Merged with mainline at revision 126347.
[official-gcc.git] / gcc / basic-block.h
blob71396605e4341efba379ca07c99e965bd751cc02
1 /* Define control and data flow tables, and regsets.
2 Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #ifndef GCC_BASIC_BLOCK_H
23 #define GCC_BASIC_BLOCK_H
25 #include "bitmap.h"
26 #include "sbitmap.h"
27 #include "varray.h"
28 #include "partition.h"
29 #include "hard-reg-set.h"
30 #include "predict.h"
31 #include "vec.h"
32 #include "function.h"
34 /* Head of register set linked list. */
35 typedef bitmap_head regset_head;
37 /* A pointer to a regset_head. */
38 typedef bitmap regset;
40 /* Allocate a register set with oballoc. */
41 #define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
43 /* Do any cleanup needed on a regset when it is no longer used. */
44 #define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
46 /* Initialize a new regset. */
47 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
49 /* Clear a register set by freeing up the linked list. */
50 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
52 /* Copy a register set to another register set. */
53 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
55 /* Compare two register sets. */
56 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
58 /* `and' a register set with a second register set. */
59 #define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
61 /* `and' the complement of a register set with a register set. */
62 #define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
64 /* Inclusive or a register set with a second register set. */
65 #define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
67 /* Exclusive or a register set with a second register set. */
68 #define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
70 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2. */
71 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
72 bitmap_ior_and_compl_into (TO, FROM1, FROM2)
74 /* Clear a single register in a register set. */
75 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
77 /* Set a single register in a register set. */
78 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
80 /* Return true if a register is set in a register set. */
81 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
83 /* Copy the hard registers in a register set to the hard register set. */
84 extern void reg_set_to_hard_reg_set (HARD_REG_SET *, bitmap);
85 #define REG_SET_TO_HARD_REG_SET(TO, FROM) \
86 do { \
87 CLEAR_HARD_REG_SET (TO); \
88 reg_set_to_hard_reg_set (&TO, FROM); \
89 } while (0)
91 typedef bitmap_iterator reg_set_iterator;
93 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
94 register number and executing CODE for all registers that are set. */
95 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI) \
96 EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
98 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
99 REGNUM to the register number and executing CODE for all registers that are
100 set in the first regset and not set in the second. */
101 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
102 EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
104 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
105 REGNUM to the register number and executing CODE for all registers that are
106 set in both regsets. */
107 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
108 EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
110 /* Type we use to hold basic block counters. Should be at least
111 64bit. Although a counter cannot be negative, we use a signed
112 type, because erroneous negative counts can be generated when the
113 flow graph is manipulated by various optimizations. A signed type
114 makes those easy to detect. */
115 typedef HOST_WIDEST_INT gcov_type;
117 /* Control flow edge information. */
118 struct edge_def GTY(())
120 /* The two blocks at the ends of the edge. */
121 struct basic_block_def *src;
122 struct basic_block_def *dest;
124 /* Instructions queued on the edge. */
125 union edge_def_insns {
126 tree GTY ((tag ("true"))) t;
127 rtx GTY ((tag ("false"))) r;
128 } GTY ((desc ("current_ir_type () == IR_GIMPLE"))) insns;
130 /* Auxiliary info specific to a pass. */
131 PTR GTY ((skip (""))) aux;
133 /* Location of any goto implicit in the edge, during tree-ssa. */
134 source_locus goto_locus;
136 int flags; /* see EDGE_* below */
137 int probability; /* biased by REG_BR_PROB_BASE */
138 gcov_type count; /* Expected number of executions calculated
139 in profile.c */
141 /* The index number corresponding to this edge in the edge vector
142 dest->preds. */
143 unsigned int dest_idx;
146 typedef struct edge_def *edge;
147 DEF_VEC_P(edge);
148 DEF_VEC_ALLOC_P(edge,gc);
149 DEF_VEC_ALLOC_P(edge,heap);
151 #define EDGE_FALLTHRU 1 /* 'Straight line' flow */
152 #define EDGE_ABNORMAL 2 /* Strange flow, like computed
153 label, or eh */
154 #define EDGE_ABNORMAL_CALL 4 /* Call with abnormal exit
155 like an exception, or sibcall */
156 #define EDGE_EH 8 /* Exception throw */
157 #define EDGE_FAKE 16 /* Not a real edge (profile.c) */
158 #define EDGE_DFS_BACK 32 /* A backwards edge */
159 #define EDGE_CAN_FALLTHRU 64 /* Candidate for straight line
160 flow. */
161 #define EDGE_IRREDUCIBLE_LOOP 128 /* Part of irreducible loop. */
162 #define EDGE_SIBCALL 256 /* Edge from sibcall to exit. */
163 #define EDGE_LOOP_EXIT 512 /* Exit of a loop. */
164 #define EDGE_TRUE_VALUE 1024 /* Edge taken when controlling
165 predicate is nonzero. */
166 #define EDGE_FALSE_VALUE 2048 /* Edge taken when controlling
167 predicate is zero. */
168 #define EDGE_EXECUTABLE 4096 /* Edge is executable. Only
169 valid during SSA-CCP. */
170 #define EDGE_CROSSING 8192 /* Edge crosses between hot
171 and cold sections, when we
172 do partitioning. */
173 #define EDGE_ALL_FLAGS 16383
175 #define EDGE_COMPLEX (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
177 /* Counter summary from the last set of coverage counts read by
178 profile.c. */
179 extern const struct gcov_ctr_summary *profile_info;
181 /* Declared in cfgloop.h. */
182 struct loop;
184 /* Declared in tree-flow.h. */
185 struct edge_prediction;
186 struct rtl_bb_info;
188 /* A basic block is a sequence of instructions with only entry and
189 only one exit. If any one of the instructions are executed, they
190 will all be executed, and in sequence from first to last.
192 There may be COND_EXEC instructions in the basic block. The
193 COND_EXEC *instructions* will be executed -- but if the condition
194 is false the conditionally executed *expressions* will of course
195 not be executed. We don't consider the conditionally executed
196 expression (which might have side-effects) to be in a separate
197 basic block because the program counter will always be at the same
198 location after the COND_EXEC instruction, regardless of whether the
199 condition is true or not.
201 Basic blocks need not start with a label nor end with a jump insn.
202 For example, a previous basic block may just "conditionally fall"
203 into the succeeding basic block, and the last basic block need not
204 end with a jump insn. Block 0 is a descendant of the entry block.
206 A basic block beginning with two labels cannot have notes between
207 the labels.
209 Data for jump tables are stored in jump_insns that occur in no
210 basic block even though these insns can follow or precede insns in
211 basic blocks. */
213 /* Basic block information indexed by block number. */
214 struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
216 /* The edges into and out of the block. */
217 VEC(edge,gc) *preds;
218 VEC(edge,gc) *succs;
220 /* Auxiliary info specific to a pass. */
221 PTR GTY ((skip (""))) aux;
223 /* Innermost loop containing the block. */
224 struct loop *loop_father;
226 /* The dominance and postdominance information node. */
227 struct et_node * GTY ((skip (""))) dom[2];
229 /* Previous and next blocks in the chain. */
230 struct basic_block_def *prev_bb;
231 struct basic_block_def *next_bb;
233 union basic_block_il_dependent {
234 struct tree_bb_info * GTY ((tag ("0"))) tree;
235 struct rtl_bb_info * GTY ((tag ("1"))) rtl;
236 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
238 /* Expected number of executions: calculated in profile.c. */
239 gcov_type count;
241 /* The index of this block. */
242 int index;
244 /* The loop depth of this block. */
245 int loop_depth;
247 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
248 int frequency;
250 /* Various flags. See BB_* below. */
251 int flags;
254 struct rtl_bb_info GTY(())
256 /* The first and last insns of the block. */
257 rtx head_;
258 rtx end_;
260 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
261 and after the block. */
262 rtx header;
263 rtx footer;
265 /* This field is used by the bb-reorder and tracer passes. */
266 int visited;
269 struct tree_bb_info GTY(())
271 /* Pointers to the first and last trees of the block. */
272 tree stmt_list;
274 /* Chain of PHI nodes for this block. */
275 tree phi_nodes;
278 typedef struct basic_block_def *basic_block;
280 DEF_VEC_P(basic_block);
281 DEF_VEC_ALLOC_P(basic_block,gc);
282 DEF_VEC_ALLOC_P(basic_block,heap);
284 #define BB_FREQ_MAX 10000
286 /* Masks for basic_block.flags.
288 BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
289 the compilation, so they are never cleared.
291 All other flags may be cleared by clear_bb_flags(). It is generally
292 a bad idea to rely on any flags being up-to-date. */
294 enum bb_flags
296 /* Only set on blocks that have just been created by create_bb. */
297 BB_NEW = 1 << 0,
299 /* Set by find_unreachable_blocks. Do not rely on this being set in any
300 pass. */
301 BB_REACHABLE = 1 << 1,
303 /* Set for blocks in an irreducible loop by loop analysis. */
304 BB_IRREDUCIBLE_LOOP = 1 << 2,
306 /* Set on blocks that may actually not be single-entry single-exit block. */
307 BB_SUPERBLOCK = 1 << 3,
309 /* Set on basic blocks that the scheduler should not touch. This is used
310 by SMS to prevent other schedulers from messing with the loop schedule. */
311 BB_DISABLE_SCHEDULE = 1 << 4,
313 /* Set on blocks that should be put in a hot section. */
314 BB_HOT_PARTITION = 1 << 5,
316 /* Set on blocks that should be put in a cold section. */
317 BB_COLD_PARTITION = 1 << 6,
319 /* Set on block that was duplicated. */
320 BB_DUPLICATED = 1 << 7,
322 /* Set if the label at the top of this block is the target of a non-local goto. */
323 BB_NON_LOCAL_GOTO_TARGET = 1 << 8,
325 /* Set on blocks that are in RTL format. */
326 BB_RTL = 1 << 9 ,
328 /* Set on blocks that are forwarder blocks.
329 Only used in cfgcleanup.c. */
330 BB_FORWARDER_BLOCK = 1 << 10,
332 /* Set on blocks that cannot be threaded through.
333 Only used in cfgcleanup.c. */
334 BB_NONTHREADABLE_BLOCK = 1 << 11
337 /* Dummy flag for convenience in the hot/cold partitioning code. */
338 #define BB_UNPARTITIONED 0
340 /* Partitions, to be used when partitioning hot and cold basic blocks into
341 separate sections. */
342 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
343 #define BB_SET_PARTITION(bb, part) do { \
344 basic_block bb_ = (bb); \
345 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
346 | (part)); \
347 } while (0)
349 #define BB_COPY_PARTITION(dstbb, srcbb) \
350 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
352 /* A structure to group all the per-function control flow graph data.
353 The x_* prefixing is necessary because otherwise references to the
354 fields of this struct are interpreted as the defines for backward
355 source compatibility following the definition of this struct. */
356 struct control_flow_graph GTY(())
358 /* Block pointers for the exit and entry of a function.
359 These are always the head and tail of the basic block list. */
360 basic_block x_entry_block_ptr;
361 basic_block x_exit_block_ptr;
363 /* Index by basic block number, get basic block struct info. */
364 VEC(basic_block,gc) *x_basic_block_info;
366 /* Number of basic blocks in this flow graph. */
367 int x_n_basic_blocks;
369 /* Number of edges in this flow graph. */
370 int x_n_edges;
372 /* The first free basic block number. */
373 int x_last_basic_block;
375 /* Mapping of labels to their associated blocks. At present
376 only used for the tree CFG. */
377 VEC(basic_block,gc) *x_label_to_block_map;
379 enum profile_status {
380 PROFILE_ABSENT,
381 PROFILE_GUESSED,
382 PROFILE_READ
383 } x_profile_status;
386 /* Defines for accessing the fields of the CFG structure for function FN. */
387 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_entry_block_ptr)
388 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_exit_block_ptr)
389 #define basic_block_info_for_function(FN) ((FN)->cfg->x_basic_block_info)
390 #define n_basic_blocks_for_function(FN) ((FN)->cfg->x_n_basic_blocks)
391 #define n_edges_for_function(FN) ((FN)->cfg->x_n_edges)
392 #define last_basic_block_for_function(FN) ((FN)->cfg->x_last_basic_block)
393 #define label_to_block_map_for_function(FN) ((FN)->cfg->x_label_to_block_map)
395 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
396 (VEC_index (basic_block, basic_block_info_for_function(FN), (N)))
398 /* Defines for textual backward source compatibility. */
399 #define ENTRY_BLOCK_PTR (cfun->cfg->x_entry_block_ptr)
400 #define EXIT_BLOCK_PTR (cfun->cfg->x_exit_block_ptr)
401 #define basic_block_info (cfun->cfg->x_basic_block_info)
402 #define n_basic_blocks (cfun->cfg->x_n_basic_blocks)
403 #define n_edges (cfun->cfg->x_n_edges)
404 #define last_basic_block (cfun->cfg->x_last_basic_block)
405 #define label_to_block_map (cfun->cfg->x_label_to_block_map)
406 #define profile_status (cfun->cfg->x_profile_status)
408 #define BASIC_BLOCK(N) (VEC_index (basic_block, basic_block_info, (N)))
409 #define SET_BASIC_BLOCK(N,BB) (VEC_replace (basic_block, basic_block_info, (N), (BB)))
411 /* For iterating over basic blocks. */
412 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
413 for (BB = FROM; BB != TO; BB = BB->DIR)
415 #define FOR_EACH_BB_FN(BB, FN) \
416 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
418 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
420 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
421 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
423 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
425 /* For iterating over insns in basic block. */
426 #define FOR_BB_INSNS(BB, INSN) \
427 for ((INSN) = BB_HEAD (BB); \
428 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
429 (INSN) = NEXT_INSN (INSN))
431 /* For iterating over insns in basic block when we might remove the
432 current insn. */
433 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \
434 for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL; \
435 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
436 (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
438 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
439 for ((INSN) = BB_END (BB); \
440 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
441 (INSN) = PREV_INSN (INSN))
443 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \
444 for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \
445 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
446 (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
448 /* Cycles through _all_ basic blocks, even the fake ones (entry and
449 exit block). */
451 #define FOR_ALL_BB(BB) \
452 for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
454 #define FOR_ALL_BB_FN(BB, FN) \
455 for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
457 extern bitmap_obstack reg_obstack;
460 /* Stuff for recording basic block info. */
462 #define BB_HEAD(B) (B)->il.rtl->head_
463 #define BB_END(B) (B)->il.rtl->end_
465 /* Special block numbers [markers] for entry and exit. */
466 #define ENTRY_BLOCK (0)
467 #define EXIT_BLOCK (1)
469 /* The two blocks that are always in the cfg. */
470 #define NUM_FIXED_BLOCKS (2)
473 #define BLOCK_NUM(INSN) (BLOCK_FOR_INSN (INSN)->index + 0)
474 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
476 extern void compute_bb_for_insn (void);
477 extern unsigned int free_bb_for_insn (void);
478 extern void update_bb_for_insn (basic_block);
480 extern void insert_insn_on_edge (rtx, edge);
481 basic_block split_edge_and_insert (edge, rtx);
483 extern void commit_edge_insertions (void);
485 extern void remove_fake_edges (void);
486 extern void remove_fake_exit_edges (void);
487 extern void add_noreturn_fake_exit_edges (void);
488 extern void connect_infinite_loops_to_exit (void);
489 extern edge unchecked_make_edge (basic_block, basic_block, int);
490 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
491 extern edge make_edge (basic_block, basic_block, int);
492 extern edge make_single_succ_edge (basic_block, basic_block, int);
493 extern void remove_edge (edge);
494 extern void redirect_edge_succ (edge, basic_block);
495 extern edge redirect_edge_succ_nodup (edge, basic_block);
496 extern void redirect_edge_pred (edge, basic_block);
497 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
498 extern void clear_bb_flags (void);
499 extern int post_order_compute (int *, bool, bool);
500 extern int inverted_post_order_compute (int *);
501 extern int pre_and_rev_post_order_compute (int *, int *, bool);
502 extern int dfs_enumerate_from (basic_block, int,
503 bool (*)(basic_block, void *),
504 basic_block *, int, void *);
505 extern void compute_dominance_frontiers (bitmap *);
506 extern void dump_bb_info (basic_block, bool, bool, int, const char *, FILE *);
507 extern void dump_edge_info (FILE *, edge, int);
508 extern void brief_dump_cfg (FILE *);
509 extern void clear_edges (void);
510 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
511 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
512 gcov_type);
514 /* Structure to group all of the information to process IF-THEN and
515 IF-THEN-ELSE blocks for the conditional execution support. This
516 needs to be in a public file in case the IFCVT macros call
517 functions passing the ce_if_block data structure. */
519 typedef struct ce_if_block
521 basic_block test_bb; /* First test block. */
522 basic_block then_bb; /* THEN block. */
523 basic_block else_bb; /* ELSE block or NULL. */
524 basic_block join_bb; /* Join THEN/ELSE blocks. */
525 basic_block last_test_bb; /* Last bb to hold && or || tests. */
526 int num_multiple_test_blocks; /* # of && and || basic blocks. */
527 int num_and_and_blocks; /* # of && blocks. */
528 int num_or_or_blocks; /* # of || blocks. */
529 int num_multiple_test_insns; /* # of insns in && and || blocks. */
530 int and_and_p; /* Complex test is &&. */
531 int num_then_insns; /* # of insns in THEN block. */
532 int num_else_insns; /* # of insns in ELSE block. */
533 int pass; /* Pass number. */
535 #ifdef IFCVT_EXTRA_FIELDS
536 IFCVT_EXTRA_FIELDS /* Any machine dependent fields. */
537 #endif
539 } ce_if_block_t;
541 /* This structure maintains an edge list vector. */
542 struct edge_list
544 int num_blocks;
545 int num_edges;
546 edge *index_to_edge;
549 /* The base value for branch probability notes and edge probabilities. */
550 #define REG_BR_PROB_BASE 10000
552 /* This is the value which indicates no edge is present. */
553 #define EDGE_INDEX_NO_EDGE -1
555 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
556 if there is no edge between the 2 basic blocks. */
557 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
559 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
560 block which is either the pred or succ end of the indexed edge. */
561 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
562 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
564 /* INDEX_EDGE returns a pointer to the edge. */
565 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
567 /* Number of edges in the compressed edge list. */
568 #define NUM_EDGES(el) ((el)->num_edges)
570 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
571 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
572 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
574 /* BB is assumed to contain conditional jump. Return the branch edge. */
575 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
576 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
578 /* Return expected execution frequency of the edge E. */
579 #define EDGE_FREQUENCY(e) (((e)->src->frequency \
580 * (e)->probability \
581 + REG_BR_PROB_BASE / 2) \
582 / REG_BR_PROB_BASE)
584 /* Return nonzero if edge is critical. */
585 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
586 && EDGE_COUNT ((e)->dest->preds) >= 2)
588 #define EDGE_COUNT(ev) VEC_length (edge, (ev))
589 #define EDGE_I(ev,i) VEC_index (edge, (ev), (i))
590 #define EDGE_PRED(bb,i) VEC_index (edge, (bb)->preds, (i))
591 #define EDGE_SUCC(bb,i) VEC_index (edge, (bb)->succs, (i))
593 /* Returns true if BB has precisely one successor. */
595 static inline bool
596 single_succ_p (basic_block bb)
598 return EDGE_COUNT (bb->succs) == 1;
601 /* Returns true if BB has precisely one predecessor. */
603 static inline bool
604 single_pred_p (basic_block bb)
606 return EDGE_COUNT (bb->preds) == 1;
609 /* Returns the single successor edge of basic block BB. Aborts if
610 BB does not have exactly one successor. */
612 static inline edge
613 single_succ_edge (basic_block bb)
615 gcc_assert (single_succ_p (bb));
616 return EDGE_SUCC (bb, 0);
619 /* Returns the single predecessor edge of basic block BB. Aborts
620 if BB does not have exactly one predecessor. */
622 static inline edge
623 single_pred_edge (basic_block bb)
625 gcc_assert (single_pred_p (bb));
626 return EDGE_PRED (bb, 0);
629 /* Returns the single successor block of basic block BB. Aborts
630 if BB does not have exactly one successor. */
632 static inline basic_block
633 single_succ (basic_block bb)
635 return single_succ_edge (bb)->dest;
638 /* Returns the single predecessor block of basic block BB. Aborts
639 if BB does not have exactly one predecessor.*/
641 static inline basic_block
642 single_pred (basic_block bb)
644 return single_pred_edge (bb)->src;
647 /* Iterator object for edges. */
649 typedef struct {
650 unsigned index;
651 VEC(edge,gc) **container;
652 } edge_iterator;
654 static inline VEC(edge,gc) *
655 ei_container (edge_iterator i)
657 gcc_assert (i.container);
658 return *i.container;
661 #define ei_start(iter) ei_start_1 (&(iter))
662 #define ei_last(iter) ei_last_1 (&(iter))
664 /* Return an iterator pointing to the start of an edge vector. */
665 static inline edge_iterator
666 ei_start_1 (VEC(edge,gc) **ev)
668 edge_iterator i;
670 i.index = 0;
671 i.container = ev;
673 return i;
676 /* Return an iterator pointing to the last element of an edge
677 vector. */
678 static inline edge_iterator
679 ei_last_1 (VEC(edge,gc) **ev)
681 edge_iterator i;
683 i.index = EDGE_COUNT (*ev) - 1;
684 i.container = ev;
686 return i;
689 /* Is the iterator `i' at the end of the sequence? */
690 static inline bool
691 ei_end_p (edge_iterator i)
693 return (i.index == EDGE_COUNT (ei_container (i)));
696 /* Is the iterator `i' at one position before the end of the
697 sequence? */
698 static inline bool
699 ei_one_before_end_p (edge_iterator i)
701 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
704 /* Advance the iterator to the next element. */
705 static inline void
706 ei_next (edge_iterator *i)
708 gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
709 i->index++;
712 /* Move the iterator to the previous element. */
713 static inline void
714 ei_prev (edge_iterator *i)
716 gcc_assert (i->index > 0);
717 i->index--;
720 /* Return the edge pointed to by the iterator `i'. */
721 static inline edge
722 ei_edge (edge_iterator i)
724 return EDGE_I (ei_container (i), i.index);
727 /* Return an edge pointed to by the iterator. Do it safely so that
728 NULL is returned when the iterator is pointing at the end of the
729 sequence. */
730 static inline edge
731 ei_safe_edge (edge_iterator i)
733 return !ei_end_p (i) ? ei_edge (i) : NULL;
736 /* Return 1 if we should continue to iterate. Return 0 otherwise.
737 *Edge P is set to the next edge if we are to continue to iterate
738 and NULL otherwise. */
740 static inline bool
741 ei_cond (edge_iterator ei, edge *p)
743 if (!ei_end_p (ei))
745 *p = ei_edge (ei);
746 return 1;
748 else
750 *p = NULL;
751 return 0;
755 /* This macro serves as a convenient way to iterate each edge in a
756 vector of predecessor or successor edges. It must not be used when
757 an element might be removed during the traversal, otherwise
758 elements will be missed. Instead, use a for-loop like that shown
759 in the following pseudo-code:
761 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
763 IF (e != taken_edge)
764 remove_edge (e);
765 ELSE
766 ei_next (&ei);
770 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
771 for ((ITER) = ei_start ((EDGE_VEC)); \
772 ei_cond ((ITER), &(EDGE)); \
773 ei_next (&(ITER)))
775 struct edge_list * create_edge_list (void);
776 void free_edge_list (struct edge_list *);
777 void print_edge_list (FILE *, struct edge_list *);
778 void verify_edge_list (FILE *, struct edge_list *);
779 int find_edge_index (struct edge_list *, basic_block, basic_block);
780 edge find_edge (basic_block, basic_block);
782 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
783 except for edge forwarding */
784 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
785 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
786 to care REG_DEAD notes. */
787 #define CLEANUP_THREADING 8 /* Do jump threading. */
788 #define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead
789 insns. */
790 #define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */
792 /* The following are ORed in on top of the CLEANUP* flags in calls to
793 struct_equiv_block_eq. */
794 #define STRUCT_EQUIV_START 64 /* Initializes the search range. */
795 #define STRUCT_EQUIV_RERUN 128 /* Rerun to find register use in
796 found equivalence. */
797 #define STRUCT_EQUIV_FINAL 256 /* Make any changes necessary to get
798 actual equivalence. */
799 #define STRUCT_EQUIV_NEED_FULL_BLOCK 512 /* struct_equiv_block_eq is required
800 to match only full blocks */
801 #define STRUCT_EQUIV_MATCH_JUMPS 1024 /* Also include the jumps at the end of the block in the comparison. */
803 /* In lcm.c */
804 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
805 sbitmap *, sbitmap *, sbitmap **,
806 sbitmap **);
807 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
808 sbitmap *, sbitmap *,
809 sbitmap *, sbitmap **,
810 sbitmap **);
811 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
813 /* In predict.c */
814 extern bool maybe_hot_bb_p (basic_block);
815 extern bool probably_cold_bb_p (basic_block);
816 extern bool probably_never_executed_bb_p (basic_block);
817 extern bool tree_predicted_by_p (basic_block, enum br_predictor);
818 extern bool rtl_predicted_by_p (basic_block, enum br_predictor);
819 extern void tree_predict_edge (edge, enum br_predictor, int);
820 extern void rtl_predict_edge (edge, enum br_predictor, int);
821 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
822 extern void guess_outgoing_edge_probabilities (basic_block);
823 extern void remove_predictions_associated_with_edge (edge);
824 extern bool edge_probability_reliable_p (edge);
825 extern bool br_prob_note_reliable_p (rtx);
827 /* In cfg.c */
828 extern void dump_regset (regset, FILE *);
829 extern void debug_regset (regset);
830 extern void init_flow (void);
831 extern void debug_bb (basic_block);
832 extern basic_block debug_bb_n (int);
833 extern void dump_regset (regset, FILE *);
834 extern void debug_regset (regset);
835 extern void expunge_block (basic_block);
836 extern void link_block (basic_block, basic_block);
837 extern void unlink_block (basic_block);
838 extern void compact_blocks (void);
839 extern basic_block alloc_block (void);
840 extern void alloc_aux_for_block (basic_block, int);
841 extern void alloc_aux_for_blocks (int);
842 extern void clear_aux_for_blocks (void);
843 extern void free_aux_for_blocks (void);
844 extern void alloc_aux_for_edge (edge, int);
845 extern void alloc_aux_for_edges (int);
846 extern void clear_aux_for_edges (void);
847 extern void free_aux_for_edges (void);
849 /* In cfganal.c */
850 extern void find_unreachable_blocks (void);
851 extern bool forwarder_block_p (basic_block);
852 extern bool can_fallthru (basic_block, basic_block);
853 extern bool could_fall_through (basic_block, basic_block);
854 extern void flow_nodes_print (const char *, const sbitmap, FILE *);
855 extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
857 /* In cfgrtl.c */
858 extern basic_block force_nonfallthru (edge);
859 extern rtx block_label (basic_block);
860 extern bool purge_all_dead_edges (void);
861 extern bool purge_dead_edges (basic_block);
863 /* In cfgbuild.c. */
864 extern void find_many_sub_basic_blocks (sbitmap);
865 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
866 extern void find_basic_blocks (rtx);
868 /* In cfgcleanup.c. */
869 extern bool cleanup_cfg (int);
870 extern bool delete_unreachable_blocks (void);
872 extern bool mark_dfs_back_edges (void);
873 extern void set_edge_can_fallthru_flag (void);
874 extern void update_br_prob_note (basic_block);
875 extern void fixup_abnormal_edges (void);
876 extern bool inside_basic_block_p (rtx);
877 extern bool control_flow_insn_p (rtx);
878 extern rtx get_last_bb_insn (basic_block);
880 /* In bb-reorder.c */
881 extern void reorder_basic_blocks (void);
883 /* In dominance.c */
885 enum cdi_direction
887 CDI_DOMINATORS = 1,
888 CDI_POST_DOMINATORS = 2
891 enum dom_state
893 DOM_NONE, /* Not computed at all. */
894 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
895 DOM_OK /* Everything is ok. */
898 extern enum dom_state dom_info_state (enum cdi_direction);
899 extern void set_dom_info_availability (enum cdi_direction, enum dom_state);
900 extern bool dom_info_available_p (enum cdi_direction);
901 extern void calculate_dominance_info (enum cdi_direction);
902 extern void free_dominance_info (enum cdi_direction);
903 extern basic_block nearest_common_dominator (enum cdi_direction,
904 basic_block, basic_block);
905 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
906 bitmap);
907 extern void set_immediate_dominator (enum cdi_direction, basic_block,
908 basic_block);
909 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
910 extern bool dominated_by_p (enum cdi_direction, basic_block, basic_block);
911 extern VEC (basic_block, heap) *get_dominated_by (enum cdi_direction, basic_block);
912 extern VEC (basic_block, heap) *get_dominated_by_region (enum cdi_direction,
913 basic_block *,
914 unsigned);
915 extern void add_to_dominance_info (enum cdi_direction, basic_block);
916 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
917 basic_block recompute_dominator (enum cdi_direction, basic_block);
918 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
919 basic_block);
920 extern void iterate_fix_dominators (enum cdi_direction,
921 VEC (basic_block, heap) *, bool);
922 extern void verify_dominators (enum cdi_direction);
923 extern basic_block first_dom_son (enum cdi_direction, basic_block);
924 extern basic_block next_dom_son (enum cdi_direction, basic_block);
925 unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
926 unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
928 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
929 extern void break_superblocks (void);
930 extern void relink_block_chain (bool);
931 extern void check_bb_profile (basic_block, FILE *);
932 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
933 extern void init_rtl_bb_info (basic_block);
935 extern void initialize_original_copy_tables (void);
936 extern void free_original_copy_tables (void);
937 extern void set_bb_original (basic_block, basic_block);
938 extern basic_block get_bb_original (basic_block);
939 extern void set_bb_copy (basic_block, basic_block);
940 extern basic_block get_bb_copy (basic_block);
941 void set_loop_copy (struct loop *, struct loop *);
942 struct loop *get_loop_copy (struct loop *);
945 extern rtx insert_insn_end_bb_new (rtx, basic_block);
947 #include "cfghooks.h"
949 /* In struct-equiv.c */
951 /* Constants used to size arrays in struct equiv_info (currently only one).
952 When these limits are exceeded, struct_equiv returns zero.
953 The maximum number of pseudo registers that are different in the two blocks,
954 but appear in equivalent places and are dead at the end (or where one of
955 a pair is dead at the end). */
956 #define STRUCT_EQUIV_MAX_LOCAL 16
957 /* The maximum number of references to an input register that struct_equiv
958 can handle. */
960 /* Structure used to track state during struct_equiv that can be rolled
961 back when we find we can't match an insn, or if we want to match part
962 of it in a different way.
963 This information pertains to the pair of partial blocks that has been
964 matched so far. Since this pair is structurally equivalent, this is
965 conceptually just one partial block expressed in two potentially
966 different ways. */
967 struct struct_equiv_checkpoint
969 int ninsns; /* Insns are matched so far. */
970 int local_count; /* Number of block-local registers. */
971 int input_count; /* Number of inputs to the block. */
973 /* X_START and Y_START are the first insns (in insn stream order)
974 of the partial blocks that have been considered for matching so far.
975 Since we are scanning backwards, they are also the instructions that
976 are currently considered - or the last ones that have been considered -
977 for matching (Unless we tracked back to these because a preceding
978 instruction failed to match). */
979 rtx x_start, y_start;
981 /* INPUT_VALID indicates if we have actually set up X_INPUT / Y_INPUT
982 during the current pass; we keep X_INPUT / Y_INPUT around between passes
983 so that we can match REG_EQUAL / REG_EQUIV notes referring to these. */
984 bool input_valid;
986 /* Some information would be expensive to exactly checkpoint, so we
987 merely increment VERSION any time information about local
988 registers, inputs and/or register liveness changes. When backtracking,
989 it is decremented for changes that can be undone, and if a discrepancy
990 remains, NEED_RERUN in the relevant struct equiv_info is set to indicate
991 that a new pass should be made over the entire block match to get
992 accurate register information. */
993 int version;
996 /* A struct equiv_info is used to pass information to struct_equiv and
997 to gather state while two basic blocks are checked for structural
998 equivalence. */
1000 struct equiv_info
1002 /* Fields set up by the caller to struct_equiv_block_eq */
1004 basic_block x_block, y_block; /* The two blocks being matched. */
1006 /* MODE carries the mode bits from cleanup_cfg if we are called from
1007 try_crossjump_to_edge, and additionally it carries the
1008 STRUCT_EQUIV_* bits described above. */
1009 int mode;
1011 /* INPUT_COST is the cost that adding an extra input to the matched blocks
1012 is supposed to have, and is taken into account when considering if the
1013 matched sequence should be extended backwards. input_cost < 0 means
1014 don't accept any inputs at all. */
1015 int input_cost;
1018 /* Fields to track state inside of struct_equiv_block_eq. Some of these
1019 are also outputs. */
1021 /* X_INPUT and Y_INPUT are used by struct_equiv to record a register that
1022 is used as an input parameter, i.e. where different registers are used
1023 as sources. This is only used for a register that is live at the end
1024 of the blocks, or in some identical code at the end of the blocks;
1025 Inputs that are dead at the end go into X_LOCAL / Y_LOCAL. */
1026 rtx x_input, y_input;
1027 /* When a previous pass has identified a valid input, INPUT_REG is set
1028 by struct_equiv_block_eq, and it is henceforth replaced in X_BLOCK
1029 for the input. */
1030 rtx input_reg;
1032 /* COMMON_LIVE keeps track of the registers which are currently live
1033 (as we scan backwards from the end) and have the same numbers in both
1034 blocks. N.B. a register that is in common_live is unsuitable to become
1035 a local reg. */
1036 regset common_live;
1037 /* Likewise, X_LOCAL_LIVE / Y_LOCAL_LIVE keep track of registers that are
1038 local to one of the blocks; these registers must not be accepted as
1039 identical when encountered in both blocks. */
1040 regset x_local_live, y_local_live;
1042 /* EQUIV_USED indicates for which insns a REG_EQUAL or REG_EQUIV note is
1043 being used, to avoid having to backtrack in the next pass, so that we
1044 get accurate life info for this insn then. For each such insn,
1045 the bit with the number corresponding to the CUR.NINSNS value at the
1046 time of scanning is set. */
1047 bitmap equiv_used;
1049 /* Current state that can be saved & restored easily. */
1050 struct struct_equiv_checkpoint cur;
1051 /* BEST_MATCH is used to store the best match so far, weighing the
1052 cost of matched insns COSTS_N_INSNS (CUR.NINSNS) against the cost
1053 CUR.INPUT_COUNT * INPUT_COST of setting up the inputs. */
1054 struct struct_equiv_checkpoint best_match;
1055 /* If a checkpoint restore failed, or an input conflict newly arises,
1056 NEED_RERUN is set. This has to be tested by the caller to re-run
1057 the comparison if the match appears otherwise sound. The state kept in
1058 x_start, y_start, equiv_used and check_input_conflict ensures that
1059 we won't loop indefinitely. */
1060 bool need_rerun;
1061 /* If there is indication of an input conflict at the end,
1062 CHECK_INPUT_CONFLICT is set so that we'll check for input conflicts
1063 for each insn in the next pass. This is needed so that we won't discard
1064 a partial match if there is a longer match that has to be abandoned due
1065 to an input conflict. */
1066 bool check_input_conflict;
1067 /* HAD_INPUT_CONFLICT is set if CHECK_INPUT_CONFLICT was already set and we
1068 have passed a point where there were multiple dying inputs. This helps
1069 us decide if we should set check_input_conflict for the next pass. */
1070 bool had_input_conflict;
1072 /* LIVE_UPDATE controls if we want to change any life info at all. We
1073 set it to false during REG_EQUAL / REG_EUQIV note comparison of the final
1074 pass so that we don't introduce new registers just for the note; if we
1075 can't match the notes without the current register information, we drop
1076 them. */
1077 bool live_update;
1079 /* X_LOCAL and Y_LOCAL are used to gather register numbers of register pairs
1080 that are local to X_BLOCK and Y_BLOCK, with CUR.LOCAL_COUNT being the index
1081 to the next free entry. */
1082 rtx x_local[STRUCT_EQUIV_MAX_LOCAL], y_local[STRUCT_EQUIV_MAX_LOCAL];
1083 /* LOCAL_RVALUE is nonzero if the corresponding X_LOCAL / Y_LOCAL entry
1084 was a source operand (including STRICT_LOW_PART) for the last invocation
1085 of struct_equiv mentioning it, zero if it was a destination-only operand.
1086 Since we are scanning backwards, this means the register is input/local
1087 for the (partial) block scanned so far. */
1088 bool local_rvalue[STRUCT_EQUIV_MAX_LOCAL];
1091 /* Additional fields that are computed for the convenience of the caller. */
1093 /* DYING_INPUTS is set to the number of local registers that turn out
1094 to be inputs to the (possibly partial) block. */
1095 int dying_inputs;
1096 /* X_END and Y_END are the last insns in X_BLOCK and Y_BLOCK, respectively,
1097 that are being compared. A final jump insn will not be included. */
1098 rtx x_end, y_end;
1100 /* If we are matching tablejumps, X_LABEL in X_BLOCK corresponds to
1101 Y_LABEL in Y_BLOCK. */
1102 rtx x_label, y_label;
1106 extern bool insns_match_p (rtx, rtx, struct equiv_info *);
1107 extern int struct_equiv_block_eq (int, struct equiv_info *);
1108 extern bool struct_equiv_init (int, struct equiv_info *);
1109 extern bool rtx_equiv_p (rtx *, rtx, int, struct equiv_info *);
1111 /* In cfgrtl.c */
1112 extern bool condjump_equiv_p (struct equiv_info *, bool);
1114 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
1115 static inline bool
1116 bb_has_eh_pred (basic_block bb)
1118 edge e;
1119 edge_iterator ei;
1121 FOR_EACH_EDGE (e, ei, bb->preds)
1123 if (e->flags & EDGE_EH)
1124 return true;
1126 return false;
1129 /* In cfgloopmanip.c. */
1130 extern edge mfb_kj_edge;
1131 bool mfb_keep_just (edge);
1133 #endif /* GCC_BASIC_BLOCK_H */