2005-07-07 Adrian Straetling <straetling@de.ibm.com>
[official-gcc.git] / gcc / expmed.c
blobe54f0430cf578a73b6129a8abaf0464a76733c85
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "real.h"
37 #include "recog.h"
38 #include "langhooks.h"
40 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
41 unsigned HOST_WIDE_INT,
42 unsigned HOST_WIDE_INT, rtx);
43 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
44 unsigned HOST_WIDE_INT, rtx);
45 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
46 unsigned HOST_WIDE_INT,
47 unsigned HOST_WIDE_INT,
48 unsigned HOST_WIDE_INT, rtx, int);
49 static rtx mask_rtx (enum machine_mode, int, int, int);
50 static rtx lshift_value (enum machine_mode, rtx, int, int);
51 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
52 unsigned HOST_WIDE_INT, int);
53 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
54 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
55 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
57 /* Test whether a value is zero of a power of two. */
58 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
60 /* Nonzero means divides or modulus operations are relatively cheap for
61 powers of two, so don't use branches; emit the operation instead.
62 Usually, this will mean that the MD file will emit non-branch
63 sequences. */
65 static bool sdiv_pow2_cheap[NUM_MACHINE_MODES];
66 static bool smod_pow2_cheap[NUM_MACHINE_MODES];
68 #ifndef SLOW_UNALIGNED_ACCESS
69 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
70 #endif
72 /* For compilers that support multiple targets with different word sizes,
73 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
74 is the H8/300(H) compiler. */
76 #ifndef MAX_BITS_PER_WORD
77 #define MAX_BITS_PER_WORD BITS_PER_WORD
78 #endif
80 /* Reduce conditional compilation elsewhere. */
81 #ifndef HAVE_insv
82 #define HAVE_insv 0
83 #define CODE_FOR_insv CODE_FOR_nothing
84 #define gen_insv(a,b,c,d) NULL_RTX
85 #endif
86 #ifndef HAVE_extv
87 #define HAVE_extv 0
88 #define CODE_FOR_extv CODE_FOR_nothing
89 #define gen_extv(a,b,c,d) NULL_RTX
90 #endif
91 #ifndef HAVE_extzv
92 #define HAVE_extzv 0
93 #define CODE_FOR_extzv CODE_FOR_nothing
94 #define gen_extzv(a,b,c,d) NULL_RTX
95 #endif
97 /* Cost of various pieces of RTL. Note that some of these are indexed by
98 shift count and some by mode. */
99 static int zero_cost;
100 static int add_cost[NUM_MACHINE_MODES];
101 static int neg_cost[NUM_MACHINE_MODES];
102 static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
103 static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
104 static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
105 static int mul_cost[NUM_MACHINE_MODES];
106 static int div_cost[NUM_MACHINE_MODES];
107 static int mul_widen_cost[NUM_MACHINE_MODES];
108 static int mul_highpart_cost[NUM_MACHINE_MODES];
110 void
111 init_expmed (void)
113 struct
115 struct rtx_def reg; rtunion reg_fld[2];
116 struct rtx_def plus; rtunion plus_fld1;
117 struct rtx_def neg;
118 struct rtx_def udiv; rtunion udiv_fld1;
119 struct rtx_def mult; rtunion mult_fld1;
120 struct rtx_def div; rtunion div_fld1;
121 struct rtx_def mod; rtunion mod_fld1;
122 struct rtx_def zext;
123 struct rtx_def wide_mult; rtunion wide_mult_fld1;
124 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
125 struct rtx_def wide_trunc;
126 struct rtx_def shift; rtunion shift_fld1;
127 struct rtx_def shift_mult; rtunion shift_mult_fld1;
128 struct rtx_def shift_add; rtunion shift_add_fld1;
129 struct rtx_def shift_sub; rtunion shift_sub_fld1;
130 } all;
132 rtx pow2[MAX_BITS_PER_WORD];
133 rtx cint[MAX_BITS_PER_WORD];
134 int m, n;
135 enum machine_mode mode, wider_mode;
137 zero_cost = rtx_cost (const0_rtx, 0);
139 for (m = 1; m < MAX_BITS_PER_WORD; m++)
141 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
142 cint[m] = GEN_INT (m);
145 memset (&all, 0, sizeof all);
147 PUT_CODE (&all.reg, REG);
148 /* Avoid using hard regs in ways which may be unsupported. */
149 REGNO (&all.reg) = LAST_VIRTUAL_REGISTER + 1;
151 PUT_CODE (&all.plus, PLUS);
152 XEXP (&all.plus, 0) = &all.reg;
153 XEXP (&all.plus, 1) = &all.reg;
155 PUT_CODE (&all.neg, NEG);
156 XEXP (&all.neg, 0) = &all.reg;
158 PUT_CODE (&all.udiv, UDIV);
159 XEXP (&all.udiv, 0) = &all.reg;
160 XEXP (&all.udiv, 1) = &all.reg;
162 PUT_CODE (&all.mult, MULT);
163 XEXP (&all.mult, 0) = &all.reg;
164 XEXP (&all.mult, 1) = &all.reg;
166 PUT_CODE (&all.div, DIV);
167 XEXP (&all.div, 0) = &all.reg;
168 XEXP (&all.div, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
170 PUT_CODE (&all.mod, MOD);
171 XEXP (&all.mod, 0) = &all.reg;
172 XEXP (&all.mod, 1) = XEXP (&all.div, 1);
174 PUT_CODE (&all.zext, ZERO_EXTEND);
175 XEXP (&all.zext, 0) = &all.reg;
177 PUT_CODE (&all.wide_mult, MULT);
178 XEXP (&all.wide_mult, 0) = &all.zext;
179 XEXP (&all.wide_mult, 1) = &all.zext;
181 PUT_CODE (&all.wide_lshr, LSHIFTRT);
182 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
184 PUT_CODE (&all.wide_trunc, TRUNCATE);
185 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
187 PUT_CODE (&all.shift, ASHIFT);
188 XEXP (&all.shift, 0) = &all.reg;
190 PUT_CODE (&all.shift_mult, MULT);
191 XEXP (&all.shift_mult, 0) = &all.reg;
193 PUT_CODE (&all.shift_add, PLUS);
194 XEXP (&all.shift_add, 0) = &all.shift_mult;
195 XEXP (&all.shift_add, 1) = &all.reg;
197 PUT_CODE (&all.shift_sub, MINUS);
198 XEXP (&all.shift_sub, 0) = &all.shift_mult;
199 XEXP (&all.shift_sub, 1) = &all.reg;
201 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
202 mode != VOIDmode;
203 mode = GET_MODE_WIDER_MODE (mode))
205 PUT_MODE (&all.reg, mode);
206 PUT_MODE (&all.plus, mode);
207 PUT_MODE (&all.neg, mode);
208 PUT_MODE (&all.udiv, mode);
209 PUT_MODE (&all.mult, mode);
210 PUT_MODE (&all.div, mode);
211 PUT_MODE (&all.mod, mode);
212 PUT_MODE (&all.wide_trunc, mode);
213 PUT_MODE (&all.shift, mode);
214 PUT_MODE (&all.shift_mult, mode);
215 PUT_MODE (&all.shift_add, mode);
216 PUT_MODE (&all.shift_sub, mode);
218 add_cost[mode] = rtx_cost (&all.plus, SET);
219 neg_cost[mode] = rtx_cost (&all.neg, SET);
220 div_cost[mode] = rtx_cost (&all.udiv, SET);
221 mul_cost[mode] = rtx_cost (&all.mult, SET);
223 sdiv_pow2_cheap[mode] = (rtx_cost (&all.div, SET) <= 2 * add_cost[mode]);
224 smod_pow2_cheap[mode] = (rtx_cost (&all.mod, SET) <= 4 * add_cost[mode]);
226 wider_mode = GET_MODE_WIDER_MODE (mode);
227 if (wider_mode != VOIDmode)
229 PUT_MODE (&all.zext, wider_mode);
230 PUT_MODE (&all.wide_mult, wider_mode);
231 PUT_MODE (&all.wide_lshr, wider_mode);
232 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
234 mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
235 mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
238 shift_cost[mode][0] = 0;
239 shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
241 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
242 for (m = 1; m < n; m++)
244 XEXP (&all.shift, 1) = cint[m];
245 XEXP (&all.shift_mult, 1) = pow2[m];
247 shift_cost[mode][m] = rtx_cost (&all.shift, SET);
248 shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
249 shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
254 /* Return an rtx representing minus the value of X.
255 MODE is the intended mode of the result,
256 useful if X is a CONST_INT. */
259 negate_rtx (enum machine_mode mode, rtx x)
261 rtx result = simplify_unary_operation (NEG, mode, x, mode);
263 if (result == 0)
264 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
266 return result;
269 /* Report on the availability of insv/extv/extzv and the desired mode
270 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
271 is false; else the mode of the specified operand. If OPNO is -1,
272 all the caller cares about is whether the insn is available. */
273 enum machine_mode
274 mode_for_extraction (enum extraction_pattern pattern, int opno)
276 const struct insn_data *data;
278 switch (pattern)
280 case EP_insv:
281 if (HAVE_insv)
283 data = &insn_data[CODE_FOR_insv];
284 break;
286 return MAX_MACHINE_MODE;
288 case EP_extv:
289 if (HAVE_extv)
291 data = &insn_data[CODE_FOR_extv];
292 break;
294 return MAX_MACHINE_MODE;
296 case EP_extzv:
297 if (HAVE_extzv)
299 data = &insn_data[CODE_FOR_extzv];
300 break;
302 return MAX_MACHINE_MODE;
304 default:
305 gcc_unreachable ();
308 if (opno == -1)
309 return VOIDmode;
311 /* Everyone who uses this function used to follow it with
312 if (result == VOIDmode) result = word_mode; */
313 if (data->operand[opno].mode == VOIDmode)
314 return word_mode;
315 return data->operand[opno].mode;
319 /* Generate code to store value from rtx VALUE
320 into a bit-field within structure STR_RTX
321 containing BITSIZE bits starting at bit BITNUM.
322 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
323 ALIGN is the alignment that STR_RTX is known to have.
324 TOTAL_SIZE is the size of the structure in bytes, or -1 if varying. */
326 /* ??? Note that there are two different ideas here for how
327 to determine the size to count bits within, for a register.
328 One is BITS_PER_WORD, and the other is the size of operand 3
329 of the insv pattern.
331 If operand 3 of the insv pattern is VOIDmode, then we will use BITS_PER_WORD
332 else, we use the mode of operand 3. */
335 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
336 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
337 rtx value)
339 unsigned int unit
340 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
341 unsigned HOST_WIDE_INT offset, bitpos;
342 rtx op0 = str_rtx;
343 int byte_offset;
344 rtx orig_value;
346 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
348 while (GET_CODE (op0) == SUBREG)
350 /* The following line once was done only if WORDS_BIG_ENDIAN,
351 but I think that is a mistake. WORDS_BIG_ENDIAN is
352 meaningful at a much higher level; when structures are copied
353 between memory and regs, the higher-numbered regs
354 always get higher addresses. */
355 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
356 op0 = SUBREG_REG (op0);
359 /* No action is needed if the target is a register and if the field
360 lies completely outside that register. This can occur if the source
361 code contains an out-of-bounds access to a small array. */
362 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
363 return value;
365 /* Use vec_set patterns for inserting parts of vectors whenever
366 available. */
367 if (VECTOR_MODE_P (GET_MODE (op0))
368 && !MEM_P (op0)
369 && (vec_set_optab->handlers[GET_MODE (op0)].insn_code
370 != CODE_FOR_nothing)
371 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
372 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
373 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
375 enum machine_mode outermode = GET_MODE (op0);
376 enum machine_mode innermode = GET_MODE_INNER (outermode);
377 int icode = (int) vec_set_optab->handlers[outermode].insn_code;
378 int pos = bitnum / GET_MODE_BITSIZE (innermode);
379 rtx rtxpos = GEN_INT (pos);
380 rtx src = value;
381 rtx dest = op0;
382 rtx pat, seq;
383 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
384 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
385 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
387 start_sequence ();
389 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
390 src = copy_to_mode_reg (mode1, src);
392 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
393 rtxpos = copy_to_mode_reg (mode1, rtxpos);
395 /* We could handle this, but we should always be called with a pseudo
396 for our targets and all insns should take them as outputs. */
397 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
398 && (*insn_data[icode].operand[1].predicate) (src, mode1)
399 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
400 pat = GEN_FCN (icode) (dest, src, rtxpos);
401 seq = get_insns ();
402 end_sequence ();
403 if (pat)
405 emit_insn (seq);
406 emit_insn (pat);
407 return dest;
411 /* If the target is a register, overwriting the entire object, or storing
412 a full-word or multi-word field can be done with just a SUBREG.
414 If the target is memory, storing any naturally aligned field can be
415 done with a simple store. For targets that support fast unaligned
416 memory, any naturally sized, unit aligned field can be done directly. */
418 offset = bitnum / unit;
419 bitpos = bitnum % unit;
420 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
421 + (offset * UNITS_PER_WORD);
423 if (bitpos == 0
424 && bitsize == GET_MODE_BITSIZE (fieldmode)
425 && (!MEM_P (op0)
426 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
427 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
428 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
429 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
430 || (offset * BITS_PER_UNIT % bitsize == 0
431 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
433 if (GET_MODE (op0) != fieldmode)
435 if (MEM_P (op0))
436 op0 = adjust_address (op0, fieldmode, offset);
437 else
438 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
439 byte_offset);
441 emit_move_insn (op0, value);
442 return value;
445 /* Make sure we are playing with integral modes. Pun with subregs
446 if we aren't. This must come after the entire register case above,
447 since that case is valid for any mode. The following cases are only
448 valid for integral modes. */
450 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
451 if (imode != GET_MODE (op0))
453 if (MEM_P (op0))
454 op0 = adjust_address (op0, imode, 0);
455 else
457 gcc_assert (imode != BLKmode);
458 op0 = gen_lowpart (imode, op0);
463 /* We may be accessing data outside the field, which means
464 we can alias adjacent data. */
465 if (MEM_P (op0))
467 op0 = shallow_copy_rtx (op0);
468 set_mem_alias_set (op0, 0);
469 set_mem_expr (op0, 0);
472 /* If OP0 is a register, BITPOS must count within a word.
473 But as we have it, it counts within whatever size OP0 now has.
474 On a bigendian machine, these are not the same, so convert. */
475 if (BYTES_BIG_ENDIAN
476 && !MEM_P (op0)
477 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
478 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
480 /* Storing an lsb-aligned field in a register
481 can be done with a movestrict instruction. */
483 if (!MEM_P (op0)
484 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
485 && bitsize == GET_MODE_BITSIZE (fieldmode)
486 && (movstrict_optab->handlers[fieldmode].insn_code
487 != CODE_FOR_nothing))
489 int icode = movstrict_optab->handlers[fieldmode].insn_code;
491 /* Get appropriate low part of the value being stored. */
492 if (GET_CODE (value) == CONST_INT || REG_P (value))
493 value = gen_lowpart (fieldmode, value);
494 else if (!(GET_CODE (value) == SYMBOL_REF
495 || GET_CODE (value) == LABEL_REF
496 || GET_CODE (value) == CONST))
497 value = convert_to_mode (fieldmode, value, 0);
499 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
500 value = copy_to_mode_reg (fieldmode, value);
502 if (GET_CODE (op0) == SUBREG)
504 /* Else we've got some float mode source being extracted into
505 a different float mode destination -- this combination of
506 subregs results in Severe Tire Damage. */
507 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
508 || GET_MODE_CLASS (fieldmode) == MODE_INT
509 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
510 op0 = SUBREG_REG (op0);
513 emit_insn (GEN_FCN (icode)
514 (gen_rtx_SUBREG (fieldmode, op0,
515 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
516 + (offset * UNITS_PER_WORD)),
517 value));
519 return value;
522 /* Handle fields bigger than a word. */
524 if (bitsize > BITS_PER_WORD)
526 /* Here we transfer the words of the field
527 in the order least significant first.
528 This is because the most significant word is the one which may
529 be less than full.
530 However, only do that if the value is not BLKmode. */
532 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
533 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
534 unsigned int i;
536 /* This is the mode we must force value to, so that there will be enough
537 subwords to extract. Note that fieldmode will often (always?) be
538 VOIDmode, because that is what store_field uses to indicate that this
539 is a bit field, but passing VOIDmode to operand_subword_force
540 is not allowed. */
541 fieldmode = GET_MODE (value);
542 if (fieldmode == VOIDmode)
543 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
545 for (i = 0; i < nwords; i++)
547 /* If I is 0, use the low-order word in both field and target;
548 if I is 1, use the next to lowest word; and so on. */
549 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
550 unsigned int bit_offset = (backwards
551 ? MAX ((int) bitsize - ((int) i + 1)
552 * BITS_PER_WORD,
554 : (int) i * BITS_PER_WORD);
556 store_bit_field (op0, MIN (BITS_PER_WORD,
557 bitsize - i * BITS_PER_WORD),
558 bitnum + bit_offset, word_mode,
559 operand_subword_force (value, wordnum, fieldmode));
561 return value;
564 /* From here on we can assume that the field to be stored in is
565 a full-word (whatever type that is), since it is shorter than a word. */
567 /* OFFSET is the number of words or bytes (UNIT says which)
568 from STR_RTX to the first word or byte containing part of the field. */
570 if (!MEM_P (op0))
572 if (offset != 0
573 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
575 if (!REG_P (op0))
577 /* Since this is a destination (lvalue), we can't copy
578 it to a pseudo. We can remove a SUBREG that does not
579 change the size of the operand. Such a SUBREG may
580 have been added above. */
581 gcc_assert (GET_CODE (op0) == SUBREG
582 && (GET_MODE_SIZE (GET_MODE (op0))
583 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
584 op0 = SUBREG_REG (op0);
586 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
587 op0, (offset * UNITS_PER_WORD));
589 offset = 0;
592 /* If VALUE has a floating-point or complex mode, access it as an
593 integer of the corresponding size. This can occur on a machine
594 with 64 bit registers that uses SFmode for float. It can also
595 occur for unaligned float or complex fields. */
596 orig_value = value;
597 if (GET_MODE (value) != VOIDmode
598 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
599 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
601 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
602 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
605 /* Now OFFSET is nonzero only if OP0 is memory
606 and is therefore always measured in bytes. */
608 if (HAVE_insv
609 && GET_MODE (value) != BLKmode
610 && !(bitsize == 1 && GET_CODE (value) == CONST_INT)
611 /* Ensure insv's size is wide enough for this field. */
612 && (GET_MODE_BITSIZE (op_mode) >= bitsize)
613 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
614 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode))))
616 int xbitpos = bitpos;
617 rtx value1;
618 rtx xop0 = op0;
619 rtx last = get_last_insn ();
620 rtx pat;
621 enum machine_mode maxmode = mode_for_extraction (EP_insv, 3);
622 int save_volatile_ok = volatile_ok;
624 volatile_ok = 1;
626 /* If this machine's insv can only insert into a register, copy OP0
627 into a register and save it back later. */
628 if (MEM_P (op0)
629 && ! ((*insn_data[(int) CODE_FOR_insv].operand[0].predicate)
630 (op0, VOIDmode)))
632 rtx tempreg;
633 enum machine_mode bestmode;
635 /* Get the mode to use for inserting into this field. If OP0 is
636 BLKmode, get the smallest mode consistent with the alignment. If
637 OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
638 mode. Otherwise, use the smallest mode containing the field. */
640 if (GET_MODE (op0) == BLKmode
641 || GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
642 bestmode
643 = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0), maxmode,
644 MEM_VOLATILE_P (op0));
645 else
646 bestmode = GET_MODE (op0);
648 if (bestmode == VOIDmode
649 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
650 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
651 goto insv_loses;
653 /* Adjust address to point to the containing unit of that mode.
654 Compute offset as multiple of this unit, counting in bytes. */
655 unit = GET_MODE_BITSIZE (bestmode);
656 offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
657 bitpos = bitnum % unit;
658 op0 = adjust_address (op0, bestmode, offset);
660 /* Fetch that unit, store the bitfield in it, then store
661 the unit. */
662 tempreg = copy_to_reg (op0);
663 store_bit_field (tempreg, bitsize, bitpos, fieldmode, orig_value);
664 emit_move_insn (op0, tempreg);
665 return value;
667 volatile_ok = save_volatile_ok;
669 /* Add OFFSET into OP0's address. */
670 if (MEM_P (xop0))
671 xop0 = adjust_address (xop0, byte_mode, offset);
673 /* If xop0 is a register, we need it in MAXMODE
674 to make it acceptable to the format of insv. */
675 if (GET_CODE (xop0) == SUBREG)
676 /* We can't just change the mode, because this might clobber op0,
677 and we will need the original value of op0 if insv fails. */
678 xop0 = gen_rtx_SUBREG (maxmode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
679 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
680 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
682 /* On big-endian machines, we count bits from the most significant.
683 If the bit field insn does not, we must invert. */
685 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
686 xbitpos = unit - bitsize - xbitpos;
688 /* We have been counting XBITPOS within UNIT.
689 Count instead within the size of the register. */
690 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
691 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
693 unit = GET_MODE_BITSIZE (maxmode);
695 /* Convert VALUE to maxmode (which insv insn wants) in VALUE1. */
696 value1 = value;
697 if (GET_MODE (value) != maxmode)
699 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
701 /* Optimization: Don't bother really extending VALUE
702 if it has all the bits we will actually use. However,
703 if we must narrow it, be sure we do it correctly. */
705 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
707 rtx tmp;
709 tmp = simplify_subreg (maxmode, value1, GET_MODE (value), 0);
710 if (! tmp)
711 tmp = simplify_gen_subreg (maxmode,
712 force_reg (GET_MODE (value),
713 value1),
714 GET_MODE (value), 0);
715 value1 = tmp;
717 else
718 value1 = gen_lowpart (maxmode, value1);
720 else if (GET_CODE (value) == CONST_INT)
721 value1 = gen_int_mode (INTVAL (value), maxmode);
722 else
723 /* Parse phase is supposed to make VALUE's data type
724 match that of the component reference, which is a type
725 at least as wide as the field; so VALUE should have
726 a mode that corresponds to that type. */
727 gcc_assert (CONSTANT_P (value));
730 /* If this machine's insv insists on a register,
731 get VALUE1 into a register. */
732 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
733 (value1, maxmode)))
734 value1 = force_reg (maxmode, value1);
736 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
737 if (pat)
738 emit_insn (pat);
739 else
741 delete_insns_since (last);
742 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
745 else
746 insv_loses:
747 /* Insv is not available; store using shifts and boolean ops. */
748 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
749 return value;
752 /* Use shifts and boolean operations to store VALUE
753 into a bit field of width BITSIZE
754 in a memory location specified by OP0 except offset by OFFSET bytes.
755 (OFFSET must be 0 if OP0 is a register.)
756 The field starts at position BITPOS within the byte.
757 (If OP0 is a register, it may be a full word or a narrower mode,
758 but BITPOS still counts within a full word,
759 which is significant on bigendian machines.) */
761 static void
762 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
763 unsigned HOST_WIDE_INT bitsize,
764 unsigned HOST_WIDE_INT bitpos, rtx value)
766 enum machine_mode mode;
767 unsigned int total_bits = BITS_PER_WORD;
768 rtx subtarget, temp;
769 int all_zero = 0;
770 int all_one = 0;
772 /* There is a case not handled here:
773 a structure with a known alignment of just a halfword
774 and a field split across two aligned halfwords within the structure.
775 Or likewise a structure with a known alignment of just a byte
776 and a field split across two bytes.
777 Such cases are not supposed to be able to occur. */
779 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
781 gcc_assert (!offset);
782 /* Special treatment for a bit field split across two registers. */
783 if (bitsize + bitpos > BITS_PER_WORD)
785 store_split_bit_field (op0, bitsize, bitpos, value);
786 return;
789 else
791 /* Get the proper mode to use for this field. We want a mode that
792 includes the entire field. If such a mode would be larger than
793 a word, we won't be doing the extraction the normal way.
794 We don't want a mode bigger than the destination. */
796 mode = GET_MODE (op0);
797 if (GET_MODE_BITSIZE (mode) == 0
798 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
799 mode = word_mode;
800 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
801 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
803 if (mode == VOIDmode)
805 /* The only way this should occur is if the field spans word
806 boundaries. */
807 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
808 value);
809 return;
812 total_bits = GET_MODE_BITSIZE (mode);
814 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
815 be in the range 0 to total_bits-1, and put any excess bytes in
816 OFFSET. */
817 if (bitpos >= total_bits)
819 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
820 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
821 * BITS_PER_UNIT);
824 /* Get ref to an aligned byte, halfword, or word containing the field.
825 Adjust BITPOS to be position within a word,
826 and OFFSET to be the offset of that word.
827 Then alter OP0 to refer to that word. */
828 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
829 offset -= (offset % (total_bits / BITS_PER_UNIT));
830 op0 = adjust_address (op0, mode, offset);
833 mode = GET_MODE (op0);
835 /* Now MODE is either some integral mode for a MEM as OP0,
836 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
837 The bit field is contained entirely within OP0.
838 BITPOS is the starting bit number within OP0.
839 (OP0's mode may actually be narrower than MODE.) */
841 if (BYTES_BIG_ENDIAN)
842 /* BITPOS is the distance between our msb
843 and that of the containing datum.
844 Convert it to the distance from the lsb. */
845 bitpos = total_bits - bitsize - bitpos;
847 /* Now BITPOS is always the distance between our lsb
848 and that of OP0. */
850 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
851 we must first convert its mode to MODE. */
853 if (GET_CODE (value) == CONST_INT)
855 HOST_WIDE_INT v = INTVAL (value);
857 if (bitsize < HOST_BITS_PER_WIDE_INT)
858 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
860 if (v == 0)
861 all_zero = 1;
862 else if ((bitsize < HOST_BITS_PER_WIDE_INT
863 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
864 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
865 all_one = 1;
867 value = lshift_value (mode, value, bitpos, bitsize);
869 else
871 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
872 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
874 if (GET_MODE (value) != mode)
876 if ((REG_P (value) || GET_CODE (value) == SUBREG)
877 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
878 value = gen_lowpart (mode, value);
879 else
880 value = convert_to_mode (mode, value, 1);
883 if (must_and)
884 value = expand_binop (mode, and_optab, value,
885 mask_rtx (mode, 0, bitsize, 0),
886 NULL_RTX, 1, OPTAB_LIB_WIDEN);
887 if (bitpos > 0)
888 value = expand_shift (LSHIFT_EXPR, mode, value,
889 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
892 /* Now clear the chosen bits in OP0,
893 except that if VALUE is -1 we need not bother. */
895 subtarget = op0;
897 if (! all_one)
899 temp = expand_binop (mode, and_optab, op0,
900 mask_rtx (mode, bitpos, bitsize, 1),
901 subtarget, 1, OPTAB_LIB_WIDEN);
902 subtarget = temp;
904 else
905 temp = op0;
907 /* Now logical-or VALUE into OP0, unless it is zero. */
909 if (! all_zero)
910 temp = expand_binop (mode, ior_optab, temp, value,
911 subtarget, 1, OPTAB_LIB_WIDEN);
912 if (op0 != temp)
913 emit_move_insn (op0, temp);
916 /* Store a bit field that is split across multiple accessible memory objects.
918 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
919 BITSIZE is the field width; BITPOS the position of its first bit
920 (within the word).
921 VALUE is the value to store.
923 This does not yet handle fields wider than BITS_PER_WORD. */
925 static void
926 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
927 unsigned HOST_WIDE_INT bitpos, rtx value)
929 unsigned int unit;
930 unsigned int bitsdone = 0;
932 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
933 much at a time. */
934 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
935 unit = BITS_PER_WORD;
936 else
937 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
939 /* If VALUE is a constant other than a CONST_INT, get it into a register in
940 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
941 that VALUE might be a floating-point constant. */
942 if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
944 rtx word = gen_lowpart_common (word_mode, value);
946 if (word && (value != word))
947 value = word;
948 else
949 value = gen_lowpart_common (word_mode,
950 force_reg (GET_MODE (value) != VOIDmode
951 ? GET_MODE (value)
952 : word_mode, value));
955 while (bitsdone < bitsize)
957 unsigned HOST_WIDE_INT thissize;
958 rtx part, word;
959 unsigned HOST_WIDE_INT thispos;
960 unsigned HOST_WIDE_INT offset;
962 offset = (bitpos + bitsdone) / unit;
963 thispos = (bitpos + bitsdone) % unit;
965 /* THISSIZE must not overrun a word boundary. Otherwise,
966 store_fixed_bit_field will call us again, and we will mutually
967 recurse forever. */
968 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
969 thissize = MIN (thissize, unit - thispos);
971 if (BYTES_BIG_ENDIAN)
973 int total_bits;
975 /* We must do an endian conversion exactly the same way as it is
976 done in extract_bit_field, so that the two calls to
977 extract_fixed_bit_field will have comparable arguments. */
978 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
979 total_bits = BITS_PER_WORD;
980 else
981 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
983 /* Fetch successively less significant portions. */
984 if (GET_CODE (value) == CONST_INT)
985 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
986 >> (bitsize - bitsdone - thissize))
987 & (((HOST_WIDE_INT) 1 << thissize) - 1));
988 else
989 /* The args are chosen so that the last part includes the
990 lsb. Give extract_bit_field the value it needs (with
991 endianness compensation) to fetch the piece we want. */
992 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
993 total_bits - bitsize + bitsdone,
994 NULL_RTX, 1);
996 else
998 /* Fetch successively more significant portions. */
999 if (GET_CODE (value) == CONST_INT)
1000 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1001 >> bitsdone)
1002 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1003 else
1004 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1005 bitsdone, NULL_RTX, 1);
1008 /* If OP0 is a register, then handle OFFSET here.
1010 When handling multiword bitfields, extract_bit_field may pass
1011 down a word_mode SUBREG of a larger REG for a bitfield that actually
1012 crosses a word boundary. Thus, for a SUBREG, we must find
1013 the current word starting from the base register. */
1014 if (GET_CODE (op0) == SUBREG)
1016 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1017 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1018 GET_MODE (SUBREG_REG (op0)));
1019 offset = 0;
1021 else if (REG_P (op0))
1023 word = operand_subword_force (op0, offset, GET_MODE (op0));
1024 offset = 0;
1026 else
1027 word = op0;
1029 /* OFFSET is in UNITs, and UNIT is in bits.
1030 store_fixed_bit_field wants offset in bytes. */
1031 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1032 thispos, part);
1033 bitsdone += thissize;
1037 /* Generate code to extract a byte-field from STR_RTX
1038 containing BITSIZE bits, starting at BITNUM,
1039 and put it in TARGET if possible (if TARGET is nonzero).
1040 Regardless of TARGET, we return the rtx for where the value is placed.
1042 STR_RTX is the structure containing the byte (a REG or MEM).
1043 UNSIGNEDP is nonzero if this is an unsigned bit field.
1044 MODE is the natural mode of the field value once extracted.
1045 TMODE is the mode the caller would like the value to have;
1046 but the value may be returned with type MODE instead.
1048 TOTAL_SIZE is the size in bytes of the containing structure,
1049 or -1 if varying.
1051 If a TARGET is specified and we can store in it at no extra cost,
1052 we do so, and return TARGET.
1053 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1054 if they are equally easy. */
1057 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1058 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1059 enum machine_mode mode, enum machine_mode tmode)
1061 unsigned int unit
1062 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1063 unsigned HOST_WIDE_INT offset, bitpos;
1064 rtx op0 = str_rtx;
1065 rtx spec_target = target;
1066 rtx spec_target_subreg = 0;
1067 enum machine_mode int_mode;
1068 enum machine_mode extv_mode = mode_for_extraction (EP_extv, 0);
1069 enum machine_mode extzv_mode = mode_for_extraction (EP_extzv, 0);
1070 enum machine_mode mode1;
1071 int byte_offset;
1073 if (tmode == VOIDmode)
1074 tmode = mode;
1076 while (GET_CODE (op0) == SUBREG)
1078 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1079 op0 = SUBREG_REG (op0);
1082 /* If we have an out-of-bounds access to a register, just return an
1083 uninitialized register of the required mode. This can occur if the
1084 source code contains an out-of-bounds access to a small array. */
1085 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1086 return gen_reg_rtx (tmode);
1088 if (REG_P (op0)
1089 && mode == GET_MODE (op0)
1090 && bitnum == 0
1091 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1093 /* We're trying to extract a full register from itself. */
1094 return op0;
1097 /* Use vec_extract patterns for extracting parts of vectors whenever
1098 available. */
1099 if (VECTOR_MODE_P (GET_MODE (op0))
1100 && !MEM_P (op0)
1101 && (vec_extract_optab->handlers[GET_MODE (op0)].insn_code
1102 != CODE_FOR_nothing)
1103 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1104 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1106 enum machine_mode outermode = GET_MODE (op0);
1107 enum machine_mode innermode = GET_MODE_INNER (outermode);
1108 int icode = (int) vec_extract_optab->handlers[outermode].insn_code;
1109 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1110 rtx rtxpos = GEN_INT (pos);
1111 rtx src = op0;
1112 rtx dest = NULL, pat, seq;
1113 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1114 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1115 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1117 if (innermode == tmode || innermode == mode)
1118 dest = target;
1120 if (!dest)
1121 dest = gen_reg_rtx (innermode);
1123 start_sequence ();
1125 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1126 dest = copy_to_mode_reg (mode0, dest);
1128 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1129 src = copy_to_mode_reg (mode1, src);
1131 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1132 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1134 /* We could handle this, but we should always be called with a pseudo
1135 for our targets and all insns should take them as outputs. */
1136 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1137 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1138 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1140 pat = GEN_FCN (icode) (dest, src, rtxpos);
1141 seq = get_insns ();
1142 end_sequence ();
1143 if (pat)
1145 emit_insn (seq);
1146 emit_insn (pat);
1147 return dest;
1151 /* Make sure we are playing with integral modes. Pun with subregs
1152 if we aren't. */
1154 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1155 if (imode != GET_MODE (op0))
1157 if (MEM_P (op0))
1158 op0 = adjust_address (op0, imode, 0);
1159 else
1161 gcc_assert (imode != BLKmode);
1162 op0 = gen_lowpart (imode, op0);
1164 /* If we got a SUBREG, force it into a register since we
1165 aren't going to be able to do another SUBREG on it. */
1166 if (GET_CODE (op0) == SUBREG)
1167 op0 = force_reg (imode, op0);
1172 /* We may be accessing data outside the field, which means
1173 we can alias adjacent data. */
1174 if (MEM_P (op0))
1176 op0 = shallow_copy_rtx (op0);
1177 set_mem_alias_set (op0, 0);
1178 set_mem_expr (op0, 0);
1181 /* Extraction of a full-word or multi-word value from a structure
1182 in a register or aligned memory can be done with just a SUBREG.
1183 A subword value in the least significant part of a register
1184 can also be extracted with a SUBREG. For this, we need the
1185 byte offset of the value in op0. */
1187 bitpos = bitnum % unit;
1188 offset = bitnum / unit;
1189 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1191 /* If OP0 is a register, BITPOS must count within a word.
1192 But as we have it, it counts within whatever size OP0 now has.
1193 On a bigendian machine, these are not the same, so convert. */
1194 if (BYTES_BIG_ENDIAN
1195 && !MEM_P (op0)
1196 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1197 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1199 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1200 If that's wrong, the solution is to test for it and set TARGET to 0
1201 if needed. */
1203 /* Only scalar integer modes can be converted via subregs. There is an
1204 additional problem for FP modes here in that they can have a precision
1205 which is different from the size. mode_for_size uses precision, but
1206 we want a mode based on the size, so we must avoid calling it for FP
1207 modes. */
1208 mode1 = (SCALAR_INT_MODE_P (tmode)
1209 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1210 : mode);
1212 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1213 && bitpos % BITS_PER_WORD == 0)
1214 || (mode1 != BLKmode
1215 /* ??? The big endian test here is wrong. This is correct
1216 if the value is in a register, and if mode_for_size is not
1217 the same mode as op0. This causes us to get unnecessarily
1218 inefficient code from the Thumb port when -mbig-endian. */
1219 && (BYTES_BIG_ENDIAN
1220 ? bitpos + bitsize == BITS_PER_WORD
1221 : bitpos == 0)))
1222 && ((!MEM_P (op0)
1223 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1224 GET_MODE_BITSIZE (GET_MODE (op0)))
1225 && GET_MODE_SIZE (mode1) != 0
1226 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1227 || (MEM_P (op0)
1228 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1229 || (offset * BITS_PER_UNIT % bitsize == 0
1230 && MEM_ALIGN (op0) % bitsize == 0)))))
1232 if (mode1 != GET_MODE (op0))
1234 if (MEM_P (op0))
1235 op0 = adjust_address (op0, mode1, offset);
1236 else
1238 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1239 byte_offset);
1240 if (sub == NULL)
1241 goto no_subreg_mode_swap;
1242 op0 = sub;
1245 if (mode1 != mode)
1246 return convert_to_mode (tmode, op0, unsignedp);
1247 return op0;
1249 no_subreg_mode_swap:
1251 /* Handle fields bigger than a word. */
1253 if (bitsize > BITS_PER_WORD)
1255 /* Here we transfer the words of the field
1256 in the order least significant first.
1257 This is because the most significant word is the one which may
1258 be less than full. */
1260 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1261 unsigned int i;
1263 if (target == 0 || !REG_P (target))
1264 target = gen_reg_rtx (mode);
1266 /* Indicate for flow that the entire target reg is being set. */
1267 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1269 for (i = 0; i < nwords; i++)
1271 /* If I is 0, use the low-order word in both field and target;
1272 if I is 1, use the next to lowest word; and so on. */
1273 /* Word number in TARGET to use. */
1274 unsigned int wordnum
1275 = (WORDS_BIG_ENDIAN
1276 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1277 : i);
1278 /* Offset from start of field in OP0. */
1279 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1280 ? MAX (0, ((int) bitsize - ((int) i + 1)
1281 * (int) BITS_PER_WORD))
1282 : (int) i * BITS_PER_WORD);
1283 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1284 rtx result_part
1285 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1286 bitsize - i * BITS_PER_WORD),
1287 bitnum + bit_offset, 1, target_part, mode,
1288 word_mode);
1290 gcc_assert (target_part);
1292 if (result_part != target_part)
1293 emit_move_insn (target_part, result_part);
1296 if (unsignedp)
1298 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1299 need to be zero'd out. */
1300 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1302 unsigned int i, total_words;
1304 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1305 for (i = nwords; i < total_words; i++)
1306 emit_move_insn
1307 (operand_subword (target,
1308 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1309 1, VOIDmode),
1310 const0_rtx);
1312 return target;
1315 /* Signed bit field: sign-extend with two arithmetic shifts. */
1316 target = expand_shift (LSHIFT_EXPR, mode, target,
1317 build_int_cst (NULL_TREE,
1318 GET_MODE_BITSIZE (mode) - bitsize),
1319 NULL_RTX, 0);
1320 return expand_shift (RSHIFT_EXPR, mode, target,
1321 build_int_cst (NULL_TREE,
1322 GET_MODE_BITSIZE (mode) - bitsize),
1323 NULL_RTX, 0);
1326 /* From here on we know the desired field is smaller than a word. */
1328 /* Check if there is a correspondingly-sized integer field, so we can
1329 safely extract it as one size of integer, if necessary; then
1330 truncate or extend to the size that is wanted; then use SUBREGs or
1331 convert_to_mode to get one of the modes we really wanted. */
1333 int_mode = int_mode_for_mode (tmode);
1334 if (int_mode == BLKmode)
1335 int_mode = int_mode_for_mode (mode);
1336 /* Should probably push op0 out to memory and then do a load. */
1337 gcc_assert (int_mode != BLKmode);
1339 /* OFFSET is the number of words or bytes (UNIT says which)
1340 from STR_RTX to the first word or byte containing part of the field. */
1341 if (!MEM_P (op0))
1343 if (offset != 0
1344 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1346 if (!REG_P (op0))
1347 op0 = copy_to_reg (op0);
1348 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1349 op0, (offset * UNITS_PER_WORD));
1351 offset = 0;
1354 /* Now OFFSET is nonzero only for memory operands. */
1356 if (unsignedp)
1358 if (HAVE_extzv
1359 && (GET_MODE_BITSIZE (extzv_mode) >= bitsize)
1360 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1361 && (bitsize + bitpos > GET_MODE_BITSIZE (extzv_mode))))
1363 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1364 rtx bitsize_rtx, bitpos_rtx;
1365 rtx last = get_last_insn ();
1366 rtx xop0 = op0;
1367 rtx xtarget = target;
1368 rtx xspec_target = spec_target;
1369 rtx xspec_target_subreg = spec_target_subreg;
1370 rtx pat;
1371 enum machine_mode maxmode = mode_for_extraction (EP_extzv, 0);
1373 if (MEM_P (xop0))
1375 int save_volatile_ok = volatile_ok;
1376 volatile_ok = 1;
1378 /* Is the memory operand acceptable? */
1379 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[1].predicate)
1380 (xop0, GET_MODE (xop0))))
1382 /* No, load into a reg and extract from there. */
1383 enum machine_mode bestmode;
1385 /* Get the mode to use for inserting into this field. If
1386 OP0 is BLKmode, get the smallest mode consistent with the
1387 alignment. If OP0 is a non-BLKmode object that is no
1388 wider than MAXMODE, use its mode. Otherwise, use the
1389 smallest mode containing the field. */
1391 if (GET_MODE (xop0) == BLKmode
1392 || (GET_MODE_SIZE (GET_MODE (op0))
1393 > GET_MODE_SIZE (maxmode)))
1394 bestmode = get_best_mode (bitsize, bitnum,
1395 MEM_ALIGN (xop0), maxmode,
1396 MEM_VOLATILE_P (xop0));
1397 else
1398 bestmode = GET_MODE (xop0);
1400 if (bestmode == VOIDmode
1401 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1402 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1403 goto extzv_loses;
1405 /* Compute offset as multiple of this unit,
1406 counting in bytes. */
1407 unit = GET_MODE_BITSIZE (bestmode);
1408 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1409 xbitpos = bitnum % unit;
1410 xop0 = adjust_address (xop0, bestmode, xoffset);
1412 /* Fetch it to a register in that size. */
1413 xop0 = force_reg (bestmode, xop0);
1415 /* XBITPOS counts within UNIT, which is what is expected. */
1417 else
1418 /* Get ref to first byte containing part of the field. */
1419 xop0 = adjust_address (xop0, byte_mode, xoffset);
1421 volatile_ok = save_volatile_ok;
1424 /* If op0 is a register, we need it in MAXMODE (which is usually
1425 SImode). to make it acceptable to the format of extzv. */
1426 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1427 goto extzv_loses;
1428 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1429 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1431 /* On big-endian machines, we count bits from the most significant.
1432 If the bit field insn does not, we must invert. */
1433 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1434 xbitpos = unit - bitsize - xbitpos;
1436 /* Now convert from counting within UNIT to counting in MAXMODE. */
1437 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1438 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
1440 unit = GET_MODE_BITSIZE (maxmode);
1442 if (xtarget == 0)
1443 xtarget = xspec_target = gen_reg_rtx (tmode);
1445 if (GET_MODE (xtarget) != maxmode)
1447 if (REG_P (xtarget))
1449 int wider = (GET_MODE_SIZE (maxmode)
1450 > GET_MODE_SIZE (GET_MODE (xtarget)));
1451 xtarget = gen_lowpart (maxmode, xtarget);
1452 if (wider)
1453 xspec_target_subreg = xtarget;
1455 else
1456 xtarget = gen_reg_rtx (maxmode);
1459 /* If this machine's extzv insists on a register target,
1460 make sure we have one. */
1461 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[0].predicate)
1462 (xtarget, maxmode)))
1463 xtarget = gen_reg_rtx (maxmode);
1465 bitsize_rtx = GEN_INT (bitsize);
1466 bitpos_rtx = GEN_INT (xbitpos);
1468 pat = gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1469 if (pat)
1471 emit_insn (pat);
1472 target = xtarget;
1473 spec_target = xspec_target;
1474 spec_target_subreg = xspec_target_subreg;
1476 else
1478 delete_insns_since (last);
1479 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1480 bitpos, target, 1);
1483 else
1484 extzv_loses:
1485 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1486 bitpos, target, 1);
1488 else
1490 if (HAVE_extv
1491 && (GET_MODE_BITSIZE (extv_mode) >= bitsize)
1492 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1493 && (bitsize + bitpos > GET_MODE_BITSIZE (extv_mode))))
1495 int xbitpos = bitpos, xoffset = offset;
1496 rtx bitsize_rtx, bitpos_rtx;
1497 rtx last = get_last_insn ();
1498 rtx xop0 = op0, xtarget = target;
1499 rtx xspec_target = spec_target;
1500 rtx xspec_target_subreg = spec_target_subreg;
1501 rtx pat;
1502 enum machine_mode maxmode = mode_for_extraction (EP_extv, 0);
1504 if (MEM_P (xop0))
1506 /* Is the memory operand acceptable? */
1507 if (! ((*insn_data[(int) CODE_FOR_extv].operand[1].predicate)
1508 (xop0, GET_MODE (xop0))))
1510 /* No, load into a reg and extract from there. */
1511 enum machine_mode bestmode;
1513 /* Get the mode to use for inserting into this field. If
1514 OP0 is BLKmode, get the smallest mode consistent with the
1515 alignment. If OP0 is a non-BLKmode object that is no
1516 wider than MAXMODE, use its mode. Otherwise, use the
1517 smallest mode containing the field. */
1519 if (GET_MODE (xop0) == BLKmode
1520 || (GET_MODE_SIZE (GET_MODE (op0))
1521 > GET_MODE_SIZE (maxmode)))
1522 bestmode = get_best_mode (bitsize, bitnum,
1523 MEM_ALIGN (xop0), maxmode,
1524 MEM_VOLATILE_P (xop0));
1525 else
1526 bestmode = GET_MODE (xop0);
1528 if (bestmode == VOIDmode
1529 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1530 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1531 goto extv_loses;
1533 /* Compute offset as multiple of this unit,
1534 counting in bytes. */
1535 unit = GET_MODE_BITSIZE (bestmode);
1536 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1537 xbitpos = bitnum % unit;
1538 xop0 = adjust_address (xop0, bestmode, xoffset);
1540 /* Fetch it to a register in that size. */
1541 xop0 = force_reg (bestmode, xop0);
1543 /* XBITPOS counts within UNIT, which is what is expected. */
1545 else
1546 /* Get ref to first byte containing part of the field. */
1547 xop0 = adjust_address (xop0, byte_mode, xoffset);
1550 /* If op0 is a register, we need it in MAXMODE (which is usually
1551 SImode) to make it acceptable to the format of extv. */
1552 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1553 goto extv_loses;
1554 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1555 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1557 /* On big-endian machines, we count bits from the most significant.
1558 If the bit field insn does not, we must invert. */
1559 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1560 xbitpos = unit - bitsize - xbitpos;
1562 /* XBITPOS counts within a size of UNIT.
1563 Adjust to count within a size of MAXMODE. */
1564 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1565 xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
1567 unit = GET_MODE_BITSIZE (maxmode);
1569 if (xtarget == 0)
1570 xtarget = xspec_target = gen_reg_rtx (tmode);
1572 if (GET_MODE (xtarget) != maxmode)
1574 if (REG_P (xtarget))
1576 int wider = (GET_MODE_SIZE (maxmode)
1577 > GET_MODE_SIZE (GET_MODE (xtarget)));
1578 xtarget = gen_lowpart (maxmode, xtarget);
1579 if (wider)
1580 xspec_target_subreg = xtarget;
1582 else
1583 xtarget = gen_reg_rtx (maxmode);
1586 /* If this machine's extv insists on a register target,
1587 make sure we have one. */
1588 if (! ((*insn_data[(int) CODE_FOR_extv].operand[0].predicate)
1589 (xtarget, maxmode)))
1590 xtarget = gen_reg_rtx (maxmode);
1592 bitsize_rtx = GEN_INT (bitsize);
1593 bitpos_rtx = GEN_INT (xbitpos);
1595 pat = gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1596 if (pat)
1598 emit_insn (pat);
1599 target = xtarget;
1600 spec_target = xspec_target;
1601 spec_target_subreg = xspec_target_subreg;
1603 else
1605 delete_insns_since (last);
1606 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1607 bitpos, target, 0);
1610 else
1611 extv_loses:
1612 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1613 bitpos, target, 0);
1615 if (target == spec_target)
1616 return target;
1617 if (target == spec_target_subreg)
1618 return spec_target;
1619 if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
1621 /* If the target mode is not a scalar integral, first convert to the
1622 integer mode of that size and then access it as a floating-point
1623 value via a SUBREG. */
1624 if (!SCALAR_INT_MODE_P (tmode))
1626 enum machine_mode smode
1627 = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1628 target = convert_to_mode (smode, target, unsignedp);
1629 target = force_reg (smode, target);
1630 return gen_lowpart (tmode, target);
1633 return convert_to_mode (tmode, target, unsignedp);
1635 return target;
1638 /* Extract a bit field using shifts and boolean operations
1639 Returns an rtx to represent the value.
1640 OP0 addresses a register (word) or memory (byte).
1641 BITPOS says which bit within the word or byte the bit field starts in.
1642 OFFSET says how many bytes farther the bit field starts;
1643 it is 0 if OP0 is a register.
1644 BITSIZE says how many bits long the bit field is.
1645 (If OP0 is a register, it may be narrower than a full word,
1646 but BITPOS still counts within a full word,
1647 which is significant on bigendian machines.)
1649 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1650 If TARGET is nonzero, attempts to store the value there
1651 and return TARGET, but this is not guaranteed.
1652 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1654 static rtx
1655 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1656 unsigned HOST_WIDE_INT offset,
1657 unsigned HOST_WIDE_INT bitsize,
1658 unsigned HOST_WIDE_INT bitpos, rtx target,
1659 int unsignedp)
1661 unsigned int total_bits = BITS_PER_WORD;
1662 enum machine_mode mode;
1664 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1666 /* Special treatment for a bit field split across two registers. */
1667 if (bitsize + bitpos > BITS_PER_WORD)
1668 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1670 else
1672 /* Get the proper mode to use for this field. We want a mode that
1673 includes the entire field. If such a mode would be larger than
1674 a word, we won't be doing the extraction the normal way. */
1676 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1677 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1679 if (mode == VOIDmode)
1680 /* The only way this should occur is if the field spans word
1681 boundaries. */
1682 return extract_split_bit_field (op0, bitsize,
1683 bitpos + offset * BITS_PER_UNIT,
1684 unsignedp);
1686 total_bits = GET_MODE_BITSIZE (mode);
1688 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1689 be in the range 0 to total_bits-1, and put any excess bytes in
1690 OFFSET. */
1691 if (bitpos >= total_bits)
1693 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1694 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1695 * BITS_PER_UNIT);
1698 /* Get ref to an aligned byte, halfword, or word containing the field.
1699 Adjust BITPOS to be position within a word,
1700 and OFFSET to be the offset of that word.
1701 Then alter OP0 to refer to that word. */
1702 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1703 offset -= (offset % (total_bits / BITS_PER_UNIT));
1704 op0 = adjust_address (op0, mode, offset);
1707 mode = GET_MODE (op0);
1709 if (BYTES_BIG_ENDIAN)
1710 /* BITPOS is the distance between our msb and that of OP0.
1711 Convert it to the distance from the lsb. */
1712 bitpos = total_bits - bitsize - bitpos;
1714 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1715 We have reduced the big-endian case to the little-endian case. */
1717 if (unsignedp)
1719 if (bitpos)
1721 /* If the field does not already start at the lsb,
1722 shift it so it does. */
1723 tree amount = build_int_cst (NULL_TREE, bitpos);
1724 /* Maybe propagate the target for the shift. */
1725 /* But not if we will return it--could confuse integrate.c. */
1726 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1727 if (tmode != mode) subtarget = 0;
1728 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1730 /* Convert the value to the desired mode. */
1731 if (mode != tmode)
1732 op0 = convert_to_mode (tmode, op0, 1);
1734 /* Unless the msb of the field used to be the msb when we shifted,
1735 mask out the upper bits. */
1737 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1738 return expand_binop (GET_MODE (op0), and_optab, op0,
1739 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1740 target, 1, OPTAB_LIB_WIDEN);
1741 return op0;
1744 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1745 then arithmetic-shift its lsb to the lsb of the word. */
1746 op0 = force_reg (mode, op0);
1747 if (mode != tmode)
1748 target = 0;
1750 /* Find the narrowest integer mode that contains the field. */
1752 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1753 mode = GET_MODE_WIDER_MODE (mode))
1754 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1756 op0 = convert_to_mode (mode, op0, 0);
1757 break;
1760 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1762 tree amount
1763 = build_int_cst (NULL_TREE,
1764 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1765 /* Maybe propagate the target for the shift. */
1766 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1767 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1770 return expand_shift (RSHIFT_EXPR, mode, op0,
1771 build_int_cst (NULL_TREE,
1772 GET_MODE_BITSIZE (mode) - bitsize),
1773 target, 0);
1776 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1777 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1778 complement of that if COMPLEMENT. The mask is truncated if
1779 necessary to the width of mode MODE. The mask is zero-extended if
1780 BITSIZE+BITPOS is too small for MODE. */
1782 static rtx
1783 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1785 HOST_WIDE_INT masklow, maskhigh;
1787 if (bitsize == 0)
1788 masklow = 0;
1789 else if (bitpos < HOST_BITS_PER_WIDE_INT)
1790 masklow = (HOST_WIDE_INT) -1 << bitpos;
1791 else
1792 masklow = 0;
1794 if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1795 masklow &= ((unsigned HOST_WIDE_INT) -1
1796 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1798 if (bitpos <= HOST_BITS_PER_WIDE_INT)
1799 maskhigh = -1;
1800 else
1801 maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1803 if (bitsize == 0)
1804 maskhigh = 0;
1805 else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1806 maskhigh &= ((unsigned HOST_WIDE_INT) -1
1807 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1808 else
1809 maskhigh = 0;
1811 if (complement)
1813 maskhigh = ~maskhigh;
1814 masklow = ~masklow;
1817 return immed_double_const (masklow, maskhigh, mode);
1820 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1821 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1823 static rtx
1824 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1826 unsigned HOST_WIDE_INT v = INTVAL (value);
1827 HOST_WIDE_INT low, high;
1829 if (bitsize < HOST_BITS_PER_WIDE_INT)
1830 v &= ~((HOST_WIDE_INT) -1 << bitsize);
1832 if (bitpos < HOST_BITS_PER_WIDE_INT)
1834 low = v << bitpos;
1835 high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1837 else
1839 low = 0;
1840 high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1843 return immed_double_const (low, high, mode);
1846 /* Extract a bit field from a memory by forcing the alignment of the
1847 memory. This efficient only if the field spans at least 4 boundaries.
1849 OP0 is the MEM.
1850 BITSIZE is the field width; BITPOS is the position of the first bit.
1851 UNSIGNEDP is true if the result should be zero-extended. */
1853 static rtx
1854 extract_force_align_mem_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1855 unsigned HOST_WIDE_INT bitpos,
1856 int unsignedp)
1858 enum machine_mode mode, dmode;
1859 unsigned int m_bitsize, m_size;
1860 unsigned int sign_shift_up, sign_shift_dn;
1861 rtx base, a1, a2, v1, v2, comb, shift, result, start;
1863 /* Choose a mode that will fit BITSIZE. */
1864 mode = smallest_mode_for_size (bitsize, MODE_INT);
1865 m_size = GET_MODE_SIZE (mode);
1866 m_bitsize = GET_MODE_BITSIZE (mode);
1868 /* Choose a mode twice as wide. Fail if no such mode exists. */
1869 dmode = mode_for_size (m_bitsize * 2, MODE_INT, false);
1870 if (dmode == BLKmode)
1871 return NULL;
1873 do_pending_stack_adjust ();
1874 start = get_last_insn ();
1876 /* At the end, we'll need an additional shift to deal with sign/zero
1877 extension. By default this will be a left+right shift of the
1878 appropriate size. But we may be able to eliminate one of them. */
1879 sign_shift_up = sign_shift_dn = m_bitsize - bitsize;
1881 if (STRICT_ALIGNMENT)
1883 base = plus_constant (XEXP (op0, 0), bitpos / BITS_PER_UNIT);
1884 bitpos %= BITS_PER_UNIT;
1886 /* We load two values to be concatenate. There's an edge condition
1887 that bears notice -- an aligned value at the end of a page can
1888 only load one value lest we segfault. So the two values we load
1889 are at "base & -size" and "(base + size - 1) & -size". If base
1890 is unaligned, the addresses will be aligned and sequential; if
1891 base is aligned, the addresses will both be equal to base. */
1893 a1 = expand_simple_binop (Pmode, AND, force_operand (base, NULL),
1894 GEN_INT (-(HOST_WIDE_INT)m_size),
1895 NULL, true, OPTAB_LIB_WIDEN);
1896 mark_reg_pointer (a1, m_bitsize);
1897 v1 = gen_rtx_MEM (mode, a1);
1898 set_mem_align (v1, m_bitsize);
1899 v1 = force_reg (mode, validize_mem (v1));
1901 a2 = plus_constant (base, GET_MODE_SIZE (mode) - 1);
1902 a2 = expand_simple_binop (Pmode, AND, force_operand (a2, NULL),
1903 GEN_INT (-(HOST_WIDE_INT)m_size),
1904 NULL, true, OPTAB_LIB_WIDEN);
1905 v2 = gen_rtx_MEM (mode, a2);
1906 set_mem_align (v2, m_bitsize);
1907 v2 = force_reg (mode, validize_mem (v2));
1909 /* Combine these two values into a double-word value. */
1910 if (m_bitsize == BITS_PER_WORD)
1912 comb = gen_reg_rtx (dmode);
1913 emit_insn (gen_rtx_CLOBBER (VOIDmode, comb));
1914 emit_move_insn (gen_rtx_SUBREG (mode, comb, 0), v1);
1915 emit_move_insn (gen_rtx_SUBREG (mode, comb, m_size), v2);
1917 else
1919 if (BYTES_BIG_ENDIAN)
1920 comb = v1, v1 = v2, v2 = comb;
1921 v1 = convert_modes (dmode, mode, v1, true);
1922 if (v1 == NULL)
1923 goto fail;
1924 v2 = convert_modes (dmode, mode, v2, true);
1925 v2 = expand_simple_binop (dmode, ASHIFT, v2, GEN_INT (m_bitsize),
1926 NULL, true, OPTAB_LIB_WIDEN);
1927 if (v2 == NULL)
1928 goto fail;
1929 comb = expand_simple_binop (dmode, IOR, v1, v2, NULL,
1930 true, OPTAB_LIB_WIDEN);
1931 if (comb == NULL)
1932 goto fail;
1935 shift = expand_simple_binop (Pmode, AND, base, GEN_INT (m_size - 1),
1936 NULL, true, OPTAB_LIB_WIDEN);
1937 shift = expand_mult (Pmode, shift, GEN_INT (BITS_PER_UNIT), NULL, 1);
1939 if (bitpos != 0)
1941 if (sign_shift_up <= bitpos)
1942 bitpos -= sign_shift_up, sign_shift_up = 0;
1943 shift = expand_simple_binop (Pmode, PLUS, shift, GEN_INT (bitpos),
1944 NULL, true, OPTAB_LIB_WIDEN);
1947 else
1949 unsigned HOST_WIDE_INT offset = bitpos / BITS_PER_UNIT;
1950 bitpos %= BITS_PER_UNIT;
1952 /* When strict alignment is not required, we can just load directly
1953 from memory without masking. If the remaining BITPOS offset is
1954 small enough, we may be able to do all operations in MODE as
1955 opposed to DMODE. */
1956 if (bitpos + bitsize <= m_bitsize)
1957 dmode = mode;
1958 comb = adjust_address (op0, dmode, offset);
1960 if (sign_shift_up <= bitpos)
1961 bitpos -= sign_shift_up, sign_shift_up = 0;
1962 shift = GEN_INT (bitpos);
1965 /* Shift down the double-word such that the requested value is at bit 0. */
1966 if (shift != const0_rtx)
1967 comb = expand_simple_binop (dmode, unsignedp ? LSHIFTRT : ASHIFTRT,
1968 comb, shift, NULL, unsignedp, OPTAB_LIB_WIDEN);
1969 if (comb == NULL)
1970 goto fail;
1972 /* If the field exactly matches MODE, then all we need to do is return the
1973 lowpart. Otherwise, shift to get the sign bits set properly. */
1974 result = force_reg (mode, gen_lowpart (mode, comb));
1976 if (sign_shift_up)
1977 result = expand_simple_binop (mode, ASHIFT, result,
1978 GEN_INT (sign_shift_up),
1979 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1980 if (sign_shift_dn)
1981 result = expand_simple_binop (mode, unsignedp ? LSHIFTRT : ASHIFTRT,
1982 result, GEN_INT (sign_shift_dn),
1983 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1985 return result;
1987 fail:
1988 delete_insns_since (start);
1989 return NULL;
1992 /* Extract a bit field that is split across two words
1993 and return an RTX for the result.
1995 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1996 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1997 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1999 static rtx
2000 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
2001 unsigned HOST_WIDE_INT bitpos, int unsignedp)
2003 unsigned int unit;
2004 unsigned int bitsdone = 0;
2005 rtx result = NULL_RTX;
2006 int first = 1;
2008 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2009 much at a time. */
2010 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2011 unit = BITS_PER_WORD;
2012 else
2014 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2015 if (0 && bitsize / unit > 2)
2017 rtx tmp = extract_force_align_mem_bit_field (op0, bitsize, bitpos,
2018 unsignedp);
2019 if (tmp)
2020 return tmp;
2024 while (bitsdone < bitsize)
2026 unsigned HOST_WIDE_INT thissize;
2027 rtx part, word;
2028 unsigned HOST_WIDE_INT thispos;
2029 unsigned HOST_WIDE_INT offset;
2031 offset = (bitpos + bitsdone) / unit;
2032 thispos = (bitpos + bitsdone) % unit;
2034 /* THISSIZE must not overrun a word boundary. Otherwise,
2035 extract_fixed_bit_field will call us again, and we will mutually
2036 recurse forever. */
2037 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2038 thissize = MIN (thissize, unit - thispos);
2040 /* If OP0 is a register, then handle OFFSET here.
2042 When handling multiword bitfields, extract_bit_field may pass
2043 down a word_mode SUBREG of a larger REG for a bitfield that actually
2044 crosses a word boundary. Thus, for a SUBREG, we must find
2045 the current word starting from the base register. */
2046 if (GET_CODE (op0) == SUBREG)
2048 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
2049 word = operand_subword_force (SUBREG_REG (op0), word_offset,
2050 GET_MODE (SUBREG_REG (op0)));
2051 offset = 0;
2053 else if (REG_P (op0))
2055 word = operand_subword_force (op0, offset, GET_MODE (op0));
2056 offset = 0;
2058 else
2059 word = op0;
2061 /* Extract the parts in bit-counting order,
2062 whose meaning is determined by BYTES_PER_UNIT.
2063 OFFSET is in UNITs, and UNIT is in bits.
2064 extract_fixed_bit_field wants offset in bytes. */
2065 part = extract_fixed_bit_field (word_mode, word,
2066 offset * unit / BITS_PER_UNIT,
2067 thissize, thispos, 0, 1);
2068 bitsdone += thissize;
2070 /* Shift this part into place for the result. */
2071 if (BYTES_BIG_ENDIAN)
2073 if (bitsize != bitsdone)
2074 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2075 build_int_cst (NULL_TREE, bitsize - bitsdone),
2076 0, 1);
2078 else
2080 if (bitsdone != thissize)
2081 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2082 build_int_cst (NULL_TREE,
2083 bitsdone - thissize), 0, 1);
2086 if (first)
2087 result = part;
2088 else
2089 /* Combine the parts with bitwise or. This works
2090 because we extracted each part as an unsigned bit field. */
2091 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2092 OPTAB_LIB_WIDEN);
2094 first = 0;
2097 /* Unsigned bit field: we are done. */
2098 if (unsignedp)
2099 return result;
2100 /* Signed bit field: sign-extend with two arithmetic shifts. */
2101 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2102 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2103 NULL_RTX, 0);
2104 return expand_shift (RSHIFT_EXPR, word_mode, result,
2105 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2106 NULL_RTX, 0);
2109 /* Add INC into TARGET. */
2111 void
2112 expand_inc (rtx target, rtx inc)
2114 rtx value = expand_binop (GET_MODE (target), add_optab,
2115 target, inc,
2116 target, 0, OPTAB_LIB_WIDEN);
2117 if (value != target)
2118 emit_move_insn (target, value);
2121 /* Subtract DEC from TARGET. */
2123 void
2124 expand_dec (rtx target, rtx dec)
2126 rtx value = expand_binop (GET_MODE (target), sub_optab,
2127 target, dec,
2128 target, 0, OPTAB_LIB_WIDEN);
2129 if (value != target)
2130 emit_move_insn (target, value);
2133 /* Output a shift instruction for expression code CODE,
2134 with SHIFTED being the rtx for the value to shift,
2135 and AMOUNT the tree for the amount to shift by.
2136 Store the result in the rtx TARGET, if that is convenient.
2137 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2138 Return the rtx for where the value is. */
2141 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2142 tree amount, rtx target, int unsignedp)
2144 rtx op1, temp = 0;
2145 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2146 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2147 int try;
2149 /* Previously detected shift-counts computed by NEGATE_EXPR
2150 and shifted in the other direction; but that does not work
2151 on all machines. */
2153 op1 = expand_expr (amount, NULL_RTX, VOIDmode, 0);
2155 if (SHIFT_COUNT_TRUNCATED)
2157 if (GET_CODE (op1) == CONST_INT
2158 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2159 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2160 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2161 % GET_MODE_BITSIZE (mode));
2162 else if (GET_CODE (op1) == SUBREG
2163 && subreg_lowpart_p (op1))
2164 op1 = SUBREG_REG (op1);
2167 if (op1 == const0_rtx)
2168 return shifted;
2170 /* Check whether its cheaper to implement a left shift by a constant
2171 bit count by a sequence of additions. */
2172 if (code == LSHIFT_EXPR
2173 && GET_CODE (op1) == CONST_INT
2174 && INTVAL (op1) > 0
2175 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2176 && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode])
2178 int i;
2179 for (i = 0; i < INTVAL (op1); i++)
2181 temp = force_reg (mode, shifted);
2182 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2183 unsignedp, OPTAB_LIB_WIDEN);
2185 return shifted;
2188 for (try = 0; temp == 0 && try < 3; try++)
2190 enum optab_methods methods;
2192 if (try == 0)
2193 methods = OPTAB_DIRECT;
2194 else if (try == 1)
2195 methods = OPTAB_WIDEN;
2196 else
2197 methods = OPTAB_LIB_WIDEN;
2199 if (rotate)
2201 /* Widening does not work for rotation. */
2202 if (methods == OPTAB_WIDEN)
2203 continue;
2204 else if (methods == OPTAB_LIB_WIDEN)
2206 /* If we have been unable to open-code this by a rotation,
2207 do it as the IOR of two shifts. I.e., to rotate A
2208 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2209 where C is the bitsize of A.
2211 It is theoretically possible that the target machine might
2212 not be able to perform either shift and hence we would
2213 be making two libcalls rather than just the one for the
2214 shift (similarly if IOR could not be done). We will allow
2215 this extremely unlikely lossage to avoid complicating the
2216 code below. */
2218 rtx subtarget = target == shifted ? 0 : target;
2219 rtx temp1;
2220 tree type = TREE_TYPE (amount);
2221 tree new_amount = make_tree (type, op1);
2222 tree other_amount
2223 = fold_build2 (MINUS_EXPR, type,
2224 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2225 amount);
2227 shifted = force_reg (mode, shifted);
2229 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2230 mode, shifted, new_amount, subtarget, 1);
2231 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2232 mode, shifted, other_amount, 0, 1);
2233 return expand_binop (mode, ior_optab, temp, temp1, target,
2234 unsignedp, methods);
2237 temp = expand_binop (mode,
2238 left ? rotl_optab : rotr_optab,
2239 shifted, op1, target, unsignedp, methods);
2241 /* If we don't have the rotate, but we are rotating by a constant
2242 that is in range, try a rotate in the opposite direction. */
2244 if (temp == 0 && GET_CODE (op1) == CONST_INT
2245 && INTVAL (op1) > 0
2246 && (unsigned int) INTVAL (op1) < GET_MODE_BITSIZE (mode))
2247 temp = expand_binop (mode,
2248 left ? rotr_optab : rotl_optab,
2249 shifted,
2250 GEN_INT (GET_MODE_BITSIZE (mode)
2251 - INTVAL (op1)),
2252 target, unsignedp, methods);
2254 else if (unsignedp)
2255 temp = expand_binop (mode,
2256 left ? ashl_optab : lshr_optab,
2257 shifted, op1, target, unsignedp, methods);
2259 /* Do arithmetic shifts.
2260 Also, if we are going to widen the operand, we can just as well
2261 use an arithmetic right-shift instead of a logical one. */
2262 if (temp == 0 && ! rotate
2263 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2265 enum optab_methods methods1 = methods;
2267 /* If trying to widen a log shift to an arithmetic shift,
2268 don't accept an arithmetic shift of the same size. */
2269 if (unsignedp)
2270 methods1 = OPTAB_MUST_WIDEN;
2272 /* Arithmetic shift */
2274 temp = expand_binop (mode,
2275 left ? ashl_optab : ashr_optab,
2276 shifted, op1, target, unsignedp, methods1);
2279 /* We used to try extzv here for logical right shifts, but that was
2280 only useful for one machine, the VAX, and caused poor code
2281 generation there for lshrdi3, so the code was deleted and a
2282 define_expand for lshrsi3 was added to vax.md. */
2285 gcc_assert (temp);
2286 return temp;
2289 enum alg_code { alg_unknown, alg_zero, alg_m, alg_shift,
2290 alg_add_t_m2, alg_sub_t_m2,
2291 alg_add_factor, alg_sub_factor,
2292 alg_add_t2_m, alg_sub_t2_m };
2294 /* This structure holds the "cost" of a multiply sequence. The
2295 "cost" field holds the total rtx_cost of every operator in the
2296 synthetic multiplication sequence, hence cost(a op b) is defined
2297 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2298 The "latency" field holds the minimum possible latency of the
2299 synthetic multiply, on a hypothetical infinitely parallel CPU.
2300 This is the critical path, or the maximum height, of the expression
2301 tree which is the sum of rtx_costs on the most expensive path from
2302 any leaf to the root. Hence latency(a op b) is defined as zero for
2303 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2305 struct mult_cost {
2306 short cost; /* Total rtx_cost of the multiplication sequence. */
2307 short latency; /* The latency of the multiplication sequence. */
2310 /* This macro is used to compare a pointer to a mult_cost against an
2311 single integer "rtx_cost" value. This is equivalent to the macro
2312 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2313 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2314 || ((X)->cost == (Y) && (X)->latency < (Y)))
2316 /* This macro is used to compare two pointers to mult_costs against
2317 each other. The macro returns true if X is cheaper than Y.
2318 Currently, the cheaper of two mult_costs is the one with the
2319 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2320 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2321 || ((X)->cost == (Y)->cost \
2322 && (X)->latency < (Y)->latency))
2324 /* This structure records a sequence of operations.
2325 `ops' is the number of operations recorded.
2326 `cost' is their total cost.
2327 The operations are stored in `op' and the corresponding
2328 logarithms of the integer coefficients in `log'.
2330 These are the operations:
2331 alg_zero total := 0;
2332 alg_m total := multiplicand;
2333 alg_shift total := total * coeff
2334 alg_add_t_m2 total := total + multiplicand * coeff;
2335 alg_sub_t_m2 total := total - multiplicand * coeff;
2336 alg_add_factor total := total * coeff + total;
2337 alg_sub_factor total := total * coeff - total;
2338 alg_add_t2_m total := total * coeff + multiplicand;
2339 alg_sub_t2_m total := total * coeff - multiplicand;
2341 The first operand must be either alg_zero or alg_m. */
2343 struct algorithm
2345 struct mult_cost cost;
2346 short ops;
2347 /* The size of the OP and LOG fields are not directly related to the
2348 word size, but the worst-case algorithms will be if we have few
2349 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2350 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2351 in total wordsize operations. */
2352 enum alg_code op[MAX_BITS_PER_WORD];
2353 char log[MAX_BITS_PER_WORD];
2356 /* The entry for our multiplication cache/hash table. */
2357 struct alg_hash_entry {
2358 /* The number we are multiplying by. */
2359 unsigned int t;
2361 /* The mode in which we are multiplying something by T. */
2362 enum machine_mode mode;
2364 /* The best multiplication algorithm for t. */
2365 enum alg_code alg;
2368 /* The number of cache/hash entries. */
2369 #define NUM_ALG_HASH_ENTRIES 307
2371 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2372 actually a hash table. If we have a collision, that the older
2373 entry is kicked out. */
2374 static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2376 /* Indicates the type of fixup needed after a constant multiplication.
2377 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2378 the result should be negated, and ADD_VARIANT means that the
2379 multiplicand should be added to the result. */
2380 enum mult_variant {basic_variant, negate_variant, add_variant};
2382 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2383 const struct mult_cost *, enum machine_mode mode);
2384 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2385 struct algorithm *, enum mult_variant *, int);
2386 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2387 const struct algorithm *, enum mult_variant);
2388 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2389 int, rtx *, int *, int *);
2390 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2391 static rtx extract_high_half (enum machine_mode, rtx);
2392 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2393 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2394 int, int);
2395 /* Compute and return the best algorithm for multiplying by T.
2396 The algorithm must cost less than cost_limit
2397 If retval.cost >= COST_LIMIT, no algorithm was found and all
2398 other field of the returned struct are undefined.
2399 MODE is the machine mode of the multiplication. */
2401 static void
2402 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2403 const struct mult_cost *cost_limit, enum machine_mode mode)
2405 int m;
2406 struct algorithm *alg_in, *best_alg;
2407 struct mult_cost best_cost;
2408 struct mult_cost new_limit;
2409 int op_cost, op_latency;
2410 unsigned HOST_WIDE_INT q;
2411 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2412 int hash_index;
2413 bool cache_hit = false;
2414 enum alg_code cache_alg = alg_zero;
2416 /* Indicate that no algorithm is yet found. If no algorithm
2417 is found, this value will be returned and indicate failure. */
2418 alg_out->cost.cost = cost_limit->cost + 1;
2419 alg_out->cost.latency = cost_limit->latency + 1;
2421 if (cost_limit->cost < 0
2422 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2423 return;
2425 /* Restrict the bits of "t" to the multiplication's mode. */
2426 t &= GET_MODE_MASK (mode);
2428 /* t == 1 can be done in zero cost. */
2429 if (t == 1)
2431 alg_out->ops = 1;
2432 alg_out->cost.cost = 0;
2433 alg_out->cost.latency = 0;
2434 alg_out->op[0] = alg_m;
2435 return;
2438 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2439 fail now. */
2440 if (t == 0)
2442 if (MULT_COST_LESS (cost_limit, zero_cost))
2443 return;
2444 else
2446 alg_out->ops = 1;
2447 alg_out->cost.cost = zero_cost;
2448 alg_out->cost.latency = zero_cost;
2449 alg_out->op[0] = alg_zero;
2450 return;
2454 /* We'll be needing a couple extra algorithm structures now. */
2456 alg_in = alloca (sizeof (struct algorithm));
2457 best_alg = alloca (sizeof (struct algorithm));
2458 best_cost = *cost_limit;
2460 /* Compute the hash index. */
2461 hash_index = (t ^ (unsigned int) mode) % NUM_ALG_HASH_ENTRIES;
2463 /* See if we already know what to do for T. */
2464 if (alg_hash[hash_index].t == t
2465 && alg_hash[hash_index].mode == mode
2466 && alg_hash[hash_index].alg != alg_unknown)
2468 cache_hit = true;
2469 cache_alg = alg_hash[hash_index].alg;
2470 switch (cache_alg)
2472 case alg_shift:
2473 goto do_alg_shift;
2475 case alg_add_t_m2:
2476 case alg_sub_t_m2:
2477 goto do_alg_addsub_t_m2;
2479 case alg_add_factor:
2480 case alg_sub_factor:
2481 goto do_alg_addsub_factor;
2483 case alg_add_t2_m:
2484 goto do_alg_add_t2_m;
2486 case alg_sub_t2_m:
2487 goto do_alg_sub_t2_m;
2489 default:
2490 gcc_unreachable ();
2494 /* If we have a group of zero bits at the low-order part of T, try
2495 multiplying by the remaining bits and then doing a shift. */
2497 if ((t & 1) == 0)
2499 do_alg_shift:
2500 m = floor_log2 (t & -t); /* m = number of low zero bits */
2501 if (m < maxm)
2503 q = t >> m;
2504 /* The function expand_shift will choose between a shift and
2505 a sequence of additions, so the observed cost is given as
2506 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2507 op_cost = m * add_cost[mode];
2508 if (shift_cost[mode][m] < op_cost)
2509 op_cost = shift_cost[mode][m];
2510 new_limit.cost = best_cost.cost - op_cost;
2511 new_limit.latency = best_cost.latency - op_cost;
2512 synth_mult (alg_in, q, &new_limit, mode);
2514 alg_in->cost.cost += op_cost;
2515 alg_in->cost.latency += op_cost;
2516 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2518 struct algorithm *x;
2519 best_cost = alg_in->cost;
2520 x = alg_in, alg_in = best_alg, best_alg = x;
2521 best_alg->log[best_alg->ops] = m;
2522 best_alg->op[best_alg->ops] = alg_shift;
2525 if (cache_hit)
2526 goto done;
2529 /* If we have an odd number, add or subtract one. */
2530 if ((t & 1) != 0)
2532 unsigned HOST_WIDE_INT w;
2534 do_alg_addsub_t_m2:
2535 for (w = 1; (w & t) != 0; w <<= 1)
2537 /* If T was -1, then W will be zero after the loop. This is another
2538 case where T ends with ...111. Handling this with (T + 1) and
2539 subtract 1 produces slightly better code and results in algorithm
2540 selection much faster than treating it like the ...0111 case
2541 below. */
2542 if (w == 0
2543 || (w > 2
2544 /* Reject the case where t is 3.
2545 Thus we prefer addition in that case. */
2546 && t != 3))
2548 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2550 op_cost = add_cost[mode];
2551 new_limit.cost = best_cost.cost - op_cost;
2552 new_limit.latency = best_cost.latency - op_cost;
2553 synth_mult (alg_in, t + 1, &new_limit, mode);
2555 alg_in->cost.cost += op_cost;
2556 alg_in->cost.latency += op_cost;
2557 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2559 struct algorithm *x;
2560 best_cost = alg_in->cost;
2561 x = alg_in, alg_in = best_alg, best_alg = x;
2562 best_alg->log[best_alg->ops] = 0;
2563 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2566 else
2568 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2570 op_cost = add_cost[mode];
2571 new_limit.cost = best_cost.cost - op_cost;
2572 new_limit.latency = best_cost.latency - op_cost;
2573 synth_mult (alg_in, t - 1, &new_limit, mode);
2575 alg_in->cost.cost += op_cost;
2576 alg_in->cost.latency += op_cost;
2577 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2579 struct algorithm *x;
2580 best_cost = alg_in->cost;
2581 x = alg_in, alg_in = best_alg, best_alg = x;
2582 best_alg->log[best_alg->ops] = 0;
2583 best_alg->op[best_alg->ops] = alg_add_t_m2;
2586 if (cache_hit)
2587 goto done;
2590 /* Look for factors of t of the form
2591 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2592 If we find such a factor, we can multiply by t using an algorithm that
2593 multiplies by q, shift the result by m and add/subtract it to itself.
2595 We search for large factors first and loop down, even if large factors
2596 are less probable than small; if we find a large factor we will find a
2597 good sequence quickly, and therefore be able to prune (by decreasing
2598 COST_LIMIT) the search. */
2600 do_alg_addsub_factor:
2601 for (m = floor_log2 (t - 1); m >= 2; m--)
2603 unsigned HOST_WIDE_INT d;
2605 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2606 if (t % d == 0 && t > d && m < maxm
2607 && (!cache_hit || cache_alg == alg_add_factor))
2609 /* If the target has a cheap shift-and-add instruction use
2610 that in preference to a shift insn followed by an add insn.
2611 Assume that the shift-and-add is "atomic" with a latency
2612 equal to its cost, otherwise assume that on superscalar
2613 hardware the shift may be executed concurrently with the
2614 earlier steps in the algorithm. */
2615 op_cost = add_cost[mode] + shift_cost[mode][m];
2616 if (shiftadd_cost[mode][m] < op_cost)
2618 op_cost = shiftadd_cost[mode][m];
2619 op_latency = op_cost;
2621 else
2622 op_latency = add_cost[mode];
2624 new_limit.cost = best_cost.cost - op_cost;
2625 new_limit.latency = best_cost.latency - op_latency;
2626 synth_mult (alg_in, t / d, &new_limit, mode);
2628 alg_in->cost.cost += op_cost;
2629 alg_in->cost.latency += op_latency;
2630 if (alg_in->cost.latency < op_cost)
2631 alg_in->cost.latency = op_cost;
2632 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2634 struct algorithm *x;
2635 best_cost = alg_in->cost;
2636 x = alg_in, alg_in = best_alg, best_alg = x;
2637 best_alg->log[best_alg->ops] = m;
2638 best_alg->op[best_alg->ops] = alg_add_factor;
2640 /* Other factors will have been taken care of in the recursion. */
2641 break;
2644 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2645 if (t % d == 0 && t > d && m < maxm
2646 && (!cache_hit || cache_alg == alg_sub_factor))
2648 /* If the target has a cheap shift-and-subtract insn use
2649 that in preference to a shift insn followed by a sub insn.
2650 Assume that the shift-and-sub is "atomic" with a latency
2651 equal to it's cost, otherwise assume that on superscalar
2652 hardware the shift may be executed concurrently with the
2653 earlier steps in the algorithm. */
2654 op_cost = add_cost[mode] + shift_cost[mode][m];
2655 if (shiftsub_cost[mode][m] < op_cost)
2657 op_cost = shiftsub_cost[mode][m];
2658 op_latency = op_cost;
2660 else
2661 op_latency = add_cost[mode];
2663 new_limit.cost = best_cost.cost - op_cost;
2664 new_limit.latency = best_cost.latency - op_latency;
2665 synth_mult (alg_in, t / d, &new_limit, mode);
2667 alg_in->cost.cost += op_cost;
2668 alg_in->cost.latency += op_latency;
2669 if (alg_in->cost.latency < op_cost)
2670 alg_in->cost.latency = op_cost;
2671 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2673 struct algorithm *x;
2674 best_cost = alg_in->cost;
2675 x = alg_in, alg_in = best_alg, best_alg = x;
2676 best_alg->log[best_alg->ops] = m;
2677 best_alg->op[best_alg->ops] = alg_sub_factor;
2679 break;
2682 if (cache_hit)
2683 goto done;
2685 /* Try shift-and-add (load effective address) instructions,
2686 i.e. do a*3, a*5, a*9. */
2687 if ((t & 1) != 0)
2689 do_alg_add_t2_m:
2690 q = t - 1;
2691 q = q & -q;
2692 m = exact_log2 (q);
2693 if (m >= 0 && m < maxm)
2695 op_cost = shiftadd_cost[mode][m];
2696 new_limit.cost = best_cost.cost - op_cost;
2697 new_limit.latency = best_cost.latency - op_cost;
2698 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2700 alg_in->cost.cost += op_cost;
2701 alg_in->cost.latency += op_cost;
2702 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2704 struct algorithm *x;
2705 best_cost = alg_in->cost;
2706 x = alg_in, alg_in = best_alg, best_alg = x;
2707 best_alg->log[best_alg->ops] = m;
2708 best_alg->op[best_alg->ops] = alg_add_t2_m;
2711 if (cache_hit)
2712 goto done;
2714 do_alg_sub_t2_m:
2715 q = t + 1;
2716 q = q & -q;
2717 m = exact_log2 (q);
2718 if (m >= 0 && m < maxm)
2720 op_cost = shiftsub_cost[mode][m];
2721 new_limit.cost = best_cost.cost - op_cost;
2722 new_limit.latency = best_cost.latency - op_cost;
2723 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2725 alg_in->cost.cost += op_cost;
2726 alg_in->cost.latency += op_cost;
2727 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2729 struct algorithm *x;
2730 best_cost = alg_in->cost;
2731 x = alg_in, alg_in = best_alg, best_alg = x;
2732 best_alg->log[best_alg->ops] = m;
2733 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2736 if (cache_hit)
2737 goto done;
2740 done:
2741 /* If best_cost has not decreased, we have not found any algorithm. */
2742 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2743 return;
2745 /* Cache the result. */
2746 if (!cache_hit)
2748 alg_hash[hash_index].t = t;
2749 alg_hash[hash_index].mode = mode;
2750 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2753 /* If we are getting a too long sequence for `struct algorithm'
2754 to record, make this search fail. */
2755 if (best_alg->ops == MAX_BITS_PER_WORD)
2756 return;
2758 /* Copy the algorithm from temporary space to the space at alg_out.
2759 We avoid using structure assignment because the majority of
2760 best_alg is normally undefined, and this is a critical function. */
2761 alg_out->ops = best_alg->ops + 1;
2762 alg_out->cost = best_cost;
2763 memcpy (alg_out->op, best_alg->op,
2764 alg_out->ops * sizeof *alg_out->op);
2765 memcpy (alg_out->log, best_alg->log,
2766 alg_out->ops * sizeof *alg_out->log);
2769 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2770 Try three variations:
2772 - a shift/add sequence based on VAL itself
2773 - a shift/add sequence based on -VAL, followed by a negation
2774 - a shift/add sequence based on VAL - 1, followed by an addition.
2776 Return true if the cheapest of these cost less than MULT_COST,
2777 describing the algorithm in *ALG and final fixup in *VARIANT. */
2779 static bool
2780 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2781 struct algorithm *alg, enum mult_variant *variant,
2782 int mult_cost)
2784 struct algorithm alg2;
2785 struct mult_cost limit;
2786 int op_cost;
2788 *variant = basic_variant;
2789 limit.cost = mult_cost;
2790 limit.latency = mult_cost;
2791 synth_mult (alg, val, &limit, mode);
2793 /* This works only if the inverted value actually fits in an
2794 `unsigned int' */
2795 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2797 op_cost = neg_cost[mode];
2798 if (MULT_COST_LESS (&alg->cost, mult_cost))
2800 limit.cost = alg->cost.cost - op_cost;
2801 limit.latency = alg->cost.latency - op_cost;
2803 else
2805 limit.cost = mult_cost - op_cost;
2806 limit.latency = mult_cost - op_cost;
2809 synth_mult (&alg2, -val, &limit, mode);
2810 alg2.cost.cost += op_cost;
2811 alg2.cost.latency += op_cost;
2812 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2813 *alg = alg2, *variant = negate_variant;
2816 /* This proves very useful for division-by-constant. */
2817 op_cost = add_cost[mode];
2818 if (MULT_COST_LESS (&alg->cost, mult_cost))
2820 limit.cost = alg->cost.cost - op_cost;
2821 limit.latency = alg->cost.latency - op_cost;
2823 else
2825 limit.cost = mult_cost - op_cost;
2826 limit.latency = mult_cost - op_cost;
2829 synth_mult (&alg2, val - 1, &limit, mode);
2830 alg2.cost.cost += op_cost;
2831 alg2.cost.latency += op_cost;
2832 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2833 *alg = alg2, *variant = add_variant;
2835 return MULT_COST_LESS (&alg->cost, mult_cost);
2838 /* A subroutine of expand_mult, used for constant multiplications.
2839 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2840 convenient. Use the shift/add sequence described by ALG and apply
2841 the final fixup specified by VARIANT. */
2843 static rtx
2844 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2845 rtx target, const struct algorithm *alg,
2846 enum mult_variant variant)
2848 HOST_WIDE_INT val_so_far;
2849 rtx insn, accum, tem;
2850 int opno;
2851 enum machine_mode nmode;
2853 /* Avoid referencing memory over and over.
2854 For speed, but also for correctness when mem is volatile. */
2855 if (MEM_P (op0))
2856 op0 = force_reg (mode, op0);
2858 /* ACCUM starts out either as OP0 or as a zero, depending on
2859 the first operation. */
2861 if (alg->op[0] == alg_zero)
2863 accum = copy_to_mode_reg (mode, const0_rtx);
2864 val_so_far = 0;
2866 else if (alg->op[0] == alg_m)
2868 accum = copy_to_mode_reg (mode, op0);
2869 val_so_far = 1;
2871 else
2872 gcc_unreachable ();
2874 for (opno = 1; opno < alg->ops; opno++)
2876 int log = alg->log[opno];
2877 rtx shift_subtarget = optimize ? 0 : accum;
2878 rtx add_target
2879 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2880 && !optimize)
2881 ? target : 0;
2882 rtx accum_target = optimize ? 0 : accum;
2884 switch (alg->op[opno])
2886 case alg_shift:
2887 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2888 build_int_cst (NULL_TREE, log),
2889 NULL_RTX, 0);
2890 val_so_far <<= log;
2891 break;
2893 case alg_add_t_m2:
2894 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2895 build_int_cst (NULL_TREE, log),
2896 NULL_RTX, 0);
2897 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2898 add_target ? add_target : accum_target);
2899 val_so_far += (HOST_WIDE_INT) 1 << log;
2900 break;
2902 case alg_sub_t_m2:
2903 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2904 build_int_cst (NULL_TREE, log),
2905 NULL_RTX, 0);
2906 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2907 add_target ? add_target : accum_target);
2908 val_so_far -= (HOST_WIDE_INT) 1 << log;
2909 break;
2911 case alg_add_t2_m:
2912 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2913 build_int_cst (NULL_TREE, log),
2914 shift_subtarget,
2916 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2917 add_target ? add_target : accum_target);
2918 val_so_far = (val_so_far << log) + 1;
2919 break;
2921 case alg_sub_t2_m:
2922 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2923 build_int_cst (NULL_TREE, log),
2924 shift_subtarget, 0);
2925 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2926 add_target ? add_target : accum_target);
2927 val_so_far = (val_so_far << log) - 1;
2928 break;
2930 case alg_add_factor:
2931 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2932 build_int_cst (NULL_TREE, log),
2933 NULL_RTX, 0);
2934 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2935 add_target ? add_target : accum_target);
2936 val_so_far += val_so_far << log;
2937 break;
2939 case alg_sub_factor:
2940 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2941 build_int_cst (NULL_TREE, log),
2942 NULL_RTX, 0);
2943 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2944 (add_target
2945 ? add_target : (optimize ? 0 : tem)));
2946 val_so_far = (val_so_far << log) - val_so_far;
2947 break;
2949 default:
2950 gcc_unreachable ();
2953 /* Write a REG_EQUAL note on the last insn so that we can cse
2954 multiplication sequences. Note that if ACCUM is a SUBREG,
2955 we've set the inner register and must properly indicate
2956 that. */
2958 tem = op0, nmode = mode;
2959 if (GET_CODE (accum) == SUBREG)
2961 nmode = GET_MODE (SUBREG_REG (accum));
2962 tem = gen_lowpart (nmode, op0);
2965 insn = get_last_insn ();
2966 set_unique_reg_note (insn, REG_EQUAL,
2967 gen_rtx_MULT (nmode, tem, GEN_INT (val_so_far)));
2970 if (variant == negate_variant)
2972 val_so_far = -val_so_far;
2973 accum = expand_unop (mode, neg_optab, accum, target, 0);
2975 else if (variant == add_variant)
2977 val_so_far = val_so_far + 1;
2978 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
2981 /* Compare only the bits of val and val_so_far that are significant
2982 in the result mode, to avoid sign-/zero-extension confusion. */
2983 val &= GET_MODE_MASK (mode);
2984 val_so_far &= GET_MODE_MASK (mode);
2985 gcc_assert (val == val_so_far);
2987 return accum;
2990 /* Perform a multiplication and return an rtx for the result.
2991 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
2992 TARGET is a suggestion for where to store the result (an rtx).
2994 We check specially for a constant integer as OP1.
2995 If you want this check for OP0 as well, then before calling
2996 you should swap the two operands if OP0 would be constant. */
2999 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3000 int unsignedp)
3002 enum mult_variant variant;
3003 struct algorithm algorithm;
3004 int max_cost;
3006 /* Handling const0_rtx here allows us to use zero as a rogue value for
3007 coeff below. */
3008 if (op1 == const0_rtx)
3009 return const0_rtx;
3010 if (op1 == const1_rtx)
3011 return op0;
3012 if (op1 == constm1_rtx)
3013 return expand_unop (mode,
3014 GET_MODE_CLASS (mode) == MODE_INT
3015 && !unsignedp && flag_trapv
3016 ? negv_optab : neg_optab,
3017 op0, target, 0);
3019 /* These are the operations that are potentially turned into a sequence
3020 of shifts and additions. */
3021 if (SCALAR_INT_MODE_P (mode)
3022 && (unsignedp || !flag_trapv))
3024 HOST_WIDE_INT coeff = 0;
3026 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3027 less than or equal in size to `unsigned int' this doesn't matter.
3028 If the mode is larger than `unsigned int', then synth_mult works
3029 only if the constant value exactly fits in an `unsigned int' without
3030 any truncation. This means that multiplying by negative values does
3031 not work; results are off by 2^32 on a 32 bit machine. */
3033 if (GET_CODE (op1) == CONST_INT)
3035 /* Attempt to handle multiplication of DImode values by negative
3036 coefficients, by performing the multiplication by a positive
3037 multiplier and then inverting the result. */
3038 if (INTVAL (op1) < 0
3039 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
3041 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3042 result is interpreted as an unsigned coefficient. */
3043 max_cost = rtx_cost (gen_rtx_MULT (mode, op0, op1), SET)
3044 - neg_cost[mode];
3045 if (max_cost > 0
3046 && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
3047 &variant, max_cost))
3049 rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
3050 NULL_RTX, &algorithm,
3051 variant);
3052 return expand_unop (mode, neg_optab, temp, target, 0);
3055 else coeff = INTVAL (op1);
3057 else if (GET_CODE (op1) == CONST_DOUBLE)
3059 /* If we are multiplying in DImode, it may still be a win
3060 to try to work with shifts and adds. */
3061 if (CONST_DOUBLE_HIGH (op1) == 0)
3062 coeff = CONST_DOUBLE_LOW (op1);
3063 else if (CONST_DOUBLE_LOW (op1) == 0
3064 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
3066 int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
3067 + HOST_BITS_PER_WIDE_INT;
3068 return expand_shift (LSHIFT_EXPR, mode, op0,
3069 build_int_cst (NULL_TREE, shift),
3070 target, unsignedp);
3074 /* We used to test optimize here, on the grounds that it's better to
3075 produce a smaller program when -O is not used. But this causes
3076 such a terrible slowdown sometimes that it seems better to always
3077 use synth_mult. */
3078 if (coeff != 0)
3080 /* Special case powers of two. */
3081 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3082 return expand_shift (LSHIFT_EXPR, mode, op0,
3083 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3084 target, unsignedp);
3086 max_cost = rtx_cost (gen_rtx_MULT (mode, op0, op1), SET);
3087 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3088 max_cost))
3089 return expand_mult_const (mode, op0, coeff, target,
3090 &algorithm, variant);
3094 if (GET_CODE (op0) == CONST_DOUBLE)
3096 rtx temp = op0;
3097 op0 = op1;
3098 op1 = temp;
3101 /* Expand x*2.0 as x+x. */
3102 if (GET_CODE (op1) == CONST_DOUBLE
3103 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3105 REAL_VALUE_TYPE d;
3106 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3108 if (REAL_VALUES_EQUAL (d, dconst2))
3110 op0 = force_reg (GET_MODE (op0), op0);
3111 return expand_binop (mode, add_optab, op0, op0,
3112 target, unsignedp, OPTAB_LIB_WIDEN);
3116 /* This used to use umul_optab if unsigned, but for non-widening multiply
3117 there is no difference between signed and unsigned. */
3118 op0 = expand_binop (mode,
3119 ! unsignedp
3120 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3121 ? smulv_optab : smul_optab,
3122 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3123 gcc_assert (op0);
3124 return op0;
3127 /* Return the smallest n such that 2**n >= X. */
3130 ceil_log2 (unsigned HOST_WIDE_INT x)
3132 return floor_log2 (x - 1) + 1;
3135 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3136 replace division by D, and put the least significant N bits of the result
3137 in *MULTIPLIER_PTR and return the most significant bit.
3139 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3140 needed precision is in PRECISION (should be <= N).
3142 PRECISION should be as small as possible so this function can choose
3143 multiplier more freely.
3145 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3146 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3148 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3149 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3151 static
3152 unsigned HOST_WIDE_INT
3153 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3154 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3156 HOST_WIDE_INT mhigh_hi, mlow_hi;
3157 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3158 int lgup, post_shift;
3159 int pow, pow2;
3160 unsigned HOST_WIDE_INT nl, dummy1;
3161 HOST_WIDE_INT nh, dummy2;
3163 /* lgup = ceil(log2(divisor)); */
3164 lgup = ceil_log2 (d);
3166 gcc_assert (lgup <= n);
3168 pow = n + lgup;
3169 pow2 = n + lgup - precision;
3171 /* We could handle this with some effort, but this case is much
3172 better handled directly with a scc insn, so rely on caller using
3173 that. */
3174 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3176 /* mlow = 2^(N + lgup)/d */
3177 if (pow >= HOST_BITS_PER_WIDE_INT)
3179 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3180 nl = 0;
3182 else
3184 nh = 0;
3185 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3187 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3188 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3190 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3191 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3192 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3193 else
3194 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3195 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3196 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3198 gcc_assert (!mhigh_hi || nh - d < d);
3199 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3200 /* Assert that mlow < mhigh. */
3201 gcc_assert (mlow_hi < mhigh_hi
3202 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3204 /* If precision == N, then mlow, mhigh exceed 2^N
3205 (but they do not exceed 2^(N+1)). */
3207 /* Reduce to lowest terms. */
3208 for (post_shift = lgup; post_shift > 0; post_shift--)
3210 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3211 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3212 if (ml_lo >= mh_lo)
3213 break;
3215 mlow_hi = 0;
3216 mlow_lo = ml_lo;
3217 mhigh_hi = 0;
3218 mhigh_lo = mh_lo;
3221 *post_shift_ptr = post_shift;
3222 *lgup_ptr = lgup;
3223 if (n < HOST_BITS_PER_WIDE_INT)
3225 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3226 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3227 return mhigh_lo >= mask;
3229 else
3231 *multiplier_ptr = GEN_INT (mhigh_lo);
3232 return mhigh_hi;
3236 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3237 congruent to 1 (mod 2**N). */
3239 static unsigned HOST_WIDE_INT
3240 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3242 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3244 /* The algorithm notes that the choice y = x satisfies
3245 x*y == 1 mod 2^3, since x is assumed odd.
3246 Each iteration doubles the number of bits of significance in y. */
3248 unsigned HOST_WIDE_INT mask;
3249 unsigned HOST_WIDE_INT y = x;
3250 int nbit = 3;
3252 mask = (n == HOST_BITS_PER_WIDE_INT
3253 ? ~(unsigned HOST_WIDE_INT) 0
3254 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3256 while (nbit < n)
3258 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3259 nbit *= 2;
3261 return y;
3264 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3265 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3266 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3267 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3268 become signed.
3270 The result is put in TARGET if that is convenient.
3272 MODE is the mode of operation. */
3275 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3276 rtx op1, rtx target, int unsignedp)
3278 rtx tem;
3279 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3281 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3282 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3283 NULL_RTX, 0);
3284 tem = expand_and (mode, tem, op1, NULL_RTX);
3285 adj_operand
3286 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3287 adj_operand);
3289 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3290 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3291 NULL_RTX, 0);
3292 tem = expand_and (mode, tem, op0, NULL_RTX);
3293 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3294 target);
3296 return target;
3299 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3301 static rtx
3302 extract_high_half (enum machine_mode mode, rtx op)
3304 enum machine_mode wider_mode;
3306 if (mode == word_mode)
3307 return gen_highpart (mode, op);
3309 wider_mode = GET_MODE_WIDER_MODE (mode);
3310 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3311 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3312 return convert_modes (mode, wider_mode, op, 0);
3315 /* Like expand_mult_highpart, but only consider using a multiplication
3316 optab. OP1 is an rtx for the constant operand. */
3318 static rtx
3319 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3320 rtx target, int unsignedp, int max_cost)
3322 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3323 enum machine_mode wider_mode;
3324 optab moptab;
3325 rtx tem;
3326 int size;
3328 wider_mode = GET_MODE_WIDER_MODE (mode);
3329 size = GET_MODE_BITSIZE (mode);
3331 /* Firstly, try using a multiplication insn that only generates the needed
3332 high part of the product, and in the sign flavor of unsignedp. */
3333 if (mul_highpart_cost[mode] < max_cost)
3335 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3336 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3337 unsignedp, OPTAB_DIRECT);
3338 if (tem)
3339 return tem;
3342 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3343 Need to adjust the result after the multiplication. */
3344 if (size - 1 < BITS_PER_WORD
3345 && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
3346 + 4 * add_cost[mode] < max_cost))
3348 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3349 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3350 unsignedp, OPTAB_DIRECT);
3351 if (tem)
3352 /* We used the wrong signedness. Adjust the result. */
3353 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3354 tem, unsignedp);
3357 /* Try widening multiplication. */
3358 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3359 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3360 && mul_widen_cost[wider_mode] < max_cost)
3362 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3363 unsignedp, OPTAB_WIDEN);
3364 if (tem)
3365 return extract_high_half (mode, tem);
3368 /* Try widening the mode and perform a non-widening multiplication. */
3369 if (smul_optab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3370 && size - 1 < BITS_PER_WORD
3371 && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
3373 rtx insns, wop0, wop1;
3375 /* We need to widen the operands, for example to ensure the
3376 constant multiplier is correctly sign or zero extended.
3377 Use a sequence to clean-up any instructions emitted by
3378 the conversions if things don't work out. */
3379 start_sequence ();
3380 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3381 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3382 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3383 unsignedp, OPTAB_WIDEN);
3384 insns = get_insns ();
3385 end_sequence ();
3387 if (tem)
3389 emit_insn (insns);
3390 return extract_high_half (mode, tem);
3394 /* Try widening multiplication of opposite signedness, and adjust. */
3395 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3396 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3397 && size - 1 < BITS_PER_WORD
3398 && (mul_widen_cost[wider_mode] + 2 * shift_cost[mode][size-1]
3399 + 4 * add_cost[mode] < max_cost))
3401 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3402 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3403 if (tem != 0)
3405 tem = extract_high_half (mode, tem);
3406 /* We used the wrong signedness. Adjust the result. */
3407 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3408 target, unsignedp);
3412 return 0;
3415 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3416 putting the high half of the result in TARGET if that is convenient,
3417 and return where the result is. If the operation can not be performed,
3418 0 is returned.
3420 MODE is the mode of operation and result.
3422 UNSIGNEDP nonzero means unsigned multiply.
3424 MAX_COST is the total allowed cost for the expanded RTL. */
3426 static rtx
3427 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3428 rtx target, int unsignedp, int max_cost)
3430 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3431 unsigned HOST_WIDE_INT cnst1;
3432 int extra_cost;
3433 bool sign_adjust = false;
3434 enum mult_variant variant;
3435 struct algorithm alg;
3436 rtx tem;
3438 /* We can't support modes wider than HOST_BITS_PER_INT. */
3439 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3441 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3443 /* We can't optimize modes wider than BITS_PER_WORD.
3444 ??? We might be able to perform double-word arithmetic if
3445 mode == word_mode, however all the cost calculations in
3446 synth_mult etc. assume single-word operations. */
3447 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3448 return expand_mult_highpart_optab (mode, op0, op1, target,
3449 unsignedp, max_cost);
3451 extra_cost = shift_cost[mode][GET_MODE_BITSIZE (mode) - 1];
3453 /* Check whether we try to multiply by a negative constant. */
3454 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3456 sign_adjust = true;
3457 extra_cost += add_cost[mode];
3460 /* See whether shift/add multiplication is cheap enough. */
3461 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3462 max_cost - extra_cost))
3464 /* See whether the specialized multiplication optabs are
3465 cheaper than the shift/add version. */
3466 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3467 alg.cost.cost + extra_cost);
3468 if (tem)
3469 return tem;
3471 tem = convert_to_mode (wider_mode, op0, unsignedp);
3472 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3473 tem = extract_high_half (mode, tem);
3475 /* Adjust result for signedness. */
3476 if (sign_adjust)
3477 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3479 return tem;
3481 return expand_mult_highpart_optab (mode, op0, op1, target,
3482 unsignedp, max_cost);
3486 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3488 static rtx
3489 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3491 unsigned HOST_WIDE_INT masklow, maskhigh;
3492 rtx result, temp, shift, label;
3493 int logd;
3495 logd = floor_log2 (d);
3496 result = gen_reg_rtx (mode);
3498 /* Avoid conditional branches when they're expensive. */
3499 if (BRANCH_COST >= 2
3500 && !optimize_size)
3502 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3503 mode, 0, -1);
3504 if (signmask)
3506 signmask = force_reg (mode, signmask);
3507 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3508 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3510 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3511 which instruction sequence to use. If logical right shifts
3512 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3513 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3515 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3516 if (lshr_optab->handlers[mode].insn_code == CODE_FOR_nothing
3517 || rtx_cost (temp, SET) > COSTS_N_INSNS (2))
3519 temp = expand_binop (mode, xor_optab, op0, signmask,
3520 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3521 temp = expand_binop (mode, sub_optab, temp, signmask,
3522 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3523 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3524 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3525 temp = expand_binop (mode, xor_optab, temp, signmask,
3526 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3527 temp = expand_binop (mode, sub_optab, temp, signmask,
3528 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3530 else
3532 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3533 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3534 signmask = force_reg (mode, signmask);
3536 temp = expand_binop (mode, add_optab, op0, signmask,
3537 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3538 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3539 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3540 temp = expand_binop (mode, sub_optab, temp, signmask,
3541 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3543 return temp;
3547 /* Mask contains the mode's signbit and the significant bits of the
3548 modulus. By including the signbit in the operation, many targets
3549 can avoid an explicit compare operation in the following comparison
3550 against zero. */
3552 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3553 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3555 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3556 maskhigh = -1;
3558 else
3559 maskhigh = (HOST_WIDE_INT) -1
3560 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3562 temp = expand_binop (mode, and_optab, op0,
3563 immed_double_const (masklow, maskhigh, mode),
3564 result, 1, OPTAB_LIB_WIDEN);
3565 if (temp != result)
3566 emit_move_insn (result, temp);
3568 label = gen_label_rtx ();
3569 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3571 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3572 0, OPTAB_LIB_WIDEN);
3573 masklow = (HOST_WIDE_INT) -1 << logd;
3574 maskhigh = -1;
3575 temp = expand_binop (mode, ior_optab, temp,
3576 immed_double_const (masklow, maskhigh, mode),
3577 result, 1, OPTAB_LIB_WIDEN);
3578 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3579 0, OPTAB_LIB_WIDEN);
3580 if (temp != result)
3581 emit_move_insn (result, temp);
3582 emit_label (label);
3583 return result;
3586 /* Expand signed division of OP0 by a power of two D in mode MODE.
3587 This routine is only called for positive values of D. */
3589 static rtx
3590 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3592 rtx temp, label;
3593 tree shift;
3594 int logd;
3596 logd = floor_log2 (d);
3597 shift = build_int_cst (NULL_TREE, logd);
3599 if (d == 2 && BRANCH_COST >= 1)
3601 temp = gen_reg_rtx (mode);
3602 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3603 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3604 0, OPTAB_LIB_WIDEN);
3605 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3608 #ifdef HAVE_conditional_move
3609 if (BRANCH_COST >= 2)
3611 rtx temp2;
3613 /* ??? emit_conditional_move forces a stack adjustment via
3614 compare_from_rtx so, if the sequence is discarded, it will
3615 be lost. Do it now instead. */
3616 do_pending_stack_adjust ();
3618 start_sequence ();
3619 temp2 = copy_to_mode_reg (mode, op0);
3620 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3621 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3622 temp = force_reg (mode, temp);
3624 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3625 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3626 mode, temp, temp2, mode, 0);
3627 if (temp2)
3629 rtx seq = get_insns ();
3630 end_sequence ();
3631 emit_insn (seq);
3632 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3634 end_sequence ();
3636 #endif
3638 if (BRANCH_COST >= 2)
3640 int ushift = GET_MODE_BITSIZE (mode) - logd;
3642 temp = gen_reg_rtx (mode);
3643 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3644 if (shift_cost[mode][ushift] > COSTS_N_INSNS (1))
3645 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3646 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3647 else
3648 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3649 build_int_cst (NULL_TREE, ushift),
3650 NULL_RTX, 1);
3651 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3652 0, OPTAB_LIB_WIDEN);
3653 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3656 label = gen_label_rtx ();
3657 temp = copy_to_mode_reg (mode, op0);
3658 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3659 expand_inc (temp, GEN_INT (d - 1));
3660 emit_label (label);
3661 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3664 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3665 if that is convenient, and returning where the result is.
3666 You may request either the quotient or the remainder as the result;
3667 specify REM_FLAG nonzero to get the remainder.
3669 CODE is the expression code for which kind of division this is;
3670 it controls how rounding is done. MODE is the machine mode to use.
3671 UNSIGNEDP nonzero means do unsigned division. */
3673 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3674 and then correct it by or'ing in missing high bits
3675 if result of ANDI is nonzero.
3676 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3677 This could optimize to a bfexts instruction.
3678 But C doesn't use these operations, so their optimizations are
3679 left for later. */
3680 /* ??? For modulo, we don't actually need the highpart of the first product,
3681 the low part will do nicely. And for small divisors, the second multiply
3682 can also be a low-part only multiply or even be completely left out.
3683 E.g. to calculate the remainder of a division by 3 with a 32 bit
3684 multiply, multiply with 0x55555556 and extract the upper two bits;
3685 the result is exact for inputs up to 0x1fffffff.
3686 The input range can be reduced by using cross-sum rules.
3687 For odd divisors >= 3, the following table gives right shift counts
3688 so that if a number is shifted by an integer multiple of the given
3689 amount, the remainder stays the same:
3690 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3691 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3692 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3693 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3694 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3696 Cross-sum rules for even numbers can be derived by leaving as many bits
3697 to the right alone as the divisor has zeros to the right.
3698 E.g. if x is an unsigned 32 bit number:
3699 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3703 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3704 rtx op0, rtx op1, rtx target, int unsignedp)
3706 enum machine_mode compute_mode;
3707 rtx tquotient;
3708 rtx quotient = 0, remainder = 0;
3709 rtx last;
3710 int size;
3711 rtx insn, set;
3712 optab optab1, optab2;
3713 int op1_is_constant, op1_is_pow2 = 0;
3714 int max_cost, extra_cost;
3715 static HOST_WIDE_INT last_div_const = 0;
3716 static HOST_WIDE_INT ext_op1;
3718 op1_is_constant = GET_CODE (op1) == CONST_INT;
3719 if (op1_is_constant)
3721 ext_op1 = INTVAL (op1);
3722 if (unsignedp)
3723 ext_op1 &= GET_MODE_MASK (mode);
3724 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3725 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3729 This is the structure of expand_divmod:
3731 First comes code to fix up the operands so we can perform the operations
3732 correctly and efficiently.
3734 Second comes a switch statement with code specific for each rounding mode.
3735 For some special operands this code emits all RTL for the desired
3736 operation, for other cases, it generates only a quotient and stores it in
3737 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3738 to indicate that it has not done anything.
3740 Last comes code that finishes the operation. If QUOTIENT is set and
3741 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3742 QUOTIENT is not set, it is computed using trunc rounding.
3744 We try to generate special code for division and remainder when OP1 is a
3745 constant. If |OP1| = 2**n we can use shifts and some other fast
3746 operations. For other values of OP1, we compute a carefully selected
3747 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3748 by m.
3750 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3751 half of the product. Different strategies for generating the product are
3752 implemented in expand_mult_highpart.
3754 If what we actually want is the remainder, we generate that by another
3755 by-constant multiplication and a subtraction. */
3757 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3758 code below will malfunction if we are, so check here and handle
3759 the special case if so. */
3760 if (op1 == const1_rtx)
3761 return rem_flag ? const0_rtx : op0;
3763 /* When dividing by -1, we could get an overflow.
3764 negv_optab can handle overflows. */
3765 if (! unsignedp && op1 == constm1_rtx)
3767 if (rem_flag)
3768 return const0_rtx;
3769 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3770 ? negv_optab : neg_optab, op0, target, 0);
3773 if (target
3774 /* Don't use the function value register as a target
3775 since we have to read it as well as write it,
3776 and function-inlining gets confused by this. */
3777 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3778 /* Don't clobber an operand while doing a multi-step calculation. */
3779 || ((rem_flag || op1_is_constant)
3780 && (reg_mentioned_p (target, op0)
3781 || (MEM_P (op0) && MEM_P (target))))
3782 || reg_mentioned_p (target, op1)
3783 || (MEM_P (op1) && MEM_P (target))))
3784 target = 0;
3786 /* Get the mode in which to perform this computation. Normally it will
3787 be MODE, but sometimes we can't do the desired operation in MODE.
3788 If so, pick a wider mode in which we can do the operation. Convert
3789 to that mode at the start to avoid repeated conversions.
3791 First see what operations we need. These depend on the expression
3792 we are evaluating. (We assume that divxx3 insns exist under the
3793 same conditions that modxx3 insns and that these insns don't normally
3794 fail. If these assumptions are not correct, we may generate less
3795 efficient code in some cases.)
3797 Then see if we find a mode in which we can open-code that operation
3798 (either a division, modulus, or shift). Finally, check for the smallest
3799 mode for which we can do the operation with a library call. */
3801 /* We might want to refine this now that we have division-by-constant
3802 optimization. Since expand_mult_highpart tries so many variants, it is
3803 not straightforward to generalize this. Maybe we should make an array
3804 of possible modes in init_expmed? Save this for GCC 2.7. */
3806 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3807 ? (unsignedp ? lshr_optab : ashr_optab)
3808 : (unsignedp ? udiv_optab : sdiv_optab));
3809 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3810 ? optab1
3811 : (unsignedp ? udivmod_optab : sdivmod_optab));
3813 for (compute_mode = mode; compute_mode != VOIDmode;
3814 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3815 if (optab1->handlers[compute_mode].insn_code != CODE_FOR_nothing
3816 || optab2->handlers[compute_mode].insn_code != CODE_FOR_nothing)
3817 break;
3819 if (compute_mode == VOIDmode)
3820 for (compute_mode = mode; compute_mode != VOIDmode;
3821 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3822 if (optab1->handlers[compute_mode].libfunc
3823 || optab2->handlers[compute_mode].libfunc)
3824 break;
3826 /* If we still couldn't find a mode, use MODE, but expand_binop will
3827 probably die. */
3828 if (compute_mode == VOIDmode)
3829 compute_mode = mode;
3831 if (target && GET_MODE (target) == compute_mode)
3832 tquotient = target;
3833 else
3834 tquotient = gen_reg_rtx (compute_mode);
3836 size = GET_MODE_BITSIZE (compute_mode);
3837 #if 0
3838 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3839 (mode), and thereby get better code when OP1 is a constant. Do that
3840 later. It will require going over all usages of SIZE below. */
3841 size = GET_MODE_BITSIZE (mode);
3842 #endif
3844 /* Only deduct something for a REM if the last divide done was
3845 for a different constant. Then set the constant of the last
3846 divide. */
3847 max_cost = div_cost[compute_mode]
3848 - (rem_flag && ! (last_div_const != 0 && op1_is_constant
3849 && INTVAL (op1) == last_div_const)
3850 ? mul_cost[compute_mode] + add_cost[compute_mode]
3851 : 0);
3853 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3855 /* Now convert to the best mode to use. */
3856 if (compute_mode != mode)
3858 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3859 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3861 /* convert_modes may have placed op1 into a register, so we
3862 must recompute the following. */
3863 op1_is_constant = GET_CODE (op1) == CONST_INT;
3864 op1_is_pow2 = (op1_is_constant
3865 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3866 || (! unsignedp
3867 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3870 /* If one of the operands is a volatile MEM, copy it into a register. */
3872 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3873 op0 = force_reg (compute_mode, op0);
3874 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3875 op1 = force_reg (compute_mode, op1);
3877 /* If we need the remainder or if OP1 is constant, we need to
3878 put OP0 in a register in case it has any queued subexpressions. */
3879 if (rem_flag || op1_is_constant)
3880 op0 = force_reg (compute_mode, op0);
3882 last = get_last_insn ();
3884 /* Promote floor rounding to trunc rounding for unsigned operations. */
3885 if (unsignedp)
3887 if (code == FLOOR_DIV_EXPR)
3888 code = TRUNC_DIV_EXPR;
3889 if (code == FLOOR_MOD_EXPR)
3890 code = TRUNC_MOD_EXPR;
3891 if (code == EXACT_DIV_EXPR && op1_is_pow2)
3892 code = TRUNC_DIV_EXPR;
3895 if (op1 != const0_rtx)
3896 switch (code)
3898 case TRUNC_MOD_EXPR:
3899 case TRUNC_DIV_EXPR:
3900 if (op1_is_constant)
3902 if (unsignedp)
3904 unsigned HOST_WIDE_INT mh;
3905 int pre_shift, post_shift;
3906 int dummy;
3907 rtx ml;
3908 unsigned HOST_WIDE_INT d = (INTVAL (op1)
3909 & GET_MODE_MASK (compute_mode));
3911 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
3913 pre_shift = floor_log2 (d);
3914 if (rem_flag)
3916 remainder
3917 = expand_binop (compute_mode, and_optab, op0,
3918 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
3919 remainder, 1,
3920 OPTAB_LIB_WIDEN);
3921 if (remainder)
3922 return gen_lowpart (mode, remainder);
3924 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3925 build_int_cst (NULL_TREE,
3926 pre_shift),
3927 tquotient, 1);
3929 else if (size <= HOST_BITS_PER_WIDE_INT)
3931 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
3933 /* Most significant bit of divisor is set; emit an scc
3934 insn. */
3935 quotient = emit_store_flag (tquotient, GEU, op0, op1,
3936 compute_mode, 1, 1);
3937 if (quotient == 0)
3938 goto fail1;
3940 else
3942 /* Find a suitable multiplier and right shift count
3943 instead of multiplying with D. */
3945 mh = choose_multiplier (d, size, size,
3946 &ml, &post_shift, &dummy);
3948 /* If the suggested multiplier is more than SIZE bits,
3949 we can do better for even divisors, using an
3950 initial right shift. */
3951 if (mh != 0 && (d & 1) == 0)
3953 pre_shift = floor_log2 (d & -d);
3954 mh = choose_multiplier (d >> pre_shift, size,
3955 size - pre_shift,
3956 &ml, &post_shift, &dummy);
3957 gcc_assert (!mh);
3959 else
3960 pre_shift = 0;
3962 if (mh != 0)
3964 rtx t1, t2, t3, t4;
3966 if (post_shift - 1 >= BITS_PER_WORD)
3967 goto fail1;
3969 extra_cost
3970 = (shift_cost[compute_mode][post_shift - 1]
3971 + shift_cost[compute_mode][1]
3972 + 2 * add_cost[compute_mode]);
3973 t1 = expand_mult_highpart (compute_mode, op0, ml,
3974 NULL_RTX, 1,
3975 max_cost - extra_cost);
3976 if (t1 == 0)
3977 goto fail1;
3978 t2 = force_operand (gen_rtx_MINUS (compute_mode,
3979 op0, t1),
3980 NULL_RTX);
3981 t3 = expand_shift
3982 (RSHIFT_EXPR, compute_mode, t2,
3983 build_int_cst (NULL_TREE, 1),
3984 NULL_RTX,1);
3985 t4 = force_operand (gen_rtx_PLUS (compute_mode,
3986 t1, t3),
3987 NULL_RTX);
3988 quotient = expand_shift
3989 (RSHIFT_EXPR, compute_mode, t4,
3990 build_int_cst (NULL_TREE, post_shift - 1),
3991 tquotient, 1);
3993 else
3995 rtx t1, t2;
3997 if (pre_shift >= BITS_PER_WORD
3998 || post_shift >= BITS_PER_WORD)
3999 goto fail1;
4001 t1 = expand_shift
4002 (RSHIFT_EXPR, compute_mode, op0,
4003 build_int_cst (NULL_TREE, pre_shift),
4004 NULL_RTX, 1);
4005 extra_cost
4006 = (shift_cost[compute_mode][pre_shift]
4007 + shift_cost[compute_mode][post_shift]);
4008 t2 = expand_mult_highpart (compute_mode, t1, ml,
4009 NULL_RTX, 1,
4010 max_cost - extra_cost);
4011 if (t2 == 0)
4012 goto fail1;
4013 quotient = expand_shift
4014 (RSHIFT_EXPR, compute_mode, t2,
4015 build_int_cst (NULL_TREE, post_shift),
4016 tquotient, 1);
4020 else /* Too wide mode to use tricky code */
4021 break;
4023 insn = get_last_insn ();
4024 if (insn != last
4025 && (set = single_set (insn)) != 0
4026 && SET_DEST (set) == quotient)
4027 set_unique_reg_note (insn,
4028 REG_EQUAL,
4029 gen_rtx_UDIV (compute_mode, op0, op1));
4031 else /* TRUNC_DIV, signed */
4033 unsigned HOST_WIDE_INT ml;
4034 int lgup, post_shift;
4035 rtx mlr;
4036 HOST_WIDE_INT d = INTVAL (op1);
4037 unsigned HOST_WIDE_INT abs_d = d >= 0 ? d : -d;
4039 /* n rem d = n rem -d */
4040 if (rem_flag && d < 0)
4042 d = abs_d;
4043 op1 = gen_int_mode (abs_d, compute_mode);
4046 if (d == 1)
4047 quotient = op0;
4048 else if (d == -1)
4049 quotient = expand_unop (compute_mode, neg_optab, op0,
4050 tquotient, 0);
4051 else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4053 /* This case is not handled correctly below. */
4054 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4055 compute_mode, 1, 1);
4056 if (quotient == 0)
4057 goto fail1;
4059 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4060 && (rem_flag ? smod_pow2_cheap[compute_mode]
4061 : sdiv_pow2_cheap[compute_mode])
4062 /* We assume that cheap metric is true if the
4063 optab has an expander for this mode. */
4064 && (((rem_flag ? smod_optab : sdiv_optab)
4065 ->handlers[compute_mode].insn_code
4066 != CODE_FOR_nothing)
4067 || (sdivmod_optab->handlers[compute_mode]
4068 .insn_code != CODE_FOR_nothing)))
4070 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4072 if (rem_flag)
4074 remainder = expand_smod_pow2 (compute_mode, op0, d);
4075 if (remainder)
4076 return gen_lowpart (mode, remainder);
4079 if (sdiv_pow2_cheap[compute_mode]
4080 && ((sdiv_optab->handlers[compute_mode].insn_code
4081 != CODE_FOR_nothing)
4082 || (sdivmod_optab->handlers[compute_mode].insn_code
4083 != CODE_FOR_nothing)))
4084 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4085 compute_mode, op0,
4086 gen_int_mode (abs_d,
4087 compute_mode),
4088 NULL_RTX, 0);
4089 else
4090 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4092 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4093 negate the quotient. */
4094 if (d < 0)
4096 insn = get_last_insn ();
4097 if (insn != last
4098 && (set = single_set (insn)) != 0
4099 && SET_DEST (set) == quotient
4100 && abs_d < ((unsigned HOST_WIDE_INT) 1
4101 << (HOST_BITS_PER_WIDE_INT - 1)))
4102 set_unique_reg_note (insn,
4103 REG_EQUAL,
4104 gen_rtx_DIV (compute_mode,
4105 op0,
4106 GEN_INT
4107 (trunc_int_for_mode
4108 (abs_d,
4109 compute_mode))));
4111 quotient = expand_unop (compute_mode, neg_optab,
4112 quotient, quotient, 0);
4115 else if (size <= HOST_BITS_PER_WIDE_INT)
4117 choose_multiplier (abs_d, size, size - 1,
4118 &mlr, &post_shift, &lgup);
4119 ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
4120 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4122 rtx t1, t2, t3;
4124 if (post_shift >= BITS_PER_WORD
4125 || size - 1 >= BITS_PER_WORD)
4126 goto fail1;
4128 extra_cost = (shift_cost[compute_mode][post_shift]
4129 + shift_cost[compute_mode][size - 1]
4130 + add_cost[compute_mode]);
4131 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4132 NULL_RTX, 0,
4133 max_cost - extra_cost);
4134 if (t1 == 0)
4135 goto fail1;
4136 t2 = expand_shift
4137 (RSHIFT_EXPR, compute_mode, t1,
4138 build_int_cst (NULL_TREE, post_shift),
4139 NULL_RTX, 0);
4140 t3 = expand_shift
4141 (RSHIFT_EXPR, compute_mode, op0,
4142 build_int_cst (NULL_TREE, size - 1),
4143 NULL_RTX, 0);
4144 if (d < 0)
4145 quotient
4146 = force_operand (gen_rtx_MINUS (compute_mode,
4147 t3, t2),
4148 tquotient);
4149 else
4150 quotient
4151 = force_operand (gen_rtx_MINUS (compute_mode,
4152 t2, t3),
4153 tquotient);
4155 else
4157 rtx t1, t2, t3, t4;
4159 if (post_shift >= BITS_PER_WORD
4160 || size - 1 >= BITS_PER_WORD)
4161 goto fail1;
4163 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4164 mlr = gen_int_mode (ml, compute_mode);
4165 extra_cost = (shift_cost[compute_mode][post_shift]
4166 + shift_cost[compute_mode][size - 1]
4167 + 2 * add_cost[compute_mode]);
4168 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4169 NULL_RTX, 0,
4170 max_cost - extra_cost);
4171 if (t1 == 0)
4172 goto fail1;
4173 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4174 t1, op0),
4175 NULL_RTX);
4176 t3 = expand_shift
4177 (RSHIFT_EXPR, compute_mode, t2,
4178 build_int_cst (NULL_TREE, post_shift),
4179 NULL_RTX, 0);
4180 t4 = expand_shift
4181 (RSHIFT_EXPR, compute_mode, op0,
4182 build_int_cst (NULL_TREE, size - 1),
4183 NULL_RTX, 0);
4184 if (d < 0)
4185 quotient
4186 = force_operand (gen_rtx_MINUS (compute_mode,
4187 t4, t3),
4188 tquotient);
4189 else
4190 quotient
4191 = force_operand (gen_rtx_MINUS (compute_mode,
4192 t3, t4),
4193 tquotient);
4196 else /* Too wide mode to use tricky code */
4197 break;
4199 insn = get_last_insn ();
4200 if (insn != last
4201 && (set = single_set (insn)) != 0
4202 && SET_DEST (set) == quotient)
4203 set_unique_reg_note (insn,
4204 REG_EQUAL,
4205 gen_rtx_DIV (compute_mode, op0, op1));
4207 break;
4209 fail1:
4210 delete_insns_since (last);
4211 break;
4213 case FLOOR_DIV_EXPR:
4214 case FLOOR_MOD_EXPR:
4215 /* We will come here only for signed operations. */
4216 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4218 unsigned HOST_WIDE_INT mh;
4219 int pre_shift, lgup, post_shift;
4220 HOST_WIDE_INT d = INTVAL (op1);
4221 rtx ml;
4223 if (d > 0)
4225 /* We could just as easily deal with negative constants here,
4226 but it does not seem worth the trouble for GCC 2.6. */
4227 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4229 pre_shift = floor_log2 (d);
4230 if (rem_flag)
4232 remainder = expand_binop (compute_mode, and_optab, op0,
4233 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4234 remainder, 0, OPTAB_LIB_WIDEN);
4235 if (remainder)
4236 return gen_lowpart (mode, remainder);
4238 quotient = expand_shift
4239 (RSHIFT_EXPR, compute_mode, op0,
4240 build_int_cst (NULL_TREE, pre_shift),
4241 tquotient, 0);
4243 else
4245 rtx t1, t2, t3, t4;
4247 mh = choose_multiplier (d, size, size - 1,
4248 &ml, &post_shift, &lgup);
4249 gcc_assert (!mh);
4251 if (post_shift < BITS_PER_WORD
4252 && size - 1 < BITS_PER_WORD)
4254 t1 = expand_shift
4255 (RSHIFT_EXPR, compute_mode, op0,
4256 build_int_cst (NULL_TREE, size - 1),
4257 NULL_RTX, 0);
4258 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4259 NULL_RTX, 0, OPTAB_WIDEN);
4260 extra_cost = (shift_cost[compute_mode][post_shift]
4261 + shift_cost[compute_mode][size - 1]
4262 + 2 * add_cost[compute_mode]);
4263 t3 = expand_mult_highpart (compute_mode, t2, ml,
4264 NULL_RTX, 1,
4265 max_cost - extra_cost);
4266 if (t3 != 0)
4268 t4 = expand_shift
4269 (RSHIFT_EXPR, compute_mode, t3,
4270 build_int_cst (NULL_TREE, post_shift),
4271 NULL_RTX, 1);
4272 quotient = expand_binop (compute_mode, xor_optab,
4273 t4, t1, tquotient, 0,
4274 OPTAB_WIDEN);
4279 else
4281 rtx nsign, t1, t2, t3, t4;
4282 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4283 op0, constm1_rtx), NULL_RTX);
4284 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4285 0, OPTAB_WIDEN);
4286 nsign = expand_shift
4287 (RSHIFT_EXPR, compute_mode, t2,
4288 build_int_cst (NULL_TREE, size - 1),
4289 NULL_RTX, 0);
4290 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4291 NULL_RTX);
4292 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4293 NULL_RTX, 0);
4294 if (t4)
4296 rtx t5;
4297 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4298 NULL_RTX, 0);
4299 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4300 t4, t5),
4301 tquotient);
4306 if (quotient != 0)
4307 break;
4308 delete_insns_since (last);
4310 /* Try using an instruction that produces both the quotient and
4311 remainder, using truncation. We can easily compensate the quotient
4312 or remainder to get floor rounding, once we have the remainder.
4313 Notice that we compute also the final remainder value here,
4314 and return the result right away. */
4315 if (target == 0 || GET_MODE (target) != compute_mode)
4316 target = gen_reg_rtx (compute_mode);
4318 if (rem_flag)
4320 remainder
4321 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4322 quotient = gen_reg_rtx (compute_mode);
4324 else
4326 quotient
4327 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4328 remainder = gen_reg_rtx (compute_mode);
4331 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4332 quotient, remainder, 0))
4334 /* This could be computed with a branch-less sequence.
4335 Save that for later. */
4336 rtx tem;
4337 rtx label = gen_label_rtx ();
4338 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4339 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4340 NULL_RTX, 0, OPTAB_WIDEN);
4341 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4342 expand_dec (quotient, const1_rtx);
4343 expand_inc (remainder, op1);
4344 emit_label (label);
4345 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4348 /* No luck with division elimination or divmod. Have to do it
4349 by conditionally adjusting op0 *and* the result. */
4351 rtx label1, label2, label3, label4, label5;
4352 rtx adjusted_op0;
4353 rtx tem;
4355 quotient = gen_reg_rtx (compute_mode);
4356 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4357 label1 = gen_label_rtx ();
4358 label2 = gen_label_rtx ();
4359 label3 = gen_label_rtx ();
4360 label4 = gen_label_rtx ();
4361 label5 = gen_label_rtx ();
4362 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4363 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4364 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4365 quotient, 0, OPTAB_LIB_WIDEN);
4366 if (tem != quotient)
4367 emit_move_insn (quotient, tem);
4368 emit_jump_insn (gen_jump (label5));
4369 emit_barrier ();
4370 emit_label (label1);
4371 expand_inc (adjusted_op0, const1_rtx);
4372 emit_jump_insn (gen_jump (label4));
4373 emit_barrier ();
4374 emit_label (label2);
4375 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4376 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4377 quotient, 0, OPTAB_LIB_WIDEN);
4378 if (tem != quotient)
4379 emit_move_insn (quotient, tem);
4380 emit_jump_insn (gen_jump (label5));
4381 emit_barrier ();
4382 emit_label (label3);
4383 expand_dec (adjusted_op0, const1_rtx);
4384 emit_label (label4);
4385 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4386 quotient, 0, OPTAB_LIB_WIDEN);
4387 if (tem != quotient)
4388 emit_move_insn (quotient, tem);
4389 expand_dec (quotient, const1_rtx);
4390 emit_label (label5);
4392 break;
4394 case CEIL_DIV_EXPR:
4395 case CEIL_MOD_EXPR:
4396 if (unsignedp)
4398 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4400 rtx t1, t2, t3;
4401 unsigned HOST_WIDE_INT d = INTVAL (op1);
4402 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4403 build_int_cst (NULL_TREE, floor_log2 (d)),
4404 tquotient, 1);
4405 t2 = expand_binop (compute_mode, and_optab, op0,
4406 GEN_INT (d - 1),
4407 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4408 t3 = gen_reg_rtx (compute_mode);
4409 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4410 compute_mode, 1, 1);
4411 if (t3 == 0)
4413 rtx lab;
4414 lab = gen_label_rtx ();
4415 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4416 expand_inc (t1, const1_rtx);
4417 emit_label (lab);
4418 quotient = t1;
4420 else
4421 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4422 t1, t3),
4423 tquotient);
4424 break;
4427 /* Try using an instruction that produces both the quotient and
4428 remainder, using truncation. We can easily compensate the
4429 quotient or remainder to get ceiling rounding, once we have the
4430 remainder. Notice that we compute also the final remainder
4431 value here, and return the result right away. */
4432 if (target == 0 || GET_MODE (target) != compute_mode)
4433 target = gen_reg_rtx (compute_mode);
4435 if (rem_flag)
4437 remainder = (REG_P (target)
4438 ? target : gen_reg_rtx (compute_mode));
4439 quotient = gen_reg_rtx (compute_mode);
4441 else
4443 quotient = (REG_P (target)
4444 ? target : gen_reg_rtx (compute_mode));
4445 remainder = gen_reg_rtx (compute_mode);
4448 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4449 remainder, 1))
4451 /* This could be computed with a branch-less sequence.
4452 Save that for later. */
4453 rtx label = gen_label_rtx ();
4454 do_cmp_and_jump (remainder, const0_rtx, EQ,
4455 compute_mode, label);
4456 expand_inc (quotient, const1_rtx);
4457 expand_dec (remainder, op1);
4458 emit_label (label);
4459 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4462 /* No luck with division elimination or divmod. Have to do it
4463 by conditionally adjusting op0 *and* the result. */
4465 rtx label1, label2;
4466 rtx adjusted_op0, tem;
4468 quotient = gen_reg_rtx (compute_mode);
4469 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4470 label1 = gen_label_rtx ();
4471 label2 = gen_label_rtx ();
4472 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4473 compute_mode, label1);
4474 emit_move_insn (quotient, const0_rtx);
4475 emit_jump_insn (gen_jump (label2));
4476 emit_barrier ();
4477 emit_label (label1);
4478 expand_dec (adjusted_op0, const1_rtx);
4479 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4480 quotient, 1, OPTAB_LIB_WIDEN);
4481 if (tem != quotient)
4482 emit_move_insn (quotient, tem);
4483 expand_inc (quotient, const1_rtx);
4484 emit_label (label2);
4487 else /* signed */
4489 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4490 && INTVAL (op1) >= 0)
4492 /* This is extremely similar to the code for the unsigned case
4493 above. For 2.7 we should merge these variants, but for
4494 2.6.1 I don't want to touch the code for unsigned since that
4495 get used in C. The signed case will only be used by other
4496 languages (Ada). */
4498 rtx t1, t2, t3;
4499 unsigned HOST_WIDE_INT d = INTVAL (op1);
4500 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4501 build_int_cst (NULL_TREE, floor_log2 (d)),
4502 tquotient, 0);
4503 t2 = expand_binop (compute_mode, and_optab, op0,
4504 GEN_INT (d - 1),
4505 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4506 t3 = gen_reg_rtx (compute_mode);
4507 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4508 compute_mode, 1, 1);
4509 if (t3 == 0)
4511 rtx lab;
4512 lab = gen_label_rtx ();
4513 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4514 expand_inc (t1, const1_rtx);
4515 emit_label (lab);
4516 quotient = t1;
4518 else
4519 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4520 t1, t3),
4521 tquotient);
4522 break;
4525 /* Try using an instruction that produces both the quotient and
4526 remainder, using truncation. We can easily compensate the
4527 quotient or remainder to get ceiling rounding, once we have the
4528 remainder. Notice that we compute also the final remainder
4529 value here, and return the result right away. */
4530 if (target == 0 || GET_MODE (target) != compute_mode)
4531 target = gen_reg_rtx (compute_mode);
4532 if (rem_flag)
4534 remainder= (REG_P (target)
4535 ? target : gen_reg_rtx (compute_mode));
4536 quotient = gen_reg_rtx (compute_mode);
4538 else
4540 quotient = (REG_P (target)
4541 ? target : gen_reg_rtx (compute_mode));
4542 remainder = gen_reg_rtx (compute_mode);
4545 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4546 remainder, 0))
4548 /* This could be computed with a branch-less sequence.
4549 Save that for later. */
4550 rtx tem;
4551 rtx label = gen_label_rtx ();
4552 do_cmp_and_jump (remainder, const0_rtx, EQ,
4553 compute_mode, label);
4554 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4555 NULL_RTX, 0, OPTAB_WIDEN);
4556 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4557 expand_inc (quotient, const1_rtx);
4558 expand_dec (remainder, op1);
4559 emit_label (label);
4560 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4563 /* No luck with division elimination or divmod. Have to do it
4564 by conditionally adjusting op0 *and* the result. */
4566 rtx label1, label2, label3, label4, label5;
4567 rtx adjusted_op0;
4568 rtx tem;
4570 quotient = gen_reg_rtx (compute_mode);
4571 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4572 label1 = gen_label_rtx ();
4573 label2 = gen_label_rtx ();
4574 label3 = gen_label_rtx ();
4575 label4 = gen_label_rtx ();
4576 label5 = gen_label_rtx ();
4577 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4578 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4579 compute_mode, label1);
4580 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4581 quotient, 0, OPTAB_LIB_WIDEN);
4582 if (tem != quotient)
4583 emit_move_insn (quotient, tem);
4584 emit_jump_insn (gen_jump (label5));
4585 emit_barrier ();
4586 emit_label (label1);
4587 expand_dec (adjusted_op0, const1_rtx);
4588 emit_jump_insn (gen_jump (label4));
4589 emit_barrier ();
4590 emit_label (label2);
4591 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4592 compute_mode, label3);
4593 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4594 quotient, 0, OPTAB_LIB_WIDEN);
4595 if (tem != quotient)
4596 emit_move_insn (quotient, tem);
4597 emit_jump_insn (gen_jump (label5));
4598 emit_barrier ();
4599 emit_label (label3);
4600 expand_inc (adjusted_op0, const1_rtx);
4601 emit_label (label4);
4602 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4603 quotient, 0, OPTAB_LIB_WIDEN);
4604 if (tem != quotient)
4605 emit_move_insn (quotient, tem);
4606 expand_inc (quotient, const1_rtx);
4607 emit_label (label5);
4610 break;
4612 case EXACT_DIV_EXPR:
4613 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4615 HOST_WIDE_INT d = INTVAL (op1);
4616 unsigned HOST_WIDE_INT ml;
4617 int pre_shift;
4618 rtx t1;
4620 pre_shift = floor_log2 (d & -d);
4621 ml = invert_mod2n (d >> pre_shift, size);
4622 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4623 build_int_cst (NULL_TREE, pre_shift),
4624 NULL_RTX, unsignedp);
4625 quotient = expand_mult (compute_mode, t1,
4626 gen_int_mode (ml, compute_mode),
4627 NULL_RTX, 1);
4629 insn = get_last_insn ();
4630 set_unique_reg_note (insn,
4631 REG_EQUAL,
4632 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4633 compute_mode,
4634 op0, op1));
4636 break;
4638 case ROUND_DIV_EXPR:
4639 case ROUND_MOD_EXPR:
4640 if (unsignedp)
4642 rtx tem;
4643 rtx label;
4644 label = gen_label_rtx ();
4645 quotient = gen_reg_rtx (compute_mode);
4646 remainder = gen_reg_rtx (compute_mode);
4647 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4649 rtx tem;
4650 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4651 quotient, 1, OPTAB_LIB_WIDEN);
4652 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4653 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4654 remainder, 1, OPTAB_LIB_WIDEN);
4656 tem = plus_constant (op1, -1);
4657 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4658 build_int_cst (NULL_TREE, 1),
4659 NULL_RTX, 1);
4660 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4661 expand_inc (quotient, const1_rtx);
4662 expand_dec (remainder, op1);
4663 emit_label (label);
4665 else
4667 rtx abs_rem, abs_op1, tem, mask;
4668 rtx label;
4669 label = gen_label_rtx ();
4670 quotient = gen_reg_rtx (compute_mode);
4671 remainder = gen_reg_rtx (compute_mode);
4672 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4674 rtx tem;
4675 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4676 quotient, 0, OPTAB_LIB_WIDEN);
4677 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4678 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4679 remainder, 0, OPTAB_LIB_WIDEN);
4681 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4682 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4683 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4684 build_int_cst (NULL_TREE, 1),
4685 NULL_RTX, 1);
4686 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4687 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4688 NULL_RTX, 0, OPTAB_WIDEN);
4689 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4690 build_int_cst (NULL_TREE, size - 1),
4691 NULL_RTX, 0);
4692 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4693 NULL_RTX, 0, OPTAB_WIDEN);
4694 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4695 NULL_RTX, 0, OPTAB_WIDEN);
4696 expand_inc (quotient, tem);
4697 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4698 NULL_RTX, 0, OPTAB_WIDEN);
4699 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4700 NULL_RTX, 0, OPTAB_WIDEN);
4701 expand_dec (remainder, tem);
4702 emit_label (label);
4704 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4706 default:
4707 gcc_unreachable ();
4710 if (quotient == 0)
4712 if (target && GET_MODE (target) != compute_mode)
4713 target = 0;
4715 if (rem_flag)
4717 /* Try to produce the remainder without producing the quotient.
4718 If we seem to have a divmod pattern that does not require widening,
4719 don't try widening here. We should really have a WIDEN argument
4720 to expand_twoval_binop, since what we'd really like to do here is
4721 1) try a mod insn in compute_mode
4722 2) try a divmod insn in compute_mode
4723 3) try a div insn in compute_mode and multiply-subtract to get
4724 remainder
4725 4) try the same things with widening allowed. */
4726 remainder
4727 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4728 op0, op1, target,
4729 unsignedp,
4730 ((optab2->handlers[compute_mode].insn_code
4731 != CODE_FOR_nothing)
4732 ? OPTAB_DIRECT : OPTAB_WIDEN));
4733 if (remainder == 0)
4735 /* No luck there. Can we do remainder and divide at once
4736 without a library call? */
4737 remainder = gen_reg_rtx (compute_mode);
4738 if (! expand_twoval_binop ((unsignedp
4739 ? udivmod_optab
4740 : sdivmod_optab),
4741 op0, op1,
4742 NULL_RTX, remainder, unsignedp))
4743 remainder = 0;
4746 if (remainder)
4747 return gen_lowpart (mode, remainder);
4750 /* Produce the quotient. Try a quotient insn, but not a library call.
4751 If we have a divmod in this mode, use it in preference to widening
4752 the div (for this test we assume it will not fail). Note that optab2
4753 is set to the one of the two optabs that the call below will use. */
4754 quotient
4755 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4756 op0, op1, rem_flag ? NULL_RTX : target,
4757 unsignedp,
4758 ((optab2->handlers[compute_mode].insn_code
4759 != CODE_FOR_nothing)
4760 ? OPTAB_DIRECT : OPTAB_WIDEN));
4762 if (quotient == 0)
4764 /* No luck there. Try a quotient-and-remainder insn,
4765 keeping the quotient alone. */
4766 quotient = gen_reg_rtx (compute_mode);
4767 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4768 op0, op1,
4769 quotient, NULL_RTX, unsignedp))
4771 quotient = 0;
4772 if (! rem_flag)
4773 /* Still no luck. If we are not computing the remainder,
4774 use a library call for the quotient. */
4775 quotient = sign_expand_binop (compute_mode,
4776 udiv_optab, sdiv_optab,
4777 op0, op1, target,
4778 unsignedp, OPTAB_LIB_WIDEN);
4783 if (rem_flag)
4785 if (target && GET_MODE (target) != compute_mode)
4786 target = 0;
4788 if (quotient == 0)
4790 /* No divide instruction either. Use library for remainder. */
4791 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4792 op0, op1, target,
4793 unsignedp, OPTAB_LIB_WIDEN);
4794 /* No remainder function. Try a quotient-and-remainder
4795 function, keeping the remainder. */
4796 if (!remainder)
4798 remainder = gen_reg_rtx (compute_mode);
4799 if (!expand_twoval_binop_libfunc
4800 (unsignedp ? udivmod_optab : sdivmod_optab,
4801 op0, op1,
4802 NULL_RTX, remainder,
4803 unsignedp ? UMOD : MOD))
4804 remainder = NULL_RTX;
4807 else
4809 /* We divided. Now finish doing X - Y * (X / Y). */
4810 remainder = expand_mult (compute_mode, quotient, op1,
4811 NULL_RTX, unsignedp);
4812 remainder = expand_binop (compute_mode, sub_optab, op0,
4813 remainder, target, unsignedp,
4814 OPTAB_LIB_WIDEN);
4818 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4821 /* Return a tree node with data type TYPE, describing the value of X.
4822 Usually this is an VAR_DECL, if there is no obvious better choice.
4823 X may be an expression, however we only support those expressions
4824 generated by loop.c. */
4826 tree
4827 make_tree (tree type, rtx x)
4829 tree t;
4831 switch (GET_CODE (x))
4833 case CONST_INT:
4835 HOST_WIDE_INT hi = 0;
4837 if (INTVAL (x) < 0
4838 && !(TYPE_UNSIGNED (type)
4839 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4840 < HOST_BITS_PER_WIDE_INT)))
4841 hi = -1;
4843 t = build_int_cst_wide (type, INTVAL (x), hi);
4845 return t;
4848 case CONST_DOUBLE:
4849 if (GET_MODE (x) == VOIDmode)
4850 t = build_int_cst_wide (type,
4851 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4852 else
4854 REAL_VALUE_TYPE d;
4856 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4857 t = build_real (type, d);
4860 return t;
4862 case CONST_VECTOR:
4864 int i, units;
4865 rtx elt;
4866 tree t = NULL_TREE;
4868 units = CONST_VECTOR_NUNITS (x);
4870 /* Build a tree with vector elements. */
4871 for (i = units - 1; i >= 0; --i)
4873 elt = CONST_VECTOR_ELT (x, i);
4874 t = tree_cons (NULL_TREE, make_tree (type, elt), t);
4877 return build_vector (type, t);
4880 case PLUS:
4881 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4882 make_tree (type, XEXP (x, 1)));
4884 case MINUS:
4885 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4886 make_tree (type, XEXP (x, 1)));
4888 case NEG:
4889 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
4891 case MULT:
4892 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
4893 make_tree (type, XEXP (x, 1)));
4895 case ASHIFT:
4896 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
4897 make_tree (type, XEXP (x, 1)));
4899 case LSHIFTRT:
4900 t = lang_hooks.types.unsigned_type (type);
4901 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4902 make_tree (t, XEXP (x, 0)),
4903 make_tree (type, XEXP (x, 1))));
4905 case ASHIFTRT:
4906 t = lang_hooks.types.signed_type (type);
4907 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4908 make_tree (t, XEXP (x, 0)),
4909 make_tree (type, XEXP (x, 1))));
4911 case DIV:
4912 if (TREE_CODE (type) != REAL_TYPE)
4913 t = lang_hooks.types.signed_type (type);
4914 else
4915 t = type;
4917 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
4918 make_tree (t, XEXP (x, 0)),
4919 make_tree (t, XEXP (x, 1))));
4920 case UDIV:
4921 t = lang_hooks.types.unsigned_type (type);
4922 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
4923 make_tree (t, XEXP (x, 0)),
4924 make_tree (t, XEXP (x, 1))));
4926 case SIGN_EXTEND:
4927 case ZERO_EXTEND:
4928 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
4929 GET_CODE (x) == ZERO_EXTEND);
4930 return fold_convert (type, make_tree (t, XEXP (x, 0)));
4932 default:
4933 t = build_decl (VAR_DECL, NULL_TREE, type);
4935 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
4936 ptr_mode. So convert. */
4937 if (POINTER_TYPE_P (type))
4938 x = convert_memory_address (TYPE_MODE (type), x);
4940 /* Note that we do *not* use SET_DECL_RTL here, because we do not
4941 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
4942 t->decl.rtl = x;
4944 return t;
4948 /* Check whether the multiplication X * MULT + ADD overflows.
4949 X, MULT and ADD must be CONST_*.
4950 MODE is the machine mode for the computation.
4951 X and MULT must have mode MODE. ADD may have a different mode.
4952 So can X (defaults to same as MODE).
4953 UNSIGNEDP is nonzero to do unsigned multiplication. */
4955 bool
4956 const_mult_add_overflow_p (rtx x, rtx mult, rtx add,
4957 enum machine_mode mode, int unsignedp)
4959 tree type, mult_type, add_type, result;
4961 type = lang_hooks.types.type_for_mode (mode, unsignedp);
4963 /* In order to get a proper overflow indication from an unsigned
4964 type, we have to pretend that it's a sizetype. */
4965 mult_type = type;
4966 if (unsignedp)
4968 /* FIXME:It would be nice if we could step directly from this
4969 type to its sizetype equivalent. */
4970 mult_type = build_distinct_type_copy (type);
4971 TYPE_IS_SIZETYPE (mult_type) = 1;
4974 add_type = (GET_MODE (add) == VOIDmode ? mult_type
4975 : lang_hooks.types.type_for_mode (GET_MODE (add), unsignedp));
4977 result = fold_build2 (PLUS_EXPR, mult_type,
4978 fold_build2 (MULT_EXPR, mult_type,
4979 make_tree (mult_type, x),
4980 make_tree (mult_type, mult)),
4981 make_tree (add_type, add));
4983 return TREE_CONSTANT_OVERFLOW (result);
4986 /* Return an rtx representing the value of X * MULT + ADD.
4987 TARGET is a suggestion for where to store the result (an rtx).
4988 MODE is the machine mode for the computation.
4989 X and MULT must have mode MODE. ADD may have a different mode.
4990 So can X (defaults to same as MODE).
4991 UNSIGNEDP is nonzero to do unsigned multiplication.
4992 This may emit insns. */
4995 expand_mult_add (rtx x, rtx target, rtx mult, rtx add, enum machine_mode mode,
4996 int unsignedp)
4998 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
4999 tree add_type = (GET_MODE (add) == VOIDmode
5000 ? type: lang_hooks.types.type_for_mode (GET_MODE (add),
5001 unsignedp));
5002 tree result = fold_build2 (PLUS_EXPR, type,
5003 fold_build2 (MULT_EXPR, type,
5004 make_tree (type, x),
5005 make_tree (type, mult)),
5006 make_tree (add_type, add));
5008 return expand_expr (result, target, VOIDmode, 0);
5011 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5012 and returning TARGET.
5014 If TARGET is 0, a pseudo-register or constant is returned. */
5017 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
5019 rtx tem = 0;
5021 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5022 tem = simplify_binary_operation (AND, mode, op0, op1);
5023 if (tem == 0)
5024 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5026 if (target == 0)
5027 target = tem;
5028 else if (tem != target)
5029 emit_move_insn (target, tem);
5030 return target;
5033 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5034 and storing in TARGET. Normally return TARGET.
5035 Return 0 if that cannot be done.
5037 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5038 it is VOIDmode, they cannot both be CONST_INT.
5040 UNSIGNEDP is for the case where we have to widen the operands
5041 to perform the operation. It says to use zero-extension.
5043 NORMALIZEP is 1 if we should convert the result to be either zero
5044 or one. Normalize is -1 if we should convert the result to be
5045 either zero or -1. If NORMALIZEP is zero, the result will be left
5046 "raw" out of the scc insn. */
5049 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5050 enum machine_mode mode, int unsignedp, int normalizep)
5052 rtx subtarget;
5053 enum insn_code icode;
5054 enum machine_mode compare_mode;
5055 enum machine_mode target_mode = GET_MODE (target);
5056 rtx tem;
5057 rtx last = get_last_insn ();
5058 rtx pattern, comparison;
5060 if (unsignedp)
5061 code = unsigned_condition (code);
5063 /* If one operand is constant, make it the second one. Only do this
5064 if the other operand is not constant as well. */
5066 if (swap_commutative_operands_p (op0, op1))
5068 tem = op0;
5069 op0 = op1;
5070 op1 = tem;
5071 code = swap_condition (code);
5074 if (mode == VOIDmode)
5075 mode = GET_MODE (op0);
5077 /* For some comparisons with 1 and -1, we can convert this to
5078 comparisons with zero. This will often produce more opportunities for
5079 store-flag insns. */
5081 switch (code)
5083 case LT:
5084 if (op1 == const1_rtx)
5085 op1 = const0_rtx, code = LE;
5086 break;
5087 case LE:
5088 if (op1 == constm1_rtx)
5089 op1 = const0_rtx, code = LT;
5090 break;
5091 case GE:
5092 if (op1 == const1_rtx)
5093 op1 = const0_rtx, code = GT;
5094 break;
5095 case GT:
5096 if (op1 == constm1_rtx)
5097 op1 = const0_rtx, code = GE;
5098 break;
5099 case GEU:
5100 if (op1 == const1_rtx)
5101 op1 = const0_rtx, code = NE;
5102 break;
5103 case LTU:
5104 if (op1 == const1_rtx)
5105 op1 = const0_rtx, code = EQ;
5106 break;
5107 default:
5108 break;
5111 /* If we are comparing a double-word integer with zero or -1, we can
5112 convert the comparison into one involving a single word. */
5113 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5114 && GET_MODE_CLASS (mode) == MODE_INT
5115 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5117 if ((code == EQ || code == NE)
5118 && (op1 == const0_rtx || op1 == constm1_rtx))
5120 rtx op00, op01, op0both;
5122 /* Do a logical OR or AND of the two words and compare the result. */
5123 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5124 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5125 op0both = expand_binop (word_mode,
5126 op1 == const0_rtx ? ior_optab : and_optab,
5127 op00, op01, NULL_RTX, unsignedp, OPTAB_DIRECT);
5129 if (op0both != 0)
5130 return emit_store_flag (target, code, op0both, op1, word_mode,
5131 unsignedp, normalizep);
5133 else if ((code == LT || code == GE) && op1 == const0_rtx)
5135 rtx op0h;
5137 /* If testing the sign bit, can just test on high word. */
5138 op0h = simplify_gen_subreg (word_mode, op0, mode,
5139 subreg_highpart_offset (word_mode, mode));
5140 return emit_store_flag (target, code, op0h, op1, word_mode,
5141 unsignedp, normalizep);
5145 /* From now on, we won't change CODE, so set ICODE now. */
5146 icode = setcc_gen_code[(int) code];
5148 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5149 complement of A (for GE) and shifting the sign bit to the low bit. */
5150 if (op1 == const0_rtx && (code == LT || code == GE)
5151 && GET_MODE_CLASS (mode) == MODE_INT
5152 && (normalizep || STORE_FLAG_VALUE == 1
5153 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5154 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5155 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))))
5157 subtarget = target;
5159 /* If the result is to be wider than OP0, it is best to convert it
5160 first. If it is to be narrower, it is *incorrect* to convert it
5161 first. */
5162 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5164 op0 = convert_modes (target_mode, mode, op0, 0);
5165 mode = target_mode;
5168 if (target_mode != mode)
5169 subtarget = 0;
5171 if (code == GE)
5172 op0 = expand_unop (mode, one_cmpl_optab, op0,
5173 ((STORE_FLAG_VALUE == 1 || normalizep)
5174 ? 0 : subtarget), 0);
5176 if (STORE_FLAG_VALUE == 1 || normalizep)
5177 /* If we are supposed to produce a 0/1 value, we want to do
5178 a logical shift from the sign bit to the low-order bit; for
5179 a -1/0 value, we do an arithmetic shift. */
5180 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5181 size_int (GET_MODE_BITSIZE (mode) - 1),
5182 subtarget, normalizep != -1);
5184 if (mode != target_mode)
5185 op0 = convert_modes (target_mode, mode, op0, 0);
5187 return op0;
5190 if (icode != CODE_FOR_nothing)
5192 insn_operand_predicate_fn pred;
5194 /* We think we may be able to do this with a scc insn. Emit the
5195 comparison and then the scc insn. */
5197 do_pending_stack_adjust ();
5198 last = get_last_insn ();
5200 comparison
5201 = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
5202 if (CONSTANT_P (comparison))
5204 switch (GET_CODE (comparison))
5206 case CONST_INT:
5207 if (comparison == const0_rtx)
5208 return const0_rtx;
5209 break;
5211 #ifdef FLOAT_STORE_FLAG_VALUE
5212 case CONST_DOUBLE:
5213 if (comparison == CONST0_RTX (GET_MODE (comparison)))
5214 return const0_rtx;
5215 break;
5216 #endif
5217 default:
5218 gcc_unreachable ();
5221 if (normalizep == 1)
5222 return const1_rtx;
5223 if (normalizep == -1)
5224 return constm1_rtx;
5225 return const_true_rtx;
5228 /* The code of COMPARISON may not match CODE if compare_from_rtx
5229 decided to swap its operands and reverse the original code.
5231 We know that compare_from_rtx returns either a CONST_INT or
5232 a new comparison code, so it is safe to just extract the
5233 code from COMPARISON. */
5234 code = GET_CODE (comparison);
5236 /* Get a reference to the target in the proper mode for this insn. */
5237 compare_mode = insn_data[(int) icode].operand[0].mode;
5238 subtarget = target;
5239 pred = insn_data[(int) icode].operand[0].predicate;
5240 if (optimize || ! (*pred) (subtarget, compare_mode))
5241 subtarget = gen_reg_rtx (compare_mode);
5243 pattern = GEN_FCN (icode) (subtarget);
5244 if (pattern)
5246 emit_insn (pattern);
5248 /* If we are converting to a wider mode, first convert to
5249 TARGET_MODE, then normalize. This produces better combining
5250 opportunities on machines that have a SIGN_EXTRACT when we are
5251 testing a single bit. This mostly benefits the 68k.
5253 If STORE_FLAG_VALUE does not have the sign bit set when
5254 interpreted in COMPARE_MODE, we can do this conversion as
5255 unsigned, which is usually more efficient. */
5256 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (compare_mode))
5258 convert_move (target, subtarget,
5259 (GET_MODE_BITSIZE (compare_mode)
5260 <= HOST_BITS_PER_WIDE_INT)
5261 && 0 == (STORE_FLAG_VALUE
5262 & ((HOST_WIDE_INT) 1
5263 << (GET_MODE_BITSIZE (compare_mode) -1))));
5264 op0 = target;
5265 compare_mode = target_mode;
5267 else
5268 op0 = subtarget;
5270 /* If we want to keep subexpressions around, don't reuse our
5271 last target. */
5273 if (optimize)
5274 subtarget = 0;
5276 /* Now normalize to the proper value in COMPARE_MODE. Sometimes
5277 we don't have to do anything. */
5278 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5280 /* STORE_FLAG_VALUE might be the most negative number, so write
5281 the comparison this way to avoid a compiler-time warning. */
5282 else if (- normalizep == STORE_FLAG_VALUE)
5283 op0 = expand_unop (compare_mode, neg_optab, op0, subtarget, 0);
5285 /* We don't want to use STORE_FLAG_VALUE < 0 below since this
5286 makes it hard to use a value of just the sign bit due to
5287 ANSI integer constant typing rules. */
5288 else if (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT
5289 && (STORE_FLAG_VALUE
5290 & ((HOST_WIDE_INT) 1
5291 << (GET_MODE_BITSIZE (compare_mode) - 1))))
5292 op0 = expand_shift (RSHIFT_EXPR, compare_mode, op0,
5293 size_int (GET_MODE_BITSIZE (compare_mode) - 1),
5294 subtarget, normalizep == 1);
5295 else
5297 gcc_assert (STORE_FLAG_VALUE & 1);
5299 op0 = expand_and (compare_mode, op0, const1_rtx, subtarget);
5300 if (normalizep == -1)
5301 op0 = expand_unop (compare_mode, neg_optab, op0, op0, 0);
5304 /* If we were converting to a smaller mode, do the
5305 conversion now. */
5306 if (target_mode != compare_mode)
5308 convert_move (target, op0, 0);
5309 return target;
5311 else
5312 return op0;
5316 delete_insns_since (last);
5318 /* If optimizing, use different pseudo registers for each insn, instead
5319 of reusing the same pseudo. This leads to better CSE, but slows
5320 down the compiler, since there are more pseudos */
5321 subtarget = (!optimize
5322 && (target_mode == mode)) ? target : NULL_RTX;
5324 /* If we reached here, we can't do this with a scc insn. However, there
5325 are some comparisons that can be done directly. For example, if
5326 this is an equality comparison of integers, we can try to exclusive-or
5327 (or subtract) the two operands and use a recursive call to try the
5328 comparison with zero. Don't do any of these cases if branches are
5329 very cheap. */
5331 if (BRANCH_COST > 0
5332 && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
5333 && op1 != const0_rtx)
5335 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5336 OPTAB_WIDEN);
5338 if (tem == 0)
5339 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5340 OPTAB_WIDEN);
5341 if (tem != 0)
5342 tem = emit_store_flag (target, code, tem, const0_rtx,
5343 mode, unsignedp, normalizep);
5344 if (tem == 0)
5345 delete_insns_since (last);
5346 return tem;
5349 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5350 the constant zero. Reject all other comparisons at this point. Only
5351 do LE and GT if branches are expensive since they are expensive on
5352 2-operand machines. */
5354 if (BRANCH_COST == 0
5355 || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
5356 || (code != EQ && code != NE
5357 && (BRANCH_COST <= 1 || (code != LE && code != GT))))
5358 return 0;
5360 /* See what we need to return. We can only return a 1, -1, or the
5361 sign bit. */
5363 if (normalizep == 0)
5365 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5366 normalizep = STORE_FLAG_VALUE;
5368 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5369 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5370 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5372 else
5373 return 0;
5376 /* Try to put the result of the comparison in the sign bit. Assume we can't
5377 do the necessary operation below. */
5379 tem = 0;
5381 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5382 the sign bit set. */
5384 if (code == LE)
5386 /* This is destructive, so SUBTARGET can't be OP0. */
5387 if (rtx_equal_p (subtarget, op0))
5388 subtarget = 0;
5390 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5391 OPTAB_WIDEN);
5392 if (tem)
5393 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5394 OPTAB_WIDEN);
5397 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5398 number of bits in the mode of OP0, minus one. */
5400 if (code == GT)
5402 if (rtx_equal_p (subtarget, op0))
5403 subtarget = 0;
5405 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5406 size_int (GET_MODE_BITSIZE (mode) - 1),
5407 subtarget, 0);
5408 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5409 OPTAB_WIDEN);
5412 if (code == EQ || code == NE)
5414 /* For EQ or NE, one way to do the comparison is to apply an operation
5415 that converts the operand into a positive number if it is nonzero
5416 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5417 for NE we negate. This puts the result in the sign bit. Then we
5418 normalize with a shift, if needed.
5420 Two operations that can do the above actions are ABS and FFS, so try
5421 them. If that doesn't work, and MODE is smaller than a full word,
5422 we can use zero-extension to the wider mode (an unsigned conversion)
5423 as the operation. */
5425 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5426 that is compensated by the subsequent overflow when subtracting
5427 one / negating. */
5429 if (abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5430 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5431 else if (ffs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5432 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5433 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5435 tem = convert_modes (word_mode, mode, op0, 1);
5436 mode = word_mode;
5439 if (tem != 0)
5441 if (code == EQ)
5442 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5443 0, OPTAB_WIDEN);
5444 else
5445 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5448 /* If we couldn't do it that way, for NE we can "or" the two's complement
5449 of the value with itself. For EQ, we take the one's complement of
5450 that "or", which is an extra insn, so we only handle EQ if branches
5451 are expensive. */
5453 if (tem == 0 && (code == NE || BRANCH_COST > 1))
5455 if (rtx_equal_p (subtarget, op0))
5456 subtarget = 0;
5458 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5459 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5460 OPTAB_WIDEN);
5462 if (tem && code == EQ)
5463 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5467 if (tem && normalizep)
5468 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5469 size_int (GET_MODE_BITSIZE (mode) - 1),
5470 subtarget, normalizep == 1);
5472 if (tem)
5474 if (GET_MODE (tem) != target_mode)
5476 convert_move (target, tem, 0);
5477 tem = target;
5479 else if (!subtarget)
5481 emit_move_insn (target, tem);
5482 tem = target;
5485 else
5486 delete_insns_since (last);
5488 return tem;
5491 /* Like emit_store_flag, but always succeeds. */
5494 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5495 enum machine_mode mode, int unsignedp, int normalizep)
5497 rtx tem, label;
5499 /* First see if emit_store_flag can do the job. */
5500 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5501 if (tem != 0)
5502 return tem;
5504 if (normalizep == 0)
5505 normalizep = 1;
5507 /* If this failed, we have to do this with set/compare/jump/set code. */
5509 if (!REG_P (target)
5510 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5511 target = gen_reg_rtx (GET_MODE (target));
5513 emit_move_insn (target, const1_rtx);
5514 label = gen_label_rtx ();
5515 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5516 NULL_RTX, label);
5518 emit_move_insn (target, const0_rtx);
5519 emit_label (label);
5521 return target;
5524 /* Perform possibly multi-word comparison and conditional jump to LABEL
5525 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE
5527 The algorithm is based on the code in expr.c:do_jump.
5529 Note that this does not perform a general comparison. Only
5530 variants generated within expmed.c are correctly handled, others
5531 could be handled if needed. */
5533 static void
5534 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5535 rtx label)
5537 /* If this mode is an integer too wide to compare properly,
5538 compare word by word. Rely on cse to optimize constant cases. */
5540 if (GET_MODE_CLASS (mode) == MODE_INT
5541 && ! can_compare_p (op, mode, ccp_jump))
5543 rtx label2 = gen_label_rtx ();
5545 switch (op)
5547 case LTU:
5548 do_jump_by_parts_greater_rtx (mode, 1, arg2, arg1, label2, label);
5549 break;
5551 case LEU:
5552 do_jump_by_parts_greater_rtx (mode, 1, arg1, arg2, label, label2);
5553 break;
5555 case LT:
5556 do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label2, label);
5557 break;
5559 case GT:
5560 do_jump_by_parts_greater_rtx (mode, 0, arg1, arg2, label2, label);
5561 break;
5563 case GE:
5564 do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label, label2);
5565 break;
5567 /* do_jump_by_parts_equality_rtx compares with zero. Luckily
5568 that's the only equality operations we do */
5569 case EQ:
5570 gcc_assert (arg2 == const0_rtx && mode == GET_MODE(arg1));
5571 do_jump_by_parts_equality_rtx (arg1, label2, label);
5572 break;
5574 case NE:
5575 gcc_assert (arg2 == const0_rtx && mode == GET_MODE(arg1));
5576 do_jump_by_parts_equality_rtx (arg1, label, label2);
5577 break;
5579 default:
5580 gcc_unreachable ();
5583 emit_label (label2);
5585 else
5586 emit_cmp_and_jump_insns (arg1, arg2, op, NULL_RTX, mode, 0, label);