2013-09-25 Yvan Roux <yvan.roux@linaro.org>
[official-gcc.git] / gcc / sched-rgn.c
blobe1a2dce16a2b337b5de8462357dfe136a9e22459
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2013 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This pass implements list scheduling within basic blocks. It is
23 run twice: (1) after flow analysis, but before register allocation,
24 and (2) after register allocation.
26 The first run performs interblock scheduling, moving insns between
27 different blocks in the same "region", and the second runs only
28 basic block scheduling.
30 Interblock motions performed are useful motions and speculative
31 motions, including speculative loads. Motions requiring code
32 duplication are not supported. The identification of motion type
33 and the check for validity of speculative motions requires
34 construction and analysis of the function's control flow graph.
36 The main entry point for this pass is schedule_insns(), called for
37 each function. The work of the scheduler is organized in three
38 levels: (1) function level: insns are subject to splitting,
39 control-flow-graph is constructed, regions are computed (after
40 reload, each region is of one block), (2) region level: control
41 flow graph attributes required for interblock scheduling are
42 computed (dominators, reachability, etc.), data dependences and
43 priorities are computed, and (3) block level: insns in the block
44 are actually scheduled. */
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "diagnostic-core.h"
51 #include "rtl.h"
52 #include "tm_p.h"
53 #include "hard-reg-set.h"
54 #include "regs.h"
55 #include "function.h"
56 #include "flags.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
59 #include "except.h"
60 #include "recog.h"
61 #include "params.h"
62 #include "sched-int.h"
63 #include "sel-sched.h"
64 #include "target.h"
65 #include "tree-pass.h"
66 #include "dbgcnt.h"
68 #ifdef INSN_SCHEDULING
70 /* Some accessor macros for h_i_d members only used within this file. */
71 #define FED_BY_SPEC_LOAD(INSN) (HID (INSN)->fed_by_spec_load)
72 #define IS_LOAD_INSN(INSN) (HID (insn)->is_load_insn)
74 /* nr_inter/spec counts interblock/speculative motion for the function. */
75 static int nr_inter, nr_spec;
77 static int is_cfg_nonregular (void);
79 /* Number of regions in the procedure. */
80 int nr_regions = 0;
82 /* Table of region descriptions. */
83 region *rgn_table = NULL;
85 /* Array of lists of regions' blocks. */
86 int *rgn_bb_table = NULL;
88 /* Topological order of blocks in the region (if b2 is reachable from
89 b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
90 always referred to by either block or b, while its topological
91 order name (in the region) is referred to by bb. */
92 int *block_to_bb = NULL;
94 /* The number of the region containing a block. */
95 int *containing_rgn = NULL;
97 /* ebb_head [i] - is index in rgn_bb_table of the head basic block of i'th ebb.
98 Currently we can get a ebb only through splitting of currently
99 scheduling block, therefore, we don't need ebb_head array for every region,
100 hence, its sufficient to hold it for current one only. */
101 int *ebb_head = NULL;
103 /* The minimum probability of reaching a source block so that it will be
104 considered for speculative scheduling. */
105 static int min_spec_prob;
107 static void find_single_block_region (bool);
108 static void find_rgns (void);
109 static bool too_large (int, int *, int *);
111 /* Blocks of the current region being scheduled. */
112 int current_nr_blocks;
113 int current_blocks;
115 /* A speculative motion requires checking live information on the path
116 from 'source' to 'target'. The split blocks are those to be checked.
117 After a speculative motion, live information should be modified in
118 the 'update' blocks.
120 Lists of split and update blocks for each candidate of the current
121 target are in array bblst_table. */
122 static basic_block *bblst_table;
123 static int bblst_size, bblst_last;
125 /* Arrays that hold the DFA state at the end of a basic block, to re-use
126 as the initial state at the start of successor blocks. The BB_STATE
127 array holds the actual DFA state, and BB_STATE_ARRAY[I] is a pointer
128 into BB_STATE for basic block I. FIXME: This should be a vec. */
129 static char *bb_state_array = NULL;
130 static state_t *bb_state = NULL;
132 /* Target info declarations.
134 The block currently being scheduled is referred to as the "target" block,
135 while other blocks in the region from which insns can be moved to the
136 target are called "source" blocks. The candidate structure holds info
137 about such sources: are they valid? Speculative? Etc. */
138 typedef struct
140 basic_block *first_member;
141 int nr_members;
143 bblst;
145 typedef struct
147 char is_valid;
148 char is_speculative;
149 int src_prob;
150 bblst split_bbs;
151 bblst update_bbs;
153 candidate;
155 static candidate *candidate_table;
156 #define IS_VALID(src) (candidate_table[src].is_valid)
157 #define IS_SPECULATIVE(src) (candidate_table[src].is_speculative)
158 #define IS_SPECULATIVE_INSN(INSN) \
159 (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
160 #define SRC_PROB(src) ( candidate_table[src].src_prob )
162 /* The bb being currently scheduled. */
163 int target_bb;
165 /* List of edges. */
166 typedef struct
168 edge *first_member;
169 int nr_members;
171 edgelst;
173 static edge *edgelst_table;
174 static int edgelst_last;
176 static void extract_edgelst (sbitmap, edgelst *);
178 /* Target info functions. */
179 static void split_edges (int, int, edgelst *);
180 static void compute_trg_info (int);
181 void debug_candidate (int);
182 void debug_candidates (int);
184 /* Dominators array: dom[i] contains the sbitmap of dominators of
185 bb i in the region. */
186 static sbitmap *dom;
188 /* bb 0 is the only region entry. */
189 #define IS_RGN_ENTRY(bb) (!bb)
191 /* Is bb_src dominated by bb_trg. */
192 #define IS_DOMINATED(bb_src, bb_trg) \
193 ( bitmap_bit_p (dom[bb_src], bb_trg) )
195 /* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
196 the probability of bb i relative to the region entry. */
197 static int *prob;
199 /* Bit-set of edges, where bit i stands for edge i. */
200 typedef sbitmap edgeset;
202 /* Number of edges in the region. */
203 static int rgn_nr_edges;
205 /* Array of size rgn_nr_edges. */
206 static edge *rgn_edges;
208 /* Mapping from each edge in the graph to its number in the rgn. */
209 #define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
210 #define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
212 /* The split edges of a source bb is different for each target
213 bb. In order to compute this efficiently, the 'potential-split edges'
214 are computed for each bb prior to scheduling a region. This is actually
215 the split edges of each bb relative to the region entry.
217 pot_split[bb] is the set of potential split edges of bb. */
218 static edgeset *pot_split;
220 /* For every bb, a set of its ancestor edges. */
221 static edgeset *ancestor_edges;
223 #define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
225 /* Speculative scheduling functions. */
226 static int check_live_1 (int, rtx);
227 static void update_live_1 (int, rtx);
228 static int is_pfree (rtx, int, int);
229 static int find_conditional_protection (rtx, int);
230 static int is_conditionally_protected (rtx, int, int);
231 static int is_prisky (rtx, int, int);
232 static int is_exception_free (rtx, int, int);
234 static bool sets_likely_spilled (rtx);
235 static void sets_likely_spilled_1 (rtx, const_rtx, void *);
236 static void add_branch_dependences (rtx, rtx);
237 static void compute_block_dependences (int);
239 static void schedule_region (int);
240 static void concat_insn_mem_list (rtx, rtx, rtx *, rtx *);
241 static void propagate_deps (int, struct deps_desc *);
242 static void free_pending_lists (void);
244 /* Functions for construction of the control flow graph. */
246 /* Return 1 if control flow graph should not be constructed, 0 otherwise.
248 We decide not to build the control flow graph if there is possibly more
249 than one entry to the function, if computed branches exist, if we
250 have nonlocal gotos, or if we have an unreachable loop. */
252 static int
253 is_cfg_nonregular (void)
255 basic_block b;
256 rtx insn;
258 /* If we have a label that could be the target of a nonlocal goto, then
259 the cfg is not well structured. */
260 if (nonlocal_goto_handler_labels)
261 return 1;
263 /* If we have any forced labels, then the cfg is not well structured. */
264 if (forced_labels)
265 return 1;
267 /* If we have exception handlers, then we consider the cfg not well
268 structured. ?!? We should be able to handle this now that we
269 compute an accurate cfg for EH. */
270 if (current_function_has_exception_handlers ())
271 return 1;
273 /* If we have insns which refer to labels as non-jumped-to operands,
274 then we consider the cfg not well structured. */
275 FOR_EACH_BB (b)
276 FOR_BB_INSNS (b, insn)
278 rtx note, next, set, dest;
280 /* If this function has a computed jump, then we consider the cfg
281 not well structured. */
282 if (JUMP_P (insn) && computed_jump_p (insn))
283 return 1;
285 if (!INSN_P (insn))
286 continue;
288 note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX);
289 if (note == NULL_RTX)
290 continue;
292 /* For that label not to be seen as a referred-to label, this
293 must be a single-set which is feeding a jump *only*. This
294 could be a conditional jump with the label split off for
295 machine-specific reasons or a casesi/tablejump. */
296 next = next_nonnote_insn (insn);
297 if (next == NULL_RTX
298 || !JUMP_P (next)
299 || (JUMP_LABEL (next) != XEXP (note, 0)
300 && find_reg_note (next, REG_LABEL_TARGET,
301 XEXP (note, 0)) == NULL_RTX)
302 || BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (next))
303 return 1;
305 set = single_set (insn);
306 if (set == NULL_RTX)
307 return 1;
309 dest = SET_DEST (set);
310 if (!REG_P (dest) || !dead_or_set_p (next, dest))
311 return 1;
314 /* Unreachable loops with more than one basic block are detected
315 during the DFS traversal in find_rgns.
317 Unreachable loops with a single block are detected here. This
318 test is redundant with the one in find_rgns, but it's much
319 cheaper to go ahead and catch the trivial case here. */
320 FOR_EACH_BB (b)
322 if (EDGE_COUNT (b->preds) == 0
323 || (single_pred_p (b)
324 && single_pred (b) == b))
325 return 1;
328 /* All the tests passed. Consider the cfg well structured. */
329 return 0;
332 /* Extract list of edges from a bitmap containing EDGE_TO_BIT bits. */
334 static void
335 extract_edgelst (sbitmap set, edgelst *el)
337 unsigned int i = 0;
338 sbitmap_iterator sbi;
340 /* edgelst table space is reused in each call to extract_edgelst. */
341 edgelst_last = 0;
343 el->first_member = &edgelst_table[edgelst_last];
344 el->nr_members = 0;
346 /* Iterate over each word in the bitset. */
347 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, sbi)
349 edgelst_table[edgelst_last++] = rgn_edges[i];
350 el->nr_members++;
354 /* Functions for the construction of regions. */
356 /* Print the regions, for debugging purposes. Callable from debugger. */
358 DEBUG_FUNCTION void
359 debug_regions (void)
361 int rgn, bb;
363 fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
364 for (rgn = 0; rgn < nr_regions; rgn++)
366 fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
367 rgn_table[rgn].rgn_nr_blocks);
368 fprintf (sched_dump, ";;\tbb/block: ");
370 /* We don't have ebb_head initialized yet, so we can't use
371 BB_TO_BLOCK (). */
372 current_blocks = RGN_BLOCKS (rgn);
374 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
375 fprintf (sched_dump, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
377 fprintf (sched_dump, "\n\n");
381 /* Print the region's basic blocks. */
383 DEBUG_FUNCTION void
384 debug_region (int rgn)
386 int bb;
388 fprintf (stderr, "\n;; ------------ REGION %d ----------\n\n", rgn);
389 fprintf (stderr, ";;\trgn %d nr_blocks %d:\n", rgn,
390 rgn_table[rgn].rgn_nr_blocks);
391 fprintf (stderr, ";;\tbb/block: ");
393 /* We don't have ebb_head initialized yet, so we can't use
394 BB_TO_BLOCK (). */
395 current_blocks = RGN_BLOCKS (rgn);
397 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
398 fprintf (stderr, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
400 fprintf (stderr, "\n\n");
402 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
404 dump_bb (stderr, BASIC_BLOCK (rgn_bb_table[current_blocks + bb]),
405 0, TDF_SLIM | TDF_BLOCKS);
406 fprintf (stderr, "\n");
409 fprintf (stderr, "\n");
413 /* True when a bb with index BB_INDEX contained in region RGN. */
414 static bool
415 bb_in_region_p (int bb_index, int rgn)
417 int i;
419 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
420 if (rgn_bb_table[current_blocks + i] == bb_index)
421 return true;
423 return false;
426 /* Dump region RGN to file F using dot syntax. */
427 void
428 dump_region_dot (FILE *f, int rgn)
430 int i;
432 fprintf (f, "digraph Region_%d {\n", rgn);
434 /* We don't have ebb_head initialized yet, so we can't use
435 BB_TO_BLOCK (). */
436 current_blocks = RGN_BLOCKS (rgn);
438 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
440 edge e;
441 edge_iterator ei;
442 int src_bb_num = rgn_bb_table[current_blocks + i];
443 basic_block bb = BASIC_BLOCK (src_bb_num);
445 FOR_EACH_EDGE (e, ei, bb->succs)
446 if (bb_in_region_p (e->dest->index, rgn))
447 fprintf (f, "\t%d -> %d\n", src_bb_num, e->dest->index);
449 fprintf (f, "}\n");
452 /* The same, but first open a file specified by FNAME. */
453 void
454 dump_region_dot_file (const char *fname, int rgn)
456 FILE *f = fopen (fname, "wt");
457 dump_region_dot (f, rgn);
458 fclose (f);
461 /* Build a single block region for each basic block in the function.
462 This allows for using the same code for interblock and basic block
463 scheduling. */
465 static void
466 find_single_block_region (bool ebbs_p)
468 basic_block bb, ebb_start;
469 int i = 0;
471 nr_regions = 0;
473 if (ebbs_p) {
474 int probability_cutoff;
475 if (profile_info && flag_branch_probabilities)
476 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY_FEEDBACK);
477 else
478 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY);
479 probability_cutoff = REG_BR_PROB_BASE / 100 * probability_cutoff;
481 FOR_EACH_BB (ebb_start)
483 RGN_NR_BLOCKS (nr_regions) = 0;
484 RGN_BLOCKS (nr_regions) = i;
485 RGN_DONT_CALC_DEPS (nr_regions) = 0;
486 RGN_HAS_REAL_EBB (nr_regions) = 0;
488 for (bb = ebb_start; ; bb = bb->next_bb)
490 edge e;
492 rgn_bb_table[i] = bb->index;
493 RGN_NR_BLOCKS (nr_regions)++;
494 CONTAINING_RGN (bb->index) = nr_regions;
495 BLOCK_TO_BB (bb->index) = i - RGN_BLOCKS (nr_regions);
496 i++;
498 if (bb->next_bb == EXIT_BLOCK_PTR
499 || LABEL_P (BB_HEAD (bb->next_bb)))
500 break;
502 e = find_fallthru_edge (bb->succs);
503 if (! e)
504 break;
505 if (e->probability <= probability_cutoff)
506 break;
509 ebb_start = bb;
510 nr_regions++;
513 else
514 FOR_EACH_BB (bb)
516 rgn_bb_table[nr_regions] = bb->index;
517 RGN_NR_BLOCKS (nr_regions) = 1;
518 RGN_BLOCKS (nr_regions) = nr_regions;
519 RGN_DONT_CALC_DEPS (nr_regions) = 0;
520 RGN_HAS_REAL_EBB (nr_regions) = 0;
522 CONTAINING_RGN (bb->index) = nr_regions;
523 BLOCK_TO_BB (bb->index) = 0;
524 nr_regions++;
528 /* Estimate number of the insns in the BB. */
529 static int
530 rgn_estimate_number_of_insns (basic_block bb)
532 int count;
534 count = INSN_LUID (BB_END (bb)) - INSN_LUID (BB_HEAD (bb));
536 if (MAY_HAVE_DEBUG_INSNS)
538 rtx insn;
540 FOR_BB_INSNS (bb, insn)
541 if (DEBUG_INSN_P (insn))
542 count--;
545 return count;
548 /* Update number of blocks and the estimate for number of insns
549 in the region. Return true if the region is "too large" for interblock
550 scheduling (compile time considerations). */
552 static bool
553 too_large (int block, int *num_bbs, int *num_insns)
555 (*num_bbs)++;
556 (*num_insns) += (common_sched_info->estimate_number_of_insns
557 (BASIC_BLOCK (block)));
559 return ((*num_bbs > PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS))
560 || (*num_insns > PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS)));
563 /* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
564 is still an inner loop. Put in max_hdr[blk] the header of the most inner
565 loop containing blk. */
566 #define UPDATE_LOOP_RELATIONS(blk, hdr) \
568 if (max_hdr[blk] == -1) \
569 max_hdr[blk] = hdr; \
570 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
571 bitmap_clear_bit (inner, hdr); \
572 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
574 bitmap_clear_bit (inner,max_hdr[blk]); \
575 max_hdr[blk] = hdr; \
579 /* Find regions for interblock scheduling.
581 A region for scheduling can be:
583 * A loop-free procedure, or
585 * A reducible inner loop, or
587 * A basic block not contained in any other region.
589 ?!? In theory we could build other regions based on extended basic
590 blocks or reverse extended basic blocks. Is it worth the trouble?
592 Loop blocks that form a region are put into the region's block list
593 in topological order.
595 This procedure stores its results into the following global (ick) variables
597 * rgn_nr
598 * rgn_table
599 * rgn_bb_table
600 * block_to_bb
601 * containing region
603 We use dominator relationships to avoid making regions out of non-reducible
604 loops.
606 This procedure needs to be converted to work on pred/succ lists instead
607 of edge tables. That would simplify it somewhat. */
609 static void
610 haifa_find_rgns (void)
612 int *max_hdr, *dfs_nr, *degree;
613 char no_loops = 1;
614 int node, child, loop_head, i, head, tail;
615 int count = 0, sp, idx = 0;
616 edge_iterator current_edge;
617 edge_iterator *stack;
618 int num_bbs, num_insns, unreachable;
619 int too_large_failure;
620 basic_block bb;
622 /* Note if a block is a natural loop header. */
623 sbitmap header;
625 /* Note if a block is a natural inner loop header. */
626 sbitmap inner;
628 /* Note if a block is in the block queue. */
629 sbitmap in_queue;
631 /* Note if a block is in the block queue. */
632 sbitmap in_stack;
634 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
635 and a mapping from block to its loop header (if the block is contained
636 in a loop, else -1).
638 Store results in HEADER, INNER, and MAX_HDR respectively, these will
639 be used as inputs to the second traversal.
641 STACK, SP and DFS_NR are only used during the first traversal. */
643 /* Allocate and initialize variables for the first traversal. */
644 max_hdr = XNEWVEC (int, last_basic_block);
645 dfs_nr = XCNEWVEC (int, last_basic_block);
646 stack = XNEWVEC (edge_iterator, n_edges);
648 inner = sbitmap_alloc (last_basic_block);
649 bitmap_ones (inner);
651 header = sbitmap_alloc (last_basic_block);
652 bitmap_clear (header);
654 in_queue = sbitmap_alloc (last_basic_block);
655 bitmap_clear (in_queue);
657 in_stack = sbitmap_alloc (last_basic_block);
658 bitmap_clear (in_stack);
660 for (i = 0; i < last_basic_block; i++)
661 max_hdr[i] = -1;
663 #define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
664 #define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
666 /* DFS traversal to find inner loops in the cfg. */
668 current_edge = ei_start (single_succ (ENTRY_BLOCK_PTR)->succs);
669 sp = -1;
671 while (1)
673 if (EDGE_PASSED (current_edge))
675 /* We have reached a leaf node or a node that was already
676 processed. Pop edges off the stack until we find
677 an edge that has not yet been processed. */
678 while (sp >= 0 && EDGE_PASSED (current_edge))
680 /* Pop entry off the stack. */
681 current_edge = stack[sp--];
682 node = ei_edge (current_edge)->src->index;
683 gcc_assert (node != ENTRY_BLOCK);
684 child = ei_edge (current_edge)->dest->index;
685 gcc_assert (child != EXIT_BLOCK);
686 bitmap_clear_bit (in_stack, child);
687 if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
688 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
689 ei_next (&current_edge);
692 /* See if have finished the DFS tree traversal. */
693 if (sp < 0 && EDGE_PASSED (current_edge))
694 break;
696 /* Nope, continue the traversal with the popped node. */
697 continue;
700 /* Process a node. */
701 node = ei_edge (current_edge)->src->index;
702 gcc_assert (node != ENTRY_BLOCK);
703 bitmap_set_bit (in_stack, node);
704 dfs_nr[node] = ++count;
706 /* We don't traverse to the exit block. */
707 child = ei_edge (current_edge)->dest->index;
708 if (child == EXIT_BLOCK)
710 SET_EDGE_PASSED (current_edge);
711 ei_next (&current_edge);
712 continue;
715 /* If the successor is in the stack, then we've found a loop.
716 Mark the loop, if it is not a natural loop, then it will
717 be rejected during the second traversal. */
718 if (bitmap_bit_p (in_stack, child))
720 no_loops = 0;
721 bitmap_set_bit (header, child);
722 UPDATE_LOOP_RELATIONS (node, child);
723 SET_EDGE_PASSED (current_edge);
724 ei_next (&current_edge);
725 continue;
728 /* If the child was already visited, then there is no need to visit
729 it again. Just update the loop relationships and restart
730 with a new edge. */
731 if (dfs_nr[child])
733 if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
734 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
735 SET_EDGE_PASSED (current_edge);
736 ei_next (&current_edge);
737 continue;
740 /* Push an entry on the stack and continue DFS traversal. */
741 stack[++sp] = current_edge;
742 SET_EDGE_PASSED (current_edge);
743 current_edge = ei_start (ei_edge (current_edge)->dest->succs);
746 /* Reset ->aux field used by EDGE_PASSED. */
747 FOR_ALL_BB (bb)
749 edge_iterator ei;
750 edge e;
751 FOR_EACH_EDGE (e, ei, bb->succs)
752 e->aux = NULL;
756 /* Another check for unreachable blocks. The earlier test in
757 is_cfg_nonregular only finds unreachable blocks that do not
758 form a loop.
760 The DFS traversal will mark every block that is reachable from
761 the entry node by placing a nonzero value in dfs_nr. Thus if
762 dfs_nr is zero for any block, then it must be unreachable. */
763 unreachable = 0;
764 FOR_EACH_BB (bb)
765 if (dfs_nr[bb->index] == 0)
767 unreachable = 1;
768 break;
771 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
772 to hold degree counts. */
773 degree = dfs_nr;
775 FOR_EACH_BB (bb)
776 degree[bb->index] = EDGE_COUNT (bb->preds);
778 /* Do not perform region scheduling if there are any unreachable
779 blocks. */
780 if (!unreachable)
782 int *queue, *degree1 = NULL;
783 /* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
784 there basic blocks, which are forced to be region heads.
785 This is done to try to assemble few smaller regions
786 from a too_large region. */
787 sbitmap extended_rgn_header = NULL;
788 bool extend_regions_p;
790 if (no_loops)
791 bitmap_set_bit (header, 0);
793 /* Second traversal:find reducible inner loops and topologically sort
794 block of each region. */
796 queue = XNEWVEC (int, n_basic_blocks);
798 extend_regions_p = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS) > 0;
799 if (extend_regions_p)
801 degree1 = XNEWVEC (int, last_basic_block);
802 extended_rgn_header = sbitmap_alloc (last_basic_block);
803 bitmap_clear (extended_rgn_header);
806 /* Find blocks which are inner loop headers. We still have non-reducible
807 loops to consider at this point. */
808 FOR_EACH_BB (bb)
810 if (bitmap_bit_p (header, bb->index) && bitmap_bit_p (inner, bb->index))
812 edge e;
813 edge_iterator ei;
814 basic_block jbb;
816 /* Now check that the loop is reducible. We do this separate
817 from finding inner loops so that we do not find a reducible
818 loop which contains an inner non-reducible loop.
820 A simple way to find reducible/natural loops is to verify
821 that each block in the loop is dominated by the loop
822 header.
824 If there exists a block that is not dominated by the loop
825 header, then the block is reachable from outside the loop
826 and thus the loop is not a natural loop. */
827 FOR_EACH_BB (jbb)
829 /* First identify blocks in the loop, except for the loop
830 entry block. */
831 if (bb->index == max_hdr[jbb->index] && bb != jbb)
833 /* Now verify that the block is dominated by the loop
834 header. */
835 if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
836 break;
840 /* If we exited the loop early, then I is the header of
841 a non-reducible loop and we should quit processing it
842 now. */
843 if (jbb != EXIT_BLOCK_PTR)
844 continue;
846 /* I is a header of an inner loop, or block 0 in a subroutine
847 with no loops at all. */
848 head = tail = -1;
849 too_large_failure = 0;
850 loop_head = max_hdr[bb->index];
852 if (extend_regions_p)
853 /* We save degree in case when we meet a too_large region
854 and cancel it. We need a correct degree later when
855 calling extend_rgns. */
856 memcpy (degree1, degree, last_basic_block * sizeof (int));
858 /* Decrease degree of all I's successors for topological
859 ordering. */
860 FOR_EACH_EDGE (e, ei, bb->succs)
861 if (e->dest != EXIT_BLOCK_PTR)
862 --degree[e->dest->index];
864 /* Estimate # insns, and count # blocks in the region. */
865 num_bbs = 1;
866 num_insns = common_sched_info->estimate_number_of_insns (bb);
868 /* Find all loop latches (blocks with back edges to the loop
869 header) or all the leaf blocks in the cfg has no loops.
871 Place those blocks into the queue. */
872 if (no_loops)
874 FOR_EACH_BB (jbb)
875 /* Leaf nodes have only a single successor which must
876 be EXIT_BLOCK. */
877 if (single_succ_p (jbb)
878 && single_succ (jbb) == EXIT_BLOCK_PTR)
880 queue[++tail] = jbb->index;
881 bitmap_set_bit (in_queue, jbb->index);
883 if (too_large (jbb->index, &num_bbs, &num_insns))
885 too_large_failure = 1;
886 break;
890 else
892 edge e;
894 FOR_EACH_EDGE (e, ei, bb->preds)
896 if (e->src == ENTRY_BLOCK_PTR)
897 continue;
899 node = e->src->index;
901 if (max_hdr[node] == loop_head && node != bb->index)
903 /* This is a loop latch. */
904 queue[++tail] = node;
905 bitmap_set_bit (in_queue, node);
907 if (too_large (node, &num_bbs, &num_insns))
909 too_large_failure = 1;
910 break;
916 /* Now add all the blocks in the loop to the queue.
918 We know the loop is a natural loop; however the algorithm
919 above will not always mark certain blocks as being in the
920 loop. Consider:
921 node children
922 a b,c
924 c a,d
927 The algorithm in the DFS traversal may not mark B & D as part
928 of the loop (i.e. they will not have max_hdr set to A).
930 We know they can not be loop latches (else they would have
931 had max_hdr set since they'd have a backedge to a dominator
932 block). So we don't need them on the initial queue.
934 We know they are part of the loop because they are dominated
935 by the loop header and can be reached by a backwards walk of
936 the edges starting with nodes on the initial queue.
938 It is safe and desirable to include those nodes in the
939 loop/scheduling region. To do so we would need to decrease
940 the degree of a node if it is the target of a backedge
941 within the loop itself as the node is placed in the queue.
943 We do not do this because I'm not sure that the actual
944 scheduling code will properly handle this case. ?!? */
946 while (head < tail && !too_large_failure)
948 edge e;
949 child = queue[++head];
951 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->preds)
953 node = e->src->index;
955 /* See discussion above about nodes not marked as in
956 this loop during the initial DFS traversal. */
957 if (e->src == ENTRY_BLOCK_PTR
958 || max_hdr[node] != loop_head)
960 tail = -1;
961 break;
963 else if (!bitmap_bit_p (in_queue, node) && node != bb->index)
965 queue[++tail] = node;
966 bitmap_set_bit (in_queue, node);
968 if (too_large (node, &num_bbs, &num_insns))
970 too_large_failure = 1;
971 break;
977 if (tail >= 0 && !too_large_failure)
979 /* Place the loop header into list of region blocks. */
980 degree[bb->index] = -1;
981 rgn_bb_table[idx] = bb->index;
982 RGN_NR_BLOCKS (nr_regions) = num_bbs;
983 RGN_BLOCKS (nr_regions) = idx++;
984 RGN_DONT_CALC_DEPS (nr_regions) = 0;
985 RGN_HAS_REAL_EBB (nr_regions) = 0;
986 CONTAINING_RGN (bb->index) = nr_regions;
987 BLOCK_TO_BB (bb->index) = count = 0;
989 /* Remove blocks from queue[] when their in degree
990 becomes zero. Repeat until no blocks are left on the
991 list. This produces a topological list of blocks in
992 the region. */
993 while (tail >= 0)
995 if (head < 0)
996 head = tail;
997 child = queue[head];
998 if (degree[child] == 0)
1000 edge e;
1002 degree[child] = -1;
1003 rgn_bb_table[idx++] = child;
1004 BLOCK_TO_BB (child) = ++count;
1005 CONTAINING_RGN (child) = nr_regions;
1006 queue[head] = queue[tail--];
1008 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->succs)
1009 if (e->dest != EXIT_BLOCK_PTR)
1010 --degree[e->dest->index];
1012 else
1013 --head;
1015 ++nr_regions;
1017 else if (extend_regions_p)
1019 /* Restore DEGREE. */
1020 int *t = degree;
1022 degree = degree1;
1023 degree1 = t;
1025 /* And force successors of BB to be region heads.
1026 This may provide several smaller regions instead
1027 of one too_large region. */
1028 FOR_EACH_EDGE (e, ei, bb->succs)
1029 if (e->dest != EXIT_BLOCK_PTR)
1030 bitmap_set_bit (extended_rgn_header, e->dest->index);
1034 free (queue);
1036 if (extend_regions_p)
1038 free (degree1);
1040 bitmap_ior (header, header, extended_rgn_header);
1041 sbitmap_free (extended_rgn_header);
1043 extend_rgns (degree, &idx, header, max_hdr);
1047 /* Any block that did not end up in a region is placed into a region
1048 by itself. */
1049 FOR_EACH_BB (bb)
1050 if (degree[bb->index] >= 0)
1052 rgn_bb_table[idx] = bb->index;
1053 RGN_NR_BLOCKS (nr_regions) = 1;
1054 RGN_BLOCKS (nr_regions) = idx++;
1055 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1056 RGN_HAS_REAL_EBB (nr_regions) = 0;
1057 CONTAINING_RGN (bb->index) = nr_regions++;
1058 BLOCK_TO_BB (bb->index) = 0;
1061 free (max_hdr);
1062 free (degree);
1063 free (stack);
1064 sbitmap_free (header);
1065 sbitmap_free (inner);
1066 sbitmap_free (in_queue);
1067 sbitmap_free (in_stack);
1071 /* Wrapper function.
1072 If FLAG_SEL_SCHED_PIPELINING is set, then use custom function to form
1073 regions. Otherwise just call find_rgns_haifa. */
1074 static void
1075 find_rgns (void)
1077 if (sel_sched_p () && flag_sel_sched_pipelining)
1078 sel_find_rgns ();
1079 else
1080 haifa_find_rgns ();
1083 static int gather_region_statistics (int **);
1084 static void print_region_statistics (int *, int, int *, int);
1086 /* Calculate the histogram that shows the number of regions having the
1087 given number of basic blocks, and store it in the RSP array. Return
1088 the size of this array. */
1089 static int
1090 gather_region_statistics (int **rsp)
1092 int i, *a = 0, a_sz = 0;
1094 /* a[i] is the number of regions that have (i + 1) basic blocks. */
1095 for (i = 0; i < nr_regions; i++)
1097 int nr_blocks = RGN_NR_BLOCKS (i);
1099 gcc_assert (nr_blocks >= 1);
1101 if (nr_blocks > a_sz)
1103 a = XRESIZEVEC (int, a, nr_blocks);
1105 a[a_sz++] = 0;
1106 while (a_sz != nr_blocks);
1109 a[nr_blocks - 1]++;
1112 *rsp = a;
1113 return a_sz;
1116 /* Print regions statistics. S1 and S2 denote the data before and after
1117 calling extend_rgns, respectively. */
1118 static void
1119 print_region_statistics (int *s1, int s1_sz, int *s2, int s2_sz)
1121 int i;
1123 /* We iterate until s2_sz because extend_rgns does not decrease
1124 the maximal region size. */
1125 for (i = 1; i < s2_sz; i++)
1127 int n1, n2;
1129 n2 = s2[i];
1131 if (n2 == 0)
1132 continue;
1134 if (i >= s1_sz)
1135 n1 = 0;
1136 else
1137 n1 = s1[i];
1139 fprintf (sched_dump, ";; Region extension statistics: size %d: " \
1140 "was %d + %d more\n", i + 1, n1, n2 - n1);
1144 /* Extend regions.
1145 DEGREE - Array of incoming edge count, considering only
1146 the edges, that don't have their sources in formed regions yet.
1147 IDXP - pointer to the next available index in rgn_bb_table.
1148 HEADER - set of all region heads.
1149 LOOP_HDR - mapping from block to the containing loop
1150 (two blocks can reside within one region if they have
1151 the same loop header). */
1152 void
1153 extend_rgns (int *degree, int *idxp, sbitmap header, int *loop_hdr)
1155 int *order, i, rescan = 0, idx = *idxp, iter = 0, max_iter, *max_hdr;
1156 int nblocks = n_basic_blocks - NUM_FIXED_BLOCKS;
1158 max_iter = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS);
1160 max_hdr = XNEWVEC (int, last_basic_block);
1162 order = XNEWVEC (int, last_basic_block);
1163 post_order_compute (order, false, false);
1165 for (i = nblocks - 1; i >= 0; i--)
1167 int bbn = order[i];
1168 if (degree[bbn] >= 0)
1170 max_hdr[bbn] = bbn;
1171 rescan = 1;
1173 else
1174 /* This block already was processed in find_rgns. */
1175 max_hdr[bbn] = -1;
1178 /* The idea is to topologically walk through CFG in top-down order.
1179 During the traversal, if all the predecessors of a node are
1180 marked to be in the same region (they all have the same max_hdr),
1181 then current node is also marked to be a part of that region.
1182 Otherwise the node starts its own region.
1183 CFG should be traversed until no further changes are made. On each
1184 iteration the set of the region heads is extended (the set of those
1185 blocks that have max_hdr[bbi] == bbi). This set is upper bounded by the
1186 set of all basic blocks, thus the algorithm is guaranteed to
1187 terminate. */
1189 while (rescan && iter < max_iter)
1191 rescan = 0;
1193 for (i = nblocks - 1; i >= 0; i--)
1195 edge e;
1196 edge_iterator ei;
1197 int bbn = order[i];
1199 if (max_hdr[bbn] != -1 && !bitmap_bit_p (header, bbn))
1201 int hdr = -1;
1203 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->preds)
1205 int predn = e->src->index;
1207 if (predn != ENTRY_BLOCK
1208 /* If pred wasn't processed in find_rgns. */
1209 && max_hdr[predn] != -1
1210 /* And pred and bb reside in the same loop.
1211 (Or out of any loop). */
1212 && loop_hdr[bbn] == loop_hdr[predn])
1214 if (hdr == -1)
1215 /* Then bb extends the containing region of pred. */
1216 hdr = max_hdr[predn];
1217 else if (hdr != max_hdr[predn])
1218 /* Too bad, there are at least two predecessors
1219 that reside in different regions. Thus, BB should
1220 begin its own region. */
1222 hdr = bbn;
1223 break;
1226 else
1227 /* BB starts its own region. */
1229 hdr = bbn;
1230 break;
1234 if (hdr == bbn)
1236 /* If BB start its own region,
1237 update set of headers with BB. */
1238 bitmap_set_bit (header, bbn);
1239 rescan = 1;
1241 else
1242 gcc_assert (hdr != -1);
1244 max_hdr[bbn] = hdr;
1248 iter++;
1251 /* Statistics were gathered on the SPEC2000 package of tests with
1252 mainline weekly snapshot gcc-4.1-20051015 on ia64.
1254 Statistics for SPECint:
1255 1 iteration : 1751 cases (38.7%)
1256 2 iterations: 2770 cases (61.3%)
1257 Blocks wrapped in regions by find_rgns without extension: 18295 blocks
1258 Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
1259 (We don't count single block regions here).
1261 Statistics for SPECfp:
1262 1 iteration : 621 cases (35.9%)
1263 2 iterations: 1110 cases (64.1%)
1264 Blocks wrapped in regions by find_rgns without extension: 6476 blocks
1265 Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
1266 (We don't count single block regions here).
1268 By default we do at most 2 iterations.
1269 This can be overridden with max-sched-extend-regions-iters parameter:
1270 0 - disable region extension,
1271 N > 0 - do at most N iterations. */
1273 if (sched_verbose && iter != 0)
1274 fprintf (sched_dump, ";; Region extension iterations: %d%s\n", iter,
1275 rescan ? "... failed" : "");
1277 if (!rescan && iter != 0)
1279 int *s1 = NULL, s1_sz = 0;
1281 /* Save the old statistics for later printout. */
1282 if (sched_verbose >= 6)
1283 s1_sz = gather_region_statistics (&s1);
1285 /* We have succeeded. Now assemble the regions. */
1286 for (i = nblocks - 1; i >= 0; i--)
1288 int bbn = order[i];
1290 if (max_hdr[bbn] == bbn)
1291 /* BBN is a region head. */
1293 edge e;
1294 edge_iterator ei;
1295 int num_bbs = 0, j, num_insns = 0, large;
1297 large = too_large (bbn, &num_bbs, &num_insns);
1299 degree[bbn] = -1;
1300 rgn_bb_table[idx] = bbn;
1301 RGN_BLOCKS (nr_regions) = idx++;
1302 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1303 RGN_HAS_REAL_EBB (nr_regions) = 0;
1304 CONTAINING_RGN (bbn) = nr_regions;
1305 BLOCK_TO_BB (bbn) = 0;
1307 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->succs)
1308 if (e->dest != EXIT_BLOCK_PTR)
1309 degree[e->dest->index]--;
1311 if (!large)
1312 /* Here we check whether the region is too_large. */
1313 for (j = i - 1; j >= 0; j--)
1315 int succn = order[j];
1316 if (max_hdr[succn] == bbn)
1318 if ((large = too_large (succn, &num_bbs, &num_insns)))
1319 break;
1323 if (large)
1324 /* If the region is too_large, then wrap every block of
1325 the region into single block region.
1326 Here we wrap region head only. Other blocks are
1327 processed in the below cycle. */
1329 RGN_NR_BLOCKS (nr_regions) = 1;
1330 nr_regions++;
1333 num_bbs = 1;
1335 for (j = i - 1; j >= 0; j--)
1337 int succn = order[j];
1339 if (max_hdr[succn] == bbn)
1340 /* This cycle iterates over all basic blocks, that
1341 are supposed to be in the region with head BBN,
1342 and wraps them into that region (or in single
1343 block region). */
1345 gcc_assert (degree[succn] == 0);
1347 degree[succn] = -1;
1348 rgn_bb_table[idx] = succn;
1349 BLOCK_TO_BB (succn) = large ? 0 : num_bbs++;
1350 CONTAINING_RGN (succn) = nr_regions;
1352 if (large)
1353 /* Wrap SUCCN into single block region. */
1355 RGN_BLOCKS (nr_regions) = idx;
1356 RGN_NR_BLOCKS (nr_regions) = 1;
1357 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1358 RGN_HAS_REAL_EBB (nr_regions) = 0;
1359 nr_regions++;
1362 idx++;
1364 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (succn)->succs)
1365 if (e->dest != EXIT_BLOCK_PTR)
1366 degree[e->dest->index]--;
1370 if (!large)
1372 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1373 nr_regions++;
1378 if (sched_verbose >= 6)
1380 int *s2, s2_sz;
1382 /* Get the new statistics and print the comparison with the
1383 one before calling this function. */
1384 s2_sz = gather_region_statistics (&s2);
1385 print_region_statistics (s1, s1_sz, s2, s2_sz);
1386 free (s1);
1387 free (s2);
1391 free (order);
1392 free (max_hdr);
1394 *idxp = idx;
1397 /* Functions for regions scheduling information. */
1399 /* Compute dominators, probability, and potential-split-edges of bb.
1400 Assume that these values were already computed for bb's predecessors. */
1402 static void
1403 compute_dom_prob_ps (int bb)
1405 edge_iterator in_ei;
1406 edge in_edge;
1408 /* We shouldn't have any real ebbs yet. */
1409 gcc_assert (ebb_head [bb] == bb + current_blocks);
1411 if (IS_RGN_ENTRY (bb))
1413 bitmap_set_bit (dom[bb], 0);
1414 prob[bb] = REG_BR_PROB_BASE;
1415 return;
1418 prob[bb] = 0;
1420 /* Initialize dom[bb] to '111..1'. */
1421 bitmap_ones (dom[bb]);
1423 FOR_EACH_EDGE (in_edge, in_ei, BASIC_BLOCK (BB_TO_BLOCK (bb))->preds)
1425 int pred_bb;
1426 edge out_edge;
1427 edge_iterator out_ei;
1429 if (in_edge->src == ENTRY_BLOCK_PTR)
1430 continue;
1432 pred_bb = BLOCK_TO_BB (in_edge->src->index);
1433 bitmap_and (dom[bb], dom[bb], dom[pred_bb]);
1434 bitmap_ior (ancestor_edges[bb],
1435 ancestor_edges[bb], ancestor_edges[pred_bb]);
1437 bitmap_set_bit (ancestor_edges[bb], EDGE_TO_BIT (in_edge));
1439 bitmap_ior (pot_split[bb], pot_split[bb], pot_split[pred_bb]);
1441 FOR_EACH_EDGE (out_edge, out_ei, in_edge->src->succs)
1442 bitmap_set_bit (pot_split[bb], EDGE_TO_BIT (out_edge));
1444 prob[bb] += combine_probabilities (prob[pred_bb], in_edge->probability);
1445 // The rounding divide in combine_probabilities can result in an extra
1446 // probability increment propagating along 50-50 edges. Eventually when
1447 // the edges re-merge, the accumulated probability can go slightly above
1448 // REG_BR_PROB_BASE.
1449 if (prob[bb] > REG_BR_PROB_BASE)
1450 prob[bb] = REG_BR_PROB_BASE;
1453 bitmap_set_bit (dom[bb], bb);
1454 bitmap_and_compl (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
1456 if (sched_verbose >= 2)
1457 fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
1458 (100 * prob[bb]) / REG_BR_PROB_BASE);
1461 /* Functions for target info. */
1463 /* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1464 Note that bb_trg dominates bb_src. */
1466 static void
1467 split_edges (int bb_src, int bb_trg, edgelst *bl)
1469 sbitmap src = sbitmap_alloc (SBITMAP_SIZE (pot_split[bb_src]));
1470 bitmap_copy (src, pot_split[bb_src]);
1472 bitmap_and_compl (src, src, pot_split[bb_trg]);
1473 extract_edgelst (src, bl);
1474 sbitmap_free (src);
1477 /* Find the valid candidate-source-blocks for the target block TRG, compute
1478 their probability, and check if they are speculative or not.
1479 For speculative sources, compute their update-blocks and split-blocks. */
1481 static void
1482 compute_trg_info (int trg)
1484 candidate *sp;
1485 edgelst el = { NULL, 0 };
1486 int i, j, k, update_idx;
1487 basic_block block;
1488 sbitmap visited;
1489 edge_iterator ei;
1490 edge e;
1492 candidate_table = XNEWVEC (candidate, current_nr_blocks);
1494 bblst_last = 0;
1495 /* bblst_table holds split blocks and update blocks for each block after
1496 the current one in the region. split blocks and update blocks are
1497 the TO blocks of region edges, so there can be at most rgn_nr_edges
1498 of them. */
1499 bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
1500 bblst_table = XNEWVEC (basic_block, bblst_size);
1502 edgelst_last = 0;
1503 edgelst_table = XNEWVEC (edge, rgn_nr_edges);
1505 /* Define some of the fields for the target bb as well. */
1506 sp = candidate_table + trg;
1507 sp->is_valid = 1;
1508 sp->is_speculative = 0;
1509 sp->src_prob = REG_BR_PROB_BASE;
1511 visited = sbitmap_alloc (last_basic_block);
1513 for (i = trg + 1; i < current_nr_blocks; i++)
1515 sp = candidate_table + i;
1517 sp->is_valid = IS_DOMINATED (i, trg);
1518 if (sp->is_valid)
1520 int tf = prob[trg], cf = prob[i];
1522 /* In CFGs with low probability edges TF can possibly be zero. */
1523 sp->src_prob = (tf ? GCOV_COMPUTE_SCALE (cf, tf) : 0);
1524 sp->is_valid = (sp->src_prob >= min_spec_prob);
1527 if (sp->is_valid)
1529 split_edges (i, trg, &el);
1530 sp->is_speculative = (el.nr_members) ? 1 : 0;
1531 if (sp->is_speculative && !flag_schedule_speculative)
1532 sp->is_valid = 0;
1535 if (sp->is_valid)
1537 /* Compute split blocks and store them in bblst_table.
1538 The TO block of every split edge is a split block. */
1539 sp->split_bbs.first_member = &bblst_table[bblst_last];
1540 sp->split_bbs.nr_members = el.nr_members;
1541 for (j = 0; j < el.nr_members; bblst_last++, j++)
1542 bblst_table[bblst_last] = el.first_member[j]->dest;
1543 sp->update_bbs.first_member = &bblst_table[bblst_last];
1545 /* Compute update blocks and store them in bblst_table.
1546 For every split edge, look at the FROM block, and check
1547 all out edges. For each out edge that is not a split edge,
1548 add the TO block to the update block list. This list can end
1549 up with a lot of duplicates. We need to weed them out to avoid
1550 overrunning the end of the bblst_table. */
1552 update_idx = 0;
1553 bitmap_clear (visited);
1554 for (j = 0; j < el.nr_members; j++)
1556 block = el.first_member[j]->src;
1557 FOR_EACH_EDGE (e, ei, block->succs)
1559 if (!bitmap_bit_p (visited, e->dest->index))
1561 for (k = 0; k < el.nr_members; k++)
1562 if (e == el.first_member[k])
1563 break;
1565 if (k >= el.nr_members)
1567 bblst_table[bblst_last++] = e->dest;
1568 bitmap_set_bit (visited, e->dest->index);
1569 update_idx++;
1574 sp->update_bbs.nr_members = update_idx;
1576 /* Make sure we didn't overrun the end of bblst_table. */
1577 gcc_assert (bblst_last <= bblst_size);
1579 else
1581 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
1583 sp->is_speculative = 0;
1584 sp->src_prob = 0;
1588 sbitmap_free (visited);
1591 /* Free the computed target info. */
1592 static void
1593 free_trg_info (void)
1595 free (candidate_table);
1596 free (bblst_table);
1597 free (edgelst_table);
1600 /* Print candidates info, for debugging purposes. Callable from debugger. */
1602 DEBUG_FUNCTION void
1603 debug_candidate (int i)
1605 if (!candidate_table[i].is_valid)
1606 return;
1608 if (candidate_table[i].is_speculative)
1610 int j;
1611 fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
1613 fprintf (sched_dump, "split path: ");
1614 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
1616 int b = candidate_table[i].split_bbs.first_member[j]->index;
1618 fprintf (sched_dump, " %d ", b);
1620 fprintf (sched_dump, "\n");
1622 fprintf (sched_dump, "update path: ");
1623 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
1625 int b = candidate_table[i].update_bbs.first_member[j]->index;
1627 fprintf (sched_dump, " %d ", b);
1629 fprintf (sched_dump, "\n");
1631 else
1633 fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
1637 /* Print candidates info, for debugging purposes. Callable from debugger. */
1639 DEBUG_FUNCTION void
1640 debug_candidates (int trg)
1642 int i;
1644 fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
1645 BB_TO_BLOCK (trg), trg);
1646 for (i = trg + 1; i < current_nr_blocks; i++)
1647 debug_candidate (i);
1650 /* Functions for speculative scheduling. */
1652 static bitmap_head not_in_df;
1654 /* Return 0 if x is a set of a register alive in the beginning of one
1655 of the split-blocks of src, otherwise return 1. */
1657 static int
1658 check_live_1 (int src, rtx x)
1660 int i;
1661 int regno;
1662 rtx reg = SET_DEST (x);
1664 if (reg == 0)
1665 return 1;
1667 while (GET_CODE (reg) == SUBREG
1668 || GET_CODE (reg) == ZERO_EXTRACT
1669 || GET_CODE (reg) == STRICT_LOW_PART)
1670 reg = XEXP (reg, 0);
1672 if (GET_CODE (reg) == PARALLEL)
1674 int i;
1676 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1677 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1678 if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
1679 return 1;
1681 return 0;
1684 if (!REG_P (reg))
1685 return 1;
1687 regno = REGNO (reg);
1689 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1691 /* Global registers are assumed live. */
1692 return 0;
1694 else
1696 if (regno < FIRST_PSEUDO_REGISTER)
1698 /* Check for hard registers. */
1699 int j = hard_regno_nregs[regno][GET_MODE (reg)];
1700 while (--j >= 0)
1702 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1704 basic_block b = candidate_table[src].split_bbs.first_member[i];
1705 int t = bitmap_bit_p (&not_in_df, b->index);
1707 /* We can have split blocks, that were recently generated.
1708 Such blocks are always outside current region. */
1709 gcc_assert (!t || (CONTAINING_RGN (b->index)
1710 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1712 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno + j))
1713 return 0;
1717 else
1719 /* Check for pseudo registers. */
1720 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1722 basic_block b = candidate_table[src].split_bbs.first_member[i];
1723 int t = bitmap_bit_p (&not_in_df, b->index);
1725 gcc_assert (!t || (CONTAINING_RGN (b->index)
1726 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1728 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno))
1729 return 0;
1734 return 1;
1737 /* If x is a set of a register R, mark that R is alive in the beginning
1738 of every update-block of src. */
1740 static void
1741 update_live_1 (int src, rtx x)
1743 int i;
1744 int regno;
1745 rtx reg = SET_DEST (x);
1747 if (reg == 0)
1748 return;
1750 while (GET_CODE (reg) == SUBREG
1751 || GET_CODE (reg) == ZERO_EXTRACT
1752 || GET_CODE (reg) == STRICT_LOW_PART)
1753 reg = XEXP (reg, 0);
1755 if (GET_CODE (reg) == PARALLEL)
1757 int i;
1759 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1760 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1761 update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
1763 return;
1766 if (!REG_P (reg))
1767 return;
1769 /* Global registers are always live, so the code below does not apply
1770 to them. */
1772 regno = REGNO (reg);
1774 if (! HARD_REGISTER_NUM_P (regno)
1775 || !global_regs[regno])
1777 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1779 basic_block b = candidate_table[src].update_bbs.first_member[i];
1781 if (HARD_REGISTER_NUM_P (regno))
1782 bitmap_set_range (df_get_live_in (b), regno,
1783 hard_regno_nregs[regno][GET_MODE (reg)]);
1784 else
1785 bitmap_set_bit (df_get_live_in (b), regno);
1790 /* Return 1 if insn can be speculatively moved from block src to trg,
1791 otherwise return 0. Called before first insertion of insn to
1792 ready-list or before the scheduling. */
1794 static int
1795 check_live (rtx insn, int src)
1797 /* Find the registers set by instruction. */
1798 if (GET_CODE (PATTERN (insn)) == SET
1799 || GET_CODE (PATTERN (insn)) == CLOBBER)
1800 return check_live_1 (src, PATTERN (insn));
1801 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1803 int j;
1804 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1805 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1806 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1807 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
1808 return 0;
1810 return 1;
1813 return 1;
1816 /* Update the live registers info after insn was moved speculatively from
1817 block src to trg. */
1819 static void
1820 update_live (rtx insn, int src)
1822 /* Find the registers set by instruction. */
1823 if (GET_CODE (PATTERN (insn)) == SET
1824 || GET_CODE (PATTERN (insn)) == CLOBBER)
1825 update_live_1 (src, PATTERN (insn));
1826 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1828 int j;
1829 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1830 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1831 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1832 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
1836 /* Nonzero if block bb_to is equal to, or reachable from block bb_from. */
1837 #define IS_REACHABLE(bb_from, bb_to) \
1838 (bb_from == bb_to \
1839 || IS_RGN_ENTRY (bb_from) \
1840 || (bitmap_bit_p (ancestor_edges[bb_to], \
1841 EDGE_TO_BIT (single_pred_edge (BASIC_BLOCK (BB_TO_BLOCK (bb_from)))))))
1843 /* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
1845 static void
1846 set_spec_fed (rtx load_insn)
1848 sd_iterator_def sd_it;
1849 dep_t dep;
1851 FOR_EACH_DEP (load_insn, SD_LIST_FORW, sd_it, dep)
1852 if (DEP_TYPE (dep) == REG_DEP_TRUE)
1853 FED_BY_SPEC_LOAD (DEP_CON (dep)) = 1;
1856 /* On the path from the insn to load_insn_bb, find a conditional
1857 branch depending on insn, that guards the speculative load. */
1859 static int
1860 find_conditional_protection (rtx insn, int load_insn_bb)
1862 sd_iterator_def sd_it;
1863 dep_t dep;
1865 /* Iterate through DEF-USE forward dependences. */
1866 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
1868 rtx next = DEP_CON (dep);
1870 if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
1871 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
1872 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
1873 && load_insn_bb != INSN_BB (next)
1874 && DEP_TYPE (dep) == REG_DEP_TRUE
1875 && (JUMP_P (next)
1876 || find_conditional_protection (next, load_insn_bb)))
1877 return 1;
1879 return 0;
1880 } /* find_conditional_protection */
1882 /* Returns 1 if the same insn1 that participates in the computation
1883 of load_insn's address is feeding a conditional branch that is
1884 guarding on load_insn. This is true if we find two DEF-USE
1885 chains:
1886 insn1 -> ... -> conditional-branch
1887 insn1 -> ... -> load_insn,
1888 and if a flow path exists:
1889 insn1 -> ... -> conditional-branch -> ... -> load_insn,
1890 and if insn1 is on the path
1891 region-entry -> ... -> bb_trg -> ... load_insn.
1893 Locate insn1 by climbing on INSN_BACK_DEPS from load_insn.
1894 Locate the branch by following INSN_FORW_DEPS from insn1. */
1896 static int
1897 is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
1899 sd_iterator_def sd_it;
1900 dep_t dep;
1902 FOR_EACH_DEP (load_insn, SD_LIST_BACK, sd_it, dep)
1904 rtx insn1 = DEP_PRO (dep);
1906 /* Must be a DEF-USE dependence upon non-branch. */
1907 if (DEP_TYPE (dep) != REG_DEP_TRUE
1908 || JUMP_P (insn1))
1909 continue;
1911 /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
1912 if (INSN_BB (insn1) == bb_src
1913 || (CONTAINING_RGN (BLOCK_NUM (insn1))
1914 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
1915 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
1916 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
1917 continue;
1919 /* Now search for the conditional-branch. */
1920 if (find_conditional_protection (insn1, bb_src))
1921 return 1;
1923 /* Recursive step: search another insn1, "above" current insn1. */
1924 return is_conditionally_protected (insn1, bb_src, bb_trg);
1927 /* The chain does not exist. */
1928 return 0;
1929 } /* is_conditionally_protected */
1931 /* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
1932 load_insn can move speculatively from bb_src to bb_trg. All the
1933 following must hold:
1935 (1) both loads have 1 base register (PFREE_CANDIDATEs).
1936 (2) load_insn and load1 have a def-use dependence upon
1937 the same insn 'insn1'.
1938 (3) either load2 is in bb_trg, or:
1939 - there's only one split-block, and
1940 - load1 is on the escape path, and
1942 From all these we can conclude that the two loads access memory
1943 addresses that differ at most by a constant, and hence if moving
1944 load_insn would cause an exception, it would have been caused by
1945 load2 anyhow. */
1947 static int
1948 is_pfree (rtx load_insn, int bb_src, int bb_trg)
1950 sd_iterator_def back_sd_it;
1951 dep_t back_dep;
1952 candidate *candp = candidate_table + bb_src;
1954 if (candp->split_bbs.nr_members != 1)
1955 /* Must have exactly one escape block. */
1956 return 0;
1958 FOR_EACH_DEP (load_insn, SD_LIST_BACK, back_sd_it, back_dep)
1960 rtx insn1 = DEP_PRO (back_dep);
1962 if (DEP_TYPE (back_dep) == REG_DEP_TRUE)
1963 /* Found a DEF-USE dependence (insn1, load_insn). */
1965 sd_iterator_def fore_sd_it;
1966 dep_t fore_dep;
1968 FOR_EACH_DEP (insn1, SD_LIST_FORW, fore_sd_it, fore_dep)
1970 rtx insn2 = DEP_CON (fore_dep);
1972 if (DEP_TYPE (fore_dep) == REG_DEP_TRUE)
1974 /* Found a DEF-USE dependence (insn1, insn2). */
1975 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
1976 /* insn2 not guaranteed to be a 1 base reg load. */
1977 continue;
1979 if (INSN_BB (insn2) == bb_trg)
1980 /* insn2 is the similar load, in the target block. */
1981 return 1;
1983 if (*(candp->split_bbs.first_member) == BLOCK_FOR_INSN (insn2))
1984 /* insn2 is a similar load, in a split-block. */
1985 return 1;
1991 /* Couldn't find a similar load. */
1992 return 0;
1993 } /* is_pfree */
1995 /* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
1996 a load moved speculatively, or if load_insn is protected by
1997 a compare on load_insn's address). */
1999 static int
2000 is_prisky (rtx load_insn, int bb_src, int bb_trg)
2002 if (FED_BY_SPEC_LOAD (load_insn))
2003 return 1;
2005 if (sd_lists_empty_p (load_insn, SD_LIST_BACK))
2006 /* Dependence may 'hide' out of the region. */
2007 return 1;
2009 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
2010 return 1;
2012 return 0;
2015 /* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2016 Return 1 if insn is exception-free (and the motion is valid)
2017 and 0 otherwise. */
2019 static int
2020 is_exception_free (rtx insn, int bb_src, int bb_trg)
2022 int insn_class = haifa_classify_insn (insn);
2024 /* Handle non-load insns. */
2025 switch (insn_class)
2027 case TRAP_FREE:
2028 return 1;
2029 case TRAP_RISKY:
2030 return 0;
2031 default:;
2034 /* Handle loads. */
2035 if (!flag_schedule_speculative_load)
2036 return 0;
2037 IS_LOAD_INSN (insn) = 1;
2038 switch (insn_class)
2040 case IFREE:
2041 return (1);
2042 case IRISKY:
2043 return 0;
2044 case PFREE_CANDIDATE:
2045 if (is_pfree (insn, bb_src, bb_trg))
2046 return 1;
2047 /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
2048 case PRISKY_CANDIDATE:
2049 if (!flag_schedule_speculative_load_dangerous
2050 || is_prisky (insn, bb_src, bb_trg))
2051 return 0;
2052 break;
2053 default:;
2056 return flag_schedule_speculative_load_dangerous;
2059 /* The number of insns from the current block scheduled so far. */
2060 static int sched_target_n_insns;
2061 /* The number of insns from the current block to be scheduled in total. */
2062 static int target_n_insns;
2063 /* The number of insns from the entire region scheduled so far. */
2064 static int sched_n_insns;
2066 /* Implementations of the sched_info functions for region scheduling. */
2067 static void init_ready_list (void);
2068 static int can_schedule_ready_p (rtx);
2069 static void begin_schedule_ready (rtx);
2070 static ds_t new_ready (rtx, ds_t);
2071 static int schedule_more_p (void);
2072 static const char *rgn_print_insn (const_rtx, int);
2073 static int rgn_rank (rtx, rtx);
2074 static void compute_jump_reg_dependencies (rtx, regset);
2076 /* Functions for speculative scheduling. */
2077 static void rgn_add_remove_insn (rtx, int);
2078 static void rgn_add_block (basic_block, basic_block);
2079 static void rgn_fix_recovery_cfg (int, int, int);
2080 static basic_block advance_target_bb (basic_block, rtx);
2082 /* Return nonzero if there are more insns that should be scheduled. */
2084 static int
2085 schedule_more_p (void)
2087 return sched_target_n_insns < target_n_insns;
2090 /* Add all insns that are initially ready to the ready list READY. Called
2091 once before scheduling a set of insns. */
2093 static void
2094 init_ready_list (void)
2096 rtx prev_head = current_sched_info->prev_head;
2097 rtx next_tail = current_sched_info->next_tail;
2098 int bb_src;
2099 rtx insn;
2101 target_n_insns = 0;
2102 sched_target_n_insns = 0;
2103 sched_n_insns = 0;
2105 /* Print debugging information. */
2106 if (sched_verbose >= 5)
2107 debug_rgn_dependencies (target_bb);
2109 /* Prepare current target block info. */
2110 if (current_nr_blocks > 1)
2111 compute_trg_info (target_bb);
2113 /* Initialize ready list with all 'ready' insns in target block.
2114 Count number of insns in the target block being scheduled. */
2115 for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
2117 gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2118 TODO_SPEC (insn) = HARD_DEP;
2119 try_ready (insn);
2120 target_n_insns++;
2122 gcc_assert (!(TODO_SPEC (insn) & BEGIN_CONTROL));
2125 /* Add to ready list all 'ready' insns in valid source blocks.
2126 For speculative insns, check-live, exception-free, and
2127 issue-delay. */
2128 for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
2129 if (IS_VALID (bb_src))
2131 rtx src_head;
2132 rtx src_next_tail;
2133 rtx tail, head;
2135 get_ebb_head_tail (EBB_FIRST_BB (bb_src), EBB_LAST_BB (bb_src),
2136 &head, &tail);
2137 src_next_tail = NEXT_INSN (tail);
2138 src_head = head;
2140 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
2141 if (INSN_P (insn))
2143 gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2144 TODO_SPEC (insn) = HARD_DEP;
2145 try_ready (insn);
2150 /* Called after taking INSN from the ready list. Returns nonzero if this
2151 insn can be scheduled, nonzero if we should silently discard it. */
2153 static int
2154 can_schedule_ready_p (rtx insn)
2156 /* An interblock motion? */
2157 if (INSN_BB (insn) != target_bb
2158 && IS_SPECULATIVE_INSN (insn)
2159 && !check_live (insn, INSN_BB (insn)))
2160 return 0;
2161 else
2162 return 1;
2165 /* Updates counter and other information. Split from can_schedule_ready_p ()
2166 because when we schedule insn speculatively then insn passed to
2167 can_schedule_ready_p () differs from the one passed to
2168 begin_schedule_ready (). */
2169 static void
2170 begin_schedule_ready (rtx insn)
2172 /* An interblock motion? */
2173 if (INSN_BB (insn) != target_bb)
2175 if (IS_SPECULATIVE_INSN (insn))
2177 gcc_assert (check_live (insn, INSN_BB (insn)));
2179 update_live (insn, INSN_BB (insn));
2181 /* For speculative load, mark insns fed by it. */
2182 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
2183 set_spec_fed (insn);
2185 nr_spec++;
2187 nr_inter++;
2189 else
2191 /* In block motion. */
2192 sched_target_n_insns++;
2194 sched_n_insns++;
2197 /* Called after INSN has all its hard dependencies resolved and the speculation
2198 of type TS is enough to overcome them all.
2199 Return nonzero if it should be moved to the ready list or the queue, or zero
2200 if we should silently discard it. */
2201 static ds_t
2202 new_ready (rtx next, ds_t ts)
2204 if (INSN_BB (next) != target_bb)
2206 int not_ex_free = 0;
2208 /* For speculative insns, before inserting to ready/queue,
2209 check live, exception-free, and issue-delay. */
2210 if (!IS_VALID (INSN_BB (next))
2211 || CANT_MOVE (next)
2212 || (IS_SPECULATIVE_INSN (next)
2213 && ((recog_memoized (next) >= 0
2214 && min_insn_conflict_delay (curr_state, next, next)
2215 > PARAM_VALUE (PARAM_MAX_SCHED_INSN_CONFLICT_DELAY))
2216 || IS_SPECULATION_CHECK_P (next)
2217 || !check_live (next, INSN_BB (next))
2218 || (not_ex_free = !is_exception_free (next, INSN_BB (next),
2219 target_bb)))))
2221 if (not_ex_free
2222 /* We are here because is_exception_free () == false.
2223 But we possibly can handle that with control speculation. */
2224 && sched_deps_info->generate_spec_deps
2225 && spec_info->mask & BEGIN_CONTROL)
2227 ds_t new_ds;
2229 /* Add control speculation to NEXT's dependency type. */
2230 new_ds = set_dep_weak (ts, BEGIN_CONTROL, MAX_DEP_WEAK);
2232 /* Check if NEXT can be speculated with new dependency type. */
2233 if (sched_insn_is_legitimate_for_speculation_p (next, new_ds))
2234 /* Here we got new control-speculative instruction. */
2235 ts = new_ds;
2236 else
2237 /* NEXT isn't ready yet. */
2238 ts = DEP_POSTPONED;
2240 else
2241 /* NEXT isn't ready yet. */
2242 ts = DEP_POSTPONED;
2246 return ts;
2249 /* Return a string that contains the insn uid and optionally anything else
2250 necessary to identify this insn in an output. It's valid to use a
2251 static buffer for this. The ALIGNED parameter should cause the string
2252 to be formatted so that multiple output lines will line up nicely. */
2254 static const char *
2255 rgn_print_insn (const_rtx insn, int aligned)
2257 static char tmp[80];
2259 if (aligned)
2260 sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
2261 else
2263 if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
2264 sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
2265 else
2266 sprintf (tmp, "%d", INSN_UID (insn));
2268 return tmp;
2271 /* Compare priority of two insns. Return a positive number if the second
2272 insn is to be preferred for scheduling, and a negative one if the first
2273 is to be preferred. Zero if they are equally good. */
2275 static int
2276 rgn_rank (rtx insn1, rtx insn2)
2278 /* Some comparison make sense in interblock scheduling only. */
2279 if (INSN_BB (insn1) != INSN_BB (insn2))
2281 int spec_val, prob_val;
2283 /* Prefer an inblock motion on an interblock motion. */
2284 if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
2285 return 1;
2286 if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
2287 return -1;
2289 /* Prefer a useful motion on a speculative one. */
2290 spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
2291 if (spec_val)
2292 return spec_val;
2294 /* Prefer a more probable (speculative) insn. */
2295 prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
2296 if (prob_val)
2297 return prob_val;
2299 return 0;
2302 /* NEXT is an instruction that depends on INSN (a backward dependence);
2303 return nonzero if we should include this dependence in priority
2304 calculations. */
2307 contributes_to_priority (rtx next, rtx insn)
2309 /* NEXT and INSN reside in one ebb. */
2310 return BLOCK_TO_BB (BLOCK_NUM (next)) == BLOCK_TO_BB (BLOCK_NUM (insn));
2313 /* INSN is a JUMP_INSN. Store the set of registers that must be
2314 considered as used by this jump in USED. */
2316 static void
2317 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
2318 regset used ATTRIBUTE_UNUSED)
2320 /* Nothing to do here, since we postprocess jumps in
2321 add_branch_dependences. */
2324 /* This variable holds common_sched_info hooks and data relevant to
2325 the interblock scheduler. */
2326 static struct common_sched_info_def rgn_common_sched_info;
2329 /* This holds data for the dependence analysis relevant to
2330 the interblock scheduler. */
2331 static struct sched_deps_info_def rgn_sched_deps_info;
2333 /* This holds constant data used for initializing the above structure
2334 for the Haifa scheduler. */
2335 static const struct sched_deps_info_def rgn_const_sched_deps_info =
2337 compute_jump_reg_dependencies,
2338 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2339 0, 0, 0
2342 /* Same as above, but for the selective scheduler. */
2343 static const struct sched_deps_info_def rgn_const_sel_sched_deps_info =
2345 compute_jump_reg_dependencies,
2346 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2347 0, 0, 0
2350 /* Return true if scheduling INSN will trigger finish of scheduling
2351 current block. */
2352 static bool
2353 rgn_insn_finishes_block_p (rtx insn)
2355 if (INSN_BB (insn) == target_bb
2356 && sched_target_n_insns + 1 == target_n_insns)
2357 /* INSN is the last not-scheduled instruction in the current block. */
2358 return true;
2360 return false;
2363 /* Used in schedule_insns to initialize current_sched_info for scheduling
2364 regions (or single basic blocks). */
2366 static const struct haifa_sched_info rgn_const_sched_info =
2368 init_ready_list,
2369 can_schedule_ready_p,
2370 schedule_more_p,
2371 new_ready,
2372 rgn_rank,
2373 rgn_print_insn,
2374 contributes_to_priority,
2375 rgn_insn_finishes_block_p,
2377 NULL, NULL,
2378 NULL, NULL,
2379 0, 0,
2381 rgn_add_remove_insn,
2382 begin_schedule_ready,
2383 NULL,
2384 advance_target_bb,
2385 NULL, NULL,
2386 SCHED_RGN
2389 /* This variable holds the data and hooks needed to the Haifa scheduler backend
2390 for the interblock scheduler frontend. */
2391 static struct haifa_sched_info rgn_sched_info;
2393 /* Returns maximum priority that an insn was assigned to. */
2396 get_rgn_sched_max_insns_priority (void)
2398 return rgn_sched_info.sched_max_insns_priority;
2401 /* Determine if PAT sets a TARGET_CLASS_LIKELY_SPILLED_P register. */
2403 static bool
2404 sets_likely_spilled (rtx pat)
2406 bool ret = false;
2407 note_stores (pat, sets_likely_spilled_1, &ret);
2408 return ret;
2411 static void
2412 sets_likely_spilled_1 (rtx x, const_rtx pat, void *data)
2414 bool *ret = (bool *) data;
2416 if (GET_CODE (pat) == SET
2417 && REG_P (x)
2418 && HARD_REGISTER_P (x)
2419 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
2420 *ret = true;
2423 /* A bitmap to note insns that participate in any dependency. Used in
2424 add_branch_dependences. */
2425 static sbitmap insn_referenced;
2427 /* Add dependences so that branches are scheduled to run last in their
2428 block. */
2429 static void
2430 add_branch_dependences (rtx head, rtx tail)
2432 rtx insn, last;
2434 /* For all branches, calls, uses, clobbers, cc0 setters, and instructions
2435 that can throw exceptions, force them to remain in order at the end of
2436 the block by adding dependencies and giving the last a high priority.
2437 There may be notes present, and prev_head may also be a note.
2439 Branches must obviously remain at the end. Calls should remain at the
2440 end since moving them results in worse register allocation. Uses remain
2441 at the end to ensure proper register allocation.
2443 cc0 setters remain at the end because they can't be moved away from
2444 their cc0 user.
2446 COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
2448 Insns setting TARGET_CLASS_LIKELY_SPILLED_P registers (usually return
2449 values) are not moved before reload because we can wind up with register
2450 allocation failures. */
2452 while (tail != head && DEBUG_INSN_P (tail))
2453 tail = PREV_INSN (tail);
2455 insn = tail;
2456 last = 0;
2457 while (CALL_P (insn)
2458 || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
2459 || (NONJUMP_INSN_P (insn)
2460 && (GET_CODE (PATTERN (insn)) == USE
2461 || GET_CODE (PATTERN (insn)) == CLOBBER
2462 || can_throw_internal (insn)
2463 #ifdef HAVE_cc0
2464 || sets_cc0_p (PATTERN (insn))
2465 #endif
2466 || (!reload_completed
2467 && sets_likely_spilled (PATTERN (insn)))))
2468 || NOTE_P (insn))
2470 if (!NOTE_P (insn))
2472 if (last != 0
2473 && sd_find_dep_between (insn, last, false) == NULL)
2475 if (! sched_insns_conditions_mutex_p (last, insn))
2476 add_dependence (last, insn, REG_DEP_ANTI);
2477 bitmap_set_bit (insn_referenced, INSN_LUID (insn));
2480 CANT_MOVE (insn) = 1;
2482 last = insn;
2485 /* Don't overrun the bounds of the basic block. */
2486 if (insn == head)
2487 break;
2490 insn = PREV_INSN (insn);
2491 while (insn != head && DEBUG_INSN_P (insn));
2494 /* Make sure these insns are scheduled last in their block. */
2495 insn = last;
2496 if (insn != 0)
2497 while (insn != head)
2499 insn = prev_nonnote_insn (insn);
2501 if (bitmap_bit_p (insn_referenced, INSN_LUID (insn))
2502 || DEBUG_INSN_P (insn))
2503 continue;
2505 if (! sched_insns_conditions_mutex_p (last, insn))
2506 add_dependence (last, insn, REG_DEP_ANTI);
2509 if (!targetm.have_conditional_execution ())
2510 return;
2512 /* Finally, if the block ends in a jump, and we are doing intra-block
2513 scheduling, make sure that the branch depends on any COND_EXEC insns
2514 inside the block to avoid moving the COND_EXECs past the branch insn.
2516 We only have to do this after reload, because (1) before reload there
2517 are no COND_EXEC insns, and (2) the region scheduler is an intra-block
2518 scheduler after reload.
2520 FIXME: We could in some cases move COND_EXEC insns past the branch if
2521 this scheduler would be a little smarter. Consider this code:
2523 T = [addr]
2524 C ? addr += 4
2525 !C ? X += 12
2526 C ? T += 1
2527 C ? jump foo
2529 On a target with a one cycle stall on a memory access the optimal
2530 sequence would be:
2532 T = [addr]
2533 C ? addr += 4
2534 C ? T += 1
2535 C ? jump foo
2536 !C ? X += 12
2538 We don't want to put the 'X += 12' before the branch because it just
2539 wastes a cycle of execution time when the branch is taken.
2541 Note that in the example "!C" will always be true. That is another
2542 possible improvement for handling COND_EXECs in this scheduler: it
2543 could remove always-true predicates. */
2545 if (!reload_completed || ! (JUMP_P (tail) || JUMP_TABLE_DATA_P (tail)))
2546 return;
2548 insn = tail;
2549 while (insn != head)
2551 insn = PREV_INSN (insn);
2553 /* Note that we want to add this dependency even when
2554 sched_insns_conditions_mutex_p returns true. The whole point
2555 is that we _want_ this dependency, even if these insns really
2556 are independent. */
2557 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == COND_EXEC)
2558 add_dependence (tail, insn, REG_DEP_ANTI);
2562 /* Data structures for the computation of data dependences in a regions. We
2563 keep one `deps' structure for every basic block. Before analyzing the
2564 data dependences for a bb, its variables are initialized as a function of
2565 the variables of its predecessors. When the analysis for a bb completes,
2566 we save the contents to the corresponding bb_deps[bb] variable. */
2568 static struct deps_desc *bb_deps;
2570 static void
2571 concat_insn_mem_list (rtx copy_insns, rtx copy_mems, rtx *old_insns_p,
2572 rtx *old_mems_p)
2574 rtx new_insns = *old_insns_p;
2575 rtx new_mems = *old_mems_p;
2577 while (copy_insns)
2579 new_insns = alloc_INSN_LIST (XEXP (copy_insns, 0), new_insns);
2580 new_mems = alloc_EXPR_LIST (VOIDmode, XEXP (copy_mems, 0), new_mems);
2581 copy_insns = XEXP (copy_insns, 1);
2582 copy_mems = XEXP (copy_mems, 1);
2585 *old_insns_p = new_insns;
2586 *old_mems_p = new_mems;
2589 /* Join PRED_DEPS to the SUCC_DEPS. */
2590 void
2591 deps_join (struct deps_desc *succ_deps, struct deps_desc *pred_deps)
2593 unsigned reg;
2594 reg_set_iterator rsi;
2596 /* The reg_last lists are inherited by successor. */
2597 EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg, rsi)
2599 struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
2600 struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
2602 succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
2603 succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
2604 succ_rl->implicit_sets
2605 = concat_INSN_LIST (pred_rl->implicit_sets, succ_rl->implicit_sets);
2606 succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
2607 succ_rl->clobbers);
2608 succ_rl->uses_length += pred_rl->uses_length;
2609 succ_rl->clobbers_length += pred_rl->clobbers_length;
2611 IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
2613 /* Mem read/write lists are inherited by successor. */
2614 concat_insn_mem_list (pred_deps->pending_read_insns,
2615 pred_deps->pending_read_mems,
2616 &succ_deps->pending_read_insns,
2617 &succ_deps->pending_read_mems);
2618 concat_insn_mem_list (pred_deps->pending_write_insns,
2619 pred_deps->pending_write_mems,
2620 &succ_deps->pending_write_insns,
2621 &succ_deps->pending_write_mems);
2623 succ_deps->pending_jump_insns
2624 = concat_INSN_LIST (pred_deps->pending_jump_insns,
2625 succ_deps->pending_jump_insns);
2626 succ_deps->last_pending_memory_flush
2627 = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
2628 succ_deps->last_pending_memory_flush);
2630 succ_deps->pending_read_list_length += pred_deps->pending_read_list_length;
2631 succ_deps->pending_write_list_length += pred_deps->pending_write_list_length;
2632 succ_deps->pending_flush_length += pred_deps->pending_flush_length;
2634 /* last_function_call is inherited by successor. */
2635 succ_deps->last_function_call
2636 = concat_INSN_LIST (pred_deps->last_function_call,
2637 succ_deps->last_function_call);
2639 /* last_function_call_may_noreturn is inherited by successor. */
2640 succ_deps->last_function_call_may_noreturn
2641 = concat_INSN_LIST (pred_deps->last_function_call_may_noreturn,
2642 succ_deps->last_function_call_may_noreturn);
2644 /* sched_before_next_call is inherited by successor. */
2645 succ_deps->sched_before_next_call
2646 = concat_INSN_LIST (pred_deps->sched_before_next_call,
2647 succ_deps->sched_before_next_call);
2650 /* After computing the dependencies for block BB, propagate the dependencies
2651 found in TMP_DEPS to the successors of the block. */
2652 static void
2653 propagate_deps (int bb, struct deps_desc *pred_deps)
2655 basic_block block = BASIC_BLOCK (BB_TO_BLOCK (bb));
2656 edge_iterator ei;
2657 edge e;
2659 /* bb's structures are inherited by its successors. */
2660 FOR_EACH_EDGE (e, ei, block->succs)
2662 /* Only bbs "below" bb, in the same region, are interesting. */
2663 if (e->dest == EXIT_BLOCK_PTR
2664 || CONTAINING_RGN (block->index) != CONTAINING_RGN (e->dest->index)
2665 || BLOCK_TO_BB (e->dest->index) <= bb)
2666 continue;
2668 deps_join (bb_deps + BLOCK_TO_BB (e->dest->index), pred_deps);
2671 /* These lists should point to the right place, for correct
2672 freeing later. */
2673 bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
2674 bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
2675 bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
2676 bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
2677 bb_deps[bb].pending_jump_insns = pred_deps->pending_jump_insns;
2679 /* Can't allow these to be freed twice. */
2680 pred_deps->pending_read_insns = 0;
2681 pred_deps->pending_read_mems = 0;
2682 pred_deps->pending_write_insns = 0;
2683 pred_deps->pending_write_mems = 0;
2684 pred_deps->pending_jump_insns = 0;
2687 /* Compute dependences inside bb. In a multiple blocks region:
2688 (1) a bb is analyzed after its predecessors, and (2) the lists in
2689 effect at the end of bb (after analyzing for bb) are inherited by
2690 bb's successors.
2692 Specifically for reg-reg data dependences, the block insns are
2693 scanned by sched_analyze () top-to-bottom. Three lists are
2694 maintained by sched_analyze (): reg_last[].sets for register DEFs,
2695 reg_last[].implicit_sets for implicit hard register DEFs, and
2696 reg_last[].uses for register USEs.
2698 When analysis is completed for bb, we update for its successors:
2699 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2700 ; - IMPLICIT_DEFS[succ] = Union (IMPLICIT_DEFS [succ], IMPLICIT_DEFS [bb])
2701 ; - USES[succ] = Union (USES [succ], DEFS [bb])
2703 The mechanism for computing mem-mem data dependence is very
2704 similar, and the result is interblock dependences in the region. */
2706 static void
2707 compute_block_dependences (int bb)
2709 rtx head, tail;
2710 struct deps_desc tmp_deps;
2712 tmp_deps = bb_deps[bb];
2714 /* Do the analysis for this block. */
2715 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2716 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2718 sched_analyze (&tmp_deps, head, tail);
2720 /* Selective scheduling handles control dependencies by itself. */
2721 if (!sel_sched_p ())
2722 add_branch_dependences (head, tail);
2724 if (current_nr_blocks > 1)
2725 propagate_deps (bb, &tmp_deps);
2727 /* Free up the INSN_LISTs. */
2728 free_deps (&tmp_deps);
2730 if (targetm.sched.dependencies_evaluation_hook)
2731 targetm.sched.dependencies_evaluation_hook (head, tail);
2734 /* Free dependencies of instructions inside BB. */
2735 static void
2736 free_block_dependencies (int bb)
2738 rtx head;
2739 rtx tail;
2741 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2743 if (no_real_insns_p (head, tail))
2744 return;
2746 sched_free_deps (head, tail, true);
2749 /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2750 them to the unused_*_list variables, so that they can be reused. */
2752 static void
2753 free_pending_lists (void)
2755 int bb;
2757 for (bb = 0; bb < current_nr_blocks; bb++)
2759 free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
2760 free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
2761 free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
2762 free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
2763 free_INSN_LIST_list (&bb_deps[bb].pending_jump_insns);
2767 /* Print dependences for debugging starting from FROM_BB.
2768 Callable from debugger. */
2769 /* Print dependences for debugging starting from FROM_BB.
2770 Callable from debugger. */
2771 DEBUG_FUNCTION void
2772 debug_rgn_dependencies (int from_bb)
2774 int bb;
2776 fprintf (sched_dump,
2777 ";; --------------- forward dependences: ------------ \n");
2779 for (bb = from_bb; bb < current_nr_blocks; bb++)
2781 rtx head, tail;
2783 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2784 fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
2785 BB_TO_BLOCK (bb), bb);
2787 debug_dependencies (head, tail);
2791 /* Print dependencies information for instructions between HEAD and TAIL.
2792 ??? This function would probably fit best in haifa-sched.c. */
2793 void debug_dependencies (rtx head, rtx tail)
2795 rtx insn;
2796 rtx next_tail = NEXT_INSN (tail);
2798 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2799 "insn", "code", "bb", "dep", "prio", "cost",
2800 "reservation");
2801 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2802 "----", "----", "--", "---", "----", "----",
2803 "-----------");
2805 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
2807 if (! INSN_P (insn))
2809 int n;
2810 fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
2811 if (NOTE_P (insn))
2813 n = NOTE_KIND (insn);
2814 fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
2816 else
2817 fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
2818 continue;
2821 fprintf (sched_dump,
2822 ";; %s%5d%6d%6d%6d%6d%6d ",
2823 (SCHED_GROUP_P (insn) ? "+" : " "),
2824 INSN_UID (insn),
2825 INSN_CODE (insn),
2826 BLOCK_NUM (insn),
2827 sched_emulate_haifa_p ? -1 : sd_lists_size (insn, SD_LIST_BACK),
2828 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2829 : INSN_PRIORITY (insn))
2830 : INSN_PRIORITY (insn)),
2831 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2832 : insn_cost (insn))
2833 : insn_cost (insn)));
2835 if (recog_memoized (insn) < 0)
2836 fprintf (sched_dump, "nothing");
2837 else
2838 print_reservation (sched_dump, insn);
2840 fprintf (sched_dump, "\t: ");
2842 sd_iterator_def sd_it;
2843 dep_t dep;
2845 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
2846 fprintf (sched_dump, "%d%s%s ", INSN_UID (DEP_CON (dep)),
2847 DEP_NONREG (dep) ? "n" : "",
2848 DEP_MULTIPLE (dep) ? "m" : "");
2850 fprintf (sched_dump, "\n");
2853 fprintf (sched_dump, "\n");
2856 /* Returns true if all the basic blocks of the current region have
2857 NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region. */
2858 bool
2859 sched_is_disabled_for_current_region_p (void)
2861 int bb;
2863 for (bb = 0; bb < current_nr_blocks; bb++)
2864 if (!(BASIC_BLOCK (BB_TO_BLOCK (bb))->flags & BB_DISABLE_SCHEDULE))
2865 return false;
2867 return true;
2870 /* Free all region dependencies saved in INSN_BACK_DEPS and
2871 INSN_RESOLVED_BACK_DEPS. The Haifa scheduler does this on the fly
2872 when scheduling, so this function is supposed to be called from
2873 the selective scheduling only. */
2874 void
2875 free_rgn_deps (void)
2877 int bb;
2879 for (bb = 0; bb < current_nr_blocks; bb++)
2881 rtx head, tail;
2883 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2884 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2886 sched_free_deps (head, tail, false);
2890 static int rgn_n_insns;
2892 /* Compute insn priority for a current region. */
2893 void
2894 compute_priorities (void)
2896 int bb;
2898 current_sched_info->sched_max_insns_priority = 0;
2899 for (bb = 0; bb < current_nr_blocks; bb++)
2901 rtx head, tail;
2903 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2904 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2906 if (no_real_insns_p (head, tail))
2907 continue;
2909 rgn_n_insns += set_priorities (head, tail);
2911 current_sched_info->sched_max_insns_priority++;
2914 /* (Re-)initialize the arrays of DFA states at the end of each basic block.
2916 SAVED_LAST_BASIC_BLOCK is the previous length of the arrays. It must be
2917 zero for the first call to this function, to allocate the arrays for the
2918 first time.
2920 This function is called once during initialization of the scheduler, and
2921 called again to resize the arrays if new basic blocks have been created,
2922 for example for speculation recovery code. */
2924 static void
2925 realloc_bb_state_array (int saved_last_basic_block)
2927 char *old_bb_state_array = bb_state_array;
2928 size_t lbb = (size_t) last_basic_block;
2929 size_t slbb = (size_t) saved_last_basic_block;
2931 /* Nothing to do if nothing changed since the last time this was called. */
2932 if (saved_last_basic_block == last_basic_block)
2933 return;
2935 /* The selective scheduler doesn't use the state arrays. */
2936 if (sel_sched_p ())
2938 gcc_assert (bb_state_array == NULL && bb_state == NULL);
2939 return;
2942 gcc_checking_assert (saved_last_basic_block == 0
2943 || (bb_state_array != NULL && bb_state != NULL));
2945 bb_state_array = XRESIZEVEC (char, bb_state_array, lbb * dfa_state_size);
2946 bb_state = XRESIZEVEC (state_t, bb_state, lbb);
2948 /* If BB_STATE_ARRAY has moved, fixup all the state pointers array.
2949 Otherwise only fixup the newly allocated ones. For the state
2950 array itself, only initialize the new entries. */
2951 bool bb_state_array_moved = (bb_state_array != old_bb_state_array);
2952 for (size_t i = bb_state_array_moved ? 0 : slbb; i < lbb; i++)
2953 bb_state[i] = (state_t) (bb_state_array + i * dfa_state_size);
2954 for (size_t i = slbb; i < lbb; i++)
2955 state_reset (bb_state[i]);
2958 /* Free the arrays of DFA states at the end of each basic block. */
2960 static void
2961 free_bb_state_array (void)
2963 free (bb_state_array);
2964 free (bb_state);
2965 bb_state_array = NULL;
2966 bb_state = NULL;
2969 /* Schedule a region. A region is either an inner loop, a loop-free
2970 subroutine, or a single basic block. Each bb in the region is
2971 scheduled after its flow predecessors. */
2973 static void
2974 schedule_region (int rgn)
2976 int bb;
2977 int sched_rgn_n_insns = 0;
2979 rgn_n_insns = 0;
2981 rgn_setup_region (rgn);
2983 /* Don't schedule region that is marked by
2984 NOTE_DISABLE_SCHED_OF_BLOCK. */
2985 if (sched_is_disabled_for_current_region_p ())
2986 return;
2988 sched_rgn_compute_dependencies (rgn);
2990 sched_rgn_local_init (rgn);
2992 /* Set priorities. */
2993 compute_priorities ();
2995 sched_extend_ready_list (rgn_n_insns);
2997 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2999 sched_init_region_reg_pressure_info ();
3000 for (bb = 0; bb < current_nr_blocks; bb++)
3002 basic_block first_bb, last_bb;
3003 rtx head, tail;
3005 first_bb = EBB_FIRST_BB (bb);
3006 last_bb = EBB_LAST_BB (bb);
3008 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3010 if (no_real_insns_p (head, tail))
3012 gcc_assert (first_bb == last_bb);
3013 continue;
3015 sched_setup_bb_reg_pressure_info (first_bb, PREV_INSN (head));
3019 /* Now we can schedule all blocks. */
3020 for (bb = 0; bb < current_nr_blocks; bb++)
3022 basic_block first_bb, last_bb, curr_bb;
3023 rtx head, tail;
3025 first_bb = EBB_FIRST_BB (bb);
3026 last_bb = EBB_LAST_BB (bb);
3028 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3030 if (no_real_insns_p (head, tail))
3032 gcc_assert (first_bb == last_bb);
3033 continue;
3036 current_sched_info->prev_head = PREV_INSN (head);
3037 current_sched_info->next_tail = NEXT_INSN (tail);
3039 remove_notes (head, tail);
3041 unlink_bb_notes (first_bb, last_bb);
3043 target_bb = bb;
3045 gcc_assert (flag_schedule_interblock || current_nr_blocks == 1);
3046 current_sched_info->queue_must_finish_empty = current_nr_blocks == 1;
3048 curr_bb = first_bb;
3049 if (dbg_cnt (sched_block))
3051 edge f;
3052 int saved_last_basic_block = last_basic_block;
3054 schedule_block (&curr_bb, bb_state[first_bb->index]);
3055 gcc_assert (EBB_FIRST_BB (bb) == first_bb);
3056 sched_rgn_n_insns += sched_n_insns;
3057 realloc_bb_state_array (saved_last_basic_block);
3058 f = find_fallthru_edge (last_bb->succs);
3059 if (f && f->probability * 100 / REG_BR_PROB_BASE >=
3060 PARAM_VALUE (PARAM_SCHED_STATE_EDGE_PROB_CUTOFF))
3062 memcpy (bb_state[f->dest->index], curr_state,
3063 dfa_state_size);
3064 if (sched_verbose >= 5)
3065 fprintf (sched_dump, "saving state for edge %d->%d\n",
3066 f->src->index, f->dest->index);
3069 else
3071 sched_rgn_n_insns += rgn_n_insns;
3074 /* Clean up. */
3075 if (current_nr_blocks > 1)
3076 free_trg_info ();
3079 /* Sanity check: verify that all region insns were scheduled. */
3080 gcc_assert (sched_rgn_n_insns == rgn_n_insns);
3082 sched_finish_ready_list ();
3084 /* Done with this region. */
3085 sched_rgn_local_finish ();
3087 /* Free dependencies. */
3088 for (bb = 0; bb < current_nr_blocks; ++bb)
3089 free_block_dependencies (bb);
3091 gcc_assert (haifa_recovery_bb_ever_added_p
3092 || deps_pools_are_empty_p ());
3095 /* Initialize data structures for region scheduling. */
3097 void
3098 sched_rgn_init (bool single_blocks_p)
3100 min_spec_prob = ((PARAM_VALUE (PARAM_MIN_SPEC_PROB) * REG_BR_PROB_BASE)
3101 / 100);
3103 nr_inter = 0;
3104 nr_spec = 0;
3106 extend_regions ();
3108 CONTAINING_RGN (ENTRY_BLOCK) = -1;
3109 CONTAINING_RGN (EXIT_BLOCK) = -1;
3111 realloc_bb_state_array (0);
3113 /* Compute regions for scheduling. */
3114 if (single_blocks_p
3115 || n_basic_blocks == NUM_FIXED_BLOCKS + 1
3116 || !flag_schedule_interblock
3117 || is_cfg_nonregular ())
3119 find_single_block_region (sel_sched_p ());
3121 else
3123 /* Compute the dominators and post dominators. */
3124 if (!sel_sched_p ())
3125 calculate_dominance_info (CDI_DOMINATORS);
3127 /* Find regions. */
3128 find_rgns ();
3130 if (sched_verbose >= 3)
3131 debug_regions ();
3133 /* For now. This will move as more and more of haifa is converted
3134 to using the cfg code. */
3135 if (!sel_sched_p ())
3136 free_dominance_info (CDI_DOMINATORS);
3139 gcc_assert (0 < nr_regions && nr_regions <= n_basic_blocks);
3141 RGN_BLOCKS (nr_regions) = (RGN_BLOCKS (nr_regions - 1) +
3142 RGN_NR_BLOCKS (nr_regions - 1));
3145 /* Free data structures for region scheduling. */
3146 void
3147 sched_rgn_finish (void)
3149 free_bb_state_array ();
3151 /* Reposition the prologue and epilogue notes in case we moved the
3152 prologue/epilogue insns. */
3153 if (reload_completed)
3154 reposition_prologue_and_epilogue_notes ();
3156 if (sched_verbose)
3158 if (reload_completed == 0
3159 && flag_schedule_interblock)
3161 fprintf (sched_dump,
3162 "\n;; Procedure interblock/speculative motions == %d/%d \n",
3163 nr_inter, nr_spec);
3165 else
3166 gcc_assert (nr_inter <= 0);
3167 fprintf (sched_dump, "\n\n");
3170 nr_regions = 0;
3172 free (rgn_table);
3173 rgn_table = NULL;
3175 free (rgn_bb_table);
3176 rgn_bb_table = NULL;
3178 free (block_to_bb);
3179 block_to_bb = NULL;
3181 free (containing_rgn);
3182 containing_rgn = NULL;
3184 free (ebb_head);
3185 ebb_head = NULL;
3188 /* Setup global variables like CURRENT_BLOCKS and CURRENT_NR_BLOCK to
3189 point to the region RGN. */
3190 void
3191 rgn_setup_region (int rgn)
3193 int bb;
3195 /* Set variables for the current region. */
3196 current_nr_blocks = RGN_NR_BLOCKS (rgn);
3197 current_blocks = RGN_BLOCKS (rgn);
3199 /* EBB_HEAD is a region-scope structure. But we realloc it for
3200 each region to save time/memory/something else.
3201 See comments in add_block1, for what reasons we allocate +1 element. */
3202 ebb_head = XRESIZEVEC (int, ebb_head, current_nr_blocks + 1);
3203 for (bb = 0; bb <= current_nr_blocks; bb++)
3204 ebb_head[bb] = current_blocks + bb;
3207 /* Compute instruction dependencies in region RGN. */
3208 void
3209 sched_rgn_compute_dependencies (int rgn)
3211 if (!RGN_DONT_CALC_DEPS (rgn))
3213 int bb;
3215 if (sel_sched_p ())
3216 sched_emulate_haifa_p = 1;
3218 init_deps_global ();
3220 /* Initializations for region data dependence analysis. */
3221 bb_deps = XNEWVEC (struct deps_desc, current_nr_blocks);
3222 for (bb = 0; bb < current_nr_blocks; bb++)
3223 init_deps (bb_deps + bb, false);
3225 /* Initialize bitmap used in add_branch_dependences. */
3226 insn_referenced = sbitmap_alloc (sched_max_luid);
3227 bitmap_clear (insn_referenced);
3229 /* Compute backward dependencies. */
3230 for (bb = 0; bb < current_nr_blocks; bb++)
3231 compute_block_dependences (bb);
3233 sbitmap_free (insn_referenced);
3234 free_pending_lists ();
3235 finish_deps_global ();
3236 free (bb_deps);
3238 /* We don't want to recalculate this twice. */
3239 RGN_DONT_CALC_DEPS (rgn) = 1;
3241 if (sel_sched_p ())
3242 sched_emulate_haifa_p = 0;
3244 else
3245 /* (This is a recovery block. It is always a single block region.)
3246 OR (We use selective scheduling.) */
3247 gcc_assert (current_nr_blocks == 1 || sel_sched_p ());
3250 /* Init region data structures. Returns true if this region should
3251 not be scheduled. */
3252 void
3253 sched_rgn_local_init (int rgn)
3255 int bb;
3257 /* Compute interblock info: probabilities, split-edges, dominators, etc. */
3258 if (current_nr_blocks > 1)
3260 basic_block block;
3261 edge e;
3262 edge_iterator ei;
3264 prob = XNEWVEC (int, current_nr_blocks);
3266 dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
3267 bitmap_vector_clear (dom, current_nr_blocks);
3269 /* Use ->aux to implement EDGE_TO_BIT mapping. */
3270 rgn_nr_edges = 0;
3271 FOR_EACH_BB (block)
3273 if (CONTAINING_RGN (block->index) != rgn)
3274 continue;
3275 FOR_EACH_EDGE (e, ei, block->succs)
3276 SET_EDGE_TO_BIT (e, rgn_nr_edges++);
3279 rgn_edges = XNEWVEC (edge, rgn_nr_edges);
3280 rgn_nr_edges = 0;
3281 FOR_EACH_BB (block)
3283 if (CONTAINING_RGN (block->index) != rgn)
3284 continue;
3285 FOR_EACH_EDGE (e, ei, block->succs)
3286 rgn_edges[rgn_nr_edges++] = e;
3289 /* Split edges. */
3290 pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3291 bitmap_vector_clear (pot_split, current_nr_blocks);
3292 ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3293 bitmap_vector_clear (ancestor_edges, current_nr_blocks);
3295 /* Compute probabilities, dominators, split_edges. */
3296 for (bb = 0; bb < current_nr_blocks; bb++)
3297 compute_dom_prob_ps (bb);
3299 /* Cleanup ->aux used for EDGE_TO_BIT mapping. */
3300 /* We don't need them anymore. But we want to avoid duplication of
3301 aux fields in the newly created edges. */
3302 FOR_EACH_BB (block)
3304 if (CONTAINING_RGN (block->index) != rgn)
3305 continue;
3306 FOR_EACH_EDGE (e, ei, block->succs)
3307 e->aux = NULL;
3312 /* Free data computed for the finished region. */
3313 void
3314 sched_rgn_local_free (void)
3316 free (prob);
3317 sbitmap_vector_free (dom);
3318 sbitmap_vector_free (pot_split);
3319 sbitmap_vector_free (ancestor_edges);
3320 free (rgn_edges);
3323 /* Free data computed for the finished region. */
3324 void
3325 sched_rgn_local_finish (void)
3327 if (current_nr_blocks > 1 && !sel_sched_p ())
3329 sched_rgn_local_free ();
3333 /* Setup scheduler infos. */
3334 void
3335 rgn_setup_common_sched_info (void)
3337 memcpy (&rgn_common_sched_info, &haifa_common_sched_info,
3338 sizeof (rgn_common_sched_info));
3340 rgn_common_sched_info.fix_recovery_cfg = rgn_fix_recovery_cfg;
3341 rgn_common_sched_info.add_block = rgn_add_block;
3342 rgn_common_sched_info.estimate_number_of_insns
3343 = rgn_estimate_number_of_insns;
3344 rgn_common_sched_info.sched_pass_id = SCHED_RGN_PASS;
3346 common_sched_info = &rgn_common_sched_info;
3349 /* Setup all *_sched_info structures (for the Haifa frontend
3350 and for the dependence analysis) in the interblock scheduler. */
3351 void
3352 rgn_setup_sched_infos (void)
3354 if (!sel_sched_p ())
3355 memcpy (&rgn_sched_deps_info, &rgn_const_sched_deps_info,
3356 sizeof (rgn_sched_deps_info));
3357 else
3358 memcpy (&rgn_sched_deps_info, &rgn_const_sel_sched_deps_info,
3359 sizeof (rgn_sched_deps_info));
3361 sched_deps_info = &rgn_sched_deps_info;
3363 memcpy (&rgn_sched_info, &rgn_const_sched_info, sizeof (rgn_sched_info));
3364 current_sched_info = &rgn_sched_info;
3367 /* The one entry point in this file. */
3368 void
3369 schedule_insns (void)
3371 int rgn;
3373 /* Taking care of this degenerate case makes the rest of
3374 this code simpler. */
3375 if (n_basic_blocks == NUM_FIXED_BLOCKS)
3376 return;
3378 rgn_setup_common_sched_info ();
3379 rgn_setup_sched_infos ();
3381 haifa_sched_init ();
3382 sched_rgn_init (reload_completed);
3384 bitmap_initialize (&not_in_df, 0);
3385 bitmap_clear (&not_in_df);
3387 /* Schedule every region in the subroutine. */
3388 for (rgn = 0; rgn < nr_regions; rgn++)
3389 if (dbg_cnt (sched_region))
3390 schedule_region (rgn);
3392 /* Clean up. */
3393 sched_rgn_finish ();
3394 bitmap_clear (&not_in_df);
3396 haifa_sched_finish ();
3399 /* INSN has been added to/removed from current region. */
3400 static void
3401 rgn_add_remove_insn (rtx insn, int remove_p)
3403 if (!remove_p)
3404 rgn_n_insns++;
3405 else
3406 rgn_n_insns--;
3408 if (INSN_BB (insn) == target_bb)
3410 if (!remove_p)
3411 target_n_insns++;
3412 else
3413 target_n_insns--;
3417 /* Extend internal data structures. */
3418 void
3419 extend_regions (void)
3421 rgn_table = XRESIZEVEC (region, rgn_table, n_basic_blocks);
3422 rgn_bb_table = XRESIZEVEC (int, rgn_bb_table, n_basic_blocks);
3423 block_to_bb = XRESIZEVEC (int, block_to_bb, last_basic_block);
3424 containing_rgn = XRESIZEVEC (int, containing_rgn, last_basic_block);
3427 void
3428 rgn_make_new_region_out_of_new_block (basic_block bb)
3430 int i;
3432 i = RGN_BLOCKS (nr_regions);
3433 /* I - first free position in rgn_bb_table. */
3435 rgn_bb_table[i] = bb->index;
3436 RGN_NR_BLOCKS (nr_regions) = 1;
3437 RGN_HAS_REAL_EBB (nr_regions) = 0;
3438 RGN_DONT_CALC_DEPS (nr_regions) = 0;
3439 CONTAINING_RGN (bb->index) = nr_regions;
3440 BLOCK_TO_BB (bb->index) = 0;
3442 nr_regions++;
3444 RGN_BLOCKS (nr_regions) = i + 1;
3447 /* BB was added to ebb after AFTER. */
3448 static void
3449 rgn_add_block (basic_block bb, basic_block after)
3451 extend_regions ();
3452 bitmap_set_bit (&not_in_df, bb->index);
3454 if (after == 0 || after == EXIT_BLOCK_PTR)
3456 rgn_make_new_region_out_of_new_block (bb);
3457 RGN_DONT_CALC_DEPS (nr_regions - 1) = (after == EXIT_BLOCK_PTR);
3459 else
3461 int i, pos;
3463 /* We need to fix rgn_table, block_to_bb, containing_rgn
3464 and ebb_head. */
3466 BLOCK_TO_BB (bb->index) = BLOCK_TO_BB (after->index);
3468 /* We extend ebb_head to one more position to
3469 easily find the last position of the last ebb in
3470 the current region. Thus, ebb_head[BLOCK_TO_BB (after) + 1]
3471 is _always_ valid for access. */
3473 i = BLOCK_TO_BB (after->index) + 1;
3474 pos = ebb_head[i] - 1;
3475 /* Now POS is the index of the last block in the region. */
3477 /* Find index of basic block AFTER. */
3478 for (; rgn_bb_table[pos] != after->index; pos--)
3481 pos++;
3482 gcc_assert (pos > ebb_head[i - 1]);
3484 /* i - ebb right after "AFTER". */
3485 /* ebb_head[i] - VALID. */
3487 /* Source position: ebb_head[i]
3488 Destination position: ebb_head[i] + 1
3489 Last position:
3490 RGN_BLOCKS (nr_regions) - 1
3491 Number of elements to copy: (last_position) - (source_position) + 1
3494 memmove (rgn_bb_table + pos + 1,
3495 rgn_bb_table + pos,
3496 ((RGN_BLOCKS (nr_regions) - 1) - (pos) + 1)
3497 * sizeof (*rgn_bb_table));
3499 rgn_bb_table[pos] = bb->index;
3501 for (; i <= current_nr_blocks; i++)
3502 ebb_head [i]++;
3504 i = CONTAINING_RGN (after->index);
3505 CONTAINING_RGN (bb->index) = i;
3507 RGN_HAS_REAL_EBB (i) = 1;
3509 for (++i; i <= nr_regions; i++)
3510 RGN_BLOCKS (i)++;
3514 /* Fix internal data after interblock movement of jump instruction.
3515 For parameter meaning please refer to
3516 sched-int.h: struct sched_info: fix_recovery_cfg. */
3517 static void
3518 rgn_fix_recovery_cfg (int bbi, int check_bbi, int check_bb_nexti)
3520 int old_pos, new_pos, i;
3522 BLOCK_TO_BB (check_bb_nexti) = BLOCK_TO_BB (bbi);
3524 for (old_pos = ebb_head[BLOCK_TO_BB (check_bbi) + 1] - 1;
3525 rgn_bb_table[old_pos] != check_bb_nexti;
3526 old_pos--)
3528 gcc_assert (old_pos > ebb_head[BLOCK_TO_BB (check_bbi)]);
3530 for (new_pos = ebb_head[BLOCK_TO_BB (bbi) + 1] - 1;
3531 rgn_bb_table[new_pos] != bbi;
3532 new_pos--)
3534 new_pos++;
3535 gcc_assert (new_pos > ebb_head[BLOCK_TO_BB (bbi)]);
3537 gcc_assert (new_pos < old_pos);
3539 memmove (rgn_bb_table + new_pos + 1,
3540 rgn_bb_table + new_pos,
3541 (old_pos - new_pos) * sizeof (*rgn_bb_table));
3543 rgn_bb_table[new_pos] = check_bb_nexti;
3545 for (i = BLOCK_TO_BB (bbi) + 1; i <= BLOCK_TO_BB (check_bbi); i++)
3546 ebb_head[i]++;
3549 /* Return next block in ebb chain. For parameter meaning please refer to
3550 sched-int.h: struct sched_info: advance_target_bb. */
3551 static basic_block
3552 advance_target_bb (basic_block bb, rtx insn)
3554 if (insn)
3555 return 0;
3557 gcc_assert (BLOCK_TO_BB (bb->index) == target_bb
3558 && BLOCK_TO_BB (bb->next_bb->index) == target_bb);
3559 return bb->next_bb;
3562 #endif
3564 static bool
3565 gate_handle_sched (void)
3567 #ifdef INSN_SCHEDULING
3568 return optimize > 0 && flag_schedule_insns && dbg_cnt (sched_func);
3569 #else
3570 return 0;
3571 #endif
3574 /* Run instruction scheduler. */
3575 static unsigned int
3576 rest_of_handle_sched (void)
3578 #ifdef INSN_SCHEDULING
3579 if (flag_selective_scheduling
3580 && ! maybe_skip_selective_scheduling ())
3581 run_selective_scheduling ();
3582 else
3583 schedule_insns ();
3584 #endif
3585 return 0;
3588 static bool
3589 gate_handle_sched2 (void)
3591 #ifdef INSN_SCHEDULING
3592 return optimize > 0 && flag_schedule_insns_after_reload
3593 && !targetm.delay_sched2 && dbg_cnt (sched2_func);
3594 #else
3595 return 0;
3596 #endif
3599 /* Run second scheduling pass after reload. */
3600 static unsigned int
3601 rest_of_handle_sched2 (void)
3603 #ifdef INSN_SCHEDULING
3604 if (flag_selective_scheduling2
3605 && ! maybe_skip_selective_scheduling ())
3606 run_selective_scheduling ();
3607 else
3609 /* Do control and data sched analysis again,
3610 and write some more of the results to dump file. */
3611 if (flag_sched2_use_superblocks)
3612 schedule_ebbs ();
3613 else
3614 schedule_insns ();
3616 #endif
3617 return 0;
3620 namespace {
3622 const pass_data pass_data_sched =
3624 RTL_PASS, /* type */
3625 "sched1", /* name */
3626 OPTGROUP_NONE, /* optinfo_flags */
3627 true, /* has_gate */
3628 true, /* has_execute */
3629 TV_SCHED, /* tv_id */
3630 0, /* properties_required */
3631 0, /* properties_provided */
3632 0, /* properties_destroyed */
3633 0, /* todo_flags_start */
3634 ( TODO_df_finish | TODO_verify_rtl_sharing
3635 | TODO_verify_flow ), /* todo_flags_finish */
3638 class pass_sched : public rtl_opt_pass
3640 public:
3641 pass_sched(gcc::context *ctxt)
3642 : rtl_opt_pass(pass_data_sched, ctxt)
3645 /* opt_pass methods: */
3646 bool gate () { return gate_handle_sched (); }
3647 unsigned int execute () { return rest_of_handle_sched (); }
3649 }; // class pass_sched
3651 } // anon namespace
3653 rtl_opt_pass *
3654 make_pass_sched (gcc::context *ctxt)
3656 return new pass_sched (ctxt);
3659 namespace {
3661 const pass_data pass_data_sched2 =
3663 RTL_PASS, /* type */
3664 "sched2", /* name */
3665 OPTGROUP_NONE, /* optinfo_flags */
3666 true, /* has_gate */
3667 true, /* has_execute */
3668 TV_SCHED2, /* tv_id */
3669 0, /* properties_required */
3670 0, /* properties_provided */
3671 0, /* properties_destroyed */
3672 0, /* todo_flags_start */
3673 ( TODO_df_finish | TODO_verify_rtl_sharing
3674 | TODO_verify_flow ), /* todo_flags_finish */
3677 class pass_sched2 : public rtl_opt_pass
3679 public:
3680 pass_sched2(gcc::context *ctxt)
3681 : rtl_opt_pass(pass_data_sched2, ctxt)
3684 /* opt_pass methods: */
3685 bool gate () { return gate_handle_sched2 (); }
3686 unsigned int execute () { return rest_of_handle_sched2 (); }
3688 }; // class pass_sched2
3690 } // anon namespace
3692 rtl_opt_pass *
3693 make_pass_sched2 (gcc::context *ctxt)
3695 return new pass_sched2 (ctxt);