2005-07-07 Adrian Straetling <straetling@de.ibm.com>
[official-gcc.git] / gcc / local-alloc.c
blobcd26174fa6a7a4ca77ee9d4492a785adaa381a87
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
62 #include "config.h"
63 #include "system.h"
64 #include "coretypes.h"
65 #include "tm.h"
66 #include "hard-reg-set.h"
67 #include "rtl.h"
68 #include "tm_p.h"
69 #include "flags.h"
70 #include "regs.h"
71 #include "function.h"
72 #include "insn-config.h"
73 #include "insn-attr.h"
74 #include "recog.h"
75 #include "output.h"
76 #include "toplev.h"
77 #include "except.h"
78 #include "integrate.h"
79 #include "reload.h"
80 #include "ggc.h"
81 #include "timevar.h"
82 #include "tree-pass.h"
84 /* Next quantity number available for allocation. */
86 static int next_qty;
88 /* Information we maintain about each quantity. */
89 struct qty
91 /* The number of refs to quantity Q. */
93 int n_refs;
95 /* The frequency of uses of quantity Q. */
97 int freq;
99 /* Insn number (counting from head of basic block)
100 where quantity Q was born. -1 if birth has not been recorded. */
102 int birth;
104 /* Insn number (counting from head of basic block)
105 where given quantity died. Due to the way tying is done,
106 and the fact that we consider in this pass only regs that die but once,
107 a quantity can die only once. Each quantity's life span
108 is a set of consecutive insns. -1 if death has not been recorded. */
110 int death;
112 /* Number of words needed to hold the data in given quantity.
113 This depends on its machine mode. It is used for these purposes:
114 1. It is used in computing the relative importance of qtys,
115 which determines the order in which we look for regs for them.
116 2. It is used in rules that prevent tying several registers of
117 different sizes in a way that is geometrically impossible
118 (see combine_regs). */
120 int size;
122 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
124 int n_calls_crossed;
126 /* The register number of one pseudo register whose reg_qty value is Q.
127 This register should be the head of the chain
128 maintained in reg_next_in_qty. */
130 int first_reg;
132 /* Reg class contained in (smaller than) the preferred classes of all
133 the pseudo regs that are tied in given quantity.
134 This is the preferred class for allocating that quantity. */
136 enum reg_class min_class;
138 /* Register class within which we allocate given qty if we can't get
139 its preferred class. */
141 enum reg_class alternate_class;
143 /* This holds the mode of the registers that are tied to given qty,
144 or VOIDmode if registers with differing modes are tied together. */
146 enum machine_mode mode;
148 /* the hard reg number chosen for given quantity,
149 or -1 if none was found. */
151 short phys_reg;
154 static struct qty *qty;
156 /* These fields are kept separately to speedup their clearing. */
158 /* We maintain two hard register sets that indicate suggested hard registers
159 for each quantity. The first, phys_copy_sugg, contains hard registers
160 that are tied to the quantity by a simple copy. The second contains all
161 hard registers that are tied to the quantity via an arithmetic operation.
163 The former register set is given priority for allocation. This tends to
164 eliminate copy insns. */
166 /* Element Q is a set of hard registers that are suggested for quantity Q by
167 copy insns. */
169 static HARD_REG_SET *qty_phys_copy_sugg;
171 /* Element Q is a set of hard registers that are suggested for quantity Q by
172 arithmetic insns. */
174 static HARD_REG_SET *qty_phys_sugg;
176 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
178 static short *qty_phys_num_copy_sugg;
180 /* Element Q is the number of suggested registers in qty_phys_sugg. */
182 static short *qty_phys_num_sugg;
184 /* If (REG N) has been assigned a quantity number, is a register number
185 of another register assigned the same quantity number, or -1 for the
186 end of the chain. qty->first_reg point to the head of this chain. */
188 static int *reg_next_in_qty;
190 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
191 if it is >= 0,
192 of -1 if this register cannot be allocated by local-alloc,
193 or -2 if not known yet.
195 Note that if we see a use or death of pseudo register N with
196 reg_qty[N] == -2, register N must be local to the current block. If
197 it were used in more than one block, we would have reg_qty[N] == -1.
198 This relies on the fact that if reg_basic_block[N] is >= 0, register N
199 will not appear in any other block. We save a considerable number of
200 tests by exploiting this.
202 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
203 be referenced. */
205 static int *reg_qty;
207 /* The offset (in words) of register N within its quantity.
208 This can be nonzero if register N is SImode, and has been tied
209 to a subreg of a DImode register. */
211 static char *reg_offset;
213 /* Vector of substitutions of register numbers,
214 used to map pseudo regs into hardware regs.
215 This is set up as a result of register allocation.
216 Element N is the hard reg assigned to pseudo reg N,
217 or is -1 if no hard reg was assigned.
218 If N is a hard reg number, element N is N. */
220 short *reg_renumber;
222 /* Set of hard registers live at the current point in the scan
223 of the instructions in a basic block. */
225 static HARD_REG_SET regs_live;
227 /* Each set of hard registers indicates registers live at a particular
228 point in the basic block. For N even, regs_live_at[N] says which
229 hard registers are needed *after* insn N/2 (i.e., they may not
230 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
232 If an object is to conflict with the inputs of insn J but not the
233 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
234 if it is to conflict with the outputs of insn J but not the inputs of
235 insn J + 1, it is said to die at index J*2 + 1. */
237 static HARD_REG_SET *regs_live_at;
239 /* Communicate local vars `insn_number' and `insn'
240 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
241 static int this_insn_number;
242 static rtx this_insn;
244 struct equivalence
246 /* Set when an attempt should be made to replace a register
247 with the associated src_p entry. */
249 char replace;
251 /* Set when a REG_EQUIV note is found or created. Use to
252 keep track of what memory accesses might be created later,
253 e.g. by reload. */
255 rtx replacement;
257 rtx *src_p;
259 /* Loop depth is used to recognize equivalences which appear
260 to be present within the same loop (or in an inner loop). */
262 int loop_depth;
264 /* The list of each instruction which initializes this register. */
266 rtx init_insns;
268 /* Nonzero if this had a preexisting REG_EQUIV note. */
270 int is_arg_equivalence;
273 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
274 structure for that register. */
276 static struct equivalence *reg_equiv;
278 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
279 static int recorded_label_ref;
281 static void alloc_qty (int, enum machine_mode, int, int);
282 static void validate_equiv_mem_from_store (rtx, rtx, void *);
283 static int validate_equiv_mem (rtx, rtx, rtx);
284 static int equiv_init_varies_p (rtx);
285 static int equiv_init_movable_p (rtx, int);
286 static int contains_replace_regs (rtx);
287 static int memref_referenced_p (rtx, rtx);
288 static int memref_used_between_p (rtx, rtx, rtx);
289 static void update_equiv_regs (void);
290 static void no_equiv (rtx, rtx, void *);
291 static void block_alloc (int);
292 static int qty_sugg_compare (int, int);
293 static int qty_sugg_compare_1 (const void *, const void *);
294 static int qty_compare (int, int);
295 static int qty_compare_1 (const void *, const void *);
296 static int combine_regs (rtx, rtx, int, int, rtx, int);
297 static int reg_meets_class_p (int, enum reg_class);
298 static void update_qty_class (int, int);
299 static void reg_is_set (rtx, rtx, void *);
300 static void reg_is_born (rtx, int);
301 static void wipe_dead_reg (rtx, int);
302 static int find_free_reg (enum reg_class, enum machine_mode, int, int, int,
303 int, int);
304 static void mark_life (int, enum machine_mode, int);
305 static void post_mark_life (int, enum machine_mode, int, int, int);
306 static int no_conflict_p (rtx, rtx, rtx);
307 static int requires_inout (const char *);
309 /* Allocate a new quantity (new within current basic block)
310 for register number REGNO which is born at index BIRTH
311 within the block. MODE and SIZE are info on reg REGNO. */
313 static void
314 alloc_qty (int regno, enum machine_mode mode, int size, int birth)
316 int qtyno = next_qty++;
318 reg_qty[regno] = qtyno;
319 reg_offset[regno] = 0;
320 reg_next_in_qty[regno] = -1;
322 qty[qtyno].first_reg = regno;
323 qty[qtyno].size = size;
324 qty[qtyno].mode = mode;
325 qty[qtyno].birth = birth;
326 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
327 qty[qtyno].min_class = reg_preferred_class (regno);
328 qty[qtyno].alternate_class = reg_alternate_class (regno);
329 qty[qtyno].n_refs = REG_N_REFS (regno);
330 qty[qtyno].freq = REG_FREQ (regno);
333 /* Main entry point of this file. */
336 local_alloc (void)
338 int i;
339 int max_qty;
340 basic_block b;
342 /* We need to keep track of whether or not we recorded a LABEL_REF so
343 that we know if the jump optimizer needs to be rerun. */
344 recorded_label_ref = 0;
346 /* Leaf functions and non-leaf functions have different needs.
347 If defined, let the machine say what kind of ordering we
348 should use. */
349 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
350 ORDER_REGS_FOR_LOCAL_ALLOC;
351 #endif
353 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
354 registers. */
355 update_equiv_regs ();
357 /* This sets the maximum number of quantities we can have. Quantity
358 numbers start at zero and we can have one for each pseudo. */
359 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
361 /* Allocate vectors of temporary data.
362 See the declarations of these variables, above,
363 for what they mean. */
365 qty = xmalloc (max_qty * sizeof (struct qty));
366 qty_phys_copy_sugg = xmalloc (max_qty * sizeof (HARD_REG_SET));
367 qty_phys_num_copy_sugg = xmalloc (max_qty * sizeof (short));
368 qty_phys_sugg = xmalloc (max_qty * sizeof (HARD_REG_SET));
369 qty_phys_num_sugg = xmalloc (max_qty * sizeof (short));
371 reg_qty = xmalloc (max_regno * sizeof (int));
372 reg_offset = xmalloc (max_regno * sizeof (char));
373 reg_next_in_qty = xmalloc (max_regno * sizeof (int));
375 /* Determine which pseudo-registers can be allocated by local-alloc.
376 In general, these are the registers used only in a single block and
377 which only die once.
379 We need not be concerned with which block actually uses the register
380 since we will never see it outside that block. */
382 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
384 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
385 reg_qty[i] = -2;
386 else
387 reg_qty[i] = -1;
390 /* Force loop below to initialize entire quantity array. */
391 next_qty = max_qty;
393 /* Allocate each block's local registers, block by block. */
395 FOR_EACH_BB (b)
397 /* NEXT_QTY indicates which elements of the `qty_...'
398 vectors might need to be initialized because they were used
399 for the previous block; it is set to the entire array before
400 block 0. Initialize those, with explicit loop if there are few,
401 else with bzero and bcopy. Do not initialize vectors that are
402 explicit set by `alloc_qty'. */
404 if (next_qty < 6)
406 for (i = 0; i < next_qty; i++)
408 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
409 qty_phys_num_copy_sugg[i] = 0;
410 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
411 qty_phys_num_sugg[i] = 0;
414 else
416 #define CLEAR(vector) \
417 memset ((vector), 0, (sizeof (*(vector))) * next_qty);
419 CLEAR (qty_phys_copy_sugg);
420 CLEAR (qty_phys_num_copy_sugg);
421 CLEAR (qty_phys_sugg);
422 CLEAR (qty_phys_num_sugg);
425 next_qty = 0;
427 block_alloc (b->index);
430 free (qty);
431 free (qty_phys_copy_sugg);
432 free (qty_phys_num_copy_sugg);
433 free (qty_phys_sugg);
434 free (qty_phys_num_sugg);
436 free (reg_qty);
437 free (reg_offset);
438 free (reg_next_in_qty);
440 return recorded_label_ref;
443 /* Used for communication between the following two functions: contains
444 a MEM that we wish to ensure remains unchanged. */
445 static rtx equiv_mem;
447 /* Set nonzero if EQUIV_MEM is modified. */
448 static int equiv_mem_modified;
450 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
451 Called via note_stores. */
453 static void
454 validate_equiv_mem_from_store (rtx dest, rtx set ATTRIBUTE_UNUSED,
455 void *data ATTRIBUTE_UNUSED)
457 if ((REG_P (dest)
458 && reg_overlap_mentioned_p (dest, equiv_mem))
459 || (MEM_P (dest)
460 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
461 equiv_mem_modified = 1;
464 /* Verify that no store between START and the death of REG invalidates
465 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
466 by storing into an overlapping memory location, or with a non-const
467 CALL_INSN.
469 Return 1 if MEMREF remains valid. */
471 static int
472 validate_equiv_mem (rtx start, rtx reg, rtx memref)
474 rtx insn;
475 rtx note;
477 equiv_mem = memref;
478 equiv_mem_modified = 0;
480 /* If the memory reference has side effects or is volatile, it isn't a
481 valid equivalence. */
482 if (side_effects_p (memref))
483 return 0;
485 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
487 if (! INSN_P (insn))
488 continue;
490 if (find_reg_note (insn, REG_DEAD, reg))
491 return 1;
493 if (CALL_P (insn) && ! MEM_READONLY_P (memref)
494 && ! CONST_OR_PURE_CALL_P (insn))
495 return 0;
497 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
499 /* If a register mentioned in MEMREF is modified via an
500 auto-increment, we lose the equivalence. Do the same if one
501 dies; although we could extend the life, it doesn't seem worth
502 the trouble. */
504 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
505 if ((REG_NOTE_KIND (note) == REG_INC
506 || REG_NOTE_KIND (note) == REG_DEAD)
507 && REG_P (XEXP (note, 0))
508 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
509 return 0;
512 return 0;
515 /* Returns zero if X is known to be invariant. */
517 static int
518 equiv_init_varies_p (rtx x)
520 RTX_CODE code = GET_CODE (x);
521 int i;
522 const char *fmt;
524 switch (code)
526 case MEM:
527 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
529 case CONST:
530 case CONST_INT:
531 case CONST_DOUBLE:
532 case CONST_VECTOR:
533 case SYMBOL_REF:
534 case LABEL_REF:
535 return 0;
537 case REG:
538 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
540 case ASM_OPERANDS:
541 if (MEM_VOLATILE_P (x))
542 return 1;
544 /* Fall through. */
546 default:
547 break;
550 fmt = GET_RTX_FORMAT (code);
551 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
552 if (fmt[i] == 'e')
554 if (equiv_init_varies_p (XEXP (x, i)))
555 return 1;
557 else if (fmt[i] == 'E')
559 int j;
560 for (j = 0; j < XVECLEN (x, i); j++)
561 if (equiv_init_varies_p (XVECEXP (x, i, j)))
562 return 1;
565 return 0;
568 /* Returns nonzero if X (used to initialize register REGNO) is movable.
569 X is only movable if the registers it uses have equivalent initializations
570 which appear to be within the same loop (or in an inner loop) and movable
571 or if they are not candidates for local_alloc and don't vary. */
573 static int
574 equiv_init_movable_p (rtx x, int regno)
576 int i, j;
577 const char *fmt;
578 enum rtx_code code = GET_CODE (x);
580 switch (code)
582 case SET:
583 return equiv_init_movable_p (SET_SRC (x), regno);
585 case CC0:
586 case CLOBBER:
587 return 0;
589 case PRE_INC:
590 case PRE_DEC:
591 case POST_INC:
592 case POST_DEC:
593 case PRE_MODIFY:
594 case POST_MODIFY:
595 return 0;
597 case REG:
598 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
599 && reg_equiv[REGNO (x)].replace)
600 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
602 case UNSPEC_VOLATILE:
603 return 0;
605 case ASM_OPERANDS:
606 if (MEM_VOLATILE_P (x))
607 return 0;
609 /* Fall through. */
611 default:
612 break;
615 fmt = GET_RTX_FORMAT (code);
616 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
617 switch (fmt[i])
619 case 'e':
620 if (! equiv_init_movable_p (XEXP (x, i), regno))
621 return 0;
622 break;
623 case 'E':
624 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
625 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
626 return 0;
627 break;
630 return 1;
633 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
635 static int
636 contains_replace_regs (rtx x)
638 int i, j;
639 const char *fmt;
640 enum rtx_code code = GET_CODE (x);
642 switch (code)
644 case CONST_INT:
645 case CONST:
646 case LABEL_REF:
647 case SYMBOL_REF:
648 case CONST_DOUBLE:
649 case CONST_VECTOR:
650 case PC:
651 case CC0:
652 case HIGH:
653 return 0;
655 case REG:
656 return reg_equiv[REGNO (x)].replace;
658 default:
659 break;
662 fmt = GET_RTX_FORMAT (code);
663 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
664 switch (fmt[i])
666 case 'e':
667 if (contains_replace_regs (XEXP (x, i)))
668 return 1;
669 break;
670 case 'E':
671 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
672 if (contains_replace_regs (XVECEXP (x, i, j)))
673 return 1;
674 break;
677 return 0;
680 /* TRUE if X references a memory location that would be affected by a store
681 to MEMREF. */
683 static int
684 memref_referenced_p (rtx memref, rtx x)
686 int i, j;
687 const char *fmt;
688 enum rtx_code code = GET_CODE (x);
690 switch (code)
692 case CONST_INT:
693 case CONST:
694 case LABEL_REF:
695 case SYMBOL_REF:
696 case CONST_DOUBLE:
697 case CONST_VECTOR:
698 case PC:
699 case CC0:
700 case HIGH:
701 case LO_SUM:
702 return 0;
704 case REG:
705 return (reg_equiv[REGNO (x)].replacement
706 && memref_referenced_p (memref,
707 reg_equiv[REGNO (x)].replacement));
709 case MEM:
710 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
711 return 1;
712 break;
714 case SET:
715 /* If we are setting a MEM, it doesn't count (its address does), but any
716 other SET_DEST that has a MEM in it is referencing the MEM. */
717 if (MEM_P (SET_DEST (x)))
719 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
720 return 1;
722 else if (memref_referenced_p (memref, SET_DEST (x)))
723 return 1;
725 return memref_referenced_p (memref, SET_SRC (x));
727 default:
728 break;
731 fmt = GET_RTX_FORMAT (code);
732 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
733 switch (fmt[i])
735 case 'e':
736 if (memref_referenced_p (memref, XEXP (x, i)))
737 return 1;
738 break;
739 case 'E':
740 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
741 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
742 return 1;
743 break;
746 return 0;
749 /* TRUE if some insn in the range (START, END] references a memory location
750 that would be affected by a store to MEMREF. */
752 static int
753 memref_used_between_p (rtx memref, rtx start, rtx end)
755 rtx insn;
757 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
758 insn = NEXT_INSN (insn))
759 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
760 return 1;
762 return 0;
765 /* Find registers that are equivalent to a single value throughout the
766 compilation (either because they can be referenced in memory or are set once
767 from a single constant). Lower their priority for a register.
769 If such a register is only referenced once, try substituting its value
770 into the using insn. If it succeeds, we can eliminate the register
771 completely.
773 Initialize the REG_EQUIV_INIT array of initializing insns. */
775 static void
776 update_equiv_regs (void)
778 rtx insn;
779 basic_block bb;
780 int loop_depth;
781 regset_head cleared_regs;
782 int clear_regnos = 0;
784 reg_equiv = xcalloc (max_regno, sizeof *reg_equiv);
785 INIT_REG_SET (&cleared_regs);
786 reg_equiv_init = ggc_alloc_cleared (max_regno * sizeof (rtx));
787 reg_equiv_init_size = max_regno;
789 init_alias_analysis ();
791 /* Scan the insns and find which registers have equivalences. Do this
792 in a separate scan of the insns because (due to -fcse-follow-jumps)
793 a register can be set below its use. */
794 FOR_EACH_BB (bb)
796 loop_depth = bb->loop_depth;
798 for (insn = BB_HEAD (bb);
799 insn != NEXT_INSN (BB_END (bb));
800 insn = NEXT_INSN (insn))
802 rtx note;
803 rtx set;
804 rtx dest, src;
805 int regno;
807 if (! INSN_P (insn))
808 continue;
810 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
811 if (REG_NOTE_KIND (note) == REG_INC)
812 no_equiv (XEXP (note, 0), note, NULL);
814 set = single_set (insn);
816 /* If this insn contains more (or less) than a single SET,
817 only mark all destinations as having no known equivalence. */
818 if (set == 0)
820 note_stores (PATTERN (insn), no_equiv, NULL);
821 continue;
823 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
825 int i;
827 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
829 rtx part = XVECEXP (PATTERN (insn), 0, i);
830 if (part != set)
831 note_stores (part, no_equiv, NULL);
835 dest = SET_DEST (set);
836 src = SET_SRC (set);
838 /* See if this is setting up the equivalence between an argument
839 register and its stack slot. */
840 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
841 if (note)
843 gcc_assert (REG_P (dest));
844 regno = REGNO (dest);
846 /* Note that we don't want to clear reg_equiv_init even if there
847 are multiple sets of this register. */
848 reg_equiv[regno].is_arg_equivalence = 1;
850 /* Record for reload that this is an equivalencing insn. */
851 if (rtx_equal_p (src, XEXP (note, 0)))
852 reg_equiv_init[regno]
853 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
855 /* Continue normally in case this is a candidate for
856 replacements. */
859 if (!optimize)
860 continue;
862 /* We only handle the case of a pseudo register being set
863 once, or always to the same value. */
864 /* ??? The mn10200 port breaks if we add equivalences for
865 values that need an ADDRESS_REGS register and set them equivalent
866 to a MEM of a pseudo. The actual problem is in the over-conservative
867 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
868 calculate_needs, but we traditionally work around this problem
869 here by rejecting equivalences when the destination is in a register
870 that's likely spilled. This is fragile, of course, since the
871 preferred class of a pseudo depends on all instructions that set
872 or use it. */
874 if (!REG_P (dest)
875 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
876 || reg_equiv[regno].init_insns == const0_rtx
877 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
878 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
880 /* This might be setting a SUBREG of a pseudo, a pseudo that is
881 also set somewhere else to a constant. */
882 note_stores (set, no_equiv, NULL);
883 continue;
886 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
888 /* cse sometimes generates function invariants, but doesn't put a
889 REG_EQUAL note on the insn. Since this note would be redundant,
890 there's no point creating it earlier than here. */
891 if (! note && ! rtx_varies_p (src, 0))
892 note = set_unique_reg_note (insn, REG_EQUAL, src);
894 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
895 since it represents a function call */
896 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
897 note = NULL_RTX;
899 if (REG_N_SETS (regno) != 1
900 && (! note
901 || rtx_varies_p (XEXP (note, 0), 0)
902 || (reg_equiv[regno].replacement
903 && ! rtx_equal_p (XEXP (note, 0),
904 reg_equiv[regno].replacement))))
906 no_equiv (dest, set, NULL);
907 continue;
909 /* Record this insn as initializing this register. */
910 reg_equiv[regno].init_insns
911 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
913 /* If this register is known to be equal to a constant, record that
914 it is always equivalent to the constant. */
915 if (note && ! rtx_varies_p (XEXP (note, 0), 0))
916 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
918 /* If this insn introduces a "constant" register, decrease the priority
919 of that register. Record this insn if the register is only used once
920 more and the equivalence value is the same as our source.
922 The latter condition is checked for two reasons: First, it is an
923 indication that it may be more efficient to actually emit the insn
924 as written (if no registers are available, reload will substitute
925 the equivalence). Secondly, it avoids problems with any registers
926 dying in this insn whose death notes would be missed.
928 If we don't have a REG_EQUIV note, see if this insn is loading
929 a register used only in one basic block from a MEM. If so, and the
930 MEM remains unchanged for the life of the register, add a REG_EQUIV
931 note. */
933 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
935 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
936 && MEM_P (SET_SRC (set))
937 && validate_equiv_mem (insn, dest, SET_SRC (set)))
938 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
939 REG_NOTES (insn));
941 if (note)
943 int regno = REGNO (dest);
944 rtx x = XEXP (note, 0);
946 /* If we haven't done so, record for reload that this is an
947 equivalencing insn. */
948 if (!reg_equiv[regno].is_arg_equivalence
949 && (!MEM_P (x) || rtx_equal_p (src, x)))
950 reg_equiv_init[regno]
951 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
953 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
954 We might end up substituting the LABEL_REF for uses of the
955 pseudo here or later. That kind of transformation may turn an
956 indirect jump into a direct jump, in which case we must rerun the
957 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
958 if (GET_CODE (x) == LABEL_REF
959 || (GET_CODE (x) == CONST
960 && GET_CODE (XEXP (x, 0)) == PLUS
961 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
962 recorded_label_ref = 1;
964 reg_equiv[regno].replacement = x;
965 reg_equiv[regno].src_p = &SET_SRC (set);
966 reg_equiv[regno].loop_depth = loop_depth;
968 /* Don't mess with things live during setjmp. */
969 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
971 /* Note that the statement below does not affect the priority
972 in local-alloc! */
973 REG_LIVE_LENGTH (regno) *= 2;
975 /* If the register is referenced exactly twice, meaning it is
976 set once and used once, indicate that the reference may be
977 replaced by the equivalence we computed above. Do this
978 even if the register is only used in one block so that
979 dependencies can be handled where the last register is
980 used in a different block (i.e. HIGH / LO_SUM sequences)
981 and to reduce the number of registers alive across
982 calls. */
984 if (REG_N_REFS (regno) == 2
985 && (rtx_equal_p (x, src)
986 || ! equiv_init_varies_p (src))
987 && NONJUMP_INSN_P (insn)
988 && equiv_init_movable_p (PATTERN (insn), regno))
989 reg_equiv[regno].replace = 1;
995 if (!optimize)
996 goto out;
998 /* A second pass, to gather additional equivalences with memory. This needs
999 to be done after we know which registers we are going to replace. */
1001 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1003 rtx set, src, dest;
1004 unsigned regno;
1006 if (! INSN_P (insn))
1007 continue;
1009 set = single_set (insn);
1010 if (! set)
1011 continue;
1013 dest = SET_DEST (set);
1014 src = SET_SRC (set);
1016 /* If this sets a MEM to the contents of a REG that is only used
1017 in a single basic block, see if the register is always equivalent
1018 to that memory location and if moving the store from INSN to the
1019 insn that set REG is safe. If so, put a REG_EQUIV note on the
1020 initializing insn.
1022 Don't add a REG_EQUIV note if the insn already has one. The existing
1023 REG_EQUIV is likely more useful than the one we are adding.
1025 If one of the regs in the address has reg_equiv[REGNO].replace set,
1026 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
1027 optimization may move the set of this register immediately before
1028 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
1029 the mention in the REG_EQUIV note would be to an uninitialized
1030 pseudo. */
1032 if (MEM_P (dest) && REG_P (src)
1033 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1034 && REG_BASIC_BLOCK (regno) >= 0
1035 && REG_N_SETS (regno) == 1
1036 && reg_equiv[regno].init_insns != 0
1037 && reg_equiv[regno].init_insns != const0_rtx
1038 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
1039 REG_EQUIV, NULL_RTX)
1040 && ! contains_replace_regs (XEXP (dest, 0)))
1042 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
1043 if (validate_equiv_mem (init_insn, src, dest)
1044 && ! memref_used_between_p (dest, init_insn, insn))
1046 REG_NOTES (init_insn)
1047 = gen_rtx_EXPR_LIST (REG_EQUIV, dest,
1048 REG_NOTES (init_insn));
1049 /* This insn makes the equivalence, not the one initializing
1050 the register. */
1051 reg_equiv_init[regno]
1052 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
1057 /* Now scan all regs killed in an insn to see if any of them are
1058 registers only used that once. If so, see if we can replace the
1059 reference with the equivalent form. If we can, delete the
1060 initializing reference and this register will go away. If we
1061 can't replace the reference, and the initializing reference is
1062 within the same loop (or in an inner loop), then move the register
1063 initialization just before the use, so that they are in the same
1064 basic block. */
1065 FOR_EACH_BB_REVERSE (bb)
1067 loop_depth = bb->loop_depth;
1068 for (insn = BB_END (bb);
1069 insn != PREV_INSN (BB_HEAD (bb));
1070 insn = PREV_INSN (insn))
1072 rtx link;
1074 if (! INSN_P (insn))
1075 continue;
1077 /* Don't substitute into a non-local goto, this confuses CFG. */
1078 if (JUMP_P (insn)
1079 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
1080 continue;
1082 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1084 if (REG_NOTE_KIND (link) == REG_DEAD
1085 /* Make sure this insn still refers to the register. */
1086 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1088 int regno = REGNO (XEXP (link, 0));
1089 rtx equiv_insn;
1091 if (! reg_equiv[regno].replace
1092 || reg_equiv[regno].loop_depth < loop_depth)
1093 continue;
1095 /* reg_equiv[REGNO].replace gets set only when
1096 REG_N_REFS[REGNO] is 2, i.e. the register is set
1097 once and used once. (If it were only set, but not used,
1098 flow would have deleted the setting insns.) Hence
1099 there can only be one insn in reg_equiv[REGNO].init_insns. */
1100 gcc_assert (reg_equiv[regno].init_insns
1101 && !XEXP (reg_equiv[regno].init_insns, 1));
1102 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1104 /* We may not move instructions that can throw, since
1105 that changes basic block boundaries and we are not
1106 prepared to adjust the CFG to match. */
1107 if (can_throw_internal (equiv_insn))
1108 continue;
1110 if (asm_noperands (PATTERN (equiv_insn)) < 0
1111 && validate_replace_rtx (regno_reg_rtx[regno],
1112 *(reg_equiv[regno].src_p), insn))
1114 rtx equiv_link;
1115 rtx last_link;
1116 rtx note;
1118 /* Find the last note. */
1119 for (last_link = link; XEXP (last_link, 1);
1120 last_link = XEXP (last_link, 1))
1123 /* Append the REG_DEAD notes from equiv_insn. */
1124 equiv_link = REG_NOTES (equiv_insn);
1125 while (equiv_link)
1127 note = equiv_link;
1128 equiv_link = XEXP (equiv_link, 1);
1129 if (REG_NOTE_KIND (note) == REG_DEAD)
1131 remove_note (equiv_insn, note);
1132 XEXP (last_link, 1) = note;
1133 XEXP (note, 1) = NULL_RTX;
1134 last_link = note;
1138 remove_death (regno, insn);
1139 REG_N_REFS (regno) = 0;
1140 REG_FREQ (regno) = 0;
1141 delete_insn (equiv_insn);
1143 reg_equiv[regno].init_insns
1144 = XEXP (reg_equiv[regno].init_insns, 1);
1146 /* Remember to clear REGNO from all basic block's live
1147 info. */
1148 SET_REGNO_REG_SET (&cleared_regs, regno);
1149 clear_regnos++;
1150 reg_equiv_init[regno] = NULL_RTX;
1152 /* Move the initialization of the register to just before
1153 INSN. Update the flow information. */
1154 else if (PREV_INSN (insn) != equiv_insn)
1156 rtx new_insn;
1158 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1159 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1160 REG_NOTES (equiv_insn) = 0;
1162 /* Make sure this insn is recognized before
1163 reload begins, otherwise
1164 eliminate_regs_in_insn will die. */
1165 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1167 delete_insn (equiv_insn);
1169 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1171 REG_BASIC_BLOCK (regno) = bb->index;
1172 REG_N_CALLS_CROSSED (regno) = 0;
1173 REG_LIVE_LENGTH (regno) = 2;
1175 if (insn == BB_HEAD (bb))
1176 BB_HEAD (bb) = PREV_INSN (insn);
1178 /* Remember to clear REGNO from all basic block's live
1179 info. */
1180 SET_REGNO_REG_SET (&cleared_regs, regno);
1181 clear_regnos++;
1182 reg_equiv_init[regno]
1183 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
1190 /* Clear all dead REGNOs from all basic block's live info. */
1191 if (clear_regnos)
1193 unsigned j;
1195 if (clear_regnos > 8)
1197 FOR_EACH_BB (bb)
1199 AND_COMPL_REG_SET (bb->il.rtl->global_live_at_start,
1200 &cleared_regs);
1201 AND_COMPL_REG_SET (bb->il.rtl->global_live_at_end,
1202 &cleared_regs);
1205 else
1207 reg_set_iterator rsi;
1208 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j, rsi)
1210 FOR_EACH_BB (bb)
1212 CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start, j);
1213 CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_end, j);
1219 out:
1220 /* Clean up. */
1221 end_alias_analysis ();
1222 CLEAR_REG_SET (&cleared_regs);
1223 free (reg_equiv);
1226 /* Mark REG as having no known equivalence.
1227 Some instructions might have been processed before and furnished
1228 with REG_EQUIV notes for this register; these notes will have to be
1229 removed.
1230 STORE is the piece of RTL that does the non-constant / conflicting
1231 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1232 but needs to be there because this function is called from note_stores. */
1233 static void
1234 no_equiv (rtx reg, rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
1236 int regno;
1237 rtx list;
1239 if (!REG_P (reg))
1240 return;
1241 regno = REGNO (reg);
1242 list = reg_equiv[regno].init_insns;
1243 if (list == const0_rtx)
1244 return;
1245 reg_equiv[regno].init_insns = const0_rtx;
1246 reg_equiv[regno].replacement = NULL_RTX;
1247 /* This doesn't matter for equivalences made for argument registers, we
1248 should keep their initialization insns. */
1249 if (reg_equiv[regno].is_arg_equivalence)
1250 return;
1251 reg_equiv_init[regno] = NULL_RTX;
1252 for (; list; list = XEXP (list, 1))
1254 rtx insn = XEXP (list, 0);
1255 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1259 /* Allocate hard regs to the pseudo regs used only within block number B.
1260 Only the pseudos that die but once can be handled. */
1262 static void
1263 block_alloc (int b)
1265 int i, q;
1266 rtx insn;
1267 rtx note, hard_reg;
1268 int insn_number = 0;
1269 int insn_count = 0;
1270 int max_uid = get_max_uid ();
1271 int *qty_order;
1272 int no_conflict_combined_regno = -1;
1274 /* Count the instructions in the basic block. */
1276 insn = BB_END (BASIC_BLOCK (b));
1277 while (1)
1279 if (!NOTE_P (insn))
1281 ++insn_count;
1282 gcc_assert (insn_count <= max_uid);
1284 if (insn == BB_HEAD (BASIC_BLOCK (b)))
1285 break;
1286 insn = PREV_INSN (insn);
1289 /* +2 to leave room for a post_mark_life at the last insn and for
1290 the birth of a CLOBBER in the first insn. */
1291 regs_live_at = xcalloc ((2 * insn_count + 2), sizeof (HARD_REG_SET));
1293 /* Initialize table of hardware registers currently live. */
1295 REG_SET_TO_HARD_REG_SET (regs_live,
1296 BASIC_BLOCK (b)->il.rtl->global_live_at_start);
1298 /* This loop scans the instructions of the basic block
1299 and assigns quantities to registers.
1300 It computes which registers to tie. */
1302 insn = BB_HEAD (BASIC_BLOCK (b));
1303 while (1)
1305 if (!NOTE_P (insn))
1306 insn_number++;
1308 if (INSN_P (insn))
1310 rtx link, set;
1311 int win = 0;
1312 rtx r0, r1 = NULL_RTX;
1313 int combined_regno = -1;
1314 int i;
1316 this_insn_number = insn_number;
1317 this_insn = insn;
1319 extract_insn (insn);
1320 which_alternative = -1;
1322 /* Is this insn suitable for tying two registers?
1323 If so, try doing that.
1324 Suitable insns are those with at least two operands and where
1325 operand 0 is an output that is a register that is not
1326 earlyclobber.
1328 We can tie operand 0 with some operand that dies in this insn.
1329 First look for operands that are required to be in the same
1330 register as operand 0. If we find such, only try tying that
1331 operand or one that can be put into that operand if the
1332 operation is commutative. If we don't find an operand
1333 that is required to be in the same register as operand 0,
1334 we can tie with any operand.
1336 Subregs in place of regs are also ok.
1338 If tying is done, WIN is set nonzero. */
1340 if (optimize
1341 && recog_data.n_operands > 1
1342 && recog_data.constraints[0][0] == '='
1343 && recog_data.constraints[0][1] != '&')
1345 /* If non-negative, is an operand that must match operand 0. */
1346 int must_match_0 = -1;
1347 /* Counts number of alternatives that require a match with
1348 operand 0. */
1349 int n_matching_alts = 0;
1351 for (i = 1; i < recog_data.n_operands; i++)
1353 const char *p = recog_data.constraints[i];
1354 int this_match = requires_inout (p);
1356 n_matching_alts += this_match;
1357 if (this_match == recog_data.n_alternatives)
1358 must_match_0 = i;
1361 r0 = recog_data.operand[0];
1362 for (i = 1; i < recog_data.n_operands; i++)
1364 /* Skip this operand if we found an operand that
1365 must match operand 0 and this operand isn't it
1366 and can't be made to be it by commutativity. */
1368 if (must_match_0 >= 0 && i != must_match_0
1369 && ! (i == must_match_0 + 1
1370 && recog_data.constraints[i-1][0] == '%')
1371 && ! (i == must_match_0 - 1
1372 && recog_data.constraints[i][0] == '%'))
1373 continue;
1375 /* Likewise if each alternative has some operand that
1376 must match operand zero. In that case, skip any
1377 operand that doesn't list operand 0 since we know that
1378 the operand always conflicts with operand 0. We
1379 ignore commutativity in this case to keep things simple. */
1380 if (n_matching_alts == recog_data.n_alternatives
1381 && 0 == requires_inout (recog_data.constraints[i]))
1382 continue;
1384 r1 = recog_data.operand[i];
1386 /* If the operand is an address, find a register in it.
1387 There may be more than one register, but we only try one
1388 of them. */
1389 if (recog_data.constraints[i][0] == 'p'
1390 || EXTRA_ADDRESS_CONSTRAINT (recog_data.constraints[i][0],
1391 recog_data.constraints[i]))
1392 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1393 r1 = XEXP (r1, 0);
1395 /* Avoid making a call-saved register unnecessarily
1396 clobbered. */
1397 hard_reg = get_hard_reg_initial_reg (cfun, r1);
1398 if (hard_reg != NULL_RTX)
1400 if (REG_P (hard_reg)
1401 && REGNO (hard_reg) < FIRST_PSEUDO_REGISTER
1402 && !call_used_regs[REGNO (hard_reg)])
1403 continue;
1406 if (REG_P (r0) || GET_CODE (r0) == SUBREG)
1408 /* We have two priorities for hard register preferences.
1409 If we have a move insn or an insn whose first input
1410 can only be in the same register as the output, give
1411 priority to an equivalence found from that insn. */
1412 int may_save_copy
1413 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1415 if (REG_P (r1) || GET_CODE (r1) == SUBREG)
1416 win = combine_regs (r1, r0, may_save_copy,
1417 insn_number, insn, 0);
1419 if (win)
1420 break;
1424 /* Recognize an insn sequence with an ultimate result
1425 which can safely overlap one of the inputs.
1426 The sequence begins with a CLOBBER of its result,
1427 and ends with an insn that copies the result to itself
1428 and has a REG_EQUAL note for an equivalent formula.
1429 That note indicates what the inputs are.
1430 The result and the input can overlap if each insn in
1431 the sequence either doesn't mention the input
1432 or has a REG_NO_CONFLICT note to inhibit the conflict.
1434 We do the combining test at the CLOBBER so that the
1435 destination register won't have had a quantity number
1436 assigned, since that would prevent combining. */
1438 if (optimize
1439 && GET_CODE (PATTERN (insn)) == CLOBBER
1440 && (r0 = XEXP (PATTERN (insn), 0),
1441 REG_P (r0))
1442 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1443 && XEXP (link, 0) != 0
1444 && NONJUMP_INSN_P (XEXP (link, 0))
1445 && (set = single_set (XEXP (link, 0))) != 0
1446 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1447 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1448 NULL_RTX)) != 0)
1450 if (r1 = XEXP (note, 0), REG_P (r1)
1451 /* Check that we have such a sequence. */
1452 && no_conflict_p (insn, r0, r1))
1453 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1454 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1455 && (r1 = XEXP (XEXP (note, 0), 0),
1456 REG_P (r1) || GET_CODE (r1) == SUBREG)
1457 && no_conflict_p (insn, r0, r1))
1458 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1460 /* Here we care if the operation to be computed is
1461 commutative. */
1462 else if (COMMUTATIVE_P (XEXP (note, 0))
1463 && (r1 = XEXP (XEXP (note, 0), 1),
1464 (REG_P (r1) || GET_CODE (r1) == SUBREG))
1465 && no_conflict_p (insn, r0, r1))
1466 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1468 /* If we did combine something, show the register number
1469 in question so that we know to ignore its death. */
1470 if (win)
1471 no_conflict_combined_regno = REGNO (r1);
1474 /* If registers were just tied, set COMBINED_REGNO
1475 to the number of the register used in this insn
1476 that was tied to the register set in this insn.
1477 This register's qty should not be "killed". */
1479 if (win)
1481 while (GET_CODE (r1) == SUBREG)
1482 r1 = SUBREG_REG (r1);
1483 combined_regno = REGNO (r1);
1486 /* Mark the death of everything that dies in this instruction,
1487 except for anything that was just combined. */
1489 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1490 if (REG_NOTE_KIND (link) == REG_DEAD
1491 && REG_P (XEXP (link, 0))
1492 && combined_regno != (int) REGNO (XEXP (link, 0))
1493 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1494 || ! find_reg_note (insn, REG_NO_CONFLICT,
1495 XEXP (link, 0))))
1496 wipe_dead_reg (XEXP (link, 0), 0);
1498 /* Allocate qty numbers for all registers local to this block
1499 that are born (set) in this instruction.
1500 A pseudo that already has a qty is not changed. */
1502 note_stores (PATTERN (insn), reg_is_set, NULL);
1504 /* If anything is set in this insn and then unused, mark it as dying
1505 after this insn, so it will conflict with our outputs. This
1506 can't match with something that combined, and it doesn't matter
1507 if it did. Do this after the calls to reg_is_set since these
1508 die after, not during, the current insn. */
1510 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1511 if (REG_NOTE_KIND (link) == REG_UNUSED
1512 && REG_P (XEXP (link, 0)))
1513 wipe_dead_reg (XEXP (link, 0), 1);
1515 /* If this is an insn that has a REG_RETVAL note pointing at a
1516 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1517 block, so clear any register number that combined within it. */
1518 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1519 && NONJUMP_INSN_P (XEXP (note, 0))
1520 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1521 no_conflict_combined_regno = -1;
1524 /* Set the registers live after INSN_NUMBER. Note that we never
1525 record the registers live before the block's first insn, since no
1526 pseudos we care about are live before that insn. */
1528 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1529 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1531 if (insn == BB_END (BASIC_BLOCK (b)))
1532 break;
1534 insn = NEXT_INSN (insn);
1537 /* Now every register that is local to this basic block
1538 should have been given a quantity, or else -1 meaning ignore it.
1539 Every quantity should have a known birth and death.
1541 Order the qtys so we assign them registers in order of the
1542 number of suggested registers they need so we allocate those with
1543 the most restrictive needs first. */
1545 qty_order = xmalloc (next_qty * sizeof (int));
1546 for (i = 0; i < next_qty; i++)
1547 qty_order[i] = i;
1549 #define EXCHANGE(I1, I2) \
1550 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1552 switch (next_qty)
1554 case 3:
1555 /* Make qty_order[2] be the one to allocate last. */
1556 if (qty_sugg_compare (0, 1) > 0)
1557 EXCHANGE (0, 1);
1558 if (qty_sugg_compare (1, 2) > 0)
1559 EXCHANGE (2, 1);
1561 /* ... Fall through ... */
1562 case 2:
1563 /* Put the best one to allocate in qty_order[0]. */
1564 if (qty_sugg_compare (0, 1) > 0)
1565 EXCHANGE (0, 1);
1567 /* ... Fall through ... */
1569 case 1:
1570 case 0:
1571 /* Nothing to do here. */
1572 break;
1574 default:
1575 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1578 /* Try to put each quantity in a suggested physical register, if it has one.
1579 This may cause registers to be allocated that otherwise wouldn't be, but
1580 this seems acceptable in local allocation (unlike global allocation). */
1581 for (i = 0; i < next_qty; i++)
1583 q = qty_order[i];
1584 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1585 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1586 0, 1, qty[q].birth, qty[q].death);
1587 else
1588 qty[q].phys_reg = -1;
1591 /* Order the qtys so we assign them registers in order of
1592 decreasing length of life. Normally call qsort, but if we
1593 have only a very small number of quantities, sort them ourselves. */
1595 for (i = 0; i < next_qty; i++)
1596 qty_order[i] = i;
1598 #define EXCHANGE(I1, I2) \
1599 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1601 switch (next_qty)
1603 case 3:
1604 /* Make qty_order[2] be the one to allocate last. */
1605 if (qty_compare (0, 1) > 0)
1606 EXCHANGE (0, 1);
1607 if (qty_compare (1, 2) > 0)
1608 EXCHANGE (2, 1);
1610 /* ... Fall through ... */
1611 case 2:
1612 /* Put the best one to allocate in qty_order[0]. */
1613 if (qty_compare (0, 1) > 0)
1614 EXCHANGE (0, 1);
1616 /* ... Fall through ... */
1618 case 1:
1619 case 0:
1620 /* Nothing to do here. */
1621 break;
1623 default:
1624 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1627 /* Now for each qty that is not a hardware register,
1628 look for a hardware register to put it in.
1629 First try the register class that is cheapest for this qty,
1630 if there is more than one class. */
1632 for (i = 0; i < next_qty; i++)
1634 q = qty_order[i];
1635 if (qty[q].phys_reg < 0)
1637 #ifdef INSN_SCHEDULING
1638 /* These values represent the adjusted lifetime of a qty so
1639 that it conflicts with qtys which appear near the start/end
1640 of this qty's lifetime.
1642 The purpose behind extending the lifetime of this qty is to
1643 discourage the register allocator from creating false
1644 dependencies.
1646 The adjustment value is chosen to indicate that this qty
1647 conflicts with all the qtys in the instructions immediately
1648 before and after the lifetime of this qty.
1650 Experiments have shown that higher values tend to hurt
1651 overall code performance.
1653 If allocation using the extended lifetime fails we will try
1654 again with the qty's unadjusted lifetime. */
1655 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1656 int fake_death = MIN (insn_number * 2 + 1,
1657 qty[q].death + 2 - qty[q].death % 2);
1658 #endif
1660 if (N_REG_CLASSES > 1)
1662 #ifdef INSN_SCHEDULING
1663 /* We try to avoid using hard registers allocated to qtys which
1664 are born immediately after this qty or die immediately before
1665 this qty.
1667 This optimization is only appropriate when we will run
1668 a scheduling pass after reload and we are not optimizing
1669 for code size. */
1670 if (flag_schedule_insns_after_reload
1671 && !optimize_size
1672 && !SMALL_REGISTER_CLASSES)
1674 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1675 qty[q].mode, q, 0, 0,
1676 fake_birth, fake_death);
1677 if (qty[q].phys_reg >= 0)
1678 continue;
1680 #endif
1681 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1682 qty[q].mode, q, 0, 0,
1683 qty[q].birth, qty[q].death);
1684 if (qty[q].phys_reg >= 0)
1685 continue;
1688 #ifdef INSN_SCHEDULING
1689 /* Similarly, avoid false dependencies. */
1690 if (flag_schedule_insns_after_reload
1691 && !optimize_size
1692 && !SMALL_REGISTER_CLASSES
1693 && qty[q].alternate_class != NO_REGS)
1694 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1695 qty[q].mode, q, 0, 0,
1696 fake_birth, fake_death);
1697 #endif
1698 if (qty[q].alternate_class != NO_REGS)
1699 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1700 qty[q].mode, q, 0, 0,
1701 qty[q].birth, qty[q].death);
1705 /* Now propagate the register assignments
1706 to the pseudo regs belonging to the qtys. */
1708 for (q = 0; q < next_qty; q++)
1709 if (qty[q].phys_reg >= 0)
1711 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1712 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1715 /* Clean up. */
1716 free (regs_live_at);
1717 free (qty_order);
1720 /* Compare two quantities' priority for getting real registers.
1721 We give shorter-lived quantities higher priority.
1722 Quantities with more references are also preferred, as are quantities that
1723 require multiple registers. This is the identical prioritization as
1724 done by global-alloc.
1726 We used to give preference to registers with *longer* lives, but using
1727 the same algorithm in both local- and global-alloc can speed up execution
1728 of some programs by as much as a factor of three! */
1730 /* Note that the quotient will never be bigger than
1731 the value of floor_log2 times the maximum number of
1732 times a register can occur in one insn (surely less than 100)
1733 weighted by frequency (max REG_FREQ_MAX).
1734 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1735 QTY_CMP_PRI is also used by qty_sugg_compare. */
1737 #define QTY_CMP_PRI(q) \
1738 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1739 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1741 static int
1742 qty_compare (int q1, int q2)
1744 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1747 static int
1748 qty_compare_1 (const void *q1p, const void *q2p)
1750 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1751 int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1753 if (tem != 0)
1754 return tem;
1756 /* If qtys are equally good, sort by qty number,
1757 so that the results of qsort leave nothing to chance. */
1758 return q1 - q2;
1761 /* Compare two quantities' priority for getting real registers. This version
1762 is called for quantities that have suggested hard registers. First priority
1763 goes to quantities that have copy preferences, then to those that have
1764 normal preferences. Within those groups, quantities with the lower
1765 number of preferences have the highest priority. Of those, we use the same
1766 algorithm as above. */
1768 #define QTY_CMP_SUGG(q) \
1769 (qty_phys_num_copy_sugg[q] \
1770 ? qty_phys_num_copy_sugg[q] \
1771 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1773 static int
1774 qty_sugg_compare (int q1, int q2)
1776 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1778 if (tem != 0)
1779 return tem;
1781 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1784 static int
1785 qty_sugg_compare_1 (const void *q1p, const void *q2p)
1787 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1788 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1790 if (tem != 0)
1791 return tem;
1793 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1794 if (tem != 0)
1795 return tem;
1797 /* If qtys are equally good, sort by qty number,
1798 so that the results of qsort leave nothing to chance. */
1799 return q1 - q2;
1802 #undef QTY_CMP_SUGG
1803 #undef QTY_CMP_PRI
1805 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1806 Returns 1 if have done so, or 0 if cannot.
1808 Combining registers means marking them as having the same quantity
1809 and adjusting the offsets within the quantity if either of
1810 them is a SUBREG.
1812 We don't actually combine a hard reg with a pseudo; instead
1813 we just record the hard reg as the suggestion for the pseudo's quantity.
1814 If we really combined them, we could lose if the pseudo lives
1815 across an insn that clobbers the hard reg (eg, movmem).
1817 ALREADY_DEAD is nonzero if USEDREG is known to be dead even though
1818 there is no REG_DEAD note on INSN. This occurs during the processing
1819 of REG_NO_CONFLICT blocks.
1821 MAY_SAVE_COPY is nonzero if this insn is simply copying USEDREG to
1822 SETREG or if the input and output must share a register.
1823 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1825 There are elaborate checks for the validity of combining. */
1827 static int
1828 combine_regs (rtx usedreg, rtx setreg, int may_save_copy, int insn_number,
1829 rtx insn, int already_dead)
1831 int ureg, sreg;
1832 int offset = 0;
1833 int usize, ssize;
1834 int sqty;
1836 /* Determine the numbers and sizes of registers being used. If a subreg
1837 is present that does not change the entire register, don't consider
1838 this a copy insn. */
1840 while (GET_CODE (usedreg) == SUBREG)
1842 rtx subreg = SUBREG_REG (usedreg);
1844 if (REG_P (subreg))
1846 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1847 may_save_copy = 0;
1849 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1850 offset += subreg_regno_offset (REGNO (subreg),
1851 GET_MODE (subreg),
1852 SUBREG_BYTE (usedreg),
1853 GET_MODE (usedreg));
1854 else
1855 offset += (SUBREG_BYTE (usedreg)
1856 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1859 usedreg = subreg;
1862 if (!REG_P (usedreg))
1863 return 0;
1865 ureg = REGNO (usedreg);
1866 if (ureg < FIRST_PSEUDO_REGISTER)
1867 usize = hard_regno_nregs[ureg][GET_MODE (usedreg)];
1868 else
1869 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1870 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1871 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1873 while (GET_CODE (setreg) == SUBREG)
1875 rtx subreg = SUBREG_REG (setreg);
1877 if (REG_P (subreg))
1879 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1880 may_save_copy = 0;
1882 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1883 offset -= subreg_regno_offset (REGNO (subreg),
1884 GET_MODE (subreg),
1885 SUBREG_BYTE (setreg),
1886 GET_MODE (setreg));
1887 else
1888 offset -= (SUBREG_BYTE (setreg)
1889 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1892 setreg = subreg;
1895 if (!REG_P (setreg))
1896 return 0;
1898 sreg = REGNO (setreg);
1899 if (sreg < FIRST_PSEUDO_REGISTER)
1900 ssize = hard_regno_nregs[sreg][GET_MODE (setreg)];
1901 else
1902 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1903 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1904 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1906 /* If UREG is a pseudo-register that hasn't already been assigned a
1907 quantity number, it means that it is not local to this block or dies
1908 more than once. In either event, we can't do anything with it. */
1909 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1910 /* Do not combine registers unless one fits within the other. */
1911 || (offset > 0 && usize + offset > ssize)
1912 || (offset < 0 && usize + offset < ssize)
1913 /* Do not combine with a smaller already-assigned object
1914 if that smaller object is already combined with something bigger. */
1915 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1916 && usize < qty[reg_qty[ureg]].size)
1917 /* Can't combine if SREG is not a register we can allocate. */
1918 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1919 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1920 These have already been taken care of. This probably wouldn't
1921 combine anyway, but don't take any chances. */
1922 || (ureg >= FIRST_PSEUDO_REGISTER
1923 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1924 /* Don't tie something to itself. In most cases it would make no
1925 difference, but it would screw up if the reg being tied to itself
1926 also dies in this insn. */
1927 || ureg == sreg
1928 /* Don't try to connect two different hardware registers. */
1929 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1930 /* Don't connect two different machine modes if they have different
1931 implications as to which registers may be used. */
1932 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1933 return 0;
1935 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1936 qty_phys_sugg for the pseudo instead of tying them.
1938 Return "failure" so that the lifespan of UREG is terminated here;
1939 that way the two lifespans will be disjoint and nothing will prevent
1940 the pseudo reg from being given this hard reg. */
1942 if (ureg < FIRST_PSEUDO_REGISTER)
1944 /* Allocate a quantity number so we have a place to put our
1945 suggestions. */
1946 if (reg_qty[sreg] == -2)
1947 reg_is_born (setreg, 2 * insn_number);
1949 if (reg_qty[sreg] >= 0)
1951 if (may_save_copy
1952 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1954 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1955 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1957 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1959 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1960 qty_phys_num_sugg[reg_qty[sreg]]++;
1963 return 0;
1966 /* Similarly for SREG a hard register and UREG a pseudo register. */
1968 if (sreg < FIRST_PSEUDO_REGISTER)
1970 if (may_save_copy
1971 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1973 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1974 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1976 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1978 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1979 qty_phys_num_sugg[reg_qty[ureg]]++;
1981 return 0;
1984 /* At this point we know that SREG and UREG are both pseudos.
1985 Do nothing if SREG already has a quantity or is a register that we
1986 don't allocate. */
1987 if (reg_qty[sreg] >= -1
1988 /* If we are not going to let any regs live across calls,
1989 don't tie a call-crossing reg to a non-call-crossing reg. */
1990 || (current_function_has_nonlocal_label
1991 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1992 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1993 return 0;
1995 /* We don't already know about SREG, so tie it to UREG
1996 if this is the last use of UREG, provided the classes they want
1997 are compatible. */
1999 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
2000 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
2002 /* Add SREG to UREG's quantity. */
2003 sqty = reg_qty[ureg];
2004 reg_qty[sreg] = sqty;
2005 reg_offset[sreg] = reg_offset[ureg] + offset;
2006 reg_next_in_qty[sreg] = qty[sqty].first_reg;
2007 qty[sqty].first_reg = sreg;
2009 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
2010 update_qty_class (sqty, sreg);
2012 /* Update info about quantity SQTY. */
2013 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
2014 qty[sqty].n_refs += REG_N_REFS (sreg);
2015 qty[sqty].freq += REG_FREQ (sreg);
2016 if (usize < ssize)
2018 int i;
2020 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
2021 reg_offset[i] -= offset;
2023 qty[sqty].size = ssize;
2024 qty[sqty].mode = GET_MODE (setreg);
2027 else
2028 return 0;
2030 return 1;
2033 /* Return 1 if the preferred class of REG allows it to be tied
2034 to a quantity or register whose class is CLASS.
2035 True if REG's reg class either contains or is contained in CLASS. */
2037 static int
2038 reg_meets_class_p (int reg, enum reg_class class)
2040 enum reg_class rclass = reg_preferred_class (reg);
2041 return (reg_class_subset_p (rclass, class)
2042 || reg_class_subset_p (class, rclass));
2045 /* Update the class of QTYNO assuming that REG is being tied to it. */
2047 static void
2048 update_qty_class (int qtyno, int reg)
2050 enum reg_class rclass = reg_preferred_class (reg);
2051 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
2052 qty[qtyno].min_class = rclass;
2054 rclass = reg_alternate_class (reg);
2055 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
2056 qty[qtyno].alternate_class = rclass;
2059 /* Handle something which alters the value of an rtx REG.
2061 REG is whatever is set or clobbered. SETTER is the rtx that
2062 is modifying the register.
2064 If it is not really a register, we do nothing.
2065 The file-global variables `this_insn' and `this_insn_number'
2066 carry info from `block_alloc'. */
2068 static void
2069 reg_is_set (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED)
2071 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2072 a hard register. These may actually not exist any more. */
2074 if (GET_CODE (reg) != SUBREG
2075 && !REG_P (reg))
2076 return;
2078 /* Mark this register as being born. If it is used in a CLOBBER, mark
2079 it as being born halfway between the previous insn and this insn so that
2080 it conflicts with our inputs but not the outputs of the previous insn. */
2082 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2085 /* Handle beginning of the life of register REG.
2086 BIRTH is the index at which this is happening. */
2088 static void
2089 reg_is_born (rtx reg, int birth)
2091 int regno;
2093 if (GET_CODE (reg) == SUBREG)
2095 regno = REGNO (SUBREG_REG (reg));
2096 if (regno < FIRST_PSEUDO_REGISTER)
2097 regno = subreg_regno (reg);
2099 else
2100 regno = REGNO (reg);
2102 if (regno < FIRST_PSEUDO_REGISTER)
2104 mark_life (regno, GET_MODE (reg), 1);
2106 /* If the register was to have been born earlier that the present
2107 insn, mark it as live where it is actually born. */
2108 if (birth < 2 * this_insn_number)
2109 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2111 else
2113 if (reg_qty[regno] == -2)
2114 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2116 /* If this register has a quantity number, show that it isn't dead. */
2117 if (reg_qty[regno] >= 0)
2118 qty[reg_qty[regno]].death = -1;
2122 /* Record the death of REG in the current insn. If OUTPUT_P is nonzero,
2123 REG is an output that is dying (i.e., it is never used), otherwise it
2124 is an input (the normal case).
2125 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2127 static void
2128 wipe_dead_reg (rtx reg, int output_p)
2130 int regno = REGNO (reg);
2132 /* If this insn has multiple results,
2133 and the dead reg is used in one of the results,
2134 extend its life to after this insn,
2135 so it won't get allocated together with any other result of this insn.
2137 It is unsafe to use !single_set here since it will ignore an unused
2138 output. Just because an output is unused does not mean the compiler
2139 can assume the side effect will not occur. Consider if REG appears
2140 in the address of an output and we reload the output. If we allocate
2141 REG to the same hard register as an unused output we could set the hard
2142 register before the output reload insn. */
2143 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2144 && multiple_sets (this_insn))
2146 int i;
2147 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2149 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2150 if (GET_CODE (set) == SET
2151 && !REG_P (SET_DEST (set))
2152 && !rtx_equal_p (reg, SET_DEST (set))
2153 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2154 output_p = 1;
2158 /* If this register is used in an auto-increment address, then extend its
2159 life to after this insn, so that it won't get allocated together with
2160 the result of this insn. */
2161 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2162 output_p = 1;
2164 if (regno < FIRST_PSEUDO_REGISTER)
2166 mark_life (regno, GET_MODE (reg), 0);
2168 /* If a hard register is dying as an output, mark it as in use at
2169 the beginning of this insn (the above statement would cause this
2170 not to happen). */
2171 if (output_p)
2172 post_mark_life (regno, GET_MODE (reg), 1,
2173 2 * this_insn_number, 2 * this_insn_number + 1);
2176 else if (reg_qty[regno] >= 0)
2177 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2180 /* Find a block of SIZE words of hard regs in reg_class CLASS
2181 that can hold something of machine-mode MODE
2182 (but actually we test only the first of the block for holding MODE)
2183 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2184 and return the number of the first of them.
2185 Return -1 if such a block cannot be found.
2186 If QTYNO crosses calls, insist on a register preserved by calls,
2187 unless ACCEPT_CALL_CLOBBERED is nonzero.
2189 If JUST_TRY_SUGGESTED is nonzero, only try to see if the suggested
2190 register is available. If not, return -1. */
2192 static int
2193 find_free_reg (enum reg_class class, enum machine_mode mode, int qtyno,
2194 int accept_call_clobbered, int just_try_suggested,
2195 int born_index, int dead_index)
2197 int i, ins;
2198 HARD_REG_SET first_used, used;
2199 #ifdef ELIMINABLE_REGS
2200 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2201 #endif
2203 /* Validate our parameters. */
2204 gcc_assert (born_index >= 0 && born_index <= dead_index);
2206 /* Don't let a pseudo live in a reg across a function call
2207 if we might get a nonlocal goto. */
2208 if (current_function_has_nonlocal_label
2209 && qty[qtyno].n_calls_crossed > 0)
2210 return -1;
2212 if (accept_call_clobbered)
2213 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2214 else if (qty[qtyno].n_calls_crossed == 0)
2215 COPY_HARD_REG_SET (used, fixed_reg_set);
2216 else
2217 COPY_HARD_REG_SET (used, call_used_reg_set);
2219 if (accept_call_clobbered)
2220 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2222 for (ins = born_index; ins < dead_index; ins++)
2223 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2225 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2227 /* Don't use the frame pointer reg in local-alloc even if
2228 we may omit the frame pointer, because if we do that and then we
2229 need a frame pointer, reload won't know how to move the pseudo
2230 to another hard reg. It can move only regs made by global-alloc.
2232 This is true of any register that can be eliminated. */
2233 #ifdef ELIMINABLE_REGS
2234 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2235 SET_HARD_REG_BIT (used, eliminables[i].from);
2236 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2237 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2238 that it might be eliminated into. */
2239 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2240 #endif
2241 #else
2242 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2243 #endif
2245 #ifdef CANNOT_CHANGE_MODE_CLASS
2246 cannot_change_mode_set_regs (&used, mode, qty[qtyno].first_reg);
2247 #endif
2249 /* Normally, the registers that can be used for the first register in
2250 a multi-register quantity are the same as those that can be used for
2251 subsequent registers. However, if just trying suggested registers,
2252 restrict our consideration to them. If there are copy-suggested
2253 register, try them. Otherwise, try the arithmetic-suggested
2254 registers. */
2255 COPY_HARD_REG_SET (first_used, used);
2257 if (just_try_suggested)
2259 if (qty_phys_num_copy_sugg[qtyno] != 0)
2260 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2261 else
2262 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2265 /* If all registers are excluded, we can't do anything. */
2266 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2268 /* If at least one would be suitable, test each hard reg. */
2270 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2272 #ifdef REG_ALLOC_ORDER
2273 int regno = reg_alloc_order[i];
2274 #else
2275 int regno = i;
2276 #endif
2277 if (! TEST_HARD_REG_BIT (first_used, regno)
2278 && HARD_REGNO_MODE_OK (regno, mode)
2279 && (qty[qtyno].n_calls_crossed == 0
2280 || accept_call_clobbered
2281 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2283 int j;
2284 int size1 = hard_regno_nregs[regno][mode];
2285 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2286 if (j == size1)
2288 /* Mark that this register is in use between its birth and death
2289 insns. */
2290 post_mark_life (regno, mode, 1, born_index, dead_index);
2291 return regno;
2293 #ifndef REG_ALLOC_ORDER
2294 /* Skip starting points we know will lose. */
2295 i += j;
2296 #endif
2300 fail:
2301 /* If we are just trying suggested register, we have just tried copy-
2302 suggested registers, and there are arithmetic-suggested registers,
2303 try them. */
2305 /* If it would be profitable to allocate a call-clobbered register
2306 and save and restore it around calls, do that. */
2307 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2308 && qty_phys_num_sugg[qtyno] != 0)
2310 /* Don't try the copy-suggested regs again. */
2311 qty_phys_num_copy_sugg[qtyno] = 0;
2312 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2313 born_index, dead_index);
2316 /* We need not check to see if the current function has nonlocal
2317 labels because we don't put any pseudos that are live over calls in
2318 registers in that case. */
2320 if (! accept_call_clobbered
2321 && flag_caller_saves
2322 && ! just_try_suggested
2323 && qty[qtyno].n_calls_crossed != 0
2324 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2325 qty[qtyno].n_calls_crossed))
2327 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2328 if (i >= 0)
2329 caller_save_needed = 1;
2330 return i;
2332 return -1;
2335 /* Mark that REGNO with machine-mode MODE is live starting from the current
2336 insn (if LIFE is nonzero) or dead starting at the current insn (if LIFE
2337 is zero). */
2339 static void
2340 mark_life (int regno, enum machine_mode mode, int life)
2342 int j = hard_regno_nregs[regno][mode];
2343 if (life)
2344 while (--j >= 0)
2345 SET_HARD_REG_BIT (regs_live, regno + j);
2346 else
2347 while (--j >= 0)
2348 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2351 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2352 is nonzero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2353 to insn number DEATH (exclusive). */
2355 static void
2356 post_mark_life (int regno, enum machine_mode mode, int life, int birth,
2357 int death)
2359 int j = hard_regno_nregs[regno][mode];
2360 HARD_REG_SET this_reg;
2362 CLEAR_HARD_REG_SET (this_reg);
2363 while (--j >= 0)
2364 SET_HARD_REG_BIT (this_reg, regno + j);
2366 if (life)
2367 while (birth < death)
2369 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2370 birth++;
2372 else
2373 while (birth < death)
2375 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2376 birth++;
2380 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2381 is the register being clobbered, and R1 is a register being used in
2382 the equivalent expression.
2384 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2385 in which it is used, return 1.
2387 Otherwise, return 0. */
2389 static int
2390 no_conflict_p (rtx insn, rtx r0 ATTRIBUTE_UNUSED, rtx r1)
2392 int ok = 0;
2393 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2394 rtx p, last;
2396 /* If R1 is a hard register, return 0 since we handle this case
2397 when we scan the insns that actually use it. */
2399 if (note == 0
2400 || (REG_P (r1) && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2401 || (GET_CODE (r1) == SUBREG && REG_P (SUBREG_REG (r1))
2402 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2403 return 0;
2405 last = XEXP (note, 0);
2407 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2408 if (INSN_P (p))
2410 if (find_reg_note (p, REG_DEAD, r1))
2411 ok = 1;
2413 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2414 some earlier optimization pass has inserted instructions into
2415 the sequence, and it is not safe to perform this optimization.
2416 Note that emit_no_conflict_block always ensures that this is
2417 true when these sequences are created. */
2418 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2419 return 0;
2422 return ok;
2425 /* Return the number of alternatives for which the constraint string P
2426 indicates that the operand must be equal to operand 0 and that no register
2427 is acceptable. */
2429 static int
2430 requires_inout (const char *p)
2432 char c;
2433 int found_zero = 0;
2434 int reg_allowed = 0;
2435 int num_matching_alts = 0;
2436 int len;
2438 for ( ; (c = *p); p += len)
2440 len = CONSTRAINT_LEN (c, p);
2441 switch (c)
2443 case '=': case '+': case '?':
2444 case '#': case '&': case '!':
2445 case '*': case '%':
2446 case 'm': case '<': case '>': case 'V': case 'o':
2447 case 'E': case 'F': case 'G': case 'H':
2448 case 's': case 'i': case 'n':
2449 case 'I': case 'J': case 'K': case 'L':
2450 case 'M': case 'N': case 'O': case 'P':
2451 case 'X':
2452 /* These don't say anything we care about. */
2453 break;
2455 case ',':
2456 if (found_zero && ! reg_allowed)
2457 num_matching_alts++;
2459 found_zero = reg_allowed = 0;
2460 break;
2462 case '0':
2463 found_zero = 1;
2464 break;
2466 case '1': case '2': case '3': case '4': case '5':
2467 case '6': case '7': case '8': case '9':
2468 /* Skip the balance of the matching constraint. */
2470 p++;
2471 while (ISDIGIT (*p));
2472 len = 0;
2473 break;
2475 default:
2476 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS
2477 && !EXTRA_ADDRESS_CONSTRAINT (c, p))
2478 break;
2479 /* Fall through. */
2480 case 'p':
2481 case 'g': case 'r':
2482 reg_allowed = 1;
2483 break;
2487 if (found_zero && ! reg_allowed)
2488 num_matching_alts++;
2490 return num_matching_alts;
2493 void
2494 dump_local_alloc (FILE *file)
2496 int i;
2497 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2498 if (reg_renumber[i] != -1)
2499 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2502 /* Run old register allocator. Return TRUE if we must exit
2503 rest_of_compilation upon return. */
2504 static void
2505 rest_of_handle_local_alloc (void)
2507 int rebuild_notes;
2509 /* Determine if the current function is a leaf before running reload
2510 since this can impact optimizations done by the prologue and
2511 epilogue thus changing register elimination offsets. */
2512 current_function_is_leaf = leaf_function_p ();
2514 /* Allocate the reg_renumber array. */
2515 allocate_reg_info (max_regno, FALSE, TRUE);
2517 /* And the reg_equiv_memory_loc array. */
2518 VARRAY_GROW (reg_equiv_memory_loc_varray, max_regno);
2519 reg_equiv_memory_loc = &VARRAY_RTX (reg_equiv_memory_loc_varray, 0);
2521 allocate_initial_values (reg_equiv_memory_loc);
2523 regclass (get_insns (), max_reg_num (), dump_file);
2524 rebuild_notes = local_alloc ();
2526 /* Local allocation may have turned an indirect jump into a direct
2527 jump. If so, we must rebuild the JUMP_LABEL fields of jumping
2528 instructions. */
2529 if (rebuild_notes)
2531 timevar_push (TV_JUMP);
2533 rebuild_jump_labels (get_insns ());
2534 purge_all_dead_edges ();
2535 delete_unreachable_blocks ();
2537 timevar_pop (TV_JUMP);
2540 if (dump_enabled_p (pass_local_alloc.static_pass_number))
2542 timevar_push (TV_DUMP);
2543 dump_flow_info (dump_file);
2544 dump_local_alloc (dump_file);
2545 timevar_pop (TV_DUMP);
2549 struct tree_opt_pass pass_local_alloc =
2551 "lreg", /* name */
2552 NULL, /* gate */
2553 rest_of_handle_local_alloc, /* execute */
2554 NULL, /* sub */
2555 NULL, /* next */
2556 0, /* static_pass_number */
2557 TV_LOCAL_ALLOC, /* tv_id */
2558 0, /* properties_required */
2559 0, /* properties_provided */
2560 0, /* properties_destroyed */
2561 0, /* todo_flags_start */
2562 TODO_dump_func |
2563 TODO_ggc_collect, /* todo_flags_finish */
2564 'l' /* letter */