1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
29 #include "hard-reg-set.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
34 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
40 #include "typeclass.h"
42 #include "langhooks.h"
45 #include "tree-iterator.h"
48 #include "common/common-target.h"
51 #include "diagnostic.h"
52 #include "ssaexpand.h"
53 #include "target-globals.h"
56 /* Decide whether a function's arguments should be processed
57 from first to last or from last to first.
59 They should if the stack and args grow in opposite directions, but
60 only if we have push insns. */
64 #ifndef PUSH_ARGS_REVERSED
65 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
66 #define PUSH_ARGS_REVERSED /* If it's last to first. */
72 #ifndef STACK_PUSH_CODE
73 #ifdef STACK_GROWS_DOWNWARD
74 #define STACK_PUSH_CODE PRE_DEC
76 #define STACK_PUSH_CODE PRE_INC
81 /* If this is nonzero, we do not bother generating VOLATILE
82 around volatile memory references, and we are willing to
83 output indirect addresses. If cse is to follow, we reject
84 indirect addresses so a useful potential cse is generated;
85 if it is used only once, instruction combination will produce
86 the same indirect address eventually. */
89 /* This structure is used by move_by_pieces to describe the move to
91 struct move_by_pieces_d
100 int explicit_inc_from
;
101 unsigned HOST_WIDE_INT len
;
102 HOST_WIDE_INT offset
;
106 /* This structure is used by store_by_pieces to describe the clear to
109 struct store_by_pieces_d
115 unsigned HOST_WIDE_INT len
;
116 HOST_WIDE_INT offset
;
117 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
);
122 static void move_by_pieces_1 (insn_gen_fn
, machine_mode
,
123 struct move_by_pieces_d
*);
124 static bool block_move_libcall_safe_for_call_parm (void);
125 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned, unsigned, HOST_WIDE_INT
);
126 static tree
emit_block_move_libcall_fn (int);
127 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
128 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, enum machine_mode
);
129 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
130 static void store_by_pieces_1 (struct store_by_pieces_d
*, unsigned int);
131 static void store_by_pieces_2 (insn_gen_fn
, machine_mode
,
132 struct store_by_pieces_d
*);
133 static tree
clear_storage_libcall_fn (int);
134 static rtx
compress_float_constant (rtx
, rtx
);
135 static rtx
get_subtarget (rtx
);
136 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
137 HOST_WIDE_INT
, enum machine_mode
,
138 tree
, int, alias_set_type
);
139 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
140 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
,
141 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
142 enum machine_mode
, tree
, alias_set_type
, bool);
144 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
146 static int is_aligning_offset (const_tree
, const_tree
);
147 static void expand_operands (tree
, tree
, rtx
, rtx
*, rtx
*,
148 enum expand_modifier
);
149 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
150 static rtx
do_store_flag (sepops
, rtx
, enum machine_mode
);
152 static void emit_single_push_insn (enum machine_mode
, rtx
, tree
);
154 static void do_tablejump (rtx
, enum machine_mode
, rtx
, rtx
, rtx
, int);
155 static rtx
const_vector_from_tree (tree
);
156 static void write_complex_part (rtx
, rtx
, bool);
158 /* This macro is used to determine whether move_by_pieces should be called
159 to perform a structure copy. */
160 #ifndef MOVE_BY_PIECES_P
161 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
162 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
163 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
166 /* This macro is used to determine whether clear_by_pieces should be
167 called to clear storage. */
168 #ifndef CLEAR_BY_PIECES_P
169 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
170 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
171 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
174 /* This macro is used to determine whether store_by_pieces should be
175 called to "memset" storage with byte values other than zero. */
176 #ifndef SET_BY_PIECES_P
177 #define SET_BY_PIECES_P(SIZE, ALIGN) \
178 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
179 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
182 /* This macro is used to determine whether store_by_pieces should be
183 called to "memcpy" storage when the source is a constant string. */
184 #ifndef STORE_BY_PIECES_P
185 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
186 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
190 /* This is run to set up which modes can be used
191 directly in memory and to initialize the block move optab. It is run
192 at the beginning of compilation and when the target is reinitialized. */
195 init_expr_target (void)
198 enum machine_mode mode
;
203 /* Try indexing by frame ptr and try by stack ptr.
204 It is known that on the Convex the stack ptr isn't a valid index.
205 With luck, one or the other is valid on any machine. */
206 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
207 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
209 /* A scratch register we can modify in-place below to avoid
210 useless RTL allocations. */
211 reg
= gen_rtx_REG (VOIDmode
, -1);
213 insn
= rtx_alloc (INSN
);
214 pat
= gen_rtx_SET (VOIDmode
, NULL_RTX
, NULL_RTX
);
215 PATTERN (insn
) = pat
;
217 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
218 mode
= (enum machine_mode
) ((int) mode
+ 1))
222 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
223 PUT_MODE (mem
, mode
);
224 PUT_MODE (mem1
, mode
);
225 PUT_MODE (reg
, mode
);
227 /* See if there is some register that can be used in this mode and
228 directly loaded or stored from memory. */
230 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
231 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
232 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
235 if (! HARD_REGNO_MODE_OK (regno
, mode
))
238 SET_REGNO (reg
, regno
);
241 SET_DEST (pat
) = reg
;
242 if (recog (pat
, insn
, &num_clobbers
) >= 0)
243 direct_load
[(int) mode
] = 1;
245 SET_SRC (pat
) = mem1
;
246 SET_DEST (pat
) = reg
;
247 if (recog (pat
, insn
, &num_clobbers
) >= 0)
248 direct_load
[(int) mode
] = 1;
251 SET_DEST (pat
) = mem
;
252 if (recog (pat
, insn
, &num_clobbers
) >= 0)
253 direct_store
[(int) mode
] = 1;
256 SET_DEST (pat
) = mem1
;
257 if (recog (pat
, insn
, &num_clobbers
) >= 0)
258 direct_store
[(int) mode
] = 1;
262 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
264 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
265 mode
= GET_MODE_WIDER_MODE (mode
))
267 enum machine_mode srcmode
;
268 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
269 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
273 ic
= can_extend_p (mode
, srcmode
, 0);
274 if (ic
== CODE_FOR_nothing
)
277 PUT_MODE (mem
, srcmode
);
279 if (insn_operand_matches (ic
, 1, mem
))
280 float_extend_from_mem
[mode
][srcmode
] = true;
285 /* This is run at the start of compiling a function. */
290 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
293 /* Copy data from FROM to TO, where the machine modes are not the same.
294 Both modes may be integer, or both may be floating, or both may be
296 UNSIGNEDP should be nonzero if FROM is an unsigned type.
297 This causes zero-extension instead of sign-extension. */
300 convert_move (rtx to
, rtx from
, int unsignedp
)
302 enum machine_mode to_mode
= GET_MODE (to
);
303 enum machine_mode from_mode
= GET_MODE (from
);
304 int to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
305 int from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
309 /* rtx code for making an equivalent value. */
310 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
311 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
314 gcc_assert (to_real
== from_real
);
315 gcc_assert (to_mode
!= BLKmode
);
316 gcc_assert (from_mode
!= BLKmode
);
318 /* If the source and destination are already the same, then there's
323 /* If FROM is a SUBREG that indicates that we have already done at least
324 the required extension, strip it. We don't handle such SUBREGs as
327 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
328 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from
)))
329 >= GET_MODE_PRECISION (to_mode
))
330 && SUBREG_PROMOTED_UNSIGNED_P (from
) == unsignedp
)
331 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
333 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
335 if (to_mode
== from_mode
336 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
338 emit_move_insn (to
, from
);
342 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
344 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
346 if (VECTOR_MODE_P (to_mode
))
347 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
349 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
351 emit_move_insn (to
, from
);
355 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
357 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
358 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
367 gcc_assert ((GET_MODE_PRECISION (from_mode
)
368 != GET_MODE_PRECISION (to_mode
))
369 || (DECIMAL_FLOAT_MODE_P (from_mode
)
370 != DECIMAL_FLOAT_MODE_P (to_mode
)));
372 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
373 /* Conversion between decimal float and binary float, same size. */
374 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
375 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
380 /* Try converting directly if the insn is supported. */
382 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
383 if (code
!= CODE_FOR_nothing
)
385 emit_unop_insn (code
, to
, from
,
386 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
390 /* Otherwise use a libcall. */
391 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
393 /* Is this conversion implemented yet? */
394 gcc_assert (libcall
);
397 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
399 insns
= get_insns ();
401 emit_libcall_block (insns
, to
, value
,
402 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
404 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
408 /* Handle pointer conversion. */ /* SPEE 900220. */
409 /* Targets are expected to provide conversion insns between PxImode and
410 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
411 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
413 enum machine_mode full_mode
414 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
416 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)
417 != CODE_FOR_nothing
);
419 if (full_mode
!= from_mode
)
420 from
= convert_to_mode (full_mode
, from
, unsignedp
);
421 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
),
425 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
428 enum machine_mode full_mode
429 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
430 convert_optab ctab
= unsignedp
? zext_optab
: sext_optab
;
431 enum insn_code icode
;
433 icode
= convert_optab_handler (ctab
, full_mode
, from_mode
);
434 gcc_assert (icode
!= CODE_FOR_nothing
);
436 if (to_mode
== full_mode
)
438 emit_unop_insn (icode
, to
, from
, UNKNOWN
);
442 new_from
= gen_reg_rtx (full_mode
);
443 emit_unop_insn (icode
, new_from
, from
, UNKNOWN
);
445 /* else proceed to integer conversions below. */
446 from_mode
= full_mode
;
450 /* Make sure both are fixed-point modes or both are not. */
451 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
452 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
453 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
455 /* If we widen from_mode to to_mode and they are in the same class,
456 we won't saturate the result.
457 Otherwise, always saturate the result to play safe. */
458 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
459 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
460 expand_fixed_convert (to
, from
, 0, 0);
462 expand_fixed_convert (to
, from
, 0, 1);
466 /* Now both modes are integers. */
468 /* Handle expanding beyond a word. */
469 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
)
470 && GET_MODE_PRECISION (to_mode
) > BITS_PER_WORD
)
477 enum machine_mode lowpart_mode
;
478 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
480 /* Try converting directly if the insn is supported. */
481 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
484 /* If FROM is a SUBREG, put it into a register. Do this
485 so that we always generate the same set of insns for
486 better cse'ing; if an intermediate assignment occurred,
487 we won't be doing the operation directly on the SUBREG. */
488 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
489 from
= force_reg (from_mode
, from
);
490 emit_unop_insn (code
, to
, from
, equiv_code
);
493 /* Next, try converting via full word. */
494 else if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
495 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
496 != CODE_FOR_nothing
))
498 rtx word_to
= gen_reg_rtx (word_mode
);
501 if (reg_overlap_mentioned_p (to
, from
))
502 from
= force_reg (from_mode
, from
);
505 convert_move (word_to
, from
, unsignedp
);
506 emit_unop_insn (code
, to
, word_to
, equiv_code
);
510 /* No special multiword conversion insn; do it by hand. */
513 /* Since we will turn this into a no conflict block, we must ensure the
514 the source does not overlap the target so force it into an isolated
515 register when maybe so. Likewise for any MEM input, since the
516 conversion sequence might require several references to it and we
517 must ensure we're getting the same value every time. */
519 if (MEM_P (from
) || reg_overlap_mentioned_p (to
, from
))
520 from
= force_reg (from_mode
, from
);
522 /* Get a copy of FROM widened to a word, if necessary. */
523 if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
)
524 lowpart_mode
= word_mode
;
526 lowpart_mode
= from_mode
;
528 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
530 lowpart
= gen_lowpart (lowpart_mode
, to
);
531 emit_move_insn (lowpart
, lowfrom
);
533 /* Compute the value to put in each remaining word. */
535 fill_value
= const0_rtx
;
537 fill_value
= emit_store_flag (gen_reg_rtx (word_mode
),
538 LT
, lowfrom
, const0_rtx
,
541 /* Fill the remaining words. */
542 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
544 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
545 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
547 gcc_assert (subword
);
549 if (fill_value
!= subword
)
550 emit_move_insn (subword
, fill_value
);
553 insns
= get_insns ();
560 /* Truncating multi-word to a word or less. */
561 if (GET_MODE_PRECISION (from_mode
) > BITS_PER_WORD
562 && GET_MODE_PRECISION (to_mode
) <= BITS_PER_WORD
)
565 && ! MEM_VOLATILE_P (from
)
566 && direct_load
[(int) to_mode
]
567 && ! mode_dependent_address_p (XEXP (from
, 0),
568 MEM_ADDR_SPACE (from
)))
570 || GET_CODE (from
) == SUBREG
))
571 from
= force_reg (from_mode
, from
);
572 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
576 /* Now follow all the conversions between integers
577 no more than a word long. */
579 /* For truncation, usually we can just refer to FROM in a narrower mode. */
580 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
581 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, from_mode
))
584 && ! MEM_VOLATILE_P (from
)
585 && direct_load
[(int) to_mode
]
586 && ! mode_dependent_address_p (XEXP (from
, 0),
587 MEM_ADDR_SPACE (from
)))
589 || GET_CODE (from
) == SUBREG
))
590 from
= force_reg (from_mode
, from
);
591 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
592 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
593 from
= copy_to_reg (from
);
594 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
598 /* Handle extension. */
599 if (GET_MODE_PRECISION (to_mode
) > GET_MODE_PRECISION (from_mode
))
601 /* Convert directly if that works. */
602 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
605 emit_unop_insn (code
, to
, from
, equiv_code
);
610 enum machine_mode intermediate
;
614 /* Search for a mode to convert via. */
615 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
616 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
617 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
619 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
620 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, intermediate
)))
621 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
622 != CODE_FOR_nothing
))
624 convert_move (to
, convert_to_mode (intermediate
, from
,
625 unsignedp
), unsignedp
);
629 /* No suitable intermediate mode.
630 Generate what we need with shifts. */
631 shift_amount
= (GET_MODE_PRECISION (to_mode
)
632 - GET_MODE_PRECISION (from_mode
));
633 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
634 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
636 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
639 emit_move_insn (to
, tmp
);
644 /* Support special truncate insns for certain modes. */
645 if (convert_optab_handler (trunc_optab
, to_mode
,
646 from_mode
) != CODE_FOR_nothing
)
648 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
),
653 /* Handle truncation of volatile memrefs, and so on;
654 the things that couldn't be truncated directly,
655 and for which there was no special instruction.
657 ??? Code above formerly short-circuited this, for most integer
658 mode pairs, with a force_reg in from_mode followed by a recursive
659 call to this routine. Appears always to have been wrong. */
660 if (GET_MODE_PRECISION (to_mode
) < GET_MODE_PRECISION (from_mode
))
662 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
663 emit_move_insn (to
, temp
);
667 /* Mode combination is not recognized. */
671 /* Return an rtx for a value that would result
672 from converting X to mode MODE.
673 Both X and MODE may be floating, or both integer.
674 UNSIGNEDP is nonzero if X is an unsigned value.
675 This can be done by referring to a part of X in place
676 or by copying to a new temporary with conversion. */
679 convert_to_mode (enum machine_mode mode
, rtx x
, int unsignedp
)
681 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
684 /* Return an rtx for a value that would result
685 from converting X from mode OLDMODE to mode MODE.
686 Both modes may be floating, or both integer.
687 UNSIGNEDP is nonzero if X is an unsigned value.
689 This can be done by referring to a part of X in place
690 or by copying to a new temporary with conversion.
692 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
695 convert_modes (enum machine_mode mode
, enum machine_mode oldmode
, rtx x
, int unsignedp
)
699 /* If FROM is a SUBREG that indicates that we have already done at least
700 the required extension, strip it. */
702 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
703 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
704 && SUBREG_PROMOTED_UNSIGNED_P (x
) == unsignedp
)
705 x
= gen_lowpart (mode
, x
);
707 if (GET_MODE (x
) != VOIDmode
)
708 oldmode
= GET_MODE (x
);
713 /* There is one case that we must handle specially: If we are converting
714 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
715 we are to interpret the constant as unsigned, gen_lowpart will do
716 the wrong if the constant appears negative. What we want to do is
717 make the high-order word of the constant zero, not all ones. */
719 if (unsignedp
&& GET_MODE_CLASS (mode
) == MODE_INT
720 && GET_MODE_BITSIZE (mode
) == HOST_BITS_PER_DOUBLE_INT
721 && CONST_INT_P (x
) && INTVAL (x
) < 0)
723 double_int val
= double_int::from_uhwi (INTVAL (x
));
725 /* We need to zero extend VAL. */
726 if (oldmode
!= VOIDmode
)
727 val
= val
.zext (GET_MODE_BITSIZE (oldmode
));
729 return immed_double_int_const (val
, mode
);
732 /* We can do this with a gen_lowpart if both desired and current modes
733 are integer, and this is either a constant integer, a register, or a
734 non-volatile MEM. Except for the constant case where MODE is no
735 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
738 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
)
739 || (GET_MODE_CLASS (mode
) == MODE_INT
740 && GET_MODE_CLASS (oldmode
) == MODE_INT
741 && (CONST_DOUBLE_AS_INT_P (x
)
742 || (GET_MODE_PRECISION (mode
) <= GET_MODE_PRECISION (oldmode
)
743 && ((MEM_P (x
) && ! MEM_VOLATILE_P (x
)
744 && direct_load
[(int) mode
])
746 && (! HARD_REGISTER_P (x
)
747 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
748 && TRULY_NOOP_TRUNCATION_MODES_P (mode
,
751 /* ?? If we don't know OLDMODE, we have to assume here that
752 X does not need sign- or zero-extension. This may not be
753 the case, but it's the best we can do. */
754 if (CONST_INT_P (x
) && oldmode
!= VOIDmode
755 && GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (oldmode
))
757 HOST_WIDE_INT val
= INTVAL (x
);
759 /* We must sign or zero-extend in this case. Start by
760 zero-extending, then sign extend if we need to. */
761 val
&= GET_MODE_MASK (oldmode
);
763 && val_signbit_known_set_p (oldmode
, val
))
764 val
|= ~GET_MODE_MASK (oldmode
);
766 return gen_int_mode (val
, mode
);
769 return gen_lowpart (mode
, x
);
772 /* Converting from integer constant into mode is always equivalent to an
774 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
776 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
777 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
780 temp
= gen_reg_rtx (mode
);
781 convert_move (temp
, x
, unsignedp
);
785 /* Return the largest alignment we can use for doing a move (or store)
786 of MAX_PIECES. ALIGN is the largest alignment we could use. */
789 alignment_for_piecewise_move (unsigned int max_pieces
, unsigned int align
)
791 enum machine_mode tmode
;
793 tmode
= mode_for_size (max_pieces
* BITS_PER_UNIT
, MODE_INT
, 1);
794 if (align
>= GET_MODE_ALIGNMENT (tmode
))
795 align
= GET_MODE_ALIGNMENT (tmode
);
798 enum machine_mode tmode
, xmode
;
800 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
802 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
803 if (GET_MODE_SIZE (tmode
) > max_pieces
804 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
807 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
813 /* Return the widest integer mode no wider than SIZE. If no such mode
814 can be found, return VOIDmode. */
816 static enum machine_mode
817 widest_int_mode_for_size (unsigned int size
)
819 enum machine_mode tmode
, mode
= VOIDmode
;
821 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
822 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
823 if (GET_MODE_SIZE (tmode
) < size
)
829 /* STORE_MAX_PIECES is the number of bytes at a time that we can
830 store efficiently. Due to internal GCC limitations, this is
831 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
832 for an immediate constant. */
834 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
836 /* Determine whether the LEN bytes can be moved by using several move
837 instructions. Return nonzero if a call to move_by_pieces should
841 can_move_by_pieces (unsigned HOST_WIDE_INT len ATTRIBUTE_UNUSED
,
842 unsigned int align ATTRIBUTE_UNUSED
)
844 return MOVE_BY_PIECES_P (len
, align
);
847 /* Generate several move instructions to copy LEN bytes from block FROM to
848 block TO. (These are MEM rtx's with BLKmode).
850 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
851 used to push FROM to the stack.
853 ALIGN is maximum stack alignment we can assume.
855 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
856 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
860 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
861 unsigned int align
, int endp
)
863 struct move_by_pieces_d data
;
864 enum machine_mode to_addr_mode
;
865 enum machine_mode from_addr_mode
= get_address_mode (from
);
866 rtx to_addr
, from_addr
= XEXP (from
, 0);
867 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
868 enum insn_code icode
;
870 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
873 data
.from_addr
= from_addr
;
876 to_addr_mode
= get_address_mode (to
);
877 to_addr
= XEXP (to
, 0);
880 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
881 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
883 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
887 to_addr_mode
= VOIDmode
;
891 #ifdef STACK_GROWS_DOWNWARD
897 data
.to_addr
= to_addr
;
900 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
901 || GET_CODE (from_addr
) == POST_INC
902 || GET_CODE (from_addr
) == POST_DEC
);
904 data
.explicit_inc_from
= 0;
905 data
.explicit_inc_to
= 0;
906 if (data
.reverse
) data
.offset
= len
;
909 /* If copying requires more than two move insns,
910 copy addresses to registers (to make displacements shorter)
911 and use post-increment if available. */
912 if (!(data
.autinc_from
&& data
.autinc_to
)
913 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
915 /* Find the mode of the largest move...
916 MODE might not be used depending on the definitions of the
917 USE_* macros below. */
918 enum machine_mode mode ATTRIBUTE_UNUSED
919 = widest_int_mode_for_size (max_size
);
921 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
923 data
.from_addr
= copy_to_mode_reg (from_addr_mode
,
924 plus_constant (from_addr_mode
,
926 data
.autinc_from
= 1;
927 data
.explicit_inc_from
= -1;
929 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
931 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
932 data
.autinc_from
= 1;
933 data
.explicit_inc_from
= 1;
935 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
936 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
937 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
939 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
940 plus_constant (to_addr_mode
,
943 data
.explicit_inc_to
= -1;
945 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
947 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
949 data
.explicit_inc_to
= 1;
951 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
952 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
955 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
957 /* First move what we can in the largest integer mode, then go to
958 successively smaller modes. */
960 while (max_size
> 1 && data
.len
> 0)
962 enum machine_mode mode
= widest_int_mode_for_size (max_size
);
964 if (mode
== VOIDmode
)
967 icode
= optab_handler (mov_optab
, mode
);
968 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
969 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
971 max_size
= GET_MODE_SIZE (mode
);
974 /* The code above should have handled everything. */
975 gcc_assert (!data
.len
);
981 gcc_assert (!data
.reverse
);
986 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
987 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
989 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
990 plus_constant (to_addr_mode
,
994 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
1001 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
1009 /* Return number of insns required to move L bytes by pieces.
1010 ALIGN (in bits) is maximum alignment we can assume. */
1012 unsigned HOST_WIDE_INT
1013 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
1014 unsigned int max_size
)
1016 unsigned HOST_WIDE_INT n_insns
= 0;
1018 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
1020 while (max_size
> 1 && l
> 0)
1022 enum machine_mode mode
;
1023 enum insn_code icode
;
1025 mode
= widest_int_mode_for_size (max_size
);
1027 if (mode
== VOIDmode
)
1030 icode
= optab_handler (mov_optab
, mode
);
1031 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1032 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1034 max_size
= GET_MODE_SIZE (mode
);
1041 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1042 with move instructions for mode MODE. GENFUN is the gen_... function
1043 to make a move insn for that mode. DATA has all the other info. */
1046 move_by_pieces_1 (insn_gen_fn genfun
, machine_mode mode
,
1047 struct move_by_pieces_d
*data
)
1049 unsigned int size
= GET_MODE_SIZE (mode
);
1050 rtx to1
= NULL_RTX
, from1
;
1052 while (data
->len
>= size
)
1055 data
->offset
-= size
;
1059 if (data
->autinc_to
)
1060 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1063 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1066 if (data
->autinc_from
)
1067 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1070 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1072 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1073 emit_insn (gen_add2_insn (data
->to_addr
,
1074 gen_int_mode (-(HOST_WIDE_INT
) size
,
1075 GET_MODE (data
->to_addr
))));
1076 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1077 emit_insn (gen_add2_insn (data
->from_addr
,
1078 gen_int_mode (-(HOST_WIDE_INT
) size
,
1079 GET_MODE (data
->from_addr
))));
1082 emit_insn ((*genfun
) (to1
, from1
));
1085 #ifdef PUSH_ROUNDING
1086 emit_single_push_insn (mode
, from1
, NULL
);
1092 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1093 emit_insn (gen_add2_insn (data
->to_addr
,
1095 GET_MODE (data
->to_addr
))));
1096 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1097 emit_insn (gen_add2_insn (data
->from_addr
,
1099 GET_MODE (data
->from_addr
))));
1101 if (! data
->reverse
)
1102 data
->offset
+= size
;
1108 /* Emit code to move a block Y to a block X. This may be done with
1109 string-move instructions, with multiple scalar move instructions,
1110 or with a library call.
1112 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1113 SIZE is an rtx that says how long they are.
1114 ALIGN is the maximum alignment we can assume they have.
1115 METHOD describes what kind of copy this is, and what mechanisms may be used.
1117 Return the address of the new block, if memcpy is called and returns it,
1121 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1122 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
1129 if (CONST_INT_P (size
)
1130 && INTVAL (size
) == 0)
1135 case BLOCK_OP_NORMAL
:
1136 case BLOCK_OP_TAILCALL
:
1137 may_use_call
= true;
1140 case BLOCK_OP_CALL_PARM
:
1141 may_use_call
= block_move_libcall_safe_for_call_parm ();
1143 /* Make inhibit_defer_pop nonzero around the library call
1144 to force it to pop the arguments right away. */
1148 case BLOCK_OP_NO_LIBCALL
:
1149 may_use_call
= false;
1156 gcc_assert (MEM_P (x
) && MEM_P (y
));
1157 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1158 gcc_assert (align
>= BITS_PER_UNIT
);
1160 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1161 block copy is more efficient for other large modes, e.g. DCmode. */
1162 x
= adjust_address (x
, BLKmode
, 0);
1163 y
= adjust_address (y
, BLKmode
, 0);
1165 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1166 can be incorrect is coming from __builtin_memcpy. */
1167 if (CONST_INT_P (size
))
1169 x
= shallow_copy_rtx (x
);
1170 y
= shallow_copy_rtx (y
);
1171 set_mem_size (x
, INTVAL (size
));
1172 set_mem_size (y
, INTVAL (size
));
1175 if (CONST_INT_P (size
) && MOVE_BY_PIECES_P (INTVAL (size
), align
))
1176 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1177 else if (emit_block_move_via_movmem (x
, y
, size
, align
,
1178 expected_align
, expected_size
))
1180 else if (may_use_call
1181 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x
))
1182 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y
)))
1184 /* Since x and y are passed to a libcall, mark the corresponding
1185 tree EXPR as addressable. */
1186 tree y_expr
= MEM_EXPR (y
);
1187 tree x_expr
= MEM_EXPR (x
);
1189 mark_addressable (y_expr
);
1191 mark_addressable (x_expr
);
1192 retval
= emit_block_move_via_libcall (x
, y
, size
,
1193 method
== BLOCK_OP_TAILCALL
);
1197 emit_block_move_via_loop (x
, y
, size
, align
);
1199 if (method
== BLOCK_OP_CALL_PARM
)
1206 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1208 return emit_block_move_hints (x
, y
, size
, method
, 0, -1);
1211 /* A subroutine of emit_block_move. Returns true if calling the
1212 block move libcall will not clobber any parameters which may have
1213 already been placed on the stack. */
1216 block_move_libcall_safe_for_call_parm (void)
1218 #if defined (REG_PARM_STACK_SPACE)
1222 /* If arguments are pushed on the stack, then they're safe. */
1226 /* If registers go on the stack anyway, any argument is sure to clobber
1227 an outgoing argument. */
1228 #if defined (REG_PARM_STACK_SPACE)
1229 fn
= emit_block_move_libcall_fn (false);
1230 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1231 depend on its argument. */
1233 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
1234 && REG_PARM_STACK_SPACE (fn
) != 0)
1238 /* If any argument goes in memory, then it might clobber an outgoing
1241 CUMULATIVE_ARGS args_so_far_v
;
1242 cumulative_args_t args_so_far
;
1245 fn
= emit_block_move_libcall_fn (false);
1246 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1247 args_so_far
= pack_cumulative_args (&args_so_far_v
);
1249 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1250 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1252 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1253 rtx tmp
= targetm
.calls
.function_arg (args_so_far
, mode
,
1255 if (!tmp
|| !REG_P (tmp
))
1257 if (targetm
.calls
.arg_partial_bytes (args_so_far
, mode
, NULL
, 1))
1259 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
1266 /* A subroutine of emit_block_move. Expand a movmem pattern;
1267 return true if successful. */
1270 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
,
1271 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
1273 int save_volatile_ok
= volatile_ok
;
1274 enum machine_mode mode
;
1276 if (expected_align
< align
)
1277 expected_align
= align
;
1279 /* Since this is a move insn, we don't care about volatility. */
1282 /* Try the most limited insn first, because there's no point
1283 including more than one in the machine description unless
1284 the more limited one has some advantage. */
1286 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1287 mode
= GET_MODE_WIDER_MODE (mode
))
1289 enum insn_code code
= direct_optab_handler (movmem_optab
, mode
);
1291 if (code
!= CODE_FOR_nothing
1292 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1293 here because if SIZE is less than the mode mask, as it is
1294 returned by the macro, it will definitely be less than the
1295 actual mode mask. */
1296 && ((CONST_INT_P (size
)
1297 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1298 <= (GET_MODE_MASK (mode
) >> 1)))
1299 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
))
1301 struct expand_operand ops
[6];
1304 /* ??? When called via emit_block_move_for_call, it'd be
1305 nice if there were some way to inform the backend, so
1306 that it doesn't fail the expansion because it thinks
1307 emitting the libcall would be more efficient. */
1308 nops
= insn_data
[(int) code
].n_generator_args
;
1309 gcc_assert (nops
== 4 || nops
== 6);
1311 create_fixed_operand (&ops
[0], x
);
1312 create_fixed_operand (&ops
[1], y
);
1313 /* The check above guarantees that this size conversion is valid. */
1314 create_convert_operand_to (&ops
[2], size
, mode
, true);
1315 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
1318 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
1319 create_integer_operand (&ops
[5], expected_size
);
1321 if (maybe_expand_insn (code
, nops
, ops
))
1323 volatile_ok
= save_volatile_ok
;
1329 volatile_ok
= save_volatile_ok
;
1333 /* A subroutine of emit_block_move. Expand a call to memcpy.
1334 Return the return value from memcpy, 0 otherwise. */
1337 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1339 rtx dst_addr
, src_addr
;
1340 tree call_expr
, fn
, src_tree
, dst_tree
, size_tree
;
1341 enum machine_mode size_mode
;
1344 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1345 pseudos. We can then place those new pseudos into a VAR_DECL and
1348 dst_addr
= copy_addr_to_reg (XEXP (dst
, 0));
1349 src_addr
= copy_addr_to_reg (XEXP (src
, 0));
1351 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1352 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1354 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1355 src_tree
= make_tree (ptr_type_node
, src_addr
);
1357 size_mode
= TYPE_MODE (sizetype
);
1359 size
= convert_to_mode (size_mode
, size
, 1);
1360 size
= copy_to_mode_reg (size_mode
, size
);
1362 /* It is incorrect to use the libcall calling conventions to call
1363 memcpy in this context. This could be a user call to memcpy and
1364 the user may wish to examine the return value from memcpy. For
1365 targets where libcalls and normal calls have different conventions
1366 for returning pointers, we could end up generating incorrect code. */
1368 size_tree
= make_tree (sizetype
, size
);
1370 fn
= emit_block_move_libcall_fn (true);
1371 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
1372 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1374 retval
= expand_normal (call_expr
);
1379 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1380 for the function we use for block copies. */
1382 static GTY(()) tree block_move_fn
;
1385 init_block_move_fn (const char *asmspec
)
1389 tree args
, fn
, attrs
, attr_args
;
1391 fn
= get_identifier ("memcpy");
1392 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1393 const_ptr_type_node
, sizetype
,
1396 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
1397 DECL_EXTERNAL (fn
) = 1;
1398 TREE_PUBLIC (fn
) = 1;
1399 DECL_ARTIFICIAL (fn
) = 1;
1400 TREE_NOTHROW (fn
) = 1;
1401 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
1402 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
1404 attr_args
= build_tree_list (NULL_TREE
, build_string (1, "1"));
1405 attrs
= tree_cons (get_identifier ("fn spec"), attr_args
, NULL
);
1407 decl_attributes (&fn
, attrs
, ATTR_FLAG_BUILT_IN
);
1413 set_user_assembler_name (block_move_fn
, asmspec
);
1417 emit_block_move_libcall_fn (int for_call
)
1419 static bool emitted_extern
;
1422 init_block_move_fn (NULL
);
1424 if (for_call
&& !emitted_extern
)
1426 emitted_extern
= true;
1427 make_decl_rtl (block_move_fn
);
1430 return block_move_fn
;
1433 /* A subroutine of emit_block_move. Copy the data via an explicit
1434 loop. This is used only when libcalls are forbidden. */
1435 /* ??? It'd be nice to copy in hunks larger than QImode. */
1438 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1439 unsigned int align ATTRIBUTE_UNUSED
)
1441 rtx cmp_label
, top_label
, iter
, x_addr
, y_addr
, tmp
;
1442 enum machine_mode x_addr_mode
= get_address_mode (x
);
1443 enum machine_mode y_addr_mode
= get_address_mode (y
);
1444 enum machine_mode iter_mode
;
1446 iter_mode
= GET_MODE (size
);
1447 if (iter_mode
== VOIDmode
)
1448 iter_mode
= word_mode
;
1450 top_label
= gen_label_rtx ();
1451 cmp_label
= gen_label_rtx ();
1452 iter
= gen_reg_rtx (iter_mode
);
1454 emit_move_insn (iter
, const0_rtx
);
1456 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1457 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1458 do_pending_stack_adjust ();
1460 emit_jump (cmp_label
);
1461 emit_label (top_label
);
1463 tmp
= convert_modes (x_addr_mode
, iter_mode
, iter
, true);
1464 x_addr
= simplify_gen_binary (PLUS
, x_addr_mode
, x_addr
, tmp
);
1466 if (x_addr_mode
!= y_addr_mode
)
1467 tmp
= convert_modes (y_addr_mode
, iter_mode
, iter
, true);
1468 y_addr
= simplify_gen_binary (PLUS
, y_addr_mode
, y_addr
, tmp
);
1470 x
= change_address (x
, QImode
, x_addr
);
1471 y
= change_address (y
, QImode
, y_addr
);
1473 emit_move_insn (x
, y
);
1475 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1476 true, OPTAB_LIB_WIDEN
);
1478 emit_move_insn (iter
, tmp
);
1480 emit_label (cmp_label
);
1482 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1483 true, top_label
, REG_BR_PROB_BASE
* 90 / 100);
1486 /* Copy all or part of a value X into registers starting at REGNO.
1487 The number of registers to be filled is NREGS. */
1490 move_block_to_reg (int regno
, rtx x
, int nregs
, enum machine_mode mode
)
1493 #ifdef HAVE_load_multiple
1501 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
1502 x
= validize_mem (force_const_mem (mode
, x
));
1504 /* See if the machine can do this with a load multiple insn. */
1505 #ifdef HAVE_load_multiple
1506 if (HAVE_load_multiple
)
1508 last
= get_last_insn ();
1509 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1517 delete_insns_since (last
);
1521 for (i
= 0; i
< nregs
; i
++)
1522 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1523 operand_subword_force (x
, i
, mode
));
1526 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1527 The number of registers to be filled is NREGS. */
1530 move_block_from_reg (int regno
, rtx x
, int nregs
)
1537 /* See if the machine can do this with a store multiple insn. */
1538 #ifdef HAVE_store_multiple
1539 if (HAVE_store_multiple
)
1541 rtx last
= get_last_insn ();
1542 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1550 delete_insns_since (last
);
1554 for (i
= 0; i
< nregs
; i
++)
1556 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1560 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1564 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1565 ORIG, where ORIG is a non-consecutive group of registers represented by
1566 a PARALLEL. The clone is identical to the original except in that the
1567 original set of registers is replaced by a new set of pseudo registers.
1568 The new set has the same modes as the original set. */
1571 gen_group_rtx (rtx orig
)
1576 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1578 length
= XVECLEN (orig
, 0);
1579 tmps
= XALLOCAVEC (rtx
, length
);
1581 /* Skip a NULL entry in first slot. */
1582 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1587 for (; i
< length
; i
++)
1589 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1590 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1592 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1595 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1598 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1599 except that values are placed in TMPS[i], and must later be moved
1600 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1603 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1607 enum machine_mode m
= GET_MODE (orig_src
);
1609 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1612 && !SCALAR_INT_MODE_P (m
)
1613 && !MEM_P (orig_src
)
1614 && GET_CODE (orig_src
) != CONCAT
)
1616 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1617 if (imode
== BLKmode
)
1618 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
);
1620 src
= gen_reg_rtx (imode
);
1621 if (imode
!= BLKmode
)
1622 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1623 emit_move_insn (src
, orig_src
);
1624 /* ...and back again. */
1625 if (imode
!= BLKmode
)
1626 src
= gen_lowpart (imode
, src
);
1627 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1631 /* Check for a NULL entry, used to indicate that the parameter goes
1632 both on the stack and in registers. */
1633 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1638 /* Process the pieces. */
1639 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1641 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1642 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1643 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1646 /* Handle trailing fragments that run over the size of the struct. */
1647 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1649 /* Arrange to shift the fragment to where it belongs.
1650 extract_bit_field loads to the lsb of the reg. */
1652 #ifdef BLOCK_REG_PADDING
1653 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1654 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1659 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1660 bytelen
= ssize
- bytepos
;
1661 gcc_assert (bytelen
> 0);
1664 /* If we won't be loading directly from memory, protect the real source
1665 from strange tricks we might play; but make sure that the source can
1666 be loaded directly into the destination. */
1668 if (!MEM_P (orig_src
)
1669 && (!CONSTANT_P (orig_src
)
1670 || (GET_MODE (orig_src
) != mode
1671 && GET_MODE (orig_src
) != VOIDmode
)))
1673 if (GET_MODE (orig_src
) == VOIDmode
)
1674 src
= gen_reg_rtx (mode
);
1676 src
= gen_reg_rtx (GET_MODE (orig_src
));
1678 emit_move_insn (src
, orig_src
);
1681 /* Optimize the access just a bit. */
1683 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1684 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1685 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1686 && bytelen
== GET_MODE_SIZE (mode
))
1688 tmps
[i
] = gen_reg_rtx (mode
);
1689 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1691 else if (COMPLEX_MODE_P (mode
)
1692 && GET_MODE (src
) == mode
1693 && bytelen
== GET_MODE_SIZE (mode
))
1694 /* Let emit_move_complex do the bulk of the work. */
1696 else if (GET_CODE (src
) == CONCAT
)
1698 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1699 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1701 if ((bytepos
== 0 && bytelen
== slen0
)
1702 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1704 /* The following assumes that the concatenated objects all
1705 have the same size. In this case, a simple calculation
1706 can be used to determine the object and the bit field
1708 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1709 if (! CONSTANT_P (tmps
[i
])
1710 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1711 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1712 (bytepos
% slen0
) * BITS_PER_UNIT
,
1713 1, false, NULL_RTX
, mode
, mode
);
1719 gcc_assert (!bytepos
);
1720 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1721 emit_move_insn (mem
, src
);
1722 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1723 0, 1, false, NULL_RTX
, mode
, mode
);
1726 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1727 SIMD register, which is currently broken. While we get GCC
1728 to emit proper RTL for these cases, let's dump to memory. */
1729 else if (VECTOR_MODE_P (GET_MODE (dst
))
1732 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1735 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1736 emit_move_insn (mem
, src
);
1737 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1739 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1740 && XVECLEN (dst
, 0) > 1)
1741 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE(dst
), bytepos
);
1742 else if (CONSTANT_P (src
))
1744 HOST_WIDE_INT len
= (HOST_WIDE_INT
) bytelen
;
1752 gcc_assert (2 * len
== ssize
);
1753 split_double (src
, &first
, &second
);
1760 else if (REG_P (src
) && GET_MODE (src
) == mode
)
1763 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1764 bytepos
* BITS_PER_UNIT
, 1, false, NULL_RTX
,
1768 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1773 /* Emit code to move a block SRC of type TYPE to a block DST,
1774 where DST is non-consecutive registers represented by a PARALLEL.
1775 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1779 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1784 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
1785 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1787 /* Copy the extracted pieces into the proper (probable) hard regs. */
1788 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1790 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1793 emit_move_insn (d
, tmps
[i
]);
1797 /* Similar, but load SRC into new pseudos in a format that looks like
1798 PARALLEL. This can later be fed to emit_group_move to get things
1799 in the right place. */
1802 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1807 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1808 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1810 /* Convert the vector to look just like the original PARALLEL, except
1811 with the computed values. */
1812 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1814 rtx e
= XVECEXP (parallel
, 0, i
);
1815 rtx d
= XEXP (e
, 0);
1819 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1820 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1822 RTVEC_ELT (vec
, i
) = e
;
1825 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1828 /* Emit code to move a block SRC to block DST, where SRC and DST are
1829 non-consecutive groups of registers, each represented by a PARALLEL. */
1832 emit_group_move (rtx dst
, rtx src
)
1836 gcc_assert (GET_CODE (src
) == PARALLEL
1837 && GET_CODE (dst
) == PARALLEL
1838 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1840 /* Skip first entry if NULL. */
1841 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1842 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1843 XEXP (XVECEXP (src
, 0, i
), 0));
1846 /* Move a group of registers represented by a PARALLEL into pseudos. */
1849 emit_group_move_into_temps (rtx src
)
1851 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1854 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1856 rtx e
= XVECEXP (src
, 0, i
);
1857 rtx d
= XEXP (e
, 0);
1860 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1861 RTVEC_ELT (vec
, i
) = e
;
1864 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1867 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1868 where SRC is non-consecutive registers represented by a PARALLEL.
1869 SSIZE represents the total size of block ORIG_DST, or -1 if not
1873 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1876 int start
, finish
, i
;
1877 enum machine_mode m
= GET_MODE (orig_dst
);
1879 gcc_assert (GET_CODE (src
) == PARALLEL
);
1881 if (!SCALAR_INT_MODE_P (m
)
1882 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1884 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1885 if (imode
== BLKmode
)
1886 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
);
1888 dst
= gen_reg_rtx (imode
);
1889 emit_group_store (dst
, src
, type
, ssize
);
1890 if (imode
!= BLKmode
)
1891 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1892 emit_move_insn (orig_dst
, dst
);
1896 /* Check for a NULL entry, used to indicate that the parameter goes
1897 both on the stack and in registers. */
1898 if (XEXP (XVECEXP (src
, 0, 0), 0))
1902 finish
= XVECLEN (src
, 0);
1904 tmps
= XALLOCAVEC (rtx
, finish
);
1906 /* Copy the (probable) hard regs into pseudos. */
1907 for (i
= start
; i
< finish
; i
++)
1909 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1910 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1912 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1913 emit_move_insn (tmps
[i
], reg
);
1919 /* If we won't be storing directly into memory, protect the real destination
1920 from strange tricks we might play. */
1922 if (GET_CODE (dst
) == PARALLEL
)
1926 /* We can get a PARALLEL dst if there is a conditional expression in
1927 a return statement. In that case, the dst and src are the same,
1928 so no action is necessary. */
1929 if (rtx_equal_p (dst
, src
))
1932 /* It is unclear if we can ever reach here, but we may as well handle
1933 it. Allocate a temporary, and split this into a store/load to/from
1936 temp
= assign_stack_temp (GET_MODE (dst
), ssize
);
1937 emit_group_store (temp
, src
, type
, ssize
);
1938 emit_group_load (dst
, temp
, type
, ssize
);
1941 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1943 enum machine_mode outer
= GET_MODE (dst
);
1944 enum machine_mode inner
;
1945 HOST_WIDE_INT bytepos
;
1949 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
1950 dst
= gen_reg_rtx (outer
);
1952 /* Make life a bit easier for combine. */
1953 /* If the first element of the vector is the low part
1954 of the destination mode, use a paradoxical subreg to
1955 initialize the destination. */
1958 inner
= GET_MODE (tmps
[start
]);
1959 bytepos
= subreg_lowpart_offset (inner
, outer
);
1960 if (INTVAL (XEXP (XVECEXP (src
, 0, start
), 1)) == bytepos
)
1962 temp
= simplify_gen_subreg (outer
, tmps
[start
],
1966 emit_move_insn (dst
, temp
);
1973 /* If the first element wasn't the low part, try the last. */
1975 && start
< finish
- 1)
1977 inner
= GET_MODE (tmps
[finish
- 1]);
1978 bytepos
= subreg_lowpart_offset (inner
, outer
);
1979 if (INTVAL (XEXP (XVECEXP (src
, 0, finish
- 1), 1)) == bytepos
)
1981 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
1985 emit_move_insn (dst
, temp
);
1992 /* Otherwise, simply initialize the result to zero. */
1994 emit_move_insn (dst
, CONST0_RTX (outer
));
1997 /* Process the pieces. */
1998 for (i
= start
; i
< finish
; i
++)
2000 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
2001 enum machine_mode mode
= GET_MODE (tmps
[i
]);
2002 unsigned int bytelen
= GET_MODE_SIZE (mode
);
2003 unsigned int adj_bytelen
= bytelen
;
2006 /* Handle trailing fragments that run over the size of the struct. */
2007 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2008 adj_bytelen
= ssize
- bytepos
;
2010 if (GET_CODE (dst
) == CONCAT
)
2012 if (bytepos
+ adj_bytelen
2013 <= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2014 dest
= XEXP (dst
, 0);
2015 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2017 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2018 dest
= XEXP (dst
, 1);
2022 enum machine_mode dest_mode
= GET_MODE (dest
);
2023 enum machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
2025 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
2027 if (GET_MODE_ALIGNMENT (dest_mode
)
2028 >= GET_MODE_ALIGNMENT (tmp_mode
))
2030 dest
= assign_stack_temp (dest_mode
,
2031 GET_MODE_SIZE (dest_mode
));
2032 emit_move_insn (adjust_address (dest
,
2040 dest
= assign_stack_temp (tmp_mode
,
2041 GET_MODE_SIZE (tmp_mode
));
2042 emit_move_insn (dest
, tmps
[i
]);
2043 dst
= adjust_address (dest
, dest_mode
, bytepos
);
2049 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2051 /* store_bit_field always takes its value from the lsb.
2052 Move the fragment to the lsb if it's not already there. */
2054 #ifdef BLOCK_REG_PADDING
2055 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2056 == (BYTES_BIG_ENDIAN
? upward
: downward
)
2062 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2063 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2066 bytelen
= adj_bytelen
;
2069 /* Optimize the access just a bit. */
2071 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
2072 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2073 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
2074 && bytelen
== GET_MODE_SIZE (mode
))
2075 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2077 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2078 0, 0, mode
, tmps
[i
]);
2081 /* Copy from the pseudo into the (probable) hard reg. */
2082 if (orig_dst
!= dst
)
2083 emit_move_insn (orig_dst
, dst
);
2086 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2087 of the value stored in X. */
2090 maybe_emit_group_store (rtx x
, tree type
)
2092 enum machine_mode mode
= TYPE_MODE (type
);
2093 gcc_checking_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
2094 if (GET_CODE (x
) == PARALLEL
)
2096 rtx result
= gen_reg_rtx (mode
);
2097 emit_group_store (result
, x
, type
, int_size_in_bytes (type
));
2103 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2105 This is used on targets that return BLKmode values in registers. */
2108 copy_blkmode_from_reg (rtx target
, rtx srcreg
, tree type
)
2110 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2111 rtx src
= NULL
, dst
= NULL
;
2112 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2113 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2114 enum machine_mode mode
= GET_MODE (srcreg
);
2115 enum machine_mode tmode
= GET_MODE (target
);
2116 enum machine_mode copy_mode
;
2118 /* BLKmode registers created in the back-end shouldn't have survived. */
2119 gcc_assert (mode
!= BLKmode
);
2121 /* If the structure doesn't take up a whole number of words, see whether
2122 SRCREG is padded on the left or on the right. If it's on the left,
2123 set PADDING_CORRECTION to the number of bits to skip.
2125 In most ABIs, the structure will be returned at the least end of
2126 the register, which translates to right padding on little-endian
2127 targets and left padding on big-endian targets. The opposite
2128 holds if the structure is returned at the most significant
2129 end of the register. */
2130 if (bytes
% UNITS_PER_WORD
!= 0
2131 && (targetm
.calls
.return_in_msb (type
)
2133 : BYTES_BIG_ENDIAN
))
2135 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2137 /* We can use a single move if we have an exact mode for the size. */
2138 else if (MEM_P (target
)
2139 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
))
2140 || MEM_ALIGN (target
) >= GET_MODE_ALIGNMENT (mode
))
2141 && bytes
== GET_MODE_SIZE (mode
))
2143 emit_move_insn (adjust_address (target
, mode
, 0), srcreg
);
2147 /* And if we additionally have the same mode for a register. */
2148 else if (REG_P (target
)
2149 && GET_MODE (target
) == mode
2150 && bytes
== GET_MODE_SIZE (mode
))
2152 emit_move_insn (target
, srcreg
);
2156 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2157 into a new pseudo which is a full word. */
2158 if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
2160 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2164 /* Copy the structure BITSIZE bits at a time. If the target lives in
2165 memory, take care of not reading/writing past its end by selecting
2166 a copy mode suited to BITSIZE. This should always be possible given
2169 If the target lives in register, make sure not to select a copy mode
2170 larger than the mode of the register.
2172 We could probably emit more efficient code for machines which do not use
2173 strict alignment, but it doesn't seem worth the effort at the current
2176 copy_mode
= word_mode
;
2179 enum machine_mode mem_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
2180 if (mem_mode
!= BLKmode
)
2181 copy_mode
= mem_mode
;
2183 else if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2186 for (bitpos
= 0, xbitpos
= padding_correction
;
2187 bitpos
< bytes
* BITS_PER_UNIT
;
2188 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2190 /* We need a new source operand each time xbitpos is on a
2191 word boundary and when xbitpos == padding_correction
2192 (the first time through). */
2193 if (xbitpos
% BITS_PER_WORD
== 0 || xbitpos
== padding_correction
)
2194 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
, mode
);
2196 /* We need a new destination operand each time bitpos is on
2198 if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2200 else if (bitpos
% BITS_PER_WORD
== 0)
2201 dst
= operand_subword (target
, bitpos
/ BITS_PER_WORD
, 1, tmode
);
2203 /* Use xbitpos for the source extraction (right justified) and
2204 bitpos for the destination store (left justified). */
2205 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, 0, 0, copy_mode
,
2206 extract_bit_field (src
, bitsize
,
2207 xbitpos
% BITS_PER_WORD
, 1, false,
2208 NULL_RTX
, copy_mode
, copy_mode
));
2212 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2213 register if it contains any data, otherwise return null.
2215 This is used on targets that return BLKmode values in registers. */
2218 copy_blkmode_to_reg (enum machine_mode mode
, tree src
)
2221 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0, bytes
;
2222 unsigned int bitsize
;
2223 rtx
*dst_words
, dst
, x
, src_word
= NULL_RTX
, dst_word
= NULL_RTX
;
2224 enum machine_mode dst_mode
;
2226 gcc_assert (TYPE_MODE (TREE_TYPE (src
)) == BLKmode
);
2228 x
= expand_normal (src
);
2230 bytes
= int_size_in_bytes (TREE_TYPE (src
));
2234 /* If the structure doesn't take up a whole number of words, see
2235 whether the register value should be padded on the left or on
2236 the right. Set PADDING_CORRECTION to the number of padding
2237 bits needed on the left side.
2239 In most ABIs, the structure will be returned at the least end of
2240 the register, which translates to right padding on little-endian
2241 targets and left padding on big-endian targets. The opposite
2242 holds if the structure is returned at the most significant
2243 end of the register. */
2244 if (bytes
% UNITS_PER_WORD
!= 0
2245 && (targetm
.calls
.return_in_msb (TREE_TYPE (src
))
2247 : BYTES_BIG_ENDIAN
))
2248 padding_correction
= (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
)
2251 n_regs
= (bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
2252 dst_words
= XALLOCAVEC (rtx
, n_regs
);
2253 bitsize
= MIN (TYPE_ALIGN (TREE_TYPE (src
)), BITS_PER_WORD
);
2255 /* Copy the structure BITSIZE bits at a time. */
2256 for (bitpos
= 0, xbitpos
= padding_correction
;
2257 bitpos
< bytes
* BITS_PER_UNIT
;
2258 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2260 /* We need a new destination pseudo each time xbitpos is
2261 on a word boundary and when xbitpos == padding_correction
2262 (the first time through). */
2263 if (xbitpos
% BITS_PER_WORD
== 0
2264 || xbitpos
== padding_correction
)
2266 /* Generate an appropriate register. */
2267 dst_word
= gen_reg_rtx (word_mode
);
2268 dst_words
[xbitpos
/ BITS_PER_WORD
] = dst_word
;
2270 /* Clear the destination before we move anything into it. */
2271 emit_move_insn (dst_word
, CONST0_RTX (word_mode
));
2274 /* We need a new source operand each time bitpos is on a word
2276 if (bitpos
% BITS_PER_WORD
== 0)
2277 src_word
= operand_subword_force (x
, bitpos
/ BITS_PER_WORD
, BLKmode
);
2279 /* Use bitpos for the source extraction (left justified) and
2280 xbitpos for the destination store (right justified). */
2281 store_bit_field (dst_word
, bitsize
, xbitpos
% BITS_PER_WORD
,
2283 extract_bit_field (src_word
, bitsize
,
2284 bitpos
% BITS_PER_WORD
, 1, false,
2285 NULL_RTX
, word_mode
, word_mode
));
2288 if (mode
== BLKmode
)
2290 /* Find the smallest integer mode large enough to hold the
2291 entire structure. */
2292 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2294 mode
= GET_MODE_WIDER_MODE (mode
))
2295 /* Have we found a large enough mode? */
2296 if (GET_MODE_SIZE (mode
) >= bytes
)
2299 /* A suitable mode should have been found. */
2300 gcc_assert (mode
!= VOIDmode
);
2303 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (word_mode
))
2304 dst_mode
= word_mode
;
2307 dst
= gen_reg_rtx (dst_mode
);
2309 for (i
= 0; i
< n_regs
; i
++)
2310 emit_move_insn (operand_subword (dst
, i
, 0, dst_mode
), dst_words
[i
]);
2312 if (mode
!= dst_mode
)
2313 dst
= gen_lowpart (mode
, dst
);
2318 /* Add a USE expression for REG to the (possibly empty) list pointed
2319 to by CALL_FUSAGE. REG must denote a hard register. */
2322 use_reg_mode (rtx
*call_fusage
, rtx reg
, enum machine_mode mode
)
2324 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2327 = gen_rtx_EXPR_LIST (mode
, gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2330 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2331 starting at REGNO. All of these registers must be hard registers. */
2334 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2338 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2340 for (i
= 0; i
< nregs
; i
++)
2341 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2344 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2345 PARALLEL REGS. This is for calls that pass values in multiple
2346 non-contiguous locations. The Irix 6 ABI has examples of this. */
2349 use_group_regs (rtx
*call_fusage
, rtx regs
)
2353 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2355 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2357 /* A NULL entry means the parameter goes both on the stack and in
2358 registers. This can also be a MEM for targets that pass values
2359 partially on the stack and partially in registers. */
2360 if (reg
!= 0 && REG_P (reg
))
2361 use_reg (call_fusage
, reg
);
2365 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2366 assigment and the code of the expresion on the RHS is CODE. Return
2370 get_def_for_expr (tree name
, enum tree_code code
)
2374 if (TREE_CODE (name
) != SSA_NAME
)
2377 def_stmt
= get_gimple_for_ssa_name (name
);
2379 || gimple_assign_rhs_code (def_stmt
) != code
)
2385 #ifdef HAVE_conditional_move
2386 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2387 assigment and the class of the expresion on the RHS is CLASS. Return
2391 get_def_for_expr_class (tree name
, enum tree_code_class tclass
)
2395 if (TREE_CODE (name
) != SSA_NAME
)
2398 def_stmt
= get_gimple_for_ssa_name (name
);
2400 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
)) != tclass
)
2408 /* Determine whether the LEN bytes generated by CONSTFUN can be
2409 stored to memory using several move instructions. CONSTFUNDATA is
2410 a pointer which will be passed as argument in every CONSTFUN call.
2411 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2412 a memset operation and false if it's a copy of a constant string.
2413 Return nonzero if a call to store_by_pieces should succeed. */
2416 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2417 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2418 void *constfundata
, unsigned int align
, bool memsetp
)
2420 unsigned HOST_WIDE_INT l
;
2421 unsigned int max_size
;
2422 HOST_WIDE_INT offset
= 0;
2423 enum machine_mode mode
;
2424 enum insn_code icode
;
2426 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2427 rtx cst ATTRIBUTE_UNUSED
;
2433 ? SET_BY_PIECES_P (len
, align
)
2434 : STORE_BY_PIECES_P (len
, align
)))
2437 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2439 /* We would first store what we can in the largest integer mode, then go to
2440 successively smaller modes. */
2443 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2447 max_size
= STORE_MAX_PIECES
+ 1;
2448 while (max_size
> 1 && l
> 0)
2450 mode
= widest_int_mode_for_size (max_size
);
2452 if (mode
== VOIDmode
)
2455 icode
= optab_handler (mov_optab
, mode
);
2456 if (icode
!= CODE_FOR_nothing
2457 && align
>= GET_MODE_ALIGNMENT (mode
))
2459 unsigned int size
= GET_MODE_SIZE (mode
);
2466 cst
= (*constfun
) (constfundata
, offset
, mode
);
2467 if (!targetm
.legitimate_constant_p (mode
, cst
))
2477 max_size
= GET_MODE_SIZE (mode
);
2480 /* The code above should have handled everything. */
2487 /* Generate several move instructions to store LEN bytes generated by
2488 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2489 pointer which will be passed as argument in every CONSTFUN call.
2490 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2491 a memset operation and false if it's a copy of a constant string.
2492 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2493 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2497 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2498 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2499 void *constfundata
, unsigned int align
, bool memsetp
, int endp
)
2501 enum machine_mode to_addr_mode
= get_address_mode (to
);
2502 struct store_by_pieces_d data
;
2506 gcc_assert (endp
!= 2);
2511 ? SET_BY_PIECES_P (len
, align
)
2512 : STORE_BY_PIECES_P (len
, align
));
2513 data
.constfun
= constfun
;
2514 data
.constfundata
= constfundata
;
2517 store_by_pieces_1 (&data
, align
);
2522 gcc_assert (!data
.reverse
);
2527 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2528 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2530 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
2531 plus_constant (to_addr_mode
,
2535 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2542 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2550 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2551 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2554 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2556 struct store_by_pieces_d data
;
2561 data
.constfun
= clear_by_pieces_1
;
2562 data
.constfundata
= NULL
;
2565 store_by_pieces_1 (&data
, align
);
2568 /* Callback routine for clear_by_pieces.
2569 Return const0_rtx unconditionally. */
2572 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2573 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2574 enum machine_mode mode ATTRIBUTE_UNUSED
)
2579 /* Subroutine of clear_by_pieces and store_by_pieces.
2580 Generate several move instructions to store LEN bytes of block TO. (A MEM
2581 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2584 store_by_pieces_1 (struct store_by_pieces_d
*data ATTRIBUTE_UNUSED
,
2585 unsigned int align ATTRIBUTE_UNUSED
)
2587 enum machine_mode to_addr_mode
= get_address_mode (data
->to
);
2588 rtx to_addr
= XEXP (data
->to
, 0);
2589 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2590 enum insn_code icode
;
2593 data
->to_addr
= to_addr
;
2595 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2596 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2598 data
->explicit_inc_to
= 0;
2600 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2602 data
->offset
= data
->len
;
2604 /* If storing requires more than two move insns,
2605 copy addresses to registers (to make displacements shorter)
2606 and use post-increment if available. */
2607 if (!data
->autinc_to
2608 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2610 /* Determine the main mode we'll be using.
2611 MODE might not be used depending on the definitions of the
2612 USE_* macros below. */
2613 enum machine_mode mode ATTRIBUTE_UNUSED
2614 = widest_int_mode_for_size (max_size
);
2616 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2618 data
->to_addr
= copy_to_mode_reg (to_addr_mode
,
2619 plus_constant (to_addr_mode
,
2622 data
->autinc_to
= 1;
2623 data
->explicit_inc_to
= -1;
2626 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2627 && ! data
->autinc_to
)
2629 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2630 data
->autinc_to
= 1;
2631 data
->explicit_inc_to
= 1;
2634 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2635 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2638 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2640 /* First store what we can in the largest integer mode, then go to
2641 successively smaller modes. */
2643 while (max_size
> 1 && data
->len
> 0)
2645 enum machine_mode mode
= widest_int_mode_for_size (max_size
);
2647 if (mode
== VOIDmode
)
2650 icode
= optab_handler (mov_optab
, mode
);
2651 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2652 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2654 max_size
= GET_MODE_SIZE (mode
);
2657 /* The code above should have handled everything. */
2658 gcc_assert (!data
->len
);
2661 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2662 with move instructions for mode MODE. GENFUN is the gen_... function
2663 to make a move insn for that mode. DATA has all the other info. */
2666 store_by_pieces_2 (insn_gen_fn genfun
, machine_mode mode
,
2667 struct store_by_pieces_d
*data
)
2669 unsigned int size
= GET_MODE_SIZE (mode
);
2672 while (data
->len
>= size
)
2675 data
->offset
-= size
;
2677 if (data
->autinc_to
)
2678 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2681 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2683 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2684 emit_insn (gen_add2_insn (data
->to_addr
,
2685 gen_int_mode (-(HOST_WIDE_INT
) size
,
2686 GET_MODE (data
->to_addr
))));
2688 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2689 emit_insn ((*genfun
) (to1
, cst
));
2691 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2692 emit_insn (gen_add2_insn (data
->to_addr
,
2694 GET_MODE (data
->to_addr
))));
2696 if (! data
->reverse
)
2697 data
->offset
+= size
;
2703 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2704 its length in bytes. */
2707 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
2708 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
2710 enum machine_mode mode
= GET_MODE (object
);
2713 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2715 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2716 just move a zero. Otherwise, do this a piece at a time. */
2718 && CONST_INT_P (size
)
2719 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2721 rtx zero
= CONST0_RTX (mode
);
2724 emit_move_insn (object
, zero
);
2728 if (COMPLEX_MODE_P (mode
))
2730 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2733 write_complex_part (object
, zero
, 0);
2734 write_complex_part (object
, zero
, 1);
2740 if (size
== const0_rtx
)
2743 align
= MEM_ALIGN (object
);
2745 if (CONST_INT_P (size
)
2746 && CLEAR_BY_PIECES_P (INTVAL (size
), align
))
2747 clear_by_pieces (object
, INTVAL (size
), align
);
2748 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
2749 expected_align
, expected_size
))
2751 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object
)))
2752 return set_storage_via_libcall (object
, size
, const0_rtx
,
2753 method
== BLOCK_OP_TAILCALL
);
2761 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2763 return clear_storage_hints (object
, size
, method
, 0, -1);
2767 /* A subroutine of clear_storage. Expand a call to memset.
2768 Return the return value of memset, 0 otherwise. */
2771 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
2773 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
2774 enum machine_mode size_mode
;
2777 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2778 place those into new pseudos into a VAR_DECL and use them later. */
2780 object
= copy_addr_to_reg (XEXP (object
, 0));
2782 size_mode
= TYPE_MODE (sizetype
);
2783 size
= convert_to_mode (size_mode
, size
, 1);
2784 size
= copy_to_mode_reg (size_mode
, size
);
2786 /* It is incorrect to use the libcall calling conventions to call
2787 memset in this context. This could be a user call to memset and
2788 the user may wish to examine the return value from memset. For
2789 targets where libcalls and normal calls have different conventions
2790 for returning pointers, we could end up generating incorrect code. */
2792 object_tree
= make_tree (ptr_type_node
, object
);
2793 if (!CONST_INT_P (val
))
2794 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
2795 size_tree
= make_tree (sizetype
, size
);
2796 val_tree
= make_tree (integer_type_node
, val
);
2798 fn
= clear_storage_libcall_fn (true);
2799 call_expr
= build_call_expr (fn
, 3, object_tree
, val_tree
, size_tree
);
2800 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2802 retval
= expand_normal (call_expr
);
2807 /* A subroutine of set_storage_via_libcall. Create the tree node
2808 for the function we use for block clears. */
2810 tree block_clear_fn
;
2813 init_block_clear_fn (const char *asmspec
)
2815 if (!block_clear_fn
)
2819 fn
= get_identifier ("memset");
2820 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2821 integer_type_node
, sizetype
,
2824 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
2825 DECL_EXTERNAL (fn
) = 1;
2826 TREE_PUBLIC (fn
) = 1;
2827 DECL_ARTIFICIAL (fn
) = 1;
2828 TREE_NOTHROW (fn
) = 1;
2829 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
2830 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
2832 block_clear_fn
= fn
;
2836 set_user_assembler_name (block_clear_fn
, asmspec
);
2840 clear_storage_libcall_fn (int for_call
)
2842 static bool emitted_extern
;
2844 if (!block_clear_fn
)
2845 init_block_clear_fn (NULL
);
2847 if (for_call
&& !emitted_extern
)
2849 emitted_extern
= true;
2850 make_decl_rtl (block_clear_fn
);
2853 return block_clear_fn
;
2856 /* Expand a setmem pattern; return true if successful. */
2859 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
2860 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
2862 /* Try the most limited insn first, because there's no point
2863 including more than one in the machine description unless
2864 the more limited one has some advantage. */
2866 enum machine_mode mode
;
2868 if (expected_align
< align
)
2869 expected_align
= align
;
2871 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2872 mode
= GET_MODE_WIDER_MODE (mode
))
2874 enum insn_code code
= direct_optab_handler (setmem_optab
, mode
);
2876 if (code
!= CODE_FOR_nothing
2877 /* We don't need MODE to be narrower than
2878 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2879 the mode mask, as it is returned by the macro, it will
2880 definitely be less than the actual mode mask. */
2881 && ((CONST_INT_P (size
)
2882 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2883 <= (GET_MODE_MASK (mode
) >> 1)))
2884 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
))
2886 struct expand_operand ops
[6];
2889 nops
= insn_data
[(int) code
].n_generator_args
;
2890 gcc_assert (nops
== 4 || nops
== 6);
2892 create_fixed_operand (&ops
[0], object
);
2893 /* The check above guarantees that this size conversion is valid. */
2894 create_convert_operand_to (&ops
[1], size
, mode
, true);
2895 create_convert_operand_from (&ops
[2], val
, byte_mode
, true);
2896 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
2899 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
2900 create_integer_operand (&ops
[5], expected_size
);
2902 if (maybe_expand_insn (code
, nops
, ops
))
2911 /* Write to one of the components of the complex value CPLX. Write VAL to
2912 the real part if IMAG_P is false, and the imaginary part if its true. */
2915 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
2917 enum machine_mode cmode
;
2918 enum machine_mode imode
;
2921 if (GET_CODE (cplx
) == CONCAT
)
2923 emit_move_insn (XEXP (cplx
, imag_p
), val
);
2927 cmode
= GET_MODE (cplx
);
2928 imode
= GET_MODE_INNER (cmode
);
2929 ibitsize
= GET_MODE_BITSIZE (imode
);
2931 /* For MEMs simplify_gen_subreg may generate an invalid new address
2932 because, e.g., the original address is considered mode-dependent
2933 by the target, which restricts simplify_subreg from invoking
2934 adjust_address_nv. Instead of preparing fallback support for an
2935 invalid address, we call adjust_address_nv directly. */
2938 emit_move_insn (adjust_address_nv (cplx
, imode
,
2939 imag_p
? GET_MODE_SIZE (imode
) : 0),
2944 /* If the sub-object is at least word sized, then we know that subregging
2945 will work. This special case is important, since store_bit_field
2946 wants to operate on integer modes, and there's rarely an OImode to
2947 correspond to TCmode. */
2948 if (ibitsize
>= BITS_PER_WORD
2949 /* For hard regs we have exact predicates. Assume we can split
2950 the original object if it spans an even number of hard regs.
2951 This special case is important for SCmode on 64-bit platforms
2952 where the natural size of floating-point regs is 32-bit. */
2954 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2955 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2957 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
2958 imag_p
? GET_MODE_SIZE (imode
) : 0);
2961 emit_move_insn (part
, val
);
2965 /* simplify_gen_subreg may fail for sub-word MEMs. */
2966 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2969 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, 0, 0, imode
, val
);
2972 /* Extract one of the components of the complex value CPLX. Extract the
2973 real part if IMAG_P is false, and the imaginary part if it's true. */
2976 read_complex_part (rtx cplx
, bool imag_p
)
2978 enum machine_mode cmode
, imode
;
2981 if (GET_CODE (cplx
) == CONCAT
)
2982 return XEXP (cplx
, imag_p
);
2984 cmode
= GET_MODE (cplx
);
2985 imode
= GET_MODE_INNER (cmode
);
2986 ibitsize
= GET_MODE_BITSIZE (imode
);
2988 /* Special case reads from complex constants that got spilled to memory. */
2989 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
2991 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
2992 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
2994 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
2995 if (CONSTANT_CLASS_P (part
))
2996 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
3000 /* For MEMs simplify_gen_subreg may generate an invalid new address
3001 because, e.g., the original address is considered mode-dependent
3002 by the target, which restricts simplify_subreg from invoking
3003 adjust_address_nv. Instead of preparing fallback support for an
3004 invalid address, we call adjust_address_nv directly. */
3006 return adjust_address_nv (cplx
, imode
,
3007 imag_p
? GET_MODE_SIZE (imode
) : 0);
3009 /* If the sub-object is at least word sized, then we know that subregging
3010 will work. This special case is important, since extract_bit_field
3011 wants to operate on integer modes, and there's rarely an OImode to
3012 correspond to TCmode. */
3013 if (ibitsize
>= BITS_PER_WORD
3014 /* For hard regs we have exact predicates. Assume we can split
3015 the original object if it spans an even number of hard regs.
3016 This special case is important for SCmode on 64-bit platforms
3017 where the natural size of floating-point regs is 32-bit. */
3019 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3020 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
3022 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
3023 imag_p
? GET_MODE_SIZE (imode
) : 0);
3027 /* simplify_gen_subreg may fail for sub-word MEMs. */
3028 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3031 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
3032 true, false, NULL_RTX
, imode
, imode
);
3035 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3036 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3037 represented in NEW_MODE. If FORCE is true, this will never happen, as
3038 we'll force-create a SUBREG if needed. */
3041 emit_move_change_mode (enum machine_mode new_mode
,
3042 enum machine_mode old_mode
, rtx x
, bool force
)
3046 if (push_operand (x
, GET_MODE (x
)))
3048 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
3049 MEM_COPY_ATTRIBUTES (ret
, x
);
3053 /* We don't have to worry about changing the address since the
3054 size in bytes is supposed to be the same. */
3055 if (reload_in_progress
)
3057 /* Copy the MEM to change the mode and move any
3058 substitutions from the old MEM to the new one. */
3059 ret
= adjust_address_nv (x
, new_mode
, 0);
3060 copy_replacements (x
, ret
);
3063 ret
= adjust_address (x
, new_mode
, 0);
3067 /* Note that we do want simplify_subreg's behavior of validating
3068 that the new mode is ok for a hard register. If we were to use
3069 simplify_gen_subreg, we would create the subreg, but would
3070 probably run into the target not being able to implement it. */
3071 /* Except, of course, when FORCE is true, when this is exactly what
3072 we want. Which is needed for CCmodes on some targets. */
3074 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
3076 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
3082 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3083 an integer mode of the same size as MODE. Returns the instruction
3084 emitted, or NULL if such a move could not be generated. */
3087 emit_move_via_integer (enum machine_mode mode
, rtx x
, rtx y
, bool force
)
3089 enum machine_mode imode
;
3090 enum insn_code code
;
3092 /* There must exist a mode of the exact size we require. */
3093 imode
= int_mode_for_mode (mode
);
3094 if (imode
== BLKmode
)
3097 /* The target must support moves in this mode. */
3098 code
= optab_handler (mov_optab
, imode
);
3099 if (code
== CODE_FOR_nothing
)
3102 x
= emit_move_change_mode (imode
, mode
, x
, force
);
3105 y
= emit_move_change_mode (imode
, mode
, y
, force
);
3108 return emit_insn (GEN_FCN (code
) (x
, y
));
3111 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3112 Return an equivalent MEM that does not use an auto-increment. */
3115 emit_move_resolve_push (enum machine_mode mode
, rtx x
)
3117 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
3118 HOST_WIDE_INT adjust
;
3121 adjust
= GET_MODE_SIZE (mode
);
3122 #ifdef PUSH_ROUNDING
3123 adjust
= PUSH_ROUNDING (adjust
);
3125 if (code
== PRE_DEC
|| code
== POST_DEC
)
3127 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3129 rtx expr
= XEXP (XEXP (x
, 0), 1);
3132 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
3133 gcc_assert (CONST_INT_P (XEXP (expr
, 1)));
3134 val
= INTVAL (XEXP (expr
, 1));
3135 if (GET_CODE (expr
) == MINUS
)
3137 gcc_assert (adjust
== val
|| adjust
== -val
);
3141 /* Do not use anti_adjust_stack, since we don't want to update
3142 stack_pointer_delta. */
3143 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
3144 gen_int_mode (adjust
, Pmode
), stack_pointer_rtx
,
3145 0, OPTAB_LIB_WIDEN
);
3146 if (temp
!= stack_pointer_rtx
)
3147 emit_move_insn (stack_pointer_rtx
, temp
);
3154 temp
= stack_pointer_rtx
;
3159 temp
= plus_constant (Pmode
, stack_pointer_rtx
, -adjust
);
3165 return replace_equiv_address (x
, temp
);
3168 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3169 X is known to satisfy push_operand, and MODE is known to be complex.
3170 Returns the last instruction emitted. */
3173 emit_move_complex_push (enum machine_mode mode
, rtx x
, rtx y
)
3175 enum machine_mode submode
= GET_MODE_INNER (mode
);
3178 #ifdef PUSH_ROUNDING
3179 unsigned int submodesize
= GET_MODE_SIZE (submode
);
3181 /* In case we output to the stack, but the size is smaller than the
3182 machine can push exactly, we need to use move instructions. */
3183 if (PUSH_ROUNDING (submodesize
) != submodesize
)
3185 x
= emit_move_resolve_push (mode
, x
);
3186 return emit_move_insn (x
, y
);
3190 /* Note that the real part always precedes the imag part in memory
3191 regardless of machine's endianness. */
3192 switch (GET_CODE (XEXP (x
, 0)))
3206 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3207 read_complex_part (y
, imag_first
));
3208 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3209 read_complex_part (y
, !imag_first
));
3212 /* A subroutine of emit_move_complex. Perform the move from Y to X
3213 via two moves of the parts. Returns the last instruction emitted. */
3216 emit_move_complex_parts (rtx x
, rtx y
)
3218 /* Show the output dies here. This is necessary for SUBREGs
3219 of pseudos since we cannot track their lifetimes correctly;
3220 hard regs shouldn't appear here except as return values. */
3221 if (!reload_completed
&& !reload_in_progress
3222 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3225 write_complex_part (x
, read_complex_part (y
, false), false);
3226 write_complex_part (x
, read_complex_part (y
, true), true);
3228 return get_last_insn ();
3231 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3232 MODE is known to be complex. Returns the last instruction emitted. */
3235 emit_move_complex (enum machine_mode mode
, rtx x
, rtx y
)
3239 /* Need to take special care for pushes, to maintain proper ordering
3240 of the data, and possibly extra padding. */
3241 if (push_operand (x
, mode
))
3242 return emit_move_complex_push (mode
, x
, y
);
3244 /* See if we can coerce the target into moving both values at once, except
3245 for floating point where we favor moving as parts if this is easy. */
3246 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3247 && optab_handler (mov_optab
, GET_MODE_INNER (mode
)) != CODE_FOR_nothing
3249 && HARD_REGISTER_P (x
)
3250 && hard_regno_nregs
[REGNO(x
)][mode
] == 1)
3252 && HARD_REGISTER_P (y
)
3253 && hard_regno_nregs
[REGNO(y
)][mode
] == 1))
3255 /* Not possible if the values are inherently not adjacent. */
3256 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3258 /* Is possible if both are registers (or subregs of registers). */
3259 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3261 /* If one of the operands is a memory, and alignment constraints
3262 are friendly enough, we may be able to do combined memory operations.
3263 We do not attempt this if Y is a constant because that combination is
3264 usually better with the by-parts thing below. */
3265 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3266 && (!STRICT_ALIGNMENT
3267 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3276 /* For memory to memory moves, optimal behavior can be had with the
3277 existing block move logic. */
3278 if (MEM_P (x
) && MEM_P (y
))
3280 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
3281 BLOCK_OP_NO_LIBCALL
);
3282 return get_last_insn ();
3285 ret
= emit_move_via_integer (mode
, x
, y
, true);
3290 return emit_move_complex_parts (x
, y
);
3293 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3294 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3297 emit_move_ccmode (enum machine_mode mode
, rtx x
, rtx y
)
3301 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3304 enum insn_code code
= optab_handler (mov_optab
, CCmode
);
3305 if (code
!= CODE_FOR_nothing
)
3307 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3308 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3309 return emit_insn (GEN_FCN (code
) (x
, y
));
3313 /* Otherwise, find the MODE_INT mode of the same width. */
3314 ret
= emit_move_via_integer (mode
, x
, y
, false);
3315 gcc_assert (ret
!= NULL
);
3319 /* Return true if word I of OP lies entirely in the
3320 undefined bits of a paradoxical subreg. */
3323 undefined_operand_subword_p (const_rtx op
, int i
)
3325 enum machine_mode innermode
, innermostmode
;
3327 if (GET_CODE (op
) != SUBREG
)
3329 innermode
= GET_MODE (op
);
3330 innermostmode
= GET_MODE (SUBREG_REG (op
));
3331 offset
= i
* UNITS_PER_WORD
+ SUBREG_BYTE (op
);
3332 /* The SUBREG_BYTE represents offset, as if the value were stored in
3333 memory, except for a paradoxical subreg where we define
3334 SUBREG_BYTE to be 0; undo this exception as in
3336 if (SUBREG_BYTE (op
) == 0
3337 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
3339 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
3340 if (WORDS_BIG_ENDIAN
)
3341 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3342 if (BYTES_BIG_ENDIAN
)
3343 offset
+= difference
% UNITS_PER_WORD
;
3345 if (offset
>= GET_MODE_SIZE (innermostmode
)
3346 || offset
<= -GET_MODE_SIZE (word_mode
))
3351 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3352 MODE is any multi-word or full-word mode that lacks a move_insn
3353 pattern. Note that you will get better code if you define such
3354 patterns, even if they must turn into multiple assembler instructions. */
3357 emit_move_multi_word (enum machine_mode mode
, rtx x
, rtx y
)
3364 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3366 /* If X is a push on the stack, do the push now and replace
3367 X with a reference to the stack pointer. */
3368 if (push_operand (x
, mode
))
3369 x
= emit_move_resolve_push (mode
, x
);
3371 /* If we are in reload, see if either operand is a MEM whose address
3372 is scheduled for replacement. */
3373 if (reload_in_progress
&& MEM_P (x
)
3374 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3375 x
= replace_equiv_address_nv (x
, inner
);
3376 if (reload_in_progress
&& MEM_P (y
)
3377 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3378 y
= replace_equiv_address_nv (y
, inner
);
3382 need_clobber
= false;
3384 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3387 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3390 /* Do not generate code for a move if it would come entirely
3391 from the undefined bits of a paradoxical subreg. */
3392 if (undefined_operand_subword_p (y
, i
))
3395 ypart
= operand_subword (y
, i
, 1, mode
);
3397 /* If we can't get a part of Y, put Y into memory if it is a
3398 constant. Otherwise, force it into a register. Then we must
3399 be able to get a part of Y. */
3400 if (ypart
== 0 && CONSTANT_P (y
))
3402 y
= use_anchored_address (force_const_mem (mode
, y
));
3403 ypart
= operand_subword (y
, i
, 1, mode
);
3405 else if (ypart
== 0)
3406 ypart
= operand_subword_force (y
, i
, mode
);
3408 gcc_assert (xpart
&& ypart
);
3410 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3412 last_insn
= emit_move_insn (xpart
, ypart
);
3418 /* Show the output dies here. This is necessary for SUBREGs
3419 of pseudos since we cannot track their lifetimes correctly;
3420 hard regs shouldn't appear here except as return values.
3421 We never want to emit such a clobber after reload. */
3423 && ! (reload_in_progress
|| reload_completed
)
3424 && need_clobber
!= 0)
3432 /* Low level part of emit_move_insn.
3433 Called just like emit_move_insn, but assumes X and Y
3434 are basically valid. */
3437 emit_move_insn_1 (rtx x
, rtx y
)
3439 enum machine_mode mode
= GET_MODE (x
);
3440 enum insn_code code
;
3442 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3444 code
= optab_handler (mov_optab
, mode
);
3445 if (code
!= CODE_FOR_nothing
)
3446 return emit_insn (GEN_FCN (code
) (x
, y
));
3448 /* Expand complex moves by moving real part and imag part. */
3449 if (COMPLEX_MODE_P (mode
))
3450 return emit_move_complex (mode
, x
, y
);
3452 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
3453 || ALL_FIXED_POINT_MODE_P (mode
))
3455 rtx result
= emit_move_via_integer (mode
, x
, y
, true);
3457 /* If we can't find an integer mode, use multi words. */
3461 return emit_move_multi_word (mode
, x
, y
);
3464 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3465 return emit_move_ccmode (mode
, x
, y
);
3467 /* Try using a move pattern for the corresponding integer mode. This is
3468 only safe when simplify_subreg can convert MODE constants into integer
3469 constants. At present, it can only do this reliably if the value
3470 fits within a HOST_WIDE_INT. */
3471 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3473 rtx ret
= emit_move_via_integer (mode
, x
, y
, lra_in_progress
);
3477 if (! lra_in_progress
|| recog (PATTERN (ret
), ret
, 0) >= 0)
3482 return emit_move_multi_word (mode
, x
, y
);
3485 /* Generate code to copy Y into X.
3486 Both Y and X must have the same mode, except that
3487 Y can be a constant with VOIDmode.
3488 This mode cannot be BLKmode; use emit_block_move for that.
3490 Return the last instruction emitted. */
3493 emit_move_insn (rtx x
, rtx y
)
3495 enum machine_mode mode
= GET_MODE (x
);
3496 rtx y_cst
= NULL_RTX
;
3499 gcc_assert (mode
!= BLKmode
3500 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3505 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3506 && (last_insn
= compress_float_constant (x
, y
)))
3511 if (!targetm
.legitimate_constant_p (mode
, y
))
3513 y
= force_const_mem (mode
, y
);
3515 /* If the target's cannot_force_const_mem prevented the spill,
3516 assume that the target's move expanders will also take care
3517 of the non-legitimate constant. */
3521 y
= use_anchored_address (y
);
3525 /* If X or Y are memory references, verify that their addresses are valid
3528 && (! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
3530 && ! push_operand (x
, GET_MODE (x
))))
3531 x
= validize_mem (x
);
3534 && ! memory_address_addr_space_p (GET_MODE (y
), XEXP (y
, 0),
3535 MEM_ADDR_SPACE (y
)))
3536 y
= validize_mem (y
);
3538 gcc_assert (mode
!= BLKmode
);
3540 last_insn
= emit_move_insn_1 (x
, y
);
3542 if (y_cst
&& REG_P (x
)
3543 && (set
= single_set (last_insn
)) != NULL_RTX
3544 && SET_DEST (set
) == x
3545 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3546 set_unique_reg_note (last_insn
, REG_EQUAL
, copy_rtx (y_cst
));
3551 /* If Y is representable exactly in a narrower mode, and the target can
3552 perform the extension directly from constant or memory, then emit the
3553 move as an extension. */
3556 compress_float_constant (rtx x
, rtx y
)
3558 enum machine_mode dstmode
= GET_MODE (x
);
3559 enum machine_mode orig_srcmode
= GET_MODE (y
);
3560 enum machine_mode srcmode
;
3562 int oldcost
, newcost
;
3563 bool speed
= optimize_insn_for_speed_p ();
3565 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3567 if (targetm
.legitimate_constant_p (dstmode
, y
))
3568 oldcost
= set_src_cost (y
, speed
);
3570 oldcost
= set_src_cost (force_const_mem (dstmode
, y
), speed
);
3572 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3573 srcmode
!= orig_srcmode
;
3574 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3577 rtx trunc_y
, last_insn
;
3579 /* Skip if the target can't extend this way. */
3580 ic
= can_extend_p (dstmode
, srcmode
, 0);
3581 if (ic
== CODE_FOR_nothing
)
3584 /* Skip if the narrowed value isn't exact. */
3585 if (! exact_real_truncate (srcmode
, &r
))
3588 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3590 if (targetm
.legitimate_constant_p (srcmode
, trunc_y
))
3592 /* Skip if the target needs extra instructions to perform
3594 if (!insn_operand_matches (ic
, 1, trunc_y
))
3596 /* This is valid, but may not be cheaper than the original. */
3597 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3599 if (oldcost
< newcost
)
3602 else if (float_extend_from_mem
[dstmode
][srcmode
])
3604 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3605 /* This is valid, but may not be cheaper than the original. */
3606 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3608 if (oldcost
< newcost
)
3610 trunc_y
= validize_mem (trunc_y
);
3615 /* For CSE's benefit, force the compressed constant pool entry
3616 into a new pseudo. This constant may be used in different modes,
3617 and if not, combine will put things back together for us. */
3618 trunc_y
= force_reg (srcmode
, trunc_y
);
3619 emit_unop_insn (ic
, x
, trunc_y
, UNKNOWN
);
3620 last_insn
= get_last_insn ();
3623 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3631 /* Pushing data onto the stack. */
3633 /* Push a block of length SIZE (perhaps variable)
3634 and return an rtx to address the beginning of the block.
3635 The value may be virtual_outgoing_args_rtx.
3637 EXTRA is the number of bytes of padding to push in addition to SIZE.
3638 BELOW nonzero means this padding comes at low addresses;
3639 otherwise, the padding comes at high addresses. */
3642 push_block (rtx size
, int extra
, int below
)
3646 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3647 if (CONSTANT_P (size
))
3648 anti_adjust_stack (plus_constant (Pmode
, size
, extra
));
3649 else if (REG_P (size
) && extra
== 0)
3650 anti_adjust_stack (size
);
3653 temp
= copy_to_mode_reg (Pmode
, size
);
3655 temp
= expand_binop (Pmode
, add_optab
, temp
,
3656 gen_int_mode (extra
, Pmode
),
3657 temp
, 0, OPTAB_LIB_WIDEN
);
3658 anti_adjust_stack (temp
);
3661 #ifndef STACK_GROWS_DOWNWARD
3667 temp
= virtual_outgoing_args_rtx
;
3668 if (extra
!= 0 && below
)
3669 temp
= plus_constant (Pmode
, temp
, extra
);
3673 if (CONST_INT_P (size
))
3674 temp
= plus_constant (Pmode
, virtual_outgoing_args_rtx
,
3675 -INTVAL (size
) - (below
? 0 : extra
));
3676 else if (extra
!= 0 && !below
)
3677 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3678 negate_rtx (Pmode
, plus_constant (Pmode
, size
,
3681 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3682 negate_rtx (Pmode
, size
));
3685 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3688 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3691 mem_autoinc_base (rtx mem
)
3695 rtx addr
= XEXP (mem
, 0);
3696 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
)
3697 return XEXP (addr
, 0);
3702 /* A utility routine used here, in reload, and in try_split. The insns
3703 after PREV up to and including LAST are known to adjust the stack,
3704 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3705 placing notes as appropriate. PREV may be NULL, indicating the
3706 entire insn sequence prior to LAST should be scanned.
3708 The set of allowed stack pointer modifications is small:
3709 (1) One or more auto-inc style memory references (aka pushes),
3710 (2) One or more addition/subtraction with the SP as destination,
3711 (3) A single move insn with the SP as destination,
3712 (4) A call_pop insn,
3713 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3715 Insns in the sequence that do not modify the SP are ignored,
3716 except for noreturn calls.
3718 The return value is the amount of adjustment that can be trivially
3719 verified, via immediate operand or auto-inc. If the adjustment
3720 cannot be trivially extracted, the return value is INT_MIN. */
3723 find_args_size_adjust (rtx insn
)
3728 pat
= PATTERN (insn
);
3731 /* Look for a call_pop pattern. */
3734 /* We have to allow non-call_pop patterns for the case
3735 of emit_single_push_insn of a TLS address. */
3736 if (GET_CODE (pat
) != PARALLEL
)
3739 /* All call_pop have a stack pointer adjust in the parallel.
3740 The call itself is always first, and the stack adjust is
3741 usually last, so search from the end. */
3742 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; --i
)
3744 set
= XVECEXP (pat
, 0, i
);
3745 if (GET_CODE (set
) != SET
)
3747 dest
= SET_DEST (set
);
3748 if (dest
== stack_pointer_rtx
)
3751 /* We'd better have found the stack pointer adjust. */
3754 /* Fall through to process the extracted SET and DEST
3755 as if it was a standalone insn. */
3757 else if (GET_CODE (pat
) == SET
)
3759 else if ((set
= single_set (insn
)) != NULL
)
3761 else if (GET_CODE (pat
) == PARALLEL
)
3763 /* ??? Some older ports use a parallel with a stack adjust
3764 and a store for a PUSH_ROUNDING pattern, rather than a
3765 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3766 /* ??? See h8300 and m68k, pushqi1. */
3767 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; --i
)
3769 set
= XVECEXP (pat
, 0, i
);
3770 if (GET_CODE (set
) != SET
)
3772 dest
= SET_DEST (set
);
3773 if (dest
== stack_pointer_rtx
)
3776 /* We do not expect an auto-inc of the sp in the parallel. */
3777 gcc_checking_assert (mem_autoinc_base (dest
) != stack_pointer_rtx
);
3778 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3779 != stack_pointer_rtx
);
3787 dest
= SET_DEST (set
);
3789 /* Look for direct modifications of the stack pointer. */
3790 if (REG_P (dest
) && REGNO (dest
) == STACK_POINTER_REGNUM
)
3792 /* Look for a trivial adjustment, otherwise assume nothing. */
3793 /* Note that the SPU restore_stack_block pattern refers to
3794 the stack pointer in V4SImode. Consider that non-trivial. */
3795 if (SCALAR_INT_MODE_P (GET_MODE (dest
))
3796 && GET_CODE (SET_SRC (set
)) == PLUS
3797 && XEXP (SET_SRC (set
), 0) == stack_pointer_rtx
3798 && CONST_INT_P (XEXP (SET_SRC (set
), 1)))
3799 return INTVAL (XEXP (SET_SRC (set
), 1));
3800 /* ??? Reload can generate no-op moves, which will be cleaned
3801 up later. Recognize it and continue searching. */
3802 else if (rtx_equal_p (dest
, SET_SRC (set
)))
3805 return HOST_WIDE_INT_MIN
;
3811 /* Otherwise only think about autoinc patterns. */
3812 if (mem_autoinc_base (dest
) == stack_pointer_rtx
)
3815 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3816 != stack_pointer_rtx
);
3818 else if (mem_autoinc_base (SET_SRC (set
)) == stack_pointer_rtx
)
3819 mem
= SET_SRC (set
);
3823 addr
= XEXP (mem
, 0);
3824 switch (GET_CODE (addr
))
3828 return GET_MODE_SIZE (GET_MODE (mem
));
3831 return -GET_MODE_SIZE (GET_MODE (mem
));
3834 addr
= XEXP (addr
, 1);
3835 gcc_assert (GET_CODE (addr
) == PLUS
);
3836 gcc_assert (XEXP (addr
, 0) == stack_pointer_rtx
);
3837 gcc_assert (CONST_INT_P (XEXP (addr
, 1)));
3838 return INTVAL (XEXP (addr
, 1));
3846 fixup_args_size_notes (rtx prev
, rtx last
, int end_args_size
)
3848 int args_size
= end_args_size
;
3849 bool saw_unknown
= false;
3852 for (insn
= last
; insn
!= prev
; insn
= PREV_INSN (insn
))
3854 HOST_WIDE_INT this_delta
;
3856 if (!NONDEBUG_INSN_P (insn
))
3859 this_delta
= find_args_size_adjust (insn
);
3860 if (this_delta
== 0)
3863 || ACCUMULATE_OUTGOING_ARGS
3864 || find_reg_note (insn
, REG_NORETURN
, NULL_RTX
) == NULL_RTX
)
3868 gcc_assert (!saw_unknown
);
3869 if (this_delta
== HOST_WIDE_INT_MIN
)
3872 add_reg_note (insn
, REG_ARGS_SIZE
, GEN_INT (args_size
));
3873 #ifdef STACK_GROWS_DOWNWARD
3874 this_delta
= -(unsigned HOST_WIDE_INT
) this_delta
;
3876 args_size
-= this_delta
;
3879 return saw_unknown
? INT_MIN
: args_size
;
3882 #ifdef PUSH_ROUNDING
3883 /* Emit single push insn. */
3886 emit_single_push_insn_1 (enum machine_mode mode
, rtx x
, tree type
)
3889 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3891 enum insn_code icode
;
3893 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3894 /* If there is push pattern, use it. Otherwise try old way of throwing
3895 MEM representing push operation to move expander. */
3896 icode
= optab_handler (push_optab
, mode
);
3897 if (icode
!= CODE_FOR_nothing
)
3899 struct expand_operand ops
[1];
3901 create_input_operand (&ops
[0], x
, mode
);
3902 if (maybe_expand_insn (icode
, 1, ops
))
3905 if (GET_MODE_SIZE (mode
) == rounded_size
)
3906 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
3907 /* If we are to pad downward, adjust the stack pointer first and
3908 then store X into the stack location using an offset. This is
3909 because emit_move_insn does not know how to pad; it does not have
3911 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
3913 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
3914 HOST_WIDE_INT offset
;
3916 emit_move_insn (stack_pointer_rtx
,
3917 expand_binop (Pmode
,
3918 #ifdef STACK_GROWS_DOWNWARD
3924 gen_int_mode (rounded_size
, Pmode
),
3925 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
3927 offset
= (HOST_WIDE_INT
) padding_size
;
3928 #ifdef STACK_GROWS_DOWNWARD
3929 if (STACK_PUSH_CODE
== POST_DEC
)
3930 /* We have already decremented the stack pointer, so get the
3932 offset
+= (HOST_WIDE_INT
) rounded_size
;
3934 if (STACK_PUSH_CODE
== POST_INC
)
3935 /* We have already incremented the stack pointer, so get the
3937 offset
-= (HOST_WIDE_INT
) rounded_size
;
3939 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3940 gen_int_mode (offset
, Pmode
));
3944 #ifdef STACK_GROWS_DOWNWARD
3945 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3946 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3947 gen_int_mode (-(HOST_WIDE_INT
) rounded_size
,
3950 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3951 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3952 gen_int_mode (rounded_size
, Pmode
));
3954 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
3957 dest
= gen_rtx_MEM (mode
, dest_addr
);
3961 set_mem_attributes (dest
, type
, 1);
3963 if (flag_optimize_sibling_calls
)
3964 /* Function incoming arguments may overlap with sibling call
3965 outgoing arguments and we cannot allow reordering of reads
3966 from function arguments with stores to outgoing arguments
3967 of sibling calls. */
3968 set_mem_alias_set (dest
, 0);
3970 emit_move_insn (dest
, x
);
3973 /* Emit and annotate a single push insn. */
3976 emit_single_push_insn (enum machine_mode mode
, rtx x
, tree type
)
3978 int delta
, old_delta
= stack_pointer_delta
;
3979 rtx prev
= get_last_insn ();
3982 emit_single_push_insn_1 (mode
, x
, type
);
3984 last
= get_last_insn ();
3986 /* Notice the common case where we emitted exactly one insn. */
3987 if (PREV_INSN (last
) == prev
)
3989 add_reg_note (last
, REG_ARGS_SIZE
, GEN_INT (stack_pointer_delta
));
3993 delta
= fixup_args_size_notes (prev
, last
, stack_pointer_delta
);
3994 gcc_assert (delta
== INT_MIN
|| delta
== old_delta
);
3998 /* Generate code to push X onto the stack, assuming it has mode MODE and
4000 MODE is redundant except when X is a CONST_INT (since they don't
4002 SIZE is an rtx for the size of data to be copied (in bytes),
4003 needed only if X is BLKmode.
4005 ALIGN (in bits) is maximum alignment we can assume.
4007 If PARTIAL and REG are both nonzero, then copy that many of the first
4008 bytes of X into registers starting with REG, and push the rest of X.
4009 The amount of space pushed is decreased by PARTIAL bytes.
4010 REG must be a hard register in this case.
4011 If REG is zero but PARTIAL is not, take any all others actions for an
4012 argument partially in registers, but do not actually load any
4015 EXTRA is the amount in bytes of extra space to leave next to this arg.
4016 This is ignored if an argument block has already been allocated.
4018 On a machine that lacks real push insns, ARGS_ADDR is the address of
4019 the bottom of the argument block for this call. We use indexing off there
4020 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4021 argument block has not been preallocated.
4023 ARGS_SO_FAR is the size of args previously pushed for this call.
4025 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4026 for arguments passed in registers. If nonzero, it will be the number
4027 of bytes required. */
4030 emit_push_insn (rtx x
, enum machine_mode mode
, tree type
, rtx size
,
4031 unsigned int align
, int partial
, rtx reg
, int extra
,
4032 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
4036 enum direction stack_direction
4037 #ifdef STACK_GROWS_DOWNWARD
4043 /* Decide where to pad the argument: `downward' for below,
4044 `upward' for above, or `none' for don't pad it.
4045 Default is below for small data on big-endian machines; else above. */
4046 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
4048 /* Invert direction if stack is post-decrement.
4050 if (STACK_PUSH_CODE
== POST_DEC
)
4051 if (where_pad
!= none
)
4052 where_pad
= (where_pad
== downward
? upward
: downward
);
4057 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
4059 /* Copy a block into the stack, entirely or partially. */
4066 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4067 used
= partial
- offset
;
4069 if (mode
!= BLKmode
)
4071 /* A value is to be stored in an insufficiently aligned
4072 stack slot; copy via a suitably aligned slot if
4074 size
= GEN_INT (GET_MODE_SIZE (mode
));
4075 if (!MEM_P (xinner
))
4077 temp
= assign_temp (type
, 1, 1);
4078 emit_move_insn (temp
, xinner
);
4085 /* USED is now the # of bytes we need not copy to the stack
4086 because registers will take care of them. */
4089 xinner
= adjust_address (xinner
, BLKmode
, used
);
4091 /* If the partial register-part of the arg counts in its stack size,
4092 skip the part of stack space corresponding to the registers.
4093 Otherwise, start copying to the beginning of the stack space,
4094 by setting SKIP to 0. */
4095 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
4097 #ifdef PUSH_ROUNDING
4098 /* Do it with several push insns if that doesn't take lots of insns
4099 and if there is no difficulty with push insns that skip bytes
4100 on the stack for alignment purposes. */
4103 && CONST_INT_P (size
)
4105 && MEM_ALIGN (xinner
) >= align
4106 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size
) - used
, align
))
4107 /* Here we avoid the case of a structure whose weak alignment
4108 forces many pushes of a small amount of data,
4109 and such small pushes do rounding that causes trouble. */
4110 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
4111 || align
>= BIGGEST_ALIGNMENT
4112 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
4113 == (align
/ BITS_PER_UNIT
)))
4114 && (HOST_WIDE_INT
) PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
4116 /* Push padding now if padding above and stack grows down,
4117 or if padding below and stack grows up.
4118 But if space already allocated, this has already been done. */
4119 if (extra
&& args_addr
== 0
4120 && where_pad
!= none
&& where_pad
!= stack_direction
)
4121 anti_adjust_stack (GEN_INT (extra
));
4123 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
4126 #endif /* PUSH_ROUNDING */
4130 /* Otherwise make space on the stack and copy the data
4131 to the address of that space. */
4133 /* Deduct words put into registers from the size we must copy. */
4136 if (CONST_INT_P (size
))
4137 size
= GEN_INT (INTVAL (size
) - used
);
4139 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
4140 gen_int_mode (used
, GET_MODE (size
)),
4141 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4144 /* Get the address of the stack space.
4145 In this case, we do not deal with EXTRA separately.
4146 A single stack adjust will do. */
4149 temp
= push_block (size
, extra
, where_pad
== downward
);
4152 else if (CONST_INT_P (args_so_far
))
4153 temp
= memory_address (BLKmode
,
4154 plus_constant (Pmode
, args_addr
,
4155 skip
+ INTVAL (args_so_far
)));
4157 temp
= memory_address (BLKmode
,
4158 plus_constant (Pmode
,
4159 gen_rtx_PLUS (Pmode
,
4164 if (!ACCUMULATE_OUTGOING_ARGS
)
4166 /* If the source is referenced relative to the stack pointer,
4167 copy it to another register to stabilize it. We do not need
4168 to do this if we know that we won't be changing sp. */
4170 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
4171 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
4172 temp
= copy_to_reg (temp
);
4175 target
= gen_rtx_MEM (BLKmode
, temp
);
4177 /* We do *not* set_mem_attributes here, because incoming arguments
4178 may overlap with sibling call outgoing arguments and we cannot
4179 allow reordering of reads from function arguments with stores
4180 to outgoing arguments of sibling calls. We do, however, want
4181 to record the alignment of the stack slot. */
4182 /* ALIGN may well be better aligned than TYPE, e.g. due to
4183 PARM_BOUNDARY. Assume the caller isn't lying. */
4184 set_mem_align (target
, align
);
4186 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
4189 else if (partial
> 0)
4191 /* Scalar partly in registers. */
4193 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
4196 /* # bytes of start of argument
4197 that we must make space for but need not store. */
4198 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4199 int args_offset
= INTVAL (args_so_far
);
4202 /* Push padding now if padding above and stack grows down,
4203 or if padding below and stack grows up.
4204 But if space already allocated, this has already been done. */
4205 if (extra
&& args_addr
== 0
4206 && where_pad
!= none
&& where_pad
!= stack_direction
)
4207 anti_adjust_stack (GEN_INT (extra
));
4209 /* If we make space by pushing it, we might as well push
4210 the real data. Otherwise, we can leave OFFSET nonzero
4211 and leave the space uninitialized. */
4215 /* Now NOT_STACK gets the number of words that we don't need to
4216 allocate on the stack. Convert OFFSET to words too. */
4217 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
4218 offset
/= UNITS_PER_WORD
;
4220 /* If the partial register-part of the arg counts in its stack size,
4221 skip the part of stack space corresponding to the registers.
4222 Otherwise, start copying to the beginning of the stack space,
4223 by setting SKIP to 0. */
4224 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
4226 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
4227 x
= validize_mem (force_const_mem (mode
, x
));
4229 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4230 SUBREGs of such registers are not allowed. */
4231 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
4232 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
4233 x
= copy_to_reg (x
);
4235 /* Loop over all the words allocated on the stack for this arg. */
4236 /* We can do it by words, because any scalar bigger than a word
4237 has a size a multiple of a word. */
4238 #ifndef PUSH_ARGS_REVERSED
4239 for (i
= not_stack
; i
< size
; i
++)
4241 for (i
= size
- 1; i
>= not_stack
; i
--)
4243 if (i
>= not_stack
+ offset
)
4244 emit_push_insn (operand_subword_force (x
, i
, mode
),
4245 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
4247 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
4249 reg_parm_stack_space
, alignment_pad
);
4256 /* Push padding now if padding above and stack grows down,
4257 or if padding below and stack grows up.
4258 But if space already allocated, this has already been done. */
4259 if (extra
&& args_addr
== 0
4260 && where_pad
!= none
&& where_pad
!= stack_direction
)
4261 anti_adjust_stack (GEN_INT (extra
));
4263 #ifdef PUSH_ROUNDING
4264 if (args_addr
== 0 && PUSH_ARGS
)
4265 emit_single_push_insn (mode
, x
, type
);
4269 if (CONST_INT_P (args_so_far
))
4271 = memory_address (mode
,
4272 plus_constant (Pmode
, args_addr
,
4273 INTVAL (args_so_far
)));
4275 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
4277 dest
= gen_rtx_MEM (mode
, addr
);
4279 /* We do *not* set_mem_attributes here, because incoming arguments
4280 may overlap with sibling call outgoing arguments and we cannot
4281 allow reordering of reads from function arguments with stores
4282 to outgoing arguments of sibling calls. We do, however, want
4283 to record the alignment of the stack slot. */
4284 /* ALIGN may well be better aligned than TYPE, e.g. due to
4285 PARM_BOUNDARY. Assume the caller isn't lying. */
4286 set_mem_align (dest
, align
);
4288 emit_move_insn (dest
, x
);
4292 /* If part should go in registers, copy that part
4293 into the appropriate registers. Do this now, at the end,
4294 since mem-to-mem copies above may do function calls. */
4295 if (partial
> 0 && reg
!= 0)
4297 /* Handle calls that pass values in multiple non-contiguous locations.
4298 The Irix 6 ABI has examples of this. */
4299 if (GET_CODE (reg
) == PARALLEL
)
4300 emit_group_load (reg
, x
, type
, -1);
4303 gcc_assert (partial
% UNITS_PER_WORD
== 0);
4304 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
4308 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
4309 anti_adjust_stack (GEN_INT (extra
));
4311 if (alignment_pad
&& args_addr
== 0)
4312 anti_adjust_stack (alignment_pad
);
4315 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4319 get_subtarget (rtx x
)
4323 /* Only registers can be subtargets. */
4325 /* Don't use hard regs to avoid extending their life. */
4326 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4330 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4331 FIELD is a bitfield. Returns true if the optimization was successful,
4332 and there's nothing else to do. */
4335 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
4336 unsigned HOST_WIDE_INT bitpos
,
4337 unsigned HOST_WIDE_INT bitregion_start
,
4338 unsigned HOST_WIDE_INT bitregion_end
,
4339 enum machine_mode mode1
, rtx str_rtx
,
4342 enum machine_mode str_mode
= GET_MODE (str_rtx
);
4343 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4348 enum tree_code code
;
4350 if (mode1
!= VOIDmode
4351 || bitsize
>= BITS_PER_WORD
4352 || str_bitsize
> BITS_PER_WORD
4353 || TREE_SIDE_EFFECTS (to
)
4354 || TREE_THIS_VOLATILE (to
))
4358 if (TREE_CODE (src
) != SSA_NAME
)
4360 if (TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
4363 srcstmt
= get_gimple_for_ssa_name (src
);
4365 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt
)) != tcc_binary
)
4368 code
= gimple_assign_rhs_code (srcstmt
);
4370 op0
= gimple_assign_rhs1 (srcstmt
);
4372 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4373 to find its initialization. Hopefully the initialization will
4374 be from a bitfield load. */
4375 if (TREE_CODE (op0
) == SSA_NAME
)
4377 gimple op0stmt
= get_gimple_for_ssa_name (op0
);
4379 /* We want to eventually have OP0 be the same as TO, which
4380 should be a bitfield. */
4382 || !is_gimple_assign (op0stmt
)
4383 || gimple_assign_rhs_code (op0stmt
) != TREE_CODE (to
))
4385 op0
= gimple_assign_rhs1 (op0stmt
);
4388 op1
= gimple_assign_rhs2 (srcstmt
);
4390 if (!operand_equal_p (to
, op0
, 0))
4393 if (MEM_P (str_rtx
))
4395 unsigned HOST_WIDE_INT offset1
;
4397 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
4398 str_mode
= word_mode
;
4399 str_mode
= get_best_mode (bitsize
, bitpos
,
4400 bitregion_start
, bitregion_end
,
4401 MEM_ALIGN (str_rtx
), str_mode
, 0);
4402 if (str_mode
== VOIDmode
)
4404 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4407 bitpos
%= str_bitsize
;
4408 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
4409 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
4411 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
4414 /* If the bit field covers the whole REG/MEM, store_field
4415 will likely generate better code. */
4416 if (bitsize
>= str_bitsize
)
4419 /* We can't handle fields split across multiple entities. */
4420 if (bitpos
+ bitsize
> str_bitsize
)
4423 if (BYTES_BIG_ENDIAN
)
4424 bitpos
= str_bitsize
- bitpos
- bitsize
;
4430 /* For now, just optimize the case of the topmost bitfield
4431 where we don't need to do any masking and also
4432 1 bit bitfields where xor can be used.
4433 We might win by one instruction for the other bitfields
4434 too if insv/extv instructions aren't used, so that
4435 can be added later. */
4436 if (bitpos
+ bitsize
!= str_bitsize
4437 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
4440 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4441 value
= convert_modes (str_mode
,
4442 TYPE_MODE (TREE_TYPE (op1
)), value
,
4443 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4445 /* We may be accessing data outside the field, which means
4446 we can alias adjacent data. */
4447 if (MEM_P (str_rtx
))
4449 str_rtx
= shallow_copy_rtx (str_rtx
);
4450 set_mem_alias_set (str_rtx
, 0);
4451 set_mem_expr (str_rtx
, 0);
4454 binop
= code
== PLUS_EXPR
? add_optab
: sub_optab
;
4455 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
4457 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
4460 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4461 result
= expand_binop (str_mode
, binop
, str_rtx
,
4462 value
, str_rtx
, 1, OPTAB_WIDEN
);
4463 if (result
!= str_rtx
)
4464 emit_move_insn (str_rtx
, result
);
4469 if (TREE_CODE (op1
) != INTEGER_CST
)
4471 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4472 value
= convert_modes (str_mode
,
4473 TYPE_MODE (TREE_TYPE (op1
)), value
,
4474 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4476 /* We may be accessing data outside the field, which means
4477 we can alias adjacent data. */
4478 if (MEM_P (str_rtx
))
4480 str_rtx
= shallow_copy_rtx (str_rtx
);
4481 set_mem_alias_set (str_rtx
, 0);
4482 set_mem_expr (str_rtx
, 0);
4485 binop
= code
== BIT_IOR_EXPR
? ior_optab
: xor_optab
;
4486 if (bitpos
+ bitsize
!= str_bitsize
)
4488 rtx mask
= gen_int_mode (((unsigned HOST_WIDE_INT
) 1 << bitsize
) - 1,
4490 value
= expand_and (str_mode
, value
, mask
, NULL_RTX
);
4492 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4493 result
= expand_binop (str_mode
, binop
, str_rtx
,
4494 value
, str_rtx
, 1, OPTAB_WIDEN
);
4495 if (result
!= str_rtx
)
4496 emit_move_insn (str_rtx
, result
);
4506 /* In the C++ memory model, consecutive bit fields in a structure are
4507 considered one memory location.
4509 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4510 returns the bit range of consecutive bits in which this COMPONENT_REF
4511 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4512 and *OFFSET may be adjusted in the process.
4514 If the access does not need to be restricted, 0 is returned in both
4515 *BITSTART and *BITEND. */
4518 get_bit_range (unsigned HOST_WIDE_INT
*bitstart
,
4519 unsigned HOST_WIDE_INT
*bitend
,
4521 HOST_WIDE_INT
*bitpos
,
4524 HOST_WIDE_INT bitoffset
;
4527 gcc_assert (TREE_CODE (exp
) == COMPONENT_REF
);
4529 field
= TREE_OPERAND (exp
, 1);
4530 repr
= DECL_BIT_FIELD_REPRESENTATIVE (field
);
4531 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4532 need to limit the range we can access. */
4535 *bitstart
= *bitend
= 0;
4539 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4540 part of a larger bit field, then the representative does not serve any
4541 useful purpose. This can occur in Ada. */
4542 if (handled_component_p (TREE_OPERAND (exp
, 0)))
4544 enum machine_mode rmode
;
4545 HOST_WIDE_INT rbitsize
, rbitpos
;
4549 get_inner_reference (TREE_OPERAND (exp
, 0), &rbitsize
, &rbitpos
,
4550 &roffset
, &rmode
, &unsignedp
, &volatilep
, false);
4551 if ((rbitpos
% BITS_PER_UNIT
) != 0)
4553 *bitstart
= *bitend
= 0;
4558 /* Compute the adjustment to bitpos from the offset of the field
4559 relative to the representative. DECL_FIELD_OFFSET of field and
4560 repr are the same by construction if they are not constants,
4561 see finish_bitfield_layout. */
4562 if (host_integerp (DECL_FIELD_OFFSET (field
), 1)
4563 && host_integerp (DECL_FIELD_OFFSET (repr
), 1))
4564 bitoffset
= (tree_low_cst (DECL_FIELD_OFFSET (field
), 1)
4565 - tree_low_cst (DECL_FIELD_OFFSET (repr
), 1)) * BITS_PER_UNIT
;
4568 bitoffset
+= (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
4569 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr
), 1));
4571 /* If the adjustment is larger than bitpos, we would have a negative bit
4572 position for the lower bound and this may wreak havoc later. This can
4573 occur only if we have a non-null offset, so adjust offset and bitpos
4574 to make the lower bound non-negative. */
4575 if (bitoffset
> *bitpos
)
4577 HOST_WIDE_INT adjust
= bitoffset
- *bitpos
;
4579 gcc_assert ((adjust
% BITS_PER_UNIT
) == 0);
4580 gcc_assert (*offset
!= NULL_TREE
);
4584 = size_binop (MINUS_EXPR
, *offset
, size_int (adjust
/ BITS_PER_UNIT
));
4588 *bitstart
= *bitpos
- bitoffset
;
4590 *bitend
= *bitstart
+ tree_low_cst (DECL_SIZE (repr
), 1) - 1;
4593 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4594 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4595 DECL_RTL was not set yet, return NORTL. */
4598 addr_expr_of_non_mem_decl_p_1 (tree addr
, bool nortl
)
4600 if (TREE_CODE (addr
) != ADDR_EXPR
)
4603 tree base
= TREE_OPERAND (addr
, 0);
4606 || TREE_ADDRESSABLE (base
)
4607 || DECL_MODE (base
) == BLKmode
)
4610 if (!DECL_RTL_SET_P (base
))
4613 return (!MEM_P (DECL_RTL (base
)));
4616 /* Returns true if the MEM_REF REF refers to an object that does not
4617 reside in memory and has non-BLKmode. */
4620 mem_ref_refers_to_non_mem_p (tree ref
)
4622 tree base
= TREE_OPERAND (ref
, 0);
4623 return addr_expr_of_non_mem_decl_p_1 (base
, false);
4626 /* Return TRUE iff OP is an ADDR_EXPR of a DECL that's not
4627 addressable. This is very much like mem_ref_refers_to_non_mem_p,
4628 but instead of the MEM_REF, it takes its base, and it doesn't
4629 assume a DECL is in memory just because its RTL is not set yet. */
4632 addr_expr_of_non_mem_decl_p (tree op
)
4634 return addr_expr_of_non_mem_decl_p_1 (op
, true);
4637 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4638 is true, try generating a nontemporal store. */
4641 expand_assignment (tree to
, tree from
, bool nontemporal
)
4645 enum machine_mode mode
;
4647 enum insn_code icode
;
4649 /* Don't crash if the lhs of the assignment was erroneous. */
4650 if (TREE_CODE (to
) == ERROR_MARK
)
4652 expand_normal (from
);
4656 /* Optimize away no-op moves without side-effects. */
4657 if (operand_equal_p (to
, from
, 0))
4660 /* Handle misaligned stores. */
4661 mode
= TYPE_MODE (TREE_TYPE (to
));
4662 if ((TREE_CODE (to
) == MEM_REF
4663 || TREE_CODE (to
) == TARGET_MEM_REF
)
4665 && !mem_ref_refers_to_non_mem_p (to
)
4666 && ((align
= get_object_alignment (to
))
4667 < GET_MODE_ALIGNMENT (mode
))
4668 && (((icode
= optab_handler (movmisalign_optab
, mode
))
4669 != CODE_FOR_nothing
)
4670 || SLOW_UNALIGNED_ACCESS (mode
, align
)))
4674 reg
= expand_expr (from
, NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
4675 reg
= force_not_mem (reg
);
4676 mem
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4678 if (icode
!= CODE_FOR_nothing
)
4680 struct expand_operand ops
[2];
4682 create_fixed_operand (&ops
[0], mem
);
4683 create_input_operand (&ops
[1], reg
, mode
);
4684 /* The movmisalign<mode> pattern cannot fail, else the assignment
4685 would silently be omitted. */
4686 expand_insn (icode
, 2, ops
);
4689 store_bit_field (mem
, GET_MODE_BITSIZE (mode
),
4690 0, 0, 0, mode
, reg
);
4694 /* Assignment of a structure component needs special treatment
4695 if the structure component's rtx is not simply a MEM.
4696 Assignment of an array element at a constant index, and assignment of
4697 an array element in an unaligned packed structure field, has the same
4698 problem. Same for (partially) storing into a non-memory object. */
4699 if (handled_component_p (to
)
4700 || (TREE_CODE (to
) == MEM_REF
4701 && mem_ref_refers_to_non_mem_p (to
))
4702 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
4704 enum machine_mode mode1
;
4705 HOST_WIDE_INT bitsize
, bitpos
;
4706 unsigned HOST_WIDE_INT bitregion_start
= 0;
4707 unsigned HOST_WIDE_INT bitregion_end
= 0;
4714 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
4715 &unsignedp
, &volatilep
, true);
4717 if (TREE_CODE (to
) == COMPONENT_REF
4718 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to
, 1)))
4719 get_bit_range (&bitregion_start
, &bitregion_end
, to
, &bitpos
, &offset
);
4721 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4723 /* If the bitfield is volatile, we want to access it in the
4724 field's mode, not the computed mode.
4725 If a MEM has VOIDmode (external with incomplete type),
4726 use BLKmode for it instead. */
4729 if (volatilep
&& flag_strict_volatile_bitfields
> 0)
4730 to_rtx
= adjust_address (to_rtx
, mode1
, 0);
4731 else if (GET_MODE (to_rtx
) == VOIDmode
)
4732 to_rtx
= adjust_address (to_rtx
, BLKmode
, 0);
4737 enum machine_mode address_mode
;
4740 if (!MEM_P (to_rtx
))
4742 /* We can get constant negative offsets into arrays with broken
4743 user code. Translate this to a trap instead of ICEing. */
4744 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
4745 expand_builtin_trap ();
4746 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
4749 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
4750 address_mode
= get_address_mode (to_rtx
);
4751 if (GET_MODE (offset_rtx
) != address_mode
)
4752 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
4754 /* A constant address in TO_RTX can have VOIDmode, we must not try
4755 to call force_reg for that case. Avoid that case. */
4757 && GET_MODE (to_rtx
) == BLKmode
4758 && GET_MODE (XEXP (to_rtx
, 0)) != VOIDmode
4760 && (bitpos
% bitsize
) == 0
4761 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
4762 && MEM_ALIGN (to_rtx
) == GET_MODE_ALIGNMENT (mode1
))
4764 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
4768 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4769 highest_pow2_factor_for_target (to
,
4773 /* No action is needed if the target is not a memory and the field
4774 lies completely outside that target. This can occur if the source
4775 code contains an out-of-bounds access to a small array. */
4777 && GET_MODE (to_rtx
) != BLKmode
4778 && (unsigned HOST_WIDE_INT
) bitpos
4779 >= GET_MODE_PRECISION (GET_MODE (to_rtx
)))
4781 expand_normal (from
);
4784 /* Handle expand_expr of a complex value returning a CONCAT. */
4785 else if (GET_CODE (to_rtx
) == CONCAT
)
4787 unsigned short mode_bitsize
= GET_MODE_BITSIZE (GET_MODE (to_rtx
));
4788 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from
)))
4790 && bitsize
== mode_bitsize
)
4791 result
= store_expr (from
, to_rtx
, false, nontemporal
);
4792 else if (bitsize
== mode_bitsize
/ 2
4793 && (bitpos
== 0 || bitpos
== mode_bitsize
/ 2))
4794 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false,
4796 else if (bitpos
+ bitsize
<= mode_bitsize
/ 2)
4797 result
= store_field (XEXP (to_rtx
, 0), bitsize
, bitpos
,
4798 bitregion_start
, bitregion_end
,
4800 get_alias_set (to
), nontemporal
);
4801 else if (bitpos
>= mode_bitsize
/ 2)
4802 result
= store_field (XEXP (to_rtx
, 1), bitsize
,
4803 bitpos
- mode_bitsize
/ 2,
4804 bitregion_start
, bitregion_end
,
4806 get_alias_set (to
), nontemporal
);
4807 else if (bitpos
== 0 && bitsize
== mode_bitsize
)
4810 result
= expand_normal (from
);
4811 from_rtx
= simplify_gen_subreg (GET_MODE (to_rtx
), result
,
4812 TYPE_MODE (TREE_TYPE (from
)), 0);
4813 emit_move_insn (XEXP (to_rtx
, 0),
4814 read_complex_part (from_rtx
, false));
4815 emit_move_insn (XEXP (to_rtx
, 1),
4816 read_complex_part (from_rtx
, true));
4820 rtx temp
= assign_stack_temp (GET_MODE (to_rtx
),
4821 GET_MODE_SIZE (GET_MODE (to_rtx
)));
4822 write_complex_part (temp
, XEXP (to_rtx
, 0), false);
4823 write_complex_part (temp
, XEXP (to_rtx
, 1), true);
4824 result
= store_field (temp
, bitsize
, bitpos
,
4825 bitregion_start
, bitregion_end
,
4827 get_alias_set (to
), nontemporal
);
4828 emit_move_insn (XEXP (to_rtx
, 0), read_complex_part (temp
, false));
4829 emit_move_insn (XEXP (to_rtx
, 1), read_complex_part (temp
, true));
4836 /* If the field is at offset zero, we could have been given the
4837 DECL_RTX of the parent struct. Don't munge it. */
4838 to_rtx
= shallow_copy_rtx (to_rtx
);
4840 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
4842 /* Deal with volatile and readonly fields. The former is only
4843 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4845 MEM_VOLATILE_P (to_rtx
) = 1;
4848 if (optimize_bitfield_assignment_op (bitsize
, bitpos
,
4849 bitregion_start
, bitregion_end
,
4854 result
= store_field (to_rtx
, bitsize
, bitpos
,
4855 bitregion_start
, bitregion_end
,
4857 get_alias_set (to
), nontemporal
);
4861 preserve_temp_slots (result
);
4866 /* If the rhs is a function call and its value is not an aggregate,
4867 call the function before we start to compute the lhs.
4868 This is needed for correct code for cases such as
4869 val = setjmp (buf) on machines where reference to val
4870 requires loading up part of an address in a separate insn.
4872 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4873 since it might be a promoted variable where the zero- or sign- extension
4874 needs to be done. Handling this in the normal way is safe because no
4875 computation is done before the call. The same is true for SSA names. */
4876 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
4877 && COMPLETE_TYPE_P (TREE_TYPE (from
))
4878 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
4879 && ! (((TREE_CODE (to
) == VAR_DECL
4880 || TREE_CODE (to
) == PARM_DECL
4881 || TREE_CODE (to
) == RESULT_DECL
)
4882 && REG_P (DECL_RTL (to
)))
4883 || TREE_CODE (to
) == SSA_NAME
))
4888 value
= expand_normal (from
);
4890 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4892 /* Handle calls that return values in multiple non-contiguous locations.
4893 The Irix 6 ABI has examples of this. */
4894 if (GET_CODE (to_rtx
) == PARALLEL
)
4896 if (GET_CODE (value
) == PARALLEL
)
4897 emit_group_move (to_rtx
, value
);
4899 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
4900 int_size_in_bytes (TREE_TYPE (from
)));
4902 else if (GET_CODE (value
) == PARALLEL
)
4903 emit_group_store (to_rtx
, value
, TREE_TYPE (from
),
4904 int_size_in_bytes (TREE_TYPE (from
)));
4905 else if (GET_MODE (to_rtx
) == BLKmode
)
4907 /* Handle calls that return BLKmode values in registers. */
4909 copy_blkmode_from_reg (to_rtx
, value
, TREE_TYPE (from
));
4911 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
4915 if (POINTER_TYPE_P (TREE_TYPE (to
)))
4916 value
= convert_memory_address_addr_space
4917 (GET_MODE (to_rtx
), value
,
4918 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to
))));
4920 emit_move_insn (to_rtx
, value
);
4922 preserve_temp_slots (to_rtx
);
4927 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
4928 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4930 /* Don't move directly into a return register. */
4931 if (TREE_CODE (to
) == RESULT_DECL
4932 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
4938 /* If the source is itself a return value, it still is in a pseudo at
4939 this point so we can move it back to the return register directly. */
4941 && TYPE_MODE (TREE_TYPE (from
)) == BLKmode
4942 && TREE_CODE (from
) != CALL_EXPR
)
4943 temp
= copy_blkmode_to_reg (GET_MODE (to_rtx
), from
);
4945 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
4947 /* Handle calls that return values in multiple non-contiguous locations.
4948 The Irix 6 ABI has examples of this. */
4949 if (GET_CODE (to_rtx
) == PARALLEL
)
4951 if (GET_CODE (temp
) == PARALLEL
)
4952 emit_group_move (to_rtx
, temp
);
4954 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
4955 int_size_in_bytes (TREE_TYPE (from
)));
4958 emit_move_insn (to_rtx
, temp
);
4960 preserve_temp_slots (to_rtx
);
4965 /* In case we are returning the contents of an object which overlaps
4966 the place the value is being stored, use a safe function when copying
4967 a value through a pointer into a structure value return block. */
4968 if (TREE_CODE (to
) == RESULT_DECL
4969 && TREE_CODE (from
) == INDIRECT_REF
4970 && ADDR_SPACE_GENERIC_P
4971 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from
, 0)))))
4972 && refs_may_alias_p (to
, from
)
4973 && cfun
->returns_struct
4974 && !cfun
->returns_pcc_struct
)
4979 size
= expr_size (from
);
4980 from_rtx
= expand_normal (from
);
4982 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
4983 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
4984 XEXP (from_rtx
, 0), Pmode
,
4985 convert_to_mode (TYPE_MODE (sizetype
),
4986 size
, TYPE_UNSIGNED (sizetype
)),
4987 TYPE_MODE (sizetype
));
4989 preserve_temp_slots (to_rtx
);
4994 /* Compute FROM and store the value in the rtx we got. */
4997 result
= store_expr (from
, to_rtx
, 0, nontemporal
);
4998 preserve_temp_slots (result
);
5003 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5004 succeeded, false otherwise. */
5007 emit_storent_insn (rtx to
, rtx from
)
5009 struct expand_operand ops
[2];
5010 enum machine_mode mode
= GET_MODE (to
);
5011 enum insn_code code
= optab_handler (storent_optab
, mode
);
5013 if (code
== CODE_FOR_nothing
)
5016 create_fixed_operand (&ops
[0], to
);
5017 create_input_operand (&ops
[1], from
, mode
);
5018 return maybe_expand_insn (code
, 2, ops
);
5021 /* Generate code for computing expression EXP,
5022 and storing the value into TARGET.
5024 If the mode is BLKmode then we may return TARGET itself.
5025 It turns out that in BLKmode it doesn't cause a problem.
5026 because C has no operators that could combine two different
5027 assignments into the same BLKmode object with different values
5028 with no sequence point. Will other languages need this to
5031 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5032 stack, and block moves may need to be treated specially.
5034 If NONTEMPORAL is true, try using a nontemporal store instruction. */
5037 store_expr (tree exp
, rtx target
, int call_param_p
, bool nontemporal
)
5040 rtx alt_rtl
= NULL_RTX
;
5041 location_t loc
= curr_insn_location ();
5043 if (VOID_TYPE_P (TREE_TYPE (exp
)))
5045 /* C++ can generate ?: expressions with a throw expression in one
5046 branch and an rvalue in the other. Here, we resolve attempts to
5047 store the throw expression's nonexistent result. */
5048 gcc_assert (!call_param_p
);
5049 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5052 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
5054 /* Perform first part of compound expression, then assign from second
5056 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
5057 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5058 return store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5061 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
5063 /* For conditional expression, get safe form of the target. Then
5064 test the condition, doing the appropriate assignment on either
5065 side. This avoids the creation of unnecessary temporaries.
5066 For non-BLKmode, it is more efficient not to do this. */
5068 rtx lab1
= gen_label_rtx (), lab2
= gen_label_rtx ();
5070 do_pending_stack_adjust ();
5072 jumpifnot (TREE_OPERAND (exp
, 0), lab1
, -1);
5073 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5075 emit_jump_insn (gen_jump (lab2
));
5078 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
,
5085 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
5086 /* If this is a scalar in a register that is stored in a wider mode
5087 than the declared mode, compute the result into its declared mode
5088 and then convert to the wider mode. Our value is the computed
5091 rtx inner_target
= 0;
5093 /* We can do the conversion inside EXP, which will often result
5094 in some optimizations. Do the conversion in two steps: first
5095 change the signedness, if needed, then the extend. But don't
5096 do this if the type of EXP is a subtype of something else
5097 since then the conversion might involve more than just
5098 converting modes. */
5099 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
5100 && TREE_TYPE (TREE_TYPE (exp
)) == 0
5101 && GET_MODE_PRECISION (GET_MODE (target
))
5102 == TYPE_PRECISION (TREE_TYPE (exp
)))
5104 if (TYPE_UNSIGNED (TREE_TYPE (exp
))
5105 != SUBREG_PROMOTED_UNSIGNED_P (target
))
5107 /* Some types, e.g. Fortran's logical*4, won't have a signed
5108 version, so use the mode instead. */
5110 = (signed_or_unsigned_type_for
5111 (SUBREG_PROMOTED_UNSIGNED_P (target
), TREE_TYPE (exp
)));
5113 ntype
= lang_hooks
.types
.type_for_mode
5114 (TYPE_MODE (TREE_TYPE (exp
)),
5115 SUBREG_PROMOTED_UNSIGNED_P (target
));
5117 exp
= fold_convert_loc (loc
, ntype
, exp
);
5120 exp
= fold_convert_loc (loc
, lang_hooks
.types
.type_for_mode
5121 (GET_MODE (SUBREG_REG (target
)),
5122 SUBREG_PROMOTED_UNSIGNED_P (target
)),
5125 inner_target
= SUBREG_REG (target
);
5128 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
5129 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5131 /* If TEMP is a VOIDmode constant, use convert_modes to make
5132 sure that we properly convert it. */
5133 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
5135 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5136 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
5137 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
5138 GET_MODE (target
), temp
,
5139 SUBREG_PROMOTED_UNSIGNED_P (target
));
5142 convert_move (SUBREG_REG (target
), temp
,
5143 SUBREG_PROMOTED_UNSIGNED_P (target
));
5147 else if ((TREE_CODE (exp
) == STRING_CST
5148 || (TREE_CODE (exp
) == MEM_REF
5149 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
5150 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
5152 && integer_zerop (TREE_OPERAND (exp
, 1))))
5153 && !nontemporal
&& !call_param_p
5156 /* Optimize initialization of an array with a STRING_CST. */
5157 HOST_WIDE_INT exp_len
, str_copy_len
;
5159 tree str
= TREE_CODE (exp
) == STRING_CST
5160 ? exp
: TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
5162 exp_len
= int_expr_size (exp
);
5166 if (TREE_STRING_LENGTH (str
) <= 0)
5169 str_copy_len
= strlen (TREE_STRING_POINTER (str
));
5170 if (str_copy_len
< TREE_STRING_LENGTH (str
) - 1)
5173 str_copy_len
= TREE_STRING_LENGTH (str
);
5174 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0
5175 && TREE_STRING_POINTER (str
)[TREE_STRING_LENGTH (str
) - 1] == '\0')
5177 str_copy_len
+= STORE_MAX_PIECES
- 1;
5178 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
5180 str_copy_len
= MIN (str_copy_len
, exp_len
);
5181 if (!can_store_by_pieces (str_copy_len
, builtin_strncpy_read_str
,
5182 CONST_CAST (char *, TREE_STRING_POINTER (str
)),
5183 MEM_ALIGN (target
), false))
5188 dest_mem
= store_by_pieces (dest_mem
,
5189 str_copy_len
, builtin_strncpy_read_str
,
5191 TREE_STRING_POINTER (str
)),
5192 MEM_ALIGN (target
), false,
5193 exp_len
> str_copy_len
? 1 : 0);
5194 if (exp_len
> str_copy_len
)
5195 clear_storage (adjust_address (dest_mem
, BLKmode
, 0),
5196 GEN_INT (exp_len
- str_copy_len
),
5205 /* If we want to use a nontemporal store, force the value to
5207 tmp_target
= nontemporal
? NULL_RTX
: target
;
5208 temp
= expand_expr_real (exp
, tmp_target
, GET_MODE (target
),
5210 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
5214 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5215 the same as that of TARGET, adjust the constant. This is needed, for
5216 example, in case it is a CONST_DOUBLE and we want only a word-sized
5218 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
5219 && TREE_CODE (exp
) != ERROR_MARK
5220 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
5221 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5222 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5224 /* If value was not generated in the target, store it there.
5225 Convert the value to TARGET's type first if necessary and emit the
5226 pending incrementations that have been queued when expanding EXP.
5227 Note that we cannot emit the whole queue blindly because this will
5228 effectively disable the POST_INC optimization later.
5230 If TEMP and TARGET compare equal according to rtx_equal_p, but
5231 one or both of them are volatile memory refs, we have to distinguish
5233 - expand_expr has used TARGET. In this case, we must not generate
5234 another copy. This can be detected by TARGET being equal according
5236 - expand_expr has not used TARGET - that means that the source just
5237 happens to have the same RTX form. Since temp will have been created
5238 by expand_expr, it will compare unequal according to == .
5239 We must generate a copy in this case, to reach the correct number
5240 of volatile memory references. */
5242 if ((! rtx_equal_p (temp
, target
)
5243 || (temp
!= target
&& (side_effects_p (temp
)
5244 || side_effects_p (target
))))
5245 && TREE_CODE (exp
) != ERROR_MARK
5246 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5247 but TARGET is not valid memory reference, TEMP will differ
5248 from TARGET although it is really the same location. */
5250 && rtx_equal_p (alt_rtl
, target
)
5251 && !side_effects_p (alt_rtl
)
5252 && !side_effects_p (target
))
5253 /* If there's nothing to copy, don't bother. Don't call
5254 expr_size unless necessary, because some front-ends (C++)
5255 expr_size-hook must not be given objects that are not
5256 supposed to be bit-copied or bit-initialized. */
5257 && expr_size (exp
) != const0_rtx
)
5259 if (GET_MODE (temp
) != GET_MODE (target
) && GET_MODE (temp
) != VOIDmode
)
5261 if (GET_MODE (target
) == BLKmode
)
5263 /* Handle calls that return BLKmode values in registers. */
5264 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
5265 copy_blkmode_from_reg (target
, temp
, TREE_TYPE (exp
));
5267 store_bit_field (target
,
5268 INTVAL (expr_size (exp
)) * BITS_PER_UNIT
,
5269 0, 0, 0, GET_MODE (temp
), temp
);
5272 convert_move (target
, temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5275 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
5277 /* Handle copying a string constant into an array. The string
5278 constant may be shorter than the array. So copy just the string's
5279 actual length, and clear the rest. First get the size of the data
5280 type of the string, which is actually the size of the target. */
5281 rtx size
= expr_size (exp
);
5283 if (CONST_INT_P (size
)
5284 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
5285 emit_block_move (target
, temp
, size
,
5287 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5290 enum machine_mode pointer_mode
5291 = targetm
.addr_space
.pointer_mode (MEM_ADDR_SPACE (target
));
5292 enum machine_mode address_mode
= get_address_mode (target
);
5294 /* Compute the size of the data to copy from the string. */
5296 = size_binop_loc (loc
, MIN_EXPR
,
5297 make_tree (sizetype
, size
),
5298 size_int (TREE_STRING_LENGTH (exp
)));
5300 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
5302 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
5305 /* Copy that much. */
5306 copy_size_rtx
= convert_to_mode (pointer_mode
, copy_size_rtx
,
5307 TYPE_UNSIGNED (sizetype
));
5308 emit_block_move (target
, temp
, copy_size_rtx
,
5310 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5312 /* Figure out how much is left in TARGET that we have to clear.
5313 Do all calculations in pointer_mode. */
5314 if (CONST_INT_P (copy_size_rtx
))
5316 size
= plus_constant (address_mode
, size
,
5317 -INTVAL (copy_size_rtx
));
5318 target
= adjust_address (target
, BLKmode
,
5319 INTVAL (copy_size_rtx
));
5323 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
5324 copy_size_rtx
, NULL_RTX
, 0,
5327 if (GET_MODE (copy_size_rtx
) != address_mode
)
5328 copy_size_rtx
= convert_to_mode (address_mode
,
5330 TYPE_UNSIGNED (sizetype
));
5332 target
= offset_address (target
, copy_size_rtx
,
5333 highest_pow2_factor (copy_size
));
5334 label
= gen_label_rtx ();
5335 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
5336 GET_MODE (size
), 0, label
);
5339 if (size
!= const0_rtx
)
5340 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
5346 /* Handle calls that return values in multiple non-contiguous locations.
5347 The Irix 6 ABI has examples of this. */
5348 else if (GET_CODE (target
) == PARALLEL
)
5350 if (GET_CODE (temp
) == PARALLEL
)
5351 emit_group_move (target
, temp
);
5353 emit_group_load (target
, temp
, TREE_TYPE (exp
),
5354 int_size_in_bytes (TREE_TYPE (exp
)));
5356 else if (GET_CODE (temp
) == PARALLEL
)
5357 emit_group_store (target
, temp
, TREE_TYPE (exp
),
5358 int_size_in_bytes (TREE_TYPE (exp
)));
5359 else if (GET_MODE (temp
) == BLKmode
)
5360 emit_block_move (target
, temp
, expr_size (exp
),
5362 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5363 /* If we emit a nontemporal store, there is nothing else to do. */
5364 else if (nontemporal
&& emit_storent_insn (target
, temp
))
5368 temp
= force_operand (temp
, target
);
5370 emit_move_insn (target
, temp
);
5377 /* Return true if field F of structure TYPE is a flexible array. */
5380 flexible_array_member_p (const_tree f
, const_tree type
)
5385 return (DECL_CHAIN (f
) == NULL
5386 && TREE_CODE (tf
) == ARRAY_TYPE
5388 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
5389 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
5390 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
5391 && int_size_in_bytes (type
) >= 0);
5394 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5395 must have in order for it to completely initialize a value of type TYPE.
5396 Return -1 if the number isn't known.
5398 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5400 static HOST_WIDE_INT
5401 count_type_elements (const_tree type
, bool for_ctor_p
)
5403 switch (TREE_CODE (type
))
5409 nelts
= array_type_nelts (type
);
5410 if (nelts
&& host_integerp (nelts
, 1))
5412 unsigned HOST_WIDE_INT n
;
5414 n
= tree_low_cst (nelts
, 1) + 1;
5415 if (n
== 0 || for_ctor_p
)
5418 return n
* count_type_elements (TREE_TYPE (type
), false);
5420 return for_ctor_p
? -1 : 1;
5425 unsigned HOST_WIDE_INT n
;
5429 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5430 if (TREE_CODE (f
) == FIELD_DECL
)
5433 n
+= count_type_elements (TREE_TYPE (f
), false);
5434 else if (!flexible_array_member_p (f
, type
))
5435 /* Don't count flexible arrays, which are not supposed
5436 to be initialized. */
5444 case QUAL_UNION_TYPE
:
5449 gcc_assert (!for_ctor_p
);
5450 /* Estimate the number of scalars in each field and pick the
5451 maximum. Other estimates would do instead; the idea is simply
5452 to make sure that the estimate is not sensitive to the ordering
5455 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5456 if (TREE_CODE (f
) == FIELD_DECL
)
5458 m
= count_type_elements (TREE_TYPE (f
), false);
5459 /* If the field doesn't span the whole union, add an extra
5460 scalar for the rest. */
5461 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f
)),
5462 TYPE_SIZE (type
)) != 1)
5474 return TYPE_VECTOR_SUBPARTS (type
);
5478 case FIXED_POINT_TYPE
:
5483 case REFERENCE_TYPE
:
5499 /* Helper for categorize_ctor_elements. Identical interface. */
5502 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5503 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5505 unsigned HOST_WIDE_INT idx
;
5506 HOST_WIDE_INT nz_elts
, init_elts
, num_fields
;
5507 tree value
, purpose
, elt_type
;
5509 /* Whether CTOR is a valid constant initializer, in accordance with what
5510 initializer_constant_valid_p does. If inferred from the constructor
5511 elements, true until proven otherwise. */
5512 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
5513 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
5518 elt_type
= NULL_TREE
;
5520 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
5522 HOST_WIDE_INT mult
= 1;
5524 if (purpose
&& TREE_CODE (purpose
) == RANGE_EXPR
)
5526 tree lo_index
= TREE_OPERAND (purpose
, 0);
5527 tree hi_index
= TREE_OPERAND (purpose
, 1);
5529 if (host_integerp (lo_index
, 1) && host_integerp (hi_index
, 1))
5530 mult
= (tree_low_cst (hi_index
, 1)
5531 - tree_low_cst (lo_index
, 1) + 1);
5534 elt_type
= TREE_TYPE (value
);
5536 switch (TREE_CODE (value
))
5540 HOST_WIDE_INT nz
= 0, ic
= 0;
5542 bool const_elt_p
= categorize_ctor_elements_1 (value
, &nz
, &ic
,
5545 nz_elts
+= mult
* nz
;
5546 init_elts
+= mult
* ic
;
5548 if (const_from_elts_p
&& const_p
)
5549 const_p
= const_elt_p
;
5556 if (!initializer_zerop (value
))
5562 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
5563 init_elts
+= mult
* TREE_STRING_LENGTH (value
);
5567 if (!initializer_zerop (TREE_REALPART (value
)))
5569 if (!initializer_zerop (TREE_IMAGPART (value
)))
5577 for (i
= 0; i
< VECTOR_CST_NELTS (value
); ++i
)
5579 tree v
= VECTOR_CST_ELT (value
, i
);
5580 if (!initializer_zerop (v
))
5589 HOST_WIDE_INT tc
= count_type_elements (elt_type
, false);
5590 nz_elts
+= mult
* tc
;
5591 init_elts
+= mult
* tc
;
5593 if (const_from_elts_p
&& const_p
)
5594 const_p
= initializer_constant_valid_p (value
, elt_type
)
5601 if (*p_complete
&& !complete_ctor_at_level_p (TREE_TYPE (ctor
),
5602 num_fields
, elt_type
))
5603 *p_complete
= false;
5605 *p_nz_elts
+= nz_elts
;
5606 *p_init_elts
+= init_elts
;
5611 /* Examine CTOR to discover:
5612 * how many scalar fields are set to nonzero values,
5613 and place it in *P_NZ_ELTS;
5614 * how many scalar fields in total are in CTOR,
5615 and place it in *P_ELT_COUNT.
5616 * whether the constructor is complete -- in the sense that every
5617 meaningful byte is explicitly given a value --
5618 and place it in *P_COMPLETE.
5620 Return whether or not CTOR is a valid static constant initializer, the same
5621 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5624 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5625 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5631 return categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_init_elts
, p_complete
);
5634 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5635 of which had type LAST_TYPE. Each element was itself a complete
5636 initializer, in the sense that every meaningful byte was explicitly
5637 given a value. Return true if the same is true for the constructor
5641 complete_ctor_at_level_p (const_tree type
, HOST_WIDE_INT num_elts
,
5642 const_tree last_type
)
5644 if (TREE_CODE (type
) == UNION_TYPE
5645 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5650 gcc_assert (num_elts
== 1 && last_type
);
5652 /* ??? We could look at each element of the union, and find the
5653 largest element. Which would avoid comparing the size of the
5654 initialized element against any tail padding in the union.
5655 Doesn't seem worth the effort... */
5656 return simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (last_type
)) == 1;
5659 return count_type_elements (type
, true) == num_elts
;
5662 /* Return 1 if EXP contains mostly (3/4) zeros. */
5665 mostly_zeros_p (const_tree exp
)
5667 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5669 HOST_WIDE_INT nz_elts
, init_elts
;
5672 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5673 return !complete_p
|| nz_elts
< init_elts
/ 4;
5676 return initializer_zerop (exp
);
5679 /* Return 1 if EXP contains all zeros. */
5682 all_zeros_p (const_tree exp
)
5684 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5686 HOST_WIDE_INT nz_elts
, init_elts
;
5689 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5690 return nz_elts
== 0;
5693 return initializer_zerop (exp
);
5696 /* Helper function for store_constructor.
5697 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5698 CLEARED is as for store_constructor.
5699 ALIAS_SET is the alias set to use for any stores.
5701 This provides a recursive shortcut back to store_constructor when it isn't
5702 necessary to go through store_field. This is so that we can pass through
5703 the cleared field to let store_constructor know that we may not have to
5704 clear a substructure if the outer structure has already been cleared. */
5707 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
5708 HOST_WIDE_INT bitpos
, enum machine_mode mode
,
5709 tree exp
, int cleared
, alias_set_type alias_set
)
5711 if (TREE_CODE (exp
) == CONSTRUCTOR
5712 /* We can only call store_constructor recursively if the size and
5713 bit position are on a byte boundary. */
5714 && bitpos
% BITS_PER_UNIT
== 0
5715 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
5716 /* If we have a nonzero bitpos for a register target, then we just
5717 let store_field do the bitfield handling. This is unlikely to
5718 generate unnecessary clear instructions anyways. */
5719 && (bitpos
== 0 || MEM_P (target
)))
5723 = adjust_address (target
,
5724 GET_MODE (target
) == BLKmode
5726 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
5727 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5730 /* Update the alias set, if required. */
5731 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
5732 && MEM_ALIAS_SET (target
) != 0)
5734 target
= copy_rtx (target
);
5735 set_mem_alias_set (target
, alias_set
);
5738 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
5741 store_field (target
, bitsize
, bitpos
, 0, 0, mode
, exp
, alias_set
, false);
5744 /* Store the value of constructor EXP into the rtx TARGET.
5745 TARGET is either a REG or a MEM; we know it cannot conflict, since
5746 safe_from_p has been called.
5747 CLEARED is true if TARGET is known to have been zero'd.
5748 SIZE is the number of bytes of TARGET we are allowed to modify: this
5749 may not be the same as the size of EXP if we are assigning to a field
5750 which has been packed to exclude padding bits. */
5753 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
5755 tree type
= TREE_TYPE (exp
);
5756 #ifdef WORD_REGISTER_OPERATIONS
5757 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
5760 switch (TREE_CODE (type
))
5764 case QUAL_UNION_TYPE
:
5766 unsigned HOST_WIDE_INT idx
;
5769 /* If size is zero or the target is already cleared, do nothing. */
5770 if (size
== 0 || cleared
)
5772 /* We either clear the aggregate or indicate the value is dead. */
5773 else if ((TREE_CODE (type
) == UNION_TYPE
5774 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5775 && ! CONSTRUCTOR_ELTS (exp
))
5776 /* If the constructor is empty, clear the union. */
5778 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
5782 /* If we are building a static constructor into a register,
5783 set the initial value as zero so we can fold the value into
5784 a constant. But if more than one register is involved,
5785 this probably loses. */
5786 else if (REG_P (target
) && TREE_STATIC (exp
)
5787 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
5789 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5793 /* If the constructor has fewer fields than the structure or
5794 if we are initializing the structure to mostly zeros, clear
5795 the whole structure first. Don't do this if TARGET is a
5796 register whose mode size isn't equal to SIZE since
5797 clear_storage can't handle this case. */
5799 && (((int)vec_safe_length (CONSTRUCTOR_ELTS (exp
))
5800 != fields_length (type
))
5801 || mostly_zeros_p (exp
))
5803 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
5806 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5810 if (REG_P (target
) && !cleared
)
5811 emit_clobber (target
);
5813 /* Store each element of the constructor into the
5814 corresponding field of TARGET. */
5815 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
5817 enum machine_mode mode
;
5818 HOST_WIDE_INT bitsize
;
5819 HOST_WIDE_INT bitpos
= 0;
5821 rtx to_rtx
= target
;
5823 /* Just ignore missing fields. We cleared the whole
5824 structure, above, if any fields are missing. */
5828 if (cleared
&& initializer_zerop (value
))
5831 if (host_integerp (DECL_SIZE (field
), 1))
5832 bitsize
= tree_low_cst (DECL_SIZE (field
), 1);
5836 mode
= DECL_MODE (field
);
5837 if (DECL_BIT_FIELD (field
))
5840 offset
= DECL_FIELD_OFFSET (field
);
5841 if (host_integerp (offset
, 0)
5842 && host_integerp (bit_position (field
), 0))
5844 bitpos
= int_bit_position (field
);
5848 bitpos
= tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 0);
5852 enum machine_mode address_mode
;
5856 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
5857 make_tree (TREE_TYPE (exp
),
5860 offset_rtx
= expand_normal (offset
);
5861 gcc_assert (MEM_P (to_rtx
));
5863 address_mode
= get_address_mode (to_rtx
);
5864 if (GET_MODE (offset_rtx
) != address_mode
)
5865 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
5867 to_rtx
= offset_address (to_rtx
, offset_rtx
,
5868 highest_pow2_factor (offset
));
5871 #ifdef WORD_REGISTER_OPERATIONS
5872 /* If this initializes a field that is smaller than a
5873 word, at the start of a word, try to widen it to a full
5874 word. This special case allows us to output C++ member
5875 function initializations in a form that the optimizers
5878 && bitsize
< BITS_PER_WORD
5879 && bitpos
% BITS_PER_WORD
== 0
5880 && GET_MODE_CLASS (mode
) == MODE_INT
5881 && TREE_CODE (value
) == INTEGER_CST
5883 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
5885 tree type
= TREE_TYPE (value
);
5887 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
5889 type
= lang_hooks
.types
.type_for_mode
5890 (word_mode
, TYPE_UNSIGNED (type
));
5891 value
= fold_convert (type
, value
);
5894 if (BYTES_BIG_ENDIAN
)
5896 = fold_build2 (LSHIFT_EXPR
, type
, value
,
5897 build_int_cst (type
,
5898 BITS_PER_WORD
- bitsize
));
5899 bitsize
= BITS_PER_WORD
;
5904 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
5905 && DECL_NONADDRESSABLE_P (field
))
5907 to_rtx
= copy_rtx (to_rtx
);
5908 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
5911 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
5913 get_alias_set (TREE_TYPE (field
)));
5920 unsigned HOST_WIDE_INT i
;
5923 tree elttype
= TREE_TYPE (type
);
5925 HOST_WIDE_INT minelt
= 0;
5926 HOST_WIDE_INT maxelt
= 0;
5928 domain
= TYPE_DOMAIN (type
);
5929 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
5930 && TYPE_MAX_VALUE (domain
)
5931 && host_integerp (TYPE_MIN_VALUE (domain
), 0)
5932 && host_integerp (TYPE_MAX_VALUE (domain
), 0));
5934 /* If we have constant bounds for the range of the type, get them. */
5937 minelt
= tree_low_cst (TYPE_MIN_VALUE (domain
), 0);
5938 maxelt
= tree_low_cst (TYPE_MAX_VALUE (domain
), 0);
5941 /* If the constructor has fewer elements than the array, clear
5942 the whole array first. Similarly if this is static
5943 constructor of a non-BLKmode object. */
5946 else if (REG_P (target
) && TREE_STATIC (exp
))
5950 unsigned HOST_WIDE_INT idx
;
5952 HOST_WIDE_INT count
= 0, zero_count
= 0;
5953 need_to_clear
= ! const_bounds_p
;
5955 /* This loop is a more accurate version of the loop in
5956 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5957 is also needed to check for missing elements. */
5958 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
5960 HOST_WIDE_INT this_node_count
;
5965 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
5967 tree lo_index
= TREE_OPERAND (index
, 0);
5968 tree hi_index
= TREE_OPERAND (index
, 1);
5970 if (! host_integerp (lo_index
, 1)
5971 || ! host_integerp (hi_index
, 1))
5977 this_node_count
= (tree_low_cst (hi_index
, 1)
5978 - tree_low_cst (lo_index
, 1) + 1);
5981 this_node_count
= 1;
5983 count
+= this_node_count
;
5984 if (mostly_zeros_p (value
))
5985 zero_count
+= this_node_count
;
5988 /* Clear the entire array first if there are any missing
5989 elements, or if the incidence of zero elements is >=
5992 && (count
< maxelt
- minelt
+ 1
5993 || 4 * zero_count
>= 3 * count
))
5997 if (need_to_clear
&& size
> 0)
6000 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6002 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6006 if (!cleared
&& REG_P (target
))
6007 /* Inform later passes that the old value is dead. */
6008 emit_clobber (target
);
6010 /* Store each element of the constructor into the
6011 corresponding element of TARGET, determined by counting the
6013 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
6015 enum machine_mode mode
;
6016 HOST_WIDE_INT bitsize
;
6017 HOST_WIDE_INT bitpos
;
6018 rtx xtarget
= target
;
6020 if (cleared
&& initializer_zerop (value
))
6023 mode
= TYPE_MODE (elttype
);
6024 if (mode
== BLKmode
)
6025 bitsize
= (host_integerp (TYPE_SIZE (elttype
), 1)
6026 ? tree_low_cst (TYPE_SIZE (elttype
), 1)
6029 bitsize
= GET_MODE_BITSIZE (mode
);
6031 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6033 tree lo_index
= TREE_OPERAND (index
, 0);
6034 tree hi_index
= TREE_OPERAND (index
, 1);
6035 rtx index_r
, pos_rtx
;
6036 HOST_WIDE_INT lo
, hi
, count
;
6039 /* If the range is constant and "small", unroll the loop. */
6041 && host_integerp (lo_index
, 0)
6042 && host_integerp (hi_index
, 0)
6043 && (lo
= tree_low_cst (lo_index
, 0),
6044 hi
= tree_low_cst (hi_index
, 0),
6045 count
= hi
- lo
+ 1,
6048 || (host_integerp (TYPE_SIZE (elttype
), 1)
6049 && (tree_low_cst (TYPE_SIZE (elttype
), 1) * count
6052 lo
-= minelt
; hi
-= minelt
;
6053 for (; lo
<= hi
; lo
++)
6055 bitpos
= lo
* tree_low_cst (TYPE_SIZE (elttype
), 0);
6058 && !MEM_KEEP_ALIAS_SET_P (target
)
6059 && TREE_CODE (type
) == ARRAY_TYPE
6060 && TYPE_NONALIASED_COMPONENT (type
))
6062 target
= copy_rtx (target
);
6063 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6066 store_constructor_field
6067 (target
, bitsize
, bitpos
, mode
, value
, cleared
,
6068 get_alias_set (elttype
));
6073 rtx loop_start
= gen_label_rtx ();
6074 rtx loop_end
= gen_label_rtx ();
6077 expand_normal (hi_index
);
6079 index
= build_decl (EXPR_LOCATION (exp
),
6080 VAR_DECL
, NULL_TREE
, domain
);
6081 index_r
= gen_reg_rtx (promote_decl_mode (index
, NULL
));
6082 SET_DECL_RTL (index
, index_r
);
6083 store_expr (lo_index
, index_r
, 0, false);
6085 /* Build the head of the loop. */
6086 do_pending_stack_adjust ();
6087 emit_label (loop_start
);
6089 /* Assign value to element index. */
6091 fold_convert (ssizetype
,
6092 fold_build2 (MINUS_EXPR
,
6095 TYPE_MIN_VALUE (domain
)));
6098 size_binop (MULT_EXPR
, position
,
6099 fold_convert (ssizetype
,
6100 TYPE_SIZE_UNIT (elttype
)));
6102 pos_rtx
= expand_normal (position
);
6103 xtarget
= offset_address (target
, pos_rtx
,
6104 highest_pow2_factor (position
));
6105 xtarget
= adjust_address (xtarget
, mode
, 0);
6106 if (TREE_CODE (value
) == CONSTRUCTOR
)
6107 store_constructor (value
, xtarget
, cleared
,
6108 bitsize
/ BITS_PER_UNIT
);
6110 store_expr (value
, xtarget
, 0, false);
6112 /* Generate a conditional jump to exit the loop. */
6113 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
6115 jumpif (exit_cond
, loop_end
, -1);
6117 /* Update the loop counter, and jump to the head of
6119 expand_assignment (index
,
6120 build2 (PLUS_EXPR
, TREE_TYPE (index
),
6121 index
, integer_one_node
),
6124 emit_jump (loop_start
);
6126 /* Build the end of the loop. */
6127 emit_label (loop_end
);
6130 else if ((index
!= 0 && ! host_integerp (index
, 0))
6131 || ! host_integerp (TYPE_SIZE (elttype
), 1))
6136 index
= ssize_int (1);
6139 index
= fold_convert (ssizetype
,
6140 fold_build2 (MINUS_EXPR
,
6143 TYPE_MIN_VALUE (domain
)));
6146 size_binop (MULT_EXPR
, index
,
6147 fold_convert (ssizetype
,
6148 TYPE_SIZE_UNIT (elttype
)));
6149 xtarget
= offset_address (target
,
6150 expand_normal (position
),
6151 highest_pow2_factor (position
));
6152 xtarget
= adjust_address (xtarget
, mode
, 0);
6153 store_expr (value
, xtarget
, 0, false);
6158 bitpos
= ((tree_low_cst (index
, 0) - minelt
)
6159 * tree_low_cst (TYPE_SIZE (elttype
), 1));
6161 bitpos
= (i
* tree_low_cst (TYPE_SIZE (elttype
), 1));
6163 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
6164 && TREE_CODE (type
) == ARRAY_TYPE
6165 && TYPE_NONALIASED_COMPONENT (type
))
6167 target
= copy_rtx (target
);
6168 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6170 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
6171 cleared
, get_alias_set (elttype
));
6179 unsigned HOST_WIDE_INT idx
;
6180 constructor_elt
*ce
;
6183 int icode
= CODE_FOR_nothing
;
6184 tree elttype
= TREE_TYPE (type
);
6185 int elt_size
= tree_low_cst (TYPE_SIZE (elttype
), 1);
6186 enum machine_mode eltmode
= TYPE_MODE (elttype
);
6187 HOST_WIDE_INT bitsize
;
6188 HOST_WIDE_INT bitpos
;
6189 rtvec vector
= NULL
;
6191 alias_set_type alias
;
6193 gcc_assert (eltmode
!= BLKmode
);
6195 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
6196 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
6198 enum machine_mode mode
= GET_MODE (target
);
6200 icode
= (int) optab_handler (vec_init_optab
, mode
);
6201 if (icode
!= CODE_FOR_nothing
)
6205 vector
= rtvec_alloc (n_elts
);
6206 for (i
= 0; i
< n_elts
; i
++)
6207 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
6211 /* If the constructor has fewer elements than the vector,
6212 clear the whole array first. Similarly if this is static
6213 constructor of a non-BLKmode object. */
6216 else if (REG_P (target
) && TREE_STATIC (exp
))
6220 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
6223 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6225 int n_elts_here
= tree_low_cst
6226 (int_const_binop (TRUNC_DIV_EXPR
,
6227 TYPE_SIZE (TREE_TYPE (value
)),
6228 TYPE_SIZE (elttype
)), 1);
6230 count
+= n_elts_here
;
6231 if (mostly_zeros_p (value
))
6232 zero_count
+= n_elts_here
;
6235 /* Clear the entire vector first if there are any missing elements,
6236 or if the incidence of zero elements is >= 75%. */
6237 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
6240 if (need_to_clear
&& size
> 0 && !vector
)
6243 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6245 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6249 /* Inform later passes that the old value is dead. */
6250 if (!cleared
&& !vector
&& REG_P (target
))
6251 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6254 alias
= MEM_ALIAS_SET (target
);
6256 alias
= get_alias_set (elttype
);
6258 /* Store each element of the constructor into the corresponding
6259 element of TARGET, determined by counting the elements. */
6260 for (idx
= 0, i
= 0;
6261 vec_safe_iterate (CONSTRUCTOR_ELTS (exp
), idx
, &ce
);
6262 idx
++, i
+= bitsize
/ elt_size
)
6264 HOST_WIDE_INT eltpos
;
6265 tree value
= ce
->value
;
6267 bitsize
= tree_low_cst (TYPE_SIZE (TREE_TYPE (value
)), 1);
6268 if (cleared
&& initializer_zerop (value
))
6272 eltpos
= tree_low_cst (ce
->index
, 1);
6278 /* Vector CONSTRUCTORs should only be built from smaller
6279 vectors in the case of BLKmode vectors. */
6280 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
6281 RTVEC_ELT (vector
, eltpos
)
6282 = expand_normal (value
);
6286 enum machine_mode value_mode
=
6287 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
6288 ? TYPE_MODE (TREE_TYPE (value
))
6290 bitpos
= eltpos
* elt_size
;
6291 store_constructor_field (target
, bitsize
, bitpos
, value_mode
,
6292 value
, cleared
, alias
);
6297 emit_insn (GEN_FCN (icode
)
6299 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
6308 /* Store the value of EXP (an expression tree)
6309 into a subfield of TARGET which has mode MODE and occupies
6310 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6311 If MODE is VOIDmode, it means that we are storing into a bit-field.
6313 BITREGION_START is bitpos of the first bitfield in this region.
6314 BITREGION_END is the bitpos of the ending bitfield in this region.
6315 These two fields are 0, if the C++ memory model does not apply,
6316 or we are not interested in keeping track of bitfield regions.
6318 Always return const0_rtx unless we have something particular to
6321 ALIAS_SET is the alias set for the destination. This value will
6322 (in general) be different from that for TARGET, since TARGET is a
6323 reference to the containing structure.
6325 If NONTEMPORAL is true, try generating a nontemporal store. */
6328 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
6329 unsigned HOST_WIDE_INT bitregion_start
,
6330 unsigned HOST_WIDE_INT bitregion_end
,
6331 enum machine_mode mode
, tree exp
,
6332 alias_set_type alias_set
, bool nontemporal
)
6334 if (TREE_CODE (exp
) == ERROR_MARK
)
6337 /* If we have nothing to store, do nothing unless the expression has
6340 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6342 if (GET_CODE (target
) == CONCAT
)
6344 /* We're storing into a struct containing a single __complex. */
6346 gcc_assert (!bitpos
);
6347 return store_expr (exp
, target
, 0, nontemporal
);
6350 /* If the structure is in a register or if the component
6351 is a bit field, we cannot use addressing to access it.
6352 Use bit-field techniques or SUBREG to store in it. */
6354 if (mode
== VOIDmode
6355 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
6356 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
6357 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
6359 || GET_CODE (target
) == SUBREG
6360 /* If the field isn't aligned enough to store as an ordinary memref,
6361 store it as a bit field. */
6363 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
6364 || bitpos
% GET_MODE_ALIGNMENT (mode
))
6365 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
6366 || (bitpos
% BITS_PER_UNIT
!= 0)))
6367 || (bitsize
>= 0 && mode
!= BLKmode
6368 && GET_MODE_BITSIZE (mode
) > bitsize
)
6369 /* If the RHS and field are a constant size and the size of the
6370 RHS isn't the same size as the bitfield, we must use bitfield
6373 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
6374 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0)
6375 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6376 decl we must use bitfield operations. */
6378 && TREE_CODE (exp
) == MEM_REF
6379 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
6380 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
6381 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp
, 0),0 ))
6382 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)) != BLKmode
))
6387 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6388 implies a mask operation. If the precision is the same size as
6389 the field we're storing into, that mask is redundant. This is
6390 particularly common with bit field assignments generated by the
6392 nop_def
= get_def_for_expr (exp
, NOP_EXPR
);
6395 tree type
= TREE_TYPE (exp
);
6396 if (INTEGRAL_TYPE_P (type
)
6397 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
6398 && bitsize
== TYPE_PRECISION (type
))
6400 tree op
= gimple_assign_rhs1 (nop_def
);
6401 type
= TREE_TYPE (op
);
6402 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
6407 temp
= expand_normal (exp
);
6409 /* If BITSIZE is narrower than the size of the type of EXP
6410 we will be narrowing TEMP. Normally, what's wanted are the
6411 low-order bits. However, if EXP's type is a record and this is
6412 big-endian machine, we want the upper BITSIZE bits. */
6413 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
6414 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
6415 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
6416 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
6417 GET_MODE_BITSIZE (GET_MODE (temp
)) - bitsize
,
6420 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6421 if (mode
!= VOIDmode
&& mode
!= BLKmode
6422 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
6423 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
6425 /* If the modes of TEMP and TARGET are both BLKmode, both
6426 must be in memory and BITPOS must be aligned on a byte
6427 boundary. If so, we simply do a block copy. Likewise
6428 for a BLKmode-like TARGET. */
6429 if (GET_MODE (temp
) == BLKmode
6430 && (GET_MODE (target
) == BLKmode
6432 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
6433 && (bitpos
% BITS_PER_UNIT
) == 0
6434 && (bitsize
% BITS_PER_UNIT
) == 0)))
6436 gcc_assert (MEM_P (target
) && MEM_P (temp
)
6437 && (bitpos
% BITS_PER_UNIT
) == 0);
6439 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
6440 emit_block_move (target
, temp
,
6441 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
6448 /* Handle calls that return values in multiple non-contiguous locations.
6449 The Irix 6 ABI has examples of this. */
6450 if (GET_CODE (temp
) == PARALLEL
)
6452 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6454 if (mode
== BLKmode
)
6455 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6456 temp_target
= gen_reg_rtx (mode
);
6457 emit_group_store (temp_target
, temp
, TREE_TYPE (exp
), size
);
6460 else if (mode
== BLKmode
)
6462 /* Handle calls that return BLKmode values in registers. */
6463 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
6465 rtx temp_target
= gen_reg_rtx (GET_MODE (temp
));
6466 copy_blkmode_from_reg (temp_target
, temp
, TREE_TYPE (exp
));
6471 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6473 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6474 temp_target
= gen_reg_rtx (mode
);
6476 = extract_bit_field (temp
, size
* BITS_PER_UNIT
, 0, 1,
6477 false, temp_target
, mode
, mode
);
6482 /* Store the value in the bitfield. */
6483 store_bit_field (target
, bitsize
, bitpos
,
6484 bitregion_start
, bitregion_end
,
6491 /* Now build a reference to just the desired component. */
6492 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
6494 if (to_rtx
== target
)
6495 to_rtx
= copy_rtx (to_rtx
);
6497 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
6498 set_mem_alias_set (to_rtx
, alias_set
);
6500 return store_expr (exp
, to_rtx
, 0, nontemporal
);
6504 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6505 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6506 codes and find the ultimate containing object, which we return.
6508 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6509 bit position, and *PUNSIGNEDP to the signedness of the field.
6510 If the position of the field is variable, we store a tree
6511 giving the variable offset (in units) in *POFFSET.
6512 This offset is in addition to the bit position.
6513 If the position is not variable, we store 0 in *POFFSET.
6515 If any of the extraction expressions is volatile,
6516 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6518 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6519 Otherwise, it is a mode that can be used to access the field.
6521 If the field describes a variable-sized object, *PMODE is set to
6522 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6523 this case, but the address of the object can be found.
6525 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6526 look through nodes that serve as markers of a greater alignment than
6527 the one that can be deduced from the expression. These nodes make it
6528 possible for front-ends to prevent temporaries from being created by
6529 the middle-end on alignment considerations. For that purpose, the
6530 normal operating mode at high-level is to always pass FALSE so that
6531 the ultimate containing object is really returned; moreover, the
6532 associated predicate handled_component_p will always return TRUE
6533 on these nodes, thus indicating that they are essentially handled
6534 by get_inner_reference. TRUE should only be passed when the caller
6535 is scanning the expression in order to build another representation
6536 and specifically knows how to handle these nodes; as such, this is
6537 the normal operating mode in the RTL expanders. */
6540 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
6541 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
6542 enum machine_mode
*pmode
, int *punsignedp
,
6543 int *pvolatilep
, bool keep_aligning
)
6546 enum machine_mode mode
= VOIDmode
;
6547 bool blkmode_bitfield
= false;
6548 tree offset
= size_zero_node
;
6549 double_int bit_offset
= double_int_zero
;
6551 /* First get the mode, signedness, and size. We do this from just the
6552 outermost expression. */
6554 if (TREE_CODE (exp
) == COMPONENT_REF
)
6556 tree field
= TREE_OPERAND (exp
, 1);
6557 size_tree
= DECL_SIZE (field
);
6558 if (!DECL_BIT_FIELD (field
))
6559 mode
= DECL_MODE (field
);
6560 else if (DECL_MODE (field
) == BLKmode
)
6561 blkmode_bitfield
= true;
6562 else if (TREE_THIS_VOLATILE (exp
)
6563 && flag_strict_volatile_bitfields
> 0)
6564 /* Volatile bitfields should be accessed in the mode of the
6565 field's type, not the mode computed based on the bit
6567 mode
= TYPE_MODE (DECL_BIT_FIELD_TYPE (field
));
6569 *punsignedp
= DECL_UNSIGNED (field
);
6571 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
6573 size_tree
= TREE_OPERAND (exp
, 1);
6574 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
6575 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
6577 /* For vector types, with the correct size of access, use the mode of
6579 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
6580 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6581 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
6582 mode
= TYPE_MODE (TREE_TYPE (exp
));
6586 mode
= TYPE_MODE (TREE_TYPE (exp
));
6587 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
6589 if (mode
== BLKmode
)
6590 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
6592 *pbitsize
= GET_MODE_BITSIZE (mode
);
6597 if (! host_integerp (size_tree
, 1))
6598 mode
= BLKmode
, *pbitsize
= -1;
6600 *pbitsize
= tree_low_cst (size_tree
, 1);
6603 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6604 and find the ultimate containing object. */
6607 switch (TREE_CODE (exp
))
6610 bit_offset
+= tree_to_double_int (TREE_OPERAND (exp
, 2));
6615 tree field
= TREE_OPERAND (exp
, 1);
6616 tree this_offset
= component_ref_field_offset (exp
);
6618 /* If this field hasn't been filled in yet, don't go past it.
6619 This should only happen when folding expressions made during
6620 type construction. */
6621 if (this_offset
== 0)
6624 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
6625 bit_offset
+= tree_to_double_int (DECL_FIELD_BIT_OFFSET (field
));
6627 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6632 case ARRAY_RANGE_REF
:
6634 tree index
= TREE_OPERAND (exp
, 1);
6635 tree low_bound
= array_ref_low_bound (exp
);
6636 tree unit_size
= array_ref_element_size (exp
);
6638 /* We assume all arrays have sizes that are a multiple of a byte.
6639 First subtract the lower bound, if any, in the type of the
6640 index, then convert to sizetype and multiply by the size of
6641 the array element. */
6642 if (! integer_zerop (low_bound
))
6643 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
6646 offset
= size_binop (PLUS_EXPR
, offset
,
6647 size_binop (MULT_EXPR
,
6648 fold_convert (sizetype
, index
),
6657 bit_offset
+= double_int::from_uhwi (*pbitsize
);
6660 case VIEW_CONVERT_EXPR
:
6661 if (keep_aligning
&& STRICT_ALIGNMENT
6662 && (TYPE_ALIGN (TREE_TYPE (exp
))
6663 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
6664 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6665 < BIGGEST_ALIGNMENT
)
6666 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
6667 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
6672 /* Hand back the decl for MEM[&decl, off]. */
6673 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
)
6675 tree off
= TREE_OPERAND (exp
, 1);
6676 if (!integer_zerop (off
))
6678 double_int boff
, coff
= mem_ref_offset (exp
);
6679 boff
= coff
.lshift (BITS_PER_UNIT
== 8
6680 ? 3 : exact_log2 (BITS_PER_UNIT
));
6683 exp
= TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
6691 /* If any reference in the chain is volatile, the effect is volatile. */
6692 if (TREE_THIS_VOLATILE (exp
))
6695 exp
= TREE_OPERAND (exp
, 0);
6699 /* If OFFSET is constant, see if we can return the whole thing as a
6700 constant bit position. Make sure to handle overflow during
6702 if (TREE_CODE (offset
) == INTEGER_CST
)
6704 double_int tem
= tree_to_double_int (offset
);
6705 tem
= tem
.sext (TYPE_PRECISION (sizetype
));
6706 tem
= tem
.lshift (BITS_PER_UNIT
== 8 ? 3 : exact_log2 (BITS_PER_UNIT
));
6708 if (tem
.fits_shwi ())
6710 *pbitpos
= tem
.to_shwi ();
6711 *poffset
= offset
= NULL_TREE
;
6715 /* Otherwise, split it up. */
6718 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6719 if (bit_offset
.is_negative ())
6722 = double_int::mask (BITS_PER_UNIT
== 8
6723 ? 3 : exact_log2 (BITS_PER_UNIT
));
6724 double_int tem
= bit_offset
.and_not (mask
);
6725 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6726 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6728 tem
= tem
.arshift (BITS_PER_UNIT
== 8
6729 ? 3 : exact_log2 (BITS_PER_UNIT
),
6730 HOST_BITS_PER_DOUBLE_INT
);
6731 offset
= size_binop (PLUS_EXPR
, offset
,
6732 double_int_to_tree (sizetype
, tem
));
6735 *pbitpos
= bit_offset
.to_shwi ();
6739 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6740 if (mode
== VOIDmode
6742 && (*pbitpos
% BITS_PER_UNIT
) == 0
6743 && (*pbitsize
% BITS_PER_UNIT
) == 0)
6751 /* Return a tree of sizetype representing the size, in bytes, of the element
6752 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6755 array_ref_element_size (tree exp
)
6757 tree aligned_size
= TREE_OPERAND (exp
, 3);
6758 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6759 location_t loc
= EXPR_LOCATION (exp
);
6761 /* If a size was specified in the ARRAY_REF, it's the size measured
6762 in alignment units of the element type. So multiply by that value. */
6765 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6766 sizetype from another type of the same width and signedness. */
6767 if (TREE_TYPE (aligned_size
) != sizetype
)
6768 aligned_size
= fold_convert_loc (loc
, sizetype
, aligned_size
);
6769 return size_binop_loc (loc
, MULT_EXPR
, aligned_size
,
6770 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
6773 /* Otherwise, take the size from that of the element type. Substitute
6774 any PLACEHOLDER_EXPR that we have. */
6776 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
6779 /* Return a tree representing the lower bound of the array mentioned in
6780 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6783 array_ref_low_bound (tree exp
)
6785 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6787 /* If a lower bound is specified in EXP, use it. */
6788 if (TREE_OPERAND (exp
, 2))
6789 return TREE_OPERAND (exp
, 2);
6791 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6792 substituting for a PLACEHOLDER_EXPR as needed. */
6793 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
6794 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
6796 /* Otherwise, return a zero of the appropriate type. */
6797 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
6800 /* Returns true if REF is an array reference to an array at the end of
6801 a structure. If this is the case, the array may be allocated larger
6802 than its upper bound implies. */
6805 array_at_struct_end_p (tree ref
)
6807 if (TREE_CODE (ref
) != ARRAY_REF
6808 && TREE_CODE (ref
) != ARRAY_RANGE_REF
)
6811 while (handled_component_p (ref
))
6813 /* If the reference chain contains a component reference to a
6814 non-union type and there follows another field the reference
6815 is not at the end of a structure. */
6816 if (TREE_CODE (ref
) == COMPONENT_REF
6817 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref
, 0))) == RECORD_TYPE
)
6819 tree nextf
= DECL_CHAIN (TREE_OPERAND (ref
, 1));
6820 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
6821 nextf
= DECL_CHAIN (nextf
);
6826 ref
= TREE_OPERAND (ref
, 0);
6829 /* If the reference is based on a declared entity, the size of the array
6830 is constrained by its given domain. */
6837 /* Return a tree representing the upper bound of the array mentioned in
6838 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6841 array_ref_up_bound (tree exp
)
6843 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6845 /* If there is a domain type and it has an upper bound, use it, substituting
6846 for a PLACEHOLDER_EXPR as needed. */
6847 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
6848 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
6850 /* Otherwise fail. */
6854 /* Return a tree representing the offset, in bytes, of the field referenced
6855 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6858 component_ref_field_offset (tree exp
)
6860 tree aligned_offset
= TREE_OPERAND (exp
, 2);
6861 tree field
= TREE_OPERAND (exp
, 1);
6862 location_t loc
= EXPR_LOCATION (exp
);
6864 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6865 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6869 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6870 sizetype from another type of the same width and signedness. */
6871 if (TREE_TYPE (aligned_offset
) != sizetype
)
6872 aligned_offset
= fold_convert_loc (loc
, sizetype
, aligned_offset
);
6873 return size_binop_loc (loc
, MULT_EXPR
, aligned_offset
,
6874 size_int (DECL_OFFSET_ALIGN (field
)
6878 /* Otherwise, take the offset from that of the field. Substitute
6879 any PLACEHOLDER_EXPR that we have. */
6881 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
6884 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6886 static unsigned HOST_WIDE_INT
6887 target_align (const_tree target
)
6889 /* We might have a chain of nested references with intermediate misaligning
6890 bitfields components, so need to recurse to find out. */
6892 unsigned HOST_WIDE_INT this_align
, outer_align
;
6894 switch (TREE_CODE (target
))
6900 this_align
= DECL_ALIGN (TREE_OPERAND (target
, 1));
6901 outer_align
= target_align (TREE_OPERAND (target
, 0));
6902 return MIN (this_align
, outer_align
);
6905 case ARRAY_RANGE_REF
:
6906 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
6907 outer_align
= target_align (TREE_OPERAND (target
, 0));
6908 return MIN (this_align
, outer_align
);
6911 case NON_LVALUE_EXPR
:
6912 case VIEW_CONVERT_EXPR
:
6913 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
6914 outer_align
= target_align (TREE_OPERAND (target
, 0));
6915 return MAX (this_align
, outer_align
);
6918 return TYPE_ALIGN (TREE_TYPE (target
));
6923 /* Given an rtx VALUE that may contain additions and multiplications, return
6924 an equivalent value that just refers to a register, memory, or constant.
6925 This is done by generating instructions to perform the arithmetic and
6926 returning a pseudo-register containing the value.
6928 The returned value may be a REG, SUBREG, MEM or constant. */
6931 force_operand (rtx value
, rtx target
)
6934 /* Use subtarget as the target for operand 0 of a binary operation. */
6935 rtx subtarget
= get_subtarget (target
);
6936 enum rtx_code code
= GET_CODE (value
);
6938 /* Check for subreg applied to an expression produced by loop optimizer. */
6940 && !REG_P (SUBREG_REG (value
))
6941 && !MEM_P (SUBREG_REG (value
)))
6944 = simplify_gen_subreg (GET_MODE (value
),
6945 force_reg (GET_MODE (SUBREG_REG (value
)),
6946 force_operand (SUBREG_REG (value
),
6948 GET_MODE (SUBREG_REG (value
)),
6949 SUBREG_BYTE (value
));
6950 code
= GET_CODE (value
);
6953 /* Check for a PIC address load. */
6954 if ((code
== PLUS
|| code
== MINUS
)
6955 && XEXP (value
, 0) == pic_offset_table_rtx
6956 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
6957 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
6958 || GET_CODE (XEXP (value
, 1)) == CONST
))
6961 subtarget
= gen_reg_rtx (GET_MODE (value
));
6962 emit_move_insn (subtarget
, value
);
6966 if (ARITHMETIC_P (value
))
6968 op2
= XEXP (value
, 1);
6969 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
6971 if (code
== MINUS
&& CONST_INT_P (op2
))
6974 op2
= negate_rtx (GET_MODE (value
), op2
);
6977 /* Check for an addition with OP2 a constant integer and our first
6978 operand a PLUS of a virtual register and something else. In that
6979 case, we want to emit the sum of the virtual register and the
6980 constant first and then add the other value. This allows virtual
6981 register instantiation to simply modify the constant rather than
6982 creating another one around this addition. */
6983 if (code
== PLUS
&& CONST_INT_P (op2
)
6984 && GET_CODE (XEXP (value
, 0)) == PLUS
6985 && REG_P (XEXP (XEXP (value
, 0), 0))
6986 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6987 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
6989 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
6990 XEXP (XEXP (value
, 0), 0), op2
,
6991 subtarget
, 0, OPTAB_LIB_WIDEN
);
6992 return expand_simple_binop (GET_MODE (value
), code
, temp
,
6993 force_operand (XEXP (XEXP (value
,
6995 target
, 0, OPTAB_LIB_WIDEN
);
6998 op1
= force_operand (XEXP (value
, 0), subtarget
);
6999 op2
= force_operand (op2
, NULL_RTX
);
7003 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
7005 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
7006 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7007 target
, 1, OPTAB_LIB_WIDEN
);
7009 return expand_divmod (0,
7010 FLOAT_MODE_P (GET_MODE (value
))
7011 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
7012 GET_MODE (value
), op1
, op2
, target
, 0);
7014 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7017 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
7020 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7023 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7024 target
, 0, OPTAB_LIB_WIDEN
);
7026 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7027 target
, 1, OPTAB_LIB_WIDEN
);
7030 if (UNARY_P (value
))
7033 target
= gen_reg_rtx (GET_MODE (value
));
7034 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
7041 case FLOAT_TRUNCATE
:
7042 convert_move (target
, op1
, code
== ZERO_EXTEND
);
7047 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
7051 case UNSIGNED_FLOAT
:
7052 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
7056 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
7060 #ifdef INSN_SCHEDULING
7061 /* On machines that have insn scheduling, we want all memory reference to be
7062 explicit, so we need to deal with such paradoxical SUBREGs. */
7063 if (paradoxical_subreg_p (value
) && MEM_P (SUBREG_REG (value
)))
7065 = simplify_gen_subreg (GET_MODE (value
),
7066 force_reg (GET_MODE (SUBREG_REG (value
)),
7067 force_operand (SUBREG_REG (value
),
7069 GET_MODE (SUBREG_REG (value
)),
7070 SUBREG_BYTE (value
));
7076 /* Subroutine of expand_expr: return nonzero iff there is no way that
7077 EXP can reference X, which is being modified. TOP_P is nonzero if this
7078 call is going to be used to determine whether we need a temporary
7079 for EXP, as opposed to a recursive call to this function.
7081 It is always safe for this routine to return zero since it merely
7082 searches for optimization opportunities. */
7085 safe_from_p (const_rtx x
, tree exp
, int top_p
)
7091 /* If EXP has varying size, we MUST use a target since we currently
7092 have no way of allocating temporaries of variable size
7093 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7094 So we assume here that something at a higher level has prevented a
7095 clash. This is somewhat bogus, but the best we can do. Only
7096 do this when X is BLKmode and when we are at the top level. */
7097 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
7098 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
7099 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
7100 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
7101 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
7103 && GET_MODE (x
) == BLKmode
)
7104 /* If X is in the outgoing argument area, it is always safe. */
7106 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
7107 || (GET_CODE (XEXP (x
, 0)) == PLUS
7108 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
7111 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7112 find the underlying pseudo. */
7113 if (GET_CODE (x
) == SUBREG
)
7116 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7120 /* Now look at our tree code and possibly recurse. */
7121 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
7123 case tcc_declaration
:
7124 exp_rtl
= DECL_RTL_IF_SET (exp
);
7130 case tcc_exceptional
:
7131 if (TREE_CODE (exp
) == TREE_LIST
)
7135 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
7137 exp
= TREE_CHAIN (exp
);
7140 if (TREE_CODE (exp
) != TREE_LIST
)
7141 return safe_from_p (x
, exp
, 0);
7144 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
7146 constructor_elt
*ce
;
7147 unsigned HOST_WIDE_INT idx
;
7149 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp
), idx
, ce
)
7150 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
7151 || !safe_from_p (x
, ce
->value
, 0))
7155 else if (TREE_CODE (exp
) == ERROR_MARK
)
7156 return 1; /* An already-visited SAVE_EXPR? */
7161 /* The only case we look at here is the DECL_INITIAL inside a
7163 return (TREE_CODE (exp
) != DECL_EXPR
7164 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
7165 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
7166 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
7169 case tcc_comparison
:
7170 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
7175 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7177 case tcc_expression
:
7180 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7181 the expression. If it is set, we conflict iff we are that rtx or
7182 both are in memory. Otherwise, we check all operands of the
7183 expression recursively. */
7185 switch (TREE_CODE (exp
))
7188 /* If the operand is static or we are static, we can't conflict.
7189 Likewise if we don't conflict with the operand at all. */
7190 if (staticp (TREE_OPERAND (exp
, 0))
7191 || TREE_STATIC (exp
)
7192 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
7195 /* Otherwise, the only way this can conflict is if we are taking
7196 the address of a DECL a that address if part of X, which is
7198 exp
= TREE_OPERAND (exp
, 0);
7201 if (!DECL_RTL_SET_P (exp
)
7202 || !MEM_P (DECL_RTL (exp
)))
7205 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
7211 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
7212 get_alias_set (exp
)))
7217 /* Assume that the call will clobber all hard registers and
7219 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7224 case WITH_CLEANUP_EXPR
:
7225 case CLEANUP_POINT_EXPR
:
7226 /* Lowered by gimplify.c. */
7230 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7236 /* If we have an rtx, we do not need to scan our operands. */
7240 nops
= TREE_OPERAND_LENGTH (exp
);
7241 for (i
= 0; i
< nops
; i
++)
7242 if (TREE_OPERAND (exp
, i
) != 0
7243 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
7249 /* Should never get a type here. */
7253 /* If we have an rtl, find any enclosed object. Then see if we conflict
7257 if (GET_CODE (exp_rtl
) == SUBREG
)
7259 exp_rtl
= SUBREG_REG (exp_rtl
);
7261 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
7265 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7266 are memory and they conflict. */
7267 return ! (rtx_equal_p (x
, exp_rtl
)
7268 || (MEM_P (x
) && MEM_P (exp_rtl
)
7269 && true_dependence (exp_rtl
, VOIDmode
, x
)));
7272 /* If we reach here, it is safe. */
7277 /* Return the highest power of two that EXP is known to be a multiple of.
7278 This is used in updating alignment of MEMs in array references. */
7280 unsigned HOST_WIDE_INT
7281 highest_pow2_factor (const_tree exp
)
7283 unsigned HOST_WIDE_INT c0
, c1
;
7285 switch (TREE_CODE (exp
))
7288 /* We can find the lowest bit that's a one. If the low
7289 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
7290 We need to handle this case since we can find it in a COND_EXPR,
7291 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
7292 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
7294 if (TREE_OVERFLOW (exp
))
7295 return BIGGEST_ALIGNMENT
;
7298 /* Note: tree_low_cst is intentionally not used here,
7299 we don't care about the upper bits. */
7300 c0
= TREE_INT_CST_LOW (exp
);
7302 return c0
? c0
: BIGGEST_ALIGNMENT
;
7306 case PLUS_EXPR
: case MINUS_EXPR
: case MIN_EXPR
: case MAX_EXPR
:
7307 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
7308 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
7309 return MIN (c0
, c1
);
7312 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
7313 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
7316 case ROUND_DIV_EXPR
: case TRUNC_DIV_EXPR
: case FLOOR_DIV_EXPR
:
7318 if (integer_pow2p (TREE_OPERAND (exp
, 1))
7319 && host_integerp (TREE_OPERAND (exp
, 1), 1))
7321 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
7322 c1
= tree_low_cst (TREE_OPERAND (exp
, 1), 1);
7323 return MAX (1, c0
/ c1
);
7328 /* The highest power of two of a bit-and expression is the maximum of
7329 that of its operands. We typically get here for a complex LHS and
7330 a constant negative power of two on the RHS to force an explicit
7331 alignment, so don't bother looking at the LHS. */
7332 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
7336 return highest_pow2_factor (TREE_OPERAND (exp
, 0));
7339 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
7342 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
7343 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 2));
7344 return MIN (c0
, c1
);
7353 /* Similar, except that the alignment requirements of TARGET are
7354 taken into account. Assume it is at least as aligned as its
7355 type, unless it is a COMPONENT_REF in which case the layout of
7356 the structure gives the alignment. */
7358 static unsigned HOST_WIDE_INT
7359 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
7361 unsigned HOST_WIDE_INT talign
= target_align (target
) / BITS_PER_UNIT
;
7362 unsigned HOST_WIDE_INT factor
= highest_pow2_factor (exp
);
7364 return MAX (factor
, talign
);
7367 #ifdef HAVE_conditional_move
7368 /* Convert the tree comparison code TCODE to the rtl one where the
7369 signedness is UNSIGNEDP. */
7371 static enum rtx_code
7372 convert_tree_comp_to_rtx (enum tree_code tcode
, int unsignedp
)
7384 code
= unsignedp
? LTU
: LT
;
7387 code
= unsignedp
? LEU
: LE
;
7390 code
= unsignedp
? GTU
: GT
;
7393 code
= unsignedp
? GEU
: GE
;
7395 case UNORDERED_EXPR
:
7427 /* Subroutine of expand_expr. Expand the two operands of a binary
7428 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7429 The value may be stored in TARGET if TARGET is nonzero. The
7430 MODIFIER argument is as documented by expand_expr. */
7433 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
7434 enum expand_modifier modifier
)
7436 if (! safe_from_p (target
, exp1
, 1))
7438 if (operand_equal_p (exp0
, exp1
, 0))
7440 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7441 *op1
= copy_rtx (*op0
);
7445 /* If we need to preserve evaluation order, copy exp0 into its own
7446 temporary variable so that it can't be clobbered by exp1. */
7447 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
7448 exp0
= save_expr (exp0
);
7449 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7450 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
7455 /* Return a MEM that contains constant EXP. DEFER is as for
7456 output_constant_def and MODIFIER is as for expand_expr. */
7459 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
7463 mem
= output_constant_def (exp
, defer
);
7464 if (modifier
!= EXPAND_INITIALIZER
)
7465 mem
= use_anchored_address (mem
);
7469 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7470 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7473 expand_expr_addr_expr_1 (tree exp
, rtx target
, enum machine_mode tmode
,
7474 enum expand_modifier modifier
, addr_space_t as
)
7476 rtx result
, subtarget
;
7478 HOST_WIDE_INT bitsize
, bitpos
;
7479 int volatilep
, unsignedp
;
7480 enum machine_mode mode1
;
7482 /* If we are taking the address of a constant and are at the top level,
7483 we have to use output_constant_def since we can't call force_const_mem
7485 /* ??? This should be considered a front-end bug. We should not be
7486 generating ADDR_EXPR of something that isn't an LVALUE. The only
7487 exception here is STRING_CST. */
7488 if (CONSTANT_CLASS_P (exp
))
7490 result
= XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
7491 if (modifier
< EXPAND_SUM
)
7492 result
= force_operand (result
, target
);
7496 /* Everything must be something allowed by is_gimple_addressable. */
7497 switch (TREE_CODE (exp
))
7500 /* This case will happen via recursion for &a->b. */
7501 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
7505 tree tem
= TREE_OPERAND (exp
, 0);
7506 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
7507 tem
= fold_build_pointer_plus (tem
, TREE_OPERAND (exp
, 1));
7508 return expand_expr (tem
, target
, tmode
, modifier
);
7512 /* Expand the initializer like constants above. */
7513 result
= XEXP (expand_expr_constant (DECL_INITIAL (exp
),
7515 if (modifier
< EXPAND_SUM
)
7516 result
= force_operand (result
, target
);
7520 /* The real part of the complex number is always first, therefore
7521 the address is the same as the address of the parent object. */
7524 inner
= TREE_OPERAND (exp
, 0);
7528 /* The imaginary part of the complex number is always second.
7529 The expression is therefore always offset by the size of the
7532 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
7533 inner
= TREE_OPERAND (exp
, 0);
7536 case COMPOUND_LITERAL_EXPR
:
7537 /* Allow COMPOUND_LITERAL_EXPR in initializers, if e.g.
7538 rtl_for_decl_init is called on DECL_INITIAL with
7539 COMPOUNT_LITERAL_EXPRs in it, they aren't gimplified. */
7540 if (modifier
== EXPAND_INITIALIZER
7541 && COMPOUND_LITERAL_EXPR_DECL (exp
))
7542 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp
),
7543 target
, tmode
, modifier
, as
);
7546 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7547 expand_expr, as that can have various side effects; LABEL_DECLs for
7548 example, may not have their DECL_RTL set yet. Expand the rtl of
7549 CONSTRUCTORs too, which should yield a memory reference for the
7550 constructor's contents. Assume language specific tree nodes can
7551 be expanded in some interesting way. */
7552 gcc_assert (TREE_CODE (exp
) < LAST_AND_UNUSED_TREE_CODE
);
7554 || TREE_CODE (exp
) == CONSTRUCTOR
7555 || TREE_CODE (exp
) == COMPOUND_LITERAL_EXPR
)
7557 result
= expand_expr (exp
, target
, tmode
,
7558 modifier
== EXPAND_INITIALIZER
7559 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
7561 /* If the DECL isn't in memory, then the DECL wasn't properly
7562 marked TREE_ADDRESSABLE, which will be either a front-end
7563 or a tree optimizer bug. */
7565 if (TREE_ADDRESSABLE (exp
)
7567 && ! targetm
.calls
.allocate_stack_slots_for_args())
7569 error ("local frame unavailable (naked function?)");
7573 gcc_assert (MEM_P (result
));
7574 result
= XEXP (result
, 0);
7576 /* ??? Is this needed anymore? */
7578 TREE_USED (exp
) = 1;
7580 if (modifier
!= EXPAND_INITIALIZER
7581 && modifier
!= EXPAND_CONST_ADDRESS
7582 && modifier
!= EXPAND_SUM
)
7583 result
= force_operand (result
, target
);
7587 /* Pass FALSE as the last argument to get_inner_reference although
7588 we are expanding to RTL. The rationale is that we know how to
7589 handle "aligning nodes" here: we can just bypass them because
7590 they won't change the final object whose address will be returned
7591 (they actually exist only for that purpose). */
7592 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7593 &mode1
, &unsignedp
, &volatilep
, false);
7597 /* We must have made progress. */
7598 gcc_assert (inner
!= exp
);
7600 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
7601 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7602 inner alignment, force the inner to be sufficiently aligned. */
7603 if (CONSTANT_CLASS_P (inner
)
7604 && TYPE_ALIGN (TREE_TYPE (inner
)) < TYPE_ALIGN (TREE_TYPE (exp
)))
7606 inner
= copy_node (inner
);
7607 TREE_TYPE (inner
) = copy_node (TREE_TYPE (inner
));
7608 TYPE_ALIGN (TREE_TYPE (inner
)) = TYPE_ALIGN (TREE_TYPE (exp
));
7609 TYPE_USER_ALIGN (TREE_TYPE (inner
)) = 1;
7611 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
, as
);
7617 if (modifier
!= EXPAND_NORMAL
)
7618 result
= force_operand (result
, NULL
);
7619 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
7620 modifier
== EXPAND_INITIALIZER
7621 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
7623 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7624 tmp
= convert_memory_address_addr_space (tmode
, tmp
, as
);
7626 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7627 result
= simplify_gen_binary (PLUS
, tmode
, result
, tmp
);
7630 subtarget
= bitpos
? NULL_RTX
: target
;
7631 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
7632 1, OPTAB_LIB_WIDEN
);
7638 /* Someone beforehand should have rejected taking the address
7639 of such an object. */
7640 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
7642 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7643 result
= plus_constant (tmode
, result
, bitpos
/ BITS_PER_UNIT
);
7644 if (modifier
< EXPAND_SUM
)
7645 result
= force_operand (result
, target
);
7651 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7652 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7655 expand_expr_addr_expr (tree exp
, rtx target
, enum machine_mode tmode
,
7656 enum expand_modifier modifier
)
7658 addr_space_t as
= ADDR_SPACE_GENERIC
;
7659 enum machine_mode address_mode
= Pmode
;
7660 enum machine_mode pointer_mode
= ptr_mode
;
7661 enum machine_mode rmode
;
7664 /* Target mode of VOIDmode says "whatever's natural". */
7665 if (tmode
== VOIDmode
)
7666 tmode
= TYPE_MODE (TREE_TYPE (exp
));
7668 if (POINTER_TYPE_P (TREE_TYPE (exp
)))
7670 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp
)));
7671 address_mode
= targetm
.addr_space
.address_mode (as
);
7672 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
7675 /* We can get called with some Weird Things if the user does silliness
7676 like "(short) &a". In that case, convert_memory_address won't do
7677 the right thing, so ignore the given target mode. */
7678 if (tmode
!= address_mode
&& tmode
!= pointer_mode
)
7679 tmode
= address_mode
;
7681 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
7682 tmode
, modifier
, as
);
7684 /* Despite expand_expr claims concerning ignoring TMODE when not
7685 strictly convenient, stuff breaks if we don't honor it. Note
7686 that combined with the above, we only do this for pointer modes. */
7687 rmode
= GET_MODE (result
);
7688 if (rmode
== VOIDmode
)
7691 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7696 /* Generate code for computing CONSTRUCTOR EXP.
7697 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7698 is TRUE, instead of creating a temporary variable in memory
7699 NULL is returned and the caller needs to handle it differently. */
7702 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
7703 bool avoid_temp_mem
)
7705 tree type
= TREE_TYPE (exp
);
7706 enum machine_mode mode
= TYPE_MODE (type
);
7708 /* Try to avoid creating a temporary at all. This is possible
7709 if all of the initializer is zero.
7710 FIXME: try to handle all [0..255] initializers we can handle
7712 if (TREE_STATIC (exp
)
7713 && !TREE_ADDRESSABLE (exp
)
7714 && target
!= 0 && mode
== BLKmode
7715 && all_zeros_p (exp
))
7717 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
7721 /* All elts simple constants => refer to a constant in memory. But
7722 if this is a non-BLKmode mode, let it store a field at a time
7723 since that should make a CONST_INT or CONST_DOUBLE when we
7724 fold. Likewise, if we have a target we can use, it is best to
7725 store directly into the target unless the type is large enough
7726 that memcpy will be used. If we are making an initializer and
7727 all operands are constant, put it in memory as well.
7729 FIXME: Avoid trying to fill vector constructors piece-meal.
7730 Output them with output_constant_def below unless we're sure
7731 they're zeros. This should go away when vector initializers
7732 are treated like VECTOR_CST instead of arrays. */
7733 if ((TREE_STATIC (exp
)
7734 && ((mode
== BLKmode
7735 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
7736 || TREE_ADDRESSABLE (exp
)
7737 || (host_integerp (TYPE_SIZE_UNIT (type
), 1)
7738 && (! MOVE_BY_PIECES_P
7739 (tree_low_cst (TYPE_SIZE_UNIT (type
), 1),
7741 && ! mostly_zeros_p (exp
))))
7742 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
7743 && TREE_CONSTANT (exp
)))
7750 constructor
= expand_expr_constant (exp
, 1, modifier
);
7752 if (modifier
!= EXPAND_CONST_ADDRESS
7753 && modifier
!= EXPAND_INITIALIZER
7754 && modifier
!= EXPAND_SUM
)
7755 constructor
= validize_mem (constructor
);
7760 /* Handle calls that pass values in multiple non-contiguous
7761 locations. The Irix 6 ABI has examples of this. */
7762 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
7763 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
)
7769 = assign_temp (build_qualified_type (type
, (TYPE_QUALS (type
)
7770 | (TREE_READONLY (exp
)
7771 * TYPE_QUAL_CONST
))),
7772 TREE_ADDRESSABLE (exp
), 1);
7775 store_constructor (exp
, target
, 0, int_expr_size (exp
));
7780 /* expand_expr: generate code for computing expression EXP.
7781 An rtx for the computed value is returned. The value is never null.
7782 In the case of a void EXP, const0_rtx is returned.
7784 The value may be stored in TARGET if TARGET is nonzero.
7785 TARGET is just a suggestion; callers must assume that
7786 the rtx returned may not be the same as TARGET.
7788 If TARGET is CONST0_RTX, it means that the value will be ignored.
7790 If TMODE is not VOIDmode, it suggests generating the
7791 result in mode TMODE. But this is done only when convenient.
7792 Otherwise, TMODE is ignored and the value generated in its natural mode.
7793 TMODE is just a suggestion; callers must assume that
7794 the rtx returned may not have mode TMODE.
7796 Note that TARGET may have neither TMODE nor MODE. In that case, it
7797 probably will not be used.
7799 If MODIFIER is EXPAND_SUM then when EXP is an addition
7800 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7801 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7802 products as above, or REG or MEM, or constant.
7803 Ordinarily in such cases we would output mul or add instructions
7804 and then return a pseudo reg containing the sum.
7806 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7807 it also marks a label as absolutely required (it can't be dead).
7808 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7809 This is used for outputting expressions used in initializers.
7811 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7812 with a constant address even if that address is not normally legitimate.
7813 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7815 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7816 a call parameter. Such targets require special care as we haven't yet
7817 marked TARGET so that it's safe from being trashed by libcalls. We
7818 don't want to use TARGET for anything but the final result;
7819 Intermediate values must go elsewhere. Additionally, calls to
7820 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7822 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7823 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7824 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7825 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7829 expand_expr_real (tree exp
, rtx target
, enum machine_mode tmode
,
7830 enum expand_modifier modifier
, rtx
*alt_rtl
)
7834 /* Handle ERROR_MARK before anybody tries to access its type. */
7835 if (TREE_CODE (exp
) == ERROR_MARK
7836 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
7838 ret
= CONST0_RTX (tmode
);
7839 return ret
? ret
: const0_rtx
;
7842 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
7846 /* Try to expand the conditional expression which is represented by
7847 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If succeseds
7848 return the rtl reg which repsents the result. Otherwise return
7852 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED
,
7853 tree treeop1 ATTRIBUTE_UNUSED
,
7854 tree treeop2 ATTRIBUTE_UNUSED
)
7856 #ifdef HAVE_conditional_move
7858 rtx op00
, op01
, op1
, op2
;
7859 enum rtx_code comparison_code
;
7860 enum machine_mode comparison_mode
;
7863 tree type
= TREE_TYPE (treeop1
);
7864 int unsignedp
= TYPE_UNSIGNED (type
);
7865 enum machine_mode mode
= TYPE_MODE (type
);
7866 enum machine_mode orig_mode
= mode
;
7868 /* If we cannot do a conditional move on the mode, try doing it
7869 with the promoted mode. */
7870 if (!can_conditionally_move_p (mode
))
7872 mode
= promote_mode (type
, mode
, &unsignedp
);
7873 if (!can_conditionally_move_p (mode
))
7875 temp
= assign_temp (type
, 0, 0); /* Use promoted mode for temp. */
7878 temp
= assign_temp (type
, 0, 1);
7881 expand_operands (treeop1
, treeop2
,
7882 temp
, &op1
, &op2
, EXPAND_NORMAL
);
7884 if (TREE_CODE (treeop0
) == SSA_NAME
7885 && (srcstmt
= get_def_for_expr_class (treeop0
, tcc_comparison
)))
7887 tree type
= TREE_TYPE (gimple_assign_rhs1 (srcstmt
));
7888 enum tree_code cmpcode
= gimple_assign_rhs_code (srcstmt
);
7889 op00
= expand_normal (gimple_assign_rhs1 (srcstmt
));
7890 op01
= expand_normal (gimple_assign_rhs2 (srcstmt
));
7891 comparison_mode
= TYPE_MODE (type
);
7892 unsignedp
= TYPE_UNSIGNED (type
);
7893 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
7895 else if (TREE_CODE_CLASS (TREE_CODE (treeop0
)) == tcc_comparison
)
7897 tree type
= TREE_TYPE (TREE_OPERAND (treeop0
, 0));
7898 enum tree_code cmpcode
= TREE_CODE (treeop0
);
7899 op00
= expand_normal (TREE_OPERAND (treeop0
, 0));
7900 op01
= expand_normal (TREE_OPERAND (treeop0
, 1));
7901 unsignedp
= TYPE_UNSIGNED (type
);
7902 comparison_mode
= TYPE_MODE (type
);
7903 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
7907 op00
= expand_normal (treeop0
);
7909 comparison_code
= NE
;
7910 comparison_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
7913 if (GET_MODE (op1
) != mode
)
7914 op1
= gen_lowpart (mode
, op1
);
7916 if (GET_MODE (op2
) != mode
)
7917 op2
= gen_lowpart (mode
, op2
);
7919 /* Try to emit the conditional move. */
7920 insn
= emit_conditional_move (temp
, comparison_code
,
7921 op00
, op01
, comparison_mode
,
7925 /* If we could do the conditional move, emit the sequence,
7929 rtx seq
= get_insns ();
7932 return convert_modes (orig_mode
, mode
, temp
, 0);
7935 /* Otherwise discard the sequence and fall back to code with
7943 expand_expr_real_2 (sepops ops
, rtx target
, enum machine_mode tmode
,
7944 enum expand_modifier modifier
)
7946 rtx op0
, op1
, op2
, temp
;
7949 enum machine_mode mode
;
7950 enum tree_code code
= ops
->code
;
7952 rtx subtarget
, original_target
;
7954 bool reduce_bit_field
;
7955 location_t loc
= ops
->location
;
7956 tree treeop0
, treeop1
, treeop2
;
7957 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7958 ? reduce_to_bit_field_precision ((expr), \
7964 mode
= TYPE_MODE (type
);
7965 unsignedp
= TYPE_UNSIGNED (type
);
7971 /* We should be called only on simple (binary or unary) expressions,
7972 exactly those that are valid in gimple expressions that aren't
7973 GIMPLE_SINGLE_RHS (or invalid). */
7974 gcc_assert (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
7975 || get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
7976 || get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
);
7978 ignore
= (target
== const0_rtx
7979 || ((CONVERT_EXPR_CODE_P (code
)
7980 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
7981 && TREE_CODE (type
) == VOID_TYPE
));
7983 /* We should be called only if we need the result. */
7984 gcc_assert (!ignore
);
7986 /* An operation in what may be a bit-field type needs the
7987 result to be reduced to the precision of the bit-field type,
7988 which is narrower than that of the type's mode. */
7989 reduce_bit_field
= (INTEGRAL_TYPE_P (type
)
7990 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
7992 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
7995 /* Use subtarget as the target for operand 0 of a binary operation. */
7996 subtarget
= get_subtarget (target
);
7997 original_target
= target
;
8001 case NON_LVALUE_EXPR
:
8004 if (treeop0
== error_mark_node
)
8007 if (TREE_CODE (type
) == UNION_TYPE
)
8009 tree valtype
= TREE_TYPE (treeop0
);
8011 /* If both input and output are BLKmode, this conversion isn't doing
8012 anything except possibly changing memory attribute. */
8013 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
8015 rtx result
= expand_expr (treeop0
, target
, tmode
,
8018 result
= copy_rtx (result
);
8019 set_mem_attributes (result
, type
, 0);
8025 if (TYPE_MODE (type
) != BLKmode
)
8026 target
= gen_reg_rtx (TYPE_MODE (type
));
8028 target
= assign_temp (type
, 1, 1);
8032 /* Store data into beginning of memory target. */
8033 store_expr (treeop0
,
8034 adjust_address (target
, TYPE_MODE (valtype
), 0),
8035 modifier
== EXPAND_STACK_PARM
,
8040 gcc_assert (REG_P (target
));
8042 /* Store this field into a union of the proper type. */
8043 store_field (target
,
8044 MIN ((int_size_in_bytes (TREE_TYPE
8047 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
8048 0, 0, 0, TYPE_MODE (valtype
), treeop0
, 0, false);
8051 /* Return the entire union. */
8055 if (mode
== TYPE_MODE (TREE_TYPE (treeop0
)))
8057 op0
= expand_expr (treeop0
, target
, VOIDmode
,
8060 /* If the signedness of the conversion differs and OP0 is
8061 a promoted SUBREG, clear that indication since we now
8062 have to do the proper extension. */
8063 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)) != unsignedp
8064 && GET_CODE (op0
) == SUBREG
)
8065 SUBREG_PROMOTED_VAR_P (op0
) = 0;
8067 return REDUCE_BIT_FIELD (op0
);
8070 op0
= expand_expr (treeop0
, NULL_RTX
, mode
,
8071 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
8072 if (GET_MODE (op0
) == mode
)
8075 /* If OP0 is a constant, just convert it into the proper mode. */
8076 else if (CONSTANT_P (op0
))
8078 tree inner_type
= TREE_TYPE (treeop0
);
8079 enum machine_mode inner_mode
= GET_MODE (op0
);
8081 if (inner_mode
== VOIDmode
)
8082 inner_mode
= TYPE_MODE (inner_type
);
8084 if (modifier
== EXPAND_INITIALIZER
)
8085 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
8086 subreg_lowpart_offset (mode
,
8089 op0
= convert_modes (mode
, inner_mode
, op0
,
8090 TYPE_UNSIGNED (inner_type
));
8093 else if (modifier
== EXPAND_INITIALIZER
)
8094 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
8096 else if (target
== 0)
8097 op0
= convert_to_mode (mode
, op0
,
8098 TYPE_UNSIGNED (TREE_TYPE
8102 convert_move (target
, op0
,
8103 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8107 return REDUCE_BIT_FIELD (op0
);
8109 case ADDR_SPACE_CONVERT_EXPR
:
8111 tree treeop0_type
= TREE_TYPE (treeop0
);
8113 addr_space_t as_from
;
8115 gcc_assert (POINTER_TYPE_P (type
));
8116 gcc_assert (POINTER_TYPE_P (treeop0_type
));
8118 as_to
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
8119 as_from
= TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type
));
8121 /* Conversions between pointers to the same address space should
8122 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8123 gcc_assert (as_to
!= as_from
);
8125 /* Ask target code to handle conversion between pointers
8126 to overlapping address spaces. */
8127 if (targetm
.addr_space
.subset_p (as_to
, as_from
)
8128 || targetm
.addr_space
.subset_p (as_from
, as_to
))
8130 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
8131 op0
= targetm
.addr_space
.convert (op0
, treeop0_type
, type
);
8136 /* For disjoint address spaces, converting anything but
8137 a null pointer invokes undefined behaviour. We simply
8138 always return a null pointer here. */
8139 return CONST0_RTX (mode
);
8142 case POINTER_PLUS_EXPR
:
8143 /* Even though the sizetype mode and the pointer's mode can be different
8144 expand is able to handle this correctly and get the correct result out
8145 of the PLUS_EXPR code. */
8146 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8147 if sizetype precision is smaller than pointer precision. */
8148 if (TYPE_PRECISION (sizetype
) < TYPE_PRECISION (type
))
8149 treeop1
= fold_convert_loc (loc
, type
,
8150 fold_convert_loc (loc
, ssizetype
,
8152 /* If sizetype precision is larger than pointer precision, truncate the
8153 offset to have matching modes. */
8154 else if (TYPE_PRECISION (sizetype
) > TYPE_PRECISION (type
))
8155 treeop1
= fold_convert_loc (loc
, type
, treeop1
);
8158 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8159 something else, make sure we add the register to the constant and
8160 then to the other thing. This case can occur during strength
8161 reduction and doing it this way will produce better code if the
8162 frame pointer or argument pointer is eliminated.
8164 fold-const.c will ensure that the constant is always in the inner
8165 PLUS_EXPR, so the only case we need to do anything about is if
8166 sp, ap, or fp is our second argument, in which case we must swap
8167 the innermost first argument and our second argument. */
8169 if (TREE_CODE (treeop0
) == PLUS_EXPR
8170 && TREE_CODE (TREE_OPERAND (treeop0
, 1)) == INTEGER_CST
8171 && TREE_CODE (treeop1
) == VAR_DECL
8172 && (DECL_RTL (treeop1
) == frame_pointer_rtx
8173 || DECL_RTL (treeop1
) == stack_pointer_rtx
8174 || DECL_RTL (treeop1
) == arg_pointer_rtx
))
8179 /* If the result is to be ptr_mode and we are adding an integer to
8180 something, we might be forming a constant. So try to use
8181 plus_constant. If it produces a sum and we can't accept it,
8182 use force_operand. This allows P = &ARR[const] to generate
8183 efficient code on machines where a SYMBOL_REF is not a valid
8186 If this is an EXPAND_SUM call, always return the sum. */
8187 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8188 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8190 if (modifier
== EXPAND_STACK_PARM
)
8192 if (TREE_CODE (treeop0
) == INTEGER_CST
8193 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8194 && TREE_CONSTANT (treeop1
))
8198 op1
= expand_expr (treeop1
, subtarget
, VOIDmode
,
8200 /* Use immed_double_const to ensure that the constant is
8201 truncated according to the mode of OP1, then sign extended
8202 to a HOST_WIDE_INT. Using the constant directly can result
8203 in non-canonical RTL in a 64x32 cross compile. */
8205 = immed_double_const (TREE_INT_CST_LOW (treeop0
),
8207 TYPE_MODE (TREE_TYPE (treeop1
)));
8208 op1
= plus_constant (mode
, op1
, INTVAL (constant_part
));
8209 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8210 op1
= force_operand (op1
, target
);
8211 return REDUCE_BIT_FIELD (op1
);
8214 else if (TREE_CODE (treeop1
) == INTEGER_CST
8215 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8216 && TREE_CONSTANT (treeop0
))
8220 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8221 (modifier
== EXPAND_INITIALIZER
8222 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8223 if (! CONSTANT_P (op0
))
8225 op1
= expand_expr (treeop1
, NULL_RTX
,
8226 VOIDmode
, modifier
);
8227 /* Return a PLUS if modifier says it's OK. */
8228 if (modifier
== EXPAND_SUM
8229 || modifier
== EXPAND_INITIALIZER
)
8230 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
8233 /* Use immed_double_const to ensure that the constant is
8234 truncated according to the mode of OP1, then sign extended
8235 to a HOST_WIDE_INT. Using the constant directly can result
8236 in non-canonical RTL in a 64x32 cross compile. */
8238 = immed_double_const (TREE_INT_CST_LOW (treeop1
),
8240 TYPE_MODE (TREE_TYPE (treeop0
)));
8241 op0
= plus_constant (mode
, op0
, INTVAL (constant_part
));
8242 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8243 op0
= force_operand (op0
, target
);
8244 return REDUCE_BIT_FIELD (op0
);
8248 /* Use TER to expand pointer addition of a negated value
8249 as pointer subtraction. */
8250 if ((POINTER_TYPE_P (TREE_TYPE (treeop0
))
8251 || (TREE_CODE (TREE_TYPE (treeop0
)) == VECTOR_TYPE
8252 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0
)))))
8253 && TREE_CODE (treeop1
) == SSA_NAME
8254 && TYPE_MODE (TREE_TYPE (treeop0
))
8255 == TYPE_MODE (TREE_TYPE (treeop1
)))
8257 gimple def
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8260 treeop1
= gimple_assign_rhs1 (def
);
8266 /* No sense saving up arithmetic to be done
8267 if it's all in the wrong mode to form part of an address.
8268 And force_operand won't know whether to sign-extend or
8270 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8271 || mode
!= ptr_mode
)
8273 expand_operands (treeop0
, treeop1
,
8274 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8275 if (op0
== const0_rtx
)
8277 if (op1
== const0_rtx
)
8282 expand_operands (treeop0
, treeop1
,
8283 subtarget
, &op0
, &op1
, modifier
);
8284 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8288 /* For initializers, we are allowed to return a MINUS of two
8289 symbolic constants. Here we handle all cases when both operands
8291 /* Handle difference of two symbolic constants,
8292 for the sake of an initializer. */
8293 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8294 && really_constant_p (treeop0
)
8295 && really_constant_p (treeop1
))
8297 expand_operands (treeop0
, treeop1
,
8298 NULL_RTX
, &op0
, &op1
, modifier
);
8300 /* If the last operand is a CONST_INT, use plus_constant of
8301 the negated constant. Else make the MINUS. */
8302 if (CONST_INT_P (op1
))
8303 return REDUCE_BIT_FIELD (plus_constant (mode
, op0
,
8306 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
8309 /* No sense saving up arithmetic to be done
8310 if it's all in the wrong mode to form part of an address.
8311 And force_operand won't know whether to sign-extend or
8313 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8314 || mode
!= ptr_mode
)
8317 expand_operands (treeop0
, treeop1
,
8318 subtarget
, &op0
, &op1
, modifier
);
8320 /* Convert A - const to A + (-const). */
8321 if (CONST_INT_P (op1
))
8323 op1
= negate_rtx (mode
, op1
);
8324 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8329 case WIDEN_MULT_PLUS_EXPR
:
8330 case WIDEN_MULT_MINUS_EXPR
:
8331 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8332 op2
= expand_normal (treeop2
);
8333 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
8337 case WIDEN_MULT_EXPR
:
8338 /* If first operand is constant, swap them.
8339 Thus the following special case checks need only
8340 check the second operand. */
8341 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8348 /* First, check if we have a multiplication of one signed and one
8349 unsigned operand. */
8350 if (TREE_CODE (treeop1
) != INTEGER_CST
8351 && (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
8352 != TYPE_UNSIGNED (TREE_TYPE (treeop1
))))
8354 enum machine_mode innermode
= TYPE_MODE (TREE_TYPE (treeop0
));
8355 this_optab
= usmul_widen_optab
;
8356 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8357 != CODE_FOR_nothing
)
8359 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8360 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8363 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op1
, &op0
,
8365 /* op0 and op1 might still be constant, despite the above
8366 != INTEGER_CST check. Handle it. */
8367 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8369 op0
= convert_modes (innermode
, mode
, op0
, true);
8370 op1
= convert_modes (innermode
, mode
, op1
, false);
8371 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8372 target
, unsignedp
));
8377 /* Check for a multiplication with matching signedness. */
8378 else if ((TREE_CODE (treeop1
) == INTEGER_CST
8379 && int_fits_type_p (treeop1
, TREE_TYPE (treeop0
)))
8380 || (TYPE_UNSIGNED (TREE_TYPE (treeop1
))
8381 == TYPE_UNSIGNED (TREE_TYPE (treeop0
))))
8383 tree op0type
= TREE_TYPE (treeop0
);
8384 enum machine_mode innermode
= TYPE_MODE (op0type
);
8385 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8386 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8387 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8389 if (TREE_CODE (treeop0
) != INTEGER_CST
)
8391 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8392 != CODE_FOR_nothing
)
8394 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8396 /* op0 and op1 might still be constant, despite the above
8397 != INTEGER_CST check. Handle it. */
8398 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8401 op0
= convert_modes (innermode
, mode
, op0
, zextend_p
);
8403 = convert_modes (innermode
, mode
, op1
,
8404 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8405 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8409 temp
= expand_widening_mult (mode
, op0
, op1
, target
,
8410 unsignedp
, this_optab
);
8411 return REDUCE_BIT_FIELD (temp
);
8413 if (find_widening_optab_handler (other_optab
, mode
, innermode
, 0)
8415 && innermode
== word_mode
)
8418 op0
= expand_normal (treeop0
);
8419 if (TREE_CODE (treeop1
) == INTEGER_CST
)
8420 op1
= convert_modes (innermode
, mode
,
8421 expand_normal (treeop1
),
8422 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8424 op1
= expand_normal (treeop1
);
8425 /* op0 and op1 might still be constant, despite the above
8426 != INTEGER_CST check. Handle it. */
8427 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8428 goto widen_mult_const
;
8429 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8430 unsignedp
, OPTAB_LIB_WIDEN
);
8431 hipart
= gen_highpart (innermode
, temp
);
8432 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
8436 emit_move_insn (hipart
, htem
);
8437 return REDUCE_BIT_FIELD (temp
);
8441 treeop0
= fold_build1 (CONVERT_EXPR
, type
, treeop0
);
8442 treeop1
= fold_build1 (CONVERT_EXPR
, type
, treeop1
);
8443 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8444 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8448 optab opt
= fma_optab
;
8451 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8453 if (optab_handler (fma_optab
, mode
) == CODE_FOR_nothing
)
8455 tree fn
= mathfn_built_in (TREE_TYPE (treeop0
), BUILT_IN_FMA
);
8458 gcc_assert (fn
!= NULL_TREE
);
8459 call_expr
= build_call_expr (fn
, 3, treeop0
, treeop1
, treeop2
);
8460 return expand_builtin (call_expr
, target
, subtarget
, mode
, false);
8463 def0
= get_def_for_expr (treeop0
, NEGATE_EXPR
);
8464 def2
= get_def_for_expr (treeop2
, NEGATE_EXPR
);
8469 && optab_handler (fnms_optab
, mode
) != CODE_FOR_nothing
)
8472 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8473 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8476 && optab_handler (fnma_optab
, mode
) != CODE_FOR_nothing
)
8479 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8482 && optab_handler (fms_optab
, mode
) != CODE_FOR_nothing
)
8485 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8489 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
, EXPAND_NORMAL
);
8491 op2
= expand_normal (treeop2
);
8492 op1
= expand_normal (treeop1
);
8494 return expand_ternary_op (TYPE_MODE (type
), opt
,
8495 op0
, op1
, op2
, target
, 0);
8499 /* If this is a fixed-point operation, then we cannot use the code
8500 below because "expand_mult" doesn't support sat/no-sat fixed-point
8502 if (ALL_FIXED_POINT_MODE_P (mode
))
8505 /* If first operand is constant, swap them.
8506 Thus the following special case checks need only
8507 check the second operand. */
8508 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8515 /* Attempt to return something suitable for generating an
8516 indexed address, for machines that support that. */
8518 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8519 && host_integerp (treeop1
, 0))
8521 tree exp1
= treeop1
;
8523 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8527 op0
= force_operand (op0
, NULL_RTX
);
8529 op0
= copy_to_mode_reg (mode
, op0
);
8531 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
8532 gen_int_mode (tree_low_cst (exp1
, 0),
8533 TYPE_MODE (TREE_TYPE (exp1
)))));
8536 if (modifier
== EXPAND_STACK_PARM
)
8539 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8540 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8542 case TRUNC_DIV_EXPR
:
8543 case FLOOR_DIV_EXPR
:
8545 case ROUND_DIV_EXPR
:
8546 case EXACT_DIV_EXPR
:
8547 /* If this is a fixed-point operation, then we cannot use the code
8548 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8550 if (ALL_FIXED_POINT_MODE_P (mode
))
8553 if (modifier
== EXPAND_STACK_PARM
)
8555 /* Possible optimization: compute the dividend with EXPAND_SUM
8556 then if the divisor is constant can optimize the case
8557 where some terms of the dividend have coeffs divisible by it. */
8558 expand_operands (treeop0
, treeop1
,
8559 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8560 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
8565 case MULT_HIGHPART_EXPR
:
8566 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8567 temp
= expand_mult_highpart (mode
, op0
, op1
, target
, unsignedp
);
8571 case TRUNC_MOD_EXPR
:
8572 case FLOOR_MOD_EXPR
:
8574 case ROUND_MOD_EXPR
:
8575 if (modifier
== EXPAND_STACK_PARM
)
8577 expand_operands (treeop0
, treeop1
,
8578 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8579 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
8581 case FIXED_CONVERT_EXPR
:
8582 op0
= expand_normal (treeop0
);
8583 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8584 target
= gen_reg_rtx (mode
);
8586 if ((TREE_CODE (TREE_TYPE (treeop0
)) == INTEGER_TYPE
8587 && TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8588 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
8589 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
8591 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
8594 case FIX_TRUNC_EXPR
:
8595 op0
= expand_normal (treeop0
);
8596 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8597 target
= gen_reg_rtx (mode
);
8598 expand_fix (target
, op0
, unsignedp
);
8602 op0
= expand_normal (treeop0
);
8603 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8604 target
= gen_reg_rtx (mode
);
8605 /* expand_float can't figure out what to do if FROM has VOIDmode.
8606 So give it the correct mode. With -O, cse will optimize this. */
8607 if (GET_MODE (op0
) == VOIDmode
)
8608 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0
)),
8610 expand_float (target
, op0
,
8611 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8615 op0
= expand_expr (treeop0
, subtarget
,
8616 VOIDmode
, EXPAND_NORMAL
);
8617 if (modifier
== EXPAND_STACK_PARM
)
8619 temp
= expand_unop (mode
,
8620 optab_for_tree_code (NEGATE_EXPR
, type
,
8624 return REDUCE_BIT_FIELD (temp
);
8627 op0
= expand_expr (treeop0
, subtarget
,
8628 VOIDmode
, EXPAND_NORMAL
);
8629 if (modifier
== EXPAND_STACK_PARM
)
8632 /* ABS_EXPR is not valid for complex arguments. */
8633 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
8634 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
8636 /* Unsigned abs is simply the operand. Testing here means we don't
8637 risk generating incorrect code below. */
8638 if (TYPE_UNSIGNED (type
))
8641 return expand_abs (mode
, op0
, target
, unsignedp
,
8642 safe_from_p (target
, treeop0
, 1));
8646 target
= original_target
;
8648 || modifier
== EXPAND_STACK_PARM
8649 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
8650 || GET_MODE (target
) != mode
8652 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
8653 target
= gen_reg_rtx (mode
);
8654 expand_operands (treeop0
, treeop1
,
8655 target
, &op0
, &op1
, EXPAND_NORMAL
);
8657 /* First try to do it with a special MIN or MAX instruction.
8658 If that does not win, use a conditional jump to select the proper
8660 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8661 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8666 /* At this point, a MEM target is no longer useful; we will get better
8669 if (! REG_P (target
))
8670 target
= gen_reg_rtx (mode
);
8672 /* If op1 was placed in target, swap op0 and op1. */
8673 if (target
!= op0
&& target
== op1
)
8680 /* We generate better code and avoid problems with op1 mentioning
8681 target by forcing op1 into a pseudo if it isn't a constant. */
8682 if (! CONSTANT_P (op1
))
8683 op1
= force_reg (mode
, op1
);
8686 enum rtx_code comparison_code
;
8689 if (code
== MAX_EXPR
)
8690 comparison_code
= unsignedp
? GEU
: GE
;
8692 comparison_code
= unsignedp
? LEU
: LE
;
8694 /* Canonicalize to comparisons against 0. */
8695 if (op1
== const1_rtx
)
8697 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8698 or (a != 0 ? a : 1) for unsigned.
8699 For MIN we are safe converting (a <= 1 ? a : 1)
8700 into (a <= 0 ? a : 1) */
8701 cmpop1
= const0_rtx
;
8702 if (code
== MAX_EXPR
)
8703 comparison_code
= unsignedp
? NE
: GT
;
8705 if (op1
== constm1_rtx
&& !unsignedp
)
8707 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8708 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8709 cmpop1
= const0_rtx
;
8710 if (code
== MIN_EXPR
)
8711 comparison_code
= LT
;
8713 #ifdef HAVE_conditional_move
8714 /* Use a conditional move if possible. */
8715 if (can_conditionally_move_p (mode
))
8719 /* ??? Same problem as in expmed.c: emit_conditional_move
8720 forces a stack adjustment via compare_from_rtx, and we
8721 lose the stack adjustment if the sequence we are about
8722 to create is discarded. */
8723 do_pending_stack_adjust ();
8727 /* Try to emit the conditional move. */
8728 insn
= emit_conditional_move (target
, comparison_code
,
8733 /* If we could do the conditional move, emit the sequence,
8737 rtx seq
= get_insns ();
8743 /* Otherwise discard the sequence and fall back to code with
8749 emit_move_insn (target
, op0
);
8751 temp
= gen_label_rtx ();
8752 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
8753 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
,
8756 emit_move_insn (target
, op1
);
8761 op0
= expand_expr (treeop0
, subtarget
,
8762 VOIDmode
, EXPAND_NORMAL
);
8763 if (modifier
== EXPAND_STACK_PARM
)
8765 /* In case we have to reduce the result to bitfield precision
8766 for unsigned bitfield expand this as XOR with a proper constant
8768 if (reduce_bit_field
&& TYPE_UNSIGNED (type
))
8769 temp
= expand_binop (mode
, xor_optab
, op0
,
8770 immed_double_int_const
8771 (double_int::mask (TYPE_PRECISION (type
)), mode
),
8772 target
, 1, OPTAB_LIB_WIDEN
);
8774 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8778 /* ??? Can optimize bitwise operations with one arg constant.
8779 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8780 and (a bitwise1 b) bitwise2 b (etc)
8781 but that is probably not worth while. */
8790 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
8791 || (GET_MODE_PRECISION (TYPE_MODE (type
))
8792 == TYPE_PRECISION (type
)));
8797 /* If this is a fixed-point operation, then we cannot use the code
8798 below because "expand_shift" doesn't support sat/no-sat fixed-point
8800 if (ALL_FIXED_POINT_MODE_P (mode
))
8803 if (! safe_from_p (subtarget
, treeop1
, 1))
8805 if (modifier
== EXPAND_STACK_PARM
)
8807 op0
= expand_expr (treeop0
, subtarget
,
8808 VOIDmode
, EXPAND_NORMAL
);
8809 temp
= expand_variable_shift (code
, mode
, op0
, treeop1
, target
,
8811 if (code
== LSHIFT_EXPR
)
8812 temp
= REDUCE_BIT_FIELD (temp
);
8815 /* Could determine the answer when only additive constants differ. Also,
8816 the addition of one can be handled by changing the condition. */
8823 case UNORDERED_EXPR
:
8831 temp
= do_store_flag (ops
,
8832 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
8833 tmode
!= VOIDmode
? tmode
: mode
);
8837 /* Use a compare and a jump for BLKmode comparisons, or for function
8838 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8841 || modifier
== EXPAND_STACK_PARM
8842 || ! safe_from_p (target
, treeop0
, 1)
8843 || ! safe_from_p (target
, treeop1
, 1)
8844 /* Make sure we don't have a hard reg (such as function's return
8845 value) live across basic blocks, if not optimizing. */
8846 || (!optimize
&& REG_P (target
)
8847 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
8848 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
8850 emit_move_insn (target
, const0_rtx
);
8852 op1
= gen_label_rtx ();
8853 jumpifnot_1 (code
, treeop0
, treeop1
, op1
, -1);
8855 if (TYPE_PRECISION (type
) == 1 && !TYPE_UNSIGNED (type
))
8856 emit_move_insn (target
, constm1_rtx
);
8858 emit_move_insn (target
, const1_rtx
);
8864 /* Get the rtx code of the operands. */
8865 op0
= expand_normal (treeop0
);
8866 op1
= expand_normal (treeop1
);
8869 target
= gen_reg_rtx (TYPE_MODE (type
));
8871 /* If target overlaps with op1, then either we need to force
8872 op1 into a pseudo (if target also overlaps with op0),
8873 or write the complex parts in reverse order. */
8874 switch (GET_CODE (target
))
8877 if (reg_overlap_mentioned_p (XEXP (target
, 0), op1
))
8879 if (reg_overlap_mentioned_p (XEXP (target
, 1), op0
))
8881 complex_expr_force_op1
:
8882 temp
= gen_reg_rtx (GET_MODE_INNER (GET_MODE (target
)));
8883 emit_move_insn (temp
, op1
);
8887 complex_expr_swap_order
:
8888 /* Move the imaginary (op1) and real (op0) parts to their
8890 write_complex_part (target
, op1
, true);
8891 write_complex_part (target
, op0
, false);
8897 temp
= adjust_address_nv (target
,
8898 GET_MODE_INNER (GET_MODE (target
)), 0);
8899 if (reg_overlap_mentioned_p (temp
, op1
))
8901 enum machine_mode imode
= GET_MODE_INNER (GET_MODE (target
));
8902 temp
= adjust_address_nv (target
, imode
,
8903 GET_MODE_SIZE (imode
));
8904 if (reg_overlap_mentioned_p (temp
, op0
))
8905 goto complex_expr_force_op1
;
8906 goto complex_expr_swap_order
;
8910 if (reg_overlap_mentioned_p (target
, op1
))
8912 if (reg_overlap_mentioned_p (target
, op0
))
8913 goto complex_expr_force_op1
;
8914 goto complex_expr_swap_order
;
8919 /* Move the real (op0) and imaginary (op1) parts to their location. */
8920 write_complex_part (target
, op0
, false);
8921 write_complex_part (target
, op1
, true);
8925 case WIDEN_SUM_EXPR
:
8927 tree oprnd0
= treeop0
;
8928 tree oprnd1
= treeop1
;
8930 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8931 target
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, op1
,
8936 case REDUC_MAX_EXPR
:
8937 case REDUC_MIN_EXPR
:
8938 case REDUC_PLUS_EXPR
:
8940 op0
= expand_normal (treeop0
);
8941 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8942 temp
= expand_unop (mode
, this_optab
, op0
, target
, unsignedp
);
8947 case VEC_LSHIFT_EXPR
:
8948 case VEC_RSHIFT_EXPR
:
8950 target
= expand_vec_shift_expr (ops
, target
);
8954 case VEC_UNPACK_HI_EXPR
:
8955 case VEC_UNPACK_LO_EXPR
:
8957 op0
= expand_normal (treeop0
);
8958 temp
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, NULL_RTX
,
8964 case VEC_UNPACK_FLOAT_HI_EXPR
:
8965 case VEC_UNPACK_FLOAT_LO_EXPR
:
8967 op0
= expand_normal (treeop0
);
8968 /* The signedness is determined from input operand. */
8969 temp
= expand_widen_pattern_expr
8970 (ops
, op0
, NULL_RTX
, NULL_RTX
,
8971 target
, TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8977 case VEC_WIDEN_MULT_HI_EXPR
:
8978 case VEC_WIDEN_MULT_LO_EXPR
:
8979 case VEC_WIDEN_MULT_EVEN_EXPR
:
8980 case VEC_WIDEN_MULT_ODD_EXPR
:
8981 case VEC_WIDEN_LSHIFT_HI_EXPR
:
8982 case VEC_WIDEN_LSHIFT_LO_EXPR
:
8983 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8984 target
= expand_widen_pattern_expr (ops
, op0
, op1
, NULL_RTX
,
8986 gcc_assert (target
);
8989 case VEC_PACK_TRUNC_EXPR
:
8990 case VEC_PACK_SAT_EXPR
:
8991 case VEC_PACK_FIX_TRUNC_EXPR
:
8992 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
8996 expand_operands (treeop0
, treeop1
, target
, &op0
, &op1
, EXPAND_NORMAL
);
8997 op2
= expand_normal (treeop2
);
8999 /* Careful here: if the target doesn't support integral vector modes,
9000 a constant selection vector could wind up smooshed into a normal
9001 integral constant. */
9002 if (CONSTANT_P (op2
) && GET_CODE (op2
) != CONST_VECTOR
)
9004 tree sel_type
= TREE_TYPE (treeop2
);
9005 enum machine_mode vmode
9006 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type
)),
9007 TYPE_VECTOR_SUBPARTS (sel_type
));
9008 gcc_assert (GET_MODE_CLASS (vmode
) == MODE_VECTOR_INT
);
9009 op2
= simplify_subreg (vmode
, op2
, TYPE_MODE (sel_type
), 0);
9010 gcc_assert (op2
&& GET_CODE (op2
) == CONST_VECTOR
);
9013 gcc_assert (GET_MODE_CLASS (GET_MODE (op2
)) == MODE_VECTOR_INT
);
9015 temp
= expand_vec_perm (mode
, op0
, op1
, op2
, target
);
9021 tree oprnd0
= treeop0
;
9022 tree oprnd1
= treeop1
;
9023 tree oprnd2
= treeop2
;
9026 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9027 op2
= expand_normal (oprnd2
);
9028 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9033 case REALIGN_LOAD_EXPR
:
9035 tree oprnd0
= treeop0
;
9036 tree oprnd1
= treeop1
;
9037 tree oprnd2
= treeop2
;
9040 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9041 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9042 op2
= expand_normal (oprnd2
);
9043 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
9050 /* A COND_EXPR with its type being VOID_TYPE represents a
9051 conditional jump and is handled in
9052 expand_gimple_cond_expr. */
9053 gcc_assert (!VOID_TYPE_P (type
));
9055 /* Note that COND_EXPRs whose type is a structure or union
9056 are required to be constructed to contain assignments of
9057 a temporary variable, so that we can evaluate them here
9058 for side effect only. If type is void, we must do likewise. */
9060 gcc_assert (!TREE_ADDRESSABLE (type
)
9062 && TREE_TYPE (treeop1
) != void_type_node
9063 && TREE_TYPE (treeop2
) != void_type_node
);
9065 temp
= expand_cond_expr_using_cmove (treeop0
, treeop1
, treeop2
);
9069 /* If we are not to produce a result, we have no target. Otherwise,
9070 if a target was specified use it; it will not be used as an
9071 intermediate target unless it is safe. If no target, use a
9074 if (modifier
!= EXPAND_STACK_PARM
9076 && safe_from_p (original_target
, treeop0
, 1)
9077 && GET_MODE (original_target
) == mode
9078 && !MEM_P (original_target
))
9079 temp
= original_target
;
9081 temp
= assign_temp (type
, 0, 1);
9083 do_pending_stack_adjust ();
9085 op0
= gen_label_rtx ();
9086 op1
= gen_label_rtx ();
9087 jumpifnot (treeop0
, op0
, -1);
9088 store_expr (treeop1
, temp
,
9089 modifier
== EXPAND_STACK_PARM
,
9092 emit_jump_insn (gen_jump (op1
));
9095 store_expr (treeop2
, temp
,
9096 modifier
== EXPAND_STACK_PARM
,
9104 target
= expand_vec_cond_expr (type
, treeop0
, treeop1
, treeop2
, target
);
9111 /* Here to do an ordinary binary operator. */
9113 expand_operands (treeop0
, treeop1
,
9114 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9116 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9118 if (modifier
== EXPAND_STACK_PARM
)
9120 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9121 unsignedp
, OPTAB_LIB_WIDEN
);
9123 /* Bitwise operations do not need bitfield reduction as we expect their
9124 operands being properly truncated. */
9125 if (code
== BIT_XOR_EXPR
9126 || code
== BIT_AND_EXPR
9127 || code
== BIT_IOR_EXPR
)
9129 return REDUCE_BIT_FIELD (temp
);
9131 #undef REDUCE_BIT_FIELD
9134 expand_expr_real_1 (tree exp
, rtx target
, enum machine_mode tmode
,
9135 enum expand_modifier modifier
, rtx
*alt_rtl
)
9137 rtx op0
, op1
, temp
, decl_rtl
;
9140 enum machine_mode mode
;
9141 enum tree_code code
= TREE_CODE (exp
);
9142 rtx subtarget
, original_target
;
9145 bool reduce_bit_field
;
9146 location_t loc
= EXPR_LOCATION (exp
);
9147 struct separate_ops ops
;
9148 tree treeop0
, treeop1
, treeop2
;
9149 tree ssa_name
= NULL_TREE
;
9152 type
= TREE_TYPE (exp
);
9153 mode
= TYPE_MODE (type
);
9154 unsignedp
= TYPE_UNSIGNED (type
);
9156 treeop0
= treeop1
= treeop2
= NULL_TREE
;
9157 if (!VL_EXP_CLASS_P (exp
))
9158 switch (TREE_CODE_LENGTH (code
))
9161 case 3: treeop2
= TREE_OPERAND (exp
, 2);
9162 case 2: treeop1
= TREE_OPERAND (exp
, 1);
9163 case 1: treeop0
= TREE_OPERAND (exp
, 0);
9173 ignore
= (target
== const0_rtx
9174 || ((CONVERT_EXPR_CODE_P (code
)
9175 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
9176 && TREE_CODE (type
) == VOID_TYPE
));
9178 /* An operation in what may be a bit-field type needs the
9179 result to be reduced to the precision of the bit-field type,
9180 which is narrower than that of the type's mode. */
9181 reduce_bit_field
= (!ignore
9182 && INTEGRAL_TYPE_P (type
)
9183 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
9185 /* If we are going to ignore this result, we need only do something
9186 if there is a side-effect somewhere in the expression. If there
9187 is, short-circuit the most common cases here. Note that we must
9188 not call expand_expr with anything but const0_rtx in case this
9189 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9193 if (! TREE_SIDE_EFFECTS (exp
))
9196 /* Ensure we reference a volatile object even if value is ignored, but
9197 don't do this if all we are doing is taking its address. */
9198 if (TREE_THIS_VOLATILE (exp
)
9199 && TREE_CODE (exp
) != FUNCTION_DECL
9200 && mode
!= VOIDmode
&& mode
!= BLKmode
9201 && modifier
!= EXPAND_CONST_ADDRESS
)
9203 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
9209 if (TREE_CODE_CLASS (code
) == tcc_unary
9210 || code
== BIT_FIELD_REF
9211 || code
== COMPONENT_REF
9212 || code
== INDIRECT_REF
)
9213 return expand_expr (treeop0
, const0_rtx
, VOIDmode
,
9216 else if (TREE_CODE_CLASS (code
) == tcc_binary
9217 || TREE_CODE_CLASS (code
) == tcc_comparison
9218 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
9220 expand_expr (treeop0
, const0_rtx
, VOIDmode
, modifier
);
9221 expand_expr (treeop1
, const0_rtx
, VOIDmode
, modifier
);
9228 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
9231 /* Use subtarget as the target for operand 0 of a binary operation. */
9232 subtarget
= get_subtarget (target
);
9233 original_target
= target
;
9239 tree function
= decl_function_context (exp
);
9241 temp
= label_rtx (exp
);
9242 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
9244 if (function
!= current_function_decl
9246 LABEL_REF_NONLOCAL_P (temp
) = 1;
9248 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
9253 /* ??? ivopts calls expander, without any preparation from
9254 out-of-ssa. So fake instructions as if this was an access to the
9255 base variable. This unnecessarily allocates a pseudo, see how we can
9256 reuse it, if partition base vars have it set already. */
9257 if (!currently_expanding_to_rtl
)
9259 tree var
= SSA_NAME_VAR (exp
);
9260 if (var
&& DECL_RTL_SET_P (var
))
9261 return DECL_RTL (var
);
9262 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp
)),
9263 LAST_VIRTUAL_REGISTER
+ 1);
9266 g
= get_gimple_for_ssa_name (exp
);
9267 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9269 && modifier
== EXPAND_INITIALIZER
9270 && !SSA_NAME_IS_DEFAULT_DEF (exp
)
9271 && (optimize
|| DECL_IGNORED_P (SSA_NAME_VAR (exp
)))
9272 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp
)))
9273 g
= SSA_NAME_DEF_STMT (exp
);
9277 location_t saved_loc
= curr_insn_location ();
9279 set_curr_insn_location (gimple_location (g
));
9280 r
= expand_expr_real (gimple_assign_rhs_to_tree (g
), target
,
9281 tmode
, modifier
, NULL
);
9282 set_curr_insn_location (saved_loc
);
9283 if (REG_P (r
) && !REG_EXPR (r
))
9284 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp
), r
);
9289 decl_rtl
= get_rtx_for_ssa_name (ssa_name
);
9290 exp
= SSA_NAME_VAR (ssa_name
);
9291 goto expand_decl_rtl
;
9295 /* If a static var's type was incomplete when the decl was written,
9296 but the type is complete now, lay out the decl now. */
9297 if (DECL_SIZE (exp
) == 0
9298 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
9299 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
9300 layout_decl (exp
, 0);
9302 /* ... fall through ... */
9306 decl_rtl
= DECL_RTL (exp
);
9308 gcc_assert (decl_rtl
);
9309 decl_rtl
= copy_rtx (decl_rtl
);
9310 /* Record writes to register variables. */
9311 if (modifier
== EXPAND_WRITE
9313 && HARD_REGISTER_P (decl_rtl
))
9314 add_to_hard_reg_set (&crtl
->asm_clobbers
,
9315 GET_MODE (decl_rtl
), REGNO (decl_rtl
));
9317 /* Ensure variable marked as used even if it doesn't go through
9318 a parser. If it hasn't be used yet, write out an external
9320 TREE_USED (exp
) = 1;
9322 /* Show we haven't gotten RTL for this yet. */
9325 /* Variables inherited from containing functions should have
9326 been lowered by this point. */
9327 context
= decl_function_context (exp
);
9328 gcc_assert (SCOPE_FILE_SCOPE_P (context
)
9329 || context
== current_function_decl
9330 || TREE_STATIC (exp
)
9331 || DECL_EXTERNAL (exp
)
9332 /* ??? C++ creates functions that are not TREE_STATIC. */
9333 || TREE_CODE (exp
) == FUNCTION_DECL
);
9335 /* This is the case of an array whose size is to be determined
9336 from its initializer, while the initializer is still being parsed.
9337 ??? We aren't parsing while expanding anymore. */
9339 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
9340 temp
= validize_mem (decl_rtl
);
9342 /* If DECL_RTL is memory, we are in the normal case and the
9343 address is not valid, get the address into a register. */
9345 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
9348 *alt_rtl
= decl_rtl
;
9349 decl_rtl
= use_anchored_address (decl_rtl
);
9350 if (modifier
!= EXPAND_CONST_ADDRESS
9351 && modifier
!= EXPAND_SUM
9352 && !memory_address_addr_space_p (DECL_MODE (exp
),
9354 MEM_ADDR_SPACE (decl_rtl
)))
9355 temp
= replace_equiv_address (decl_rtl
,
9356 copy_rtx (XEXP (decl_rtl
, 0)));
9359 /* If we got something, return it. But first, set the alignment
9360 if the address is a register. */
9363 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
9364 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
9369 /* If the mode of DECL_RTL does not match that of the decl,
9370 there are two cases: we are dealing with a BLKmode value
9371 that is returned in a register, or we are dealing with
9372 a promoted value. In the latter case, return a SUBREG
9373 of the wanted mode, but mark it so that we know that it
9374 was already extended. */
9375 if (REG_P (decl_rtl
)
9376 && DECL_MODE (exp
) != BLKmode
9377 && GET_MODE (decl_rtl
) != DECL_MODE (exp
))
9379 enum machine_mode pmode
;
9381 /* Get the signedness to be used for this variable. Ensure we get
9382 the same mode we got when the variable was declared. */
9383 if (code
== SSA_NAME
9384 && (g
= SSA_NAME_DEF_STMT (ssa_name
))
9385 && gimple_code (g
) == GIMPLE_CALL
)
9387 gcc_assert (!gimple_call_internal_p (g
));
9388 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
9389 gimple_call_fntype (g
),
9393 pmode
= promote_decl_mode (exp
, &unsignedp
);
9394 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
9396 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
9397 SUBREG_PROMOTED_VAR_P (temp
) = 1;
9398 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
9405 temp
= immed_double_const (TREE_INT_CST_LOW (exp
),
9406 TREE_INT_CST_HIGH (exp
), mode
);
9412 tree tmp
= NULL_TREE
;
9413 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
9414 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
9415 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FRACT
9416 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UFRACT
9417 || GET_MODE_CLASS (mode
) == MODE_VECTOR_ACCUM
9418 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UACCUM
)
9419 return const_vector_from_tree (exp
);
9420 if (GET_MODE_CLASS (mode
) == MODE_INT
)
9422 tree type_for_mode
= lang_hooks
.types
.type_for_mode (mode
, 1);
9424 tmp
= fold_unary_loc (loc
, VIEW_CONVERT_EXPR
, type_for_mode
, exp
);
9428 vec
<constructor_elt
, va_gc
> *v
;
9430 vec_alloc (v
, VECTOR_CST_NELTS (exp
));
9431 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
9432 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, VECTOR_CST_ELT (exp
, i
));
9433 tmp
= build_constructor (type
, v
);
9435 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
9440 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
9443 /* If optimized, generate immediate CONST_DOUBLE
9444 which will be turned into memory by reload if necessary.
9446 We used to force a register so that loop.c could see it. But
9447 this does not allow gen_* patterns to perform optimizations with
9448 the constants. It also produces two insns in cases like "x = 1.0;".
9449 On most machines, floating-point constants are not permitted in
9450 many insns, so we'd end up copying it to a register in any case.
9452 Now, we do the copying in expand_binop, if appropriate. */
9453 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
9454 TYPE_MODE (TREE_TYPE (exp
)));
9457 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
9458 TYPE_MODE (TREE_TYPE (exp
)));
9461 /* Handle evaluating a complex constant in a CONCAT target. */
9462 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
9464 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
9467 rtarg
= XEXP (original_target
, 0);
9468 itarg
= XEXP (original_target
, 1);
9470 /* Move the real and imaginary parts separately. */
9471 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
9472 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
9475 emit_move_insn (rtarg
, op0
);
9477 emit_move_insn (itarg
, op1
);
9479 return original_target
;
9482 /* ... fall through ... */
9485 temp
= expand_expr_constant (exp
, 1, modifier
);
9487 /* temp contains a constant address.
9488 On RISC machines where a constant address isn't valid,
9489 make some insns to get that address into a register. */
9490 if (modifier
!= EXPAND_CONST_ADDRESS
9491 && modifier
!= EXPAND_INITIALIZER
9492 && modifier
!= EXPAND_SUM
9493 && ! memory_address_addr_space_p (mode
, XEXP (temp
, 0),
9494 MEM_ADDR_SPACE (temp
)))
9495 return replace_equiv_address (temp
,
9496 copy_rtx (XEXP (temp
, 0)));
9502 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
);
9504 if (!SAVE_EXPR_RESOLVED_P (exp
))
9506 /* We can indeed still hit this case, typically via builtin
9507 expanders calling save_expr immediately before expanding
9508 something. Assume this means that we only have to deal
9509 with non-BLKmode values. */
9510 gcc_assert (GET_MODE (ret
) != BLKmode
);
9512 val
= build_decl (curr_insn_location (),
9513 VAR_DECL
, NULL
, TREE_TYPE (exp
));
9514 DECL_ARTIFICIAL (val
) = 1;
9515 DECL_IGNORED_P (val
) = 1;
9517 TREE_OPERAND (exp
, 0) = treeop0
;
9518 SAVE_EXPR_RESOLVED_P (exp
) = 1;
9520 if (!CONSTANT_P (ret
))
9521 ret
= copy_to_reg (ret
);
9522 SET_DECL_RTL (val
, ret
);
9530 /* If we don't need the result, just ensure we evaluate any
9534 unsigned HOST_WIDE_INT idx
;
9537 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
9538 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
9543 return expand_constructor (exp
, target
, modifier
, false);
9545 case TARGET_MEM_REF
:
9548 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9549 struct mem_address addr
;
9550 enum insn_code icode
;
9553 get_address_description (exp
, &addr
);
9554 op0
= addr_for_mem_ref (&addr
, as
, true);
9555 op0
= memory_address_addr_space (mode
, op0
, as
);
9556 temp
= gen_rtx_MEM (mode
, op0
);
9557 set_mem_attributes (temp
, exp
, 0);
9558 set_mem_addr_space (temp
, as
);
9559 align
= get_object_alignment (exp
);
9560 if (modifier
!= EXPAND_WRITE
9561 && modifier
!= EXPAND_MEMORY
9563 && align
< GET_MODE_ALIGNMENT (mode
)
9564 /* If the target does not have special handling for unaligned
9565 loads of mode then it can use regular moves for them. */
9566 && ((icode
= optab_handler (movmisalign_optab
, mode
))
9567 != CODE_FOR_nothing
))
9569 struct expand_operand ops
[2];
9571 /* We've already validated the memory, and we're creating a
9572 new pseudo destination. The predicates really can't fail,
9573 nor can the generator. */
9574 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9575 create_fixed_operand (&ops
[1], temp
);
9576 expand_insn (icode
, 2, ops
);
9577 temp
= ops
[0].value
;
9585 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9586 enum machine_mode address_mode
;
9587 tree base
= TREE_OPERAND (exp
, 0);
9589 enum insn_code icode
;
9591 /* Handle expansion of non-aliased memory with non-BLKmode. That
9592 might end up in a register. */
9593 if (mem_ref_refers_to_non_mem_p (exp
))
9595 HOST_WIDE_INT offset
= mem_ref_offset (exp
).low
;
9596 base
= TREE_OPERAND (base
, 0);
9598 && host_integerp (TYPE_SIZE (type
), 1)
9599 && (GET_MODE_BITSIZE (DECL_MODE (base
))
9600 == TREE_INT_CST_LOW (TYPE_SIZE (type
))))
9601 return expand_expr (build1 (VIEW_CONVERT_EXPR
, type
, base
),
9602 target
, tmode
, modifier
);
9603 if (TYPE_MODE (type
) == BLKmode
)
9605 temp
= assign_stack_temp (DECL_MODE (base
),
9606 GET_MODE_SIZE (DECL_MODE (base
)));
9607 store_expr (base
, temp
, 0, false);
9608 temp
= adjust_address (temp
, BLKmode
, offset
);
9609 set_mem_size (temp
, int_size_in_bytes (type
));
9612 exp
= build3 (BIT_FIELD_REF
, type
, base
, TYPE_SIZE (type
),
9613 bitsize_int (offset
* BITS_PER_UNIT
));
9614 return expand_expr (exp
, target
, tmode
, modifier
);
9616 address_mode
= targetm
.addr_space
.address_mode (as
);
9617 base
= TREE_OPERAND (exp
, 0);
9618 if ((def_stmt
= get_def_for_expr (base
, BIT_AND_EXPR
)))
9620 tree mask
= gimple_assign_rhs2 (def_stmt
);
9621 base
= build2 (BIT_AND_EXPR
, TREE_TYPE (base
),
9622 gimple_assign_rhs1 (def_stmt
), mask
);
9623 TREE_OPERAND (exp
, 0) = base
;
9625 align
= get_object_alignment (exp
);
9626 op0
= expand_expr (base
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
9627 op0
= memory_address_addr_space (address_mode
, op0
, as
);
9628 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
9631 = immed_double_int_const (mem_ref_offset (exp
), address_mode
);
9632 op0
= simplify_gen_binary (PLUS
, address_mode
, op0
, off
);
9634 op0
= memory_address_addr_space (mode
, op0
, as
);
9635 temp
= gen_rtx_MEM (mode
, op0
);
9636 set_mem_attributes (temp
, exp
, 0);
9637 set_mem_addr_space (temp
, as
);
9638 if (TREE_THIS_VOLATILE (exp
))
9639 MEM_VOLATILE_P (temp
) = 1;
9640 if (modifier
!= EXPAND_WRITE
9641 && modifier
!= EXPAND_MEMORY
9643 && align
< GET_MODE_ALIGNMENT (mode
))
9645 if ((icode
= optab_handler (movmisalign_optab
, mode
))
9646 != CODE_FOR_nothing
)
9648 struct expand_operand ops
[2];
9650 /* We've already validated the memory, and we're creating a
9651 new pseudo destination. The predicates really can't fail,
9652 nor can the generator. */
9653 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9654 create_fixed_operand (&ops
[1], temp
);
9655 expand_insn (icode
, 2, ops
);
9656 temp
= ops
[0].value
;
9658 else if (SLOW_UNALIGNED_ACCESS (mode
, align
))
9659 temp
= extract_bit_field (temp
, GET_MODE_BITSIZE (mode
),
9660 0, TYPE_UNSIGNED (TREE_TYPE (exp
)),
9661 true, (modifier
== EXPAND_STACK_PARM
9662 ? NULL_RTX
: target
),
9671 tree array
= treeop0
;
9672 tree index
= treeop1
;
9675 /* Fold an expression like: "foo"[2].
9676 This is not done in fold so it won't happen inside &.
9677 Don't fold if this is for wide characters since it's too
9678 difficult to do correctly and this is a very rare case. */
9680 if (modifier
!= EXPAND_CONST_ADDRESS
9681 && modifier
!= EXPAND_INITIALIZER
9682 && modifier
!= EXPAND_MEMORY
)
9684 tree t
= fold_read_from_constant_string (exp
);
9687 return expand_expr (t
, target
, tmode
, modifier
);
9690 /* If this is a constant index into a constant array,
9691 just get the value from the array. Handle both the cases when
9692 we have an explicit constructor and when our operand is a variable
9693 that was declared const. */
9695 if (modifier
!= EXPAND_CONST_ADDRESS
9696 && modifier
!= EXPAND_INITIALIZER
9697 && modifier
!= EXPAND_MEMORY
9698 && TREE_CODE (array
) == CONSTRUCTOR
9699 && ! TREE_SIDE_EFFECTS (array
)
9700 && TREE_CODE (index
) == INTEGER_CST
)
9702 unsigned HOST_WIDE_INT ix
;
9705 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
9707 if (tree_int_cst_equal (field
, index
))
9709 if (!TREE_SIDE_EFFECTS (value
))
9710 return expand_expr (fold (value
), target
, tmode
, modifier
);
9715 else if (optimize
>= 1
9716 && modifier
!= EXPAND_CONST_ADDRESS
9717 && modifier
!= EXPAND_INITIALIZER
9718 && modifier
!= EXPAND_MEMORY
9719 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
9720 && TREE_CODE (index
) == INTEGER_CST
9721 && (TREE_CODE (array
) == VAR_DECL
9722 || TREE_CODE (array
) == CONST_DECL
)
9723 && (init
= ctor_for_folding (array
)) != error_mark_node
)
9725 if (TREE_CODE (init
) == CONSTRUCTOR
)
9727 unsigned HOST_WIDE_INT ix
;
9730 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
9732 if (tree_int_cst_equal (field
, index
))
9734 if (TREE_SIDE_EFFECTS (value
))
9737 if (TREE_CODE (value
) == CONSTRUCTOR
)
9739 /* If VALUE is a CONSTRUCTOR, this
9740 optimization is only useful if
9741 this doesn't store the CONSTRUCTOR
9742 into memory. If it does, it is more
9743 efficient to just load the data from
9744 the array directly. */
9745 rtx ret
= expand_constructor (value
, target
,
9747 if (ret
== NULL_RTX
)
9752 expand_expr (fold (value
), target
, tmode
, modifier
);
9755 else if (TREE_CODE (init
) == STRING_CST
)
9757 tree low_bound
= array_ref_low_bound (exp
);
9758 tree index1
= fold_convert_loc (loc
, sizetype
, treeop1
);
9760 /* Optimize the special case of a zero lower bound.
9762 We convert the lower bound to sizetype to avoid problems
9763 with constant folding. E.g. suppose the lower bound is
9764 1 and its mode is QI. Without the conversion
9765 (ARRAY + (INDEX - (unsigned char)1))
9767 (ARRAY + (-(unsigned char)1) + INDEX)
9769 (ARRAY + 255 + INDEX). Oops! */
9770 if (!integer_zerop (low_bound
))
9771 index1
= size_diffop_loc (loc
, index1
,
9772 fold_convert_loc (loc
, sizetype
,
9775 if (compare_tree_int (index1
, TREE_STRING_LENGTH (init
)) < 0)
9777 tree type
= TREE_TYPE (TREE_TYPE (init
));
9778 enum machine_mode mode
= TYPE_MODE (type
);
9780 if (GET_MODE_CLASS (mode
) == MODE_INT
9781 && GET_MODE_SIZE (mode
) == 1)
9782 return gen_int_mode (TREE_STRING_POINTER (init
)
9783 [TREE_INT_CST_LOW (index1
)],
9789 goto normal_inner_ref
;
9792 /* If the operand is a CONSTRUCTOR, we can just extract the
9793 appropriate field if it is present. */
9794 if (TREE_CODE (treeop0
) == CONSTRUCTOR
)
9796 unsigned HOST_WIDE_INT idx
;
9799 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0
),
9801 if (field
== treeop1
9802 /* We can normally use the value of the field in the
9803 CONSTRUCTOR. However, if this is a bitfield in
9804 an integral mode that we can fit in a HOST_WIDE_INT,
9805 we must mask only the number of bits in the bitfield,
9806 since this is done implicitly by the constructor. If
9807 the bitfield does not meet either of those conditions,
9808 we can't do this optimization. */
9809 && (! DECL_BIT_FIELD (field
)
9810 || ((GET_MODE_CLASS (DECL_MODE (field
)) == MODE_INT
)
9811 && (GET_MODE_PRECISION (DECL_MODE (field
))
9812 <= HOST_BITS_PER_WIDE_INT
))))
9814 if (DECL_BIT_FIELD (field
)
9815 && modifier
== EXPAND_STACK_PARM
)
9817 op0
= expand_expr (value
, target
, tmode
, modifier
);
9818 if (DECL_BIT_FIELD (field
))
9820 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
9821 enum machine_mode imode
= TYPE_MODE (TREE_TYPE (field
));
9823 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
9825 op1
= gen_int_mode (((HOST_WIDE_INT
) 1 << bitsize
) - 1,
9827 op0
= expand_and (imode
, op0
, op1
, target
);
9831 int count
= GET_MODE_PRECISION (imode
) - bitsize
;
9833 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
9835 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
9843 goto normal_inner_ref
;
9846 case ARRAY_RANGE_REF
:
9849 enum machine_mode mode1
, mode2
;
9850 HOST_WIDE_INT bitsize
, bitpos
;
9852 int volatilep
= 0, must_force_mem
;
9853 bool packedp
= false;
9854 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
9855 &mode1
, &unsignedp
, &volatilep
, true);
9856 rtx orig_op0
, memloc
;
9857 bool mem_attrs_from_type
= false;
9859 /* If we got back the original object, something is wrong. Perhaps
9860 we are evaluating an expression too early. In any event, don't
9861 infinitely recurse. */
9862 gcc_assert (tem
!= exp
);
9864 if (TYPE_PACKED (TREE_TYPE (TREE_OPERAND (exp
, 0)))
9865 || (TREE_CODE (TREE_OPERAND (exp
, 1)) == FIELD_DECL
9866 && DECL_PACKED (TREE_OPERAND (exp
, 1))))
9869 /* If TEM's type is a union of variable size, pass TARGET to the inner
9870 computation, since it will need a temporary and TARGET is known
9871 to have to do. This occurs in unchecked conversion in Ada. */
9874 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
9875 && COMPLETE_TYPE_P (TREE_TYPE (tem
))
9876 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
9878 && modifier
!= EXPAND_STACK_PARM
9879 ? target
: NULL_RTX
),
9881 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
9883 /* If the bitfield is volatile, we want to access it in the
9884 field's mode, not the computed mode.
9885 If a MEM has VOIDmode (external with incomplete type),
9886 use BLKmode for it instead. */
9889 if (volatilep
&& flag_strict_volatile_bitfields
> 0)
9890 op0
= adjust_address (op0
, mode1
, 0);
9891 else if (GET_MODE (op0
) == VOIDmode
)
9892 op0
= adjust_address (op0
, BLKmode
, 0);
9896 = CONSTANT_P (op0
) ? TYPE_MODE (TREE_TYPE (tem
)) : GET_MODE (op0
);
9898 /* If we have either an offset, a BLKmode result, or a reference
9899 outside the underlying object, we must force it to memory.
9900 Such a case can occur in Ada if we have unchecked conversion
9901 of an expression from a scalar type to an aggregate type or
9902 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9903 passed a partially uninitialized object or a view-conversion
9904 to a larger size. */
9905 must_force_mem
= (offset
9907 || bitpos
+ bitsize
> GET_MODE_BITSIZE (mode2
));
9909 /* Handle CONCAT first. */
9910 if (GET_CODE (op0
) == CONCAT
&& !must_force_mem
)
9913 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
9916 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
9919 op0
= XEXP (op0
, 0);
9920 mode2
= GET_MODE (op0
);
9922 else if (bitpos
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
9923 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 1)))
9927 op0
= XEXP (op0
, 1);
9929 mode2
= GET_MODE (op0
);
9932 /* Otherwise force into memory. */
9936 /* If this is a constant, put it in a register if it is a legitimate
9937 constant and we don't need a memory reference. */
9938 if (CONSTANT_P (op0
)
9940 && targetm
.legitimate_constant_p (mode2
, op0
)
9942 op0
= force_reg (mode2
, op0
);
9944 /* Otherwise, if this is a constant, try to force it to the constant
9945 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9946 is a legitimate constant. */
9947 else if (CONSTANT_P (op0
) && (memloc
= force_const_mem (mode2
, op0
)))
9948 op0
= validize_mem (memloc
);
9950 /* Otherwise, if this is a constant or the object is not in memory
9951 and need be, put it there. */
9952 else if (CONSTANT_P (op0
) || (!MEM_P (op0
) && must_force_mem
))
9954 tree nt
= build_qualified_type (TREE_TYPE (tem
),
9955 (TYPE_QUALS (TREE_TYPE (tem
))
9956 | TYPE_QUAL_CONST
));
9957 memloc
= assign_temp (nt
, 1, 1);
9958 emit_move_insn (memloc
, op0
);
9960 mem_attrs_from_type
= true;
9965 enum machine_mode address_mode
;
9966 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
9969 gcc_assert (MEM_P (op0
));
9971 address_mode
= get_address_mode (op0
);
9972 if (GET_MODE (offset_rtx
) != address_mode
)
9973 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
9975 if (GET_MODE (op0
) == BLKmode
9976 /* A constant address in OP0 can have VOIDmode, we must
9977 not try to call force_reg in that case. */
9978 && GET_MODE (XEXP (op0
, 0)) != VOIDmode
9980 && (bitpos
% bitsize
) == 0
9981 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
9982 && MEM_ALIGN (op0
) == GET_MODE_ALIGNMENT (mode1
))
9984 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
9988 op0
= offset_address (op0
, offset_rtx
,
9989 highest_pow2_factor (offset
));
9992 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9993 record its alignment as BIGGEST_ALIGNMENT. */
9994 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
9995 && is_aligning_offset (offset
, tem
))
9996 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
9998 /* Don't forget about volatility even if this is a bitfield. */
9999 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
10001 if (op0
== orig_op0
)
10002 op0
= copy_rtx (op0
);
10004 MEM_VOLATILE_P (op0
) = 1;
10007 /* In cases where an aligned union has an unaligned object
10008 as a field, we might be extracting a BLKmode value from
10009 an integer-mode (e.g., SImode) object. Handle this case
10010 by doing the extract into an object as wide as the field
10011 (which we know to be the width of a basic mode), then
10012 storing into memory, and changing the mode to BLKmode. */
10013 if (mode1
== VOIDmode
10014 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
10015 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
10016 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
10017 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
10018 && modifier
!= EXPAND_CONST_ADDRESS
10019 && modifier
!= EXPAND_INITIALIZER
10020 && modifier
!= EXPAND_MEMORY
)
10021 /* If the field is volatile, we always want an aligned
10022 access. Do this in following two situations:
10023 1. the access is not already naturally
10024 aligned, otherwise "normal" (non-bitfield) volatile fields
10025 become non-addressable.
10026 2. the bitsize is narrower than the access size. Need
10027 to extract bitfields from the access. */
10028 || (volatilep
&& flag_strict_volatile_bitfields
> 0
10029 && (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0
10030 || (mode1
!= BLKmode
10031 && bitsize
< GET_MODE_SIZE (mode1
) * BITS_PER_UNIT
)))
10032 /* If the field isn't aligned enough to fetch as a memref,
10033 fetch it as a bit field. */
10034 || (mode1
!= BLKmode
10035 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
10036 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
10038 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
10039 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
10040 && modifier
!= EXPAND_MEMORY
10041 && ((modifier
== EXPAND_CONST_ADDRESS
10042 || modifier
== EXPAND_INITIALIZER
)
10044 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
10045 || (bitpos
% BITS_PER_UNIT
!= 0)))
10046 /* If the type and the field are a constant size and the
10047 size of the type isn't the same size as the bitfield,
10048 we must use bitfield operations. */
10050 && TYPE_SIZE (TREE_TYPE (exp
))
10051 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
10052 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
10055 enum machine_mode ext_mode
= mode
;
10057 if (ext_mode
== BLKmode
10058 && ! (target
!= 0 && MEM_P (op0
)
10060 && bitpos
% BITS_PER_UNIT
== 0))
10061 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
10063 if (ext_mode
== BLKmode
)
10066 target
= assign_temp (type
, 1, 1);
10071 /* In this case, BITPOS must start at a byte boundary and
10072 TARGET, if specified, must be a MEM. */
10073 gcc_assert (MEM_P (op0
)
10074 && (!target
|| MEM_P (target
))
10075 && !(bitpos
% BITS_PER_UNIT
));
10077 emit_block_move (target
,
10078 adjust_address (op0
, VOIDmode
,
10079 bitpos
/ BITS_PER_UNIT
),
10080 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
10082 (modifier
== EXPAND_STACK_PARM
10083 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10088 op0
= validize_mem (op0
);
10090 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
10091 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10093 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
, packedp
,
10094 (modifier
== EXPAND_STACK_PARM
10095 ? NULL_RTX
: target
),
10096 ext_mode
, ext_mode
);
10098 /* If the result is a record type and BITSIZE is narrower than
10099 the mode of OP0, an integral mode, and this is a big endian
10100 machine, we must put the field into the high-order bits. */
10101 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
10102 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10103 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
10104 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
10105 GET_MODE_BITSIZE (GET_MODE (op0
))
10106 - bitsize
, op0
, 1);
10108 /* If the result type is BLKmode, store the data into a temporary
10109 of the appropriate type, but with the mode corresponding to the
10110 mode for the data we have (op0's mode). It's tempting to make
10111 this a constant type, since we know it's only being stored once,
10112 but that can cause problems if we are taking the address of this
10113 COMPONENT_REF because the MEM of any reference via that address
10114 will have flags corresponding to the type, which will not
10115 necessarily be constant. */
10116 if (mode
== BLKmode
)
10120 new_rtx
= assign_stack_temp_for_type (ext_mode
,
10121 GET_MODE_BITSIZE (ext_mode
),
10123 emit_move_insn (new_rtx
, op0
);
10124 op0
= copy_rtx (new_rtx
);
10125 PUT_MODE (op0
, BLKmode
);
10131 /* If the result is BLKmode, use that to access the object
10133 if (mode
== BLKmode
)
10136 /* Get a reference to just this component. */
10137 if (modifier
== EXPAND_CONST_ADDRESS
10138 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
10139 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10141 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10143 if (op0
== orig_op0
)
10144 op0
= copy_rtx (op0
);
10146 /* If op0 is a temporary because of forcing to memory, pass only the
10147 type to set_mem_attributes so that the original expression is never
10148 marked as ADDRESSABLE through MEM_EXPR of the temporary. */
10149 if (mem_attrs_from_type
)
10150 set_mem_attributes (op0
, type
, 0);
10152 set_mem_attributes (op0
, exp
, 0);
10154 if (REG_P (XEXP (op0
, 0)))
10155 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10157 MEM_VOLATILE_P (op0
) |= volatilep
;
10158 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
10159 || modifier
== EXPAND_CONST_ADDRESS
10160 || modifier
== EXPAND_INITIALIZER
)
10164 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
10166 convert_move (target
, op0
, unsignedp
);
10171 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
10174 /* All valid uses of __builtin_va_arg_pack () are removed during
10176 if (CALL_EXPR_VA_ARG_PACK (exp
))
10177 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp
);
10179 tree fndecl
= get_callee_fndecl (exp
), attr
;
10182 && (attr
= lookup_attribute ("error",
10183 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10184 error ("%Kcall to %qs declared with attribute error: %s",
10185 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10186 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10188 && (attr
= lookup_attribute ("warning",
10189 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10190 warning_at (tree_nonartificial_location (exp
),
10191 0, "%Kcall to %qs declared with attribute warning: %s",
10192 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10193 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10195 /* Check for a built-in function. */
10196 if (fndecl
&& DECL_BUILT_IN (fndecl
))
10198 gcc_assert (DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_FRONTEND
);
10199 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
10202 return expand_call (exp
, target
, ignore
);
10204 case VIEW_CONVERT_EXPR
:
10207 /* If we are converting to BLKmode, try to avoid an intermediate
10208 temporary by fetching an inner memory reference. */
10209 if (mode
== BLKmode
10210 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
10211 && TYPE_MODE (TREE_TYPE (treeop0
)) != BLKmode
10212 && handled_component_p (treeop0
))
10214 enum machine_mode mode1
;
10215 HOST_WIDE_INT bitsize
, bitpos
;
10220 = get_inner_reference (treeop0
, &bitsize
, &bitpos
,
10221 &offset
, &mode1
, &unsignedp
, &volatilep
,
10225 /* ??? We should work harder and deal with non-zero offsets. */
10227 && (bitpos
% BITS_PER_UNIT
) == 0
10229 && compare_tree_int (TYPE_SIZE (type
), bitsize
) == 0)
10231 /* See the normal_inner_ref case for the rationale. */
10233 = expand_expr (tem
,
10234 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10235 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10237 && modifier
!= EXPAND_STACK_PARM
10238 ? target
: NULL_RTX
),
10240 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
10242 if (MEM_P (orig_op0
))
10246 /* Get a reference to just this component. */
10247 if (modifier
== EXPAND_CONST_ADDRESS
10248 || modifier
== EXPAND_SUM
10249 || modifier
== EXPAND_INITIALIZER
)
10250 op0
= adjust_address_nv (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10252 op0
= adjust_address (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10254 if (op0
== orig_op0
)
10255 op0
= copy_rtx (op0
);
10257 set_mem_attributes (op0
, treeop0
, 0);
10258 if (REG_P (XEXP (op0
, 0)))
10259 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10261 MEM_VOLATILE_P (op0
) |= volatilep
;
10267 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
10269 /* If the input and output modes are both the same, we are done. */
10270 if (mode
== GET_MODE (op0
))
10272 /* If neither mode is BLKmode, and both modes are the same size
10273 then we can use gen_lowpart. */
10274 else if (mode
!= BLKmode
&& GET_MODE (op0
) != BLKmode
10275 && (GET_MODE_PRECISION (mode
)
10276 == GET_MODE_PRECISION (GET_MODE (op0
)))
10277 && !COMPLEX_MODE_P (GET_MODE (op0
)))
10279 if (GET_CODE (op0
) == SUBREG
)
10280 op0
= force_reg (GET_MODE (op0
), op0
);
10281 temp
= gen_lowpart_common (mode
, op0
);
10286 if (!REG_P (op0
) && !MEM_P (op0
))
10287 op0
= force_reg (GET_MODE (op0
), op0
);
10288 op0
= gen_lowpart (mode
, op0
);
10291 /* If both types are integral, convert from one mode to the other. */
10292 else if (INTEGRAL_TYPE_P (type
) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0
)))
10293 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
10294 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
10295 /* As a last resort, spill op0 to memory, and reload it in a
10297 else if (!MEM_P (op0
))
10299 /* If the operand is not a MEM, force it into memory. Since we
10300 are going to be changing the mode of the MEM, don't call
10301 force_const_mem for constants because we don't allow pool
10302 constants to change mode. */
10303 tree inner_type
= TREE_TYPE (treeop0
);
10305 gcc_assert (!TREE_ADDRESSABLE (exp
));
10307 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
10309 = assign_stack_temp_for_type
10310 (TYPE_MODE (inner_type
),
10311 GET_MODE_SIZE (TYPE_MODE (inner_type
)), inner_type
);
10313 emit_move_insn (target
, op0
);
10317 /* At this point, OP0 is in the correct mode. If the output type is
10318 such that the operand is known to be aligned, indicate that it is.
10319 Otherwise, we need only be concerned about alignment for non-BLKmode
10323 enum insn_code icode
;
10325 if (TYPE_ALIGN_OK (type
))
10327 /* ??? Copying the MEM without substantially changing it might
10328 run afoul of the code handling volatile memory references in
10329 store_expr, which assumes that TARGET is returned unmodified
10330 if it has been used. */
10331 op0
= copy_rtx (op0
);
10332 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
10334 else if (mode
!= BLKmode
10335 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
)
10336 /* If the target does have special handling for unaligned
10337 loads of mode then use them. */
10338 && ((icode
= optab_handler (movmisalign_optab
, mode
))
10339 != CODE_FOR_nothing
))
10343 op0
= adjust_address (op0
, mode
, 0);
10344 /* We've already validated the memory, and we're creating a
10345 new pseudo destination. The predicates really can't
10347 reg
= gen_reg_rtx (mode
);
10349 /* Nor can the insn generator. */
10350 insn
= GEN_FCN (icode
) (reg
, op0
);
10354 else if (STRICT_ALIGNMENT
10356 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
10358 tree inner_type
= TREE_TYPE (treeop0
);
10359 HOST_WIDE_INT temp_size
10360 = MAX (int_size_in_bytes (inner_type
),
10361 (HOST_WIDE_INT
) GET_MODE_SIZE (mode
));
10363 = assign_stack_temp_for_type (mode
, temp_size
, type
);
10364 rtx new_with_op0_mode
10365 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
10367 gcc_assert (!TREE_ADDRESSABLE (exp
));
10369 if (GET_MODE (op0
) == BLKmode
)
10370 emit_block_move (new_with_op0_mode
, op0
,
10371 GEN_INT (GET_MODE_SIZE (mode
)),
10372 (modifier
== EXPAND_STACK_PARM
10373 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10375 emit_move_insn (new_with_op0_mode
, op0
);
10380 op0
= adjust_address (op0
, mode
, 0);
10387 tree lhs
= treeop0
;
10388 tree rhs
= treeop1
;
10389 gcc_assert (ignore
);
10391 /* Check for |= or &= of a bitfield of size one into another bitfield
10392 of size 1. In this case, (unless we need the result of the
10393 assignment) we can do this more efficiently with a
10394 test followed by an assignment, if necessary.
10396 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10397 things change so we do, this code should be enhanced to
10399 if (TREE_CODE (lhs
) == COMPONENT_REF
10400 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
10401 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
10402 && TREE_OPERAND (rhs
, 0) == lhs
10403 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
10404 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
10405 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
10407 rtx label
= gen_label_rtx ();
10408 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
10409 do_jump (TREE_OPERAND (rhs
, 1),
10411 value
? 0 : label
, -1);
10412 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
10414 do_pending_stack_adjust ();
10415 emit_label (label
);
10419 expand_assignment (lhs
, rhs
, false);
10424 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
10426 case REALPART_EXPR
:
10427 op0
= expand_normal (treeop0
);
10428 return read_complex_part (op0
, false);
10430 case IMAGPART_EXPR
:
10431 op0
= expand_normal (treeop0
);
10432 return read_complex_part (op0
, true);
10439 /* Expanded in cfgexpand.c. */
10440 gcc_unreachable ();
10442 case TRY_CATCH_EXPR
:
10444 case EH_FILTER_EXPR
:
10445 case TRY_FINALLY_EXPR
:
10446 /* Lowered by tree-eh.c. */
10447 gcc_unreachable ();
10449 case WITH_CLEANUP_EXPR
:
10450 case CLEANUP_POINT_EXPR
:
10452 case CASE_LABEL_EXPR
:
10457 case COMPOUND_EXPR
:
10458 case PREINCREMENT_EXPR
:
10459 case PREDECREMENT_EXPR
:
10460 case POSTINCREMENT_EXPR
:
10461 case POSTDECREMENT_EXPR
:
10464 case COMPOUND_LITERAL_EXPR
:
10465 /* Lowered by gimplify.c. */
10466 gcc_unreachable ();
10469 /* Function descriptors are not valid except for as
10470 initialization constants, and should not be expanded. */
10471 gcc_unreachable ();
10473 case WITH_SIZE_EXPR
:
10474 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10475 have pulled out the size to use in whatever context it needed. */
10476 return expand_expr_real (treeop0
, original_target
, tmode
,
10477 modifier
, alt_rtl
);
10480 return expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
10484 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10485 signedness of TYPE), possibly returning the result in TARGET. */
10487 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
10489 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
10490 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
10492 /* For constant values, reduce using build_int_cst_type. */
10493 if (CONST_INT_P (exp
))
10495 HOST_WIDE_INT value
= INTVAL (exp
);
10496 tree t
= build_int_cst_type (type
, value
);
10497 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
10499 else if (TYPE_UNSIGNED (type
))
10501 rtx mask
= immed_double_int_const (double_int::mask (prec
),
10503 return expand_and (GET_MODE (exp
), exp
, mask
, target
);
10507 int count
= GET_MODE_PRECISION (GET_MODE (exp
)) - prec
;
10508 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
),
10509 exp
, count
, target
, 0);
10510 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
),
10511 exp
, count
, target
, 0);
10515 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10516 when applied to the address of EXP produces an address known to be
10517 aligned more than BIGGEST_ALIGNMENT. */
10520 is_aligning_offset (const_tree offset
, const_tree exp
)
10522 /* Strip off any conversions. */
10523 while (CONVERT_EXPR_P (offset
))
10524 offset
= TREE_OPERAND (offset
, 0);
10526 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10527 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10528 if (TREE_CODE (offset
) != BIT_AND_EXPR
10529 || !host_integerp (TREE_OPERAND (offset
, 1), 1)
10530 || compare_tree_int (TREE_OPERAND (offset
, 1),
10531 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
10532 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset
, 1), 1) + 1) < 0)
10535 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10536 It must be NEGATE_EXPR. Then strip any more conversions. */
10537 offset
= TREE_OPERAND (offset
, 0);
10538 while (CONVERT_EXPR_P (offset
))
10539 offset
= TREE_OPERAND (offset
, 0);
10541 if (TREE_CODE (offset
) != NEGATE_EXPR
)
10544 offset
= TREE_OPERAND (offset
, 0);
10545 while (CONVERT_EXPR_P (offset
))
10546 offset
= TREE_OPERAND (offset
, 0);
10548 /* This must now be the address of EXP. */
10549 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
10552 /* Return the tree node if an ARG corresponds to a string constant or zero
10553 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10554 in bytes within the string that ARG is accessing. The type of the
10555 offset will be `sizetype'. */
10558 string_constant (tree arg
, tree
*ptr_offset
)
10560 tree array
, offset
, lower_bound
;
10563 if (TREE_CODE (arg
) == ADDR_EXPR
)
10565 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
10567 *ptr_offset
= size_zero_node
;
10568 return TREE_OPERAND (arg
, 0);
10570 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
10572 array
= TREE_OPERAND (arg
, 0);
10573 offset
= size_zero_node
;
10575 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
10577 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10578 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10579 if (TREE_CODE (array
) != STRING_CST
10580 && TREE_CODE (array
) != VAR_DECL
)
10583 /* Check if the array has a nonzero lower bound. */
10584 lower_bound
= array_ref_low_bound (TREE_OPERAND (arg
, 0));
10585 if (!integer_zerop (lower_bound
))
10587 /* If the offset and base aren't both constants, return 0. */
10588 if (TREE_CODE (lower_bound
) != INTEGER_CST
)
10590 if (TREE_CODE (offset
) != INTEGER_CST
)
10592 /* Adjust offset by the lower bound. */
10593 offset
= size_diffop (fold_convert (sizetype
, offset
),
10594 fold_convert (sizetype
, lower_bound
));
10597 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == MEM_REF
)
10599 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10600 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10601 if (TREE_CODE (array
) != ADDR_EXPR
)
10603 array
= TREE_OPERAND (array
, 0);
10604 if (TREE_CODE (array
) != STRING_CST
10605 && TREE_CODE (array
) != VAR_DECL
)
10611 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
10613 tree arg0
= TREE_OPERAND (arg
, 0);
10614 tree arg1
= TREE_OPERAND (arg
, 1);
10619 if (TREE_CODE (arg0
) == ADDR_EXPR
10620 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
10621 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
10623 array
= TREE_OPERAND (arg0
, 0);
10626 else if (TREE_CODE (arg1
) == ADDR_EXPR
10627 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
10628 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
10630 array
= TREE_OPERAND (arg1
, 0);
10639 if (TREE_CODE (array
) == STRING_CST
)
10641 *ptr_offset
= fold_convert (sizetype
, offset
);
10644 else if (TREE_CODE (array
) == VAR_DECL
10645 || TREE_CODE (array
) == CONST_DECL
)
10648 tree init
= ctor_for_folding (array
);
10650 /* Variables initialized to string literals can be handled too. */
10651 if (init
== error_mark_node
10653 || TREE_CODE (init
) != STRING_CST
)
10656 /* Avoid const char foo[4] = "abcde"; */
10657 if (DECL_SIZE_UNIT (array
) == NULL_TREE
10658 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
10659 || (length
= TREE_STRING_LENGTH (init
)) <= 0
10660 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
10663 /* If variable is bigger than the string literal, OFFSET must be constant
10664 and inside of the bounds of the string literal. */
10665 offset
= fold_convert (sizetype
, offset
);
10666 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
10667 && (! host_integerp (offset
, 1)
10668 || compare_tree_int (offset
, length
) >= 0))
10671 *ptr_offset
= offset
;
10678 /* Generate code to calculate OPS, and exploded expression
10679 using a store-flag instruction and return an rtx for the result.
10680 OPS reflects a comparison.
10682 If TARGET is nonzero, store the result there if convenient.
10684 Return zero if there is no suitable set-flag instruction
10685 available on this machine.
10687 Once expand_expr has been called on the arguments of the comparison,
10688 we are committed to doing the store flag, since it is not safe to
10689 re-evaluate the expression. We emit the store-flag insn by calling
10690 emit_store_flag, but only expand the arguments if we have a reason
10691 to believe that emit_store_flag will be successful. If we think that
10692 it will, but it isn't, we have to simulate the store-flag with a
10693 set/jump/set sequence. */
10696 do_store_flag (sepops ops
, rtx target
, enum machine_mode mode
)
10698 enum rtx_code code
;
10699 tree arg0
, arg1
, type
;
10701 enum machine_mode operand_mode
;
10704 rtx subtarget
= target
;
10705 location_t loc
= ops
->location
;
10710 /* Don't crash if the comparison was erroneous. */
10711 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
10714 type
= TREE_TYPE (arg0
);
10715 operand_mode
= TYPE_MODE (type
);
10716 unsignedp
= TYPE_UNSIGNED (type
);
10718 /* We won't bother with BLKmode store-flag operations because it would mean
10719 passing a lot of information to emit_store_flag. */
10720 if (operand_mode
== BLKmode
)
10723 /* We won't bother with store-flag operations involving function pointers
10724 when function pointers must be canonicalized before comparisons. */
10725 #ifdef HAVE_canonicalize_funcptr_for_compare
10726 if (HAVE_canonicalize_funcptr_for_compare
10727 && ((TREE_CODE (TREE_TYPE (arg0
)) == POINTER_TYPE
10728 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0
)))
10730 || (TREE_CODE (TREE_TYPE (arg1
)) == POINTER_TYPE
10731 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1
)))
10732 == FUNCTION_TYPE
))))
10739 /* For vector typed comparisons emit code to generate the desired
10740 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
10741 expander for this. */
10742 if (TREE_CODE (ops
->type
) == VECTOR_TYPE
)
10744 tree ifexp
= build2 (ops
->code
, ops
->type
, arg0
, arg1
);
10745 tree if_true
= constant_boolean_node (true, ops
->type
);
10746 tree if_false
= constant_boolean_node (false, ops
->type
);
10747 return expand_vec_cond_expr (ops
->type
, ifexp
, if_true
, if_false
, target
);
10750 /* Get the rtx comparison code to use. We know that EXP is a comparison
10751 operation of some type. Some comparisons against 1 and -1 can be
10752 converted to comparisons with zero. Do so here so that the tests
10753 below will be aware that we have a comparison with zero. These
10754 tests will not catch constants in the first operand, but constants
10755 are rarely passed as the first operand. */
10766 if (integer_onep (arg1
))
10767 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
10769 code
= unsignedp
? LTU
: LT
;
10772 if (! unsignedp
&& integer_all_onesp (arg1
))
10773 arg1
= integer_zero_node
, code
= LT
;
10775 code
= unsignedp
? LEU
: LE
;
10778 if (! unsignedp
&& integer_all_onesp (arg1
))
10779 arg1
= integer_zero_node
, code
= GE
;
10781 code
= unsignedp
? GTU
: GT
;
10784 if (integer_onep (arg1
))
10785 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
10787 code
= unsignedp
? GEU
: GE
;
10790 case UNORDERED_EXPR
:
10816 gcc_unreachable ();
10819 /* Put a constant second. */
10820 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
10821 || TREE_CODE (arg0
) == FIXED_CST
)
10823 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
10824 code
= swap_condition (code
);
10827 /* If this is an equality or inequality test of a single bit, we can
10828 do this by shifting the bit being tested to the low-order bit and
10829 masking the result with the constant 1. If the condition was EQ,
10830 we xor it with 1. This does not require an scc insn and is faster
10831 than an scc insn even if we have it.
10833 The code to make this transformation was moved into fold_single_bit_test,
10834 so we just call into the folder and expand its result. */
10836 if ((code
== NE
|| code
== EQ
)
10837 && integer_zerop (arg1
)
10838 && (TYPE_PRECISION (ops
->type
) != 1 || TYPE_UNSIGNED (ops
->type
)))
10840 gimple srcstmt
= get_def_for_expr (arg0
, BIT_AND_EXPR
);
10842 && integer_pow2p (gimple_assign_rhs2 (srcstmt
)))
10844 enum tree_code tcode
= code
== NE
? NE_EXPR
: EQ_EXPR
;
10845 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
10846 tree temp
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg1
),
10847 gimple_assign_rhs1 (srcstmt
),
10848 gimple_assign_rhs2 (srcstmt
));
10849 temp
= fold_single_bit_test (loc
, tcode
, temp
, arg1
, type
);
10851 return expand_expr (temp
, target
, VOIDmode
, EXPAND_NORMAL
);
10855 if (! get_subtarget (target
)
10856 || GET_MODE (subtarget
) != operand_mode
)
10859 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
10862 target
= gen_reg_rtx (mode
);
10864 /* Try a cstore if possible. */
10865 return emit_store_flag_force (target
, code
, op0
, op1
,
10866 operand_mode
, unsignedp
,
10867 (TYPE_PRECISION (ops
->type
) == 1
10868 && !TYPE_UNSIGNED (ops
->type
)) ? -1 : 1);
10872 /* Stubs in case we haven't got a casesi insn. */
10873 #ifndef HAVE_casesi
10874 # define HAVE_casesi 0
10875 # define gen_casesi(a, b, c, d, e) (0)
10876 # define CODE_FOR_casesi CODE_FOR_nothing
10879 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10880 0 otherwise (i.e. if there is no casesi instruction).
10882 DEFAULT_PROBABILITY is the probability of jumping to the default
10885 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
10886 rtx table_label
, rtx default_label
, rtx fallback_label
,
10887 int default_probability
)
10889 struct expand_operand ops
[5];
10890 enum machine_mode index_mode
= SImode
;
10891 rtx op1
, op2
, index
;
10896 /* Convert the index to SImode. */
10897 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
10899 enum machine_mode omode
= TYPE_MODE (index_type
);
10900 rtx rangertx
= expand_normal (range
);
10902 /* We must handle the endpoints in the original mode. */
10903 index_expr
= build2 (MINUS_EXPR
, index_type
,
10904 index_expr
, minval
);
10905 minval
= integer_zero_node
;
10906 index
= expand_normal (index_expr
);
10908 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
10909 omode
, 1, default_label
,
10910 default_probability
);
10911 /* Now we can safely truncate. */
10912 index
= convert_to_mode (index_mode
, index
, 0);
10916 if (TYPE_MODE (index_type
) != index_mode
)
10918 index_type
= lang_hooks
.types
.type_for_mode (index_mode
, 0);
10919 index_expr
= fold_convert (index_type
, index_expr
);
10922 index
= expand_normal (index_expr
);
10925 do_pending_stack_adjust ();
10927 op1
= expand_normal (minval
);
10928 op2
= expand_normal (range
);
10930 create_input_operand (&ops
[0], index
, index_mode
);
10931 create_convert_operand_from_type (&ops
[1], op1
, TREE_TYPE (minval
));
10932 create_convert_operand_from_type (&ops
[2], op2
, TREE_TYPE (range
));
10933 create_fixed_operand (&ops
[3], table_label
);
10934 create_fixed_operand (&ops
[4], (default_label
10936 : fallback_label
));
10937 expand_jump_insn (CODE_FOR_casesi
, 5, ops
);
10941 /* Attempt to generate a tablejump instruction; same concept. */
10942 #ifndef HAVE_tablejump
10943 #define HAVE_tablejump 0
10944 #define gen_tablejump(x, y) (0)
10947 /* Subroutine of the next function.
10949 INDEX is the value being switched on, with the lowest value
10950 in the table already subtracted.
10951 MODE is its expected mode (needed if INDEX is constant).
10952 RANGE is the length of the jump table.
10953 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10955 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10956 index value is out of range.
10957 DEFAULT_PROBABILITY is the probability of jumping to
10958 the default label. */
10961 do_tablejump (rtx index
, enum machine_mode mode
, rtx range
, rtx table_label
,
10962 rtx default_label
, int default_probability
)
10966 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
10967 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
10969 /* Do an unsigned comparison (in the proper mode) between the index
10970 expression and the value which represents the length of the range.
10971 Since we just finished subtracting the lower bound of the range
10972 from the index expression, this comparison allows us to simultaneously
10973 check that the original index expression value is both greater than
10974 or equal to the minimum value of the range and less than or equal to
10975 the maximum value of the range. */
10978 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
10979 default_label
, default_probability
);
10982 /* If index is in range, it must fit in Pmode.
10983 Convert to Pmode so we can index with it. */
10985 index
= convert_to_mode (Pmode
, index
, 1);
10987 /* Don't let a MEM slip through, because then INDEX that comes
10988 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10989 and break_out_memory_refs will go to work on it and mess it up. */
10990 #ifdef PIC_CASE_VECTOR_ADDRESS
10991 if (flag_pic
&& !REG_P (index
))
10992 index
= copy_to_mode_reg (Pmode
, index
);
10995 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10996 GET_MODE_SIZE, because this indicates how large insns are. The other
10997 uses should all be Pmode, because they are addresses. This code
10998 could fail if addresses and insns are not the same size. */
10999 index
= gen_rtx_PLUS
11001 gen_rtx_MULT (Pmode
, index
,
11002 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE
), Pmode
)),
11003 gen_rtx_LABEL_REF (Pmode
, table_label
));
11004 #ifdef PIC_CASE_VECTOR_ADDRESS
11006 index
= PIC_CASE_VECTOR_ADDRESS (index
);
11009 index
= memory_address (CASE_VECTOR_MODE
, index
);
11010 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
11011 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
11012 convert_move (temp
, vector
, 0);
11014 emit_jump_insn (gen_tablejump (temp
, table_label
));
11016 /* If we are generating PIC code or if the table is PC-relative, the
11017 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11018 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
11023 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
11024 rtx table_label
, rtx default_label
, int default_probability
)
11028 if (! HAVE_tablejump
)
11031 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
11032 fold_convert (index_type
, index_expr
),
11033 fold_convert (index_type
, minval
));
11034 index
= expand_normal (index_expr
);
11035 do_pending_stack_adjust ();
11037 do_tablejump (index
, TYPE_MODE (index_type
),
11038 convert_modes (TYPE_MODE (index_type
),
11039 TYPE_MODE (TREE_TYPE (range
)),
11040 expand_normal (range
),
11041 TYPE_UNSIGNED (TREE_TYPE (range
))),
11042 table_label
, default_label
, default_probability
);
11046 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11048 const_vector_from_tree (tree exp
)
11054 enum machine_mode inner
, mode
;
11056 mode
= TYPE_MODE (TREE_TYPE (exp
));
11058 if (initializer_zerop (exp
))
11059 return CONST0_RTX (mode
);
11061 units
= GET_MODE_NUNITS (mode
);
11062 inner
= GET_MODE_INNER (mode
);
11064 v
= rtvec_alloc (units
);
11066 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
11068 elt
= VECTOR_CST_ELT (exp
, i
);
11070 if (TREE_CODE (elt
) == REAL_CST
)
11071 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
11073 else if (TREE_CODE (elt
) == FIXED_CST
)
11074 RTVEC_ELT (v
, i
) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
11077 RTVEC_ELT (v
, i
) = immed_double_int_const (tree_to_double_int (elt
),
11081 return gen_rtx_CONST_VECTOR (mode
, v
);
11084 /* Build a decl for a personality function given a language prefix. */
11087 build_personality_function (const char *lang
)
11089 const char *unwind_and_version
;
11093 switch (targetm_common
.except_unwind_info (&global_options
))
11098 unwind_and_version
= "_sj0";
11102 unwind_and_version
= "_v0";
11105 unwind_and_version
= "_seh0";
11108 gcc_unreachable ();
11111 name
= ACONCAT (("__", lang
, "_personality", unwind_and_version
, NULL
));
11113 type
= build_function_type_list (integer_type_node
, integer_type_node
,
11114 long_long_unsigned_type_node
,
11115 ptr_type_node
, ptr_type_node
, NULL_TREE
);
11116 decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
11117 get_identifier (name
), type
);
11118 DECL_ARTIFICIAL (decl
) = 1;
11119 DECL_EXTERNAL (decl
) = 1;
11120 TREE_PUBLIC (decl
) = 1;
11122 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11123 are the flags assigned by targetm.encode_section_info. */
11124 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
11129 /* Extracts the personality function of DECL and returns the corresponding
11133 get_personality_function (tree decl
)
11135 tree personality
= DECL_FUNCTION_PERSONALITY (decl
);
11136 enum eh_personality_kind pk
;
11138 pk
= function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl
));
11139 if (pk
== eh_personality_none
)
11143 && pk
== eh_personality_any
)
11144 personality
= lang_hooks
.eh_personality ();
11146 if (pk
== eh_personality_lang
)
11147 gcc_assert (personality
!= NULL_TREE
);
11149 return XEXP (DECL_RTL (personality
), 0);
11152 #include "gt-expr.h"