 -- Now start copying attributes
12737 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
12739 if Has_Discriminants (Full) then
12740 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
12741 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
12742 end if;
12744 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
12745 Set_Homonym (Full, Homonym (Priv));
12746 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
12747 Set_Is_Public (Full, Is_Public (Priv));
12748 Set_Is_Pure (Full, Is_Pure (Priv));
12749 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
12750 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
12751 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
12752 Set_Has_Pragma_Unreferenced_Objects
12753 (Full, Has_Pragma_Unreferenced_Objects
12754 (Priv));
12756 Conditional_Delay (Full, Priv);
12758 if Is_Tagged_Type (Full) then
12759 Set_Direct_Primitive_Operations (Full,
12760 Direct_Primitive_Operations (Priv));
12762 if Is_Base_Type (Priv) then
12763 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
12764 end if;
12765 end if;
12767 Set_Is_Volatile (Full, Is_Volatile (Priv));
12768 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
12769 Set_Scope (Full, Scope (Priv));
12770 Set_Next_Entity (Full, Next_Entity (Priv));
12771 Set_First_Entity (Full, First_Entity (Priv));
12772 Set_Last_Entity (Full, Last_Entity (Priv));
12774 -- If access types have been recorded for later handling, keep them in
12775 -- the full view so that they get handled when the full view freeze
12776 -- node is expanded.
12778 if Present (Freeze_Node (Priv))
12779 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
12780 then
12781 Ensure_Freeze_Node (Full);
12782 Set_Access_Types_To_Process
12783 (Freeze_Node (Full),
12784 Access_Types_To_Process (Freeze_Node (Priv)));
12785 end if;
12787 -- Swap the two entities. Now Private is the full type entity and Full
12788 -- is the private one. They will be swapped back at the end of the
12789 -- private part. This swapping ensures that the entity that is visible
12790 -- in the private part is the full declaration.
12792 Exchange_Entities (Priv, Full);
12793 Append_Entity (Full, Scope (Full));
12794 end Copy_And_Swap;
12796 -------------------------------------
12797 -- Copy_Array_Base_Type_Attributes --
12798 -------------------------------------
12800 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
12801 begin
12802 Set_Component_Alignment (T1, Component_Alignment (T2));
12803 Set_Component_Type (T1, Component_Type (T2));
12804 Set_Component_Size (T1, Component_Size (T2));
12805 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
12806 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
12807 Set_Has_Protected (T1, Has_Protected (T2));
12808 Set_Has_Task (T1, Has_Task (T2));
12809 Set_Is_Packed (T1, Is_Packed (T2));
12810 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
12811 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
12812 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
12813 end Copy_Array_Base_Type_Attributes;
12815 -----------------------------------
12816 -- Copy_Array_Subtype_Attributes --
12817 -----------------------------------
12819 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
12820 begin
12821 Set_Size_Info (T1, T2);
12823 Set_First_Index (T1, First_Index (T2));
12824 Set_Is_Aliased (T1, Is_Aliased (T2));
12825 Set_Is_Volatile (T1, Is_Volatile (T2));
12826 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
12827 Set_Is_Constrained (T1, Is_Constrained (T2));
12828 Set_Depends_On_Private (T1, Has_Private_Component (T2));
12829 Set_First_Rep_Item (T1, First_Rep_Item (T2));
12830 Set_Convention (T1, Convention (T2));
12831 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
12832 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
12833 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
12834 end Copy_Array_Subtype_Attributes;
12836 -----------------------------------
12837 -- Create_Constrained_Components --
12838 -----------------------------------
12840 procedure Create_Constrained_Components
12841 (Subt : Entity_Id;
12842 Decl_Node : Node_Id;
12843 Typ : Entity_Id;
12844 Constraints : Elist_Id)
12846 Loc : constant Source_Ptr := Sloc (Subt);
12847 Comp_List : constant Elist_Id := New_Elmt_List;
12848 Parent_Type : constant Entity_Id := Etype (Typ);
12849 Assoc_List : constant List_Id := New_List;
12850 Discr_Val : Elmt_Id;
12851 Errors : Boolean;
12852 New_C : Entity_Id;
12853 Old_C : Entity_Id;
12854 Is_Static : Boolean := True;
12856 procedure Collect_Fixed_Components (Typ : Entity_Id);
12857 -- Collect parent type components that do not appear in a variant part
12859 procedure Create_All_Components;
12860 -- Iterate over Comp_List to create the components of the subtype
12862 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
12863 -- Creates a new component from Old_Compon, copying all the fields from
12864 -- it, including its Etype, inserts the new component in the Subt entity
12865 -- chain and returns the new component.
12867 function Is_Variant_Record (T : Entity_Id) return Boolean;
12868 -- If true, and discriminants are static, collect only components from
12869 -- variants selected by discriminant values.
12871 ------------------------------
12872 -- Collect_Fixed_Components --
12873 ------------------------------
12875 procedure Collect_Fixed_Components (Typ : Entity_Id) is
12876 begin
12877 -- Build association list for discriminants, and find components of the
12878 -- variant part selected by the values of the discriminants.
12880 Old_C := First_Discriminant (Typ);
12881 Discr_Val := First_Elmt (Constraints);
12882 while Present (Old_C) loop
12883 Append_To (Assoc_List,
12884 Make_Component_Association (Loc,
12885 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
12886 Expression => New_Copy (Node (Discr_Val))));
12888 Next_Elmt (Discr_Val);
12889 Next_Discriminant (Old_C);
12890 end loop;
12892 -- The tag and the possible parent component are unconditionally in
12893 -- the subtype.
12895 if Is_Tagged_Type (Typ)
12896 or else Has_Controlled_Component (Typ)
12897 then
12898 Old_C := First_Component (Typ);
12899 while Present (Old_C) loop
12900 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
12901 Append_Elmt (Old_C, Comp_List);
12902 end if;
12904 Next_Component (Old_C);
12905 end loop;
12906 end if;
12907 end Collect_Fixed_Components;
12909 ---------------------------
12910 -- Create_All_Components --
12911 ---------------------------
12913 procedure Create_All_Components is
12914 Comp : Elmt_Id;
12916 begin
12917 Comp := First_Elmt (Comp_List);
12918 while Present (Comp) loop
12919 Old_C := Node (Comp);
12920 New_C := Create_Component (Old_C);
12922 Set_Etype
12923 (New_C,
12924 Constrain_Component_Type
12925 (Old_C, Subt, Decl_Node, Typ, Constraints));
12926 Set_Is_Public (New_C, Is_Public (Subt));
12928 Next_Elmt (Comp);
12929 end loop;
12930 end Create_All_Components;
12932 ----------------------
12933 -- Create_Component --
12934 ----------------------
12936 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
12937 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
12939 begin
12940 if Ekind (Old_Compon) = E_Discriminant
12941 and then Is_Completely_Hidden (Old_Compon)
12942 then
12943 -- This is a shadow discriminant created for a discriminant of
12944 -- the parent type, which needs to be present in the subtype.
12945 -- Give the shadow discriminant an internal name that cannot
12946 -- conflict with that of visible components.
12948 Set_Chars (New_Compon, New_Internal_Name ('C'));
12949 end if;
12951 -- Set the parent so we have a proper link for freezing etc. This is
12952 -- not a real parent pointer, since of course our parent does not own
12953 -- up to us and reference us, we are an illegitimate child of the
12954 -- original parent.
12956 Set_Parent (New_Compon, Parent (Old_Compon));
12958 -- If the old component's Esize was already determined and is a
12959 -- static value, then the new component simply inherits it. Otherwise
12960 -- the old component's size may require run-time determination, but
12961 -- the new component's size still might be statically determinable
12962 -- (if, for example it has a static constraint). In that case we want
12963 -- Layout_Type to recompute the component's size, so we reset its
12964 -- size and positional fields.
12966 if Frontend_Layout_On_Target
12967 and then not Known_Static_Esize (Old_Compon)
12968 then
12969 Set_Esize (New_Compon, Uint_0);
12970 Init_Normalized_First_Bit (New_Compon);
12971 Init_Normalized_Position (New_Compon);
12972 Init_Normalized_Position_Max (New_Compon);
12973 end if;
12975 -- We do not want this node marked as Comes_From_Source, since
12976 -- otherwise it would get first class status and a separate cross-
12977 -- reference line would be generated. Illegitimate children do not
12978 -- rate such recognition.
12980 Set_Comes_From_Source (New_Compon, False);
12982 -- But it is a real entity, and a birth certificate must be properly
12983 -- registered by entering it into the entity list.
12985 Enter_Name (New_Compon);
12987 return New_Compon;
12988 end Create_Component;
12990 -----------------------
12991 -- Is_Variant_Record --
12992 -----------------------
12994 function Is_Variant_Record (T : Entity_Id) return Boolean is
12995 begin
12996 return Nkind (Parent (T)) = N_Full_Type_Declaration
12997 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
12998 and then Present (Component_List (Type_Definition (Parent (T))))
12999 and then
13000 Present
13001 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13002 end Is_Variant_Record;
13004 -- Start of processing for Create_Constrained_Components
13006 begin
13007 pragma Assert (Subt /= Base_Type (Subt));
13008 pragma Assert (Typ = Base_Type (Typ));
13010 Set_First_Entity (Subt, Empty);
13011 Set_Last_Entity (Subt, Empty);
13013 -- Check whether constraint is fully static, in which case we can
13014 -- optimize the list of components.
13016 Discr_Val := First_Elmt (Constraints);
13017 while Present (Discr_Val) loop
13018 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13019 Is_Static := False;
13020 exit;
13021 end if;
13023 Next_Elmt (Discr_Val);
13024 end loop;
13026 Set_Has_Static_Discriminants (Subt, Is_Static);
13028 Push_Scope (Subt);
13030 -- Inherit the discriminants of the parent type
13032 Add_Discriminants : declare
13033 Num_Disc : Int;
13034 Num_Gird : Int;
13036 begin
13037 Num_Disc := 0;
13038 Old_C := First_Discriminant (Typ);
13040 while Present (Old_C) loop
13041 Num_Disc := Num_Disc + 1;
13042 New_C := Create_Component (Old_C);
13043 Set_Is_Public (New_C, Is_Public (Subt));
13044 Next_Discriminant (Old_C);
13045 end loop;
13047 -- For an untagged derived subtype, the number of discriminants may
13048 -- be smaller than the number of inherited discriminants, because
13049 -- several of them may be renamed by a single new discriminant or
13050 -- constrained. In this case, add the hidden discriminants back into
13051 -- the subtype, because they need to be present if the optimizer of
13052 -- the GCC 4.x back-end decides to break apart assignments between
13053 -- objects using the parent view into member-wise assignments.
13055 Num_Gird := 0;
13057 if Is_Derived_Type (Typ)
13058 and then not Is_Tagged_Type (Typ)
13059 then
13060 Old_C := First_Stored_Discriminant (Typ);
13062 while Present (Old_C) loop
13063 Num_Gird := Num_Gird + 1;
13064 Next_Stored_Discriminant (Old_C);
13065 end loop;
13066 end if;
13068 if Num_Gird > Num_Disc then
13070 -- Find out multiple uses of new discriminants, and add hidden
13071 -- components for the extra renamed discriminants. We recognize
13072 -- multiple uses through the Corresponding_Discriminant of a
13073 -- new discriminant: if it constrains several old discriminants,
13074 -- this field points to the last one in the parent type. The
13075 -- stored discriminants of the derived type have the same name
13076 -- as those of the parent.
13078 declare
13079 Constr : Elmt_Id;
13080 New_Discr : Entity_Id;
13081 Old_Discr : Entity_Id;
13083 begin
13084 Constr := First_Elmt (Stored_Constraint (Typ));
13085 Old_Discr := First_Stored_Discriminant (Typ);
13086 while Present (Constr) loop
13087 if Is_Entity_Name (Node (Constr))
13088 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13089 then
13090 New_Discr := Entity (Node (Constr));
13092 if Chars (Corresponding_Discriminant (New_Discr)) /=
13093 Chars (Old_Discr)
13094 then
13095 -- The new discriminant has been used to rename a
13096 -- subsequent old discriminant. Introduce a shadow
13097 -- component for the current old discriminant.
13099 New_C := Create_Component (Old_Discr);
13100 Set_Original_Record_Component (New_C, Old_Discr);
13101 end if;
13103 else
13104 -- The constraint has eliminated the old discriminant.
13105 -- Introduce a shadow component.
13107 New_C := Create_Component (Old_Discr);
13108 Set_Original_Record_Component (New_C, Old_Discr);
13109 end if;
13111 Next_Elmt (Constr);
13112 Next_Stored_Discriminant (Old_Discr);
13113 end loop;
13114 end;
13115 end if;
13116 end Add_Discriminants;
13118 if Is_Static
13119 and then Is_Variant_Record (Typ)
13120 then
13121 Collect_Fixed_Components (Typ);
13123 Gather_Components (
13124 Typ,
13125 Component_List (Type_Definition (Parent (Typ))),
13126 Governed_By => Assoc_List,
13127 Into => Comp_List,
13128 Report_Errors => Errors);
13129 pragma Assert (not Errors);
13131 Create_All_Components;
13133 -- If the subtype declaration is created for a tagged type derivation
13134 -- with constraints, we retrieve the record definition of the parent
13135 -- type to select the components of the proper variant.
13137 elsif Is_Static
13138 and then Is_Tagged_Type (Typ)
13139 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13140 and then
13141 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13142 and then Is_Variant_Record (Parent_Type)
13143 then
13144 Collect_Fixed_Components (Typ);
13146 Gather_Components (
13147 Typ,
13148 Component_List (Type_Definition (Parent (Parent_Type))),
13149 Governed_By => Assoc_List,
13150 Into => Comp_List,
13151 Report_Errors => Errors);
13152 pragma Assert (not Errors);
13154 -- If the tagged derivation has a type extension, collect all the
13155 -- new components therein.
13157 if Present
13158 (Record_Extension_Part (Type_Definition (Parent (Typ))))
13159 then
13160 Old_C := First_Component (Typ);
13161 while Present (Old_C) loop
13162 if Original_Record_Component (Old_C) = Old_C
13163 and then Chars (Old_C) /= Name_uTag
13164 and then Chars (Old_C) /= Name_uParent
13165 then
13166 Append_Elmt (Old_C, Comp_List);
13167 end if;
13169 Next_Component (Old_C);
13170 end loop;
13171 end if;
13173 Create_All_Components;
13175 else
13176 -- If discriminants are not static, or if this is a multi-level type
13177 -- extension, we have to include all components of the parent type.
13179 Old_C := First_Component (Typ);
13180 while Present (Old_C) loop
13181 New_C := Create_Component (Old_C);
13183 Set_Etype
13184 (New_C,
13185 Constrain_Component_Type
13186 (Old_C, Subt, Decl_Node, Typ, Constraints));
13187 Set_Is_Public (New_C, Is_Public (Subt));
13189 Next_Component (Old_C);
13190 end loop;
13191 end if;
13193 End_Scope;
13194 end Create_Constrained_Components;
13196 ------------------------------------------
13197 -- Decimal_Fixed_Point_Type_Declaration --
13198 ------------------------------------------
13200 procedure Decimal_Fixed_Point_Type_Declaration
13201 (T : Entity_Id;
13202 Def : Node_Id)
13204 Loc : constant Source_Ptr := Sloc (Def);
13205 Digs_Expr : constant Node_Id := Digits_Expression (Def);
13206 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13207 Implicit_Base : Entity_Id;
13208 Digs_Val : Uint;
13209 Delta_Val : Ureal;
13210 Scale_Val : Uint;
13211 Bound_Val : Ureal;
13213 begin
13214 Check_SPARK_Restriction
13215 ("decimal fixed point type is not allowed", Def);
13216 Check_Restriction (No_Fixed_Point, Def);
13218 -- Create implicit base type
13220 Implicit_Base :=
13221 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
13222 Set_Etype (Implicit_Base, Implicit_Base);
13224 -- Analyze and process delta expression
13226 Analyze_And_Resolve (Delta_Expr, Universal_Real);
13228 Check_Delta_Expression (Delta_Expr);
13229 Delta_Val := Expr_Value_R (Delta_Expr);
13231 -- Check delta is power of 10, and determine scale value from it
13233 declare
13234 Val : Ureal;
13236 begin
13237 Scale_Val := Uint_0;
13238 Val := Delta_Val;
13240 if Val < Ureal_1 then
13241 while Val < Ureal_1 loop
13242 Val := Val * Ureal_10;
13243 Scale_Val := Scale_Val + 1;
13244 end loop;
13246 if Scale_Val > 18 then
13247 Error_Msg_N ("scale exceeds maximum value of 18", Def);
13248 Scale_Val := UI_From_Int (+18);
13249 end if;
13251 else
13252 while Val > Ureal_1 loop
13253 Val := Val / Ureal_10;
13254 Scale_Val := Scale_Val - 1;
13255 end loop;
13257 if Scale_Val < -18 then
13258 Error_Msg_N ("scale is less than minimum value of -18", Def);
13259 Scale_Val := UI_From_Int (-18);
13260 end if;
13261 end if;
13263 if Val /= Ureal_1 then
13264 Error_Msg_N ("delta expression must be a power of 10", Def);
13265 Delta_Val := Ureal_10 ** (-Scale_Val);
13266 end if;
13267 end;
13269 -- Set delta, scale and small (small = delta for decimal type)
13271 Set_Delta_Value (Implicit_Base, Delta_Val);
13272 Set_Scale_Value (Implicit_Base, Scale_Val);
13273 Set_Small_Value (Implicit_Base, Delta_Val);
13275 -- Analyze and process digits expression
13277 Analyze_And_Resolve (Digs_Expr, Any_Integer);
13278 Check_Digits_Expression (Digs_Expr);
13279 Digs_Val := Expr_Value (Digs_Expr);
13281 if Digs_Val > 18 then
13282 Digs_Val := UI_From_Int (+18);
13283 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
13284 end if;
13286 Set_Digits_Value (Implicit_Base, Digs_Val);
13287 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
13289 -- Set range of base type from digits value for now. This will be
13290 -- expanded to represent the true underlying base range by Freeze.
13292 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
13294 -- Note: We leave size as zero for now, size will be set at freeze
13295 -- time. We have to do this for ordinary fixed-point, because the size
13296 -- depends on the specified small, and we might as well do the same for
13297 -- decimal fixed-point.
13299 pragma Assert (Esize (Implicit_Base) = Uint_0);
13301 -- If there are bounds given in the declaration use them as the
13302 -- bounds of the first named subtype.
13304 if Present (Real_Range_Specification (Def)) then
13305 declare
13306 RRS : constant Node_Id := Real_Range_Specification (Def);
13307 Low : constant Node_Id := Low_Bound (RRS);
13308 High : constant Node_Id := High_Bound (RRS);
13309 Low_Val : Ureal;
13310 High_Val : Ureal;
13312 begin
13313 Analyze_And_Resolve (Low, Any_Real);
13314 Analyze_And_Resolve (High, Any_Real);
13315 Check_Real_Bound (Low);
13316 Check_Real_Bound (High);
13317 Low_Val := Expr_Value_R (Low);
13318 High_Val := Expr_Value_R (High);
13320 if Low_Val < (-Bound_Val) then
13321 Error_Msg_N
13322 ("range low bound too small for digits value", Low);
13323 Low_Val := -Bound_Val;
13324 end if;
13326 if High_Val > Bound_Val then
13327 Error_Msg_N
13328 ("range high bound too large for digits value", High);
13329 High_Val := Bound_Val;
13330 end if;
13332 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
13333 end;
13335 -- If no explicit range, use range that corresponds to given
13336 -- digits value. This will end up as the final range for the
13337 -- first subtype.
13339 else
13340 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
13341 end if;
13343 -- Complete entity for first subtype
13345 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
13346 Set_Etype (T, Implicit_Base);
13347 Set_Size_Info (T, Implicit_Base);
13348 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
13349 Set_Digits_Value (T, Digs_Val);
13350 Set_Delta_Value (T, Delta_Val);
13351 Set_Small_Value (T, Delta_Val);
13352 Set_Scale_Value (T, Scale_Val);
13353 Set_Is_Constrained (T);
13354 end Decimal_Fixed_Point_Type_Declaration;
13356 -----------------------------------
13357 -- Derive_Progenitor_Subprograms --
13358 -----------------------------------
13360 procedure Derive_Progenitor_Subprograms
13361 (Parent_Type : Entity_Id;
13362 Tagged_Type : Entity_Id)
13364 E : Entity_Id;
13365 Elmt : Elmt_Id;
13366 Iface : Entity_Id;
13367 Iface_Elmt : Elmt_Id;
13368 Iface_Subp : Entity_Id;
13369 New_Subp : Entity_Id := Empty;
13370 Prim_Elmt : Elmt_Id;
13371 Subp : Entity_Id;
13372 Typ : Entity_Id;
13374 begin
13375 pragma Assert (Ada_Version >= Ada_2005
13376 and then Is_Record_Type (Tagged_Type)
13377 and then Is_Tagged_Type (Tagged_Type)
13378 and then Has_Interfaces (Tagged_Type));
13380 -- Step 1: Transfer to the full-view primitives associated with the
13381 -- partial-view that cover interface primitives. Conceptually this
13382 -- work should be done later by Process_Full_View; done here to
13383 -- simplify its implementation at later stages. It can be safely
13384 -- done here because interfaces must be visible in the partial and
13385 -- private view (RM 7.3(7.3/2)).
13387 -- Small optimization: This work is only required if the parent may
13388 -- have entities whose Alias attribute reference an interface primitive.
13389 -- Such a situation may occur if the parent is an abstract type and the
13390 -- primitive has not been yet overridden or if the parent is a generic
13391 -- formal type covering interfaces.
13393 -- If the tagged type is not abstract, it cannot have abstract
13394 -- primitives (the only entities in the list of primitives of
13395 -- non-abstract tagged types that can reference abstract primitives
13396 -- through its Alias attribute are the internal entities that have
13397 -- attribute Interface_Alias, and these entities are generated later
13398 -- by Add_Internal_Interface_Entities).
13400 if In_Private_Part (Current_Scope)
13401 and then (Is_Abstract_Type (Parent_Type)
13402 or else
13403 Is_Generic_Type (Parent_Type))
13404 then
13405 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
13406 while Present (Elmt) loop
13407 Subp := Node (Elmt);
13409 -- At this stage it is not possible to have entities in the list
13410 -- of primitives that have attribute Interface_Alias.
13412 pragma Assert (No (Interface_Alias (Subp)));
13414 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
13416 if Is_Interface (Typ) then
13417 E := Find_Primitive_Covering_Interface
13418 (Tagged_Type => Tagged_Type,
13419 Iface_Prim => Subp);
13421 if Present (E)
13422 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
13423 then
13424 Replace_Elmt (Elmt, E);
13425 Remove_Homonym (Subp);
13426 end if;
13427 end if;
13429 Next_Elmt (Elmt);
13430 end loop;
13431 end if;
13433 -- Step 2: Add primitives of progenitors that are not implemented by
13434 -- parents of Tagged_Type.
13436 if Present (Interfaces (Base_Type (Tagged_Type))) then
13437 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
13438 while Present (Iface_Elmt) loop
13439 Iface := Node (Iface_Elmt);
13441 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
13442 while Present (Prim_Elmt) loop
13443 Iface_Subp := Node (Prim_Elmt);
13445 -- Exclude derivation of predefined primitives except those
13446 -- that come from source, or are inherited from one that comes
13447 -- from source. Required to catch declarations of equality
13448 -- operators of interfaces. For example:
13450 -- type Iface is interface;
13451 -- function "=" (Left, Right : Iface) return Boolean;
13453 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
13454 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
13455 then
13456 E := Find_Primitive_Covering_Interface
13457 (Tagged_Type => Tagged_Type,
13458 Iface_Prim => Iface_Subp);
13460 -- If not found we derive a new primitive leaving its alias
13461 -- attribute referencing the interface primitive.
13463 if No (E) then
13464 Derive_Subprogram
13465 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13467 -- Ada 2012 (AI05-0197): If the covering primitive's name
13468 -- differs from the name of the interface primitive then it
13469 -- is a private primitive inherited from a parent type. In
13470 -- such case, given that Tagged_Type covers the interface,
13471 -- the inherited private primitive becomes visible. For such
13472 -- purpose we add a new entity that renames the inherited
13473 -- private primitive.
13475 elsif Chars (E) /= Chars (Iface_Subp) then
13476 pragma Assert (Has_Suffix (E, 'P'));
13477 Derive_Subprogram
13478 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13479 Set_Alias (New_Subp, E);
13480 Set_Is_Abstract_Subprogram (New_Subp,
13481 Is_Abstract_Subprogram (E));
13483 -- Propagate to the full view interface entities associated
13484 -- with the partial view.
13486 elsif In_Private_Part (Current_Scope)
13487 and then Present (Alias (E))
13488 and then Alias (E) = Iface_Subp
13489 and then
13490 List_Containing (Parent (E)) /=
13491 Private_Declarations
13492 (Specification
13493 (Unit_Declaration_Node (Current_Scope)))
13494 then
13495 Append_Elmt (E, Primitive_Operations (Tagged_Type));
13496 end if;
13497 end if;
13499 Next_Elmt (Prim_Elmt);
13500 end loop;
13502 Next_Elmt (Iface_Elmt);
13503 end loop;
13504 end if;
13505 end Derive_Progenitor_Subprograms;
13507 -----------------------
13508 -- Derive_Subprogram --
13509 -----------------------
13511 procedure Derive_Subprogram
13512 (New_Subp : in out Entity_Id;
13513 Parent_Subp : Entity_Id;
13514 Derived_Type : Entity_Id;
13515 Parent_Type : Entity_Id;
13516 Actual_Subp : Entity_Id := Empty)
13518 Formal : Entity_Id;
13519 -- Formal parameter of parent primitive operation
13521 Formal_Of_Actual : Entity_Id;
13522 -- Formal parameter of actual operation, when the derivation is to
13523 -- create a renaming for a primitive operation of an actual in an
13524 -- instantiation.
13526 New_Formal : Entity_Id;
13527 -- Formal of inherited operation
13529 Visible_Subp : Entity_Id := Parent_Subp;
13531 function Is_Private_Overriding return Boolean;
13532 -- If Subp is a private overriding of a visible operation, the inherited
13533 -- operation derives from the overridden op (even though its body is the
13534 -- overriding one) and the inherited operation is visible now. See
13535 -- sem_disp to see the full details of the handling of the overridden
13536 -- subprogram, which is removed from the list of primitive operations of
13537 -- the type. The overridden subprogram is saved locally in Visible_Subp,
13538 -- and used to diagnose abstract operations that need overriding in the
13539 -- derived type.
13541 procedure Replace_Type (Id, New_Id : Entity_Id);
13542 -- When the type is an anonymous access type, create a new access type
13543 -- designating the derived type.
13545 procedure Set_Derived_Name;
13546 -- This procedure sets the appropriate Chars name for New_Subp. This
13547 -- is normally just a copy of the parent name. An exception arises for
13548 -- type support subprograms, where the name is changed to reflect the
13549 -- name of the derived type, e.g. if type foo is derived from type bar,
13550 -- then a procedure barDA is derived with a name fooDA.
13552 ---------------------------
13553 -- Is_Private_Overriding --
13554 ---------------------------
13556 function Is_Private_Overriding return Boolean is
13557 Prev : Entity_Id;
13559 begin
13560 -- If the parent is not a dispatching operation there is no
13561 -- need to investigate overridings
13563 if not Is_Dispatching_Operation (Parent_Subp) then
13564 return False;
13565 end if;
13567 -- The visible operation that is overridden is a homonym of the
13568 -- parent subprogram. We scan the homonym chain to find the one
13569 -- whose alias is the subprogram we are deriving.
13571 Prev := Current_Entity (Parent_Subp);
13572 while Present (Prev) loop
13573 if Ekind (Prev) = Ekind (Parent_Subp)
13574 and then Alias (Prev) = Parent_Subp
13575 and then Scope (Parent_Subp) = Scope (Prev)
13576 and then not Is_Hidden (Prev)
13577 then
13578 Visible_Subp := Prev;
13579 return True;
13580 end if;
13582 Prev := Homonym (Prev);
13583 end loop;
13585 return False;
13586 end Is_Private_Overriding;
13588 ------------------
13589 -- Replace_Type --
13590 ------------------
13592 procedure Replace_Type (Id, New_Id : Entity_Id) is
13593 Id_Type : constant Entity_Id := Etype (Id);
13594 Acc_Type : Entity_Id;
13595 Par : constant Node_Id := Parent (Derived_Type);
13597 begin
13598 -- When the type is an anonymous access type, create a new access
13599 -- type designating the derived type. This itype must be elaborated
13600 -- at the point of the derivation, not on subsequent calls that may
13601 -- be out of the proper scope for Gigi, so we insert a reference to
13602 -- it after the derivation.
13604 if Ekind (Id_Type) = E_Anonymous_Access_Type then
13605 declare
13606 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
13608 begin
13609 if Ekind (Desig_Typ) = E_Record_Type_With_Private
13610 and then Present (Full_View (Desig_Typ))
13611 and then not Is_Private_Type (Parent_Type)
13612 then
13613 Desig_Typ := Full_View (Desig_Typ);
13614 end if;
13616 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
13618 -- Ada 2005 (AI-251): Handle also derivations of abstract
13619 -- interface primitives.
13621 or else (Is_Interface (Desig_Typ)
13622 and then not Is_Class_Wide_Type (Desig_Typ))
13623 then
13624 Acc_Type := New_Copy (Id_Type);
13625 Set_Etype (Acc_Type, Acc_Type);
13626 Set_Scope (Acc_Type, New_Subp);
13628 -- Set size of anonymous access type. If we have an access
13629 -- to an unconstrained array, this is a fat pointer, so it
13630 -- is sizes at twice addtress size.
13632 if Is_Array_Type (Desig_Typ)
13633 and then not Is_Constrained (Desig_Typ)
13634 then
13635 Init_Size (Acc_Type, 2 * System_Address_Size);
13637 -- Other cases use a thin pointer
13639 else
13640 Init_Size (Acc_Type, System_Address_Size);
13641 end if;
13643 -- Set remaining characterstics of anonymous access type
13645 Init_Alignment (Acc_Type);
13646 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
13648 Set_Etype (New_Id, Acc_Type);
13649 Set_Scope (New_Id, New_Subp);
13651 -- Create a reference to it
13653 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
13655 else
13656 Set_Etype (New_Id, Id_Type);
13657 end if;
13658 end;
13660 -- In Ada2012, a formal may have an incomplete type but the type
13661 -- derivation that inherits the primitive follows the full view.
13663 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
13664 or else
13665 (Ekind (Id_Type) = E_Record_Type_With_Private
13666 and then Present (Full_View (Id_Type))
13667 and then
13668 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
13669 or else
13670 (Ada_Version >= Ada_2012
13671 and then Ekind (Id_Type) = E_Incomplete_Type
13672 and then Full_View (Id_Type) = Parent_Type)
13673 then
13674 -- Constraint checks on formals are generated during expansion,
13675 -- based on the signature of the original subprogram. The bounds
13676 -- of the derived type are not relevant, and thus we can use
13677 -- the base type for the formals. However, the return type may be
13678 -- used in a context that requires that the proper static bounds
13679 -- be used (a case statement, for example) and for those cases
13680 -- we must use the derived type (first subtype), not its base.
13682 -- If the derived_type_definition has no constraints, we know that
13683 -- the derived type has the same constraints as the first subtype
13684 -- of the parent, and we can also use it rather than its base,
13685 -- which can lead to more efficient code.
13687 if Etype (Id) = Parent_Type then
13688 if Is_Scalar_Type (Parent_Type)
13689 and then
13690 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
13691 then
13692 Set_Etype (New_Id, Derived_Type);
13694 elsif Nkind (Par) = N_Full_Type_Declaration
13695 and then
13696 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
13697 and then
13698 Is_Entity_Name
13699 (Subtype_Indication (Type_Definition (Par)))
13700 then
13701 Set_Etype (New_Id, Derived_Type);
13703 else
13704 Set_Etype (New_Id, Base_Type (Derived_Type));
13705 end if;
13707 else
13708 Set_Etype (New_Id, Base_Type (Derived_Type));
13709 end if;
13711 else
13712 Set_Etype (New_Id, Etype (Id));
13713 end if;
13714 end Replace_Type;
13716 ----------------------
13717 -- Set_Derived_Name --
13718 ----------------------
13720 procedure Set_Derived_Name is
13721 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
13722 begin
13723 if Nm = TSS_Null then
13724 Set_Chars (New_Subp, Chars (Parent_Subp));
13725 else
13726 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
13727 end if;
13728 end Set_Derived_Name;
13730 -- Start of processing for Derive_Subprogram
13732 begin
13733 New_Subp :=
13734 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
13735 Set_Ekind (New_Subp, Ekind (Parent_Subp));
13736 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
13738 -- Check whether the inherited subprogram is a private operation that
13739 -- should be inherited but not yet made visible. Such subprograms can
13740 -- become visible at a later point (e.g., the private part of a public
13741 -- child unit) via Declare_Inherited_Private_Subprograms. If the
13742 -- following predicate is true, then this is not such a private
13743 -- operation and the subprogram simply inherits the name of the parent
13744 -- subprogram. Note the special check for the names of controlled
13745 -- operations, which are currently exempted from being inherited with
13746 -- a hidden name because they must be findable for generation of
13747 -- implicit run-time calls.
13749 if not Is_Hidden (Parent_Subp)
13750 or else Is_Internal (Parent_Subp)
13751 or else Is_Private_Overriding
13752 or else Is_Internal_Name (Chars (Parent_Subp))
13753 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
13754 Name_Adjust,
13755 Name_Finalize)
13756 then
13757 Set_Derived_Name;
13759 -- An inherited dispatching equality will be overridden by an internally
13760 -- generated one, or by an explicit one, so preserve its name and thus
13761 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
13762 -- private operation it may become invisible if the full view has
13763 -- progenitors, and the dispatch table will be malformed.
13764 -- We check that the type is limited to handle the anomalous declaration
13765 -- of Limited_Controlled, which is derived from a non-limited type, and
13766 -- which is handled specially elsewhere as well.
13768 elsif Chars (Parent_Subp) = Name_Op_Eq
13769 and then Is_Dispatching_Operation (Parent_Subp)
13770 and then Etype (Parent_Subp) = Standard_Boolean
13771 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
13772 and then
13773 Etype (First_Formal (Parent_Subp)) =
13774 Etype (Next_Formal (First_Formal (Parent_Subp)))
13775 then
13776 Set_Derived_Name;
13778 -- If parent is hidden, this can be a regular derivation if the
13779 -- parent is immediately visible in a non-instantiating context,
13780 -- or if we are in the private part of an instance. This test
13781 -- should still be refined ???
13783 -- The test for In_Instance_Not_Visible avoids inheriting the derived
13784 -- operation as a non-visible operation in cases where the parent
13785 -- subprogram might not be visible now, but was visible within the
13786 -- original generic, so it would be wrong to make the inherited
13787 -- subprogram non-visible now. (Not clear if this test is fully
13788 -- correct; are there any cases where we should declare the inherited
13789 -- operation as not visible to avoid it being overridden, e.g., when
13790 -- the parent type is a generic actual with private primitives ???)
13792 -- (they should be treated the same as other private inherited
13793 -- subprograms, but it's not clear how to do this cleanly). ???
13795 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
13796 and then Is_Immediately_Visible (Parent_Subp)
13797 and then not In_Instance)
13798 or else In_Instance_Not_Visible
13799 then
13800 Set_Derived_Name;
13802 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
13803 -- overrides an interface primitive because interface primitives
13804 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
13806 elsif Ada_Version >= Ada_2005
13807 and then Is_Dispatching_Operation (Parent_Subp)
13808 and then Covers_Some_Interface (Parent_Subp)
13809 then
13810 Set_Derived_Name;
13812 -- Otherwise, the type is inheriting a private operation, so enter
13813 -- it with a special name so it can't be overridden.
13815 else
13816 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
13817 end if;
13819 Set_Parent (New_Subp, Parent (Derived_Type));
13821 if Present (Actual_Subp) then
13822 Replace_Type (Actual_Subp, New_Subp);
13823 else
13824 Replace_Type (Parent_Subp, New_Subp);
13825 end if;
13827 Conditional_Delay (New_Subp, Parent_Subp);
13829 -- If we are creating a renaming for a primitive operation of an
13830 -- actual of a generic derived type, we must examine the signature
13831 -- of the actual primitive, not that of the generic formal, which for
13832 -- example may be an interface. However the name and initial value
13833 -- of the inherited operation are those of the formal primitive.
13835 Formal := First_Formal (Parent_Subp);
13837 if Present (Actual_Subp) then
13838 Formal_Of_Actual := First_Formal (Actual_Subp);
13839 else
13840 Formal_Of_Actual := Empty;
13841 end if;
13843 while Present (Formal) loop
13844 New_Formal := New_Copy (Formal);
13846 -- Normally we do not go copying parents, but in the case of
13847 -- formals, we need to link up to the declaration (which is the
13848 -- parameter specification), and it is fine to link up to the
13849 -- original formal's parameter specification in this case.
13851 Set_Parent (New_Formal, Parent (Formal));
13852 Append_Entity (New_Formal, New_Subp);
13854 if Present (Formal_Of_Actual) then
13855 Replace_Type (Formal_Of_Actual, New_Formal);
13856 Next_Formal (Formal_Of_Actual);
13857 else
13858 Replace_Type (Formal, New_Formal);
13859 end if;
13861 Next_Formal (Formal);
13862 end loop;
13864 -- If this derivation corresponds to a tagged generic actual, then
13865 -- primitive operations rename those of the actual. Otherwise the
13866 -- primitive operations rename those of the parent type, If the parent
13867 -- renames an intrinsic operator, so does the new subprogram. We except
13868 -- concatenation, which is always properly typed, and does not get
13869 -- expanded as other intrinsic operations.
13871 if No (Actual_Subp) then
13872 if Is_Intrinsic_Subprogram (Parent_Subp) then
13873 Set_Is_Intrinsic_Subprogram (New_Subp);
13875 if Present (Alias (Parent_Subp))
13876 and then Chars (Parent_Subp) /= Name_Op_Concat
13877 then
13878 Set_Alias (New_Subp, Alias (Parent_Subp));
13879 else
13880 Set_Alias (New_Subp, Parent_Subp);
13881 end if;
13883 else
13884 Set_Alias (New_Subp, Parent_Subp);
13885 end if;
13887 else
13888 Set_Alias (New_Subp, Actual_Subp);
13889 end if;
13891 -- Derived subprograms of a tagged type must inherit the convention
13892 -- of the parent subprogram (a requirement of AI-117). Derived
13893 -- subprograms of untagged types simply get convention Ada by default.
13895 -- If the derived type is a tagged generic formal type with unknown
13896 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
13898 -- However, if the type is derived from a generic formal, the further
13899 -- inherited subprogram has the convention of the non-generic ancestor.
13900 -- Otherwise there would be no way to override the operation.
13901 -- (This is subject to forthcoming ARG discussions).
13903 if Is_Tagged_Type (Derived_Type) then
13904 if Is_Generic_Type (Derived_Type)
13905 and then Has_Unknown_Discriminants (Derived_Type)
13906 then
13907 Set_Convention (New_Subp, Convention_Intrinsic);
13909 else
13910 if Is_Generic_Type (Parent_Type)
13911 and then Has_Unknown_Discriminants (Parent_Type)
13912 then
13913 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
13914 else
13915 Set_Convention (New_Subp, Convention (Parent_Subp));
13916 end if;
13917 end if;
13918 end if;
13920 -- Predefined controlled operations retain their name even if the parent
13921 -- is hidden (see above), but they are not primitive operations if the
13922 -- ancestor is not visible, for example if the parent is a private
13923 -- extension completed with a controlled extension. Note that a full
13924 -- type that is controlled can break privacy: the flag Is_Controlled is
13925 -- set on both views of the type.
13927 if Is_Controlled (Parent_Type)
13928 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
13929 Name_Adjust,
13930 Name_Finalize)
13931 and then Is_Hidden (Parent_Subp)
13932 and then not Is_Visibly_Controlled (Parent_Type)
13933 then
13934 Set_Is_Hidden (New_Subp);
13935 end if;
13937 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
13938 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
13940 if Ekind (Parent_Subp) = E_Procedure then
13941 Set_Is_Valued_Procedure
13942 (New_Subp, Is_Valued_Procedure (Parent_Subp));
13943 else
13944 Set_Has_Controlling_Result
13945 (New_Subp, Has_Controlling_Result (Parent_Subp));
13946 end if;
13948 -- No_Return must be inherited properly. If this is overridden in the
13949 -- case of a dispatching operation, then a check is made in Sem_Disp
13950 -- that the overriding operation is also No_Return (no such check is
13951 -- required for the case of non-dispatching operation.
13953 Set_No_Return (New_Subp, No_Return (Parent_Subp));
13955 -- A derived function with a controlling result is abstract. If the
13956 -- Derived_Type is a nonabstract formal generic derived type, then
13957 -- inherited operations are not abstract: the required check is done at
13958 -- instantiation time. If the derivation is for a generic actual, the
13959 -- function is not abstract unless the actual is.
13961 if Is_Generic_Type (Derived_Type)
13962 and then not Is_Abstract_Type (Derived_Type)
13963 then
13964 null;
13966 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
13967 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
13969 elsif Ada_Version >= Ada_2005
13970 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13971 or else (Is_Tagged_Type (Derived_Type)
13972 and then Etype (New_Subp) = Derived_Type
13973 and then not Is_Null_Extension (Derived_Type))
13974 or else (Is_Tagged_Type (Derived_Type)
13975 and then Ekind (Etype (New_Subp)) =
13976 E_Anonymous_Access_Type
13977 and then Designated_Type (Etype (New_Subp)) =
13978 Derived_Type
13979 and then not Is_Null_Extension (Derived_Type)))
13980 and then No (Actual_Subp)
13981 then
13982 if not Is_Tagged_Type (Derived_Type)
13983 or else Is_Abstract_Type (Derived_Type)
13984 or else Is_Abstract_Subprogram (Alias (New_Subp))
13985 then
13986 Set_Is_Abstract_Subprogram (New_Subp);
13987 else
13988 Set_Requires_Overriding (New_Subp);
13989 end if;
13991 elsif Ada_Version < Ada_2005
13992 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13993 or else (Is_Tagged_Type (Derived_Type)
13994 and then Etype (New_Subp) = Derived_Type
13995 and then No (Actual_Subp)))
13996 then
13997 Set_Is_Abstract_Subprogram (New_Subp);
13999 -- AI05-0097 : an inherited operation that dispatches on result is
14000 -- abstract if the derived type is abstract, even if the parent type
14001 -- is concrete and the derived type is a null extension.
14003 elsif Has_Controlling_Result (Alias (New_Subp))
14004 and then Is_Abstract_Type (Etype (New_Subp))
14005 then
14006 Set_Is_Abstract_Subprogram (New_Subp);
14008 -- Finally, if the parent type is abstract we must verify that all
14009 -- inherited operations are either non-abstract or overridden, or that
14010 -- the derived type itself is abstract (this check is performed at the
14011 -- end of a package declaration, in Check_Abstract_Overriding). A
14012 -- private overriding in the parent type will not be visible in the
14013 -- derivation if we are not in an inner package or in a child unit of
14014 -- the parent type, in which case the abstractness of the inherited
14015 -- operation is carried to the new subprogram.
14017 elsif Is_Abstract_Type (Parent_Type)
14018 and then not In_Open_Scopes (Scope (Parent_Type))
14019 and then Is_Private_Overriding
14020 and then Is_Abstract_Subprogram (Visible_Subp)
14021 then
14022 if No (Actual_Subp) then
14023 Set_Alias (New_Subp, Visible_Subp);
14024 Set_Is_Abstract_Subprogram (New_Subp, True);
14026 else
14027 -- If this is a derivation for an instance of a formal derived
14028 -- type, abstractness comes from the primitive operation of the
14029 -- actual, not from the operation inherited from the ancestor.
14031 Set_Is_Abstract_Subprogram
14032 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14033 end if;
14034 end if;
14036 New_Overloaded_Entity (New_Subp, Derived_Type);
14038 -- Check for case of a derived subprogram for the instantiation of a
14039 -- formal derived tagged type, if so mark the subprogram as dispatching
14040 -- and inherit the dispatching attributes of the actual subprogram. The
14041 -- derived subprogram is effectively renaming of the actual subprogram,
14042 -- so it needs to have the same attributes as the actual.
14044 if Present (Actual_Subp)
14045 and then Is_Dispatching_Operation (Actual_Subp)
14046 then
14047 Set_Is_Dispatching_Operation (New_Subp);
14049 if Present (DTC_Entity (Actual_Subp)) then
14050 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14051 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
14052 end if;
14053 end if;
14055 -- Indicate that a derived subprogram does not require a body and that
14056 -- it does not require processing of default expressions.
14058 Set_Has_Completion (New_Subp);
14059 Set_Default_Expressions_Processed (New_Subp);
14061 if Ekind (New_Subp) = E_Function then
14062 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14063 end if;
14064 end Derive_Subprogram;
14066 ------------------------
14067 -- Derive_Subprograms --
14068 ------------------------
14070 procedure Derive_Subprograms
14071 (Parent_Type : Entity_Id;
14072 Derived_Type : Entity_Id;
14073 Generic_Actual : Entity_Id := Empty)
14075 Op_List : constant Elist_Id :=
14076 Collect_Primitive_Operations (Parent_Type);
14078 function Check_Derived_Type return Boolean;
14079 -- Check that all the entities derived from Parent_Type are found in
14080 -- the list of primitives of Derived_Type exactly in the same order.
14082 procedure Derive_Interface_Subprogram
14083 (New_Subp : in out Entity_Id;
14084 Subp : Entity_Id;
14085 Actual_Subp : Entity_Id);
14086 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14087 -- (which is an interface primitive). If Generic_Actual is present then
14088 -- Actual_Subp is the actual subprogram corresponding with the generic
14089 -- subprogram Subp.
14091 function Check_Derived_Type return Boolean is
14092 E : Entity_Id;
14093 Elmt : Elmt_Id;
14094 List : Elist_Id;
14095 New_Subp : Entity_Id;
14096 Op_Elmt : Elmt_Id;
14097 Subp : Entity_Id;
14099 begin
14100 -- Traverse list of entities in the current scope searching for
14101 -- an incomplete type whose full-view is derived type
14103 E := First_Entity (Scope (Derived_Type));
14104 while Present (E) and then E /= Derived_Type loop
14105 if Ekind (E) = E_Incomplete_Type
14106 and then Present (Full_View (E))
14107 and then Full_View (E) = Derived_Type
14108 then
14109 -- Disable this test if Derived_Type completes an incomplete
14110 -- type because in such case more primitives can be added
14111 -- later to the list of primitives of Derived_Type by routine
14112 -- Process_Incomplete_Dependents
14114 return True;
14115 end if;
14117 E := Next_Entity (E);
14118 end loop;
14120 List := Collect_Primitive_Operations (Derived_Type);
14121 Elmt := First_Elmt (List);
14123 Op_Elmt := First_Elmt (Op_List);
14124 while Present (Op_Elmt) loop
14125 Subp := Node (Op_Elmt);
14126 New_Subp := Node (Elmt);
14128 -- At this early stage Derived_Type has no entities with attribute
14129 -- Interface_Alias. In addition, such primitives are always
14130 -- located at the end of the list of primitives of Parent_Type.
14131 -- Therefore, if found we can safely stop processing pending
14132 -- entities.
14134 exit when Present (Interface_Alias (Subp));
14136 -- Handle hidden entities
14138 if not Is_Predefined_Dispatching_Operation (Subp)
14139 and then Is_Hidden (Subp)
14140 then
14141 if Present (New_Subp)
14142 and then Primitive_Names_Match (Subp, New_Subp)
14143 then
14144 Next_Elmt (Elmt);
14145 end if;
14147 else
14148 if not Present (New_Subp)
14149 or else Ekind (Subp) /= Ekind (New_Subp)
14150 or else not Primitive_Names_Match (Subp, New_Subp)
14151 then
14152 return False;
14153 end if;
14155 Next_Elmt (Elmt);
14156 end if;
14158 Next_Elmt (Op_Elmt);
14159 end loop;
14161 return True;
14162 end Check_Derived_Type;
14164 ---------------------------------
14165 -- Derive_Interface_Subprogram --
14166 ---------------------------------
14168 procedure Derive_Interface_Subprogram
14169 (New_Subp : in out Entity_Id;
14170 Subp : Entity_Id;
14171 Actual_Subp : Entity_Id)
14173 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14174 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14176 begin
14177 pragma Assert (Is_Interface (Iface_Type));
14179 Derive_Subprogram
14180 (New_Subp => New_Subp,
14181 Parent_Subp => Iface_Subp,
14182 Derived_Type => Derived_Type,
14183 Parent_Type => Iface_Type,
14184 Actual_Subp => Actual_Subp);
14186 -- Given that this new interface entity corresponds with a primitive
14187 -- of the parent that was not overridden we must leave it associated
14188 -- with its parent primitive to ensure that it will share the same
14189 -- dispatch table slot when overridden.
14191 if No (Actual_Subp) then
14192 Set_Alias (New_Subp, Subp);
14194 -- For instantiations this is not needed since the previous call to
14195 -- Derive_Subprogram leaves the entity well decorated.
14197 else
14198 pragma Assert (Alias (New_Subp) = Actual_Subp);
14199 null;
14200 end if;
14201 end Derive_Interface_Subprogram;
14203 -- Local variables
14205 Alias_Subp : Entity_Id;
14206 Act_List : Elist_Id;
14207 Act_Elmt : Elmt_Id;
14208 Act_Subp : Entity_Id := Empty;
14209 Elmt : Elmt_Id;
14210 Need_Search : Boolean := False;
14211 New_Subp : Entity_Id := Empty;
14212 Parent_Base : Entity_Id;
14213 Subp : Entity_Id;
14215 -- Start of processing for Derive_Subprograms
14217 begin
14218 if Ekind (Parent_Type) = E_Record_Type_With_Private
14219 and then Has_Discriminants (Parent_Type)
14220 and then Present (Full_View (Parent_Type))
14221 then
14222 Parent_Base := Full_View (Parent_Type);
14223 else
14224 Parent_Base := Parent_Type;
14225 end if;
14227 if Present (Generic_Actual) then
14228 Act_List := Collect_Primitive_Operations (Generic_Actual);
14229 Act_Elmt := First_Elmt (Act_List);
14230 else
14231 Act_List := No_Elist;
14232 Act_Elmt := No_Elmt;
14233 end if;
14235 -- Derive primitives inherited from the parent. Note that if the generic
14236 -- actual is present, this is not really a type derivation, it is a
14237 -- completion within an instance.
14239 -- Case 1: Derived_Type does not implement interfaces
14241 if not Is_Tagged_Type (Derived_Type)
14242 or else (not Has_Interfaces (Derived_Type)
14243 and then not (Present (Generic_Actual)
14244 and then Has_Interfaces (Generic_Actual)))
14245 then
14246 Elmt := First_Elmt (Op_List);
14247 while Present (Elmt) loop
14248 Subp := Node (Elmt);
14250 -- Literals are derived earlier in the process of building the
14251 -- derived type, and are skipped here.
14253 if Ekind (Subp) = E_Enumeration_Literal then
14254 null;
14256 -- The actual is a direct descendant and the common primitive
14257 -- operations appear in the same order.
14259 -- If the generic parent type is present, the derived type is an
14260 -- instance of a formal derived type, and within the instance its
14261 -- operations are those of the actual. We derive from the formal
14262 -- type but make the inherited operations aliases of the
14263 -- corresponding operations of the actual.
14265 else
14266 pragma Assert (No (Node (Act_Elmt))
14267 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
14268 and then
14269 Type_Conformant
14270 (Subp, Node (Act_Elmt),
14271 Skip_Controlling_Formals => True)));
14273 Derive_Subprogram
14274 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
14276 if Present (Act_Elmt) then
14277 Next_Elmt (Act_Elmt);
14278 end if;
14279 end if;
14281 Next_Elmt (Elmt);
14282 end loop;
14284 -- Case 2: Derived_Type implements interfaces
14286 else
14287 -- If the parent type has no predefined primitives we remove
14288 -- predefined primitives from the list of primitives of generic
14289 -- actual to simplify the complexity of this algorithm.
14291 if Present (Generic_Actual) then
14292 declare
14293 Has_Predefined_Primitives : Boolean := False;
14295 begin
14296 -- Check if the parent type has predefined primitives
14298 Elmt := First_Elmt (Op_List);
14299 while Present (Elmt) loop
14300 Subp := Node (Elmt);
14302 if Is_Predefined_Dispatching_Operation (Subp)
14303 and then not Comes_From_Source (Ultimate_Alias (Subp))
14304 then
14305 Has_Predefined_Primitives := True;
14306 exit;
14307 end if;
14309 Next_Elmt (Elmt);
14310 end loop;
14312 -- Remove predefined primitives of Generic_Actual. We must use
14313 -- an auxiliary list because in case of tagged types the value
14314 -- returned by Collect_Primitive_Operations is the value stored
14315 -- in its Primitive_Operations attribute (and we don't want to
14316 -- modify its current contents).
14318 if not Has_Predefined_Primitives then
14319 declare
14320 Aux_List : constant Elist_Id := New_Elmt_List;
14322 begin
14323 Elmt := First_Elmt (Act_List);
14324 while Present (Elmt) loop
14325 Subp := Node (Elmt);
14327 if not Is_Predefined_Dispatching_Operation (Subp)
14328 or else Comes_From_Source (Subp)
14329 then
14330 Append_Elmt (Subp, Aux_List);
14331 end if;
14333 Next_Elmt (Elmt);
14334 end loop;
14336 Act_List := Aux_List;
14337 end;
14338 end if;
14340 Act_Elmt := First_Elmt (Act_List);
14341 Act_Subp := Node (Act_Elmt);
14342 end;
14343 end if;
14345 -- Stage 1: If the generic actual is not present we derive the
14346 -- primitives inherited from the parent type. If the generic parent
14347 -- type is present, the derived type is an instance of a formal
14348 -- derived type, and within the instance its operations are those of
14349 -- the actual. We derive from the formal type but make the inherited
14350 -- operations aliases of the corresponding operations of the actual.
14352 Elmt := First_Elmt (Op_List);
14353 while Present (Elmt) loop
14354 Subp := Node (Elmt);
14355 Alias_Subp := Ultimate_Alias (Subp);
14357 -- Do not derive internal entities of the parent that link
14358 -- interface primitives with their covering primitive. These
14359 -- entities will be added to this type when frozen.
14361 if Present (Interface_Alias (Subp)) then
14362 goto Continue;
14363 end if;
14365 -- If the generic actual is present find the corresponding
14366 -- operation in the generic actual. If the parent type is a
14367 -- direct ancestor of the derived type then, even if it is an
14368 -- interface, the operations are inherited from the primary
14369 -- dispatch table and are in the proper order. If we detect here
14370 -- that primitives are not in the same order we traverse the list
14371 -- of primitive operations of the actual to find the one that
14372 -- implements the interface primitive.
14374 if Need_Search
14375 or else
14376 (Present (Generic_Actual)
14377 and then Present (Act_Subp)
14378 and then not
14379 (Primitive_Names_Match (Subp, Act_Subp)
14380 and then
14381 Type_Conformant (Subp, Act_Subp,
14382 Skip_Controlling_Formals => True)))
14383 then
14384 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
14385 Use_Full_View => True));
14387 -- Remember that we need searching for all pending primitives
14389 Need_Search := True;
14391 -- Handle entities associated with interface primitives
14393 if Present (Alias_Subp)
14394 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14395 and then not Is_Predefined_Dispatching_Operation (Subp)
14396 then
14397 -- Search for the primitive in the homonym chain
14399 Act_Subp :=
14400 Find_Primitive_Covering_Interface
14401 (Tagged_Type => Generic_Actual,
14402 Iface_Prim => Alias_Subp);
14404 -- Previous search may not locate primitives covering
14405 -- interfaces defined in generics units or instantiations.
14406 -- (it fails if the covering primitive has formals whose
14407 -- type is also defined in generics or instantiations).
14408 -- In such case we search in the list of primitives of the
14409 -- generic actual for the internal entity that links the
14410 -- interface primitive and the covering primitive.
14412 if No (Act_Subp)
14413 and then Is_Generic_Type (Parent_Type)
14414 then
14415 -- This code has been designed to handle only generic
14416 -- formals that implement interfaces that are defined
14417 -- in a generic unit or instantiation. If this code is
14418 -- needed for other cases we must review it because
14419 -- (given that it relies on Original_Location to locate
14420 -- the primitive of Generic_Actual that covers the
14421 -- interface) it could leave linked through attribute
14422 -- Alias entities of unrelated instantiations).
14424 pragma Assert
14425 (Is_Generic_Unit
14426 (Scope (Find_Dispatching_Type (Alias_Subp)))
14427 or else
14428 Instantiation_Depth
14429 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
14431 declare
14432 Iface_Prim_Loc : constant Source_Ptr :=
14433 Original_Location (Sloc (Alias_Subp));
14435 Elmt : Elmt_Id;
14436 Prim : Entity_Id;
14438 begin
14439 Elmt :=
14440 First_Elmt (Primitive_Operations (Generic_Actual));
14442 Search : while Present (Elmt) loop
14443 Prim := Node (Elmt);
14445 if Present (Interface_Alias (Prim))
14446 and then Original_Location
14447 (Sloc (Interface_Alias (Prim))) =
14448 Iface_Prim_Loc
14449 then
14450 Act_Subp := Alias (Prim);
14451 exit Search;
14452 end if;
14454 Next_Elmt (Elmt);
14455 end loop Search;
14456 end;
14457 end if;
14459 pragma Assert (Present (Act_Subp)
14460 or else Is_Abstract_Type (Generic_Actual)
14461 or else Serious_Errors_Detected > 0);
14463 -- Handle predefined primitives plus the rest of user-defined
14464 -- primitives
14466 else
14467 Act_Elmt := First_Elmt (Act_List);
14468 while Present (Act_Elmt) loop
14469 Act_Subp := Node (Act_Elmt);
14471 exit when Primitive_Names_Match (Subp, Act_Subp)
14472 and then Type_Conformant
14473 (Subp, Act_Subp,
14474 Skip_Controlling_Formals => True)
14475 and then No (Interface_Alias (Act_Subp));
14477 Next_Elmt (Act_Elmt);
14478 end loop;
14480 if No (Act_Elmt) then
14481 Act_Subp := Empty;
14482 end if;
14483 end if;
14484 end if;
14486 -- Case 1: If the parent is a limited interface then it has the
14487 -- predefined primitives of synchronized interfaces. However, the
14488 -- actual type may be a non-limited type and hence it does not
14489 -- have such primitives.
14491 if Present (Generic_Actual)
14492 and then not Present (Act_Subp)
14493 and then Is_Limited_Interface (Parent_Base)
14494 and then Is_Predefined_Interface_Primitive (Subp)
14495 then
14496 null;
14498 -- Case 2: Inherit entities associated with interfaces that were
14499 -- not covered by the parent type. We exclude here null interface
14500 -- primitives because they do not need special management.
14502 -- We also exclude interface operations that are renamings. If the
14503 -- subprogram is an explicit renaming of an interface primitive,
14504 -- it is a regular primitive operation, and the presence of its
14505 -- alias is not relevant: it has to be derived like any other
14506 -- primitive.
14508 elsif Present (Alias (Subp))
14509 and then Nkind (Unit_Declaration_Node (Subp)) /=
14510 N_Subprogram_Renaming_Declaration
14511 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14512 and then not
14513 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
14514 and then Null_Present (Parent (Alias_Subp)))
14515 then
14516 -- If this is an abstract private type then we transfer the
14517 -- derivation of the interface primitive from the partial view
14518 -- to the full view. This is safe because all the interfaces
14519 -- must be visible in the partial view. Done to avoid adding
14520 -- a new interface derivation to the private part of the
14521 -- enclosing package; otherwise this new derivation would be
14522 -- decorated as hidden when the analysis of the enclosing
14523 -- package completes.
14525 if Is_Abstract_Type (Derived_Type)
14526 and then In_Private_Part (Current_Scope)
14527 and then Has_Private_Declaration (Derived_Type)
14528 then
14529 declare
14530 Partial_View : Entity_Id;
14531 Elmt : Elmt_Id;
14532 Ent : Entity_Id;
14534 begin
14535 Partial_View := First_Entity (Current_Scope);
14536 loop
14537 exit when No (Partial_View)
14538 or else (Has_Private_Declaration (Partial_View)
14539 and then
14540 Full_View (Partial_View) = Derived_Type);
14542 Next_Entity (Partial_View);
14543 end loop;
14545 -- If the partial view was not found then the source code
14546 -- has errors and the derivation is not needed.
14548 if Present (Partial_View) then
14549 Elmt :=
14550 First_Elmt (Primitive_Operations (Partial_View));
14551 while Present (Elmt) loop
14552 Ent := Node (Elmt);
14554 if Present (Alias (Ent))
14555 and then Ultimate_Alias (Ent) = Alias (Subp)
14556 then
14557 Append_Elmt
14558 (Ent, Primitive_Operations (Derived_Type));
14559 exit;
14560 end if;
14562 Next_Elmt (Elmt);
14563 end loop;
14565 -- If the interface primitive was not found in the
14566 -- partial view then this interface primitive was
14567 -- overridden. We add a derivation to activate in
14568 -- Derive_Progenitor_Subprograms the machinery to
14569 -- search for it.
14571 if No (Elmt) then
14572 Derive_Interface_Subprogram
14573 (New_Subp => New_Subp,
14574 Subp => Subp,
14575 Actual_Subp => Act_Subp);
14576 end if;
14577 end if;
14578 end;
14579 else
14580 Derive_Interface_Subprogram
14581 (New_Subp => New_Subp,
14582 Subp => Subp,
14583 Actual_Subp => Act_Subp);
14584 end if;
14586 -- Case 3: Common derivation
14588 else
14589 Derive_Subprogram
14590 (New_Subp => New_Subp,
14591 Parent_Subp => Subp,
14592 Derived_Type => Derived_Type,
14593 Parent_Type => Parent_Base,
14594 Actual_Subp => Act_Subp);
14595 end if;
14597 -- No need to update Act_Elm if we must search for the
14598 -- corresponding operation in the generic actual
14600 if not Need_Search
14601 and then Present (Act_Elmt)
14602 then
14603 Next_Elmt (Act_Elmt);
14604 Act_Subp := Node (Act_Elmt);
14605 end if;
14607 <<Continue>>
14608 Next_Elmt (Elmt);
14609 end loop;
14611 -- Inherit additional operations from progenitors. If the derived
14612 -- type is a generic actual, there are not new primitive operations
14613 -- for the type because it has those of the actual, and therefore
14614 -- nothing needs to be done. The renamings generated above are not
14615 -- primitive operations, and their purpose is simply to make the
14616 -- proper operations visible within an instantiation.
14618 if No (Generic_Actual) then
14619 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
14620 end if;
14621 end if;
14623 -- Final check: Direct descendants must have their primitives in the
14624 -- same order. We exclude from this test untagged types and instances
14625 -- of formal derived types. We skip this test if we have already
14626 -- reported serious errors in the sources.
14628 pragma Assert (not Is_Tagged_Type (Derived_Type)
14629 or else Present (Generic_Actual)
14630 or else Serious_Errors_Detected > 0
14631 or else Check_Derived_Type);
14632 end Derive_Subprograms;
14634 --------------------------------
14635 -- Derived_Standard_Character --
14636 --------------------------------
14638 procedure Derived_Standard_Character
14639 (N : Node_Id;
14640 Parent_Type : Entity_Id;
14641 Derived_Type : Entity_Id)
14643 Loc : constant Source_Ptr := Sloc (N);
14644 Def : constant Node_Id := Type_Definition (N);
14645 Indic : constant Node_Id := Subtype_Indication (Def);
14646 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
14647 Implicit_Base : constant Entity_Id :=
14648 Create_Itype
14649 (E_Enumeration_Type, N, Derived_Type, 'B');
14651 Lo : Node_Id;
14652 Hi : Node_Id;
14654 begin
14655 Discard_Node (Process_Subtype (Indic, N));
14657 Set_Etype (Implicit_Base, Parent_Base);
14658 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
14659 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
14661 Set_Is_Character_Type (Implicit_Base, True);
14662 Set_Has_Delayed_Freeze (Implicit_Base);
14664 -- The bounds of the implicit base are the bounds of the parent base.
14665 -- Note that their type is the parent base.
14667 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
14668 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
14670 Set_Scalar_Range (Implicit_Base,
14671 Make_Range (Loc,
14672 Low_Bound => Lo,
14673 High_Bound => Hi));
14675 Conditional_Delay (Derived_Type, Parent_Type);
14677 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
14678 Set_Etype (Derived_Type, Implicit_Base);
14679 Set_Size_Info (Derived_Type, Parent_Type);
14681 if Unknown_RM_Size (Derived_Type) then
14682 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
14683 end if;
14685 Set_Is_Character_Type (Derived_Type, True);
14687 if Nkind (Indic) /= N_Subtype_Indication then
14689 -- If no explicit constraint, the bounds are those
14690 -- of the parent type.
14692 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
14693 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
14694 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
14695 end if;
14697 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
14699 -- Because the implicit base is used in the conversion of the bounds, we
14700 -- have to freeze it now. This is similar to what is done for numeric
14701 -- types, and it equally suspicious, but otherwise a non-static bound
14702 -- will have a reference to an unfrozen type, which is rejected by Gigi
14703 -- (???). This requires specific care for definition of stream
14704 -- attributes. For details, see comments at the end of
14705 -- Build_Derived_Numeric_Type.
14707 Freeze_Before (N, Implicit_Base);
14708 end Derived_Standard_Character;
14710 ------------------------------
14711 -- Derived_Type_Declaration --
14712 ------------------------------
14714 procedure Derived_Type_Declaration
14715 (T : Entity_Id;
14716 N : Node_Id;
14717 Is_Completion : Boolean)
14719 Parent_Type : Entity_Id;
14721 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
14722 -- Check whether the parent type is a generic formal, or derives
14723 -- directly or indirectly from one.
14725 ------------------------
14726 -- Comes_From_Generic --
14727 ------------------------
14729 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
14730 begin
14731 if Is_Generic_Type (Typ) then
14732 return True;
14734 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
14735 return True;
14737 elsif Is_Private_Type (Typ)
14738 and then Present (Full_View (Typ))
14739 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
14740 then
14741 return True;
14743 elsif Is_Generic_Actual_Type (Typ) then
14744 return True;
14746 else
14747 return False;
14748 end if;
14749 end Comes_From_Generic;
14751 -- Local variables
14753 Def : constant Node_Id := Type_Definition (N);
14754 Iface_Def : Node_Id;
14755 Indic : constant Node_Id := Subtype_Indication (Def);
14756 Extension : constant Node_Id := Record_Extension_Part (Def);
14757 Parent_Node : Node_Id;
14758 Taggd : Boolean;
14760 -- Start of processing for Derived_Type_Declaration
14762 begin
14763 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
14765 -- Ada 2005 (AI-251): In case of interface derivation check that the
14766 -- parent is also an interface.
14768 if Interface_Present (Def) then
14769 Check_SPARK_Restriction ("interface is not allowed", Def);
14771 if not Is_Interface (Parent_Type) then
14772 Diagnose_Interface (Indic, Parent_Type);
14774 else
14775 Parent_Node := Parent (Base_Type (Parent_Type));
14776 Iface_Def := Type_Definition (Parent_Node);
14778 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
14779 -- other limited interfaces.
14781 if Limited_Present (Def) then
14782 if Limited_Present (Iface_Def) then
14783 null;
14785 elsif Protected_Present (Iface_Def) then
14786 Error_Msg_NE
14787 ("descendant of& must be declared"
14788 & " as a protected interface",
14789 N, Parent_Type);
14791 elsif Synchronized_Present (Iface_Def) then
14792 Error_Msg_NE
14793 ("descendant of& must be declared"
14794 & " as a synchronized interface",
14795 N, Parent_Type);
14797 elsif Task_Present (Iface_Def) then
14798 Error_Msg_NE
14799 ("descendant of& must be declared as a task interface",
14800 N, Parent_Type);
14802 else
14803 Error_Msg_N
14804 ("(Ada 2005) limited interface cannot "
14805 & "inherit from non-limited interface", Indic);
14806 end if;
14808 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
14809 -- from non-limited or limited interfaces.
14811 elsif not Protected_Present (Def)
14812 and then not Synchronized_Present (Def)
14813 and then not Task_Present (Def)
14814 then
14815 if Limited_Present (Iface_Def) then
14816 null;
14818 elsif Protected_Present (Iface_Def) then
14819 Error_Msg_NE
14820 ("descendant of& must be declared"
14821 & " as a protected interface",
14822 N, Parent_Type);
14824 elsif Synchronized_Present (Iface_Def) then
14825 Error_Msg_NE
14826 ("descendant of& must be declared"
14827 & " as a synchronized interface",
14828 N, Parent_Type);
14830 elsif Task_Present (Iface_Def) then
14831 Error_Msg_NE
14832 ("descendant of& must be declared as a task interface",
14833 N, Parent_Type);
14834 else
14835 null;
14836 end if;
14837 end if;
14838 end if;
14839 end if;
14841 if Is_Tagged_Type (Parent_Type)
14842 and then Is_Concurrent_Type (Parent_Type)
14843 and then not Is_Interface (Parent_Type)
14844 then
14845 Error_Msg_N
14846 ("parent type of a record extension cannot be "
14847 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
14848 Set_Etype (T, Any_Type);
14849 return;
14850 end if;
14852 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
14853 -- interfaces
14855 if Is_Tagged_Type (Parent_Type)
14856 and then Is_Non_Empty_List (Interface_List (Def))
14857 then
14858 declare
14859 Intf : Node_Id;
14860 T : Entity_Id;
14862 begin
14863 Intf := First (Interface_List (Def));
14864 while Present (Intf) loop
14865 T := Find_Type_Of_Subtype_Indic (Intf);
14867 if not Is_Interface (T) then
14868 Diagnose_Interface (Intf, T);
14870 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
14871 -- a limited type from having a nonlimited progenitor.
14873 elsif (Limited_Present (Def)
14874 or else (not Is_Interface (Parent_Type)
14875 and then Is_Limited_Type (Parent_Type)))
14876 and then not Is_Limited_Interface (T)
14877 then
14878 Error_Msg_NE
14879 ("progenitor interface& of limited type must be limited",
14880 N, T);
14881 end if;
14883 Next (Intf);
14884 end loop;
14885 end;
14886 end if;
14888 if Parent_Type = Any_Type
14889 or else Etype (Parent_Type) = Any_Type
14890 or else (Is_Class_Wide_Type (Parent_Type)
14891 and then Etype (Parent_Type) = T)
14892 then
14893 -- If Parent_Type is undefined or illegal, make new type into a
14894 -- subtype of Any_Type, and set a few attributes to prevent cascaded
14895 -- errors. If this is a self-definition, emit error now.
14897 if T = Parent_Type
14898 or else T = Etype (Parent_Type)
14899 then
14900 Error_Msg_N ("type cannot be used in its own definition", Indic);
14901 end if;
14903 Set_Ekind (T, Ekind (Parent_Type));
14904 Set_Etype (T, Any_Type);
14905 Set_Scalar_Range (T, Scalar_Range (Any_Type));
14907 if Is_Tagged_Type (T)
14908 and then Is_Record_Type (T)
14909 then
14910 Set_Direct_Primitive_Operations (T, New_Elmt_List);
14911 end if;
14913 return;
14914 end if;
14916 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
14917 -- an interface is special because the list of interfaces in the full
14918 -- view can be given in any order. For example:
14920 -- type A is interface;
14921 -- type B is interface and A;
14922 -- type D is new B with private;
14923 -- private
14924 -- type D is new A and B with null record; -- 1 --
14926 -- In this case we perform the following transformation of -1-:
14928 -- type D is new B and A with null record;
14930 -- If the parent of the full-view covers the parent of the partial-view
14931 -- we have two possible cases:
14933 -- 1) They have the same parent
14934 -- 2) The parent of the full-view implements some further interfaces
14936 -- In both cases we do not need to perform the transformation. In the
14937 -- first case the source program is correct and the transformation is
14938 -- not needed; in the second case the source program does not fulfill
14939 -- the no-hidden interfaces rule (AI-396) and the error will be reported
14940 -- later.
14942 -- This transformation not only simplifies the rest of the analysis of
14943 -- this type declaration but also simplifies the correct generation of
14944 -- the object layout to the expander.
14946 if In_Private_Part (Current_Scope)
14947 and then Is_Interface (Parent_Type)
14948 then
14949 declare
14950 Iface : Node_Id;
14951 Partial_View : Entity_Id;
14952 Partial_View_Parent : Entity_Id;
14953 New_Iface : Node_Id;
14955 begin
14956 -- Look for the associated private type declaration
14958 Partial_View := First_Entity (Current_Scope);
14959 loop
14960 exit when No (Partial_View)
14961 or else (Has_Private_Declaration (Partial_View)
14962 and then Full_View (Partial_View) = T);
14964 Next_Entity (Partial_View);
14965 end loop;
14967 -- If the partial view was not found then the source code has
14968 -- errors and the transformation is not needed.
14970 if Present (Partial_View) then
14971 Partial_View_Parent := Etype (Partial_View);
14973 -- If the parent of the full-view covers the parent of the
14974 -- partial-view we have nothing else to do.
14976 if Interface_Present_In_Ancestor
14977 (Parent_Type, Partial_View_Parent)
14978 then
14979 null;
14981 -- Traverse the list of interfaces of the full-view to look
14982 -- for the parent of the partial-view and perform the tree
14983 -- transformation.
14985 else
14986 Iface := First (Interface_List (Def));
14987 while Present (Iface) loop
14988 if Etype (Iface) = Etype (Partial_View) then
14989 Rewrite (Subtype_Indication (Def),
14990 New_Copy (Subtype_Indication
14991 (Parent (Partial_View))));
14993 New_Iface :=
14994 Make_Identifier (Sloc (N), Chars (Parent_Type));
14995 Append (New_Iface, Interface_List (Def));
14997 -- Analyze the transformed code
14999 Derived_Type_Declaration (T, N, Is_Completion);
15000 return;
15001 end if;
15003 Next (Iface);
15004 end loop;
15005 end if;
15006 end if;
15007 end;
15008 end if;
15010 -- Only composite types other than array types are allowed to have
15011 -- discriminants. In SPARK, no types are allowed to have discriminants.
15013 if Present (Discriminant_Specifications (N)) then
15014 if (Is_Elementary_Type (Parent_Type)
15015 or else Is_Array_Type (Parent_Type))
15016 and then not Error_Posted (N)
15017 then
15018 Error_Msg_N
15019 ("elementary or array type cannot have discriminants",
15020 Defining_Identifier (First (Discriminant_Specifications (N))));
15021 Set_Has_Discriminants (T, False);
15022 else
15023 Check_SPARK_Restriction ("discriminant type is not allowed", N);
15024 end if;
15025 end if;
15027 -- In Ada 83, a derived type defined in a package specification cannot
15028 -- be used for further derivation until the end of its visible part.
15029 -- Note that derivation in the private part of the package is allowed.
15031 if Ada_Version = Ada_83
15032 and then Is_Derived_Type (Parent_Type)
15033 and then In_Visible_Part (Scope (Parent_Type))
15034 then
15035 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15036 Error_Msg_N
15037 ("(Ada 83): premature use of type for derivation", Indic);
15038 end if;
15039 end if;
15041 -- Check for early use of incomplete or private type
15043 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15044 Error_Msg_N ("premature derivation of incomplete type", Indic);
15045 return;
15047 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15048 and then not Comes_From_Generic (Parent_Type))
15049 or else Has_Private_Component (Parent_Type)
15050 then
15051 -- The ancestor type of a formal type can be incomplete, in which
15052 -- case only the operations of the partial view are available in the
15053 -- generic. Subsequent checks may be required when the full view is
15054 -- analyzed to verify that a derivation from a tagged type has an
15055 -- extension.
15057 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15058 null;
15060 elsif No (Underlying_Type (Parent_Type))
15061 or else Has_Private_Component (Parent_Type)
15062 then
15063 Error_Msg_N
15064 ("premature derivation of derived or private type", Indic);
15066 -- Flag the type itself as being in error, this prevents some
15067 -- nasty problems with subsequent uses of the malformed type.
15069 Set_Error_Posted (T);
15071 -- Check that within the immediate scope of an untagged partial
15072 -- view it's illegal to derive from the partial view if the
15073 -- full view is tagged. (7.3(7))
15075 -- We verify that the Parent_Type is a partial view by checking
15076 -- that it is not a Full_Type_Declaration (i.e. a private type or
15077 -- private extension declaration), to distinguish a partial view
15078 -- from a derivation from a private type which also appears as
15079 -- E_Private_Type. If the parent base type is not declared in an
15080 -- enclosing scope there is no need to check.
15082 elsif Present (Full_View (Parent_Type))
15083 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15084 and then not Is_Tagged_Type (Parent_Type)
15085 and then Is_Tagged_Type (Full_View (Parent_Type))
15086 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15087 then
15088 Error_Msg_N
15089 ("premature derivation from type with tagged full view",
15090 Indic);
15091 end if;
15092 end if;
15094 -- Check that form of derivation is appropriate
15096 Taggd := Is_Tagged_Type (Parent_Type);
15098 -- Perhaps the parent type should be changed to the class-wide type's
15099 -- specific type in this case to prevent cascading errors ???
15101 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15102 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15103 return;
15104 end if;
15106 if Present (Extension) and then not Taggd then
15107 Error_Msg_N
15108 ("type derived from untagged type cannot have extension", Indic);
15110 elsif No (Extension) and then Taggd then
15112 -- If this declaration is within a private part (or body) of a
15113 -- generic instantiation then the derivation is allowed (the parent
15114 -- type can only appear tagged in this case if it's a generic actual
15115 -- type, since it would otherwise have been rejected in the analysis
15116 -- of the generic template).
15118 if not Is_Generic_Actual_Type (Parent_Type)
15119 or else In_Visible_Part (Scope (Parent_Type))
15120 then
15121 if Is_Class_Wide_Type (Parent_Type) then
15122 Error_Msg_N
15123 ("parent type must not be a class-wide type", Indic);
15125 -- Use specific type to prevent cascaded errors.
15127 Parent_Type := Etype (Parent_Type);
15129 else
15130 Error_Msg_N
15131 ("type derived from tagged type must have extension", Indic);
15132 end if;
15133 end if;
15134 end if;
15136 -- AI-443: Synchronized formal derived types require a private
15137 -- extension. There is no point in checking the ancestor type or
15138 -- the progenitors since the construct is wrong to begin with.
15140 if Ada_Version >= Ada_2005
15141 and then Is_Generic_Type (T)
15142 and then Present (Original_Node (N))
15143 then
15144 declare
15145 Decl : constant Node_Id := Original_Node (N);
15147 begin
15148 if Nkind (Decl) = N_Formal_Type_Declaration
15149 and then Nkind (Formal_Type_Definition (Decl)) =
15150 N_Formal_Derived_Type_Definition
15151 and then Synchronized_Present (Formal_Type_Definition (Decl))
15152 and then No (Extension)
15154 -- Avoid emitting a duplicate error message
15156 and then not Error_Posted (Indic)
15157 then
15158 Error_Msg_N
15159 ("synchronized derived type must have extension", N);
15160 end if;
15161 end;
15162 end if;
15164 if Null_Exclusion_Present (Def)
15165 and then not Is_Access_Type (Parent_Type)
15166 then
15167 Error_Msg_N ("null exclusion can only apply to an access type", N);
15168 end if;
15170 -- Avoid deriving parent primitives of underlying record views
15172 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15173 Derive_Subps => not Is_Underlying_Record_View (T));
15175 -- AI-419: The parent type of an explicitly limited derived type must
15176 -- be a limited type or a limited interface.
15178 if Limited_Present (Def) then
15179 Set_Is_Limited_Record (T);
15181 if Is_Interface (T) then
15182 Set_Is_Limited_Interface (T);
15183 end if;
15185 if not Is_Limited_Type (Parent_Type)
15186 and then
15187 (not Is_Interface (Parent_Type)
15188 or else not Is_Limited_Interface (Parent_Type))
15189 then
15190 -- AI05-0096: a derivation in the private part of an instance is
15191 -- legal if the generic formal is untagged limited, and the actual
15192 -- is non-limited.
15194 if Is_Generic_Actual_Type (Parent_Type)
15195 and then In_Private_Part (Current_Scope)
15196 and then
15197 not Is_Tagged_Type
15198 (Generic_Parent_Type (Parent (Parent_Type)))
15199 then
15200 null;
15202 else
15203 Error_Msg_NE
15204 ("parent type& of limited type must be limited",
15205 N, Parent_Type);
15206 end if;
15207 end if;
15208 end if;
15210 -- In SPARK, there are no derived type definitions other than type
15211 -- extensions of tagged record types.
15213 if No (Extension) then
15214 Check_SPARK_Restriction
15215 ("derived type is not allowed", Original_Node (N));
15216 end if;
15217 end Derived_Type_Declaration;
15219 ------------------------
15220 -- Diagnose_Interface --
15221 ------------------------
15223 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
15224 begin
15225 if not Is_Interface (E)
15226 and then E /= Any_Type
15227 then
15228 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
15229 end if;
15230 end Diagnose_Interface;
15232 ----------------------------------
15233 -- Enumeration_Type_Declaration --
15234 ----------------------------------
15236 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15237 Ev : Uint;
15238 L : Node_Id;
15239 R_Node : Node_Id;
15240 B_Node : Node_Id;
15242 begin
15243 -- Create identifier node representing lower bound
15245 B_Node := New_Node (N_Identifier, Sloc (Def));
15246 L := First (Literals (Def));
15247 Set_Chars (B_Node, Chars (L));
15248 Set_Entity (B_Node, L);
15249 Set_Etype (B_Node, T);
15250 Set_Is_Static_Expression (B_Node, True);
15252 R_Node := New_Node (N_Range, Sloc (Def));
15253 Set_Low_Bound (R_Node, B_Node);
15255 Set_Ekind (T, E_Enumeration_Type);
15256 Set_First_Literal (T, L);
15257 Set_Etype (T, T);
15258 Set_Is_Constrained (T);
15260 Ev := Uint_0;
15262 -- Loop through literals of enumeration type setting pos and rep values
15263 -- except that if the Ekind is already set, then it means the literal
15264 -- was already constructed (case of a derived type declaration and we
15265 -- should not disturb the Pos and Rep values.
15267 while Present (L) loop
15268 if Ekind (L) /= E_Enumeration_Literal then
15269 Set_Ekind (L, E_Enumeration_Literal);
15270 Set_Enumeration_Pos (L, Ev);
15271 Set_Enumeration_Rep (L, Ev);
15272 Set_Is_Known_Valid (L, True);
15273 end if;
15275 Set_Etype (L, T);
15276 New_Overloaded_Entity (L);
15277 Generate_Definition (L);
15278 Set_Convention (L, Convention_Intrinsic);
15280 -- Case of character literal
15282 if Nkind (L) = N_Defining_Character_Literal then
15283 Set_Is_Character_Type (T, True);
15285 -- Check violation of No_Wide_Characters
15287 if Restriction_Check_Required (No_Wide_Characters) then
15288 Get_Name_String (Chars (L));
15290 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
15291 Check_Restriction (No_Wide_Characters, L);
15292 end if;
15293 end if;
15294 end if;
15296 Ev := Ev + 1;
15297 Next (L);
15298 end loop;
15300 -- Now create a node representing upper bound
15302 B_Node := New_Node (N_Identifier, Sloc (Def));
15303 Set_Chars (B_Node, Chars (Last (Literals (Def))));
15304 Set_Entity (B_Node, Last (Literals (Def)));
15305 Set_Etype (B_Node, T);
15306 Set_Is_Static_Expression (B_Node, True);
15308 Set_High_Bound (R_Node, B_Node);
15310 -- Initialize various fields of the type. Some of this information
15311 -- may be overwritten later through rep.clauses.
15313 Set_Scalar_Range (T, R_Node);
15314 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15315 Set_Enum_Esize (T);
15316 Set_Enum_Pos_To_Rep (T, Empty);
15318 -- Set Discard_Names if configuration pragma set, or if there is
15319 -- a parameterless pragma in the current declarative region
15321 if Global_Discard_Names or else Discard_Names (Scope (T)) then
15322 Set_Discard_Names (T);
15323 end if;
15325 -- Process end label if there is one
15327 if Present (Def) then
15328 Process_End_Label (Def, 'e', T);
15329 end if;
15330 end Enumeration_Type_Declaration;
15332 ---------------------------------
15333 -- Expand_To_Stored_Constraint --
15334 ---------------------------------
15336 function Expand_To_Stored_Constraint
15337 (Typ : Entity_Id;
15338 Constraint : Elist_Id) return Elist_Id
15340 Explicitly_Discriminated_Type : Entity_Id;
15341 Expansion : Elist_Id;
15342 Discriminant : Entity_Id;
15344 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
15345 -- Find the nearest type that actually specifies discriminants
15347 ---------------------------------
15348 -- Type_With_Explicit_Discrims --
15349 ---------------------------------
15351 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
15352 Typ : constant E := Base_Type (Id);
15354 begin
15355 if Ekind (Typ) in Incomplete_Or_Private_Kind then
15356 if Present (Full_View (Typ)) then
15357 return Type_With_Explicit_Discrims (Full_View (Typ));
15358 end if;
15360 else
15361 if Has_Discriminants (Typ) then
15362 return Typ;
15363 end if;
15364 end if;
15366 if Etype (Typ) = Typ then
15367 return Empty;
15368 elsif Has_Discriminants (Typ) then
15369 return Typ;
15370 else
15371 return Type_With_Explicit_Discrims (Etype (Typ));
15372 end if;
15374 end Type_With_Explicit_Discrims;
15376 -- Start of processing for Expand_To_Stored_Constraint
15378 begin
15379 if No (Constraint)
15380 or else Is_Empty_Elmt_List (Constraint)
15381 then
15382 return No_Elist;
15383 end if;
15385 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
15387 if No (Explicitly_Discriminated_Type) then
15388 return No_Elist;
15389 end if;
15391 Expansion := New_Elmt_List;
15393 Discriminant :=
15394 First_Stored_Discriminant (Explicitly_Discriminated_Type);
15395 while Present (Discriminant) loop
15396 Append_Elmt
15397 (Get_Discriminant_Value
15398 (Discriminant, Explicitly_Discriminated_Type, Constraint),
15399 To => Expansion);
15400 Next_Stored_Discriminant (Discriminant);
15401 end loop;
15403 return Expansion;
15404 end Expand_To_Stored_Constraint;
15406 ---------------------------
15407 -- Find_Hidden_Interface --
15408 ---------------------------
15410 function Find_Hidden_Interface
15411 (Src : Elist_Id;
15412 Dest : Elist_Id) return Entity_Id
15414 Iface : Entity_Id;
15415 Iface_Elmt : Elmt_Id;
15417 begin
15418 if Present (Src) and then Present (Dest) then
15419 Iface_Elmt := First_Elmt (Src);
15420 while Present (Iface_Elmt) loop
15421 Iface := Node (Iface_Elmt);
15423 if Is_Interface (Iface)
15424 and then not Contain_Interface (Iface, Dest)
15425 then
15426 return Iface;
15427 end if;
15429 Next_Elmt (Iface_Elmt);
15430 end loop;
15431 end if;
15433 return Empty;
15434 end Find_Hidden_Interface;
15436 --------------------
15437 -- Find_Type_Name --
15438 --------------------
15440 function Find_Type_Name (N : Node_Id) return Entity_Id is
15441 Id : constant Entity_Id := Defining_Identifier (N);
15442 Prev : Entity_Id;
15443 New_Id : Entity_Id;
15444 Prev_Par : Node_Id;
15446 procedure Check_Duplicate_Aspects;
15447 -- Check that aspects specified in a completion have not been specified
15448 -- already in the partial view. Type_Invariant and others can be
15449 -- specified on either view but never on both.
15451 procedure Tag_Mismatch;
15452 -- Diagnose a tagged partial view whose full view is untagged.
15453 -- We post the message on the full view, with a reference to
15454 -- the previous partial view. The partial view can be private
15455 -- or incomplete, and these are handled in a different manner,
15456 -- so we determine the position of the error message from the
15457 -- respective slocs of both.
15459 -----------------------------
15460 -- Check_Duplicate_Aspects --
15461 -----------------------------
15462 procedure Check_Duplicate_Aspects is
15463 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
15464 Full_Aspects : constant List_Id := Aspect_Specifications (N);
15465 F_Spec, P_Spec : Node_Id;
15467 begin
15468 if Present (Prev_Aspects) and then Present (Full_Aspects) then
15469 F_Spec := First (Full_Aspects);
15470 while Present (F_Spec) loop
15471 P_Spec := First (Prev_Aspects);
15472 while Present (P_Spec) loop
15474 Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
15475 then
15476 Error_Msg_N
15477 ("aspect already specified in private declaration",
15478 F_Spec);
15479 Remove (F_Spec);
15480 return;
15481 end if;
15483 Next (P_Spec);
15484 end loop;
15486 Next (F_Spec);
15487 end loop;
15488 end if;
15489 end Check_Duplicate_Aspects;
15491 ------------------
15492 -- Tag_Mismatch --
15493 ------------------
15495 procedure Tag_Mismatch is
15496 begin
15497 if Sloc (Prev) < Sloc (Id) then
15498 if Ada_Version >= Ada_2012
15499 and then Nkind (N) = N_Private_Type_Declaration
15500 then
15501 Error_Msg_NE
15502 ("declaration of private } must be a tagged type ", Id, Prev);
15503 else
15504 Error_Msg_NE
15505 ("full declaration of } must be a tagged type ", Id, Prev);
15506 end if;
15508 else
15509 if Ada_Version >= Ada_2012
15510 and then Nkind (N) = N_Private_Type_Declaration
15511 then
15512 Error_Msg_NE
15513 ("declaration of private } must be a tagged type ", Prev, Id);
15514 else
15515 Error_Msg_NE
15516 ("full declaration of } must be a tagged type ", Prev, Id);
15517 end if;
15518 end if;
15519 end Tag_Mismatch;
15521 -- Start of processing for Find_Type_Name
15523 begin
15524 -- Find incomplete declaration, if one was given
15526 Prev := Current_Entity_In_Scope (Id);
15528 -- New type declaration
15530 if No (Prev) then
15531 Enter_Name (Id);
15532 return Id;
15534 -- Previous declaration exists
15536 else
15537 Prev_Par := Parent (Prev);
15539 -- Error if not incomplete/private case except if previous
15540 -- declaration is implicit, etc. Enter_Name will emit error if
15541 -- appropriate.
15543 if not Is_Incomplete_Or_Private_Type (Prev) then
15544 Enter_Name (Id);
15545 New_Id := Id;
15547 -- Check invalid completion of private or incomplete type
15549 elsif not Nkind_In (N, N_Full_Type_Declaration,
15550 N_Task_Type_Declaration,
15551 N_Protected_Type_Declaration)
15552 and then
15553 (Ada_Version < Ada_2012
15554 or else not Is_Incomplete_Type (Prev)
15555 or else not Nkind_In (N, N_Private_Type_Declaration,
15556 N_Private_Extension_Declaration))
15557 then
15558 -- Completion must be a full type declarations (RM 7.3(4))
15560 Error_Msg_Sloc := Sloc (Prev);
15561 Error_Msg_NE ("invalid completion of }", Id, Prev);
15563 -- Set scope of Id to avoid cascaded errors. Entity is never
15564 -- examined again, except when saving globals in generics.
15566 Set_Scope (Id, Current_Scope);
15567 New_Id := Id;
15569 -- If this is a repeated incomplete declaration, no further
15570 -- checks are possible.
15572 if Nkind (N) = N_Incomplete_Type_Declaration then
15573 return Prev;
15574 end if;
15576 -- Case of full declaration of incomplete type
15578 elsif Ekind (Prev) = E_Incomplete_Type
15579 and then (Ada_Version < Ada_2012
15580 or else No (Full_View (Prev))
15581 or else not Is_Private_Type (Full_View (Prev)))
15582 then
15583 -- Indicate that the incomplete declaration has a matching full
15584 -- declaration. The defining occurrence of the incomplete
15585 -- declaration remains the visible one, and the procedure
15586 -- Get_Full_View dereferences it whenever the type is used.
15588 if Present (Full_View (Prev)) then
15589 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15590 end if;
15592 Set_Full_View (Prev, Id);
15593 Append_Entity (Id, Current_Scope);
15594 Set_Is_Public (Id, Is_Public (Prev));
15595 Set_Is_Internal (Id);
15596 New_Id := Prev;
15598 -- If the incomplete view is tagged, a class_wide type has been
15599 -- created already. Use it for the private type as well, in order
15600 -- to prevent multiple incompatible class-wide types that may be
15601 -- created for self-referential anonymous access components.
15603 if Is_Tagged_Type (Prev)
15604 and then Present (Class_Wide_Type (Prev))
15605 then
15606 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
15607 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
15609 -- If the incomplete type is completed by a private declaration
15610 -- the class-wide type remains associated with the incomplete
15611 -- type, to prevent order-of-elaboration issues in gigi, else
15612 -- we associate the class-wide type with the known full view.
15614 if Nkind (N) /= N_Private_Type_Declaration then
15615 Set_Etype (Class_Wide_Type (Id), Id);
15616 end if;
15617 end if;
15619 -- Case of full declaration of private type
15621 else
15622 -- If the private type was a completion of an incomplete type then
15623 -- update Prev to reference the private type
15625 if Ada_Version >= Ada_2012
15626 and then Ekind (Prev) = E_Incomplete_Type
15627 and then Present (Full_View (Prev))
15628 and then Is_Private_Type (Full_View (Prev))
15629 then
15630 Prev := Full_View (Prev);
15631 Prev_Par := Parent (Prev);
15632 end if;
15634 if Nkind (N) = N_Full_Type_Declaration
15635 and then Nkind_In
15636 (Type_Definition (N), N_Record_Definition,
15637 N_Derived_Type_Definition)
15638 and then Interface_Present (Type_Definition (N))
15639 then
15640 Error_Msg_N
15641 ("completion of private type cannot be an interface", N);
15642 end if;
15644 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
15645 if Etype (Prev) /= Prev then
15647 -- Prev is a private subtype or a derived type, and needs
15648 -- no completion.
15650 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15651 New_Id := Id;
15653 elsif Ekind (Prev) = E_Private_Type
15654 and then Nkind_In (N, N_Task_Type_Declaration,
15655 N_Protected_Type_Declaration)
15656 then
15657 Error_Msg_N
15658 ("completion of nonlimited type cannot be limited", N);
15660 elsif Ekind (Prev) = E_Record_Type_With_Private
15661 and then Nkind_In (N, N_Task_Type_Declaration,
15662 N_Protected_Type_Declaration)
15663 then
15664 if not Is_Limited_Record (Prev) then
15665 Error_Msg_N
15666 ("completion of nonlimited type cannot be limited", N);
15668 elsif No (Interface_List (N)) then
15669 Error_Msg_N
15670 ("completion of tagged private type must be tagged",
15672 end if;
15673 end if;
15675 -- Ada 2005 (AI-251): Private extension declaration of a task
15676 -- type or a protected type. This case arises when covering
15677 -- interface types.
15679 elsif Nkind_In (N, N_Task_Type_Declaration,
15680 N_Protected_Type_Declaration)
15681 then
15682 null;
15684 elsif Nkind (N) /= N_Full_Type_Declaration
15685 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
15686 then
15687 Error_Msg_N
15688 ("full view of private extension must be an extension", N);
15690 elsif not (Abstract_Present (Parent (Prev)))
15691 and then Abstract_Present (Type_Definition (N))
15692 then
15693 Error_Msg_N
15694 ("full view of non-abstract extension cannot be abstract", N);
15695 end if;
15697 if not In_Private_Part (Current_Scope) then
15698 Error_Msg_N
15699 ("declaration of full view must appear in private part", N);
15700 end if;
15702 if Ada_Version >= Ada_2012 then
15703 Check_Duplicate_Aspects;
15704 end if;
15706 Copy_And_Swap (Prev, Id);
15707 Set_Has_Private_Declaration (Prev);
15708 Set_Has_Private_Declaration (Id);
15710 -- Preserve aspect and iterator flags that may have been set on
15711 -- the partial view.
15713 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
15714 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
15716 -- If no error, propagate freeze_node from private to full view.
15717 -- It may have been generated for an early operational item.
15719 if Present (Freeze_Node (Id))
15720 and then Serious_Errors_Detected = 0
15721 and then No (Full_View (Id))
15722 then
15723 Set_Freeze_Node (Prev, Freeze_Node (Id));
15724 Set_Freeze_Node (Id, Empty);
15725 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
15726 end if;
15728 Set_Full_View (Id, Prev);
15729 New_Id := Prev;
15730 end if;
15732 -- Verify that full declaration conforms to partial one
15734 if Is_Incomplete_Or_Private_Type (Prev)
15735 and then Present (Discriminant_Specifications (Prev_Par))
15736 then
15737 if Present (Discriminant_Specifications (N)) then
15738 if Ekind (Prev) = E_Incomplete_Type then
15739 Check_Discriminant_Conformance (N, Prev, Prev);
15740 else
15741 Check_Discriminant_Conformance (N, Prev, Id);
15742 end if;
15744 else
15745 Error_Msg_N
15746 ("missing discriminants in full type declaration", N);
15748 -- To avoid cascaded errors on subsequent use, share the
15749 -- discriminants of the partial view.
15751 Set_Discriminant_Specifications (N,
15752 Discriminant_Specifications (Prev_Par));
15753 end if;
15754 end if;
15756 -- A prior untagged partial view can have an associated class-wide
15757 -- type due to use of the class attribute, and in this case the full
15758 -- type must also be tagged. This Ada 95 usage is deprecated in favor
15759 -- of incomplete tagged declarations, but we check for it.
15761 if Is_Type (Prev)
15762 and then (Is_Tagged_Type (Prev)
15763 or else Present (Class_Wide_Type (Prev)))
15764 then
15765 -- Ada 2012 (AI05-0162): A private type may be the completion of
15766 -- an incomplete type.
15768 if Ada_Version >= Ada_2012
15769 and then Is_Incomplete_Type (Prev)
15770 and then Nkind_In (N, N_Private_Type_Declaration,
15771 N_Private_Extension_Declaration)
15772 then
15773 -- No need to check private extensions since they are tagged
15775 if Nkind (N) = N_Private_Type_Declaration
15776 and then not Tagged_Present (N)
15777 then
15778 Tag_Mismatch;
15779 end if;
15781 -- The full declaration is either a tagged type (including
15782 -- a synchronized type that implements interfaces) or a
15783 -- type extension, otherwise this is an error.
15785 elsif Nkind_In (N, N_Task_Type_Declaration,
15786 N_Protected_Type_Declaration)
15787 then
15788 if No (Interface_List (N))
15789 and then not Error_Posted (N)
15790 then
15791 Tag_Mismatch;
15792 end if;
15794 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
15796 -- Indicate that the previous declaration (tagged incomplete
15797 -- or private declaration) requires the same on the full one.
15799 if not Tagged_Present (Type_Definition (N)) then
15800 Tag_Mismatch;
15801 Set_Is_Tagged_Type (Id);
15802 end if;
15804 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
15805 if No (Record_Extension_Part (Type_Definition (N))) then
15806 Error_Msg_NE
15807 ("full declaration of } must be a record extension",
15808 Prev, Id);
15810 -- Set some attributes to produce a usable full view
15812 Set_Is_Tagged_Type (Id);
15813 end if;
15815 else
15816 Tag_Mismatch;
15817 end if;
15818 end if;
15820 if Present (Prev)
15821 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
15822 and then Present (Premature_Use (Parent (Prev)))
15823 then
15824 Error_Msg_Sloc := Sloc (N);
15825 Error_Msg_N
15826 ("\full declaration #", Premature_Use (Parent (Prev)));
15827 end if;
15829 return New_Id;
15830 end if;
15831 end Find_Type_Name;
15833 -------------------------
15834 -- Find_Type_Of_Object --
15835 -------------------------
15837 function Find_Type_Of_Object
15838 (Obj_Def : Node_Id;
15839 Related_Nod : Node_Id) return Entity_Id
15841 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
15842 P : Node_Id := Parent (Obj_Def);
15843 T : Entity_Id;
15844 Nam : Name_Id;
15846 begin
15847 -- If the parent is a component_definition node we climb to the
15848 -- component_declaration node
15850 if Nkind (P) = N_Component_Definition then
15851 P := Parent (P);
15852 end if;
15854 -- Case of an anonymous array subtype
15856 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
15857 N_Unconstrained_Array_Definition)
15858 then
15859 T := Empty;
15860 Array_Type_Declaration (T, Obj_Def);
15862 -- Create an explicit subtype whenever possible
15864 elsif Nkind (P) /= N_Component_Declaration
15865 and then Def_Kind = N_Subtype_Indication
15866 then
15867 -- Base name of subtype on object name, which will be unique in
15868 -- the current scope.
15870 -- If this is a duplicate declaration, return base type, to avoid
15871 -- generating duplicate anonymous types.
15873 if Error_Posted (P) then
15874 Analyze (Subtype_Mark (Obj_Def));
15875 return Entity (Subtype_Mark (Obj_Def));
15876 end if;
15878 Nam :=
15879 New_External_Name
15880 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
15882 T := Make_Defining_Identifier (Sloc (P), Nam);
15884 Insert_Action (Obj_Def,
15885 Make_Subtype_Declaration (Sloc (P),
15886 Defining_Identifier => T,
15887 Subtype_Indication => Relocate_Node (Obj_Def)));
15889 -- This subtype may need freezing, and this will not be done
15890 -- automatically if the object declaration is not in declarative
15891 -- part. Since this is an object declaration, the type cannot always
15892 -- be frozen here. Deferred constants do not freeze their type
15893 -- (which often enough will be private).
15895 if Nkind (P) = N_Object_Declaration
15896 and then Constant_Present (P)
15897 and then No (Expression (P))
15898 then
15899 null;
15901 -- Here we freeze the base type of object type to catch premature use
15902 -- of discriminated private type without a full view.
15904 else
15905 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
15906 end if;
15908 -- Ada 2005 AI-406: the object definition in an object declaration
15909 -- can be an access definition.
15911 elsif Def_Kind = N_Access_Definition then
15912 T := Access_Definition (Related_Nod, Obj_Def);
15914 Set_Is_Local_Anonymous_Access
15916 V => (Ada_Version < Ada_2012)
15917 or else (Nkind (P) /= N_Object_Declaration)
15918 or else Is_Library_Level_Entity (Defining_Identifier (P)));
15920 -- Otherwise, the object definition is just a subtype_mark
15922 else
15923 T := Process_Subtype (Obj_Def, Related_Nod);
15925 -- If expansion is disabled an object definition that is an aggregate
15926 -- will not get expanded and may lead to scoping problems in the back
15927 -- end, if the object is referenced in an inner scope. In that case
15928 -- create an itype reference for the object definition now. This
15929 -- may be redundant in some cases, but harmless.
15931 if Is_Itype (T)
15932 and then Nkind (Related_Nod) = N_Object_Declaration
15933 and then ASIS_Mode
15934 then
15935 Build_Itype_Reference (T, Related_Nod);
15936 end if;
15937 end if;
15939 return T;
15940 end Find_Type_Of_Object;
15942 --------------------------------
15943 -- Find_Type_Of_Subtype_Indic --
15944 --------------------------------
15946 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
15947 Typ : Entity_Id;
15949 begin
15950 -- Case of subtype mark with a constraint
15952 if Nkind (S) = N_Subtype_Indication then
15953 Find_Type (Subtype_Mark (S));
15954 Typ := Entity (Subtype_Mark (S));
15956 if not
15957 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
15958 then
15959 Error_Msg_N
15960 ("incorrect constraint for this kind of type", Constraint (S));
15961 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
15962 end if;
15964 -- Otherwise we have a subtype mark without a constraint
15966 elsif Error_Posted (S) then
15967 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
15968 return Any_Type;
15970 else
15971 Find_Type (S);
15972 Typ := Entity (S);
15973 end if;
15975 -- Check No_Wide_Characters restriction
15977 Check_Wide_Character_Restriction (Typ, S);
15979 return Typ;
15980 end Find_Type_Of_Subtype_Indic;
15982 -------------------------------------
15983 -- Floating_Point_Type_Declaration --
15984 -------------------------------------
15986 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15987 Digs : constant Node_Id := Digits_Expression (Def);
15988 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
15989 Digs_Val : Uint;
15990 Base_Typ : Entity_Id;
15991 Implicit_Base : Entity_Id;
15992 Bound : Node_Id;
15994 function Can_Derive_From (E : Entity_Id) return Boolean;
15995 -- Find if given digits value, and possibly a specified range, allows
15996 -- derivation from specified type
15998 function Find_Base_Type return Entity_Id;
15999 -- Find a predefined base type that Def can derive from, or generate
16000 -- an error and substitute Long_Long_Float if none exists.
16002 ---------------------
16003 -- Can_Derive_From --
16004 ---------------------
16006 function Can_Derive_From (E : Entity_Id) return Boolean is
16007 Spec : constant Entity_Id := Real_Range_Specification (Def);
16009 begin
16010 -- Check specified "digits" constraint
16012 if Digs_Val > Digits_Value (E) then
16013 return False;
16014 end if;
16016 -- Check for matching range, if specified
16018 if Present (Spec) then
16019 if Expr_Value_R (Type_Low_Bound (E)) >
16020 Expr_Value_R (Low_Bound (Spec))
16021 then
16022 return False;
16023 end if;
16025 if Expr_Value_R (Type_High_Bound (E)) <
16026 Expr_Value_R (High_Bound (Spec))
16027 then
16028 return False;
16029 end if;
16030 end if;
16032 return True;
16033 end Can_Derive_From;
16035 --------------------
16036 -- Find_Base_Type --
16037 --------------------
16039 function Find_Base_Type return Entity_Id is
16040 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16042 begin
16043 -- Iterate over the predefined types in order, returning the first
16044 -- one that Def can derive from.
16046 while Present (Choice) loop
16047 if Can_Derive_From (Node (Choice)) then
16048 return Node (Choice);
16049 end if;
16051 Next_Elmt (Choice);
16052 end loop;
16054 -- If we can't derive from any existing type, use Long_Long_Float
16055 -- and give appropriate message explaining the problem.
16057 if Digs_Val > Max_Digs_Val then
16058 -- It might be the case that there is a type with the requested
16059 -- range, just not the combination of digits and range.
16061 Error_Msg_N
16062 ("no predefined type has requested range and precision",
16063 Real_Range_Specification (Def));
16065 else
16066 Error_Msg_N
16067 ("range too large for any predefined type",
16068 Real_Range_Specification (Def));
16069 end if;
16071 return Standard_Long_Long_Float;
16072 end Find_Base_Type;
16074 -- Start of processing for Floating_Point_Type_Declaration
16076 begin
16077 Check_Restriction (No_Floating_Point, Def);
16079 -- Create an implicit base type
16081 Implicit_Base :=
16082 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16084 -- Analyze and verify digits value
16086 Analyze_And_Resolve (Digs, Any_Integer);
16087 Check_Digits_Expression (Digs);
16088 Digs_Val := Expr_Value (Digs);
16090 -- Process possible range spec and find correct type to derive from
16092 Process_Real_Range_Specification (Def);
16094 -- Check that requested number of digits is not too high.
16096 if Digs_Val > Max_Digs_Val then
16097 -- The check for Max_Base_Digits may be somewhat expensive, as it
16098 -- requires reading System, so only do it when necessary.
16100 declare
16101 Max_Base_Digits : constant Uint :=
16102 Expr_Value
16103 (Expression
16104 (Parent (RTE (RE_Max_Base_Digits))));
16106 begin
16107 if Digs_Val > Max_Base_Digits then
16108 Error_Msg_Uint_1 := Max_Base_Digits;
16109 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16111 elsif No (Real_Range_Specification (Def)) then
16112 Error_Msg_Uint_1 := Max_Digs_Val;
16113 Error_Msg_N ("types with more than ^ digits need range spec "
16114 & "(RM 3.5.7(6))", Digs);
16115 end if;
16116 end;
16117 end if;
16119 -- Find a suitable type to derive from or complain and use a substitute
16121 Base_Typ := Find_Base_Type;
16123 -- If there are bounds given in the declaration use them as the bounds
16124 -- of the type, otherwise use the bounds of the predefined base type
16125 -- that was chosen based on the Digits value.
16127 if Present (Real_Range_Specification (Def)) then
16128 Set_Scalar_Range (T, Real_Range_Specification (Def));
16129 Set_Is_Constrained (T);
16131 -- The bounds of this range must be converted to machine numbers
16132 -- in accordance with RM 4.9(38).
16134 Bound := Type_Low_Bound (T);
16136 if Nkind (Bound) = N_Real_Literal then
16137 Set_Realval
16138 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16139 Set_Is_Machine_Number (Bound);
16140 end if;
16142 Bound := Type_High_Bound (T);
16144 if Nkind (Bound) = N_Real_Literal then
16145 Set_Realval
16146 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16147 Set_Is_Machine_Number (Bound);
16148 end if;
16150 else
16151 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16152 end if;
16154 -- Complete definition of implicit base and declared first subtype
16156 Set_Etype (Implicit_Base, Base_Typ);
16158 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16159 Set_Size_Info (Implicit_Base, (Base_Typ));
16160 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16161 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16162 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16163 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16165 Set_Ekind (T, E_Floating_Point_Subtype);
16166 Set_Etype (T, Implicit_Base);
16168 Set_Size_Info (T, (Implicit_Base));
16169 Set_RM_Size (T, RM_Size (Implicit_Base));
16170 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
16171 Set_Digits_Value (T, Digs_Val);
16172 end Floating_Point_Type_Declaration;
16174 ----------------------------
16175 -- Get_Discriminant_Value --
16176 ----------------------------
16178 -- This is the situation:
16180 -- There is a non-derived type
16182 -- type T0 (Dx, Dy, Dz...)
16184 -- There are zero or more levels of derivation, with each derivation
16185 -- either purely inheriting the discriminants, or defining its own.
16187 -- type Ti is new Ti-1
16188 -- or
16189 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16190 -- or
16191 -- subtype Ti is ...
16193 -- The subtype issue is avoided by the use of Original_Record_Component,
16194 -- and the fact that derived subtypes also derive the constraints.
16196 -- This chain leads back from
16198 -- Typ_For_Constraint
16200 -- Typ_For_Constraint has discriminants, and the value for each
16201 -- discriminant is given by its corresponding Elmt of Constraints.
16203 -- Discriminant is some discriminant in this hierarchy
16205 -- We need to return its value
16207 -- We do this by recursively searching each level, and looking for
16208 -- Discriminant. Once we get to the bottom, we start backing up
16209 -- returning the value for it which may in turn be a discriminant
16210 -- further up, so on the backup we continue the substitution.
16212 function Get_Discriminant_Value
16213 (Discriminant : Entity_Id;
16214 Typ_For_Constraint : Entity_Id;
16215 Constraint : Elist_Id) return Node_Id
16217 function Root_Corresponding_Discriminant
16218 (Discr : Entity_Id) return Entity_Id;
16219 -- Given a discriminant, traverse the chain of inherited discriminants
16220 -- and return the topmost discriminant.
16222 function Search_Derivation_Levels
16223 (Ti : Entity_Id;
16224 Discrim_Values : Elist_Id;
16225 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
16226 -- This is the routine that performs the recursive search of levels
16227 -- as described above.
16229 -------------------------------------
16230 -- Root_Corresponding_Discriminant --
16231 -------------------------------------
16233 function Root_Corresponding_Discriminant
16234 (Discr : Entity_Id) return Entity_Id
16236 D : Entity_Id;
16238 begin
16239 D := Discr;
16240 while Present (Corresponding_Discriminant (D)) loop
16241 D := Corresponding_Discriminant (D);
16242 end loop;
16244 return D;
16245 end Root_Corresponding_Discriminant;
16247 ------------------------------
16248 -- Search_Derivation_Levels --
16249 ------------------------------
16251 function Search_Derivation_Levels
16252 (Ti : Entity_Id;
16253 Discrim_Values : Elist_Id;
16254 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
16256 Assoc : Elmt_Id;
16257 Disc : Entity_Id;
16258 Result : Node_Or_Entity_Id;
16259 Result_Entity : Node_Id;
16261 begin
16262 -- If inappropriate type, return Error, this happens only in
16263 -- cascaded error situations, and we want to avoid a blow up.
16265 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
16266 return Error;
16267 end if;
16269 -- Look deeper if possible. Use Stored_Constraints only for
16270 -- untagged types. For tagged types use the given constraint.
16271 -- This asymmetry needs explanation???
16273 if not Stored_Discrim_Values
16274 and then Present (Stored_Constraint (Ti))
16275 and then not Is_Tagged_Type (Ti)
16276 then
16277 Result :=
16278 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
16279 else
16280 declare
16281 Td : constant Entity_Id := Etype (Ti);
16283 begin
16284 if Td = Ti then
16285 Result := Discriminant;
16287 else
16288 if Present (Stored_Constraint (Ti)) then
16289 Result :=
16290 Search_Derivation_Levels
16291 (Td, Stored_Constraint (Ti), True);
16292 else
16293 Result :=
16294 Search_Derivation_Levels
16295 (Td, Discrim_Values, Stored_Discrim_Values);
16296 end if;
16297 end if;
16298 end;
16299 end if;
16301 -- Extra underlying places to search, if not found above. For
16302 -- concurrent types, the relevant discriminant appears in the
16303 -- corresponding record. For a type derived from a private type
16304 -- without discriminant, the full view inherits the discriminants
16305 -- of the full view of the parent.
16307 if Result = Discriminant then
16308 if Is_Concurrent_Type (Ti)
16309 and then Present (Corresponding_Record_Type (Ti))
16310 then
16311 Result :=
16312 Search_Derivation_Levels (
16313 Corresponding_Record_Type (Ti),
16314 Discrim_Values,
16315 Stored_Discrim_Values);
16317 elsif Is_Private_Type (Ti)
16318 and then not Has_Discriminants (Ti)
16319 and then Present (Full_View (Ti))
16320 and then Etype (Full_View (Ti)) /= Ti
16321 then
16322 Result :=
16323 Search_Derivation_Levels (
16324 Full_View (Ti),
16325 Discrim_Values,
16326 Stored_Discrim_Values);
16327 end if;
16328 end if;
16330 -- If Result is not a (reference to a) discriminant, return it,
16331 -- otherwise set Result_Entity to the discriminant.
16333 if Nkind (Result) = N_Defining_Identifier then
16334 pragma Assert (Result = Discriminant);
16335 Result_Entity := Result;
16337 else
16338 if not Denotes_Discriminant (Result) then
16339 return Result;
16340 end if;
16342 Result_Entity := Entity (Result);
16343 end if;
16345 -- See if this level of derivation actually has discriminants
16346 -- because tagged derivations can add them, hence the lower
16347 -- levels need not have any.
16349 if not Has_Discriminants (Ti) then
16350 return Result;
16351 end if;
16353 -- Scan Ti's discriminants for Result_Entity,
16354 -- and return its corresponding value, if any.
16356 Result_Entity := Original_Record_Component (Result_Entity);
16358 Assoc := First_Elmt (Discrim_Values);
16360 if Stored_Discrim_Values then
16361 Disc := First_Stored_Discriminant (Ti);
16362 else
16363 Disc := First_Discriminant (Ti);
16364 end if;
16366 while Present (Disc) loop
16367 pragma Assert (Present (Assoc));
16369 if Original_Record_Component (Disc) = Result_Entity then
16370 return Node (Assoc);
16371 end if;
16373 Next_Elmt (Assoc);
16375 if Stored_Discrim_Values then
16376 Next_Stored_Discriminant (Disc);
16377 else
16378 Next_Discriminant (Disc);
16379 end if;
16380 end loop;
16382 -- Could not find it
16384 return Result;
16385 end Search_Derivation_Levels;
16387 -- Local Variables
16389 Result : Node_Or_Entity_Id;
16391 -- Start of processing for Get_Discriminant_Value
16393 begin
16394 -- ??? This routine is a gigantic mess and will be deleted. For the
16395 -- time being just test for the trivial case before calling recurse.
16397 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
16398 declare
16399 D : Entity_Id;
16400 E : Elmt_Id;
16402 begin
16403 D := First_Discriminant (Typ_For_Constraint);
16404 E := First_Elmt (Constraint);
16405 while Present (D) loop
16406 if Chars (D) = Chars (Discriminant) then
16407 return Node (E);
16408 end if;
16410 Next_Discriminant (D);
16411 Next_Elmt (E);
16412 end loop;
16413 end;
16414 end if;
16416 Result := Search_Derivation_Levels
16417 (Typ_For_Constraint, Constraint, False);
16419 -- ??? hack to disappear when this routine is gone
16421 if Nkind (Result) = N_Defining_Identifier then
16422 declare
16423 D : Entity_Id;
16424 E : Elmt_Id;
16426 begin
16427 D := First_Discriminant (Typ_For_Constraint);
16428 E := First_Elmt (Constraint);
16429 while Present (D) loop
16430 if Root_Corresponding_Discriminant (D) = Discriminant then
16431 return Node (E);
16432 end if;
16434 Next_Discriminant (D);
16435 Next_Elmt (E);
16436 end loop;
16437 end;
16438 end if;
16440 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
16441 return Result;
16442 end Get_Discriminant_Value;
16444 --------------------------
16445 -- Has_Range_Constraint --
16446 --------------------------
16448 function Has_Range_Constraint (N : Node_Id) return Boolean is
16449 C : constant Node_Id := Constraint (N);
16451 begin
16452 if Nkind (C) = N_Range_Constraint then
16453 return True;
16455 elsif Nkind (C) = N_Digits_Constraint then
16456 return
16457 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
16458 or else
16459 Present (Range_Constraint (C));
16461 elsif Nkind (C) = N_Delta_Constraint then
16462 return Present (Range_Constraint (C));
16464 else
16465 return False;
16466 end if;
16467 end Has_Range_Constraint;
16469 ------------------------
16470 -- Inherit_Components --
16471 ------------------------
16473 function Inherit_Components
16474 (N : Node_Id;
16475 Parent_Base : Entity_Id;
16476 Derived_Base : Entity_Id;
16477 Is_Tagged : Boolean;
16478 Inherit_Discr : Boolean;
16479 Discs : Elist_Id) return Elist_Id
16481 Assoc_List : constant Elist_Id := New_Elmt_List;
16483 procedure Inherit_Component
16484 (Old_C : Entity_Id;
16485 Plain_Discrim : Boolean := False;
16486 Stored_Discrim : Boolean := False);
16487 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
16488 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
16489 -- True, Old_C is a stored discriminant. If they are both false then
16490 -- Old_C is a regular component.
16492 -----------------------
16493 -- Inherit_Component --
16494 -----------------------
16496 procedure Inherit_Component
16497 (Old_C : Entity_Id;
16498 Plain_Discrim : Boolean := False;
16499 Stored_Discrim : Boolean := False)
16501 procedure Set_Anonymous_Type (Id : Entity_Id);
16502 -- Id denotes the entity of an access discriminant or anonymous
16503 -- access component. Set the type of Id to either the same type of
16504 -- Old_C or create a new one depending on whether the parent and
16505 -- the child types are in the same scope.
16507 ------------------------
16508 -- Set_Anonymous_Type --
16509 ------------------------
16511 procedure Set_Anonymous_Type (Id : Entity_Id) is
16512 Old_Typ : constant Entity_Id := Etype (Old_C);
16514 begin
16515 if Scope (Parent_Base) = Scope (Derived_Base) then
16516 Set_Etype (Id, Old_Typ);
16518 -- The parent and the derived type are in two different scopes.
16519 -- Reuse the type of the original discriminant / component by
16520 -- copying it in order to preserve all attributes.
16522 else
16523 declare
16524 Typ : constant Entity_Id := New_Copy (Old_Typ);
16526 begin
16527 Set_Etype (Id, Typ);
16529 -- Since we do not generate component declarations for
16530 -- inherited components, associate the itype with the
16531 -- derived type.
16533 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
16534 Set_Scope (Typ, Derived_Base);
16535 end;
16536 end if;
16537 end Set_Anonymous_Type;
16539 -- Local variables and constants
16541 New_C : constant Entity_Id := New_Copy (Old_C);
16543 Corr_Discrim : Entity_Id;
16544 Discrim : Entity_Id;
16546 -- Start of processing for Inherit_Component
16548 begin
16549 pragma Assert (not Is_Tagged or else not Stored_Discrim);
16551 Set_Parent (New_C, Parent (Old_C));
16553 -- Regular discriminants and components must be inserted in the scope
16554 -- of the Derived_Base. Do it here.
16556 if not Stored_Discrim then
16557 Enter_Name (New_C);
16558 end if;
16560 -- For tagged types the Original_Record_Component must point to
16561 -- whatever this field was pointing to in the parent type. This has
16562 -- already been achieved by the call to New_Copy above.
16564 if not Is_Tagged then
16565 Set_Original_Record_Component (New_C, New_C);
16566 end if;
16568 -- Set the proper type of an access discriminant
16570 if Ekind (New_C) = E_Discriminant
16571 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
16572 then
16573 Set_Anonymous_Type (New_C);
16574 end if;
16576 -- If we have inherited a component then see if its Etype contains
16577 -- references to Parent_Base discriminants. In this case, replace
16578 -- these references with the constraints given in Discs. We do not
16579 -- do this for the partial view of private types because this is
16580 -- not needed (only the components of the full view will be used
16581 -- for code generation) and cause problem. We also avoid this
16582 -- transformation in some error situations.
16584 if Ekind (New_C) = E_Component then
16586 -- Set the proper type of an anonymous access component
16588 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
16589 Set_Anonymous_Type (New_C);
16591 elsif (Is_Private_Type (Derived_Base)
16592 and then not Is_Generic_Type (Derived_Base))
16593 or else (Is_Empty_Elmt_List (Discs)
16594 and then not Expander_Active)
16595 then
16596 Set_Etype (New_C, Etype (Old_C));
16598 else
16599 -- The current component introduces a circularity of the
16600 -- following kind:
16602 -- limited with Pack_2;
16603 -- package Pack_1 is
16604 -- type T_1 is tagged record
16605 -- Comp : access Pack_2.T_2;
16606 -- ...
16607 -- end record;
16608 -- end Pack_1;
16610 -- with Pack_1;
16611 -- package Pack_2 is
16612 -- type T_2 is new Pack_1.T_1 with ...;
16613 -- end Pack_2;
16615 Set_Etype
16616 (New_C,
16617 Constrain_Component_Type
16618 (Old_C, Derived_Base, N, Parent_Base, Discs));
16619 end if;
16620 end if;
16622 -- In derived tagged types it is illegal to reference a non
16623 -- discriminant component in the parent type. To catch this, mark
16624 -- these components with an Ekind of E_Void. This will be reset in
16625 -- Record_Type_Definition after processing the record extension of
16626 -- the derived type.
16628 -- If the declaration is a private extension, there is no further
16629 -- record extension to process, and the components retain their
16630 -- current kind, because they are visible at this point.
16632 if Is_Tagged and then Ekind (New_C) = E_Component
16633 and then Nkind (N) /= N_Private_Extension_Declaration
16634 then
16635 Set_Ekind (New_C, E_Void);
16636 end if;
16638 if Plain_Discrim then
16639 Set_Corresponding_Discriminant (New_C, Old_C);
16640 Build_Discriminal (New_C);
16642 -- If we are explicitly inheriting a stored discriminant it will be
16643 -- completely hidden.
16645 elsif Stored_Discrim then
16646 Set_Corresponding_Discriminant (New_C, Empty);
16647 Set_Discriminal (New_C, Empty);
16648 Set_Is_Completely_Hidden (New_C);
16650 -- Set the Original_Record_Component of each discriminant in the
16651 -- derived base to point to the corresponding stored that we just
16652 -- created.
16654 Discrim := First_Discriminant (Derived_Base);
16655 while Present (Discrim) loop
16656 Corr_Discrim := Corresponding_Discriminant (Discrim);
16658 -- Corr_Discrim could be missing in an error situation
16660 if Present (Corr_Discrim)
16661 and then Original_Record_Component (Corr_Discrim) = Old_C
16662 then
16663 Set_Original_Record_Component (Discrim, New_C);
16664 end if;
16666 Next_Discriminant (Discrim);
16667 end loop;
16669 Append_Entity (New_C, Derived_Base);
16670 end if;
16672 if not Is_Tagged then
16673 Append_Elmt (Old_C, Assoc_List);
16674 Append_Elmt (New_C, Assoc_List);
16675 end if;
16676 end Inherit_Component;
16678 -- Variables local to Inherit_Component
16680 Loc : constant Source_Ptr := Sloc (N);
16682 Parent_Discrim : Entity_Id;
16683 Stored_Discrim : Entity_Id;
16684 D : Entity_Id;
16685 Component : Entity_Id;
16687 -- Start of processing for Inherit_Components
16689 begin
16690 if not Is_Tagged then
16691 Append_Elmt (Parent_Base, Assoc_List);
16692 Append_Elmt (Derived_Base, Assoc_List);
16693 end if;
16695 -- Inherit parent discriminants if needed
16697 if Inherit_Discr then
16698 Parent_Discrim := First_Discriminant (Parent_Base);
16699 while Present (Parent_Discrim) loop
16700 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
16701 Next_Discriminant (Parent_Discrim);
16702 end loop;
16703 end if;
16705 -- Create explicit stored discrims for untagged types when necessary
16707 if not Has_Unknown_Discriminants (Derived_Base)
16708 and then Has_Discriminants (Parent_Base)
16709 and then not Is_Tagged
16710 and then
16711 (not Inherit_Discr
16712 or else First_Discriminant (Parent_Base) /=
16713 First_Stored_Discriminant (Parent_Base))
16714 then
16715 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
16716 while Present (Stored_Discrim) loop
16717 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
16718 Next_Stored_Discriminant (Stored_Discrim);
16719 end loop;
16720 end if;
16722 -- See if we can apply the second transformation for derived types, as
16723 -- explained in point 6. in the comments above Build_Derived_Record_Type
16724 -- This is achieved by appending Derived_Base discriminants into Discs,
16725 -- which has the side effect of returning a non empty Discs list to the
16726 -- caller of Inherit_Components, which is what we want. This must be
16727 -- done for private derived types if there are explicit stored
16728 -- discriminants, to ensure that we can retrieve the values of the
16729 -- constraints provided in the ancestors.
16731 if Inherit_Discr
16732 and then Is_Empty_Elmt_List (Discs)
16733 and then Present (First_Discriminant (Derived_Base))
16734 and then
16735 (not Is_Private_Type (Derived_Base)
16736 or else Is_Completely_Hidden
16737 (First_Stored_Discriminant (Derived_Base))
16738 or else Is_Generic_Type (Derived_Base))
16739 then
16740 D := First_Discriminant (Derived_Base);
16741 while Present (D) loop
16742 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
16743 Next_Discriminant (D);
16744 end loop;
16745 end if;
16747 -- Finally, inherit non-discriminant components unless they are not
16748 -- visible because defined or inherited from the full view of the
16749 -- parent. Don't inherit the _parent field of the parent type.
16751 Component := First_Entity (Parent_Base);
16752 while Present (Component) loop
16754 -- Ada 2005 (AI-251): Do not inherit components associated with
16755 -- secondary tags of the parent.
16757 if Ekind (Component) = E_Component
16758 and then Present (Related_Type (Component))
16759 then
16760 null;
16762 elsif Ekind (Component) /= E_Component
16763 or else Chars (Component) = Name_uParent
16764 then
16765 null;
16767 -- If the derived type is within the parent type's declarative
16768 -- region, then the components can still be inherited even though
16769 -- they aren't visible at this point. This can occur for cases
16770 -- such as within public child units where the components must
16771 -- become visible upon entering the child unit's private part.
16773 elsif not Is_Visible_Component (Component)
16774 and then not In_Open_Scopes (Scope (Parent_Base))
16775 then
16776 null;
16778 elsif Ekind_In (Derived_Base, E_Private_Type,
16779 E_Limited_Private_Type)
16780 then
16781 null;
16783 else
16784 Inherit_Component (Component);
16785 end if;
16787 Next_Entity (Component);
16788 end loop;
16790 -- For tagged derived types, inherited discriminants cannot be used in
16791 -- component declarations of the record extension part. To achieve this
16792 -- we mark the inherited discriminants as not visible.
16794 if Is_Tagged and then Inherit_Discr then
16795 D := First_Discriminant (Derived_Base);
16796 while Present (D) loop
16797 Set_Is_Immediately_Visible (D, False);
16798 Next_Discriminant (D);
16799 end loop;
16800 end if;
16802 return Assoc_List;
16803 end Inherit_Components;
16805 -----------------------------
16806 -- Inherit_Predicate_Flags --
16807 -----------------------------
16809 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
16810 begin
16811 Set_Has_Static_Predicate_Aspect
16812 (Subt, Has_Static_Predicate_Aspect (Par));
16813 Set_Has_Dynamic_Predicate_Aspect
16814 (Subt, Has_Dynamic_Predicate_Aspect (Par));
16815 end Inherit_Predicate_Flags;
16817 -----------------------
16818 -- Is_Null_Extension --
16819 -----------------------
16821 function Is_Null_Extension (T : Entity_Id) return Boolean is
16822 Type_Decl : constant Node_Id := Parent (Base_Type (T));
16823 Comp_List : Node_Id;
16824 Comp : Node_Id;
16826 begin
16827 if Nkind (Type_Decl) /= N_Full_Type_Declaration
16828 or else not Is_Tagged_Type (T)
16829 or else Nkind (Type_Definition (Type_Decl)) /=
16830 N_Derived_Type_Definition
16831 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
16832 then
16833 return False;
16834 end if;
16836 Comp_List :=
16837 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
16839 if Present (Discriminant_Specifications (Type_Decl)) then
16840 return False;
16842 elsif Present (Comp_List)
16843 and then Is_Non_Empty_List (Component_Items (Comp_List))
16844 then
16845 Comp := First (Component_Items (Comp_List));
16847 -- Only user-defined components are relevant. The component list
16848 -- may also contain a parent component and internal components
16849 -- corresponding to secondary tags, but these do not determine
16850 -- whether this is a null extension.
16852 while Present (Comp) loop
16853 if Comes_From_Source (Comp) then
16854 return False;
16855 end if;
16857 Next (Comp);
16858 end loop;
16860 return True;
16861 else
16862 return True;
16863 end if;
16864 end Is_Null_Extension;
16866 ------------------------------
16867 -- Is_Valid_Constraint_Kind --
16868 ------------------------------
16870 function Is_Valid_Constraint_Kind
16871 (T_Kind : Type_Kind;
16872 Constraint_Kind : Node_Kind) return Boolean
16874 begin
16875 case T_Kind is
16876 when Enumeration_Kind |
16877 Integer_Kind =>
16878 return Constraint_Kind = N_Range_Constraint;
16880 when Decimal_Fixed_Point_Kind =>
16881 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16882 N_Range_Constraint);
16884 when Ordinary_Fixed_Point_Kind =>
16885 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
16886 N_Range_Constraint);
16888 when Float_Kind =>
16889 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16890 N_Range_Constraint);
16892 when Access_Kind |
16893 Array_Kind |
16894 E_Record_Type |
16895 E_Record_Subtype |
16896 Class_Wide_Kind |
16897 E_Incomplete_Type |
16898 Private_Kind |
16899 Concurrent_Kind =>
16900 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
16902 when others =>
16903 return True; -- Error will be detected later
16904 end case;
16905 end Is_Valid_Constraint_Kind;
16907 --------------------------
16908 -- Is_Visible_Component --
16909 --------------------------
16911 function Is_Visible_Component
16912 (C : Entity_Id;
16913 N : Node_Id := Empty) return Boolean
16915 Original_Comp : Entity_Id := Empty;
16916 Original_Scope : Entity_Id;
16917 Type_Scope : Entity_Id;
16919 function Is_Local_Type (Typ : Entity_Id) return Boolean;
16920 -- Check whether parent type of inherited component is declared locally,
16921 -- possibly within a nested package or instance. The current scope is
16922 -- the derived record itself.
16924 -------------------
16925 -- Is_Local_Type --
16926 -------------------
16928 function Is_Local_Type (Typ : Entity_Id) return Boolean is
16929 Scop : Entity_Id;
16931 begin
16932 Scop := Scope (Typ);
16933 while Present (Scop)
16934 and then Scop /= Standard_Standard
16935 loop
16936 if Scop = Scope (Current_Scope) then
16937 return True;
16938 end if;
16940 Scop := Scope (Scop);
16941 end loop;
16943 return False;
16944 end Is_Local_Type;
16946 -- Start of processing for Is_Visible_Component
16948 begin
16949 if Ekind_In (C, E_Component, E_Discriminant) then
16950 Original_Comp := Original_Record_Component (C);
16951 end if;
16953 if No (Original_Comp) then
16955 -- Premature usage, or previous error
16957 return False;
16959 else
16960 Original_Scope := Scope (Original_Comp);
16961 Type_Scope := Scope (Base_Type (Scope (C)));
16962 end if;
16964 -- For an untagged type derived from a private type, the only visible
16965 -- components are new discriminants. In an instance all components are
16966 -- visible (see Analyze_Selected_Component).
16968 if not Is_Tagged_Type (Original_Scope) then
16969 return not Has_Private_Ancestor (Original_Scope)
16970 or else In_Open_Scopes (Scope (Original_Scope))
16971 or else In_Instance
16972 or else (Ekind (Original_Comp) = E_Discriminant
16973 and then Original_Scope = Type_Scope);
16975 -- If it is _Parent or _Tag, there is no visibility issue
16977 elsif not Comes_From_Source (Original_Comp) then
16978 return True;
16980 -- Discriminants are visible unless the (private) type has unknown
16981 -- discriminants. If the discriminant reference is inserted for a
16982 -- discriminant check on a full view it is also visible.
16984 elsif Ekind (Original_Comp) = E_Discriminant
16985 and then
16986 (not Has_Unknown_Discriminants (Original_Scope)
16987 or else (Present (N)
16988 and then Nkind (N) = N_Selected_Component
16989 and then Nkind (Prefix (N)) = N_Type_Conversion
16990 and then not Comes_From_Source (Prefix (N))))
16991 then
16992 return True;
16994 -- In the body of an instantiation, no need to check for the visibility
16995 -- of a component.
16997 elsif In_Instance_Body then
16998 return True;
17000 -- If the component has been declared in an ancestor which is currently
17001 -- a private type, then it is not visible. The same applies if the
17002 -- component's containing type is not in an open scope and the original
17003 -- component's enclosing type is a visible full view of a private type
17004 -- (which can occur in cases where an attempt is being made to reference
17005 -- a component in a sibling package that is inherited from a visible
17006 -- component of a type in an ancestor package; the component in the
17007 -- sibling package should not be visible even though the component it
17008 -- inherited from is visible). This does not apply however in the case
17009 -- where the scope of the type is a private child unit, or when the
17010 -- parent comes from a local package in which the ancestor is currently
17011 -- visible. The latter suppression of visibility is needed for cases
17012 -- that are tested in B730006.
17014 elsif Is_Private_Type (Original_Scope)
17015 or else
17016 (not Is_Private_Descendant (Type_Scope)
17017 and then not In_Open_Scopes (Type_Scope)
17018 and then Has_Private_Declaration (Original_Scope))
17019 then
17020 -- If the type derives from an entity in a formal package, there
17021 -- are no additional visible components.
17023 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17024 N_Formal_Package_Declaration
17025 then
17026 return False;
17028 -- if we are not in the private part of the current package, there
17029 -- are no additional visible components.
17031 elsif Ekind (Scope (Current_Scope)) = E_Package
17032 and then not In_Private_Part (Scope (Current_Scope))
17033 then
17034 return False;
17035 else
17036 return
17037 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17038 and then In_Open_Scopes (Scope (Original_Scope))
17039 and then Is_Local_Type (Type_Scope);
17040 end if;
17042 -- There is another weird way in which a component may be invisible when
17043 -- the private and the full view are not derived from the same ancestor.
17044 -- Here is an example :
17046 -- type A1 is tagged record F1 : integer; end record;
17047 -- type A2 is new A1 with record F2 : integer; end record;
17048 -- type T is new A1 with private;
17049 -- private
17050 -- type T is new A2 with null record;
17052 -- In this case, the full view of T inherits F1 and F2 but the private
17053 -- view inherits only F1
17055 else
17056 declare
17057 Ancestor : Entity_Id := Scope (C);
17059 begin
17060 loop
17061 if Ancestor = Original_Scope then
17062 return True;
17063 elsif Ancestor = Etype (Ancestor) then
17064 return False;
17065 end if;
17067 Ancestor := Etype (Ancestor);
17068 end loop;
17069 end;
17070 end if;
17071 end Is_Visible_Component;
17073 --------------------------
17074 -- Make_Class_Wide_Type --
17075 --------------------------
17077 procedure Make_Class_Wide_Type (T : Entity_Id) is
17078 CW_Type : Entity_Id;
17079 CW_Name : Name_Id;
17080 Next_E : Entity_Id;
17082 begin
17083 if Present (Class_Wide_Type (T)) then
17085 -- The class-wide type is a partially decorated entity created for a
17086 -- unanalyzed tagged type referenced through a limited with clause.
17087 -- When the tagged type is analyzed, its class-wide type needs to be
17088 -- redecorated. Note that we reuse the entity created by Decorate_
17089 -- Tagged_Type in order to preserve all links.
17091 if Materialize_Entity (Class_Wide_Type (T)) then
17092 CW_Type := Class_Wide_Type (T);
17093 Set_Materialize_Entity (CW_Type, False);
17095 -- The class wide type can have been defined by the partial view, in
17096 -- which case everything is already done.
17098 else
17099 return;
17100 end if;
17102 -- Default case, we need to create a new class-wide type
17104 else
17105 CW_Type :=
17106 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
17107 end if;
17109 -- Inherit root type characteristics
17111 CW_Name := Chars (CW_Type);
17112 Next_E := Next_Entity (CW_Type);
17113 Copy_Node (T, CW_Type);
17114 Set_Comes_From_Source (CW_Type, False);
17115 Set_Chars (CW_Type, CW_Name);
17116 Set_Parent (CW_Type, Parent (T));
17117 Set_Next_Entity (CW_Type, Next_E);
17119 -- Ensure we have a new freeze node for the class-wide type. The partial
17120 -- view may have freeze action of its own, requiring a proper freeze
17121 -- node, and the same freeze node cannot be shared between the two
17122 -- types.
17124 Set_Has_Delayed_Freeze (CW_Type);
17125 Set_Freeze_Node (CW_Type, Empty);
17127 -- Customize the class-wide type: It has no prim. op., it cannot be
17128 -- abstract and its Etype points back to the specific root type.
17130 Set_Ekind (CW_Type, E_Class_Wide_Type);
17131 Set_Is_Tagged_Type (CW_Type, True);
17132 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17133 Set_Is_Abstract_Type (CW_Type, False);
17134 Set_Is_Constrained (CW_Type, False);
17135 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17136 Set_Default_SSO (CW_Type);
17138 if Ekind (T) = E_Class_Wide_Subtype then
17139 Set_Etype (CW_Type, Etype (Base_Type (T)));
17140 else
17141 Set_Etype (CW_Type, T);
17142 end if;
17144 -- If this is the class_wide type of a constrained subtype, it does
17145 -- not have discriminants.
17147 Set_Has_Discriminants (CW_Type,
17148 Has_Discriminants (T) and then not Is_Constrained (T));
17150 Set_Has_Unknown_Discriminants (CW_Type, True);
17151 Set_Class_Wide_Type (T, CW_Type);
17152 Set_Equivalent_Type (CW_Type, Empty);
17154 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17156 Set_Class_Wide_Type (CW_Type, CW_Type);
17157 end Make_Class_Wide_Type;
17159 ----------------
17160 -- Make_Index --
17161 ----------------
17163 procedure Make_Index
17164 (N : Node_Id;
17165 Related_Nod : Node_Id;
17166 Related_Id : Entity_Id := Empty;
17167 Suffix_Index : Nat := 1;
17168 In_Iter_Schm : Boolean := False)
17170 R : Node_Id;
17171 T : Entity_Id;
17172 Def_Id : Entity_Id := Empty;
17173 Found : Boolean := False;
17175 begin
17176 -- For a discrete range used in a constrained array definition and
17177 -- defined by a range, an implicit conversion to the predefined type
17178 -- INTEGER is assumed if each bound is either a numeric literal, a named
17179 -- number, or an attribute, and the type of both bounds (prior to the
17180 -- implicit conversion) is the type universal_integer. Otherwise, both
17181 -- bounds must be of the same discrete type, other than universal
17182 -- integer; this type must be determinable independently of the
17183 -- context, but using the fact that the type must be discrete and that
17184 -- both bounds must have the same type.
17186 -- Character literals also have a universal type in the absence of
17187 -- of additional context, and are resolved to Standard_Character.
17189 if Nkind (N) = N_Range then
17191 -- The index is given by a range constraint. The bounds are known
17192 -- to be of a consistent type.
17194 if not Is_Overloaded (N) then
17195 T := Etype (N);
17197 -- For universal bounds, choose the specific predefined type
17199 if T = Universal_Integer then
17200 T := Standard_Integer;
17202 elsif T = Any_Character then
17203 Ambiguous_Character (Low_Bound (N));
17205 T := Standard_Character;
17206 end if;
17208 -- The node may be overloaded because some user-defined operators
17209 -- are available, but if a universal interpretation exists it is
17210 -- also the selected one.
17212 elsif Universal_Interpretation (N) = Universal_Integer then
17213 T := Standard_Integer;
17215 else
17216 T := Any_Type;
17218 declare
17219 Ind : Interp_Index;
17220 It : Interp;
17222 begin
17223 Get_First_Interp (N, Ind, It);
17224 while Present (It.Typ) loop
17225 if Is_Discrete_Type (It.Typ) then
17227 if Found
17228 and then not Covers (It.Typ, T)
17229 and then not Covers (T, It.Typ)
17230 then
17231 Error_Msg_N ("ambiguous bounds in discrete range", N);
17232 exit;
17233 else
17234 T := It.Typ;
17235 Found := True;
17236 end if;
17237 end if;
17239 Get_Next_Interp (Ind, It);
17240 end loop;
17242 if T = Any_Type then
17243 Error_Msg_N ("discrete type required for range", N);
17244 Set_Etype (N, Any_Type);
17245 return;
17247 elsif T = Universal_Integer then
17248 T := Standard_Integer;
17249 end if;
17250 end;
17251 end if;
17253 if not Is_Discrete_Type (T) then
17254 Error_Msg_N ("discrete type required for range", N);
17255 Set_Etype (N, Any_Type);
17256 return;
17257 end if;
17259 if Nkind (Low_Bound (N)) = N_Attribute_Reference
17260 and then Attribute_Name (Low_Bound (N)) = Name_First
17261 and then Is_Entity_Name (Prefix (Low_Bound (N)))
17262 and then Is_Type (Entity (Prefix (Low_Bound (N))))
17263 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
17264 then
17265 -- The type of the index will be the type of the prefix, as long
17266 -- as the upper bound is 'Last of the same type.
17268 Def_Id := Entity (Prefix (Low_Bound (N)));
17270 if Nkind (High_Bound (N)) /= N_Attribute_Reference
17271 or else Attribute_Name (High_Bound (N)) /= Name_Last
17272 or else not Is_Entity_Name (Prefix (High_Bound (N)))
17273 or else Entity (Prefix (High_Bound (N))) /= Def_Id
17274 then
17275 Def_Id := Empty;
17276 end if;
17277 end if;
17279 R := N;
17280 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
17282 elsif Nkind (N) = N_Subtype_Indication then
17284 -- The index is given by a subtype with a range constraint
17286 T := Base_Type (Entity (Subtype_Mark (N)));
17288 if not Is_Discrete_Type (T) then
17289 Error_Msg_N ("discrete type required for range", N);
17290 Set_Etype (N, Any_Type);
17291 return;
17292 end if;
17294 R := Range_Expression (Constraint (N));
17296 Resolve (R, T);
17297 Process_Range_Expr_In_Decl
17298 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
17300 elsif Nkind (N) = N_Attribute_Reference then
17302 -- Catch beginner's error (use of attribute other than 'Range)
17304 if Attribute_Name (N) /= Name_Range then
17305 Error_Msg_N ("expect attribute ''Range", N);
17306 Set_Etype (N, Any_Type);
17307 return;
17308 end if;
17310 -- If the node denotes the range of a type mark, that is also the
17311 -- resulting type, and we do not need to create an Itype for it.
17313 if Is_Entity_Name (Prefix (N))
17314 and then Comes_From_Source (N)
17315 and then Is_Type (Entity (Prefix (N)))
17316 and then Is_Discrete_Type (Entity (Prefix (N)))
17317 then
17318 Def_Id := Entity (Prefix (N));
17319 end if;
17321 Analyze_And_Resolve (N);
17322 T := Etype (N);
17323 R := N;
17325 -- If none of the above, must be a subtype. We convert this to a
17326 -- range attribute reference because in the case of declared first
17327 -- named subtypes, the types in the range reference can be different
17328 -- from the type of the entity. A range attribute normalizes the
17329 -- reference and obtains the correct types for the bounds.
17331 -- This transformation is in the nature of an expansion, is only
17332 -- done if expansion is active. In particular, it is not done on
17333 -- formal generic types, because we need to retain the name of the
17334 -- original index for instantiation purposes.
17336 else
17337 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
17338 Error_Msg_N ("invalid subtype mark in discrete range ", N);
17339 Set_Etype (N, Any_Integer);
17340 return;
17342 else
17343 -- The type mark may be that of an incomplete type. It is only
17344 -- now that we can get the full view, previous analysis does
17345 -- not look specifically for a type mark.
17347 Set_Entity (N, Get_Full_View (Entity (N)));
17348 Set_Etype (N, Entity (N));
17349 Def_Id := Entity (N);
17351 if not Is_Discrete_Type (Def_Id) then
17352 Error_Msg_N ("discrete type required for index", N);
17353 Set_Etype (N, Any_Type);
17354 return;
17355 end if;
17356 end if;
17358 if Expander_Active then
17359 Rewrite (N,
17360 Make_Attribute_Reference (Sloc (N),
17361 Attribute_Name => Name_Range,
17362 Prefix => Relocate_Node (N)));
17364 -- The original was a subtype mark that does not freeze. This
17365 -- means that the rewritten version must not freeze either.
17367 Set_Must_Not_Freeze (N);
17368 Set_Must_Not_Freeze (Prefix (N));
17369 Analyze_And_Resolve (N);
17370 T := Etype (N);
17371 R := N;
17373 -- If expander is inactive, type is legal, nothing else to construct
17375 else
17376 return;
17377 end if;
17378 end if;
17380 if not Is_Discrete_Type (T) then
17381 Error_Msg_N ("discrete type required for range", N);
17382 Set_Etype (N, Any_Type);
17383 return;
17385 elsif T = Any_Type then
17386 Set_Etype (N, Any_Type);
17387 return;
17388 end if;
17390 -- We will now create the appropriate Itype to describe the range, but
17391 -- first a check. If we originally had a subtype, then we just label
17392 -- the range with this subtype. Not only is there no need to construct
17393 -- a new subtype, but it is wrong to do so for two reasons:
17395 -- 1. A legality concern, if we have a subtype, it must not freeze,
17396 -- and the Itype would cause freezing incorrectly
17398 -- 2. An efficiency concern, if we created an Itype, it would not be
17399 -- recognized as the same type for the purposes of eliminating
17400 -- checks in some circumstances.
17402 -- We signal this case by setting the subtype entity in Def_Id
17404 if No (Def_Id) then
17405 Def_Id :=
17406 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
17407 Set_Etype (Def_Id, Base_Type (T));
17409 if Is_Signed_Integer_Type (T) then
17410 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
17412 elsif Is_Modular_Integer_Type (T) then
17413 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
17415 else
17416 Set_Ekind (Def_Id, E_Enumeration_Subtype);
17417 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
17418 Set_First_Literal (Def_Id, First_Literal (T));
17419 end if;
17421 Set_Size_Info (Def_Id, (T));
17422 Set_RM_Size (Def_Id, RM_Size (T));
17423 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
17425 Set_Scalar_Range (Def_Id, R);
17426 Conditional_Delay (Def_Id, T);
17428 -- In the subtype indication case, if the immediate parent of the
17429 -- new subtype is non-static, then the subtype we create is non-
17430 -- static, even if its bounds are static.
17432 if Nkind (N) = N_Subtype_Indication
17433 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
17434 then
17435 Set_Is_Non_Static_Subtype (Def_Id);
17436 end if;
17437 end if;
17439 -- Final step is to label the index with this constructed type
17441 Set_Etype (N, Def_Id);
17442 end Make_Index;
17444 ------------------------------
17445 -- Modular_Type_Declaration --
17446 ------------------------------
17448 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17449 Mod_Expr : constant Node_Id := Expression (Def);
17450 M_Val : Uint;
17452 procedure Set_Modular_Size (Bits : Int);
17453 -- Sets RM_Size to Bits, and Esize to normal word size above this
17455 ----------------------
17456 -- Set_Modular_Size --
17457 ----------------------
17459 procedure Set_Modular_Size (Bits : Int) is
17460 begin
17461 Set_RM_Size (T, UI_From_Int (Bits));
17463 if Bits <= 8 then
17464 Init_Esize (T, 8);
17466 elsif Bits <= 16 then
17467 Init_Esize (T, 16);
17469 elsif Bits <= 32 then
17470 Init_Esize (T, 32);
17472 else
17473 Init_Esize (T, System_Max_Binary_Modulus_Power);
17474 end if;
17476 if not Non_Binary_Modulus (T)
17477 and then Esize (T) = RM_Size (T)
17478 then
17479 Set_Is_Known_Valid (T);
17480 end if;
17481 end Set_Modular_Size;
17483 -- Start of processing for Modular_Type_Declaration
17485 begin
17486 -- If the mod expression is (exactly) 2 * literal, where literal is
17487 -- 64 or less,then almost certainly the * was meant to be **. Warn.
17489 if Warn_On_Suspicious_Modulus_Value
17490 and then Nkind (Mod_Expr) = N_Op_Multiply
17491 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
17492 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
17493 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
17494 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
17495 then
17496 Error_Msg_N
17497 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
17498 end if;
17500 -- Proceed with analysis of mod expression
17502 Analyze_And_Resolve (Mod_Expr, Any_Integer);
17503 Set_Etype (T, T);
17504 Set_Ekind (T, E_Modular_Integer_Type);
17505 Init_Alignment (T);
17506 Set_Is_Constrained (T);
17508 if not Is_OK_Static_Expression (Mod_Expr) then
17509 Flag_Non_Static_Expr
17510 ("non-static expression used for modular type bound!", Mod_Expr);
17511 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17512 else
17513 M_Val := Expr_Value (Mod_Expr);
17514 end if;
17516 if M_Val < 1 then
17517 Error_Msg_N ("modulus value must be positive", Mod_Expr);
17518 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17519 end if;
17521 if M_Val > 2 ** Standard_Long_Integer_Size then
17522 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
17523 end if;
17525 Set_Modulus (T, M_Val);
17527 -- Create bounds for the modular type based on the modulus given in
17528 -- the type declaration and then analyze and resolve those bounds.
17530 Set_Scalar_Range (T,
17531 Make_Range (Sloc (Mod_Expr),
17532 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
17533 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
17535 -- Properly analyze the literals for the range. We do this manually
17536 -- because we can't go calling Resolve, since we are resolving these
17537 -- bounds with the type, and this type is certainly not complete yet.
17539 Set_Etype (Low_Bound (Scalar_Range (T)), T);
17540 Set_Etype (High_Bound (Scalar_Range (T)), T);
17541 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
17542 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
17544 -- Loop through powers of two to find number of bits required
17546 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
17548 -- Binary case
17550 if M_Val = 2 ** Bits then
17551 Set_Modular_Size (Bits);
17552 return;
17554 -- Non-binary case
17556 elsif M_Val < 2 ** Bits then
17557 Check_SPARK_Restriction ("modulus should be a power of 2", T);
17558 Set_Non_Binary_Modulus (T);
17560 if Bits > System_Max_Nonbinary_Modulus_Power then
17561 Error_Msg_Uint_1 :=
17562 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
17563 Error_Msg_F
17564 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
17565 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17566 return;
17568 else
17569 -- In the non-binary case, set size as per RM 13.3(55)
17571 Set_Modular_Size (Bits);
17572 return;
17573 end if;
17574 end if;
17576 end loop;
17578 -- If we fall through, then the size exceed System.Max_Binary_Modulus
17579 -- so we just signal an error and set the maximum size.
17581 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
17582 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
17584 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17585 Init_Alignment (T);
17587 end Modular_Type_Declaration;
17589 --------------------------
17590 -- New_Concatenation_Op --
17591 --------------------------
17593 procedure New_Concatenation_Op (Typ : Entity_Id) is
17594 Loc : constant Source_Ptr := Sloc (Typ);
17595 Op : Entity_Id;
17597 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
17598 -- Create abbreviated declaration for the formal of a predefined
17599 -- Operator 'Op' of type 'Typ'
17601 --------------------
17602 -- Make_Op_Formal --
17603 --------------------
17605 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
17606 Formal : Entity_Id;
17607 begin
17608 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
17609 Set_Etype (Formal, Typ);
17610 Set_Mechanism (Formal, Default_Mechanism);
17611 return Formal;
17612 end Make_Op_Formal;
17614 -- Start of processing for New_Concatenation_Op
17616 begin
17617 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
17619 Set_Ekind (Op, E_Operator);
17620 Set_Scope (Op, Current_Scope);
17621 Set_Etype (Op, Typ);
17622 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
17623 Set_Is_Immediately_Visible (Op);
17624 Set_Is_Intrinsic_Subprogram (Op);
17625 Set_Has_Completion (Op);
17626 Append_Entity (Op, Current_Scope);
17628 Set_Name_Entity_Id (Name_Op_Concat, Op);
17630 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17631 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17632 end New_Concatenation_Op;
17634 -------------------------
17635 -- OK_For_Limited_Init --
17636 -------------------------
17638 -- ???Check all calls of this, and compare the conditions under which it's
17639 -- called.
17641 function OK_For_Limited_Init
17642 (Typ : Entity_Id;
17643 Exp : Node_Id) return Boolean
17645 begin
17646 return Is_CPP_Constructor_Call (Exp)
17647 or else (Ada_Version >= Ada_2005
17648 and then not Debug_Flag_Dot_L
17649 and then OK_For_Limited_Init_In_05 (Typ, Exp));
17650 end OK_For_Limited_Init;
17652 -------------------------------
17653 -- OK_For_Limited_Init_In_05 --
17654 -------------------------------
17656 function OK_For_Limited_Init_In_05
17657 (Typ : Entity_Id;
17658 Exp : Node_Id) return Boolean
17660 begin
17661 -- An object of a limited interface type can be initialized with any
17662 -- expression of a nonlimited descendant type.
17664 if Is_Class_Wide_Type (Typ)
17665 and then Is_Limited_Interface (Typ)
17666 and then not Is_Limited_Type (Etype (Exp))
17667 then
17668 return True;
17669 end if;
17671 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
17672 -- case of limited aggregates (including extension aggregates), and
17673 -- function calls. The function call may have been given in prefixed
17674 -- notation, in which case the original node is an indexed component.
17675 -- If the function is parameterless, the original node was an explicit
17676 -- dereference. The function may also be parameterless, in which case
17677 -- the source node is just an identifier.
17679 case Nkind (Original_Node (Exp)) is
17680 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
17681 return True;
17683 when N_Identifier =>
17684 return Present (Entity (Original_Node (Exp)))
17685 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
17687 when N_Qualified_Expression =>
17688 return
17689 OK_For_Limited_Init_In_05
17690 (Typ, Expression (Original_Node (Exp)));
17692 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
17693 -- with a function call, the expander has rewritten the call into an
17694 -- N_Type_Conversion node to force displacement of the pointer to
17695 -- reference the component containing the secondary dispatch table.
17696 -- Otherwise a type conversion is not a legal context.
17697 -- A return statement for a build-in-place function returning a
17698 -- synchronized type also introduces an unchecked conversion.
17700 when N_Type_Conversion |
17701 N_Unchecked_Type_Conversion =>
17702 return not Comes_From_Source (Exp)
17703 and then
17704 OK_For_Limited_Init_In_05
17705 (Typ, Expression (Original_Node (Exp)));
17707 when N_Indexed_Component |
17708 N_Selected_Component |
17709 N_Explicit_Dereference =>
17710 return Nkind (Exp) = N_Function_Call;
17712 -- A use of 'Input is a function call, hence allowed. Normally the
17713 -- attribute will be changed to a call, but the attribute by itself
17714 -- can occur with -gnatc.
17716 when N_Attribute_Reference =>
17717 return Attribute_Name (Original_Node (Exp)) = Name_Input;
17719 -- For a case expression, all dependent expressions must be legal
17721 when N_Case_Expression =>
17722 declare
17723 Alt : Node_Id;
17725 begin
17726 Alt := First (Alternatives (Original_Node (Exp)));
17727 while Present (Alt) loop
17728 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
17729 return False;
17730 end if;
17732 Next (Alt);
17733 end loop;
17735 return True;
17736 end;
17738 -- For an if expression, all dependent expressions must be legal
17740 when N_If_Expression =>
17741 declare
17742 Then_Expr : constant Node_Id :=
17743 Next (First (Expressions (Original_Node (Exp))));
17744 Else_Expr : constant Node_Id := Next (Then_Expr);
17745 begin
17746 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
17747 and then
17748 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
17749 end;
17751 when others =>
17752 return False;
17753 end case;
17754 end OK_For_Limited_Init_In_05;
17756 -------------------------------------------
17757 -- Ordinary_Fixed_Point_Type_Declaration --
17758 -------------------------------------------
17760 procedure Ordinary_Fixed_Point_Type_Declaration
17761 (T : Entity_Id;
17762 Def : Node_Id)
17764 Loc : constant Source_Ptr := Sloc (Def);
17765 Delta_Expr : constant Node_Id := Delta_Expression (Def);
17766 RRS : constant Node_Id := Real_Range_Specification (Def);
17767 Implicit_Base : Entity_Id;
17768 Delta_Val : Ureal;
17769 Small_Val : Ureal;
17770 Low_Val : Ureal;
17771 High_Val : Ureal;
17773 begin
17774 Check_Restriction (No_Fixed_Point, Def);
17776 -- Create implicit base type
17778 Implicit_Base :=
17779 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
17780 Set_Etype (Implicit_Base, Implicit_Base);
17782 -- Analyze and process delta expression
17784 Analyze_And_Resolve (Delta_Expr, Any_Real);
17786 Check_Delta_Expression (Delta_Expr);
17787 Delta_Val := Expr_Value_R (Delta_Expr);
17789 Set_Delta_Value (Implicit_Base, Delta_Val);
17791 -- Compute default small from given delta, which is the largest power
17792 -- of two that does not exceed the given delta value.
17794 declare
17795 Tmp : Ureal;
17796 Scale : Int;
17798 begin
17799 Tmp := Ureal_1;
17800 Scale := 0;
17802 if Delta_Val < Ureal_1 then
17803 while Delta_Val < Tmp loop
17804 Tmp := Tmp / Ureal_2;
17805 Scale := Scale + 1;
17806 end loop;
17808 else
17809 loop
17810 Tmp := Tmp * Ureal_2;
17811 exit when Tmp > Delta_Val;
17812 Scale := Scale - 1;
17813 end loop;
17814 end if;
17816 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
17817 end;
17819 Set_Small_Value (Implicit_Base, Small_Val);
17821 -- If no range was given, set a dummy range
17823 if RRS <= Empty_Or_Error then
17824 Low_Val := -Small_Val;
17825 High_Val := Small_Val;
17827 -- Otherwise analyze and process given range
17829 else
17830 declare
17831 Low : constant Node_Id := Low_Bound (RRS);
17832 High : constant Node_Id := High_Bound (RRS);
17834 begin
17835 Analyze_And_Resolve (Low, Any_Real);
17836 Analyze_And_Resolve (High, Any_Real);
17837 Check_Real_Bound (Low);
17838 Check_Real_Bound (High);
17840 -- Obtain and set the range
17842 Low_Val := Expr_Value_R (Low);
17843 High_Val := Expr_Value_R (High);
17845 if Low_Val > High_Val then
17846 Error_Msg_NE ("??fixed point type& has null range", Def, T);
17847 end if;
17848 end;
17849 end if;
17851 -- The range for both the implicit base and the declared first subtype
17852 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
17853 -- set a temporary range in place. Note that the bounds of the base
17854 -- type will be widened to be symmetrical and to fill the available
17855 -- bits when the type is frozen.
17857 -- We could do this with all discrete types, and probably should, but
17858 -- we absolutely have to do it for fixed-point, since the end-points
17859 -- of the range and the size are determined by the small value, which
17860 -- could be reset before the freeze point.
17862 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
17863 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
17865 -- Complete definition of first subtype
17867 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
17868 Set_Etype (T, Implicit_Base);
17869 Init_Size_Align (T);
17870 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
17871 Set_Small_Value (T, Small_Val);
17872 Set_Delta_Value (T, Delta_Val);
17873 Set_Is_Constrained (T);
17875 end Ordinary_Fixed_Point_Type_Declaration;
17877 ----------------------------------------
17878 -- Prepare_Private_Subtype_Completion --
17879 ----------------------------------------
17881 procedure Prepare_Private_Subtype_Completion
17882 (Id : Entity_Id;
17883 Related_Nod : Node_Id)
17885 Id_B : constant Entity_Id := Base_Type (Id);
17886 Full_B : constant Entity_Id := Full_View (Id_B);
17887 Full : Entity_Id;
17889 begin
17890 if Present (Full_B) then
17892 -- The Base_Type is already completed, we can complete the subtype
17893 -- now. We have to create a new entity with the same name, Thus we
17894 -- can't use Create_Itype.
17896 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
17897 Set_Is_Itype (Full);
17898 Set_Associated_Node_For_Itype (Full, Related_Nod);
17899 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
17900 end if;
17902 -- The parent subtype may be private, but the base might not, in some
17903 -- nested instances. In that case, the subtype does not need to be
17904 -- exchanged. It would still be nice to make private subtypes and their
17905 -- bases consistent at all times ???
17907 if Is_Private_Type (Id_B) then
17908 Append_Elmt (Id, Private_Dependents (Id_B));
17909 end if;
17910 end Prepare_Private_Subtype_Completion;
17912 ---------------------------
17913 -- Process_Discriminants --
17914 ---------------------------
17916 procedure Process_Discriminants
17917 (N : Node_Id;
17918 Prev : Entity_Id := Empty)
17920 Elist : constant Elist_Id := New_Elmt_List;
17921 Id : Node_Id;
17922 Discr : Node_Id;
17923 Discr_Number : Uint;
17924 Discr_Type : Entity_Id;
17925 Default_Present : Boolean := False;
17926 Default_Not_Present : Boolean := False;
17928 begin
17929 -- A composite type other than an array type can have discriminants.
17930 -- On entry, the current scope is the composite type.
17932 -- The discriminants are initially entered into the scope of the type
17933 -- via Enter_Name with the default Ekind of E_Void to prevent premature
17934 -- use, as explained at the end of this procedure.
17936 Discr := First (Discriminant_Specifications (N));
17937 while Present (Discr) loop
17938 Enter_Name (Defining_Identifier (Discr));
17940 -- For navigation purposes we add a reference to the discriminant
17941 -- in the entity for the type. If the current declaration is a
17942 -- completion, place references on the partial view. Otherwise the
17943 -- type is the current scope.
17945 if Present (Prev) then
17947 -- The references go on the partial view, if present. If the
17948 -- partial view has discriminants, the references have been
17949 -- generated already.
17951 if not Has_Discriminants (Prev) then
17952 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
17953 end if;
17954 else
17955 Generate_Reference
17956 (Current_Scope, Defining_Identifier (Discr), 'd');
17957 end if;
17959 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
17960 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
17962 -- Ada 2005 (AI-254)
17964 if Present (Access_To_Subprogram_Definition
17965 (Discriminant_Type (Discr)))
17966 and then Protected_Present (Access_To_Subprogram_Definition
17967 (Discriminant_Type (Discr)))
17968 then
17969 Discr_Type :=
17970 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
17971 end if;
17973 else
17974 Find_Type (Discriminant_Type (Discr));
17975 Discr_Type := Etype (Discriminant_Type (Discr));
17977 if Error_Posted (Discriminant_Type (Discr)) then
17978 Discr_Type := Any_Type;
17979 end if;
17980 end if;
17982 if Is_Access_Type (Discr_Type) then
17984 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
17985 -- record types
17987 if Ada_Version < Ada_2005 then
17988 Check_Access_Discriminant_Requires_Limited
17989 (Discr, Discriminant_Type (Discr));
17990 end if;
17992 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
17993 Error_Msg_N
17994 ("(Ada 83) access discriminant not allowed", Discr);
17995 end if;
17997 elsif not Is_Discrete_Type (Discr_Type) then
17998 Error_Msg_N ("discriminants must have a discrete or access type",
17999 Discriminant_Type (Discr));
18000 end if;
18002 Set_Etype (Defining_Identifier (Discr), Discr_Type);
18004 -- If a discriminant specification includes the assignment compound
18005 -- delimiter followed by an expression, the expression is the default
18006 -- expression of the discriminant; the default expression must be of
18007 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18008 -- a default expression, we do the special preanalysis, since this
18009 -- expression does not freeze (see "Handling of Default and Per-
18010 -- Object Expressions" in spec of package Sem).
18012 if Present (Expression (Discr)) then
18013 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
18015 if Nkind (N) = N_Formal_Type_Declaration then
18016 Error_Msg_N
18017 ("discriminant defaults not allowed for formal type",
18018 Expression (Discr));
18020 -- Flag an error for a tagged type with defaulted discriminants,
18021 -- excluding limited tagged types when compiling for Ada 2012
18022 -- (see AI05-0214).
18024 elsif Is_Tagged_Type (Current_Scope)
18025 and then (not Is_Limited_Type (Current_Scope)
18026 or else Ada_Version < Ada_2012)
18027 and then Comes_From_Source (N)
18028 then
18029 -- Note: see similar test in Check_Or_Process_Discriminants, to
18030 -- handle the (illegal) case of the completion of an untagged
18031 -- view with discriminants with defaults by a tagged full view.
18032 -- We skip the check if Discr does not come from source, to
18033 -- account for the case of an untagged derived type providing
18034 -- defaults for a renamed discriminant from a private untagged
18035 -- ancestor with a tagged full view (ACATS B460006).
18037 if Ada_Version >= Ada_2012 then
18038 Error_Msg_N
18039 ("discriminants of nonlimited tagged type cannot have"
18040 & " defaults",
18041 Expression (Discr));
18042 else
18043 Error_Msg_N
18044 ("discriminants of tagged type cannot have defaults",
18045 Expression (Discr));
18046 end if;
18048 else
18049 Default_Present := True;
18050 Append_Elmt (Expression (Discr), Elist);
18052 -- Tag the defining identifiers for the discriminants with
18053 -- their corresponding default expressions from the tree.
18055 Set_Discriminant_Default_Value
18056 (Defining_Identifier (Discr), Expression (Discr));
18057 end if;
18059 else
18060 Default_Not_Present := True;
18061 end if;
18063 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18064 -- Discr_Type but with the null-exclusion attribute
18066 if Ada_Version >= Ada_2005 then
18068 -- Ada 2005 (AI-231): Static checks
18070 if Can_Never_Be_Null (Discr_Type) then
18071 Null_Exclusion_Static_Checks (Discr);
18073 elsif Is_Access_Type (Discr_Type)
18074 and then Null_Exclusion_Present (Discr)
18076 -- No need to check itypes because in their case this check
18077 -- was done at their point of creation
18079 and then not Is_Itype (Discr_Type)
18080 then
18081 if Can_Never_Be_Null (Discr_Type) then
18082 Error_Msg_NE
18083 ("`NOT NULL` not allowed (& already excludes null)",
18084 Discr,
18085 Discr_Type);
18086 end if;
18088 Set_Etype (Defining_Identifier (Discr),
18089 Create_Null_Excluding_Itype
18090 (T => Discr_Type,
18091 Related_Nod => Discr));
18093 -- Check for improper null exclusion if the type is otherwise
18094 -- legal for a discriminant.
18096 elsif Null_Exclusion_Present (Discr)
18097 and then Is_Discrete_Type (Discr_Type)
18098 then
18099 Error_Msg_N
18100 ("null exclusion can only apply to an access type", Discr);
18101 end if;
18103 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18104 -- can't have defaults. Synchronized types, or types that are
18105 -- explicitly limited are fine, but special tests apply to derived
18106 -- types in generics: in a generic body we have to assume the
18107 -- worst, and therefore defaults are not allowed if the parent is
18108 -- a generic formal private type (see ACATS B370001).
18110 if Is_Access_Type (Discr_Type) and then Default_Present then
18111 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
18112 or else Is_Limited_Record (Current_Scope)
18113 or else Is_Concurrent_Type (Current_Scope)
18114 or else Is_Concurrent_Record_Type (Current_Scope)
18115 or else Ekind (Current_Scope) = E_Limited_Private_Type
18116 then
18117 if not Is_Derived_Type (Current_Scope)
18118 or else not Is_Generic_Type (Etype (Current_Scope))
18119 or else not In_Package_Body (Scope (Etype (Current_Scope)))
18120 or else Limited_Present
18121 (Type_Definition (Parent (Current_Scope)))
18122 then
18123 null;
18125 else
18126 Error_Msg_N ("access discriminants of nonlimited types",
18127 Expression (Discr));
18128 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18129 end if;
18131 elsif Present (Expression (Discr)) then
18132 Error_Msg_N
18133 ("(Ada 2005) access discriminants of nonlimited types",
18134 Expression (Discr));
18135 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18136 end if;
18137 end if;
18138 end if;
18140 -- A discriminant cannot be effectively volatile. This check is only
18141 -- relevant when SPARK_Mode is on as it is not standard Ada legality
18142 -- rule (SPARK RM 7.1.3(6)).
18144 if SPARK_Mode = On
18145 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
18146 then
18147 Error_Msg_N ("discriminant cannot be volatile", Discr);
18148 end if;
18150 Next (Discr);
18151 end loop;
18153 -- An element list consisting of the default expressions of the
18154 -- discriminants is constructed in the above loop and used to set
18155 -- the Discriminant_Constraint attribute for the type. If an object
18156 -- is declared of this (record or task) type without any explicit
18157 -- discriminant constraint given, this element list will form the
18158 -- actual parameters for the corresponding initialization procedure
18159 -- for the type.
18161 Set_Discriminant_Constraint (Current_Scope, Elist);
18162 Set_Stored_Constraint (Current_Scope, No_Elist);
18164 -- Default expressions must be provided either for all or for none
18165 -- of the discriminants of a discriminant part. (RM 3.7.1)
18167 if Default_Present and then Default_Not_Present then
18168 Error_Msg_N
18169 ("incomplete specification of defaults for discriminants", N);
18170 end if;
18172 -- The use of the name of a discriminant is not allowed in default
18173 -- expressions of a discriminant part if the specification of the
18174 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
18176 -- To detect this, the discriminant names are entered initially with an
18177 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
18178 -- attempt to use a void entity (for example in an expression that is
18179 -- type-checked) produces the error message: premature usage. Now after
18180 -- completing the semantic analysis of the discriminant part, we can set
18181 -- the Ekind of all the discriminants appropriately.
18183 Discr := First (Discriminant_Specifications (N));
18184 Discr_Number := Uint_1;
18185 while Present (Discr) loop
18186 Id := Defining_Identifier (Discr);
18187 Set_Ekind (Id, E_Discriminant);
18188 Init_Component_Location (Id);
18189 Init_Esize (Id);
18190 Set_Discriminant_Number (Id, Discr_Number);
18192 -- Make sure this is always set, even in illegal programs
18194 Set_Corresponding_Discriminant (Id, Empty);
18196 -- Initialize the Original_Record_Component to the entity itself.
18197 -- Inherit_Components will propagate the right value to
18198 -- discriminants in derived record types.
18200 Set_Original_Record_Component (Id, Id);
18202 -- Create the discriminal for the discriminant
18204 Build_Discriminal (Id);
18206 Next (Discr);
18207 Discr_Number := Discr_Number + 1;
18208 end loop;
18210 Set_Has_Discriminants (Current_Scope);
18211 end Process_Discriminants;
18213 -----------------------
18214 -- Process_Full_View --
18215 -----------------------
18217 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
18218 Priv_Parent : Entity_Id;
18219 Full_Parent : Entity_Id;
18220 Full_Indic : Node_Id;
18222 procedure Collect_Implemented_Interfaces
18223 (Typ : Entity_Id;
18224 Ifaces : Elist_Id);
18225 -- Ada 2005: Gather all the interfaces that Typ directly or
18226 -- inherently implements. Duplicate entries are not added to
18227 -- the list Ifaces.
18229 ------------------------------------
18230 -- Collect_Implemented_Interfaces --
18231 ------------------------------------
18233 procedure Collect_Implemented_Interfaces
18234 (Typ : Entity_Id;
18235 Ifaces : Elist_Id)
18237 Iface : Entity_Id;
18238 Iface_Elmt : Elmt_Id;
18240 begin
18241 -- Abstract interfaces are only associated with tagged record types
18243 if not Is_Tagged_Type (Typ)
18244 or else not Is_Record_Type (Typ)
18245 then
18246 return;
18247 end if;
18249 -- Recursively climb to the ancestors
18251 if Etype (Typ) /= Typ
18253 -- Protect the frontend against wrong cyclic declarations like:
18255 -- type B is new A with private;
18256 -- type C is new A with private;
18257 -- private
18258 -- type B is new C with null record;
18259 -- type C is new B with null record;
18261 and then Etype (Typ) /= Priv_T
18262 and then Etype (Typ) /= Full_T
18263 then
18264 -- Keep separate the management of private type declarations
18266 if Ekind (Typ) = E_Record_Type_With_Private then
18268 -- Handle the following illegal usage:
18269 -- type Private_Type is tagged private;
18270 -- private
18271 -- type Private_Type is new Type_Implementing_Iface;
18273 if Present (Full_View (Typ))
18274 and then Etype (Typ) /= Full_View (Typ)
18275 then
18276 if Is_Interface (Etype (Typ)) then
18277 Append_Unique_Elmt (Etype (Typ), Ifaces);
18278 end if;
18280 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18281 end if;
18283 -- Non-private types
18285 else
18286 if Is_Interface (Etype (Typ)) then
18287 Append_Unique_Elmt (Etype (Typ), Ifaces);
18288 end if;
18290 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18291 end if;
18292 end if;
18294 -- Handle entities in the list of abstract interfaces
18296 if Present (Interfaces (Typ)) then
18297 Iface_Elmt := First_Elmt (Interfaces (Typ));
18298 while Present (Iface_Elmt) loop
18299 Iface := Node (Iface_Elmt);
18301 pragma Assert (Is_Interface (Iface));
18303 if not Contain_Interface (Iface, Ifaces) then
18304 Append_Elmt (Iface, Ifaces);
18305 Collect_Implemented_Interfaces (Iface, Ifaces);
18306 end if;
18308 Next_Elmt (Iface_Elmt);
18309 end loop;
18310 end if;
18311 end Collect_Implemented_Interfaces;
18313 -- Start of processing for Process_Full_View
18315 begin
18316 -- First some sanity checks that must be done after semantic
18317 -- decoration of the full view and thus cannot be placed with other
18318 -- similar checks in Find_Type_Name
18320 if not Is_Limited_Type (Priv_T)
18321 and then (Is_Limited_Type (Full_T)
18322 or else Is_Limited_Composite (Full_T))
18323 then
18324 if In_Instance then
18325 null;
18326 else
18327 Error_Msg_N
18328 ("completion of nonlimited type cannot be limited", Full_T);
18329 Explain_Limited_Type (Full_T, Full_T);
18330 end if;
18332 elsif Is_Abstract_Type (Full_T)
18333 and then not Is_Abstract_Type (Priv_T)
18334 then
18335 Error_Msg_N
18336 ("completion of nonabstract type cannot be abstract", Full_T);
18338 elsif Is_Tagged_Type (Priv_T)
18339 and then Is_Limited_Type (Priv_T)
18340 and then not Is_Limited_Type (Full_T)
18341 then
18342 -- If pragma CPP_Class was applied to the private declaration
18343 -- propagate the limitedness to the full-view
18345 if Is_CPP_Class (Priv_T) then
18346 Set_Is_Limited_Record (Full_T);
18348 -- GNAT allow its own definition of Limited_Controlled to disobey
18349 -- this rule in order in ease the implementation. This test is safe
18350 -- because Root_Controlled is defined in a child of System that
18351 -- normal programs are not supposed to use.
18353 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
18354 Set_Is_Limited_Composite (Full_T);
18355 else
18356 Error_Msg_N
18357 ("completion of limited tagged type must be limited", Full_T);
18358 end if;
18360 elsif Is_Generic_Type (Priv_T) then
18361 Error_Msg_N ("generic type cannot have a completion", Full_T);
18362 end if;
18364 -- Check that ancestor interfaces of private and full views are
18365 -- consistent. We omit this check for synchronized types because
18366 -- they are performed on the corresponding record type when frozen.
18368 if Ada_Version >= Ada_2005
18369 and then Is_Tagged_Type (Priv_T)
18370 and then Is_Tagged_Type (Full_T)
18371 and then not Is_Concurrent_Type (Full_T)
18372 then
18373 declare
18374 Iface : Entity_Id;
18375 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
18376 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
18378 begin
18379 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
18380 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
18382 -- Ada 2005 (AI-251): The partial view shall be a descendant of
18383 -- an interface type if and only if the full type is descendant
18384 -- of the interface type (AARM 7.3 (7.3/2)).
18386 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
18388 if Present (Iface) then
18389 Error_Msg_NE
18390 ("interface in partial view& not implemented by full type "
18391 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18392 end if;
18394 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
18396 if Present (Iface) then
18397 Error_Msg_NE
18398 ("interface & not implemented by partial view "
18399 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18400 end if;
18401 end;
18402 end if;
18404 if Is_Tagged_Type (Priv_T)
18405 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18406 and then Is_Derived_Type (Full_T)
18407 then
18408 Priv_Parent := Etype (Priv_T);
18410 -- The full view of a private extension may have been transformed
18411 -- into an unconstrained derived type declaration and a subtype
18412 -- declaration (see build_derived_record_type for details).
18414 if Nkind (N) = N_Subtype_Declaration then
18415 Full_Indic := Subtype_Indication (N);
18416 Full_Parent := Etype (Base_Type (Full_T));
18417 else
18418 Full_Indic := Subtype_Indication (Type_Definition (N));
18419 Full_Parent := Etype (Full_T);
18420 end if;
18422 -- Check that the parent type of the full type is a descendant of
18423 -- the ancestor subtype given in the private extension. If either
18424 -- entity has an Etype equal to Any_Type then we had some previous
18425 -- error situation [7.3(8)].
18427 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
18428 return;
18430 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
18431 -- any order. Therefore we don't have to check that its parent must
18432 -- be a descendant of the parent of the private type declaration.
18434 elsif Is_Interface (Priv_Parent)
18435 and then Is_Interface (Full_Parent)
18436 then
18437 null;
18439 -- Ada 2005 (AI-251): If the parent of the private type declaration
18440 -- is an interface there is no need to check that it is an ancestor
18441 -- of the associated full type declaration. The required tests for
18442 -- this case are performed by Build_Derived_Record_Type.
18444 elsif not Is_Interface (Base_Type (Priv_Parent))
18445 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
18446 then
18447 Error_Msg_N
18448 ("parent of full type must descend from parent"
18449 & " of private extension", Full_Indic);
18451 -- First check a formal restriction, and then proceed with checking
18452 -- Ada rules. Since the formal restriction is not a serious error, we
18453 -- don't prevent further error detection for this check, hence the
18454 -- ELSE.
18456 else
18458 -- In formal mode, when completing a private extension the type
18459 -- named in the private part must be exactly the same as that
18460 -- named in the visible part.
18462 if Priv_Parent /= Full_Parent then
18463 Error_Msg_Name_1 := Chars (Priv_Parent);
18464 Check_SPARK_Restriction ("% expected", Full_Indic);
18465 end if;
18467 -- Check the rules of 7.3(10): if the private extension inherits
18468 -- known discriminants, then the full type must also inherit those
18469 -- discriminants from the same (ancestor) type, and the parent
18470 -- subtype of the full type must be constrained if and only if
18471 -- the ancestor subtype of the private extension is constrained.
18473 if No (Discriminant_Specifications (Parent (Priv_T)))
18474 and then not Has_Unknown_Discriminants (Priv_T)
18475 and then Has_Discriminants (Base_Type (Priv_Parent))
18476 then
18477 declare
18478 Priv_Indic : constant Node_Id :=
18479 Subtype_Indication (Parent (Priv_T));
18481 Priv_Constr : constant Boolean :=
18482 Is_Constrained (Priv_Parent)
18483 or else
18484 Nkind (Priv_Indic) = N_Subtype_Indication
18485 or else
18486 Is_Constrained (Entity (Priv_Indic));
18488 Full_Constr : constant Boolean :=
18489 Is_Constrained (Full_Parent)
18490 or else
18491 Nkind (Full_Indic) = N_Subtype_Indication
18492 or else
18493 Is_Constrained (Entity (Full_Indic));
18495 Priv_Discr : Entity_Id;
18496 Full_Discr : Entity_Id;
18498 begin
18499 Priv_Discr := First_Discriminant (Priv_Parent);
18500 Full_Discr := First_Discriminant (Full_Parent);
18501 while Present (Priv_Discr) and then Present (Full_Discr) loop
18502 if Original_Record_Component (Priv_Discr) =
18503 Original_Record_Component (Full_Discr)
18504 or else
18505 Corresponding_Discriminant (Priv_Discr) =
18506 Corresponding_Discriminant (Full_Discr)
18507 then
18508 null;
18509 else
18510 exit;
18511 end if;
18513 Next_Discriminant (Priv_Discr);
18514 Next_Discriminant (Full_Discr);
18515 end loop;
18517 if Present (Priv_Discr) or else Present (Full_Discr) then
18518 Error_Msg_N
18519 ("full view must inherit discriminants of the parent"
18520 & " type used in the private extension", Full_Indic);
18522 elsif Priv_Constr and then not Full_Constr then
18523 Error_Msg_N
18524 ("parent subtype of full type must be constrained",
18525 Full_Indic);
18527 elsif Full_Constr and then not Priv_Constr then
18528 Error_Msg_N
18529 ("parent subtype of full type must be unconstrained",
18530 Full_Indic);
18531 end if;
18532 end;
18534 -- Check the rules of 7.3(12): if a partial view has neither
18535 -- known or unknown discriminants, then the full type
18536 -- declaration shall define a definite subtype.
18538 elsif not Has_Unknown_Discriminants (Priv_T)
18539 and then not Has_Discriminants (Priv_T)
18540 and then not Is_Constrained (Full_T)
18541 then
18542 Error_Msg_N
18543 ("full view must define a constrained type if partial view"
18544 & " has no discriminants", Full_T);
18545 end if;
18547 -- ??????? Do we implement the following properly ?????
18548 -- If the ancestor subtype of a private extension has constrained
18549 -- discriminants, then the parent subtype of the full view shall
18550 -- impose a statically matching constraint on those discriminants
18551 -- [7.3(13)].
18552 end if;
18554 else
18555 -- For untagged types, verify that a type without discriminants is
18556 -- not completed with an unconstrained type. A separate error message
18557 -- is produced if the full type has defaulted discriminants.
18559 if not Is_Indefinite_Subtype (Priv_T)
18560 and then Is_Indefinite_Subtype (Full_T)
18561 then
18562 Error_Msg_Sloc := Sloc (Parent (Priv_T));
18563 Error_Msg_NE
18564 ("full view of& not compatible with declaration#",
18565 Full_T, Priv_T);
18567 if not Is_Tagged_Type (Full_T) then
18568 Error_Msg_N
18569 ("\one is constrained, the other unconstrained", Full_T);
18570 end if;
18571 end if;
18572 end if;
18574 -- AI-419: verify that the use of "limited" is consistent
18576 declare
18577 Orig_Decl : constant Node_Id := Original_Node (N);
18579 begin
18580 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18581 and then not Limited_Present (Parent (Priv_T))
18582 and then not Synchronized_Present (Parent (Priv_T))
18583 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
18584 and then Nkind
18585 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
18586 and then Limited_Present (Type_Definition (Orig_Decl))
18587 then
18588 Error_Msg_N
18589 ("full view of non-limited extension cannot be limited", N);
18590 end if;
18591 end;
18593 -- Ada 2005 (AI-443): A synchronized private extension must be
18594 -- completed by a task or protected type.
18596 if Ada_Version >= Ada_2005
18597 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18598 and then Synchronized_Present (Parent (Priv_T))
18599 and then not Is_Concurrent_Type (Full_T)
18600 then
18601 Error_Msg_N ("full view of synchronized extension must " &
18602 "be synchronized type", N);
18603 end if;
18605 -- Ada 2005 AI-363: if the full view has discriminants with
18606 -- defaults, it is illegal to declare constrained access subtypes
18607 -- whose designated type is the current type. This allows objects
18608 -- of the type that are declared in the heap to be unconstrained.
18610 if not Has_Unknown_Discriminants (Priv_T)
18611 and then not Has_Discriminants (Priv_T)
18612 and then Has_Discriminants (Full_T)
18613 and then
18614 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
18615 then
18616 Set_Has_Constrained_Partial_View (Full_T);
18617 Set_Has_Constrained_Partial_View (Priv_T);
18618 end if;
18620 -- Create a full declaration for all its subtypes recorded in
18621 -- Private_Dependents and swap them similarly to the base type. These
18622 -- are subtypes that have been define before the full declaration of
18623 -- the private type. We also swap the entry in Private_Dependents list
18624 -- so we can properly restore the private view on exit from the scope.
18626 declare
18627 Priv_Elmt : Elmt_Id;
18628 Priv_Scop : Entity_Id;
18629 Priv : Entity_Id;
18630 Full : Entity_Id;
18632 begin
18633 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
18634 while Present (Priv_Elmt) loop
18635 Priv := Node (Priv_Elmt);
18636 Priv_Scop := Scope (Priv);
18638 if Ekind_In (Priv, E_Private_Subtype,
18639 E_Limited_Private_Subtype,
18640 E_Record_Subtype_With_Private)
18641 then
18642 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
18643 Set_Is_Itype (Full);
18644 Set_Parent (Full, Parent (Priv));
18645 Set_Associated_Node_For_Itype (Full, N);
18647 -- Now we need to complete the private subtype, but since the
18648 -- base type has already been swapped, we must also swap the
18649 -- subtypes (and thus, reverse the arguments in the call to
18650 -- Complete_Private_Subtype). Also note that we may need to
18651 -- re-establish the scope of the private subtype.
18653 Copy_And_Swap (Priv, Full);
18655 if not In_Open_Scopes (Priv_Scop) then
18656 Push_Scope (Priv_Scop);
18658 else
18659 -- Reset Priv_Scop to Empty to indicate no scope was pushed
18661 Priv_Scop := Empty;
18662 end if;
18664 Complete_Private_Subtype (Full, Priv, Full_T, N);
18666 if Present (Priv_Scop) then
18667 Pop_Scope;
18668 end if;
18670 Replace_Elmt (Priv_Elmt, Full);
18671 end if;
18673 Next_Elmt (Priv_Elmt);
18674 end loop;
18675 end;
18677 -- If the private view was tagged, copy the new primitive operations
18678 -- from the private view to the full view.
18680 if Is_Tagged_Type (Full_T) then
18681 declare
18682 Disp_Typ : Entity_Id;
18683 Full_List : Elist_Id;
18684 Prim : Entity_Id;
18685 Prim_Elmt : Elmt_Id;
18686 Priv_List : Elist_Id;
18688 function Contains
18689 (E : Entity_Id;
18690 L : Elist_Id) return Boolean;
18691 -- Determine whether list L contains element E
18693 --------------
18694 -- Contains --
18695 --------------
18697 function Contains
18698 (E : Entity_Id;
18699 L : Elist_Id) return Boolean
18701 List_Elmt : Elmt_Id;
18703 begin
18704 List_Elmt := First_Elmt (L);
18705 while Present (List_Elmt) loop
18706 if Node (List_Elmt) = E then
18707 return True;
18708 end if;
18710 Next_Elmt (List_Elmt);
18711 end loop;
18713 return False;
18714 end Contains;
18716 -- Start of processing
18718 begin
18719 if Is_Tagged_Type (Priv_T) then
18720 Priv_List := Primitive_Operations (Priv_T);
18721 Prim_Elmt := First_Elmt (Priv_List);
18723 -- In the case of a concurrent type completing a private tagged
18724 -- type, primitives may have been declared in between the two
18725 -- views. These subprograms need to be wrapped the same way
18726 -- entries and protected procedures are handled because they
18727 -- cannot be directly shared by the two views.
18729 if Is_Concurrent_Type (Full_T) then
18730 declare
18731 Conc_Typ : constant Entity_Id :=
18732 Corresponding_Record_Type (Full_T);
18733 Curr_Nod : Node_Id := Parent (Conc_Typ);
18734 Wrap_Spec : Node_Id;
18736 begin
18737 while Present (Prim_Elmt) loop
18738 Prim := Node (Prim_Elmt);
18740 if Comes_From_Source (Prim)
18741 and then not Is_Abstract_Subprogram (Prim)
18742 then
18743 Wrap_Spec :=
18744 Make_Subprogram_Declaration (Sloc (Prim),
18745 Specification =>
18746 Build_Wrapper_Spec
18747 (Subp_Id => Prim,
18748 Obj_Typ => Conc_Typ,
18749 Formals =>
18750 Parameter_Specifications (
18751 Parent (Prim))));
18753 Insert_After (Curr_Nod, Wrap_Spec);
18754 Curr_Nod := Wrap_Spec;
18756 Analyze (Wrap_Spec);
18757 end if;
18759 Next_Elmt (Prim_Elmt);
18760 end loop;
18762 return;
18763 end;
18765 -- For non-concurrent types, transfer explicit primitives, but
18766 -- omit those inherited from the parent of the private view
18767 -- since they will be re-inherited later on.
18769 else
18770 Full_List := Primitive_Operations (Full_T);
18772 while Present (Prim_Elmt) loop
18773 Prim := Node (Prim_Elmt);
18775 if Comes_From_Source (Prim)
18776 and then not Contains (Prim, Full_List)
18777 then
18778 Append_Elmt (Prim, Full_List);
18779 end if;
18781 Next_Elmt (Prim_Elmt);
18782 end loop;
18783 end if;
18785 -- Untagged private view
18787 else
18788 Full_List := Primitive_Operations (Full_T);
18790 -- In this case the partial view is untagged, so here we locate
18791 -- all of the earlier primitives that need to be treated as
18792 -- dispatching (those that appear between the two views). Note
18793 -- that these additional operations must all be new operations
18794 -- (any earlier operations that override inherited operations
18795 -- of the full view will already have been inserted in the
18796 -- primitives list, marked by Check_Operation_From_Private_View
18797 -- as dispatching. Note that implicit "/=" operators are
18798 -- excluded from being added to the primitives list since they
18799 -- shouldn't be treated as dispatching (tagged "/=" is handled
18800 -- specially).
18802 Prim := Next_Entity (Full_T);
18803 while Present (Prim) and then Prim /= Priv_T loop
18804 if Ekind_In (Prim, E_Procedure, E_Function) then
18805 Disp_Typ := Find_Dispatching_Type (Prim);
18807 if Disp_Typ = Full_T
18808 and then (Chars (Prim) /= Name_Op_Ne
18809 or else Comes_From_Source (Prim))
18810 then
18811 Check_Controlling_Formals (Full_T, Prim);
18813 if not Is_Dispatching_Operation (Prim) then
18814 Append_Elmt (Prim, Full_List);
18815 Set_Is_Dispatching_Operation (Prim, True);
18816 Set_DT_Position (Prim, No_Uint);
18817 end if;
18819 elsif Is_Dispatching_Operation (Prim)
18820 and then Disp_Typ /= Full_T
18821 then
18823 -- Verify that it is not otherwise controlled by a
18824 -- formal or a return value of type T.
18826 Check_Controlling_Formals (Disp_Typ, Prim);
18827 end if;
18828 end if;
18830 Next_Entity (Prim);
18831 end loop;
18832 end if;
18834 -- For the tagged case, the two views can share the same primitive
18835 -- operations list and the same class-wide type. Update attributes
18836 -- of the class-wide type which depend on the full declaration.
18838 if Is_Tagged_Type (Priv_T) then
18839 Set_Direct_Primitive_Operations (Priv_T, Full_List);
18840 Set_Class_Wide_Type
18841 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
18843 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
18844 Set_Has_Protected
18845 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
18846 end if;
18847 end;
18848 end if;
18850 -- Ada 2005 AI 161: Check preelaborable initialization consistency
18852 if Known_To_Have_Preelab_Init (Priv_T) then
18854 -- Case where there is a pragma Preelaborable_Initialization. We
18855 -- always allow this in predefined units, which is cheating a bit,
18856 -- but it means we don't have to struggle to meet the requirements in
18857 -- the RM for having Preelaborable Initialization. Otherwise we
18858 -- require that the type meets the RM rules. But we can't check that
18859 -- yet, because of the rule about overriding Initialize, so we simply
18860 -- set a flag that will be checked at freeze time.
18862 if not In_Predefined_Unit (Full_T) then
18863 Set_Must_Have_Preelab_Init (Full_T);
18864 end if;
18865 end if;
18867 -- If pragma CPP_Class was applied to the private type declaration,
18868 -- propagate it now to the full type declaration.
18870 if Is_CPP_Class (Priv_T) then
18871 Set_Is_CPP_Class (Full_T);
18872 Set_Convention (Full_T, Convention_CPP);
18874 -- Check that components of imported CPP types do not have default
18875 -- expressions.
18877 Check_CPP_Type_Has_No_Defaults (Full_T);
18878 end if;
18880 -- If the private view has user specified stream attributes, then so has
18881 -- the full view.
18883 -- Why the test, how could these flags be already set in Full_T ???
18885 if Has_Specified_Stream_Read (Priv_T) then
18886 Set_Has_Specified_Stream_Read (Full_T);
18887 end if;
18889 if Has_Specified_Stream_Write (Priv_T) then
18890 Set_Has_Specified_Stream_Write (Full_T);
18891 end if;
18893 if Has_Specified_Stream_Input (Priv_T) then
18894 Set_Has_Specified_Stream_Input (Full_T);
18895 end if;
18897 if Has_Specified_Stream_Output (Priv_T) then
18898 Set_Has_Specified_Stream_Output (Full_T);
18899 end if;
18901 -- Propagate invariants to full type
18903 if Has_Invariants (Priv_T) then
18904 Set_Has_Invariants (Full_T);
18905 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
18906 end if;
18908 if Has_Inheritable_Invariants (Priv_T) then
18909 Set_Has_Inheritable_Invariants (Full_T);
18910 end if;
18912 -- Propagate predicates to full type, and predicate function if already
18913 -- defined. It is not clear that this can actually happen? the partial
18914 -- view cannot be frozen yet, and the predicate function has not been
18915 -- built. Still it is a cheap check and seems safer to make it.
18917 if Has_Predicates (Priv_T) then
18918 if Present (Predicate_Function (Priv_T)) then
18919 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
18920 end if;
18922 Set_Has_Predicates (Full_T);
18923 end if;
18924 end Process_Full_View;
18926 -----------------------------------
18927 -- Process_Incomplete_Dependents --
18928 -----------------------------------
18930 procedure Process_Incomplete_Dependents
18931 (N : Node_Id;
18932 Full_T : Entity_Id;
18933 Inc_T : Entity_Id)
18935 Inc_Elmt : Elmt_Id;
18936 Priv_Dep : Entity_Id;
18937 New_Subt : Entity_Id;
18939 Disc_Constraint : Elist_Id;
18941 begin
18942 if No (Private_Dependents (Inc_T)) then
18943 return;
18944 end if;
18946 -- Itypes that may be generated by the completion of an incomplete
18947 -- subtype are not used by the back-end and not attached to the tree.
18948 -- They are created only for constraint-checking purposes.
18950 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
18951 while Present (Inc_Elmt) loop
18952 Priv_Dep := Node (Inc_Elmt);
18954 if Ekind (Priv_Dep) = E_Subprogram_Type then
18956 -- An Access_To_Subprogram type may have a return type or a
18957 -- parameter type that is incomplete. Replace with the full view.
18959 if Etype (Priv_Dep) = Inc_T then
18960 Set_Etype (Priv_Dep, Full_T);
18961 end if;
18963 declare
18964 Formal : Entity_Id;
18966 begin
18967 Formal := First_Formal (Priv_Dep);
18968 while Present (Formal) loop
18969 if Etype (Formal) = Inc_T then
18970 Set_Etype (Formal, Full_T);
18971 end if;
18973 Next_Formal (Formal);
18974 end loop;
18975 end;
18977 elsif Is_Overloadable (Priv_Dep) then
18979 -- If a subprogram in the incomplete dependents list is primitive
18980 -- for a tagged full type then mark it as a dispatching operation,
18981 -- check whether it overrides an inherited subprogram, and check
18982 -- restrictions on its controlling formals. Note that a protected
18983 -- operation is never dispatching: only its wrapper operation
18984 -- (which has convention Ada) is.
18986 if Is_Tagged_Type (Full_T)
18987 and then Is_Primitive (Priv_Dep)
18988 and then Convention (Priv_Dep) /= Convention_Protected
18989 then
18990 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
18991 Set_Is_Dispatching_Operation (Priv_Dep);
18992 Check_Controlling_Formals (Full_T, Priv_Dep);
18993 end if;
18995 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
18997 -- Can happen during processing of a body before the completion
18998 -- of a TA type. Ignore, because spec is also on dependent list.
19000 return;
19002 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
19003 -- corresponding subtype of the full view.
19005 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
19006 Set_Subtype_Indication
19007 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
19008 Set_Etype (Priv_Dep, Full_T);
19009 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
19010 Set_Analyzed (Parent (Priv_Dep), False);
19012 -- Reanalyze the declaration, suppressing the call to
19013 -- Enter_Name to avoid duplicate names.
19015 Analyze_Subtype_Declaration
19016 (N => Parent (Priv_Dep),
19017 Skip => True);
19019 -- Dependent is a subtype
19021 else
19022 -- We build a new subtype indication using the full view of the
19023 -- incomplete parent. The discriminant constraints have been
19024 -- elaborated already at the point of the subtype declaration.
19026 New_Subt := Create_Itype (E_Void, N);
19028 if Has_Discriminants (Full_T) then
19029 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
19030 else
19031 Disc_Constraint := No_Elist;
19032 end if;
19034 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
19035 Set_Full_View (Priv_Dep, New_Subt);
19036 end if;
19038 Next_Elmt (Inc_Elmt);
19039 end loop;
19040 end Process_Incomplete_Dependents;
19042 --------------------------------
19043 -- Process_Range_Expr_In_Decl --
19044 --------------------------------
19046 procedure Process_Range_Expr_In_Decl
19047 (R : Node_Id;
19048 T : Entity_Id;
19049 Subtyp : Entity_Id := Empty;
19050 Check_List : List_Id := Empty_List;
19051 R_Check_Off : Boolean := False;
19052 In_Iter_Schm : Boolean := False)
19054 Lo, Hi : Node_Id;
19055 R_Checks : Check_Result;
19056 Insert_Node : Node_Id;
19057 Def_Id : Entity_Id;
19059 begin
19060 Analyze_And_Resolve (R, Base_Type (T));
19062 if Nkind (R) = N_Range then
19064 -- In SPARK, all ranges should be static, with the exception of the
19065 -- discrete type definition of a loop parameter specification.
19067 if not In_Iter_Schm
19068 and then not Is_OK_Static_Range (R)
19069 then
19070 Check_SPARK_Restriction ("range should be static", R);
19071 end if;
19073 Lo := Low_Bound (R);
19074 Hi := High_Bound (R);
19076 -- We need to ensure validity of the bounds here, because if we
19077 -- go ahead and do the expansion, then the expanded code will get
19078 -- analyzed with range checks suppressed and we miss the check.
19079 -- Validity checks on the range of a quantified expression are
19080 -- delayed until the construct is transformed into a loop.
19082 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
19083 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
19084 then
19085 Validity_Check_Range (R);
19086 end if;
19088 -- If there were errors in the declaration, try and patch up some
19089 -- common mistakes in the bounds. The cases handled are literals
19090 -- which are Integer where the expected type is Real and vice versa.
19091 -- These corrections allow the compilation process to proceed further
19092 -- along since some basic assumptions of the format of the bounds
19093 -- are guaranteed.
19095 if Etype (R) = Any_Type then
19096 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
19097 Rewrite (Lo,
19098 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
19100 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
19101 Rewrite (Hi,
19102 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
19104 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
19105 Rewrite (Lo,
19106 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
19108 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
19109 Rewrite (Hi,
19110 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
19111 end if;
19113 Set_Etype (Lo, T);
19114 Set_Etype (Hi, T);
19115 end if;
19117 -- If the bounds of the range have been mistakenly given as string
19118 -- literals (perhaps in place of character literals), then an error
19119 -- has already been reported, but we rewrite the string literal as a
19120 -- bound of the range's type to avoid blowups in later processing
19121 -- that looks at static values.
19123 if Nkind (Lo) = N_String_Literal then
19124 Rewrite (Lo,
19125 Make_Attribute_Reference (Sloc (Lo),
19126 Attribute_Name => Name_First,
19127 Prefix => New_Occurrence_Of (T, Sloc (Lo))));
19128 Analyze_And_Resolve (Lo);
19129 end if;
19131 if Nkind (Hi) = N_String_Literal then
19132 Rewrite (Hi,
19133 Make_Attribute_Reference (Sloc (Hi),
19134 Attribute_Name => Name_First,
19135 Prefix => New_Occurrence_Of (T, Sloc (Hi))));
19136 Analyze_And_Resolve (Hi);
19137 end if;
19139 -- If bounds aren't scalar at this point then exit, avoiding
19140 -- problems with further processing of the range in this procedure.
19142 if not Is_Scalar_Type (Etype (Lo)) then
19143 return;
19144 end if;
19146 -- Resolve (actually Sem_Eval) has checked that the bounds are in
19147 -- then range of the base type. Here we check whether the bounds
19148 -- are in the range of the subtype itself. Note that if the bounds
19149 -- represent the null range the Constraint_Error exception should
19150 -- not be raised.
19152 -- ??? The following code should be cleaned up as follows
19154 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
19155 -- is done in the call to Range_Check (R, T); below
19157 -- 2. The use of R_Check_Off should be investigated and possibly
19158 -- removed, this would clean up things a bit.
19160 if Is_Null_Range (Lo, Hi) then
19161 null;
19163 else
19164 -- Capture values of bounds and generate temporaries for them
19165 -- if needed, before applying checks, since checks may cause
19166 -- duplication of the expression without forcing evaluation.
19168 -- The forced evaluation removes side effects from expressions,
19169 -- which should occur also in GNATprove mode. Otherwise, we end up
19170 -- with unexpected insertions of actions at places where this is
19171 -- not supposed to occur, e.g. on default parameters of a call.
19173 if Expander_Active or GNATprove_Mode then
19175 -- If no subtype name, then just call Force_Evaluation to
19176 -- create declarations as needed to deal with side effects.
19177 -- Also ignore calls from within a record type, where we
19178 -- have possible scoping issues.
19180 if No (Subtyp) or else Is_Record_Type (Current_Scope) then
19181 Force_Evaluation (Lo);
19182 Force_Evaluation (Hi);
19184 -- If a subtype is given, then we capture the bounds if they
19185 -- are not known at compile time, using constant identifiers
19186 -- xxx_FIRST and xxx_LAST where xxx is the name of the subtype.
19188 -- Note: we do this transformation even if expansion is not
19189 -- active, and in particular we do it in GNATprove_Mode since
19190 -- the transformation is in general required to ensure that the
19191 -- resulting tree has proper Ada semantics.
19193 -- Historical note: We used to just do Force_Evaluation calls
19194 -- in all cases, but it is better to capture the bounds with
19195 -- proper non-serialized names, since these will be accessed
19196 -- from other units, and hence may be public, and also we can
19197 -- then expand 'First and 'Last references to be references to
19198 -- these special names.
19200 else
19201 if not Compile_Time_Known_Value (Lo)
19203 -- No need to capture bounds if they already are
19204 -- references to constants.
19206 and then not (Is_Entity_Name (Lo)
19207 and then Is_Constant_Object (Entity (Lo)))
19208 then
19209 declare
19210 Loc : constant Source_Ptr := Sloc (Lo);
19211 Lov : constant Entity_Id :=
19212 Make_Defining_Identifier (Loc,
19213 Chars =>
19214 New_External_Name (Chars (Subtyp), "_FIRST"));
19215 begin
19216 Insert_Action (R,
19217 Make_Object_Declaration (Loc,
19218 Defining_Identifier => Lov,
19219 Object_Definition =>
19220 New_Occurrence_Of (Base_Type (T), Loc),
19221 Constant_Present => True,
19222 Expression => Relocate_Node (Lo)));
19223 Rewrite (Lo, New_Occurrence_Of (Lov, Loc));
19224 end;
19225 end if;
19227 if not Compile_Time_Known_Value (Hi)
19228 and then not (Is_Entity_Name (Hi)
19229 and then Is_Constant_Object (Entity (Hi)))
19230 then
19231 declare
19232 Loc : constant Source_Ptr := Sloc (Hi);
19233 Hiv : constant Entity_Id :=
19234 Make_Defining_Identifier (Loc,
19235 Chars =>
19236 New_External_Name (Chars (Subtyp), "_LAST"));
19237 begin
19238 Insert_Action (R,
19239 Make_Object_Declaration (Loc,
19240 Defining_Identifier => Hiv,
19241 Object_Definition =>
19242 New_Occurrence_Of (Base_Type (T), Loc),
19243 Constant_Present => True,
19244 Expression => Relocate_Node (Hi)));
19245 Rewrite (Hi, New_Occurrence_Of (Hiv, Loc));
19246 end;
19247 end if;
19248 end if;
19249 end if;
19251 -- We use a flag here instead of suppressing checks on the
19252 -- type because the type we check against isn't necessarily
19253 -- the place where we put the check.
19255 if not R_Check_Off then
19256 R_Checks := Get_Range_Checks (R, T);
19258 -- Look up tree to find an appropriate insertion point. We
19259 -- can't just use insert_actions because later processing
19260 -- depends on the insertion node. Prior to Ada 2012 the
19261 -- insertion point could only be a declaration or a loop, but
19262 -- quantified expressions can appear within any context in an
19263 -- expression, and the insertion point can be any statement,
19264 -- pragma, or declaration.
19266 Insert_Node := Parent (R);
19267 while Present (Insert_Node) loop
19268 exit when
19269 Nkind (Insert_Node) in N_Declaration
19270 and then
19271 not Nkind_In
19272 (Insert_Node, N_Component_Declaration,
19273 N_Loop_Parameter_Specification,
19274 N_Function_Specification,
19275 N_Procedure_Specification);
19277 exit when Nkind (Insert_Node) in N_Later_Decl_Item
19278 or else Nkind (Insert_Node) in
19279 N_Statement_Other_Than_Procedure_Call
19280 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
19281 N_Pragma);
19283 Insert_Node := Parent (Insert_Node);
19284 end loop;
19286 -- Why would Type_Decl not be present??? Without this test,
19287 -- short regression tests fail.
19289 if Present (Insert_Node) then
19291 -- Case of loop statement. Verify that the range is part
19292 -- of the subtype indication of the iteration scheme.
19294 if Nkind (Insert_Node) = N_Loop_Statement then
19295 declare
19296 Indic : Node_Id;
19298 begin
19299 Indic := Parent (R);
19300 while Present (Indic)
19301 and then Nkind (Indic) /= N_Subtype_Indication
19302 loop
19303 Indic := Parent (Indic);
19304 end loop;
19306 if Present (Indic) then
19307 Def_Id := Etype (Subtype_Mark (Indic));
19309 Insert_Range_Checks
19310 (R_Checks,
19311 Insert_Node,
19312 Def_Id,
19313 Sloc (Insert_Node),
19315 Do_Before => True);
19316 end if;
19317 end;
19319 -- Insertion before a declaration. If the declaration
19320 -- includes discriminants, the list of applicable checks
19321 -- is given by the caller.
19323 elsif Nkind (Insert_Node) in N_Declaration then
19324 Def_Id := Defining_Identifier (Insert_Node);
19326 if (Ekind (Def_Id) = E_Record_Type
19327 and then Depends_On_Discriminant (R))
19328 or else
19329 (Ekind (Def_Id) = E_Protected_Type
19330 and then Has_Discriminants (Def_Id))
19331 then
19332 Append_Range_Checks
19333 (R_Checks,
19334 Check_List, Def_Id, Sloc (Insert_Node), R);
19336 else
19337 Insert_Range_Checks
19338 (R_Checks,
19339 Insert_Node, Def_Id, Sloc (Insert_Node), R);
19341 end if;
19343 -- Insertion before a statement. Range appears in the
19344 -- context of a quantified expression. Insertion will
19345 -- take place when expression is expanded.
19347 else
19348 null;
19349 end if;
19350 end if;
19351 end if;
19352 end if;
19354 -- Case of other than an explicit N_Range node
19356 -- The forced evaluation removes side effects from expressions, which
19357 -- should occur also in GNATprove mode. Otherwise, we end up with
19358 -- unexpected insertions of actions at places where this is not
19359 -- supposed to occur, e.g. on default parameters of a call.
19361 elsif Expander_Active or GNATprove_Mode then
19362 Get_Index_Bounds (R, Lo, Hi);
19363 Force_Evaluation (Lo);
19364 Force_Evaluation (Hi);
19365 end if;
19366 end Process_Range_Expr_In_Decl;
19368 --------------------------------------
19369 -- Process_Real_Range_Specification --
19370 --------------------------------------
19372 procedure Process_Real_Range_Specification (Def : Node_Id) is
19373 Spec : constant Node_Id := Real_Range_Specification (Def);
19374 Lo : Node_Id;
19375 Hi : Node_Id;
19376 Err : Boolean := False;
19378 procedure Analyze_Bound (N : Node_Id);
19379 -- Analyze and check one bound
19381 -------------------
19382 -- Analyze_Bound --
19383 -------------------
19385 procedure Analyze_Bound (N : Node_Id) is
19386 begin
19387 Analyze_And_Resolve (N, Any_Real);
19389 if not Is_OK_Static_Expression (N) then
19390 Flag_Non_Static_Expr
19391 ("bound in real type definition is not static!", N);
19392 Err := True;
19393 end if;
19394 end Analyze_Bound;
19396 -- Start of processing for Process_Real_Range_Specification
19398 begin
19399 if Present (Spec) then
19400 Lo := Low_Bound (Spec);
19401 Hi := High_Bound (Spec);
19402 Analyze_Bound (Lo);
19403 Analyze_Bound (Hi);
19405 -- If error, clear away junk range specification
19407 if Err then
19408 Set_Real_Range_Specification (Def, Empty);
19409 end if;
19410 end if;
19411 end Process_Real_Range_Specification;
19413 ---------------------
19414 -- Process_Subtype --
19415 ---------------------
19417 function Process_Subtype
19418 (S : Node_Id;
19419 Related_Nod : Node_Id;
19420 Related_Id : Entity_Id := Empty;
19421 Suffix : Character := ' ') return Entity_Id
19423 P : Node_Id;
19424 Def_Id : Entity_Id;
19425 Error_Node : Node_Id;
19426 Full_View_Id : Entity_Id;
19427 Subtype_Mark_Id : Entity_Id;
19429 May_Have_Null_Exclusion : Boolean;
19431 procedure Check_Incomplete (T : Entity_Id);
19432 -- Called to verify that an incomplete type is not used prematurely
19434 ----------------------
19435 -- Check_Incomplete --
19436 ----------------------
19438 procedure Check_Incomplete (T : Entity_Id) is
19439 begin
19440 -- Ada 2005 (AI-412): Incomplete subtypes are legal
19442 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
19443 and then
19444 not (Ada_Version >= Ada_2005
19445 and then
19446 (Nkind (Parent (T)) = N_Subtype_Declaration
19447 or else
19448 (Nkind (Parent (T)) = N_Subtype_Indication
19449 and then Nkind (Parent (Parent (T))) =
19450 N_Subtype_Declaration)))
19451 then
19452 Error_Msg_N ("invalid use of type before its full declaration", T);
19453 end if;
19454 end Check_Incomplete;
19456 -- Start of processing for Process_Subtype
19458 begin
19459 -- Case of no constraints present
19461 if Nkind (S) /= N_Subtype_Indication then
19462 Find_Type (S);
19463 Check_Incomplete (S);
19464 P := Parent (S);
19466 -- Ada 2005 (AI-231): Static check
19468 if Ada_Version >= Ada_2005
19469 and then Present (P)
19470 and then Null_Exclusion_Present (P)
19471 and then Nkind (P) /= N_Access_To_Object_Definition
19472 and then not Is_Access_Type (Entity (S))
19473 then
19474 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
19475 end if;
19477 -- The following is ugly, can't we have a range or even a flag???
19479 May_Have_Null_Exclusion :=
19480 Nkind_In (P, N_Access_Definition,
19481 N_Access_Function_Definition,
19482 N_Access_Procedure_Definition,
19483 N_Access_To_Object_Definition,
19484 N_Allocator,
19485 N_Component_Definition)
19486 or else
19487 Nkind_In (P, N_Derived_Type_Definition,
19488 N_Discriminant_Specification,
19489 N_Formal_Object_Declaration,
19490 N_Object_Declaration,
19491 N_Object_Renaming_Declaration,
19492 N_Parameter_Specification,
19493 N_Subtype_Declaration);
19495 -- Create an Itype that is a duplicate of Entity (S) but with the
19496 -- null-exclusion attribute.
19498 if May_Have_Null_Exclusion
19499 and then Is_Access_Type (Entity (S))
19500 and then Null_Exclusion_Present (P)
19502 -- No need to check the case of an access to object definition.
19503 -- It is correct to define double not-null pointers.
19505 -- Example:
19506 -- type Not_Null_Int_Ptr is not null access Integer;
19507 -- type Acc is not null access Not_Null_Int_Ptr;
19509 and then Nkind (P) /= N_Access_To_Object_Definition
19510 then
19511 if Can_Never_Be_Null (Entity (S)) then
19512 case Nkind (Related_Nod) is
19513 when N_Full_Type_Declaration =>
19514 if Nkind (Type_Definition (Related_Nod))
19515 in N_Array_Type_Definition
19516 then
19517 Error_Node :=
19518 Subtype_Indication
19519 (Component_Definition
19520 (Type_Definition (Related_Nod)));
19521 else
19522 Error_Node :=
19523 Subtype_Indication (Type_Definition (Related_Nod));
19524 end if;
19526 when N_Subtype_Declaration =>
19527 Error_Node := Subtype_Indication (Related_Nod);
19529 when N_Object_Declaration =>
19530 Error_Node := Object_Definition (Related_Nod);
19532 when N_Component_Declaration =>
19533 Error_Node :=
19534 Subtype_Indication (Component_Definition (Related_Nod));
19536 when N_Allocator =>
19537 Error_Node := Expression (Related_Nod);
19539 when others =>
19540 pragma Assert (False);
19541 Error_Node := Related_Nod;
19542 end case;
19544 Error_Msg_NE
19545 ("`NOT NULL` not allowed (& already excludes null)",
19546 Error_Node,
19547 Entity (S));
19548 end if;
19550 Set_Etype (S,
19551 Create_Null_Excluding_Itype
19552 (T => Entity (S),
19553 Related_Nod => P));
19554 Set_Entity (S, Etype (S));
19555 end if;
19557 return Entity (S);
19559 -- Case of constraint present, so that we have an N_Subtype_Indication
19560 -- node (this node is created only if constraints are present).
19562 else
19563 Find_Type (Subtype_Mark (S));
19565 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
19566 and then not
19567 (Nkind (Parent (S)) = N_Subtype_Declaration
19568 and then Is_Itype (Defining_Identifier (Parent (S))))
19569 then
19570 Check_Incomplete (Subtype_Mark (S));
19571 end if;
19573 P := Parent (S);
19574 Subtype_Mark_Id := Entity (Subtype_Mark (S));
19576 -- Explicit subtype declaration case
19578 if Nkind (P) = N_Subtype_Declaration then
19579 Def_Id := Defining_Identifier (P);
19581 -- Explicit derived type definition case
19583 elsif Nkind (P) = N_Derived_Type_Definition then
19584 Def_Id := Defining_Identifier (Parent (P));
19586 -- Implicit case, the Def_Id must be created as an implicit type.
19587 -- The one exception arises in the case of concurrent types, array
19588 -- and access types, where other subsidiary implicit types may be
19589 -- created and must appear before the main implicit type. In these
19590 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
19591 -- has not yet been called to create Def_Id.
19593 else
19594 if Is_Array_Type (Subtype_Mark_Id)
19595 or else Is_Concurrent_Type (Subtype_Mark_Id)
19596 or else Is_Access_Type (Subtype_Mark_Id)
19597 then
19598 Def_Id := Empty;
19600 -- For the other cases, we create a new unattached Itype,
19601 -- and set the indication to ensure it gets attached later.
19603 else
19604 Def_Id :=
19605 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19606 end if;
19607 end if;
19609 -- If the kind of constraint is invalid for this kind of type,
19610 -- then give an error, and then pretend no constraint was given.
19612 if not Is_Valid_Constraint_Kind
19613 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
19614 then
19615 Error_Msg_N
19616 ("incorrect constraint for this kind of type", Constraint (S));
19618 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
19620 -- Set Ekind of orphan itype, to prevent cascaded errors
19622 if Present (Def_Id) then
19623 Set_Ekind (Def_Id, Ekind (Any_Type));
19624 end if;
19626 -- Make recursive call, having got rid of the bogus constraint
19628 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
19629 end if;
19631 -- Remaining processing depends on type. Select on Base_Type kind to
19632 -- ensure getting to the concrete type kind in the case of a private
19633 -- subtype (needed when only doing semantic analysis).
19635 case Ekind (Base_Type (Subtype_Mark_Id)) is
19636 when Access_Kind =>
19638 -- If this is a constraint on a class-wide type, discard it.
19639 -- There is currently no way to express a partial discriminant
19640 -- constraint on a type with unknown discriminants. This is
19641 -- a pathology that the ACATS wisely decides not to test.
19643 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
19644 if Comes_From_Source (S) then
19645 Error_Msg_N
19646 ("constraint on class-wide type ignored??",
19647 Constraint (S));
19648 end if;
19650 if Nkind (P) = N_Subtype_Declaration then
19651 Set_Subtype_Indication (P,
19652 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
19653 end if;
19655 return Subtype_Mark_Id;
19656 end if;
19658 Constrain_Access (Def_Id, S, Related_Nod);
19660 if Expander_Active
19661 and then Is_Itype (Designated_Type (Def_Id))
19662 and then Nkind (Related_Nod) = N_Subtype_Declaration
19663 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
19664 then
19665 Build_Itype_Reference
19666 (Designated_Type (Def_Id), Related_Nod);
19667 end if;
19669 when Array_Kind =>
19670 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
19672 when Decimal_Fixed_Point_Kind =>
19673 Constrain_Decimal (Def_Id, S);
19675 when Enumeration_Kind =>
19676 Constrain_Enumeration (Def_Id, S);
19677 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
19679 when Ordinary_Fixed_Point_Kind =>
19680 Constrain_Ordinary_Fixed (Def_Id, S);
19682 when Float_Kind =>
19683 Constrain_Float (Def_Id, S);
19685 when Integer_Kind =>
19686 Constrain_Integer (Def_Id, S);
19687 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
19689 when E_Record_Type |
19690 E_Record_Subtype |
19691 Class_Wide_Kind |
19692 E_Incomplete_Type =>
19693 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19695 if Ekind (Def_Id) = E_Incomplete_Type then
19696 Set_Private_Dependents (Def_Id, New_Elmt_List);
19697 end if;
19699 when Private_Kind =>
19700 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19701 Set_Private_Dependents (Def_Id, New_Elmt_List);
19703 -- In case of an invalid constraint prevent further processing
19704 -- since the type constructed is missing expected fields.
19706 if Etype (Def_Id) = Any_Type then
19707 return Def_Id;
19708 end if;
19710 -- If the full view is that of a task with discriminants,
19711 -- we must constrain both the concurrent type and its
19712 -- corresponding record type. Otherwise we will just propagate
19713 -- the constraint to the full view, if available.
19715 if Present (Full_View (Subtype_Mark_Id))
19716 and then Has_Discriminants (Subtype_Mark_Id)
19717 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
19718 then
19719 Full_View_Id :=
19720 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19722 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
19723 Constrain_Concurrent (Full_View_Id, S,
19724 Related_Nod, Related_Id, Suffix);
19725 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
19726 Set_Full_View (Def_Id, Full_View_Id);
19728 -- Introduce an explicit reference to the private subtype,
19729 -- to prevent scope anomalies in gigi if first use appears
19730 -- in a nested context, e.g. a later function body.
19731 -- Should this be generated in other contexts than a full
19732 -- type declaration?
19734 if Is_Itype (Def_Id)
19735 and then
19736 Nkind (Parent (P)) = N_Full_Type_Declaration
19737 then
19738 Build_Itype_Reference (Def_Id, Parent (P));
19739 end if;
19741 else
19742 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
19743 end if;
19745 when Concurrent_Kind =>
19746 Constrain_Concurrent (Def_Id, S,
19747 Related_Nod, Related_Id, Suffix);
19749 when others =>
19750 Error_Msg_N ("invalid subtype mark in subtype indication", S);
19751 end case;
19753 -- Size and Convention are always inherited from the base type
19755 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
19756 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
19758 return Def_Id;
19759 end if;
19760 end Process_Subtype;
19762 ---------------------------------------
19763 -- Check_Anonymous_Access_Components --
19764 ---------------------------------------
19766 procedure Check_Anonymous_Access_Components
19767 (Typ_Decl : Node_Id;
19768 Typ : Entity_Id;
19769 Prev : Entity_Id;
19770 Comp_List : Node_Id)
19772 Loc : constant Source_Ptr := Sloc (Typ_Decl);
19773 Anon_Access : Entity_Id;
19774 Acc_Def : Node_Id;
19775 Comp : Node_Id;
19776 Comp_Def : Node_Id;
19777 Decl : Node_Id;
19778 Type_Def : Node_Id;
19780 procedure Build_Incomplete_Type_Declaration;
19781 -- If the record type contains components that include an access to the
19782 -- current record, then create an incomplete type declaration for the
19783 -- record, to be used as the designated type of the anonymous access.
19784 -- This is done only once, and only if there is no previous partial
19785 -- view of the type.
19787 function Designates_T (Subt : Node_Id) return Boolean;
19788 -- Check whether a node designates the enclosing record type, or 'Class
19789 -- of that type
19791 function Mentions_T (Acc_Def : Node_Id) return Boolean;
19792 -- Check whether an access definition includes a reference to
19793 -- the enclosing record type. The reference can be a subtype mark
19794 -- in the access definition itself, a 'Class attribute reference, or
19795 -- recursively a reference appearing in a parameter specification
19796 -- or result definition of an access_to_subprogram definition.
19798 --------------------------------------
19799 -- Build_Incomplete_Type_Declaration --
19800 --------------------------------------
19802 procedure Build_Incomplete_Type_Declaration is
19803 Decl : Node_Id;
19804 Inc_T : Entity_Id;
19805 H : Entity_Id;
19807 -- Is_Tagged indicates whether the type is tagged. It is tagged if
19808 -- it's "is new ... with record" or else "is tagged record ...".
19810 Is_Tagged : constant Boolean :=
19811 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
19812 and then
19813 Present
19814 (Record_Extension_Part (Type_Definition (Typ_Decl))))
19815 or else
19816 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
19817 and then Tagged_Present (Type_Definition (Typ_Decl)));
19819 begin
19820 -- If there is a previous partial view, no need to create a new one
19821 -- If the partial view, given by Prev, is incomplete, If Prev is
19822 -- a private declaration, full declaration is flagged accordingly.
19824 if Prev /= Typ then
19825 if Is_Tagged then
19826 Make_Class_Wide_Type (Prev);
19827 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
19828 Set_Etype (Class_Wide_Type (Typ), Typ);
19829 end if;
19831 return;
19833 elsif Has_Private_Declaration (Typ) then
19835 -- If we refer to T'Class inside T, and T is the completion of a
19836 -- private type, then we need to make sure the class-wide type
19837 -- exists.
19839 if Is_Tagged then
19840 Make_Class_Wide_Type (Typ);
19841 end if;
19843 return;
19845 -- If there was a previous anonymous access type, the incomplete
19846 -- type declaration will have been created already.
19848 elsif Present (Current_Entity (Typ))
19849 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
19850 and then Full_View (Current_Entity (Typ)) = Typ
19851 then
19852 if Is_Tagged
19853 and then Comes_From_Source (Current_Entity (Typ))
19854 and then not Is_Tagged_Type (Current_Entity (Typ))
19855 then
19856 Make_Class_Wide_Type (Typ);
19857 Error_Msg_N
19858 ("incomplete view of tagged type should be declared tagged??",
19859 Parent (Current_Entity (Typ)));
19860 end if;
19861 return;
19863 else
19864 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
19865 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
19867 -- Type has already been inserted into the current scope. Remove
19868 -- it, and add incomplete declaration for type, so that subsequent
19869 -- anonymous access types can use it. The entity is unchained from
19870 -- the homonym list and from immediate visibility. After analysis,
19871 -- the entity in the incomplete declaration becomes immediately
19872 -- visible in the record declaration that follows.
19874 H := Current_Entity (Typ);
19876 if H = Typ then
19877 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
19878 else
19879 while Present (H)
19880 and then Homonym (H) /= Typ
19881 loop
19882 H := Homonym (Typ);
19883 end loop;
19885 Set_Homonym (H, Homonym (Typ));
19886 end if;
19888 Insert_Before (Typ_Decl, Decl);
19889 Analyze (Decl);
19890 Set_Full_View (Inc_T, Typ);
19892 if Is_Tagged then
19894 -- Create a common class-wide type for both views, and set the
19895 -- Etype of the class-wide type to the full view.
19897 Make_Class_Wide_Type (Inc_T);
19898 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
19899 Set_Etype (Class_Wide_Type (Typ), Typ);
19900 end if;
19901 end if;
19902 end Build_Incomplete_Type_Declaration;
19904 ------------------
19905 -- Designates_T --
19906 ------------------
19908 function Designates_T (Subt : Node_Id) return Boolean is
19909 Type_Id : constant Name_Id := Chars (Typ);
19911 function Names_T (Nam : Node_Id) return Boolean;
19912 -- The record type has not been introduced in the current scope
19913 -- yet, so we must examine the name of the type itself, either
19914 -- an identifier T, or an expanded name of the form P.T, where
19915 -- P denotes the current scope.
19917 -------------
19918 -- Names_T --
19919 -------------
19921 function Names_T (Nam : Node_Id) return Boolean is
19922 begin
19923 if Nkind (Nam) = N_Identifier then
19924 return Chars (Nam) = Type_Id;
19926 elsif Nkind (Nam) = N_Selected_Component then
19927 if Chars (Selector_Name (Nam)) = Type_Id then
19928 if Nkind (Prefix (Nam)) = N_Identifier then
19929 return Chars (Prefix (Nam)) = Chars (Current_Scope);
19931 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
19932 return Chars (Selector_Name (Prefix (Nam))) =
19933 Chars (Current_Scope);
19934 else
19935 return False;
19936 end if;
19938 else
19939 return False;
19940 end if;
19942 else
19943 return False;
19944 end if;
19945 end Names_T;
19947 -- Start of processing for Designates_T
19949 begin
19950 if Nkind (Subt) = N_Identifier then
19951 return Chars (Subt) = Type_Id;
19953 -- Reference can be through an expanded name which has not been
19954 -- analyzed yet, and which designates enclosing scopes.
19956 elsif Nkind (Subt) = N_Selected_Component then
19957 if Names_T (Subt) then
19958 return True;
19960 -- Otherwise it must denote an entity that is already visible.
19961 -- The access definition may name a subtype of the enclosing
19962 -- type, if there is a previous incomplete declaration for it.
19964 else
19965 Find_Selected_Component (Subt);
19966 return
19967 Is_Entity_Name (Subt)
19968 and then Scope (Entity (Subt)) = Current_Scope
19969 and then
19970 (Chars (Base_Type (Entity (Subt))) = Type_Id
19971 or else
19972 (Is_Class_Wide_Type (Entity (Subt))
19973 and then
19974 Chars (Etype (Base_Type (Entity (Subt)))) =
19975 Type_Id));
19976 end if;
19978 -- A reference to the current type may appear as the prefix of
19979 -- a 'Class attribute.
19981 elsif Nkind (Subt) = N_Attribute_Reference
19982 and then Attribute_Name (Subt) = Name_Class
19983 then
19984 return Names_T (Prefix (Subt));
19986 else
19987 return False;
19988 end if;
19989 end Designates_T;
19991 ----------------
19992 -- Mentions_T --
19993 ----------------
19995 function Mentions_T (Acc_Def : Node_Id) return Boolean is
19996 Param_Spec : Node_Id;
19998 Acc_Subprg : constant Node_Id :=
19999 Access_To_Subprogram_Definition (Acc_Def);
20001 begin
20002 if No (Acc_Subprg) then
20003 return Designates_T (Subtype_Mark (Acc_Def));
20004 end if;
20006 -- Component is an access_to_subprogram: examine its formals,
20007 -- and result definition in the case of an access_to_function.
20009 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
20010 while Present (Param_Spec) loop
20011 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
20012 and then Mentions_T (Parameter_Type (Param_Spec))
20013 then
20014 return True;
20016 elsif Designates_T (Parameter_Type (Param_Spec)) then
20017 return True;
20018 end if;
20020 Next (Param_Spec);
20021 end loop;
20023 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
20024 if Nkind (Result_Definition (Acc_Subprg)) =
20025 N_Access_Definition
20026 then
20027 return Mentions_T (Result_Definition (Acc_Subprg));
20028 else
20029 return Designates_T (Result_Definition (Acc_Subprg));
20030 end if;
20031 end if;
20033 return False;
20034 end Mentions_T;
20036 -- Start of processing for Check_Anonymous_Access_Components
20038 begin
20039 if No (Comp_List) then
20040 return;
20041 end if;
20043 Comp := First (Component_Items (Comp_List));
20044 while Present (Comp) loop
20045 if Nkind (Comp) = N_Component_Declaration
20046 and then Present
20047 (Access_Definition (Component_Definition (Comp)))
20048 and then
20049 Mentions_T (Access_Definition (Component_Definition (Comp)))
20050 then
20051 Comp_Def := Component_Definition (Comp);
20052 Acc_Def :=
20053 Access_To_Subprogram_Definition
20054 (Access_Definition (Comp_Def));
20056 Build_Incomplete_Type_Declaration;
20057 Anon_Access := Make_Temporary (Loc, 'S');
20059 -- Create a declaration for the anonymous access type: either
20060 -- an access_to_object or an access_to_subprogram.
20062 if Present (Acc_Def) then
20063 if Nkind (Acc_Def) = N_Access_Function_Definition then
20064 Type_Def :=
20065 Make_Access_Function_Definition (Loc,
20066 Parameter_Specifications =>
20067 Parameter_Specifications (Acc_Def),
20068 Result_Definition => Result_Definition (Acc_Def));
20069 else
20070 Type_Def :=
20071 Make_Access_Procedure_Definition (Loc,
20072 Parameter_Specifications =>
20073 Parameter_Specifications (Acc_Def));
20074 end if;
20076 else
20077 Type_Def :=
20078 Make_Access_To_Object_Definition (Loc,
20079 Subtype_Indication =>
20080 Relocate_Node
20081 (Subtype_Mark
20082 (Access_Definition (Comp_Def))));
20084 Set_Constant_Present
20085 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
20086 Set_All_Present
20087 (Type_Def, All_Present (Access_Definition (Comp_Def)));
20088 end if;
20090 Set_Null_Exclusion_Present
20091 (Type_Def,
20092 Null_Exclusion_Present (Access_Definition (Comp_Def)));
20094 Decl :=
20095 Make_Full_Type_Declaration (Loc,
20096 Defining_Identifier => Anon_Access,
20097 Type_Definition => Type_Def);
20099 Insert_Before (Typ_Decl, Decl);
20100 Analyze (Decl);
20102 -- If an access to subprogram, create the extra formals
20104 if Present (Acc_Def) then
20105 Create_Extra_Formals (Designated_Type (Anon_Access));
20107 -- If an access to object, preserve entity of designated type,
20108 -- for ASIS use, before rewriting the component definition.
20110 else
20111 declare
20112 Desig : Entity_Id;
20114 begin
20115 Desig := Entity (Subtype_Indication (Type_Def));
20117 -- If the access definition is to the current record,
20118 -- the visible entity at this point is an incomplete
20119 -- type. Retrieve the full view to simplify ASIS queries
20121 if Ekind (Desig) = E_Incomplete_Type then
20122 Desig := Full_View (Desig);
20123 end if;
20125 Set_Entity
20126 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
20127 end;
20128 end if;
20130 Rewrite (Comp_Def,
20131 Make_Component_Definition (Loc,
20132 Subtype_Indication =>
20133 New_Occurrence_Of (Anon_Access, Loc)));
20135 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
20136 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
20137 else
20138 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
20139 end if;
20141 Set_Is_Local_Anonymous_Access (Anon_Access);
20142 end if;
20144 Next (Comp);
20145 end loop;
20147 if Present (Variant_Part (Comp_List)) then
20148 declare
20149 V : Node_Id;
20150 begin
20151 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
20152 while Present (V) loop
20153 Check_Anonymous_Access_Components
20154 (Typ_Decl, Typ, Prev, Component_List (V));
20155 Next_Non_Pragma (V);
20156 end loop;
20157 end;
20158 end if;
20159 end Check_Anonymous_Access_Components;
20161 ----------------------------------
20162 -- Preanalyze_Assert_Expression --
20163 ----------------------------------
20165 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
20166 begin
20167 In_Assertion_Expr := In_Assertion_Expr + 1;
20168 Preanalyze_Spec_Expression (N, T);
20169 In_Assertion_Expr := In_Assertion_Expr - 1;
20170 end Preanalyze_Assert_Expression;
20172 --------------------------------
20173 -- Preanalyze_Spec_Expression --
20174 --------------------------------
20176 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
20177 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
20178 begin
20179 In_Spec_Expression := True;
20180 Preanalyze_And_Resolve (N, T);
20181 In_Spec_Expression := Save_In_Spec_Expression;
20182 end Preanalyze_Spec_Expression;
20184 -----------------------------
20185 -- Record_Type_Declaration --
20186 -----------------------------
20188 procedure Record_Type_Declaration
20189 (T : Entity_Id;
20190 N : Node_Id;
20191 Prev : Entity_Id)
20193 Def : constant Node_Id := Type_Definition (N);
20194 Is_Tagged : Boolean;
20195 Tag_Comp : Entity_Id;
20197 begin
20198 -- These flags must be initialized before calling Process_Discriminants
20199 -- because this routine makes use of them.
20201 Set_Ekind (T, E_Record_Type);
20202 Set_Etype (T, T);
20203 Init_Size_Align (T);
20204 Set_Interfaces (T, No_Elist);
20205 Set_Stored_Constraint (T, No_Elist);
20206 Set_Default_SSO (T);
20208 -- Normal case
20210 if Ada_Version < Ada_2005
20211 or else not Interface_Present (Def)
20212 then
20213 if Limited_Present (Def) then
20214 Check_SPARK_Restriction ("limited is not allowed", N);
20215 end if;
20217 if Abstract_Present (Def) then
20218 Check_SPARK_Restriction ("abstract is not allowed", N);
20219 end if;
20221 -- The flag Is_Tagged_Type might have already been set by
20222 -- Find_Type_Name if it detected an error for declaration T. This
20223 -- arises in the case of private tagged types where the full view
20224 -- omits the word tagged.
20226 Is_Tagged :=
20227 Tagged_Present (Def)
20228 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20230 Set_Is_Tagged_Type (T, Is_Tagged);
20231 Set_Is_Limited_Record (T, Limited_Present (Def));
20233 -- Type is abstract if full declaration carries keyword, or if
20234 -- previous partial view did.
20236 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20237 or else Abstract_Present (Def));
20239 else
20240 Check_SPARK_Restriction ("interface is not allowed", N);
20242 Is_Tagged := True;
20243 Analyze_Interface_Declaration (T, Def);
20245 if Present (Discriminant_Specifications (N)) then
20246 Error_Msg_N
20247 ("interface types cannot have discriminants",
20248 Defining_Identifier
20249 (First (Discriminant_Specifications (N))));
20250 end if;
20251 end if;
20253 -- First pass: if there are self-referential access components,
20254 -- create the required anonymous access type declarations, and if
20255 -- need be an incomplete type declaration for T itself.
20257 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20259 if Ada_Version >= Ada_2005
20260 and then Present (Interface_List (Def))
20261 then
20262 Check_Interfaces (N, Def);
20264 declare
20265 Ifaces_List : Elist_Id;
20267 begin
20268 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20269 -- already in the parents.
20271 Collect_Interfaces
20272 (T => T,
20273 Ifaces_List => Ifaces_List,
20274 Exclude_Parents => True);
20276 Set_Interfaces (T, Ifaces_List);
20277 end;
20278 end if;
20280 -- Records constitute a scope for the component declarations within.
20281 -- The scope is created prior to the processing of these declarations.
20282 -- Discriminants are processed first, so that they are visible when
20283 -- processing the other components. The Ekind of the record type itself
20284 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20286 -- Enter record scope
20288 Push_Scope (T);
20290 -- If an incomplete or private type declaration was already given for
20291 -- the type, then this scope already exists, and the discriminants have
20292 -- been declared within. We must verify that the full declaration
20293 -- matches the incomplete one.
20295 Check_Or_Process_Discriminants (N, T, Prev);
20297 Set_Is_Constrained (T, not Has_Discriminants (T));
20298 Set_Has_Delayed_Freeze (T, True);
20300 -- For tagged types add a manually analyzed component corresponding
20301 -- to the component _tag, the corresponding piece of tree will be
20302 -- expanded as part of the freezing actions if it is not a CPP_Class.
20304 if Is_Tagged then
20306 -- Do not add the tag unless we are in expansion mode
20308 if Expander_Active then
20309 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20310 Enter_Name (Tag_Comp);
20312 Set_Ekind (Tag_Comp, E_Component);
20313 Set_Is_Tag (Tag_Comp);
20314 Set_Is_Aliased (Tag_Comp);
20315 Set_Etype (Tag_Comp, RTE (RE_Tag));
20316 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20317 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20318 Init_Component_Location (Tag_Comp);
20320 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20321 -- implemented interfaces.
20323 if Has_Interfaces (T) then
20324 Add_Interface_Tag_Components (N, T);
20325 end if;
20326 end if;
20328 Make_Class_Wide_Type (T);
20329 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20330 end if;
20332 -- We must suppress range checks when processing record components in
20333 -- the presence of discriminants, since we don't want spurious checks to
20334 -- be generated during their analysis, but Suppress_Range_Checks flags
20335 -- must be reset the after processing the record definition.
20337 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20338 -- couldn't we just use the normal range check suppression method here.
20339 -- That would seem cleaner ???
20341 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
20342 Set_Kill_Range_Checks (T, True);
20343 Record_Type_Definition (Def, Prev);
20344 Set_Kill_Range_Checks (T, False);
20345 else
20346 Record_Type_Definition (Def, Prev);
20347 end if;
20349 -- Exit from record scope
20351 End_Scope;
20353 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20354 -- the implemented interfaces and associate them an aliased entity.
20356 if Is_Tagged
20357 and then not Is_Empty_List (Interface_List (Def))
20358 then
20359 Derive_Progenitor_Subprograms (T, T);
20360 end if;
20362 Check_Function_Writable_Actuals (N);
20363 end Record_Type_Declaration;
20365 ----------------------------
20366 -- Record_Type_Definition --
20367 ----------------------------
20369 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
20370 Component : Entity_Id;
20371 Ctrl_Components : Boolean := False;
20372 Final_Storage_Only : Boolean;
20373 T : Entity_Id;
20375 begin
20376 if Ekind (Prev_T) = E_Incomplete_Type then
20377 T := Full_View (Prev_T);
20378 else
20379 T := Prev_T;
20380 end if;
20382 -- In SPARK, tagged types and type extensions may only be declared in
20383 -- the specification of library unit packages.
20385 if Present (Def) and then Is_Tagged_Type (T) then
20386 declare
20387 Typ : Node_Id;
20388 Ctxt : Node_Id;
20390 begin
20391 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
20392 Typ := Parent (Def);
20393 else
20394 pragma Assert
20395 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
20396 Typ := Parent (Parent (Def));
20397 end if;
20399 Ctxt := Parent (Typ);
20401 if Nkind (Ctxt) = N_Package_Body
20402 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
20403 then
20404 Check_SPARK_Restriction
20405 ("type should be defined in package specification", Typ);
20407 elsif Nkind (Ctxt) /= N_Package_Specification
20408 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
20409 then
20410 Check_SPARK_Restriction
20411 ("type should be defined in library unit package", Typ);
20412 end if;
20413 end;
20414 end if;
20416 Final_Storage_Only := not Is_Controlled (T);
20418 -- Ada 2005: Check whether an explicit Limited is present in a derived
20419 -- type declaration.
20421 if Nkind (Parent (Def)) = N_Derived_Type_Definition
20422 and then Limited_Present (Parent (Def))
20423 then
20424 Set_Is_Limited_Record (T);
20425 end if;
20427 -- If the component list of a record type is defined by the reserved
20428 -- word null and there is no discriminant part, then the record type has
20429 -- no components and all records of the type are null records (RM 3.7)
20430 -- This procedure is also called to process the extension part of a
20431 -- record extension, in which case the current scope may have inherited
20432 -- components.
20434 if No (Def)
20435 or else No (Component_List (Def))
20436 or else Null_Present (Component_List (Def))
20437 then
20438 if not Is_Tagged_Type (T) then
20439 Check_SPARK_Restriction ("untagged record cannot be null", Def);
20440 end if;
20442 else
20443 Analyze_Declarations (Component_Items (Component_List (Def)));
20445 if Present (Variant_Part (Component_List (Def))) then
20446 Check_SPARK_Restriction ("variant part is not allowed", Def);
20447 Analyze (Variant_Part (Component_List (Def)));
20448 end if;
20449 end if;
20451 -- After completing the semantic analysis of the record definition,
20452 -- record components, both new and inherited, are accessible. Set their
20453 -- kind accordingly. Exclude malformed itypes from illegal declarations,
20454 -- whose Ekind may be void.
20456 Component := First_Entity (Current_Scope);
20457 while Present (Component) loop
20458 if Ekind (Component) = E_Void
20459 and then not Is_Itype (Component)
20460 then
20461 Set_Ekind (Component, E_Component);
20462 Init_Component_Location (Component);
20463 end if;
20465 if Has_Task (Etype (Component)) then
20466 Set_Has_Task (T);
20467 end if;
20469 if Has_Protected (Etype (Component)) then
20470 Set_Has_Protected (T);
20471 end if;
20473 if Ekind (Component) /= E_Component then
20474 null;
20476 -- Do not set Has_Controlled_Component on a class-wide equivalent
20477 -- type. See Make_CW_Equivalent_Type.
20479 elsif not Is_Class_Wide_Equivalent_Type (T)
20480 and then (Has_Controlled_Component (Etype (Component))
20481 or else (Chars (Component) /= Name_uParent
20482 and then Is_Controlled (Etype (Component))))
20483 then
20484 Set_Has_Controlled_Component (T, True);
20485 Final_Storage_Only :=
20486 Final_Storage_Only
20487 and then Finalize_Storage_Only (Etype (Component));
20488 Ctrl_Components := True;
20489 end if;
20491 Next_Entity (Component);
20492 end loop;
20494 -- A Type is Finalize_Storage_Only only if all its controlled components
20495 -- are also.
20497 if Ctrl_Components then
20498 Set_Finalize_Storage_Only (T, Final_Storage_Only);
20499 end if;
20501 -- Place reference to end record on the proper entity, which may
20502 -- be a partial view.
20504 if Present (Def) then
20505 Process_End_Label (Def, 'e', Prev_T);
20506 end if;
20507 end Record_Type_Definition;
20509 ------------------------
20510 -- Replace_Components --
20511 ------------------------
20513 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
20514 function Process (N : Node_Id) return Traverse_Result;
20516 -------------
20517 -- Process --
20518 -------------
20520 function Process (N : Node_Id) return Traverse_Result is
20521 Comp : Entity_Id;
20523 begin
20524 if Nkind (N) = N_Discriminant_Specification then
20525 Comp := First_Discriminant (Typ);
20526 while Present (Comp) loop
20527 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20528 Set_Defining_Identifier (N, Comp);
20529 exit;
20530 end if;
20532 Next_Discriminant (Comp);
20533 end loop;
20535 elsif Nkind (N) = N_Component_Declaration then
20536 Comp := First_Component (Typ);
20537 while Present (Comp) loop
20538 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20539 Set_Defining_Identifier (N, Comp);
20540 exit;
20541 end if;
20543 Next_Component (Comp);
20544 end loop;
20545 end if;
20547 return OK;
20548 end Process;
20550 procedure Replace is new Traverse_Proc (Process);
20552 -- Start of processing for Replace_Components
20554 begin
20555 Replace (Decl);
20556 end Replace_Components;
20558 -------------------------------
20559 -- Set_Completion_Referenced --
20560 -------------------------------
20562 procedure Set_Completion_Referenced (E : Entity_Id) is
20563 begin
20564 -- If in main unit, mark entity that is a completion as referenced,
20565 -- warnings go on the partial view when needed.
20567 if In_Extended_Main_Source_Unit (E) then
20568 Set_Referenced (E);
20569 end if;
20570 end Set_Completion_Referenced;
20572 ---------------------
20573 -- Set_Default_SSO --
20574 ---------------------
20576 procedure Set_Default_SSO (T : Entity_Id) is
20577 begin
20578 case Opt.Default_SSO is
20579 when ' ' =>
20580 null;
20581 when 'L' =>
20582 Set_SSO_Set_Low_By_Default (T, True);
20583 when 'H' =>
20584 Set_SSO_Set_High_By_Default (T, True);
20585 when others =>
20586 raise Program_Error;
20587 end case;
20588 end Set_Default_SSO;
20590 ---------------------
20591 -- Set_Fixed_Range --
20592 ---------------------
20594 -- The range for fixed-point types is complicated by the fact that we
20595 -- do not know the exact end points at the time of the declaration. This
20596 -- is true for three reasons:
20598 -- A size clause may affect the fudging of the end-points.
20599 -- A small clause may affect the values of the end-points.
20600 -- We try to include the end-points if it does not affect the size.
20602 -- This means that the actual end-points must be established at the
20603 -- point when the type is frozen. Meanwhile, we first narrow the range
20604 -- as permitted (so that it will fit if necessary in a small specified
20605 -- size), and then build a range subtree with these narrowed bounds.
20606 -- Set_Fixed_Range constructs the range from real literal values, and
20607 -- sets the range as the Scalar_Range of the given fixed-point type entity.
20609 -- The parent of this range is set to point to the entity so that it is
20610 -- properly hooked into the tree (unlike normal Scalar_Range entries for
20611 -- other scalar types, which are just pointers to the range in the
20612 -- original tree, this would otherwise be an orphan).
20614 -- The tree is left unanalyzed. When the type is frozen, the processing
20615 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
20616 -- analyzed, and uses this as an indication that it should complete
20617 -- work on the range (it will know the final small and size values).
20619 procedure Set_Fixed_Range
20620 (E : Entity_Id;
20621 Loc : Source_Ptr;
20622 Lo : Ureal;
20623 Hi : Ureal)
20625 S : constant Node_Id :=
20626 Make_Range (Loc,
20627 Low_Bound => Make_Real_Literal (Loc, Lo),
20628 High_Bound => Make_Real_Literal (Loc, Hi));
20629 begin
20630 Set_Scalar_Range (E, S);
20631 Set_Parent (S, E);
20633 -- Before the freeze point, the bounds of a fixed point are universal
20634 -- and carry the corresponding type.
20636 Set_Etype (Low_Bound (S), Universal_Real);
20637 Set_Etype (High_Bound (S), Universal_Real);
20638 end Set_Fixed_Range;
20640 ----------------------------------
20641 -- Set_Scalar_Range_For_Subtype --
20642 ----------------------------------
20644 procedure Set_Scalar_Range_For_Subtype
20645 (Def_Id : Entity_Id;
20646 R : Node_Id;
20647 Subt : Entity_Id)
20649 Kind : constant Entity_Kind := Ekind (Def_Id);
20651 begin
20652 -- Defend against previous error
20654 if Nkind (R) = N_Error then
20655 return;
20656 end if;
20658 Set_Scalar_Range (Def_Id, R);
20660 -- We need to link the range into the tree before resolving it so
20661 -- that types that are referenced, including importantly the subtype
20662 -- itself, are properly frozen (Freeze_Expression requires that the
20663 -- expression be properly linked into the tree). Of course if it is
20664 -- already linked in, then we do not disturb the current link.
20666 if No (Parent (R)) then
20667 Set_Parent (R, Def_Id);
20668 end if;
20670 -- Reset the kind of the subtype during analysis of the range, to
20671 -- catch possible premature use in the bounds themselves.
20673 Set_Ekind (Def_Id, E_Void);
20674 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
20675 Set_Ekind (Def_Id, Kind);
20676 end Set_Scalar_Range_For_Subtype;
20678 --------------------------------------------------------
20679 -- Set_Stored_Constraint_From_Discriminant_Constraint --
20680 --------------------------------------------------------
20682 procedure Set_Stored_Constraint_From_Discriminant_Constraint
20683 (E : Entity_Id)
20685 begin
20686 -- Make sure set if encountered during Expand_To_Stored_Constraint
20688 Set_Stored_Constraint (E, No_Elist);
20690 -- Give it the right value
20692 if Is_Constrained (E) and then Has_Discriminants (E) then
20693 Set_Stored_Constraint (E,
20694 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
20695 end if;
20696 end Set_Stored_Constraint_From_Discriminant_Constraint;
20698 -------------------------------------
20699 -- Signed_Integer_Type_Declaration --
20700 -------------------------------------
20702 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
20703 Implicit_Base : Entity_Id;
20704 Base_Typ : Entity_Id;
20705 Lo_Val : Uint;
20706 Hi_Val : Uint;
20707 Errs : Boolean := False;
20708 Lo : Node_Id;
20709 Hi : Node_Id;
20711 function Can_Derive_From (E : Entity_Id) return Boolean;
20712 -- Determine whether given bounds allow derivation from specified type
20714 procedure Check_Bound (Expr : Node_Id);
20715 -- Check bound to make sure it is integral and static. If not, post
20716 -- appropriate error message and set Errs flag
20718 ---------------------
20719 -- Can_Derive_From --
20720 ---------------------
20722 -- Note we check both bounds against both end values, to deal with
20723 -- strange types like ones with a range of 0 .. -12341234.
20725 function Can_Derive_From (E : Entity_Id) return Boolean is
20726 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
20727 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
20728 begin
20729 return Lo <= Lo_Val and then Lo_Val <= Hi
20730 and then
20731 Lo <= Hi_Val and then Hi_Val <= Hi;
20732 end Can_Derive_From;
20734 -----------------
20735 -- Check_Bound --
20736 -----------------
20738 procedure Check_Bound (Expr : Node_Id) is
20739 begin
20740 -- If a range constraint is used as an integer type definition, each
20741 -- bound of the range must be defined by a static expression of some
20742 -- integer type, but the two bounds need not have the same integer
20743 -- type (Negative bounds are allowed.) (RM 3.5.4)
20745 if not Is_Integer_Type (Etype (Expr)) then
20746 Error_Msg_N
20747 ("integer type definition bounds must be of integer type", Expr);
20748 Errs := True;
20750 elsif not Is_OK_Static_Expression (Expr) then
20751 Flag_Non_Static_Expr
20752 ("non-static expression used for integer type bound!", Expr);
20753 Errs := True;
20755 -- The bounds are folded into literals, and we set their type to be
20756 -- universal, to avoid typing difficulties: we cannot set the type
20757 -- of the literal to the new type, because this would be a forward
20758 -- reference for the back end, and if the original type is user-
20759 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
20761 else
20762 if Is_Entity_Name (Expr) then
20763 Fold_Uint (Expr, Expr_Value (Expr), True);
20764 end if;
20766 Set_Etype (Expr, Universal_Integer);
20767 end if;
20768 end Check_Bound;
20770 -- Start of processing for Signed_Integer_Type_Declaration
20772 begin
20773 -- Create an anonymous base type
20775 Implicit_Base :=
20776 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
20778 -- Analyze and check the bounds, they can be of any integer type
20780 Lo := Low_Bound (Def);
20781 Hi := High_Bound (Def);
20783 -- Arbitrarily use Integer as the type if either bound had an error
20785 if Hi = Error or else Lo = Error then
20786 Base_Typ := Any_Integer;
20787 Set_Error_Posted (T, True);
20789 -- Here both bounds are OK expressions
20791 else
20792 Analyze_And_Resolve (Lo, Any_Integer);
20793 Analyze_And_Resolve (Hi, Any_Integer);
20795 Check_Bound (Lo);
20796 Check_Bound (Hi);
20798 if Errs then
20799 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20800 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20801 end if;
20803 -- Find type to derive from
20805 Lo_Val := Expr_Value (Lo);
20806 Hi_Val := Expr_Value (Hi);
20808 if Can_Derive_From (Standard_Short_Short_Integer) then
20809 Base_Typ := Base_Type (Standard_Short_Short_Integer);
20811 elsif Can_Derive_From (Standard_Short_Integer) then
20812 Base_Typ := Base_Type (Standard_Short_Integer);
20814 elsif Can_Derive_From (Standard_Integer) then
20815 Base_Typ := Base_Type (Standard_Integer);
20817 elsif Can_Derive_From (Standard_Long_Integer) then
20818 Base_Typ := Base_Type (Standard_Long_Integer);
20820 elsif Can_Derive_From (Standard_Long_Long_Integer) then
20821 Check_Restriction (No_Long_Long_Integers, Def);
20822 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20824 else
20825 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20826 Error_Msg_N ("integer type definition bounds out of range", Def);
20827 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20828 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20829 end if;
20830 end if;
20832 -- Complete both implicit base and declared first subtype entities
20834 Set_Etype (Implicit_Base, Base_Typ);
20835 Set_Size_Info (Implicit_Base, (Base_Typ));
20836 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
20837 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
20839 Set_Ekind (T, E_Signed_Integer_Subtype);
20840 Set_Etype (T, Implicit_Base);
20842 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
20844 Set_Size_Info (T, (Implicit_Base));
20845 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
20846 Set_Scalar_Range (T, Def);
20847 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
20848 Set_Is_Constrained (T);
20849 end Signed_Integer_Type_Declaration;
20851 end Sem_Ch3;