2005-07-07 Adrian Straetling <straetling@de.ibm.com>
[official-gcc.git] / gcc / modulo-sched.c
blob4b3b90091cb1d97380cf3d43f0f1de0d4ef4732d
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "toplev.h"
39 #include "recog.h"
40 #include "sched-int.h"
41 #include "target.h"
42 #include "cfglayout.h"
43 #include "cfgloop.h"
44 #include "cfghooks.h"
45 #include "expr.h"
46 #include "params.h"
47 #include "gcov-io.h"
48 #include "df.h"
49 #include "ddg.h"
50 #include "timevar.h"
51 #include "tree-pass.h"
53 #ifdef INSN_SCHEDULING
55 /* This file contains the implementation of the Swing Modulo Scheduler,
56 described in the following references:
57 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
58 Lifetime--sensitive modulo scheduling in a production environment.
59 IEEE Trans. on Comps., 50(3), March 2001
60 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
61 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
62 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
64 The basic structure is:
65 1. Build a data-dependence graph (DDG) for each loop.
66 2. Use the DDG to order the insns of a loop (not in topological order
67 necessarily, but rather) trying to place each insn after all its
68 predecessors _or_ after all its successors.
69 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
70 4. Use the ordering to perform list-scheduling of the loop:
71 1. Set II = MII. We will try to schedule the loop within II cycles.
72 2. Try to schedule the insns one by one according to the ordering.
73 For each insn compute an interval of cycles by considering already-
74 scheduled preds and succs (and associated latencies); try to place
75 the insn in the cycles of this window checking for potential
76 resource conflicts (using the DFA interface).
77 Note: this is different from the cycle-scheduling of schedule_insns;
78 here the insns are not scheduled monotonically top-down (nor bottom-
79 up).
80 3. If failed in scheduling all insns - bump II++ and try again, unless
81 II reaches an upper bound MaxII, in which case report failure.
82 5. If we succeeded in scheduling the loop within II cycles, we now
83 generate prolog and epilog, decrease the counter of the loop, and
84 perform modulo variable expansion for live ranges that span more than
85 II cycles (i.e. use register copies to prevent a def from overwriting
86 itself before reaching the use).
90 /* This page defines partial-schedule structures and functions for
91 modulo scheduling. */
93 typedef struct partial_schedule *partial_schedule_ptr;
94 typedef struct ps_insn *ps_insn_ptr;
96 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
97 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
99 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
100 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
102 /* Perform signed modulo, always returning a non-negative value. */
103 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
105 /* The number of different iterations the nodes in ps span, assuming
106 the stage boundaries are placed efficiently. */
107 #define PS_STAGE_COUNT(ps) ((PS_MAX_CYCLE (ps) - PS_MIN_CYCLE (ps) \
108 + 1 + (ps)->ii - 1) / (ps)->ii)
110 /* A single instruction in the partial schedule. */
111 struct ps_insn
113 /* The corresponding DDG_NODE. */
114 ddg_node_ptr node;
116 /* The (absolute) cycle in which the PS instruction is scheduled.
117 Same as SCHED_TIME (node). */
118 int cycle;
120 /* The next/prev PS_INSN in the same row. */
121 ps_insn_ptr next_in_row,
122 prev_in_row;
124 /* The number of nodes in the same row that come after this node. */
125 int row_rest_count;
128 /* Holds the partial schedule as an array of II rows. Each entry of the
129 array points to a linked list of PS_INSNs, which represents the
130 instructions that are scheduled for that row. */
131 struct partial_schedule
133 int ii; /* Number of rows in the partial schedule. */
134 int history; /* Threshold for conflict checking using DFA. */
136 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
137 ps_insn_ptr *rows;
139 /* The earliest absolute cycle of an insn in the partial schedule. */
140 int min_cycle;
142 /* The latest absolute cycle of an insn in the partial schedule. */
143 int max_cycle;
145 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
148 /* We use this to record all the register replacements we do in
149 the kernel so we can undo SMS if it is not profitable. */
150 struct undo_replace_buff_elem
152 rtx insn;
153 rtx orig_reg;
154 rtx new_reg;
155 struct undo_replace_buff_elem *next;
160 partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
161 void free_partial_schedule (partial_schedule_ptr);
162 void reset_partial_schedule (partial_schedule_ptr, int new_ii);
163 void print_partial_schedule (partial_schedule_ptr, FILE *);
164 static int kernel_number_of_cycles (rtx first_insn, rtx last_insn);
165 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
166 ddg_node_ptr node, int cycle,
167 sbitmap must_precede,
168 sbitmap must_follow);
169 static void rotate_partial_schedule (partial_schedule_ptr, int);
170 void set_row_column_for_ps (partial_schedule_ptr);
171 static bool ps_unschedule_node (partial_schedule_ptr, ddg_node_ptr );
174 /* This page defines constants and structures for the modulo scheduling
175 driver. */
177 /* As in haifa-sched.c: */
178 /* issue_rate is the number of insns that can be scheduled in the same
179 machine cycle. It can be defined in the config/mach/mach.h file,
180 otherwise we set it to 1. */
182 static int issue_rate;
184 /* For printing statistics. */
185 static FILE *stats_file;
187 static int sms_order_nodes (ddg_ptr, int, int * result);
188 static void set_node_sched_params (ddg_ptr);
189 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int,
190 int *, FILE*);
191 static void permute_partial_schedule (partial_schedule_ptr ps, rtx last);
192 static void generate_prolog_epilog (partial_schedule_ptr ,struct loop * loop, rtx);
193 static void duplicate_insns_of_cycles (partial_schedule_ptr ps,
194 int from_stage, int to_stage,
195 int is_prolog);
197 #define SCHED_ASAP(x) (((node_sched_params_ptr)(x)->aux.info)->asap)
198 #define SCHED_TIME(x) (((node_sched_params_ptr)(x)->aux.info)->time)
199 #define SCHED_FIRST_REG_MOVE(x) \
200 (((node_sched_params_ptr)(x)->aux.info)->first_reg_move)
201 #define SCHED_NREG_MOVES(x) \
202 (((node_sched_params_ptr)(x)->aux.info)->nreg_moves)
203 #define SCHED_ROW(x) (((node_sched_params_ptr)(x)->aux.info)->row)
204 #define SCHED_STAGE(x) (((node_sched_params_ptr)(x)->aux.info)->stage)
205 #define SCHED_COLUMN(x) (((node_sched_params_ptr)(x)->aux.info)->column)
207 /* The scheduling parameters held for each node. */
208 typedef struct node_sched_params
210 int asap; /* A lower-bound on the absolute scheduling cycle. */
211 int time; /* The absolute scheduling cycle (time >= asap). */
213 /* The following field (first_reg_move) is a pointer to the first
214 register-move instruction added to handle the modulo-variable-expansion
215 of the register defined by this node. This register-move copies the
216 original register defined by the node. */
217 rtx first_reg_move;
219 /* The number of register-move instructions added, immediately preceding
220 first_reg_move. */
221 int nreg_moves;
223 int row; /* Holds time % ii. */
224 int stage; /* Holds time / ii. */
226 /* The column of a node inside the ps. If nodes u, v are on the same row,
227 u will precede v if column (u) < column (v). */
228 int column;
229 } *node_sched_params_ptr;
232 /* The following three functions are copied from the current scheduler
233 code in order to use sched_analyze() for computing the dependencies.
234 They are used when initializing the sched_info structure. */
235 static const char *
236 sms_print_insn (rtx insn, int aligned ATTRIBUTE_UNUSED)
238 static char tmp[80];
240 sprintf (tmp, "i%4d", INSN_UID (insn));
241 return tmp;
244 static int
245 contributes_to_priority (rtx next, rtx insn)
247 return BLOCK_NUM (next) == BLOCK_NUM (insn);
250 static void
251 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
252 regset cond_exec ATTRIBUTE_UNUSED,
253 regset used ATTRIBUTE_UNUSED,
254 regset set ATTRIBUTE_UNUSED)
258 static struct sched_info sms_sched_info =
260 NULL,
261 NULL,
262 NULL,
263 NULL,
264 NULL,
265 sms_print_insn,
266 contributes_to_priority,
267 compute_jump_reg_dependencies,
268 NULL, NULL,
269 NULL, NULL,
270 0, 0, 0
274 /* Return the register decremented and tested in INSN,
275 or zero if it is not a decrement-and-branch insn. */
277 static rtx
278 doloop_register_get (rtx insn ATTRIBUTE_UNUSED)
280 #ifdef HAVE_doloop_end
281 rtx pattern, reg, condition;
283 if (! JUMP_P (insn))
284 return NULL_RTX;
286 pattern = PATTERN (insn);
287 condition = doloop_condition_get (pattern);
288 if (! condition)
289 return NULL_RTX;
291 if (REG_P (XEXP (condition, 0)))
292 reg = XEXP (condition, 0);
293 else if (GET_CODE (XEXP (condition, 0)) == PLUS
294 && REG_P (XEXP (XEXP (condition, 0), 0)))
295 reg = XEXP (XEXP (condition, 0), 0);
296 else
297 gcc_unreachable ();
299 return reg;
300 #else
301 return NULL_RTX;
302 #endif
305 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
306 that the number of iterations is a compile-time constant. If so,
307 return the rtx that sets COUNT_REG to a constant, and set COUNT to
308 this constant. Otherwise return 0. */
309 static rtx
310 const_iteration_count (rtx count_reg, basic_block pre_header,
311 HOST_WIDEST_INT * count)
313 rtx insn;
314 rtx head, tail;
316 if (! pre_header)
317 return NULL_RTX;
319 get_block_head_tail (pre_header->index, &head, &tail);
321 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
322 if (INSN_P (insn) && single_set (insn) &&
323 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
325 rtx pat = single_set (insn);
327 if (GET_CODE (SET_SRC (pat)) == CONST_INT)
329 *count = INTVAL (SET_SRC (pat));
330 return insn;
333 return NULL_RTX;
336 return NULL_RTX;
339 /* A very simple resource-based lower bound on the initiation interval.
340 ??? Improve the accuracy of this bound by considering the
341 utilization of various units. */
342 static int
343 res_MII (ddg_ptr g)
345 return (g->num_nodes / issue_rate);
349 /* Points to the array that contains the sched data for each node. */
350 static node_sched_params_ptr node_sched_params;
352 /* Allocate sched_params for each node and initialize it. Assumes that
353 the aux field of each node contain the asap bound (computed earlier),
354 and copies it into the sched_params field. */
355 static void
356 set_node_sched_params (ddg_ptr g)
358 int i;
360 /* Allocate for each node in the DDG a place to hold the "sched_data". */
361 /* Initialize ASAP/ALAP/HIGHT to zero. */
362 node_sched_params = (node_sched_params_ptr)
363 xcalloc (g->num_nodes,
364 sizeof (struct node_sched_params));
366 /* Set the pointer of the general data of the node to point to the
367 appropriate sched_params structure. */
368 for (i = 0; i < g->num_nodes; i++)
370 /* Watch out for aliasing problems? */
371 node_sched_params[i].asap = g->nodes[i].aux.count;
372 g->nodes[i].aux.info = &node_sched_params[i];
376 static void
377 print_node_sched_params (FILE * dump_file, int num_nodes)
379 int i;
381 if (! dump_file)
382 return;
383 for (i = 0; i < num_nodes; i++)
385 node_sched_params_ptr nsp = &node_sched_params[i];
386 rtx reg_move = nsp->first_reg_move;
387 int j;
389 fprintf (dump_file, "Node %d:\n", i);
390 fprintf (dump_file, " asap = %d:\n", nsp->asap);
391 fprintf (dump_file, " time = %d:\n", nsp->time);
392 fprintf (dump_file, " nreg_moves = %d:\n", nsp->nreg_moves);
393 for (j = 0; j < nsp->nreg_moves; j++)
395 fprintf (dump_file, " reg_move = ");
396 print_rtl_single (dump_file, reg_move);
397 reg_move = PREV_INSN (reg_move);
402 /* Calculate an upper bound for II. SMS should not schedule the loop if it
403 requires more cycles than this bound. Currently set to the sum of the
404 longest latency edge for each node. Reset based on experiments. */
405 static int
406 calculate_maxii (ddg_ptr g)
408 int i;
409 int maxii = 0;
411 for (i = 0; i < g->num_nodes; i++)
413 ddg_node_ptr u = &g->nodes[i];
414 ddg_edge_ptr e;
415 int max_edge_latency = 0;
417 for (e = u->out; e; e = e->next_out)
418 max_edge_latency = MAX (max_edge_latency, e->latency);
420 maxii += max_edge_latency;
422 return maxii;
426 Breaking intra-loop register anti-dependences:
427 Each intra-loop register anti-dependence implies a cross-iteration true
428 dependence of distance 1. Therefore, we can remove such false dependencies
429 and figure out if the partial schedule broke them by checking if (for a
430 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
431 if so generate a register move. The number of such moves is equal to:
432 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
433 nreg_moves = ----------------------------------- + 1 - { dependence.
434 ii { 1 if not.
436 static struct undo_replace_buff_elem *
437 generate_reg_moves (partial_schedule_ptr ps)
439 ddg_ptr g = ps->g;
440 int ii = ps->ii;
441 int i;
442 struct undo_replace_buff_elem *reg_move_replaces = NULL;
444 for (i = 0; i < g->num_nodes; i++)
446 ddg_node_ptr u = &g->nodes[i];
447 ddg_edge_ptr e;
448 int nreg_moves = 0, i_reg_move;
449 sbitmap *uses_of_defs;
450 rtx last_reg_move;
451 rtx prev_reg, old_reg;
453 /* Compute the number of reg_moves needed for u, by looking at life
454 ranges started at u (excluding self-loops). */
455 for (e = u->out; e; e = e->next_out)
456 if (e->type == TRUE_DEP && e->dest != e->src)
458 int nreg_moves4e = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii;
460 if (e->distance == 1)
461 nreg_moves4e = (SCHED_TIME (e->dest) - SCHED_TIME (e->src) + ii) / ii;
463 /* If dest precedes src in the schedule of the kernel, then dest
464 will read before src writes and we can save one reg_copy. */
465 if (SCHED_ROW (e->dest) == SCHED_ROW (e->src)
466 && SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src))
467 nreg_moves4e--;
469 nreg_moves = MAX (nreg_moves, nreg_moves4e);
472 if (nreg_moves == 0)
473 continue;
475 /* Every use of the register defined by node may require a different
476 copy of this register, depending on the time the use is scheduled.
477 Set a bitmap vector, telling which nodes use each copy of this
478 register. */
479 uses_of_defs = sbitmap_vector_alloc (nreg_moves, g->num_nodes);
480 sbitmap_vector_zero (uses_of_defs, nreg_moves);
481 for (e = u->out; e; e = e->next_out)
482 if (e->type == TRUE_DEP && e->dest != e->src)
484 int dest_copy = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii;
486 if (e->distance == 1)
487 dest_copy = (SCHED_TIME (e->dest) - SCHED_TIME (e->src) + ii) / ii;
489 if (SCHED_ROW (e->dest) == SCHED_ROW (e->src)
490 && SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src))
491 dest_copy--;
493 if (dest_copy)
494 SET_BIT (uses_of_defs[dest_copy - 1], e->dest->cuid);
497 /* Now generate the reg_moves, attaching relevant uses to them. */
498 SCHED_NREG_MOVES (u) = nreg_moves;
499 old_reg = prev_reg = copy_rtx (SET_DEST (single_set (u->insn)));
500 last_reg_move = u->insn;
502 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
504 unsigned int i_use;
505 rtx new_reg = gen_reg_rtx (GET_MODE (prev_reg));
506 rtx reg_move = gen_move_insn (new_reg, prev_reg);
507 sbitmap_iterator sbi;
509 add_insn_before (reg_move, last_reg_move);
510 last_reg_move = reg_move;
512 if (!SCHED_FIRST_REG_MOVE (u))
513 SCHED_FIRST_REG_MOVE (u) = reg_move;
515 EXECUTE_IF_SET_IN_SBITMAP (uses_of_defs[i_reg_move], 0, i_use, sbi)
517 struct undo_replace_buff_elem *rep;
519 rep = (struct undo_replace_buff_elem *)
520 xcalloc (1, sizeof (struct undo_replace_buff_elem));
521 rep->insn = g->nodes[i_use].insn;
522 rep->orig_reg = old_reg;
523 rep->new_reg = new_reg;
525 if (! reg_move_replaces)
526 reg_move_replaces = rep;
527 else
529 rep->next = reg_move_replaces;
530 reg_move_replaces = rep;
533 replace_rtx (g->nodes[i_use].insn, old_reg, new_reg);
536 prev_reg = new_reg;
539 return reg_move_replaces;
542 /* We call this when we want to undo the SMS schedule for a given loop.
543 One of the things that we do is to delete the register moves generated
544 for the sake of SMS; this function deletes the register move instructions
545 recorded in the undo buffer. */
546 static void
547 undo_generate_reg_moves (partial_schedule_ptr ps,
548 struct undo_replace_buff_elem *reg_move_replaces)
550 int i,j;
552 for (i = 0; i < ps->g->num_nodes; i++)
554 ddg_node_ptr u = &ps->g->nodes[i];
555 rtx prev;
556 rtx crr = SCHED_FIRST_REG_MOVE (u);
558 for (j = 0; j < SCHED_NREG_MOVES (u); j++)
560 prev = PREV_INSN (crr);
561 delete_insn (crr);
562 crr = prev;
564 SCHED_FIRST_REG_MOVE (u) = NULL_RTX;
567 while (reg_move_replaces)
569 struct undo_replace_buff_elem *rep = reg_move_replaces;
571 reg_move_replaces = reg_move_replaces->next;
572 replace_rtx (rep->insn, rep->new_reg, rep->orig_reg);
576 /* Free memory allocated for the undo buffer. */
577 static void
578 free_undo_replace_buff (struct undo_replace_buff_elem *reg_move_replaces)
581 while (reg_move_replaces)
583 struct undo_replace_buff_elem *rep = reg_move_replaces;
585 reg_move_replaces = reg_move_replaces->next;
586 free (rep);
590 /* Bump the SCHED_TIMEs of all nodes to start from zero. Set the values
591 of SCHED_ROW and SCHED_STAGE. */
592 static void
593 normalize_sched_times (partial_schedule_ptr ps)
595 int i;
596 ddg_ptr g = ps->g;
597 int amount = PS_MIN_CYCLE (ps);
598 int ii = ps->ii;
600 /* Don't include the closing branch assuming that it is the last node. */
601 for (i = 0; i < g->num_nodes - 1; i++)
603 ddg_node_ptr u = &g->nodes[i];
604 int normalized_time = SCHED_TIME (u) - amount;
606 gcc_assert (normalized_time >= 0);
608 SCHED_TIME (u) = normalized_time;
609 SCHED_ROW (u) = normalized_time % ii;
610 SCHED_STAGE (u) = normalized_time / ii;
614 /* Set SCHED_COLUMN of each node according to its position in PS. */
615 static void
616 set_columns_for_ps (partial_schedule_ptr ps)
618 int row;
620 for (row = 0; row < ps->ii; row++)
622 ps_insn_ptr cur_insn = ps->rows[row];
623 int column = 0;
625 for (; cur_insn; cur_insn = cur_insn->next_in_row)
626 SCHED_COLUMN (cur_insn->node) = column++;
630 /* Permute the insns according to their order in PS, from row 0 to
631 row ii-1, and position them right before LAST. This schedules
632 the insns of the loop kernel. */
633 static void
634 permute_partial_schedule (partial_schedule_ptr ps, rtx last)
636 int ii = ps->ii;
637 int row;
638 ps_insn_ptr ps_ij;
640 for (row = 0; row < ii ; row++)
641 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
642 if (PREV_INSN (last) != ps_ij->node->insn)
643 reorder_insns_nobb (ps_ij->node->first_note, ps_ij->node->insn,
644 PREV_INSN (last));
647 /* As part of undoing SMS we return to the original ordering of the
648 instructions inside the loop kernel. Given the partial schedule PS, this
649 function returns the ordering of the instruction according to their CUID
650 in the DDG (PS->G), which is the original order of the instruction before
651 performing SMS. */
652 static void
653 undo_permute_partial_schedule (partial_schedule_ptr ps, rtx last)
655 int i;
657 for (i = 0 ; i < ps->g->num_nodes; i++)
658 if (last == ps->g->nodes[i].insn
659 || last == ps->g->nodes[i].first_note)
660 break;
661 else if (PREV_INSN (last) != ps->g->nodes[i].insn)
662 reorder_insns_nobb (ps->g->nodes[i].first_note, ps->g->nodes[i].insn,
663 PREV_INSN (last));
666 /* Used to generate the prologue & epilogue. Duplicate the subset of
667 nodes whose stages are between FROM_STAGE and TO_STAGE (inclusive
668 of both), together with a prefix/suffix of their reg_moves. */
669 static void
670 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
671 int to_stage, int for_prolog)
673 int row;
674 ps_insn_ptr ps_ij;
676 for (row = 0; row < ps->ii; row++)
677 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
679 ddg_node_ptr u_node = ps_ij->node;
680 int j, i_reg_moves;
681 rtx reg_move = NULL_RTX;
683 if (for_prolog)
685 /* SCHED_STAGE (u_node) >= from_stage == 0. Generate increasing
686 number of reg_moves starting with the second occurrence of
687 u_node, which is generated if its SCHED_STAGE <= to_stage. */
688 i_reg_moves = to_stage - SCHED_STAGE (u_node) + 1;
689 i_reg_moves = MAX (i_reg_moves, 0);
690 i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node));
692 /* The reg_moves start from the *first* reg_move backwards. */
693 if (i_reg_moves)
695 reg_move = SCHED_FIRST_REG_MOVE (u_node);
696 for (j = 1; j < i_reg_moves; j++)
697 reg_move = PREV_INSN (reg_move);
700 else /* It's for the epilog. */
702 /* SCHED_STAGE (u_node) <= to_stage. Generate all reg_moves,
703 starting to decrease one stage after u_node no longer occurs;
704 that is, generate all reg_moves until
705 SCHED_STAGE (u_node) == from_stage - 1. */
706 i_reg_moves = SCHED_NREG_MOVES (u_node)
707 - (from_stage - SCHED_STAGE (u_node) - 1);
708 i_reg_moves = MAX (i_reg_moves, 0);
709 i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node));
711 /* The reg_moves start from the *last* reg_move forwards. */
712 if (i_reg_moves)
714 reg_move = SCHED_FIRST_REG_MOVE (u_node);
715 for (j = 1; j < SCHED_NREG_MOVES (u_node); j++)
716 reg_move = PREV_INSN (reg_move);
720 for (j = 0; j < i_reg_moves; j++, reg_move = NEXT_INSN (reg_move))
721 emit_insn (copy_rtx (PATTERN (reg_move)));
722 if (SCHED_STAGE (u_node) >= from_stage
723 && SCHED_STAGE (u_node) <= to_stage)
724 duplicate_insn_chain (u_node->first_note, u_node->insn);
729 /* Generate the instructions (including reg_moves) for prolog & epilog. */
730 static void
731 generate_prolog_epilog (partial_schedule_ptr ps, struct loop * loop, rtx count_reg)
733 int i;
734 int last_stage = PS_STAGE_COUNT (ps) - 1;
735 edge e;
737 /* Generate the prolog, inserting its insns on the loop-entry edge. */
738 start_sequence ();
740 if (count_reg)
741 /* Generate a subtract instruction at the beginning of the prolog to
742 adjust the loop count by STAGE_COUNT. */
743 emit_insn (gen_sub2_insn (count_reg, GEN_INT (last_stage)));
745 for (i = 0; i < last_stage; i++)
746 duplicate_insns_of_cycles (ps, 0, i, 1);
748 /* Put the prolog , on the one and only entry edge. */
749 e = loop_preheader_edge (loop);
750 loop_split_edge_with(e , get_insns());
752 end_sequence ();
754 /* Generate the epilog, inserting its insns on the loop-exit edge. */
755 start_sequence ();
757 for (i = 0; i < last_stage; i++)
758 duplicate_insns_of_cycles (ps, i + 1, last_stage, 0);
760 /* Put the epilogue on the one and only one exit edge. */
761 gcc_assert (loop->single_exit);
762 e = loop->single_exit;
763 loop_split_edge_with(e , get_insns());
764 end_sequence ();
767 /* Return the line note insn preceding INSN, for debugging. Taken from
768 emit-rtl.c. */
769 static rtx
770 find_line_note (rtx insn)
772 for (; insn; insn = PREV_INSN (insn))
773 if (NOTE_P (insn)
774 && NOTE_LINE_NUMBER (insn) >= 0)
775 break;
777 return insn;
780 /* Return true if all the BBs of the loop are empty except the
781 loop header. */
782 static bool
783 loop_single_full_bb_p (struct loop *loop)
785 unsigned i;
786 basic_block *bbs = get_loop_body (loop);
788 for (i = 0; i < loop->num_nodes ; i++)
790 rtx head, tail;
791 bool empty_bb = true;
793 if (bbs[i] == loop->header)
794 continue;
796 /* Make sure that basic blocks other than the header
797 have only notes labels or jumps. */
798 get_block_head_tail (bbs[i]->index, &head, &tail);
799 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
801 if (NOTE_P (head) || LABEL_P (head)
802 || (INSN_P (head) && JUMP_P (head)))
803 continue;
804 empty_bb = false;
805 break;
808 if (! empty_bb)
810 free (bbs);
811 return false;
814 free (bbs);
815 return true;
818 /* A simple loop from SMS point of view; it is a loop that is composed of
819 either a single basic block or two BBs - a header and a latch. */
820 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
821 && (EDGE_COUNT (loop->latch->preds) == 1) \
822 && (EDGE_COUNT (loop->latch->succs) == 1))
824 /* Return true if the loop is in its canonical form and false if not.
825 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
826 static bool
827 loop_canon_p (struct loop *loop, FILE *dump_file)
830 if (loop->inner || ! loop->outer)
831 return false;
833 if (!loop->single_exit)
835 if (dump_file)
837 rtx line_note = find_line_note (BB_END (loop->header));
839 fprintf (dump_file, "SMS loop many exits ");
840 if (line_note)
842 expanded_location xloc;
843 NOTE_EXPANDED_LOCATION (xloc, line_note);
844 fprintf (stats_file, " %s %d (file, line)\n",
845 xloc.file, xloc.line);
848 return false;
851 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
853 if (dump_file)
855 rtx line_note = find_line_note (BB_END (loop->header));
857 fprintf (dump_file, "SMS loop many BBs. ");
858 if (line_note)
860 expanded_location xloc;
861 NOTE_EXPANDED_LOCATION (xloc, line_note);
862 fprintf (stats_file, " %s %d (file, line)\n",
863 xloc.file, xloc.line);
866 return false;
869 return true;
872 /* If there are more than one entry for the loop,
873 make it one by splitting the first entry edge and
874 redirecting the others to the new BB. */
875 static void
876 canon_loop (struct loop *loop)
878 edge e;
879 edge_iterator i;
881 /* Avoid annoying special cases of edges going to exit
882 block. */
883 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR->preds)
884 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
885 loop_split_edge_with (e, NULL_RTX);
887 if (loop->latch == loop->header
888 || EDGE_COUNT (loop->latch->succs) > 1)
890 FOR_EACH_EDGE (e, i, loop->header->preds)
891 if (e->src == loop->latch)
892 break;
893 loop_split_edge_with (e, NULL_RTX);
897 /* Build the loop information without loop
898 canonization, the loop canonization will
899 be performed if the loop is SMSable. */
900 static struct loops *
901 build_loops_structure (FILE *dumpfile)
903 struct loops *loops = xcalloc (1, sizeof (struct loops));
905 /* Find the loops. */
907 if (flow_loops_find (loops) <= 1)
909 /* No loops. */
910 flow_loops_free (loops);
911 free (loops);
913 return NULL;
916 /* Not going to update these. */
917 free (loops->cfg.rc_order);
918 loops->cfg.rc_order = NULL;
919 free (loops->cfg.dfs_order);
920 loops->cfg.dfs_order = NULL;
922 create_preheaders (loops, CP_SIMPLE_PREHEADERS);
923 mark_single_exit_loops (loops);
924 /* Dump loops. */
925 flow_loops_dump (loops, dumpfile, NULL, 1);
927 #ifdef ENABLE_CHECKING
928 verify_dominators (CDI_DOMINATORS);
929 verify_loop_structure (loops);
930 #endif
932 return loops;
935 /* Main entry point, perform SMS scheduling on the loops of the function
936 that consist of single basic blocks. */
937 void
938 sms_schedule (FILE *dump_file)
940 static int passes = 0;
941 rtx insn;
942 ddg_ptr *g_arr, g;
943 int * node_order;
944 int maxii;
945 unsigned i,num_loops;
946 partial_schedule_ptr ps;
947 struct df *df;
948 struct loops *loops;
949 basic_block bb = NULL;
950 /* vars to the versioning only if needed*/
951 struct loop * nloop;
952 basic_block condition_bb = NULL;
953 edge latch_edge;
954 gcov_type trip_count = 0;
956 if (! (loops = build_loops_structure (dump_file)))
957 return; /* There is no loops to schedule. */
960 stats_file = dump_file;
962 /* Initialize issue_rate. */
963 if (targetm.sched.issue_rate)
965 int temp = reload_completed;
967 reload_completed = 1;
968 issue_rate = targetm.sched.issue_rate ();
969 reload_completed = temp;
971 else
972 issue_rate = 1;
974 /* Initialize the scheduler. */
975 current_sched_info = &sms_sched_info;
976 sched_init (NULL);
978 /* Init Data Flow analysis, to be used in interloop dep calculation. */
979 df = df_init ();
980 df_analyze (df, 0, DF_ALL);
982 /* Allocate memory to hold the DDG array one entry for each loop.
983 We use loop->num as index into this array. */
984 g_arr = xcalloc (loops->num, sizeof (ddg_ptr));
987 /* Build DDGs for all the relevant loops and hold them in G_ARR
988 indexed by the loop index. */
989 for (i = 0; i < loops->num; i++)
991 rtx head, tail;
992 rtx count_reg;
993 struct loop *loop = loops->parray[i];
995 /* For debugging. */
996 if ((passes++ > MAX_SMS_LOOP_NUMBER) && (MAX_SMS_LOOP_NUMBER != -1))
998 if (dump_file)
999 fprintf (dump_file, "SMS reached MAX_PASSES... \n");
1001 break;
1004 if (! loop_canon_p (loop, dump_file))
1005 continue;
1007 if (! loop_single_full_bb_p (loop))
1008 continue;
1010 bb = loop->header;
1012 get_block_head_tail (bb->index, &head, &tail);
1013 latch_edge = loop_latch_edge (loop);
1014 gcc_assert (loop->single_exit);
1015 if (loop->single_exit->count)
1016 trip_count = latch_edge->count / loop->single_exit->count;
1018 /* Perfrom SMS only on loops that their average count is above threshold. */
1020 if ( latch_edge->count
1021 && (latch_edge->count < loop->single_exit->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
1023 if (stats_file)
1025 rtx line_note = find_line_note (tail);
1027 if (line_note)
1029 expanded_location xloc;
1030 NOTE_EXPANDED_LOCATION (xloc, line_note);
1031 fprintf (stats_file, "SMS bb %s %d (file, line)\n",
1032 xloc.file, xloc.line);
1034 fprintf (stats_file, "SMS single-bb-loop\n");
1035 if (profile_info && flag_branch_probabilities)
1037 fprintf (stats_file, "SMS loop-count ");
1038 fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC,
1039 (HOST_WIDEST_INT) bb->count);
1040 fprintf (stats_file, "\n");
1041 fprintf (stats_file, "SMS trip-count ");
1042 fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC,
1043 (HOST_WIDEST_INT) trip_count);
1044 fprintf (stats_file, "\n");
1045 fprintf (stats_file, "SMS profile-sum-max ");
1046 fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC,
1047 (HOST_WIDEST_INT) profile_info->sum_max);
1048 fprintf (stats_file, "\n");
1051 continue;
1054 /* Make sure this is a doloop. */
1055 if ( !(count_reg = doloop_register_get (tail)))
1056 continue;
1058 /* Don't handle BBs with calls or barriers, or !single_set insns. */
1059 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1060 if (CALL_P (insn)
1061 || BARRIER_P (insn)
1062 || (INSN_P (insn) && !JUMP_P (insn)
1063 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1064 break;
1066 if (insn != NEXT_INSN (tail))
1068 if (stats_file)
1070 if (CALL_P (insn))
1071 fprintf (stats_file, "SMS loop-with-call\n");
1072 else if (BARRIER_P (insn))
1073 fprintf (stats_file, "SMS loop-with-barrier\n");
1074 else
1075 fprintf (stats_file, "SMS loop-with-not-single-set\n");
1076 print_rtl_single (stats_file, insn);
1079 continue;
1082 if (! (g = create_ddg (bb, df, 0)))
1084 if (stats_file)
1085 fprintf (stats_file, "SMS doloop\n");
1086 continue;
1089 g_arr[i] = g;
1092 /* Release Data Flow analysis data structures. */
1093 df_finish (df);
1095 /* We don't want to perform SMS on new loops - created by versioning. */
1096 num_loops = loops->num;
1097 /* Go over the built DDGs and perfrom SMS for each one of them. */
1098 for (i = 0; i < num_loops; i++)
1100 rtx head, tail;
1101 rtx count_reg, count_init;
1102 int mii, rec_mii;
1103 unsigned stage_count = 0;
1104 HOST_WIDEST_INT loop_count = 0;
1105 struct loop *loop = loops->parray[i];
1107 if (! (g = g_arr[i]))
1108 continue;
1110 if (dump_file)
1111 print_ddg (dump_file, g);
1113 get_block_head_tail (loop->header->index, &head, &tail);
1115 latch_edge = loop_latch_edge (loop);
1116 gcc_assert (loop->single_exit);
1117 if (loop->single_exit->count)
1118 trip_count = latch_edge->count / loop->single_exit->count;
1120 if (stats_file)
1122 rtx line_note = find_line_note (tail);
1124 if (line_note)
1126 expanded_location xloc;
1127 NOTE_EXPANDED_LOCATION (xloc, line_note);
1128 fprintf (stats_file, "SMS bb %s %d (file, line)\n",
1129 xloc.file, xloc.line);
1131 fprintf (stats_file, "SMS single-bb-loop\n");
1132 if (profile_info && flag_branch_probabilities)
1134 fprintf (stats_file, "SMS loop-count ");
1135 fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC,
1136 (HOST_WIDEST_INT) bb->count);
1137 fprintf (stats_file, "\n");
1138 fprintf (stats_file, "SMS profile-sum-max ");
1139 fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC,
1140 (HOST_WIDEST_INT) profile_info->sum_max);
1141 fprintf (stats_file, "\n");
1143 fprintf (stats_file, "SMS doloop\n");
1144 fprintf (stats_file, "SMS built-ddg %d\n", g->num_nodes);
1145 fprintf (stats_file, "SMS num-loads %d\n", g->num_loads);
1146 fprintf (stats_file, "SMS num-stores %d\n", g->num_stores);
1150 /* In case of th loop have doloop register it gets special
1151 handling. */
1152 count_init = NULL_RTX;
1153 if ((count_reg = doloop_register_get (tail)))
1155 basic_block pre_header;
1157 pre_header = loop_preheader_edge (loop)->src;
1158 count_init = const_iteration_count (count_reg, pre_header,
1159 &loop_count);
1161 gcc_assert (count_reg);
1163 if (stats_file && count_init)
1165 fprintf (stats_file, "SMS const-doloop ");
1166 fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC,
1167 loop_count);
1168 fprintf (stats_file, "\n");
1171 node_order = (int *) xmalloc (sizeof (int) * g->num_nodes);
1173 mii = 1; /* Need to pass some estimate of mii. */
1174 rec_mii = sms_order_nodes (g, mii, node_order);
1175 mii = MAX (res_MII (g), rec_mii);
1176 maxii = (calculate_maxii (g) * SMS_MAX_II_FACTOR) / 100;
1178 if (stats_file)
1179 fprintf (stats_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1180 rec_mii, mii, maxii);
1182 /* After sms_order_nodes and before sms_schedule_by_order, to copy over
1183 ASAP. */
1184 set_node_sched_params (g);
1186 ps = sms_schedule_by_order (g, mii, maxii, node_order, dump_file);
1188 if (ps)
1189 stage_count = PS_STAGE_COUNT (ps);
1191 /* Stage count of 1 means that there is no interleaving between
1192 iterations, let the scheduling passes do the job. */
1193 if (stage_count < 1
1194 || (count_init && (loop_count <= stage_count))
1195 || (flag_branch_probabilities && (trip_count <= stage_count)))
1197 if (dump_file)
1199 fprintf (dump_file, "SMS failed... \n");
1200 fprintf (dump_file, "SMS sched-failed (stage-count=%d, loop-count=", stage_count);
1201 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, loop_count);
1202 fprintf (dump_file, ", trip-count=");
1203 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, trip_count);
1204 fprintf (dump_file, ")\n");
1206 continue;
1208 else
1210 int orig_cycles = kernel_number_of_cycles (BB_HEAD (g->bb), BB_END (g->bb));
1211 int new_cycles;
1212 struct undo_replace_buff_elem *reg_move_replaces;
1214 if (stats_file)
1216 fprintf (stats_file,
1217 "SMS succeeded %d %d (with ii, sc)\n", ps->ii,
1218 stage_count);
1219 print_partial_schedule (ps, stats_file);
1220 fprintf (stats_file,
1221 "SMS Branch (%d) will later be scheduled at cycle %d.\n",
1222 g->closing_branch->cuid, PS_MIN_CYCLE (ps) - 1);
1225 /* Set the stage boundaries. If the DDG is built with closing_branch_deps,
1226 the closing_branch was scheduled and should appear in the last (ii-1)
1227 row. Otherwise, we are free to schedule the branch, and we let nodes
1228 that were scheduled at the first PS_MIN_CYCLE cycle appear in the first
1229 row; this should reduce stage_count to minimum. */
1230 normalize_sched_times (ps);
1231 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
1232 set_columns_for_ps (ps);
1234 /* Generate the kernel just to be able to measure its cycles. */
1235 permute_partial_schedule (ps, g->closing_branch->first_note);
1236 reg_move_replaces = generate_reg_moves (ps);
1238 /* Get the number of cycles the new kernel expect to execute in. */
1239 new_cycles = kernel_number_of_cycles (BB_HEAD (g->bb), BB_END (g->bb));
1241 /* Get back to the original loop so we can do loop versioning. */
1242 undo_permute_partial_schedule (ps, g->closing_branch->first_note);
1243 if (reg_move_replaces)
1244 undo_generate_reg_moves (ps, reg_move_replaces);
1246 if ( new_cycles >= orig_cycles)
1248 /* SMS is not profitable so undo the permutation and reg move generation
1249 and return the kernel to its original state. */
1250 if (dump_file)
1251 fprintf (dump_file, "Undoing SMS because it is not profitable.\n");
1254 else
1256 canon_loop (loop);
1258 /* case the BCT count is not known , Do loop-versioning */
1259 if (count_reg && ! count_init)
1261 rtx comp_rtx = gen_rtx_fmt_ee (GT, VOIDmode, count_reg,
1262 GEN_INT(stage_count));
1264 nloop = loop_version (loops, loop, comp_rtx, &condition_bb);
1267 /* Set new iteration count of loop kernel. */
1268 if (count_reg && count_init)
1269 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1270 - stage_count + 1);
1272 /* Now apply the scheduled kernel to the RTL of the loop. */
1273 permute_partial_schedule (ps, g->closing_branch->first_note);
1275 /* Mark this loop as software pipelined so the later
1276 scheduling passes doesn't touch it. */
1277 if (! flag_resched_modulo_sched)
1278 g->bb->flags |= BB_DISABLE_SCHEDULE;
1279 /* The life-info is not valid any more. */
1280 g->bb->flags |= BB_DIRTY;
1282 reg_move_replaces = generate_reg_moves (ps);
1283 if (dump_file)
1284 print_node_sched_params (dump_file, g->num_nodes);
1285 /* Generate prolog and epilog. */
1286 if (count_reg && !count_init)
1287 generate_prolog_epilog (ps, loop, count_reg);
1288 else
1289 generate_prolog_epilog (ps, loop, NULL_RTX);
1291 free_undo_replace_buff (reg_move_replaces);
1294 free_partial_schedule (ps);
1295 free (node_sched_params);
1296 free (node_order);
1297 free_ddg (g);
1300 /* Release scheduler data, needed until now because of DFA. */
1301 sched_finish ();
1302 loop_optimizer_finalize (loops, dump_file);
1305 /* The SMS scheduling algorithm itself
1306 -----------------------------------
1307 Input: 'O' an ordered list of insns of a loop.
1308 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1310 'Q' is the empty Set
1311 'PS' is the partial schedule; it holds the currently scheduled nodes with
1312 their cycle/slot.
1313 'PSP' previously scheduled predecessors.
1314 'PSS' previously scheduled successors.
1315 't(u)' the cycle where u is scheduled.
1316 'l(u)' is the latency of u.
1317 'd(v,u)' is the dependence distance from v to u.
1318 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1319 the node ordering phase.
1320 'check_hardware_resources_conflicts(u, PS, c)'
1321 run a trace around cycle/slot through DFA model
1322 to check resource conflicts involving instruction u
1323 at cycle c given the partial schedule PS.
1324 'add_to_partial_schedule_at_time(u, PS, c)'
1325 Add the node/instruction u to the partial schedule
1326 PS at time c.
1327 'calculate_register_pressure(PS)'
1328 Given a schedule of instructions, calculate the register
1329 pressure it implies. One implementation could be the
1330 maximum number of overlapping live ranges.
1331 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1332 registers available in the hardware.
1334 1. II = MII.
1335 2. PS = empty list
1336 3. for each node u in O in pre-computed order
1337 4. if (PSP(u) != Q && PSS(u) == Q) then
1338 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1339 6. start = Early_start; end = Early_start + II - 1; step = 1
1340 11. else if (PSP(u) == Q && PSS(u) != Q) then
1341 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1342 13. start = Late_start; end = Late_start - II + 1; step = -1
1343 14. else if (PSP(u) != Q && PSS(u) != Q) then
1344 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1345 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1346 17. start = Early_start;
1347 18. end = min(Early_start + II - 1 , Late_start);
1348 19. step = 1
1349 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1350 21. start = ASAP(u); end = start + II - 1; step = 1
1351 22. endif
1353 23. success = false
1354 24. for (c = start ; c != end ; c += step)
1355 25. if check_hardware_resources_conflicts(u, PS, c) then
1356 26. add_to_partial_schedule_at_time(u, PS, c)
1357 27. success = true
1358 28. break
1359 29. endif
1360 30. endfor
1361 31. if (success == false) then
1362 32. II = II + 1
1363 33. if (II > maxII) then
1364 34. finish - failed to schedule
1365 35. endif
1366 36. goto 2.
1367 37. endif
1368 38. endfor
1369 39. if (calculate_register_pressure(PS) > maxRP) then
1370 40. goto 32.
1371 41. endif
1372 42. compute epilogue & prologue
1373 43. finish - succeeded to schedule
1376 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1377 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1378 set to 0 to save compile time. */
1379 #define DFA_HISTORY SMS_DFA_HISTORY
1381 /* Given the partial schedule PS, this function calculates and returns the
1382 cycles in which we can schedule the node with the given index I.
1383 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1384 noticed that there are several cases in which we fail to SMS the loop
1385 because the sched window of a node is empty due to tight data-deps. In
1386 such cases we want to unschedule some of the predecessors/successors
1387 until we get non-empty scheduling window. It returns -1 if the
1388 scheduling window is empty and zero otherwise. */
1390 static int
1391 get_sched_window (partial_schedule_ptr ps, int *nodes_order, int i,
1392 sbitmap sched_nodes, int ii, int *start_p, int *step_p, int *end_p)
1394 int start, step, end;
1395 ddg_edge_ptr e;
1396 int u = nodes_order [i];
1397 ddg_node_ptr u_node = &ps->g->nodes[u];
1398 sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
1399 sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
1400 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1401 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1402 int psp_not_empty;
1403 int pss_not_empty;
1405 /* 1. compute sched window for u (start, end, step). */
1406 sbitmap_zero (psp);
1407 sbitmap_zero (pss);
1408 psp_not_empty = sbitmap_a_and_b_cg (psp, u_node_preds, sched_nodes);
1409 pss_not_empty = sbitmap_a_and_b_cg (pss, u_node_succs, sched_nodes);
1411 if (psp_not_empty && !pss_not_empty)
1413 int early_start = INT_MIN;
1415 end = INT_MAX;
1416 for (e = u_node->in; e != 0; e = e->next_in)
1418 ddg_node_ptr v_node = e->src;
1419 if (TEST_BIT (sched_nodes, v_node->cuid))
1421 int node_st = SCHED_TIME (v_node)
1422 + e->latency - (e->distance * ii);
1424 early_start = MAX (early_start, node_st);
1426 if (e->data_type == MEM_DEP)
1427 end = MIN (end, SCHED_TIME (v_node) + ii - 1);
1430 start = early_start;
1431 end = MIN (end, early_start + ii);
1432 step = 1;
1435 else if (!psp_not_empty && pss_not_empty)
1437 int late_start = INT_MAX;
1439 end = INT_MIN;
1440 for (e = u_node->out; e != 0; e = e->next_out)
1442 ddg_node_ptr v_node = e->dest;
1443 if (TEST_BIT (sched_nodes, v_node->cuid))
1445 late_start = MIN (late_start,
1446 SCHED_TIME (v_node) - e->latency
1447 + (e->distance * ii));
1448 if (e->data_type == MEM_DEP)
1449 end = MAX (end, SCHED_TIME (v_node) - ii + 1);
1452 start = late_start;
1453 end = MAX (end, late_start - ii);
1454 step = -1;
1457 else if (psp_not_empty && pss_not_empty)
1459 int early_start = INT_MIN;
1460 int late_start = INT_MAX;
1462 start = INT_MIN;
1463 end = INT_MAX;
1464 for (e = u_node->in; e != 0; e = e->next_in)
1466 ddg_node_ptr v_node = e->src;
1468 if (TEST_BIT (sched_nodes, v_node->cuid))
1470 early_start = MAX (early_start,
1471 SCHED_TIME (v_node) + e->latency
1472 - (e->distance * ii));
1473 if (e->data_type == MEM_DEP)
1474 end = MIN (end, SCHED_TIME (v_node) + ii - 1);
1477 for (e = u_node->out; e != 0; e = e->next_out)
1479 ddg_node_ptr v_node = e->dest;
1481 if (TEST_BIT (sched_nodes, v_node->cuid))
1483 late_start = MIN (late_start,
1484 SCHED_TIME (v_node) - e->latency
1485 + (e->distance * ii));
1486 if (e->data_type == MEM_DEP)
1487 start = MAX (start, SCHED_TIME (v_node) - ii + 1);
1490 start = MAX (start, early_start);
1491 end = MIN (end, MIN (early_start + ii, late_start + 1));
1492 step = 1;
1494 else /* psp is empty && pss is empty. */
1496 start = SCHED_ASAP (u_node);
1497 end = start + ii;
1498 step = 1;
1501 *start_p = start;
1502 *step_p = step;
1503 *end_p = end;
1504 sbitmap_free (psp);
1505 sbitmap_free (pss);
1507 if ((start >= end && step == 1) || (start <= end && step == -1))
1508 return -1;
1509 else
1510 return 0;
1513 /* This function implements the scheduling algorithm for SMS according to the
1514 above algorithm. */
1515 static partial_schedule_ptr
1516 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order, FILE *dump_file)
1518 int ii = mii;
1519 int i, c, success;
1520 int try_again_with_larger_ii = true;
1521 int num_nodes = g->num_nodes;
1522 ddg_edge_ptr e;
1523 int start, end, step; /* Place together into one struct? */
1524 sbitmap sched_nodes = sbitmap_alloc (num_nodes);
1525 sbitmap must_precede = sbitmap_alloc (num_nodes);
1526 sbitmap must_follow = sbitmap_alloc (num_nodes);
1527 sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
1529 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
1531 sbitmap_ones (tobe_scheduled);
1532 sbitmap_zero (sched_nodes);
1534 while ((! sbitmap_equal (tobe_scheduled, sched_nodes)
1535 || try_again_with_larger_ii ) && ii < maxii)
1537 int j;
1538 bool unscheduled_nodes = false;
1540 if (dump_file)
1541 fprintf(dump_file, "Starting with ii=%d\n", ii);
1542 if (try_again_with_larger_ii)
1544 try_again_with_larger_ii = false;
1545 sbitmap_zero (sched_nodes);
1548 for (i = 0; i < num_nodes; i++)
1550 int u = nodes_order[i];
1551 ddg_node_ptr u_node = &ps->g->nodes[u];
1552 rtx insn = u_node->insn;
1554 if (!INSN_P (insn))
1556 RESET_BIT (tobe_scheduled, u);
1557 continue;
1560 if (JUMP_P (insn)) /* Closing branch handled later. */
1562 RESET_BIT (tobe_scheduled, u);
1563 continue;
1566 if (TEST_BIT (sched_nodes, u))
1567 continue;
1569 /* Try to get non-empty scheduling window. */
1570 j = i;
1571 while (get_sched_window (ps, nodes_order, i, sched_nodes, ii, &start, &step, &end) < 0
1572 && j > 0)
1574 unscheduled_nodes = true;
1575 if (TEST_BIT (NODE_PREDECESSORS (u_node), nodes_order[j - 1])
1576 || TEST_BIT (NODE_SUCCESSORS (u_node), nodes_order[j - 1]))
1578 ps_unschedule_node (ps, &ps->g->nodes[nodes_order[j - 1]]);
1579 RESET_BIT (sched_nodes, nodes_order [j - 1]);
1581 j--;
1583 if (j < 0)
1585 /* ??? Try backtracking instead of immediately ii++? */
1586 ii++;
1587 try_again_with_larger_ii = true;
1588 reset_partial_schedule (ps, ii);
1589 break;
1591 /* 2. Try scheduling u in window. */
1592 if (dump_file)
1593 fprintf(dump_file, "Trying to schedule node %d in (%d .. %d) step %d\n",
1594 u, start, end, step);
1596 /* use must_follow & must_precede bitmaps to determine order
1597 of nodes within the cycle. */
1598 sbitmap_zero (must_precede);
1599 sbitmap_zero (must_follow);
1600 for (e = u_node->in; e != 0; e = e->next_in)
1601 if (TEST_BIT (sched_nodes, e->src->cuid)
1602 && e->latency == (ii * e->distance)
1603 && start == SCHED_TIME (e->src))
1604 SET_BIT (must_precede, e->src->cuid);
1606 for (e = u_node->out; e != 0; e = e->next_out)
1607 if (TEST_BIT (sched_nodes, e->dest->cuid)
1608 && e->latency == (ii * e->distance)
1609 && end == SCHED_TIME (e->dest))
1610 SET_BIT (must_follow, e->dest->cuid);
1612 success = 0;
1613 if ((step > 0 && start < end) || (step < 0 && start > end))
1614 for (c = start; c != end; c += step)
1616 ps_insn_ptr psi;
1618 psi = ps_add_node_check_conflicts (ps, u_node, c,
1619 must_precede,
1620 must_follow);
1622 if (psi)
1624 SCHED_TIME (u_node) = c;
1625 SET_BIT (sched_nodes, u);
1626 success = 1;
1627 if (dump_file)
1628 fprintf(dump_file, "Schedule in %d\n", c);
1629 break;
1632 if (!success)
1634 /* ??? Try backtracking instead of immediately ii++? */
1635 ii++;
1636 try_again_with_larger_ii = true;
1637 reset_partial_schedule (ps, ii);
1638 break;
1640 if (unscheduled_nodes)
1641 break;
1643 /* ??? If (success), check register pressure estimates. */
1644 } /* Continue with next node. */
1645 } /* While try_again_with_larger_ii. */
1647 sbitmap_free (sched_nodes);
1649 if (ii >= maxii)
1651 free_partial_schedule (ps);
1652 ps = NULL;
1654 return ps;
1658 /* This page implements the algorithm for ordering the nodes of a DDG
1659 for modulo scheduling, activated through the
1660 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
1662 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
1663 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
1664 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
1665 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
1666 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
1667 #define DEPTH(x) (ASAP ((x)))
1669 typedef struct node_order_params * nopa;
1671 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
1672 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
1673 static nopa calculate_order_params (ddg_ptr, int mii);
1674 static int find_max_asap (ddg_ptr, sbitmap);
1675 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
1676 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
1678 enum sms_direction {BOTTOMUP, TOPDOWN};
1680 struct node_order_params
1682 int asap;
1683 int alap;
1684 int height;
1687 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
1688 static void
1689 check_nodes_order (int *node_order, int num_nodes)
1691 int i;
1692 sbitmap tmp = sbitmap_alloc (num_nodes);
1694 sbitmap_zero (tmp);
1696 for (i = 0; i < num_nodes; i++)
1698 int u = node_order[i];
1700 gcc_assert (u < num_nodes && u >= 0 && !TEST_BIT (tmp, u));
1702 SET_BIT (tmp, u);
1705 sbitmap_free (tmp);
1708 /* Order the nodes of G for scheduling and pass the result in
1709 NODE_ORDER. Also set aux.count of each node to ASAP.
1710 Return the recMII for the given DDG. */
1711 static int
1712 sms_order_nodes (ddg_ptr g, int mii, int * node_order)
1714 int i;
1715 int rec_mii = 0;
1716 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
1718 nopa nops = calculate_order_params (g, mii);
1720 order_nodes_of_sccs (sccs, node_order);
1722 if (sccs->num_sccs > 0)
1723 /* First SCC has the largest recurrence_length. */
1724 rec_mii = sccs->sccs[0]->recurrence_length;
1726 /* Save ASAP before destroying node_order_params. */
1727 for (i = 0; i < g->num_nodes; i++)
1729 ddg_node_ptr v = &g->nodes[i];
1730 v->aux.count = ASAP (v);
1733 free (nops);
1734 free_ddg_all_sccs (sccs);
1735 check_nodes_order (node_order, g->num_nodes);
1737 return rec_mii;
1740 static void
1741 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
1743 int i, pos = 0;
1744 ddg_ptr g = all_sccs->ddg;
1745 int num_nodes = g->num_nodes;
1746 sbitmap prev_sccs = sbitmap_alloc (num_nodes);
1747 sbitmap on_path = sbitmap_alloc (num_nodes);
1748 sbitmap tmp = sbitmap_alloc (num_nodes);
1749 sbitmap ones = sbitmap_alloc (num_nodes);
1751 sbitmap_zero (prev_sccs);
1752 sbitmap_ones (ones);
1754 /* Perfrom the node ordering starting from the SCC with the highest recMII.
1755 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
1756 for (i = 0; i < all_sccs->num_sccs; i++)
1758 ddg_scc_ptr scc = all_sccs->sccs[i];
1760 /* Add nodes on paths from previous SCCs to the current SCC. */
1761 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
1762 sbitmap_a_or_b (tmp, scc->nodes, on_path);
1764 /* Add nodes on paths from the current SCC to previous SCCs. */
1765 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
1766 sbitmap_a_or_b (tmp, tmp, on_path);
1768 /* Remove nodes of previous SCCs from current extended SCC. */
1769 sbitmap_difference (tmp, tmp, prev_sccs);
1771 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
1772 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
1775 /* Handle the remaining nodes that do not belong to any scc. Each call
1776 to order_nodes_in_scc handles a single connected component. */
1777 while (pos < g->num_nodes)
1779 sbitmap_difference (tmp, ones, prev_sccs);
1780 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
1782 sbitmap_free (prev_sccs);
1783 sbitmap_free (on_path);
1784 sbitmap_free (tmp);
1785 sbitmap_free (ones);
1788 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
1789 static struct node_order_params *
1790 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED)
1792 int u;
1793 int max_asap;
1794 int num_nodes = g->num_nodes;
1795 ddg_edge_ptr e;
1796 /* Allocate a place to hold ordering params for each node in the DDG. */
1797 nopa node_order_params_arr;
1799 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
1800 node_order_params_arr = (nopa) xcalloc (num_nodes,
1801 sizeof (struct node_order_params));
1803 /* Set the aux pointer of each node to point to its order_params structure. */
1804 for (u = 0; u < num_nodes; u++)
1805 g->nodes[u].aux.info = &node_order_params_arr[u];
1807 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
1808 calculate ASAP, ALAP, mobility, distance, and height for each node
1809 in the dependence (direct acyclic) graph. */
1811 /* We assume that the nodes in the array are in topological order. */
1813 max_asap = 0;
1814 for (u = 0; u < num_nodes; u++)
1816 ddg_node_ptr u_node = &g->nodes[u];
1818 ASAP (u_node) = 0;
1819 for (e = u_node->in; e; e = e->next_in)
1820 if (e->distance == 0)
1821 ASAP (u_node) = MAX (ASAP (u_node),
1822 ASAP (e->src) + e->latency);
1823 max_asap = MAX (max_asap, ASAP (u_node));
1826 for (u = num_nodes - 1; u > -1; u--)
1828 ddg_node_ptr u_node = &g->nodes[u];
1830 ALAP (u_node) = max_asap;
1831 HEIGHT (u_node) = 0;
1832 for (e = u_node->out; e; e = e->next_out)
1833 if (e->distance == 0)
1835 ALAP (u_node) = MIN (ALAP (u_node),
1836 ALAP (e->dest) - e->latency);
1837 HEIGHT (u_node) = MAX (HEIGHT (u_node),
1838 HEIGHT (e->dest) + e->latency);
1842 return node_order_params_arr;
1845 static int
1846 find_max_asap (ddg_ptr g, sbitmap nodes)
1848 unsigned int u;
1849 int max_asap = -1;
1850 int result = -1;
1851 sbitmap_iterator sbi;
1853 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
1855 ddg_node_ptr u_node = &g->nodes[u];
1857 if (max_asap < ASAP (u_node))
1859 max_asap = ASAP (u_node);
1860 result = u;
1863 return result;
1866 static int
1867 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
1869 unsigned int u;
1870 int max_hv = -1;
1871 int min_mob = INT_MAX;
1872 int result = -1;
1873 sbitmap_iterator sbi;
1875 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
1877 ddg_node_ptr u_node = &g->nodes[u];
1879 if (max_hv < HEIGHT (u_node))
1881 max_hv = HEIGHT (u_node);
1882 min_mob = MOB (u_node);
1883 result = u;
1885 else if ((max_hv == HEIGHT (u_node))
1886 && (min_mob > MOB (u_node)))
1888 min_mob = MOB (u_node);
1889 result = u;
1892 return result;
1895 static int
1896 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
1898 unsigned int u;
1899 int max_dv = -1;
1900 int min_mob = INT_MAX;
1901 int result = -1;
1902 sbitmap_iterator sbi;
1904 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
1906 ddg_node_ptr u_node = &g->nodes[u];
1908 if (max_dv < DEPTH (u_node))
1910 max_dv = DEPTH (u_node);
1911 min_mob = MOB (u_node);
1912 result = u;
1914 else if ((max_dv == DEPTH (u_node))
1915 && (min_mob > MOB (u_node)))
1917 min_mob = MOB (u_node);
1918 result = u;
1921 return result;
1924 /* Places the nodes of SCC into the NODE_ORDER array starting
1925 at position POS, according to the SMS ordering algorithm.
1926 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
1927 the NODE_ORDER array, starting from position zero. */
1928 static int
1929 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
1930 int * node_order, int pos)
1932 enum sms_direction dir;
1933 int num_nodes = g->num_nodes;
1934 sbitmap workset = sbitmap_alloc (num_nodes);
1935 sbitmap tmp = sbitmap_alloc (num_nodes);
1936 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
1937 sbitmap predecessors = sbitmap_alloc (num_nodes);
1938 sbitmap successors = sbitmap_alloc (num_nodes);
1940 sbitmap_zero (predecessors);
1941 find_predecessors (predecessors, g, nodes_ordered);
1943 sbitmap_zero (successors);
1944 find_successors (successors, g, nodes_ordered);
1946 sbitmap_zero (tmp);
1947 if (sbitmap_a_and_b_cg (tmp, predecessors, scc))
1949 sbitmap_copy (workset, tmp);
1950 dir = BOTTOMUP;
1952 else if (sbitmap_a_and_b_cg (tmp, successors, scc))
1954 sbitmap_copy (workset, tmp);
1955 dir = TOPDOWN;
1957 else
1959 int u;
1961 sbitmap_zero (workset);
1962 if ((u = find_max_asap (g, scc)) >= 0)
1963 SET_BIT (workset, u);
1964 dir = BOTTOMUP;
1967 sbitmap_zero (zero_bitmap);
1968 while (!sbitmap_equal (workset, zero_bitmap))
1970 int v;
1971 ddg_node_ptr v_node;
1972 sbitmap v_node_preds;
1973 sbitmap v_node_succs;
1975 if (dir == TOPDOWN)
1977 while (!sbitmap_equal (workset, zero_bitmap))
1979 v = find_max_hv_min_mob (g, workset);
1980 v_node = &g->nodes[v];
1981 node_order[pos++] = v;
1982 v_node_succs = NODE_SUCCESSORS (v_node);
1983 sbitmap_a_and_b (tmp, v_node_succs, scc);
1985 /* Don't consider the already ordered successors again. */
1986 sbitmap_difference (tmp, tmp, nodes_ordered);
1987 sbitmap_a_or_b (workset, workset, tmp);
1988 RESET_BIT (workset, v);
1989 SET_BIT (nodes_ordered, v);
1991 dir = BOTTOMUP;
1992 sbitmap_zero (predecessors);
1993 find_predecessors (predecessors, g, nodes_ordered);
1994 sbitmap_a_and_b (workset, predecessors, scc);
1996 else
1998 while (!sbitmap_equal (workset, zero_bitmap))
2000 v = find_max_dv_min_mob (g, workset);
2001 v_node = &g->nodes[v];
2002 node_order[pos++] = v;
2003 v_node_preds = NODE_PREDECESSORS (v_node);
2004 sbitmap_a_and_b (tmp, v_node_preds, scc);
2006 /* Don't consider the already ordered predecessors again. */
2007 sbitmap_difference (tmp, tmp, nodes_ordered);
2008 sbitmap_a_or_b (workset, workset, tmp);
2009 RESET_BIT (workset, v);
2010 SET_BIT (nodes_ordered, v);
2012 dir = TOPDOWN;
2013 sbitmap_zero (successors);
2014 find_successors (successors, g, nodes_ordered);
2015 sbitmap_a_and_b (workset, successors, scc);
2018 sbitmap_free (tmp);
2019 sbitmap_free (workset);
2020 sbitmap_free (zero_bitmap);
2021 sbitmap_free (predecessors);
2022 sbitmap_free (successors);
2023 return pos;
2027 /* This page contains functions for manipulating partial-schedules during
2028 modulo scheduling. */
2030 /* Create a partial schedule and allocate a memory to hold II rows. */
2031 partial_schedule_ptr
2032 create_partial_schedule (int ii, ddg_ptr g, int history)
2034 partial_schedule_ptr ps = (partial_schedule_ptr)
2035 xmalloc (sizeof (struct partial_schedule));
2036 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2037 ps->ii = ii;
2038 ps->history = history;
2039 ps->min_cycle = INT_MAX;
2040 ps->max_cycle = INT_MIN;
2041 ps->g = g;
2043 return ps;
2046 /* Free the PS_INSNs in rows array of the given partial schedule.
2047 ??? Consider caching the PS_INSN's. */
2048 static void
2049 free_ps_insns (partial_schedule_ptr ps)
2051 int i;
2053 for (i = 0; i < ps->ii; i++)
2055 while (ps->rows[i])
2057 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2059 free (ps->rows[i]);
2060 ps->rows[i] = ps_insn;
2062 ps->rows[i] = NULL;
2066 /* Free all the memory allocated to the partial schedule. */
2067 void
2068 free_partial_schedule (partial_schedule_ptr ps)
2070 if (!ps)
2071 return;
2072 free_ps_insns (ps);
2073 free (ps->rows);
2074 free (ps);
2077 /* Clear the rows array with its PS_INSNs, and create a new one with
2078 NEW_II rows. */
2079 void
2080 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2082 if (!ps)
2083 return;
2084 free_ps_insns (ps);
2085 if (new_ii == ps->ii)
2086 return;
2087 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2088 * sizeof (ps_insn_ptr));
2089 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2090 ps->ii = new_ii;
2091 ps->min_cycle = INT_MAX;
2092 ps->max_cycle = INT_MIN;
2095 /* Prints the partial schedule as an ii rows array, for each rows
2096 print the ids of the insns in it. */
2097 void
2098 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2100 int i;
2102 for (i = 0; i < ps->ii; i++)
2104 ps_insn_ptr ps_i = ps->rows[i];
2106 fprintf (dump, "\n[CYCLE %d ]: ", i);
2107 while (ps_i)
2109 fprintf (dump, "%d, ",
2110 INSN_UID (ps_i->node->insn));
2111 ps_i = ps_i->next_in_row;
2116 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2117 static ps_insn_ptr
2118 create_ps_insn (ddg_node_ptr node, int rest_count, int cycle)
2120 ps_insn_ptr ps_i = xmalloc (sizeof (struct ps_insn));
2122 ps_i->node = node;
2123 ps_i->next_in_row = NULL;
2124 ps_i->prev_in_row = NULL;
2125 ps_i->row_rest_count = rest_count;
2126 ps_i->cycle = cycle;
2128 return ps_i;
2132 /* Removes the given PS_INSN from the partial schedule. Returns false if the
2133 node is not found in the partial schedule, else returns true. */
2134 static bool
2135 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2137 int row;
2139 if (!ps || !ps_i)
2140 return false;
2142 row = SMODULO (ps_i->cycle, ps->ii);
2143 if (! ps_i->prev_in_row)
2145 if (ps_i != ps->rows[row])
2146 return false;
2148 ps->rows[row] = ps_i->next_in_row;
2149 if (ps->rows[row])
2150 ps->rows[row]->prev_in_row = NULL;
2152 else
2154 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2155 if (ps_i->next_in_row)
2156 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2158 free (ps_i);
2159 return true;
2162 /* Unlike what literature describes for modulo scheduling (which focuses
2163 on VLIW machines) the order of the instructions inside a cycle is
2164 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2165 where the current instruction should go relative to the already
2166 scheduled instructions in the given cycle. Go over these
2167 instructions and find the first possible column to put it in. */
2168 static bool
2169 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2170 sbitmap must_precede, sbitmap must_follow)
2172 ps_insn_ptr next_ps_i;
2173 ps_insn_ptr first_must_follow = NULL;
2174 ps_insn_ptr last_must_precede = NULL;
2175 int row;
2177 if (! ps_i)
2178 return false;
2180 row = SMODULO (ps_i->cycle, ps->ii);
2182 /* Find the first must follow and the last must precede
2183 and insert the node immediately after the must precede
2184 but make sure that it there is no must follow after it. */
2185 for (next_ps_i = ps->rows[row];
2186 next_ps_i;
2187 next_ps_i = next_ps_i->next_in_row)
2189 if (TEST_BIT (must_follow, next_ps_i->node->cuid)
2190 && ! first_must_follow)
2191 first_must_follow = next_ps_i;
2192 if (TEST_BIT (must_precede, next_ps_i->node->cuid))
2194 /* If we have already met a node that must follow, then
2195 there is no possible column. */
2196 if (first_must_follow)
2197 return false;
2198 else
2199 last_must_precede = next_ps_i;
2203 /* Now insert the node after INSERT_AFTER_PSI. */
2205 if (! last_must_precede)
2207 ps_i->next_in_row = ps->rows[row];
2208 ps_i->prev_in_row = NULL;
2209 if (ps_i->next_in_row)
2210 ps_i->next_in_row->prev_in_row = ps_i;
2211 ps->rows[row] = ps_i;
2213 else
2215 ps_i->next_in_row = last_must_precede->next_in_row;
2216 last_must_precede->next_in_row = ps_i;
2217 ps_i->prev_in_row = last_must_precede;
2218 if (ps_i->next_in_row)
2219 ps_i->next_in_row->prev_in_row = ps_i;
2222 return true;
2225 /* Advances the PS_INSN one column in its current row; returns false
2226 in failure and true in success. Bit N is set in MUST_FOLLOW if
2227 the node with cuid N must be come after the node pointed to by
2228 PS_I when scheduled in the same cycle. */
2229 static int
2230 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2231 sbitmap must_follow)
2233 ps_insn_ptr prev, next;
2234 int row;
2235 ddg_node_ptr next_node;
2237 if (!ps || !ps_i)
2238 return false;
2240 row = SMODULO (ps_i->cycle, ps->ii);
2242 if (! ps_i->next_in_row)
2243 return false;
2245 next_node = ps_i->next_in_row->node;
2247 /* Check if next_in_row is dependent on ps_i, both having same sched
2248 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
2249 if (TEST_BIT (must_follow, next_node->cuid))
2250 return false;
2252 /* Advance PS_I over its next_in_row in the doubly linked list. */
2253 prev = ps_i->prev_in_row;
2254 next = ps_i->next_in_row;
2256 if (ps_i == ps->rows[row])
2257 ps->rows[row] = next;
2259 ps_i->next_in_row = next->next_in_row;
2261 if (next->next_in_row)
2262 next->next_in_row->prev_in_row = ps_i;
2264 next->next_in_row = ps_i;
2265 ps_i->prev_in_row = next;
2267 next->prev_in_row = prev;
2268 if (prev)
2269 prev->next_in_row = next;
2271 return true;
2274 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
2275 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
2276 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
2277 before/after (respectively) the node pointed to by PS_I when scheduled
2278 in the same cycle. */
2279 static ps_insn_ptr
2280 add_node_to_ps (partial_schedule_ptr ps, ddg_node_ptr node, int cycle,
2281 sbitmap must_precede, sbitmap must_follow)
2283 ps_insn_ptr ps_i;
2284 int rest_count = 1;
2285 int row = SMODULO (cycle, ps->ii);
2287 if (ps->rows[row]
2288 && ps->rows[row]->row_rest_count >= issue_rate)
2289 return NULL;
2291 if (ps->rows[row])
2292 rest_count += ps->rows[row]->row_rest_count;
2294 ps_i = create_ps_insn (node, rest_count, cycle);
2296 /* Finds and inserts PS_I according to MUST_FOLLOW and
2297 MUST_PRECEDE. */
2298 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
2300 free (ps_i);
2301 return NULL;
2304 return ps_i;
2307 /* Advance time one cycle. Assumes DFA is being used. */
2308 static void
2309 advance_one_cycle (void)
2311 if (targetm.sched.dfa_pre_cycle_insn)
2312 state_transition (curr_state,
2313 targetm.sched.dfa_pre_cycle_insn ());
2315 state_transition (curr_state, NULL);
2317 if (targetm.sched.dfa_post_cycle_insn)
2318 state_transition (curr_state,
2319 targetm.sched.dfa_post_cycle_insn ());
2322 /* Given the kernel of a loop (from FIRST_INSN to LAST_INSN), finds
2323 the number of cycles according to DFA that the kernel fits in,
2324 we use this to check if we done well with SMS after we add
2325 register moves. In some cases register moves overhead makes
2326 it even worse than the original loop. We want SMS to be performed
2327 when it gives less cycles after register moves are added. */
2328 static int
2329 kernel_number_of_cycles (rtx first_insn, rtx last_insn)
2331 int cycles = 0;
2332 rtx insn;
2333 int can_issue_more = issue_rate;
2335 state_reset (curr_state);
2337 for (insn = first_insn;
2338 insn != NULL_RTX && insn != last_insn;
2339 insn = NEXT_INSN (insn))
2341 if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
2342 continue;
2344 /* Check if there is room for the current insn. */
2345 if (!can_issue_more || state_dead_lock_p (curr_state))
2347 cycles ++;
2348 advance_one_cycle ();
2349 can_issue_more = issue_rate;
2352 /* Update the DFA state and return with failure if the DFA found
2353 recource conflicts. */
2354 if (state_transition (curr_state, insn) >= 0)
2356 cycles ++;
2357 advance_one_cycle ();
2358 can_issue_more = issue_rate;
2361 if (targetm.sched.variable_issue)
2362 can_issue_more =
2363 targetm.sched.variable_issue (sched_dump, sched_verbose,
2364 insn, can_issue_more);
2365 /* A naked CLOBBER or USE generates no instruction, so don't
2366 let them consume issue slots. */
2367 else if (GET_CODE (PATTERN (insn)) != USE
2368 && GET_CODE (PATTERN (insn)) != CLOBBER)
2369 can_issue_more--;
2371 return cycles;
2374 /* Checks if PS has resource conflicts according to DFA, starting from
2375 FROM cycle to TO cycle; returns true if there are conflicts and false
2376 if there are no conflicts. Assumes DFA is being used. */
2377 static int
2378 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
2380 int cycle;
2382 state_reset (curr_state);
2384 for (cycle = from; cycle <= to; cycle++)
2386 ps_insn_ptr crr_insn;
2387 /* Holds the remaining issue slots in the current row. */
2388 int can_issue_more = issue_rate;
2390 /* Walk through the DFA for the current row. */
2391 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
2392 crr_insn;
2393 crr_insn = crr_insn->next_in_row)
2395 rtx insn = crr_insn->node->insn;
2397 if (!INSN_P (insn))
2398 continue;
2400 /* Check if there is room for the current insn. */
2401 if (!can_issue_more || state_dead_lock_p (curr_state))
2402 return true;
2404 /* Update the DFA state and return with failure if the DFA found
2405 recource conflicts. */
2406 if (state_transition (curr_state, insn) >= 0)
2407 return true;
2409 if (targetm.sched.variable_issue)
2410 can_issue_more =
2411 targetm.sched.variable_issue (sched_dump, sched_verbose,
2412 insn, can_issue_more);
2413 /* A naked CLOBBER or USE generates no instruction, so don't
2414 let them consume issue slots. */
2415 else if (GET_CODE (PATTERN (insn)) != USE
2416 && GET_CODE (PATTERN (insn)) != CLOBBER)
2417 can_issue_more--;
2420 /* Advance the DFA to the next cycle. */
2421 advance_one_cycle ();
2423 return false;
2426 /* Checks if the given node causes resource conflicts when added to PS at
2427 cycle C. If not the node is added to PS and returned; otherwise zero
2428 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
2429 cuid N must be come before/after (respectively) the node pointed to by
2430 PS_I when scheduled in the same cycle. */
2431 ps_insn_ptr
2432 ps_add_node_check_conflicts (partial_schedule_ptr ps, ddg_node_ptr n,
2433 int c, sbitmap must_precede,
2434 sbitmap must_follow)
2436 int has_conflicts = 0;
2437 ps_insn_ptr ps_i;
2439 /* First add the node to the PS, if this succeeds check for
2440 conflicts, trying different issue slots in the same row. */
2441 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
2442 return NULL; /* Failed to insert the node at the given cycle. */
2444 has_conflicts = ps_has_conflicts (ps, c, c)
2445 || (ps->history > 0
2446 && ps_has_conflicts (ps,
2447 c - ps->history,
2448 c + ps->history));
2450 /* Try different issue slots to find one that the given node can be
2451 scheduled in without conflicts. */
2452 while (has_conflicts)
2454 if (! ps_insn_advance_column (ps, ps_i, must_follow))
2455 break;
2456 has_conflicts = ps_has_conflicts (ps, c, c)
2457 || (ps->history > 0
2458 && ps_has_conflicts (ps,
2459 c - ps->history,
2460 c + ps->history));
2463 if (has_conflicts)
2465 remove_node_from_ps (ps, ps_i);
2466 return NULL;
2469 ps->min_cycle = MIN (ps->min_cycle, c);
2470 ps->max_cycle = MAX (ps->max_cycle, c);
2471 return ps_i;
2474 /* Rotate the rows of PS such that insns scheduled at time
2475 START_CYCLE will appear in row 0. Updates max/min_cycles. */
2476 void
2477 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
2479 int i, row, backward_rotates;
2480 int last_row = ps->ii - 1;
2482 if (start_cycle == 0)
2483 return;
2485 backward_rotates = SMODULO (start_cycle, ps->ii);
2487 /* Revisit later and optimize this into a single loop. */
2488 for (i = 0; i < backward_rotates; i++)
2490 ps_insn_ptr first_row = ps->rows[0];
2492 for (row = 0; row < last_row; row++)
2493 ps->rows[row] = ps->rows[row+1];
2495 ps->rows[last_row] = first_row;
2498 ps->max_cycle -= start_cycle;
2499 ps->min_cycle -= start_cycle;
2502 /* Remove the node N from the partial schedule PS; because we restart the DFA
2503 each time we want to check for resource conflicts; this is equivalent to
2504 unscheduling the node N. */
2505 static bool
2506 ps_unschedule_node (partial_schedule_ptr ps, ddg_node_ptr n)
2508 ps_insn_ptr ps_i;
2509 int row = SMODULO (SCHED_TIME (n), ps->ii);
2511 if (row < 0 || row > ps->ii)
2512 return false;
2514 for (ps_i = ps->rows[row];
2515 ps_i && ps_i->node != n;
2516 ps_i = ps_i->next_in_row);
2517 if (!ps_i)
2518 return false;
2520 return remove_node_from_ps (ps, ps_i);
2522 #endif /* INSN_SCHEDULING */
2524 static bool
2525 gate_handle_sms (void)
2527 return (optimize > 0 && flag_modulo_sched);
2531 /* Run instruction scheduler. */
2532 /* Perform SMS module scheduling. */
2533 static void
2534 rest_of_handle_sms (void)
2536 #ifdef INSN_SCHEDULING
2537 basic_block bb;
2538 sbitmap blocks;
2540 /* We want to be able to create new pseudos. */
2541 no_new_pseudos = 0;
2542 /* Collect loop information to be used in SMS. */
2543 cfg_layout_initialize (CLEANUP_UPDATE_LIFE);
2544 sms_schedule (dump_file);
2546 /* Update the life information, because we add pseudos. */
2547 max_regno = max_reg_num ();
2548 allocate_reg_info (max_regno, FALSE, FALSE);
2549 blocks = sbitmap_alloc (last_basic_block);
2550 sbitmap_ones (blocks);
2551 update_life_info (blocks, UPDATE_LIFE_GLOBAL_RM_NOTES,
2552 (PROP_DEATH_NOTES
2553 | PROP_REG_INFO
2554 | PROP_KILL_DEAD_CODE
2555 | PROP_SCAN_DEAD_CODE));
2557 no_new_pseudos = 1;
2559 /* Finalize layout changes. */
2560 FOR_EACH_BB (bb)
2561 if (bb->next_bb != EXIT_BLOCK_PTR)
2562 bb->aux = bb->next_bb;
2563 cfg_layout_finalize ();
2564 free_dominance_info (CDI_DOMINATORS);
2565 #endif /* INSN_SCHEDULING */
2568 struct tree_opt_pass pass_sms =
2570 "sms", /* name */
2571 gate_handle_sms, /* gate */
2572 rest_of_handle_sms, /* execute */
2573 NULL, /* sub */
2574 NULL, /* next */
2575 0, /* static_pass_number */
2576 TV_SMS, /* tv_id */
2577 0, /* properties_required */
2578 0, /* properties_provided */
2579 0, /* properties_destroyed */
2580 0, /* todo_flags_start */
2581 TODO_dump_func |
2582 TODO_ggc_collect, /* todo_flags_finish */
2583 'm' /* letter */