1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Exp_Util
; use Exp_Util
;
33 with Fname
; use Fname
;
34 with Itypes
; use Itypes
;
36 with Lib
.Xref
; use Lib
.Xref
;
37 with Namet
; use Namet
;
38 with Namet
.Sp
; use Namet
.Sp
;
39 with Nlists
; use Nlists
;
40 with Nmake
; use Nmake
;
42 with Output
; use Output
;
43 with Restrict
; use Restrict
;
44 with Rident
; use Rident
;
46 with Sem_Aux
; use Sem_Aux
;
47 with Sem_Case
; use Sem_Case
;
48 with Sem_Cat
; use Sem_Cat
;
49 with Sem_Ch3
; use Sem_Ch3
;
50 with Sem_Ch6
; use Sem_Ch6
;
51 with Sem_Ch8
; use Sem_Ch8
;
52 with Sem_Dim
; use Sem_Dim
;
53 with Sem_Disp
; use Sem_Disp
;
54 with Sem_Dist
; use Sem_Dist
;
55 with Sem_Eval
; use Sem_Eval
;
56 with Sem_Res
; use Sem_Res
;
57 with Sem_Type
; use Sem_Type
;
58 with Sem_Util
; use Sem_Util
;
59 with Sem_Warn
; use Sem_Warn
;
60 with Stand
; use Stand
;
61 with Sinfo
; use Sinfo
;
62 with Snames
; use Snames
;
63 with Tbuild
; use Tbuild
;
64 with Uintp
; use Uintp
;
66 package body Sem_Ch4
is
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Analyze_Concatenation_Rest
(N
: Node_Id
);
73 -- Does the "rest" of the work of Analyze_Concatenation, after the left
74 -- operand has been analyzed. See Analyze_Concatenation for details.
76 procedure Analyze_Expression
(N
: Node_Id
);
77 -- For expressions that are not names, this is just a call to analyze.
78 -- If the expression is a name, it may be a call to a parameterless
79 -- function, and if so must be converted into an explicit call node
80 -- and analyzed as such. This deproceduring must be done during the first
81 -- pass of overload resolution, because otherwise a procedure call with
82 -- overloaded actuals may fail to resolve.
84 procedure Analyze_Operator_Call
(N
: Node_Id
; Op_Id
: Entity_Id
);
85 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
86 -- is an operator name or an expanded name whose selector is an operator
87 -- name, and one possible interpretation is as a predefined operator.
89 procedure Analyze_Overloaded_Selected_Component
(N
: Node_Id
);
90 -- If the prefix of a selected_component is overloaded, the proper
91 -- interpretation that yields a record type with the proper selector
92 -- name must be selected.
94 procedure Analyze_User_Defined_Binary_Op
(N
: Node_Id
; Op_Id
: Entity_Id
);
95 -- Procedure to analyze a user defined binary operator, which is resolved
96 -- like a function, but instead of a list of actuals it is presented
97 -- with the left and right operands of an operator node.
99 procedure Analyze_User_Defined_Unary_Op
(N
: Node_Id
; Op_Id
: Entity_Id
);
100 -- Procedure to analyze a user defined unary operator, which is resolved
101 -- like a function, but instead of a list of actuals, it is presented with
102 -- the operand of the operator node.
104 procedure Ambiguous_Operands
(N
: Node_Id
);
105 -- For equality, membership, and comparison operators with overloaded
106 -- arguments, list possible interpretations.
108 procedure Analyze_One_Call
112 Success
: out Boolean;
113 Skip_First
: Boolean := False);
114 -- Check one interpretation of an overloaded subprogram name for
115 -- compatibility with the types of the actuals in a call. If there is a
116 -- single interpretation which does not match, post error if Report is
119 -- Nam is the entity that provides the formals against which the actuals
120 -- are checked. Nam is either the name of a subprogram, or the internal
121 -- subprogram type constructed for an access_to_subprogram. If the actuals
122 -- are compatible with Nam, then Nam is added to the list of candidate
123 -- interpretations for N, and Success is set to True.
125 -- The flag Skip_First is used when analyzing a call that was rewritten
126 -- from object notation. In this case the first actual may have to receive
127 -- an explicit dereference, depending on the first formal of the operation
128 -- being called. The caller will have verified that the object is legal
129 -- for the call. If the remaining parameters match, the first parameter
130 -- will rewritten as a dereference if needed, prior to completing analysis.
132 procedure Check_Misspelled_Selector
135 -- Give possible misspelling diagnostic if Sel is likely to be a mis-
136 -- spelling of one of the selectors of the Prefix. This is called by
137 -- Analyze_Selected_Component after producing an invalid selector error
140 function Defined_In_Scope
(T
: Entity_Id
; S
: Entity_Id
) return Boolean;
141 -- Verify that type T is declared in scope S. Used to find interpretations
142 -- for operators given by expanded names. This is abstracted as a separate
143 -- function to handle extensions to System, where S is System, but T is
144 -- declared in the extension.
146 procedure Find_Arithmetic_Types
150 -- L and R are the operands of an arithmetic operator. Find
151 -- consistent pairs of interpretations for L and R that have a
152 -- numeric type consistent with the semantics of the operator.
154 procedure Find_Comparison_Types
158 -- L and R are operands of a comparison operator. Find consistent
159 -- pairs of interpretations for L and R.
161 procedure Find_Concatenation_Types
165 -- For the four varieties of concatenation
167 procedure Find_Equality_Types
171 -- Ditto for equality operators
173 procedure Find_Boolean_Types
177 -- Ditto for binary logical operations
179 procedure Find_Negation_Types
183 -- Find consistent interpretation for operand of negation operator
185 procedure Find_Non_Universal_Interpretations
190 -- For equality and comparison operators, the result is always boolean,
191 -- and the legality of the operation is determined from the visibility
192 -- of the operand types. If one of the operands has a universal interpre-
193 -- tation, the legality check uses some compatible non-universal
194 -- interpretation of the other operand. N can be an operator node, or
195 -- a function call whose name is an operator designator.
197 function Find_Primitive_Operation
(N
: Node_Id
) return Boolean;
198 -- Find candidate interpretations for the name Obj.Proc when it appears
199 -- in a subprogram renaming declaration.
201 procedure Find_Unary_Types
205 -- Unary arithmetic types: plus, minus, abs
207 procedure Check_Arithmetic_Pair
211 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
212 -- types for left and right operand. Determine whether they constitute
213 -- a valid pair for the given operator, and record the corresponding
214 -- interpretation of the operator node. The node N may be an operator
215 -- node (the usual case) or a function call whose prefix is an operator
216 -- designator. In both cases Op_Id is the operator name itself.
218 procedure Diagnose_Call
(N
: Node_Id
; Nam
: Node_Id
);
219 -- Give detailed information on overloaded call where none of the
220 -- interpretations match. N is the call node, Nam the designator for
221 -- the overloaded entity being called.
223 function Junk_Operand
(N
: Node_Id
) return Boolean;
224 -- Test for an operand that is an inappropriate entity (e.g. a package
225 -- name or a label). If so, issue an error message and return True. If
226 -- the operand is not an inappropriate entity kind, return False.
228 procedure Operator_Check
(N
: Node_Id
);
229 -- Verify that an operator has received some valid interpretation. If none
230 -- was found, determine whether a use clause would make the operation
231 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
232 -- every type compatible with the operator, even if the operator for the
233 -- type is not directly visible. The routine uses this type to emit a more
234 -- informative message.
236 function Process_Implicit_Dereference_Prefix
238 P
: Node_Id
) return Entity_Id
;
239 -- Called when P is the prefix of an implicit dereference, denoting an
240 -- object E. The function returns the designated type of the prefix, taking
241 -- into account that the designated type of an anonymous access type may be
242 -- a limited view, when the non-limited view is visible.
243 -- If in semantics only mode (-gnatc or generic), the function also records
244 -- that the prefix is a reference to E, if any. Normally, such a reference
245 -- is generated only when the implicit dereference is expanded into an
246 -- explicit one, but for consistency we must generate the reference when
247 -- expansion is disabled as well.
249 procedure Remove_Abstract_Operations
(N
: Node_Id
);
250 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
251 -- operation is not a candidate interpretation.
253 function Try_Container_Indexing
256 Exprs
: List_Id
) return Boolean;
257 -- AI05-0139: Generalized indexing to support iterators over containers
259 function Try_Indexed_Call
263 Skip_First
: Boolean) return Boolean;
264 -- If a function has defaults for all its actuals, a call to it may in fact
265 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
266 -- interpretation as an indexing, prior to analysis as a call. If both are
267 -- possible, the node is overloaded with both interpretations (same symbol
268 -- but two different types). If the call is written in prefix form, the
269 -- prefix becomes the first parameter in the call, and only the remaining
270 -- actuals must be checked for the presence of defaults.
272 function Try_Indirect_Call
275 Typ
: Entity_Id
) return Boolean;
276 -- Similarly, a function F that needs no actuals can return an access to a
277 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
278 -- the call may be overloaded with both interpretations.
280 function Try_Object_Operation
282 CW_Test_Only
: Boolean := False) return Boolean;
283 -- Ada 2005 (AI-252): Support the object.operation notation. If node N
284 -- is a call in this notation, it is transformed into a normal subprogram
285 -- call where the prefix is a parameter, and True is returned. If node
286 -- N is not of this form, it is unchanged, and False is returned. if
287 -- CW_Test_Only is true then N is an N_Selected_Component node which
288 -- is part of a call to an entry or procedure of a tagged concurrent
289 -- type and this routine is invoked to search for class-wide subprograms
290 -- conflicting with the target entity.
292 procedure wpo
(T
: Entity_Id
);
293 pragma Warnings
(Off
, wpo
);
294 -- Used for debugging: obtain list of primitive operations even if
295 -- type is not frozen and dispatch table is not built yet.
297 ------------------------
298 -- Ambiguous_Operands --
299 ------------------------
301 procedure Ambiguous_Operands
(N
: Node_Id
) is
302 procedure List_Operand_Interps
(Opnd
: Node_Id
);
304 --------------------------
305 -- List_Operand_Interps --
306 --------------------------
308 procedure List_Operand_Interps
(Opnd
: Node_Id
) is
313 if Is_Overloaded
(Opnd
) then
314 if Nkind
(Opnd
) in N_Op
then
316 elsif Nkind
(Opnd
) = N_Function_Call
then
318 elsif Ada_Version
>= Ada_2012
then
324 Get_First_Interp
(Opnd
, I
, It
);
325 while Present
(It
.Nam
) loop
326 if Has_Implicit_Dereference
(It
.Typ
) then
328 ("can be interpreted as implicit dereference", Opnd
);
332 Get_Next_Interp
(I
, It
);
343 if Opnd
= Left_Opnd
(N
) then
344 Error_Msg_N
("\left operand has the following interpretations", N
);
347 ("\right operand has the following interpretations", N
);
351 List_Interps
(Nam
, Err
);
352 end List_Operand_Interps
;
354 -- Start of processing for Ambiguous_Operands
357 if Nkind
(N
) in N_Membership_Test
then
358 Error_Msg_N
("ambiguous operands for membership", N
);
360 elsif Nkind_In
(N
, N_Op_Eq
, N_Op_Ne
) then
361 Error_Msg_N
("ambiguous operands for equality", N
);
364 Error_Msg_N
("ambiguous operands for comparison", N
);
367 if All_Errors_Mode
then
368 List_Operand_Interps
(Left_Opnd
(N
));
369 List_Operand_Interps
(Right_Opnd
(N
));
371 Error_Msg_N
("\use -gnatf switch for details", N
);
373 end Ambiguous_Operands
;
375 -----------------------
376 -- Analyze_Aggregate --
377 -----------------------
379 -- Most of the analysis of Aggregates requires that the type be known,
380 -- and is therefore put off until resolution.
382 procedure Analyze_Aggregate
(N
: Node_Id
) is
384 if No
(Etype
(N
)) then
385 Set_Etype
(N
, Any_Composite
);
387 end Analyze_Aggregate
;
389 -----------------------
390 -- Analyze_Allocator --
391 -----------------------
393 procedure Analyze_Allocator
(N
: Node_Id
) is
394 Loc
: constant Source_Ptr
:= Sloc
(N
);
395 Sav_Errs
: constant Nat
:= Serious_Errors_Detected
;
396 E
: Node_Id
:= Expression
(N
);
397 Acc_Type
: Entity_Id
;
403 Check_SPARK_Restriction
("allocator is not allowed", N
);
405 -- Deal with allocator restrictions
407 -- In accordance with H.4(7), the No_Allocators restriction only applies
408 -- to user-written allocators. The same consideration applies to the
409 -- No_Allocators_Before_Elaboration restriction.
411 if Comes_From_Source
(N
) then
412 Check_Restriction
(No_Allocators
, N
);
414 -- Processing for No_Allocators_After_Elaboration, loop to look at
415 -- enclosing context, checking task case and main subprogram case.
419 while Present
(P
) loop
421 -- In both cases we need a handled sequence of statements, where
422 -- the occurrence of the allocator is within the statements.
424 if Nkind
(P
) = N_Handled_Sequence_Of_Statements
425 and then Is_List_Member
(C
)
426 and then List_Containing
(C
) = Statements
(P
)
428 -- Check for allocator within task body, this is a definite
429 -- violation of No_Allocators_After_Elaboration we can detect.
431 if Nkind
(Original_Node
(Parent
(P
))) = N_Task_Body
then
432 Check_Restriction
(No_Allocators_After_Elaboration
, N
);
436 -- The other case is appearance in a subprogram body. This may
437 -- be a violation if this is a library level subprogram, and it
438 -- turns out to be used as the main program, but only the
439 -- binder knows that, so just record the occurrence.
441 if Nkind
(Original_Node
(Parent
(P
))) = N_Subprogram_Body
442 and then Nkind
(Parent
(Parent
(P
))) = N_Compilation_Unit
444 Set_Has_Allocator
(Current_Sem_Unit
);
453 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
454 -- any. The expected type for the name is any type. A non-overloading
455 -- rule then requires it to be of a type descended from
456 -- System.Storage_Pools.Subpools.Subpool_Handle.
458 -- This isn't exactly what the AI says, but it seems to be the right
459 -- rule. The AI should be fixed.???
462 Subpool
: constant Node_Id
:= Subpool_Handle_Name
(N
);
465 if Present
(Subpool
) then
468 if Is_Overloaded
(Subpool
) then
469 Error_Msg_N
("ambiguous subpool handle", Subpool
);
472 -- Check that Etype (Subpool) is descended from Subpool_Handle
478 -- Analyze the qualified expression or subtype indication
480 if Nkind
(E
) = N_Qualified_Expression
then
481 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
482 Set_Etype
(Acc_Type
, Acc_Type
);
483 Find_Type
(Subtype_Mark
(E
));
485 -- Analyze the qualified expression, and apply the name resolution
486 -- rule given in 4.7(3).
489 Type_Id
:= Etype
(E
);
490 Set_Directly_Designated_Type
(Acc_Type
, Type_Id
);
492 Resolve
(Expression
(E
), Type_Id
);
494 -- Allocators generated by the build-in-place expansion mechanism
495 -- are explicitly marked as coming from source but do not need to be
496 -- checked for limited initialization. To exclude this case, ensure
497 -- that the parent of the allocator is a source node.
499 if Is_Limited_Type
(Type_Id
)
500 and then Comes_From_Source
(N
)
501 and then Comes_From_Source
(Parent
(N
))
502 and then not In_Instance_Body
504 if not OK_For_Limited_Init
(Type_Id
, Expression
(E
)) then
505 Error_Msg_N
("initialization not allowed for limited types", N
);
506 Explain_Limited_Type
(Type_Id
, N
);
510 -- A qualified expression requires an exact match of the type,
511 -- class-wide matching is not allowed.
513 -- if Is_Class_Wide_Type (Type_Id)
514 -- and then Base_Type
515 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
517 -- Wrong_Type (Expression (E), Type_Id);
520 Check_Non_Static_Context
(Expression
(E
));
522 -- We don't analyze the qualified expression itself because it's
523 -- part of the allocator
525 Set_Etype
(E
, Type_Id
);
527 -- Case where allocator has a subtype indication
532 Base_Typ
: Entity_Id
;
535 -- If the allocator includes a N_Subtype_Indication then a
536 -- constraint is present, otherwise the node is a subtype mark.
537 -- Introduce an explicit subtype declaration into the tree
538 -- defining some anonymous subtype and rewrite the allocator to
539 -- use this subtype rather than the subtype indication.
541 -- It is important to introduce the explicit subtype declaration
542 -- so that the bounds of the subtype indication are attached to
543 -- the tree in case the allocator is inside a generic unit.
545 if Nkind
(E
) = N_Subtype_Indication
then
547 -- A constraint is only allowed for a composite type in Ada
548 -- 95. In Ada 83, a constraint is also allowed for an
549 -- access-to-composite type, but the constraint is ignored.
551 Find_Type
(Subtype_Mark
(E
));
552 Base_Typ
:= Entity
(Subtype_Mark
(E
));
554 if Is_Elementary_Type
(Base_Typ
) then
555 if not (Ada_Version
= Ada_83
556 and then Is_Access_Type
(Base_Typ
))
558 Error_Msg_N
("constraint not allowed here", E
);
560 if Nkind
(Constraint
(E
)) =
561 N_Index_Or_Discriminant_Constraint
563 Error_Msg_N
-- CODEFIX
564 ("\if qualified expression was meant, " &
565 "use apostrophe", Constraint
(E
));
569 -- Get rid of the bogus constraint:
571 Rewrite
(E
, New_Copy_Tree
(Subtype_Mark
(E
)));
572 Analyze_Allocator
(N
);
575 -- Ada 2005, AI-363: if the designated type has a constrained
576 -- partial view, it cannot receive a discriminant constraint,
577 -- and the allocated object is unconstrained.
579 elsif Ada_Version
>= Ada_2005
580 and then Effectively_Has_Constrained_Partial_View
582 Scop
=> Current_Scope
)
585 ("constraint not allowed when type " &
586 "has a constrained partial view", Constraint
(E
));
589 if Expander_Active
then
590 Def_Id
:= Make_Temporary
(Loc
, 'S');
593 Make_Subtype_Declaration
(Loc
,
594 Defining_Identifier
=> Def_Id
,
595 Subtype_Indication
=> Relocate_Node
(E
)));
597 if Sav_Errs
/= Serious_Errors_Detected
598 and then Nkind
(Constraint
(E
)) =
599 N_Index_Or_Discriminant_Constraint
601 Error_Msg_N
-- CODEFIX
602 ("if qualified expression was meant, " &
603 "use apostrophe!", Constraint
(E
));
606 E
:= New_Occurrence_Of
(Def_Id
, Loc
);
607 Rewrite
(Expression
(N
), E
);
611 Type_Id
:= Process_Subtype
(E
, N
);
612 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
613 Set_Etype
(Acc_Type
, Acc_Type
);
614 Set_Directly_Designated_Type
(Acc_Type
, Type_Id
);
615 Check_Fully_Declared
(Type_Id
, N
);
617 -- Ada 2005 (AI-231): If the designated type is itself an access
618 -- type that excludes null, its default initialization will
619 -- be a null object, and we can insert an unconditional raise
620 -- before the allocator.
622 -- Ada 2012 (AI-104): A not null indication here is altogether
625 if Can_Never_Be_Null
(Type_Id
) then
627 Not_Null_Check
: constant Node_Id
:=
628 Make_Raise_Constraint_Error
(Sloc
(E
),
629 Reason
=> CE_Null_Not_Allowed
);
632 if Ada_Version
>= Ada_2012
then
634 ("an uninitialized allocator cannot have"
635 & " a null exclusion", N
);
637 elsif Expander_Active
then
638 Insert_Action
(N
, Not_Null_Check
);
639 Analyze
(Not_Null_Check
);
642 Error_Msg_N
("null value not allowed here?", E
);
647 -- Check restriction against dynamically allocated protected
648 -- objects. Note that when limited aggregates are supported,
649 -- a similar test should be applied to an allocator with a
650 -- qualified expression ???
652 if Is_Protected_Type
(Type_Id
) then
653 Check_Restriction
(No_Protected_Type_Allocators
, N
);
656 -- Check for missing initialization. Skip this check if we already
657 -- had errors on analyzing the allocator, since in that case these
658 -- are probably cascaded errors.
660 if Is_Indefinite_Subtype
(Type_Id
)
661 and then Serious_Errors_Detected
= Sav_Errs
663 -- The build-in-place machinery may produce an allocator when
664 -- the designated type is indefinite but the underlying type is
665 -- not. In this case the unknown discriminants are meaningless
666 -- and should not trigger error messages. Check the parent node
667 -- because the allocator is marked as coming from source.
669 if Present
(Underlying_Type
(Type_Id
))
670 and then not Is_Indefinite_Subtype
(Underlying_Type
(Type_Id
))
671 and then not Comes_From_Source
(Parent
(N
))
675 elsif Is_Class_Wide_Type
(Type_Id
) then
677 ("initialization required in class-wide allocation", N
);
680 if Ada_Version
< Ada_2005
681 and then Is_Limited_Type
(Type_Id
)
683 Error_Msg_N
("unconstrained allocation not allowed", N
);
685 if Is_Array_Type
(Type_Id
) then
687 ("\constraint with array bounds required", N
);
689 elsif Has_Unknown_Discriminants
(Type_Id
) then
692 else pragma Assert
(Has_Discriminants
(Type_Id
));
694 ("\constraint with discriminant values required", N
);
697 -- Limited Ada 2005 and general non-limited case
701 ("uninitialized unconstrained allocation not allowed",
704 if Is_Array_Type
(Type_Id
) then
706 ("\qualified expression or constraint with " &
707 "array bounds required", N
);
709 elsif Has_Unknown_Discriminants
(Type_Id
) then
710 Error_Msg_N
("\qualified expression required", N
);
712 else pragma Assert
(Has_Discriminants
(Type_Id
));
714 ("\qualified expression or constraint with " &
715 "discriminant values required", N
);
723 if Is_Abstract_Type
(Type_Id
) then
724 Error_Msg_N
("cannot allocate abstract object", E
);
727 if Has_Task
(Designated_Type
(Acc_Type
)) then
728 Check_Restriction
(No_Tasking
, N
);
729 Check_Restriction
(Max_Tasks
, N
);
730 Check_Restriction
(No_Task_Allocators
, N
);
733 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
734 -- type is nested, and the designated type needs finalization. The rule
735 -- is conservative in that class-wide types need finalization.
737 if Needs_Finalization
(Designated_Type
(Acc_Type
))
738 and then not Is_Library_Level_Entity
(Acc_Type
)
740 Check_Restriction
(No_Nested_Finalization
, N
);
743 -- Check that an allocator of a nested access type doesn't create a
744 -- protected object when restriction No_Local_Protected_Objects applies.
745 -- We don't have an equivalent to Has_Task for protected types, so only
746 -- cases where the designated type itself is a protected type are
747 -- currently checked. ???
749 if Is_Protected_Type
(Designated_Type
(Acc_Type
))
750 and then not Is_Library_Level_Entity
(Acc_Type
)
752 Check_Restriction
(No_Local_Protected_Objects
, N
);
755 -- If the No_Streams restriction is set, check that the type of the
756 -- object is not, and does not contain, any subtype derived from
757 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
758 -- Has_Stream just for efficiency reasons. There is no point in
759 -- spending time on a Has_Stream check if the restriction is not set.
761 if Restriction_Check_Required
(No_Streams
) then
762 if Has_Stream
(Designated_Type
(Acc_Type
)) then
763 Check_Restriction
(No_Streams
, N
);
767 Set_Etype
(N
, Acc_Type
);
769 if not Is_Library_Level_Entity
(Acc_Type
) then
770 Check_Restriction
(No_Local_Allocators
, N
);
773 if Serious_Errors_Detected
> Sav_Errs
then
774 Set_Error_Posted
(N
);
775 Set_Etype
(N
, Any_Type
);
777 end Analyze_Allocator
;
779 ---------------------------
780 -- Analyze_Arithmetic_Op --
781 ---------------------------
783 procedure Analyze_Arithmetic_Op
(N
: Node_Id
) is
784 L
: constant Node_Id
:= Left_Opnd
(N
);
785 R
: constant Node_Id
:= Right_Opnd
(N
);
789 Candidate_Type
:= Empty
;
790 Analyze_Expression
(L
);
791 Analyze_Expression
(R
);
793 -- If the entity is already set, the node is the instantiation of a
794 -- generic node with a non-local reference, or was manufactured by a
795 -- call to Make_Op_xxx. In either case the entity is known to be valid,
796 -- and we do not need to collect interpretations, instead we just get
797 -- the single possible interpretation.
801 if Present
(Op_Id
) then
802 if Ekind
(Op_Id
) = E_Operator
then
804 if Nkind_In
(N
, N_Op_Divide
, N_Op_Mod
, N_Op_Multiply
, N_Op_Rem
)
805 and then Treat_Fixed_As_Integer
(N
)
809 Set_Etype
(N
, Any_Type
);
810 Find_Arithmetic_Types
(L
, R
, Op_Id
, N
);
814 Set_Etype
(N
, Any_Type
);
815 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
818 -- Entity is not already set, so we do need to collect interpretations
821 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
822 Set_Etype
(N
, Any_Type
);
824 while Present
(Op_Id
) loop
825 if Ekind
(Op_Id
) = E_Operator
826 and then Present
(Next_Entity
(First_Entity
(Op_Id
)))
828 Find_Arithmetic_Types
(L
, R
, Op_Id
, N
);
830 -- The following may seem superfluous, because an operator cannot
831 -- be generic, but this ignores the cleverness of the author of
834 elsif Is_Overloadable
(Op_Id
) then
835 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
838 Op_Id
:= Homonym
(Op_Id
);
843 end Analyze_Arithmetic_Op
;
849 -- Function, procedure, and entry calls are checked here. The Name in
850 -- the call may be overloaded. The actuals have been analyzed and may
851 -- themselves be overloaded. On exit from this procedure, the node N
852 -- may have zero, one or more interpretations. In the first case an
853 -- error message is produced. In the last case, the node is flagged
854 -- as overloaded and the interpretations are collected in All_Interp.
856 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
857 -- the type-checking is similar to that of other calls.
859 procedure Analyze_Call
(N
: Node_Id
) is
860 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
865 Success
: Boolean := False;
867 Deref
: Boolean := False;
868 -- Flag indicates whether an interpretation of the prefix is a
869 -- parameterless call that returns an access_to_subprogram.
871 procedure Check_Mixed_Parameter_And_Named_Associations
;
872 -- Check that parameter and named associations are not mixed. This is
873 -- a restriction in SPARK mode.
875 function Name_Denotes_Function
return Boolean;
876 -- If the type of the name is an access to subprogram, this may be the
877 -- type of a name, or the return type of the function being called. If
878 -- the name is not an entity then it can denote a protected function.
879 -- Until we distinguish Etype from Return_Type, we must use this routine
880 -- to resolve the meaning of the name in the call.
882 procedure No_Interpretation
;
883 -- Output error message when no valid interpretation exists
885 --------------------------------------------------
886 -- Check_Mixed_Parameter_And_Named_Associations --
887 --------------------------------------------------
889 procedure Check_Mixed_Parameter_And_Named_Associations
is
891 Named_Seen
: Boolean;
896 Actual
:= First
(Actuals
);
897 while Present
(Actual
) loop
898 case Nkind
(Actual
) is
899 when N_Parameter_Association
=>
901 Check_SPARK_Restriction
902 ("named association cannot follow positional one",
912 end Check_Mixed_Parameter_And_Named_Associations
;
914 ---------------------------
915 -- Name_Denotes_Function --
916 ---------------------------
918 function Name_Denotes_Function
return Boolean is
920 if Is_Entity_Name
(Nam
) then
921 return Ekind
(Entity
(Nam
)) = E_Function
;
923 elsif Nkind
(Nam
) = N_Selected_Component
then
924 return Ekind
(Entity
(Selector_Name
(Nam
))) = E_Function
;
929 end Name_Denotes_Function
;
931 -----------------------
932 -- No_Interpretation --
933 -----------------------
935 procedure No_Interpretation
is
936 L
: constant Boolean := Is_List_Member
(N
);
937 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
940 -- If the node is in a list whose parent is not an expression then it
941 -- must be an attempted procedure call.
943 if L
and then K
not in N_Subexpr
then
944 if Ekind
(Entity
(Nam
)) = E_Generic_Procedure
then
946 ("must instantiate generic procedure& before call",
950 ("procedure or entry name expected", Nam
);
953 -- Check for tasking cases where only an entry call will do
956 and then Nkind_In
(K
, N_Entry_Call_Alternative
,
957 N_Triggering_Alternative
)
959 Error_Msg_N
("entry name expected", Nam
);
961 -- Otherwise give general error message
964 Error_Msg_N
("invalid prefix in call", Nam
);
966 end No_Interpretation
;
968 -- Start of processing for Analyze_Call
971 if Restriction_Check_Required
(SPARK
) then
972 Check_Mixed_Parameter_And_Named_Associations
;
975 -- Initialize the type of the result of the call to the error type,
976 -- which will be reset if the type is successfully resolved.
978 Set_Etype
(N
, Any_Type
);
982 if not Is_Overloaded
(Nam
) then
984 -- Only one interpretation to check
986 if Ekind
(Etype
(Nam
)) = E_Subprogram_Type
then
987 Nam_Ent
:= Etype
(Nam
);
989 -- If the prefix is an access_to_subprogram, this may be an indirect
990 -- call. This is the case if the name in the call is not an entity
991 -- name, or if it is a function name in the context of a procedure
992 -- call. In this latter case, we have a call to a parameterless
993 -- function that returns a pointer_to_procedure which is the entity
994 -- being called. Finally, F (X) may be a call to a parameterless
995 -- function that returns a pointer to a function with parameters.
997 elsif Is_Access_Type
(Etype
(Nam
))
998 and then Ekind
(Designated_Type
(Etype
(Nam
))) = E_Subprogram_Type
1000 (not Name_Denotes_Function
1001 or else Nkind
(N
) = N_Procedure_Call_Statement
1003 (Nkind
(Parent
(N
)) /= N_Explicit_Dereference
1004 and then Is_Entity_Name
(Nam
)
1005 and then No
(First_Formal
(Entity
(Nam
)))
1006 and then Present
(Actuals
)))
1008 Nam_Ent
:= Designated_Type
(Etype
(Nam
));
1009 Insert_Explicit_Dereference
(Nam
);
1011 -- Selected component case. Simple entry or protected operation,
1012 -- where the entry name is given by the selector name.
1014 elsif Nkind
(Nam
) = N_Selected_Component
then
1015 Nam_Ent
:= Entity
(Selector_Name
(Nam
));
1017 if not Ekind_In
(Nam_Ent
, E_Entry
,
1022 Error_Msg_N
("name in call is not a callable entity", Nam
);
1023 Set_Etype
(N
, Any_Type
);
1027 -- If the name is an Indexed component, it can be a call to a member
1028 -- of an entry family. The prefix must be a selected component whose
1029 -- selector is the entry. Analyze_Procedure_Call normalizes several
1030 -- kinds of call into this form.
1032 elsif Nkind
(Nam
) = N_Indexed_Component
then
1033 if Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
1034 Nam_Ent
:= Entity
(Selector_Name
(Prefix
(Nam
)));
1036 Error_Msg_N
("name in call is not a callable entity", Nam
);
1037 Set_Etype
(N
, Any_Type
);
1041 elsif not Is_Entity_Name
(Nam
) then
1042 Error_Msg_N
("name in call is not a callable entity", Nam
);
1043 Set_Etype
(N
, Any_Type
);
1047 Nam_Ent
:= Entity
(Nam
);
1049 -- If no interpretations, give error message
1051 if not Is_Overloadable
(Nam_Ent
) then
1057 -- Operations generated for RACW stub types are called only through
1058 -- dispatching, and can never be the static interpretation of a call.
1060 if Is_RACW_Stub_Type_Operation
(Nam_Ent
) then
1065 Analyze_One_Call
(N
, Nam_Ent
, True, Success
);
1067 -- If this is an indirect call, the return type of the access_to
1068 -- subprogram may be an incomplete type. At the point of the call,
1069 -- use the full type if available, and at the same time update the
1070 -- return type of the access_to_subprogram.
1073 and then Nkind
(Nam
) = N_Explicit_Dereference
1074 and then Ekind
(Etype
(N
)) = E_Incomplete_Type
1075 and then Present
(Full_View
(Etype
(N
)))
1077 Set_Etype
(N
, Full_View
(Etype
(N
)));
1078 Set_Etype
(Nam_Ent
, Etype
(N
));
1082 -- An overloaded selected component must denote overloaded operations
1083 -- of a concurrent type. The interpretations are attached to the
1084 -- simple name of those operations.
1086 if Nkind
(Nam
) = N_Selected_Component
then
1087 Nam
:= Selector_Name
(Nam
);
1090 Get_First_Interp
(Nam
, X
, It
);
1092 while Present
(It
.Nam
) loop
1096 -- Name may be call that returns an access to subprogram, or more
1097 -- generally an overloaded expression one of whose interpretations
1098 -- yields an access to subprogram. If the name is an entity, we do
1099 -- not dereference, because the node is a call that returns the
1100 -- access type: note difference between f(x), where the call may
1101 -- return an access subprogram type, and f(x)(y), where the type
1102 -- returned by the call to f is implicitly dereferenced to analyze
1105 if Is_Access_Type
(Nam_Ent
) then
1106 Nam_Ent
:= Designated_Type
(Nam_Ent
);
1108 elsif Is_Access_Type
(Etype
(Nam_Ent
))
1110 (not Is_Entity_Name
(Nam
)
1111 or else Nkind
(N
) = N_Procedure_Call_Statement
)
1112 and then Ekind
(Designated_Type
(Etype
(Nam_Ent
)))
1115 Nam_Ent
:= Designated_Type
(Etype
(Nam_Ent
));
1117 if Is_Entity_Name
(Nam
) then
1122 -- If the call has been rewritten from a prefixed call, the first
1123 -- parameter has been analyzed, but may need a subsequent
1124 -- dereference, so skip its analysis now.
1126 if N
/= Original_Node
(N
)
1127 and then Nkind
(Original_Node
(N
)) = Nkind
(N
)
1128 and then Nkind
(Name
(N
)) /= Nkind
(Name
(Original_Node
(N
)))
1129 and then Present
(Parameter_Associations
(N
))
1130 and then Present
(Etype
(First
(Parameter_Associations
(N
))))
1133 (N
, Nam_Ent
, False, Success
, Skip_First
=> True);
1135 Analyze_One_Call
(N
, Nam_Ent
, False, Success
);
1138 -- If the interpretation succeeds, mark the proper type of the
1139 -- prefix (any valid candidate will do). If not, remove the
1140 -- candidate interpretation. This only needs to be done for
1141 -- overloaded protected operations, for other entities disambi-
1142 -- guation is done directly in Resolve.
1146 and then Nkind
(Parent
(N
)) /= N_Explicit_Dereference
1148 Set_Entity
(Nam
, It
.Nam
);
1149 Insert_Explicit_Dereference
(Nam
);
1150 Set_Etype
(Nam
, Nam_Ent
);
1153 Set_Etype
(Nam
, It
.Typ
);
1156 elsif Nkind_In
(Name
(N
), N_Selected_Component
,
1162 Get_Next_Interp
(X
, It
);
1165 -- If the name is the result of a function call, it can only
1166 -- be a call to a function returning an access to subprogram.
1167 -- Insert explicit dereference.
1169 if Nkind
(Nam
) = N_Function_Call
then
1170 Insert_Explicit_Dereference
(Nam
);
1173 if Etype
(N
) = Any_Type
then
1175 -- None of the interpretations is compatible with the actuals
1177 Diagnose_Call
(N
, Nam
);
1179 -- Special checks for uninstantiated put routines
1181 if Nkind
(N
) = N_Procedure_Call_Statement
1182 and then Is_Entity_Name
(Nam
)
1183 and then Chars
(Nam
) = Name_Put
1184 and then List_Length
(Actuals
) = 1
1187 Arg
: constant Node_Id
:= First
(Actuals
);
1191 if Nkind
(Arg
) = N_Parameter_Association
then
1192 Typ
:= Etype
(Explicit_Actual_Parameter
(Arg
));
1197 if Is_Signed_Integer_Type
(Typ
) then
1199 ("possible missing instantiation of " &
1200 "'Text_'I'O.'Integer_'I'O!", Nam
);
1202 elsif Is_Modular_Integer_Type
(Typ
) then
1204 ("possible missing instantiation of " &
1205 "'Text_'I'O.'Modular_'I'O!", Nam
);
1207 elsif Is_Floating_Point_Type
(Typ
) then
1209 ("possible missing instantiation of " &
1210 "'Text_'I'O.'Float_'I'O!", Nam
);
1212 elsif Is_Ordinary_Fixed_Point_Type
(Typ
) then
1214 ("possible missing instantiation of " &
1215 "'Text_'I'O.'Fixed_'I'O!", Nam
);
1217 elsif Is_Decimal_Fixed_Point_Type
(Typ
) then
1219 ("possible missing instantiation of " &
1220 "'Text_'I'O.'Decimal_'I'O!", Nam
);
1222 elsif Is_Enumeration_Type
(Typ
) then
1224 ("possible missing instantiation of " &
1225 "'Text_'I'O.'Enumeration_'I'O!", Nam
);
1230 elsif not Is_Overloaded
(N
)
1231 and then Is_Entity_Name
(Nam
)
1233 -- Resolution yields a single interpretation. Verify that the
1234 -- reference has capitalization consistent with the declaration.
1236 Set_Entity_With_Style_Check
(Nam
, Entity
(Nam
));
1237 Generate_Reference
(Entity
(Nam
), Nam
);
1239 Set_Etype
(Nam
, Etype
(Entity
(Nam
)));
1241 Remove_Abstract_Operations
(N
);
1248 -----------------------------
1249 -- Analyze_Case_Expression --
1250 -----------------------------
1252 procedure Analyze_Case_Expression
(N
: Node_Id
) is
1253 Expr
: constant Node_Id
:= Expression
(N
);
1254 FirstX
: constant Node_Id
:= Expression
(First
(Alternatives
(N
)));
1256 Exp_Type
: Entity_Id
;
1257 Exp_Btype
: Entity_Id
;
1259 Dont_Care
: Boolean;
1260 Others_Present
: Boolean;
1262 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
1263 -- Error routine invoked by the generic instantiation below when
1264 -- the case expression has a non static choice.
1266 package Case_Choices_Processing
is new
1267 Generic_Choices_Processing
1268 (Get_Alternatives
=> Alternatives
,
1269 Get_Choices
=> Discrete_Choices
,
1270 Process_Empty_Choice
=> No_OP
,
1271 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
1272 Process_Associated_Node
=> No_OP
);
1273 use Case_Choices_Processing
;
1275 -----------------------------
1276 -- Non_Static_Choice_Error --
1277 -----------------------------
1279 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
1281 Flag_Non_Static_Expr
1282 ("choice given in case expression is not static!", Choice
);
1283 end Non_Static_Choice_Error
;
1285 -- Start of processing for Analyze_Case_Expression
1288 if Comes_From_Source
(N
) then
1289 Check_Compiler_Unit
(N
);
1292 Analyze_And_Resolve
(Expr
, Any_Discrete
);
1293 Check_Unset_Reference
(Expr
);
1294 Exp_Type
:= Etype
(Expr
);
1295 Exp_Btype
:= Base_Type
(Exp_Type
);
1297 Alt
:= First
(Alternatives
(N
));
1298 while Present
(Alt
) loop
1299 Analyze
(Expression
(Alt
));
1303 if not Is_Overloaded
(FirstX
) then
1304 Set_Etype
(N
, Etype
(FirstX
));
1312 Set_Etype
(N
, Any_Type
);
1314 Get_First_Interp
(FirstX
, I
, It
);
1315 while Present
(It
.Nam
) loop
1317 -- For each interpretation of the first expression, we only
1318 -- add the interpretation if every other expression in the
1319 -- case expression alternatives has a compatible type.
1321 Alt
:= Next
(First
(Alternatives
(N
)));
1322 while Present
(Alt
) loop
1323 exit when not Has_Compatible_Type
(Expression
(Alt
), It
.Typ
);
1328 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
1331 Get_Next_Interp
(I
, It
);
1336 Exp_Btype
:= Base_Type
(Exp_Type
);
1338 -- The expression must be of a discrete type which must be determinable
1339 -- independently of the context in which the expression occurs, but
1340 -- using the fact that the expression must be of a discrete type.
1341 -- Moreover, the type this expression must not be a character literal
1342 -- (which is always ambiguous).
1344 -- If error already reported by Resolve, nothing more to do
1346 if Exp_Btype
= Any_Discrete
1347 or else Exp_Btype
= Any_Type
1351 elsif Exp_Btype
= Any_Character
then
1353 ("character literal as case expression is ambiguous", Expr
);
1357 -- If the case expression is a formal object of mode in out, then
1358 -- treat it as having a nonstatic subtype by forcing use of the base
1359 -- type (which has to get passed to Check_Case_Choices below). Also
1360 -- use base type when the case expression is parenthesized.
1362 if Paren_Count
(Expr
) > 0
1363 or else (Is_Entity_Name
(Expr
)
1364 and then Ekind
(Entity
(Expr
)) = E_Generic_In_Out_Parameter
)
1366 Exp_Type
:= Exp_Btype
;
1369 -- Call instantiated Analyze_Choices which does the rest of the work
1371 Analyze_Choices
(N
, Exp_Type
, Dont_Care
, Others_Present
);
1373 if Exp_Type
= Universal_Integer
and then not Others_Present
then
1375 ("case on universal integer requires OTHERS choice", Expr
);
1377 end Analyze_Case_Expression
;
1379 ---------------------------
1380 -- Analyze_Comparison_Op --
1381 ---------------------------
1383 procedure Analyze_Comparison_Op
(N
: Node_Id
) is
1384 L
: constant Node_Id
:= Left_Opnd
(N
);
1385 R
: constant Node_Id
:= Right_Opnd
(N
);
1386 Op_Id
: Entity_Id
:= Entity
(N
);
1389 Set_Etype
(N
, Any_Type
);
1390 Candidate_Type
:= Empty
;
1392 Analyze_Expression
(L
);
1393 Analyze_Expression
(R
);
1395 if Present
(Op_Id
) then
1396 if Ekind
(Op_Id
) = E_Operator
then
1397 Find_Comparison_Types
(L
, R
, Op_Id
, N
);
1399 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1402 if Is_Overloaded
(L
) then
1403 Set_Etype
(L
, Intersect_Types
(L
, R
));
1407 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
1408 while Present
(Op_Id
) loop
1409 if Ekind
(Op_Id
) = E_Operator
then
1410 Find_Comparison_Types
(L
, R
, Op_Id
, N
);
1412 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1415 Op_Id
:= Homonym
(Op_Id
);
1420 end Analyze_Comparison_Op
;
1422 ---------------------------
1423 -- Analyze_Concatenation --
1424 ---------------------------
1426 procedure Analyze_Concatenation
(N
: Node_Id
) is
1428 -- We wish to avoid deep recursion, because concatenations are often
1429 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1430 -- operands nonrecursively until we find something that is not a
1431 -- concatenation (A in this case), or has already been analyzed. We
1432 -- analyze that, and then walk back up the tree following Parent
1433 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1434 -- work at each level. The Parent pointers allow us to avoid recursion,
1435 -- and thus avoid running out of memory.
1441 Candidate_Type
:= Empty
;
1443 -- The following code is equivalent to:
1445 -- Set_Etype (N, Any_Type);
1446 -- Analyze_Expression (Left_Opnd (N));
1447 -- Analyze_Concatenation_Rest (N);
1449 -- where the Analyze_Expression call recurses back here if the left
1450 -- operand is a concatenation.
1452 -- Walk down left operands
1455 Set_Etype
(NN
, Any_Type
);
1456 L
:= Left_Opnd
(NN
);
1457 exit when Nkind
(L
) /= N_Op_Concat
or else Analyzed
(L
);
1461 -- Now (given the above example) NN is A&B and L is A
1463 -- First analyze L ...
1465 Analyze_Expression
(L
);
1467 -- ... then walk NN back up until we reach N (where we started), calling
1468 -- Analyze_Concatenation_Rest along the way.
1471 Analyze_Concatenation_Rest
(NN
);
1475 end Analyze_Concatenation
;
1477 --------------------------------
1478 -- Analyze_Concatenation_Rest --
1479 --------------------------------
1481 -- If the only one-dimensional array type in scope is String,
1482 -- this is the resulting type of the operation. Otherwise there
1483 -- will be a concatenation operation defined for each user-defined
1484 -- one-dimensional array.
1486 procedure Analyze_Concatenation_Rest
(N
: Node_Id
) is
1487 L
: constant Node_Id
:= Left_Opnd
(N
);
1488 R
: constant Node_Id
:= Right_Opnd
(N
);
1489 Op_Id
: Entity_Id
:= Entity
(N
);
1494 Analyze_Expression
(R
);
1496 -- If the entity is present, the node appears in an instance, and
1497 -- denotes a predefined concatenation operation. The resulting type is
1498 -- obtained from the arguments when possible. If the arguments are
1499 -- aggregates, the array type and the concatenation type must be
1502 if Present
(Op_Id
) then
1503 if Ekind
(Op_Id
) = E_Operator
then
1504 LT
:= Base_Type
(Etype
(L
));
1505 RT
:= Base_Type
(Etype
(R
));
1507 if Is_Array_Type
(LT
)
1508 and then (RT
= LT
or else RT
= Base_Type
(Component_Type
(LT
)))
1510 Add_One_Interp
(N
, Op_Id
, LT
);
1512 elsif Is_Array_Type
(RT
)
1513 and then LT
= Base_Type
(Component_Type
(RT
))
1515 Add_One_Interp
(N
, Op_Id
, RT
);
1517 -- If one operand is a string type or a user-defined array type,
1518 -- and the other is a literal, result is of the specific type.
1521 (Root_Type
(LT
) = Standard_String
1522 or else Scope
(LT
) /= Standard_Standard
)
1523 and then Etype
(R
) = Any_String
1525 Add_One_Interp
(N
, Op_Id
, LT
);
1528 (Root_Type
(RT
) = Standard_String
1529 or else Scope
(RT
) /= Standard_Standard
)
1530 and then Etype
(L
) = Any_String
1532 Add_One_Interp
(N
, Op_Id
, RT
);
1534 elsif not Is_Generic_Type
(Etype
(Op_Id
)) then
1535 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1538 -- Type and its operations must be visible
1540 Set_Entity
(N
, Empty
);
1541 Analyze_Concatenation
(N
);
1545 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1549 Op_Id
:= Get_Name_Entity_Id
(Name_Op_Concat
);
1550 while Present
(Op_Id
) loop
1551 if Ekind
(Op_Id
) = E_Operator
then
1553 -- Do not consider operators declared in dead code, they can
1554 -- not be part of the resolution.
1556 if Is_Eliminated
(Op_Id
) then
1559 Find_Concatenation_Types
(L
, R
, Op_Id
, N
);
1563 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1566 Op_Id
:= Homonym
(Op_Id
);
1571 end Analyze_Concatenation_Rest
;
1573 ------------------------------------
1574 -- Analyze_Conditional_Expression --
1575 ------------------------------------
1577 procedure Analyze_Conditional_Expression
(N
: Node_Id
) is
1578 Condition
: constant Node_Id
:= First
(Expressions
(N
));
1579 Then_Expr
: constant Node_Id
:= Next
(Condition
);
1580 Else_Expr
: Node_Id
;
1583 -- Defend against error of missing expressions from previous error
1585 if No
(Then_Expr
) then
1589 Check_SPARK_Restriction
("conditional expression is not allowed", N
);
1591 Else_Expr
:= Next
(Then_Expr
);
1593 if Comes_From_Source
(N
) then
1594 Check_Compiler_Unit
(N
);
1597 Analyze_Expression
(Condition
);
1598 Analyze_Expression
(Then_Expr
);
1600 if Present
(Else_Expr
) then
1601 Analyze_Expression
(Else_Expr
);
1604 -- If then expression not overloaded, then that decides the type
1606 if not Is_Overloaded
(Then_Expr
) then
1607 Set_Etype
(N
, Etype
(Then_Expr
));
1609 -- Case where then expression is overloaded
1617 Set_Etype
(N
, Any_Type
);
1619 -- Shouldn't the following statement be down in the ELSE of the
1620 -- following loop? ???
1622 Get_First_Interp
(Then_Expr
, I
, It
);
1624 -- if no Else_Expression the conditional must be boolean
1626 if No
(Else_Expr
) then
1627 Set_Etype
(N
, Standard_Boolean
);
1629 -- Else_Expression Present. For each possible intepretation of
1630 -- the Then_Expression, add it only if the Else_Expression has
1631 -- a compatible type.
1634 while Present
(It
.Nam
) loop
1635 if Has_Compatible_Type
(Else_Expr
, It
.Typ
) then
1636 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
1639 Get_Next_Interp
(I
, It
);
1644 end Analyze_Conditional_Expression
;
1646 -------------------------
1647 -- Analyze_Equality_Op --
1648 -------------------------
1650 procedure Analyze_Equality_Op
(N
: Node_Id
) is
1651 Loc
: constant Source_Ptr
:= Sloc
(N
);
1652 L
: constant Node_Id
:= Left_Opnd
(N
);
1653 R
: constant Node_Id
:= Right_Opnd
(N
);
1657 Set_Etype
(N
, Any_Type
);
1658 Candidate_Type
:= Empty
;
1660 Analyze_Expression
(L
);
1661 Analyze_Expression
(R
);
1663 -- If the entity is set, the node is a generic instance with a non-local
1664 -- reference to the predefined operator or to a user-defined function.
1665 -- It can also be an inequality that is expanded into the negation of a
1666 -- call to a user-defined equality operator.
1668 -- For the predefined case, the result is Boolean, regardless of the
1669 -- type of the operands. The operands may even be limited, if they are
1670 -- generic actuals. If they are overloaded, label the left argument with
1671 -- the common type that must be present, or with the type of the formal
1672 -- of the user-defined function.
1674 if Present
(Entity
(N
)) then
1675 Op_Id
:= Entity
(N
);
1677 if Ekind
(Op_Id
) = E_Operator
then
1678 Add_One_Interp
(N
, Op_Id
, Standard_Boolean
);
1680 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1683 if Is_Overloaded
(L
) then
1684 if Ekind
(Op_Id
) = E_Operator
then
1685 Set_Etype
(L
, Intersect_Types
(L
, R
));
1687 Set_Etype
(L
, Etype
(First_Formal
(Op_Id
)));
1692 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
1693 while Present
(Op_Id
) loop
1694 if Ekind
(Op_Id
) = E_Operator
then
1695 Find_Equality_Types
(L
, R
, Op_Id
, N
);
1697 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1700 Op_Id
:= Homonym
(Op_Id
);
1704 -- If there was no match, and the operator is inequality, this may
1705 -- be a case where inequality has not been made explicit, as for
1706 -- tagged types. Analyze the node as the negation of an equality
1707 -- operation. This cannot be done earlier, because before analysis
1708 -- we cannot rule out the presence of an explicit inequality.
1710 if Etype
(N
) = Any_Type
1711 and then Nkind
(N
) = N_Op_Ne
1713 Op_Id
:= Get_Name_Entity_Id
(Name_Op_Eq
);
1714 while Present
(Op_Id
) loop
1715 if Ekind
(Op_Id
) = E_Operator
then
1716 Find_Equality_Types
(L
, R
, Op_Id
, N
);
1718 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1721 Op_Id
:= Homonym
(Op_Id
);
1724 if Etype
(N
) /= Any_Type
then
1725 Op_Id
:= Entity
(N
);
1731 Left_Opnd
=> Left_Opnd
(N
),
1732 Right_Opnd
=> Right_Opnd
(N
))));
1734 Set_Entity
(Right_Opnd
(N
), Op_Id
);
1740 end Analyze_Equality_Op
;
1742 ----------------------------------
1743 -- Analyze_Explicit_Dereference --
1744 ----------------------------------
1746 procedure Analyze_Explicit_Dereference
(N
: Node_Id
) is
1747 Loc
: constant Source_Ptr
:= Sloc
(N
);
1748 P
: constant Node_Id
:= Prefix
(N
);
1754 function Is_Function_Type
return Boolean;
1755 -- Check whether node may be interpreted as an implicit function call
1757 ----------------------
1758 -- Is_Function_Type --
1759 ----------------------
1761 function Is_Function_Type
return Boolean is
1766 if not Is_Overloaded
(N
) then
1767 return Ekind
(Base_Type
(Etype
(N
))) = E_Subprogram_Type
1768 and then Etype
(Base_Type
(Etype
(N
))) /= Standard_Void_Type
;
1771 Get_First_Interp
(N
, I
, It
);
1772 while Present
(It
.Nam
) loop
1773 if Ekind
(Base_Type
(It
.Typ
)) /= E_Subprogram_Type
1774 or else Etype
(Base_Type
(It
.Typ
)) = Standard_Void_Type
1779 Get_Next_Interp
(I
, It
);
1784 end Is_Function_Type
;
1786 -- Start of processing for Analyze_Explicit_Dereference
1789 -- If source node, check SPARK restriction. We guard this with the
1790 -- source node check, because ???
1792 if Comes_From_Source
(N
) then
1793 Check_SPARK_Restriction
("explicit dereference is not allowed", N
);
1796 -- In formal verification mode, keep track of all reads and writes
1797 -- through explicit dereferences.
1800 Alfa
.Generate_Dereference
(N
);
1804 Set_Etype
(N
, Any_Type
);
1806 -- Test for remote access to subprogram type, and if so return
1807 -- after rewriting the original tree.
1809 if Remote_AST_E_Dereference
(P
) then
1813 -- Normal processing for other than remote access to subprogram type
1815 if not Is_Overloaded
(P
) then
1816 if Is_Access_Type
(Etype
(P
)) then
1818 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1819 -- avoid other problems caused by the Private_Subtype and it is
1820 -- safe to go to the Base_Type because this is the same as
1821 -- converting the access value to its Base_Type.
1824 DT
: Entity_Id
:= Designated_Type
(Etype
(P
));
1827 if Ekind
(DT
) = E_Private_Subtype
1828 and then Is_For_Access_Subtype
(DT
)
1830 DT
:= Base_Type
(DT
);
1833 -- An explicit dereference is a legal occurrence of an
1834 -- incomplete type imported through a limited_with clause,
1835 -- if the full view is visible.
1837 if From_With_Type
(DT
)
1838 and then not From_With_Type
(Scope
(DT
))
1840 (Is_Immediately_Visible
(Scope
(DT
))
1842 (Is_Child_Unit
(Scope
(DT
))
1843 and then Is_Visible_Child_Unit
(Scope
(DT
))))
1845 Set_Etype
(N
, Available_View
(DT
));
1852 elsif Etype
(P
) /= Any_Type
then
1853 Error_Msg_N
("prefix of dereference must be an access type", N
);
1858 Get_First_Interp
(P
, I
, It
);
1859 while Present
(It
.Nam
) loop
1862 if Is_Access_Type
(T
) then
1863 Add_One_Interp
(N
, Designated_Type
(T
), Designated_Type
(T
));
1866 Get_Next_Interp
(I
, It
);
1869 -- Error if no interpretation of the prefix has an access type
1871 if Etype
(N
) = Any_Type
then
1873 ("access type required in prefix of explicit dereference", P
);
1874 Set_Etype
(N
, Any_Type
);
1880 and then Nkind
(Parent
(N
)) /= N_Indexed_Component
1882 and then (Nkind
(Parent
(N
)) /= N_Function_Call
1883 or else N
/= Name
(Parent
(N
)))
1885 and then (Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
1886 or else N
/= Name
(Parent
(N
)))
1888 and then Nkind
(Parent
(N
)) /= N_Subprogram_Renaming_Declaration
1889 and then (Nkind
(Parent
(N
)) /= N_Attribute_Reference
1891 (Attribute_Name
(Parent
(N
)) /= Name_Address
1893 Attribute_Name
(Parent
(N
)) /= Name_Access
))
1895 -- Name is a function call with no actuals, in a context that
1896 -- requires deproceduring (including as an actual in an enclosing
1897 -- function or procedure call). There are some pathological cases
1898 -- where the prefix might include functions that return access to
1899 -- subprograms and others that return a regular type. Disambiguation
1900 -- of those has to take place in Resolve.
1903 Make_Function_Call
(Loc
,
1904 Name
=> Make_Explicit_Dereference
(Loc
, P
),
1905 Parameter_Associations
=> New_List
);
1907 -- If the prefix is overloaded, remove operations that have formals,
1908 -- we know that this is a parameterless call.
1910 if Is_Overloaded
(P
) then
1911 Get_First_Interp
(P
, I
, It
);
1912 while Present
(It
.Nam
) loop
1915 if No
(First_Formal
(Base_Type
(Designated_Type
(T
)))) then
1921 Get_Next_Interp
(I
, It
);
1928 elsif not Is_Function_Type
1929 and then Is_Overloaded
(N
)
1931 -- The prefix may include access to subprograms and other access
1932 -- types. If the context selects the interpretation that is a
1933 -- function call (not a procedure call) we cannot rewrite the node
1934 -- yet, but we include the result of the call interpretation.
1936 Get_First_Interp
(N
, I
, It
);
1937 while Present
(It
.Nam
) loop
1938 if Ekind
(Base_Type
(It
.Typ
)) = E_Subprogram_Type
1939 and then Etype
(Base_Type
(It
.Typ
)) /= Standard_Void_Type
1940 and then Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
1942 Add_One_Interp
(N
, Etype
(It
.Typ
), Etype
(It
.Typ
));
1945 Get_Next_Interp
(I
, It
);
1949 -- A value of remote access-to-class-wide must not be dereferenced
1952 Validate_Remote_Access_To_Class_Wide_Type
(N
);
1953 end Analyze_Explicit_Dereference
;
1955 ------------------------
1956 -- Analyze_Expression --
1957 ------------------------
1959 procedure Analyze_Expression
(N
: Node_Id
) is
1962 Check_Parameterless_Call
(N
);
1963 end Analyze_Expression
;
1965 -------------------------------------
1966 -- Analyze_Expression_With_Actions --
1967 -------------------------------------
1969 procedure Analyze_Expression_With_Actions
(N
: Node_Id
) is
1973 A
:= First
(Actions
(N
));
1980 Analyze_Expression
(Expression
(N
));
1981 Set_Etype
(N
, Etype
(Expression
(N
)));
1982 end Analyze_Expression_With_Actions
;
1984 ------------------------------------
1985 -- Analyze_Indexed_Component_Form --
1986 ------------------------------------
1988 procedure Analyze_Indexed_Component_Form
(N
: Node_Id
) is
1989 P
: constant Node_Id
:= Prefix
(N
);
1990 Exprs
: constant List_Id
:= Expressions
(N
);
1996 procedure Process_Function_Call
;
1997 -- Prefix in indexed component form is an overloadable entity,
1998 -- so the node is a function call. Reformat it as such.
2000 procedure Process_Indexed_Component
;
2001 -- Prefix in indexed component form is actually an indexed component.
2002 -- This routine processes it, knowing that the prefix is already
2005 procedure Process_Indexed_Component_Or_Slice
;
2006 -- An indexed component with a single index may designate a slice if
2007 -- the index is a subtype mark. This routine disambiguates these two
2008 -- cases by resolving the prefix to see if it is a subtype mark.
2010 procedure Process_Overloaded_Indexed_Component
;
2011 -- If the prefix of an indexed component is overloaded, the proper
2012 -- interpretation is selected by the index types and the context.
2014 ---------------------------
2015 -- Process_Function_Call --
2016 ---------------------------
2018 procedure Process_Function_Call
is
2022 Change_Node
(N
, N_Function_Call
);
2024 Set_Parameter_Associations
(N
, Exprs
);
2026 -- Analyze actuals prior to analyzing the call itself
2028 Actual
:= First
(Parameter_Associations
(N
));
2029 while Present
(Actual
) loop
2031 Check_Parameterless_Call
(Actual
);
2033 -- Move to next actual. Note that we use Next, not Next_Actual
2034 -- here. The reason for this is a bit subtle. If a function call
2035 -- includes named associations, the parser recognizes the node as
2036 -- a call, and it is analyzed as such. If all associations are
2037 -- positional, the parser builds an indexed_component node, and
2038 -- it is only after analysis of the prefix that the construct
2039 -- is recognized as a call, in which case Process_Function_Call
2040 -- rewrites the node and analyzes the actuals. If the list of
2041 -- actuals is malformed, the parser may leave the node as an
2042 -- indexed component (despite the presence of named associations).
2043 -- The iterator Next_Actual is equivalent to Next if the list is
2044 -- positional, but follows the normalized chain of actuals when
2045 -- named associations are present. In this case normalization has
2046 -- not taken place, and actuals remain unanalyzed, which leads to
2047 -- subsequent crashes or loops if there is an attempt to continue
2048 -- analysis of the program.
2054 end Process_Function_Call
;
2056 -------------------------------
2057 -- Process_Indexed_Component --
2058 -------------------------------
2060 procedure Process_Indexed_Component
is
2062 Array_Type
: Entity_Id
;
2064 Pent
: Entity_Id
:= Empty
;
2067 Exp
:= First
(Exprs
);
2069 if Is_Overloaded
(P
) then
2070 Process_Overloaded_Indexed_Component
;
2073 Array_Type
:= Etype
(P
);
2075 if Is_Entity_Name
(P
) then
2077 elsif Nkind
(P
) = N_Selected_Component
2078 and then Is_Entity_Name
(Selector_Name
(P
))
2080 Pent
:= Entity
(Selector_Name
(P
));
2083 -- Prefix must be appropriate for an array type, taking into
2084 -- account a possible implicit dereference.
2086 if Is_Access_Type
(Array_Type
) then
2087 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
2088 Array_Type
:= Process_Implicit_Dereference_Prefix
(Pent
, P
);
2091 if Is_Array_Type
(Array_Type
) then
2094 elsif Present
(Pent
) and then Ekind
(Pent
) = E_Entry_Family
then
2096 Set_Etype
(N
, Any_Type
);
2098 if not Has_Compatible_Type
2099 (Exp
, Entry_Index_Type
(Pent
))
2101 Error_Msg_N
("invalid index type in entry name", N
);
2103 elsif Present
(Next
(Exp
)) then
2104 Error_Msg_N
("too many subscripts in entry reference", N
);
2107 Set_Etype
(N
, Etype
(P
));
2112 elsif Is_Record_Type
(Array_Type
)
2113 and then Remote_AST_I_Dereference
(P
)
2117 elsif Try_Container_Indexing
(N
, P
, Exprs
) then
2120 elsif Array_Type
= Any_Type
then
2121 Set_Etype
(N
, Any_Type
);
2123 -- In most cases the analysis of the prefix will have emitted
2124 -- an error already, but if the prefix may be interpreted as a
2125 -- call in prefixed notation, the report is left to the caller.
2126 -- To prevent cascaded errors, report only if no previous ones.
2128 if Serious_Errors_Detected
= 0 then
2129 Error_Msg_N
("invalid prefix in indexed component", P
);
2131 if Nkind
(P
) = N_Expanded_Name
then
2132 Error_Msg_NE
("\& is not visible", P
, Selector_Name
(P
));
2138 -- Here we definitely have a bad indexing
2141 if Nkind
(Parent
(N
)) = N_Requeue_Statement
2142 and then Present
(Pent
) and then Ekind
(Pent
) = E_Entry
2145 ("REQUEUE does not permit parameters", First
(Exprs
));
2147 elsif Is_Entity_Name
(P
)
2148 and then Etype
(P
) = Standard_Void_Type
2150 Error_Msg_NE
("incorrect use of&", P
, Entity
(P
));
2153 Error_Msg_N
("array type required in indexed component", P
);
2156 Set_Etype
(N
, Any_Type
);
2160 Index
:= First_Index
(Array_Type
);
2161 while Present
(Index
) and then Present
(Exp
) loop
2162 if not Has_Compatible_Type
(Exp
, Etype
(Index
)) then
2163 Wrong_Type
(Exp
, Etype
(Index
));
2164 Set_Etype
(N
, Any_Type
);
2172 Set_Etype
(N
, Component_Type
(Array_Type
));
2173 Check_Implicit_Dereference
(N
, Etype
(N
));
2175 if Present
(Index
) then
2177 ("too few subscripts in array reference", First
(Exprs
));
2179 elsif Present
(Exp
) then
2180 Error_Msg_N
("too many subscripts in array reference", Exp
);
2183 end Process_Indexed_Component
;
2185 ----------------------------------------
2186 -- Process_Indexed_Component_Or_Slice --
2187 ----------------------------------------
2189 procedure Process_Indexed_Component_Or_Slice
is
2191 Exp
:= First
(Exprs
);
2192 while Present
(Exp
) loop
2193 Analyze_Expression
(Exp
);
2197 Exp
:= First
(Exprs
);
2199 -- If one index is present, and it is a subtype name, then the
2200 -- node denotes a slice (note that the case of an explicit range
2201 -- for a slice was already built as an N_Slice node in the first
2202 -- place, so that case is not handled here).
2204 -- We use a replace rather than a rewrite here because this is one
2205 -- of the cases in which the tree built by the parser is plain wrong.
2208 and then Is_Entity_Name
(Exp
)
2209 and then Is_Type
(Entity
(Exp
))
2212 Make_Slice
(Sloc
(N
),
2214 Discrete_Range
=> New_Copy
(Exp
)));
2217 -- Otherwise (more than one index present, or single index is not
2218 -- a subtype name), then we have the indexed component case.
2221 Process_Indexed_Component
;
2223 end Process_Indexed_Component_Or_Slice
;
2225 ------------------------------------------
2226 -- Process_Overloaded_Indexed_Component --
2227 ------------------------------------------
2229 procedure Process_Overloaded_Indexed_Component
is
2238 Set_Etype
(N
, Any_Type
);
2240 Get_First_Interp
(P
, I
, It
);
2241 while Present
(It
.Nam
) loop
2244 if Is_Access_Type
(Typ
) then
2245 Typ
:= Designated_Type
(Typ
);
2246 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
2249 if Is_Array_Type
(Typ
) then
2251 -- Got a candidate: verify that index types are compatible
2253 Index
:= First_Index
(Typ
);
2255 Exp
:= First
(Exprs
);
2256 while Present
(Index
) and then Present
(Exp
) loop
2257 if Has_Compatible_Type
(Exp
, Etype
(Index
)) then
2269 if Found
and then No
(Index
) and then No
(Exp
) then
2271 CT
: constant Entity_Id
:=
2272 Base_Type
(Component_Type
(Typ
));
2274 Add_One_Interp
(N
, CT
, CT
);
2275 Check_Implicit_Dereference
(N
, CT
);
2279 elsif Try_Container_Indexing
(N
, P
, Exprs
) then
2284 Get_Next_Interp
(I
, It
);
2287 if Etype
(N
) = Any_Type
then
2288 Error_Msg_N
("no legal interpretation for indexed component", N
);
2289 Set_Is_Overloaded
(N
, False);
2293 end Process_Overloaded_Indexed_Component
;
2295 -- Start of processing for Analyze_Indexed_Component_Form
2298 -- Get name of array, function or type
2302 if Nkind
(N
) in N_Subprogram_Call
then
2304 -- If P is an explicit dereference whose prefix is of a
2305 -- remote access-to-subprogram type, then N has already
2306 -- been rewritten as a subprogram call and analyzed.
2311 pragma Assert
(Nkind
(N
) = N_Indexed_Component
);
2313 P_T
:= Base_Type
(Etype
(P
));
2315 if Is_Entity_Name
(P
) and then Present
(Entity
(P
)) then
2318 if Is_Type
(U_N
) then
2320 -- Reformat node as a type conversion
2322 E
:= Remove_Head
(Exprs
);
2324 if Present
(First
(Exprs
)) then
2326 ("argument of type conversion must be single expression", N
);
2329 Change_Node
(N
, N_Type_Conversion
);
2330 Set_Subtype_Mark
(N
, P
);
2332 Set_Expression
(N
, E
);
2334 -- After changing the node, call for the specific Analysis
2335 -- routine directly, to avoid a double call to the expander.
2337 Analyze_Type_Conversion
(N
);
2341 if Is_Overloadable
(U_N
) then
2342 Process_Function_Call
;
2344 elsif Ekind
(Etype
(P
)) = E_Subprogram_Type
2345 or else (Is_Access_Type
(Etype
(P
))
2347 Ekind
(Designated_Type
(Etype
(P
))) =
2350 -- Call to access_to-subprogram with possible implicit dereference
2352 Process_Function_Call
;
2354 elsif Is_Generic_Subprogram
(U_N
) then
2356 -- A common beginner's (or C++ templates fan) error
2358 Error_Msg_N
("generic subprogram cannot be called", N
);
2359 Set_Etype
(N
, Any_Type
);
2363 Process_Indexed_Component_Or_Slice
;
2366 -- If not an entity name, prefix is an expression that may denote
2367 -- an array or an access-to-subprogram.
2370 if Ekind
(P_T
) = E_Subprogram_Type
2371 or else (Is_Access_Type
(P_T
)
2373 Ekind
(Designated_Type
(P_T
)) = E_Subprogram_Type
)
2375 Process_Function_Call
;
2377 elsif Nkind
(P
) = N_Selected_Component
2378 and then Is_Overloadable
(Entity
(Selector_Name
(P
)))
2380 Process_Function_Call
;
2383 -- Indexed component, slice, or a call to a member of a family
2384 -- entry, which will be converted to an entry call later.
2386 Process_Indexed_Component_Or_Slice
;
2389 end Analyze_Indexed_Component_Form
;
2391 ------------------------
2392 -- Analyze_Logical_Op --
2393 ------------------------
2395 procedure Analyze_Logical_Op
(N
: Node_Id
) is
2396 L
: constant Node_Id
:= Left_Opnd
(N
);
2397 R
: constant Node_Id
:= Right_Opnd
(N
);
2398 Op_Id
: Entity_Id
:= Entity
(N
);
2401 Set_Etype
(N
, Any_Type
);
2402 Candidate_Type
:= Empty
;
2404 Analyze_Expression
(L
);
2405 Analyze_Expression
(R
);
2407 if Present
(Op_Id
) then
2409 if Ekind
(Op_Id
) = E_Operator
then
2410 Find_Boolean_Types
(L
, R
, Op_Id
, N
);
2412 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
2416 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
2417 while Present
(Op_Id
) loop
2418 if Ekind
(Op_Id
) = E_Operator
then
2419 Find_Boolean_Types
(L
, R
, Op_Id
, N
);
2421 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
2424 Op_Id
:= Homonym
(Op_Id
);
2429 end Analyze_Logical_Op
;
2431 ---------------------------
2432 -- Analyze_Membership_Op --
2433 ---------------------------
2435 procedure Analyze_Membership_Op
(N
: Node_Id
) is
2436 Loc
: constant Source_Ptr
:= Sloc
(N
);
2437 L
: constant Node_Id
:= Left_Opnd
(N
);
2438 R
: constant Node_Id
:= Right_Opnd
(N
);
2440 Index
: Interp_Index
;
2442 Found
: Boolean := False;
2446 procedure Try_One_Interp
(T1
: Entity_Id
);
2447 -- Routine to try one proposed interpretation. Note that the context
2448 -- of the operation plays no role in resolving the arguments, so that
2449 -- if there is more than one interpretation of the operands that is
2450 -- compatible with a membership test, the operation is ambiguous.
2452 --------------------
2453 -- Try_One_Interp --
2454 --------------------
2456 procedure Try_One_Interp
(T1
: Entity_Id
) is
2458 if Has_Compatible_Type
(R
, T1
) then
2460 and then Base_Type
(T1
) /= Base_Type
(T_F
)
2462 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
2464 if It
= No_Interp
then
2465 Ambiguous_Operands
(N
);
2466 Set_Etype
(L
, Any_Type
);
2483 procedure Analyze_Set_Membership
;
2484 -- If a set of alternatives is present, analyze each and find the
2485 -- common type to which they must all resolve.
2487 ----------------------------
2488 -- Analyze_Set_Membership --
2489 ----------------------------
2491 procedure Analyze_Set_Membership
is
2493 Index
: Interp_Index
;
2495 Candidate_Interps
: Node_Id
;
2496 Common_Type
: Entity_Id
:= Empty
;
2500 Candidate_Interps
:= L
;
2502 if not Is_Overloaded
(L
) then
2503 Common_Type
:= Etype
(L
);
2505 Alt
:= First
(Alternatives
(N
));
2506 while Present
(Alt
) loop
2509 if not Has_Compatible_Type
(Alt
, Common_Type
) then
2510 Wrong_Type
(Alt
, Common_Type
);
2517 Alt
:= First
(Alternatives
(N
));
2518 while Present
(Alt
) loop
2520 if not Is_Overloaded
(Alt
) then
2521 Common_Type
:= Etype
(Alt
);
2524 Get_First_Interp
(Alt
, Index
, It
);
2525 while Present
(It
.Typ
) loop
2527 Has_Compatible_Type
(Candidate_Interps
, It
.Typ
)
2529 Remove_Interp
(Index
);
2532 Get_Next_Interp
(Index
, It
);
2535 Get_First_Interp
(Alt
, Index
, It
);
2538 Error_Msg_N
("alternative has no legal type", Alt
);
2542 -- If alternative is not overloaded, we have a unique type
2545 Set_Etype
(Alt
, It
.Typ
);
2546 Get_Next_Interp
(Index
, It
);
2549 Set_Is_Overloaded
(Alt
, False);
2550 Common_Type
:= Etype
(Alt
);
2553 Candidate_Interps
:= Alt
;
2560 Set_Etype
(N
, Standard_Boolean
);
2562 if Present
(Common_Type
) then
2563 Set_Etype
(L
, Common_Type
);
2564 Set_Is_Overloaded
(L
, False);
2567 Error_Msg_N
("cannot resolve membership operation", N
);
2569 end Analyze_Set_Membership
;
2571 -- Start of processing for Analyze_Membership_Op
2574 Analyze_Expression
(L
);
2577 and then Ada_Version
>= Ada_2012
2579 Analyze_Set_Membership
;
2583 if Nkind
(R
) = N_Range
2584 or else (Nkind
(R
) = N_Attribute_Reference
2585 and then Attribute_Name
(R
) = Name_Range
)
2589 if not Is_Overloaded
(L
) then
2590 Try_One_Interp
(Etype
(L
));
2593 Get_First_Interp
(L
, Index
, It
);
2594 while Present
(It
.Typ
) loop
2595 Try_One_Interp
(It
.Typ
);
2596 Get_Next_Interp
(Index
, It
);
2600 -- If not a range, it can be a subtype mark, or else it is a degenerate
2601 -- membership test with a singleton value, i.e. a test for equality,
2602 -- if the types are compatible.
2607 if Is_Entity_Name
(R
)
2608 and then Is_Type
(Entity
(R
))
2611 Check_Fully_Declared
(Entity
(R
), R
);
2613 elsif Ada_Version
>= Ada_2012
2614 and then Has_Compatible_Type
(R
, Etype
(L
))
2616 if Nkind
(N
) = N_In
then
2632 -- In all versions of the language, if we reach this point there
2633 -- is a previous error that will be diagnosed below.
2639 -- Compatibility between expression and subtype mark or range is
2640 -- checked during resolution. The result of the operation is Boolean
2643 Set_Etype
(N
, Standard_Boolean
);
2645 if Comes_From_Source
(N
)
2646 and then Present
(Right_Opnd
(N
))
2647 and then Is_CPP_Class
(Etype
(Etype
(Right_Opnd
(N
))))
2649 Error_Msg_N
("membership test not applicable to cpp-class types", N
);
2651 end Analyze_Membership_Op
;
2657 procedure Analyze_Mod
(N
: Node_Id
) is
2659 -- A special warning check, if we have an expression of the form:
2660 -- expr mod 2 * literal
2661 -- where literal is 64 or less, then probably what was meant was
2662 -- expr mod 2 ** literal
2663 -- so issue an appropriate warning.
2665 if Warn_On_Suspicious_Modulus_Value
2666 and then Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
2667 and then Intval
(Right_Opnd
(N
)) = Uint_2
2668 and then Nkind
(Parent
(N
)) = N_Op_Multiply
2669 and then Nkind
(Right_Opnd
(Parent
(N
))) = N_Integer_Literal
2670 and then Intval
(Right_Opnd
(Parent
(N
))) <= Uint_64
2673 ("suspicious MOD value, was '*'* intended'??", Parent
(N
));
2676 -- Remaining processing is same as for other arithmetic operators
2678 Analyze_Arithmetic_Op
(N
);
2681 ----------------------
2682 -- Analyze_Negation --
2683 ----------------------
2685 procedure Analyze_Negation
(N
: Node_Id
) is
2686 R
: constant Node_Id
:= Right_Opnd
(N
);
2687 Op_Id
: Entity_Id
:= Entity
(N
);
2690 Set_Etype
(N
, Any_Type
);
2691 Candidate_Type
:= Empty
;
2693 Analyze_Expression
(R
);
2695 if Present
(Op_Id
) then
2696 if Ekind
(Op_Id
) = E_Operator
then
2697 Find_Negation_Types
(R
, Op_Id
, N
);
2699 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
2703 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
2704 while Present
(Op_Id
) loop
2705 if Ekind
(Op_Id
) = E_Operator
then
2706 Find_Negation_Types
(R
, Op_Id
, N
);
2708 Analyze_User_Defined_Unary_Op
(N
, Op_Id
);
2711 Op_Id
:= Homonym
(Op_Id
);
2716 end Analyze_Negation
;
2722 procedure Analyze_Null
(N
: Node_Id
) is
2724 Check_SPARK_Restriction
("null is not allowed", N
);
2726 Set_Etype
(N
, Any_Access
);
2729 ----------------------
2730 -- Analyze_One_Call --
2731 ----------------------
2733 procedure Analyze_One_Call
2737 Success
: out Boolean;
2738 Skip_First
: Boolean := False)
2740 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
2741 Prev_T
: constant Entity_Id
:= Etype
(N
);
2743 Must_Skip
: constant Boolean := Skip_First
2744 or else Nkind
(Original_Node
(N
)) = N_Selected_Component
2746 (Nkind
(Original_Node
(N
)) = N_Indexed_Component
2747 and then Nkind
(Prefix
(Original_Node
(N
)))
2748 = N_Selected_Component
);
2749 -- The first formal must be omitted from the match when trying to find
2750 -- a primitive operation that is a possible interpretation, and also
2751 -- after the call has been rewritten, because the corresponding actual
2752 -- is already known to be compatible, and because this may be an
2753 -- indexing of a call with default parameters.
2757 Is_Indexed
: Boolean := False;
2758 Is_Indirect
: Boolean := False;
2759 Subp_Type
: constant Entity_Id
:= Etype
(Nam
);
2762 function Operator_Hidden_By
(Fun
: Entity_Id
) return Boolean;
2763 -- There may be a user-defined operator that hides the current
2764 -- interpretation. We must check for this independently of the
2765 -- analysis of the call with the user-defined operation, because
2766 -- the parameter names may be wrong and yet the hiding takes place.
2767 -- This fixes a problem with ACATS test B34014O.
2769 -- When the type Address is a visible integer type, and the DEC
2770 -- system extension is visible, the predefined operator may be
2771 -- hidden as well, by one of the address operations in auxdec.
2772 -- Finally, The abstract operations on address do not hide the
2773 -- predefined operator (this is the purpose of making them abstract).
2775 procedure Indicate_Name_And_Type
;
2776 -- If candidate interpretation matches, indicate name and type of
2777 -- result on call node.
2779 ----------------------------
2780 -- Indicate_Name_And_Type --
2781 ----------------------------
2783 procedure Indicate_Name_And_Type
is
2785 Add_One_Interp
(N
, Nam
, Etype
(Nam
));
2786 Check_Implicit_Dereference
(N
, Etype
(Nam
));
2789 -- If the prefix of the call is a name, indicate the entity
2790 -- being called. If it is not a name, it is an expression that
2791 -- denotes an access to subprogram or else an entry or family. In
2792 -- the latter case, the name is a selected component, and the entity
2793 -- being called is noted on the selector.
2795 if not Is_Type
(Nam
) then
2796 if Is_Entity_Name
(Name
(N
)) then
2797 Set_Entity
(Name
(N
), Nam
);
2799 elsif Nkind
(Name
(N
)) = N_Selected_Component
then
2800 Set_Entity
(Selector_Name
(Name
(N
)), Nam
);
2804 if Debug_Flag_E
and not Report
then
2805 Write_Str
(" Overloaded call ");
2806 Write_Int
(Int
(N
));
2807 Write_Str
(" compatible with ");
2808 Write_Int
(Int
(Nam
));
2811 end Indicate_Name_And_Type
;
2813 ------------------------
2814 -- Operator_Hidden_By --
2815 ------------------------
2817 function Operator_Hidden_By
(Fun
: Entity_Id
) return Boolean is
2818 Act1
: constant Node_Id
:= First_Actual
(N
);
2819 Act2
: constant Node_Id
:= Next_Actual
(Act1
);
2820 Form1
: constant Entity_Id
:= First_Formal
(Fun
);
2821 Form2
: constant Entity_Id
:= Next_Formal
(Form1
);
2824 if Ekind
(Fun
) /= E_Function
2825 or else Is_Abstract_Subprogram
(Fun
)
2829 elsif not Has_Compatible_Type
(Act1
, Etype
(Form1
)) then
2832 elsif Present
(Form2
) then
2834 No
(Act2
) or else not Has_Compatible_Type
(Act2
, Etype
(Form2
))
2839 elsif Present
(Act2
) then
2843 -- Now we know that the arity of the operator matches the function,
2844 -- and the function call is a valid interpretation. The function
2845 -- hides the operator if it has the right signature, or if one of
2846 -- its operands is a non-abstract operation on Address when this is
2847 -- a visible integer type.
2849 return Hides_Op
(Fun
, Nam
)
2850 or else Is_Descendent_Of_Address
(Etype
(Form1
))
2853 and then Is_Descendent_Of_Address
(Etype
(Form2
)));
2854 end Operator_Hidden_By
;
2856 -- Start of processing for Analyze_One_Call
2861 -- If the subprogram has no formals or if all the formals have defaults,
2862 -- and the return type is an array type, the node may denote an indexing
2863 -- of the result of a parameterless call. In Ada 2005, the subprogram
2864 -- may have one non-defaulted formal, and the call may have been written
2865 -- in prefix notation, so that the rebuilt parameter list has more than
2868 if not Is_Overloadable
(Nam
)
2869 and then Ekind
(Nam
) /= E_Subprogram_Type
2870 and then Ekind
(Nam
) /= E_Entry_Family
2875 -- An indexing requires at least one actual
2877 if not Is_Empty_List
(Actuals
)
2879 (Needs_No_Actuals
(Nam
)
2881 (Needs_One_Actual
(Nam
)
2882 and then Present
(Next_Actual
(First
(Actuals
)))))
2884 if Is_Array_Type
(Subp_Type
) then
2885 Is_Indexed
:= Try_Indexed_Call
(N
, Nam
, Subp_Type
, Must_Skip
);
2887 elsif Is_Access_Type
(Subp_Type
)
2888 and then Is_Array_Type
(Designated_Type
(Subp_Type
))
2892 (N
, Nam
, Designated_Type
(Subp_Type
), Must_Skip
);
2894 -- The prefix can also be a parameterless function that returns an
2895 -- access to subprogram, in which case this is an indirect call.
2896 -- If this succeeds, an explicit dereference is added later on,
2897 -- in Analyze_Call or Resolve_Call.
2899 elsif Is_Access_Type
(Subp_Type
)
2900 and then Ekind
(Designated_Type
(Subp_Type
)) = E_Subprogram_Type
2902 Is_Indirect
:= Try_Indirect_Call
(N
, Nam
, Subp_Type
);
2907 -- If the call has been transformed into a slice, it is of the form
2908 -- F (Subtype) where F is parameterless. The node has been rewritten in
2909 -- Try_Indexed_Call and there is nothing else to do.
2912 and then Nkind
(N
) = N_Slice
2918 (N
, Nam
, (Report
and not Is_Indexed
and not Is_Indirect
), Norm_OK
);
2922 -- If an indirect call is a possible interpretation, indicate
2923 -- success to the caller.
2929 -- Mismatch in number or names of parameters
2931 elsif Debug_Flag_E
then
2932 Write_Str
(" normalization fails in call ");
2933 Write_Int
(Int
(N
));
2934 Write_Str
(" with subprogram ");
2935 Write_Int
(Int
(Nam
));
2939 -- If the context expects a function call, discard any interpretation
2940 -- that is a procedure. If the node is not overloaded, leave as is for
2941 -- better error reporting when type mismatch is found.
2943 elsif Nkind
(N
) = N_Function_Call
2944 and then Is_Overloaded
(Name
(N
))
2945 and then Ekind
(Nam
) = E_Procedure
2949 -- Ditto for function calls in a procedure context
2951 elsif Nkind
(N
) = N_Procedure_Call_Statement
2952 and then Is_Overloaded
(Name
(N
))
2953 and then Etype
(Nam
) /= Standard_Void_Type
2957 elsif No
(Actuals
) then
2959 -- If Normalize succeeds, then there are default parameters for
2962 Indicate_Name_And_Type
;
2964 elsif Ekind
(Nam
) = E_Operator
then
2965 if Nkind
(N
) = N_Procedure_Call_Statement
then
2969 -- This can occur when the prefix of the call is an operator
2970 -- name or an expanded name whose selector is an operator name.
2972 Analyze_Operator_Call
(N
, Nam
);
2974 if Etype
(N
) /= Prev_T
then
2976 -- Check that operator is not hidden by a function interpretation
2978 if Is_Overloaded
(Name
(N
)) then
2984 Get_First_Interp
(Name
(N
), I
, It
);
2985 while Present
(It
.Nam
) loop
2986 if Operator_Hidden_By
(It
.Nam
) then
2987 Set_Etype
(N
, Prev_T
);
2991 Get_Next_Interp
(I
, It
);
2996 -- If operator matches formals, record its name on the call.
2997 -- If the operator is overloaded, Resolve will select the
2998 -- correct one from the list of interpretations. The call
2999 -- node itself carries the first candidate.
3001 Set_Entity
(Name
(N
), Nam
);
3004 elsif Report
and then Etype
(N
) = Any_Type
then
3005 Error_Msg_N
("incompatible arguments for operator", N
);
3009 -- Normalize_Actuals has chained the named associations in the
3010 -- correct order of the formals.
3012 Actual
:= First_Actual
(N
);
3013 Formal
:= First_Formal
(Nam
);
3015 -- If we are analyzing a call rewritten from object notation, skip
3016 -- first actual, which may be rewritten later as an explicit
3020 Next_Actual
(Actual
);
3021 Next_Formal
(Formal
);
3024 while Present
(Actual
) and then Present
(Formal
) loop
3025 if Nkind
(Parent
(Actual
)) /= N_Parameter_Association
3026 or else Chars
(Selector_Name
(Parent
(Actual
))) = Chars
(Formal
)
3028 -- The actual can be compatible with the formal, but we must
3029 -- also check that the context is not an address type that is
3030 -- visibly an integer type, as is the case in VMS_64. In this
3031 -- case the use of literals is illegal, except in the body of
3032 -- descendents of system, where arithmetic operations on
3033 -- address are of course used.
3035 if Has_Compatible_Type
(Actual
, Etype
(Formal
))
3037 (Etype
(Actual
) /= Universal_Integer
3038 or else not Is_Descendent_Of_Address
(Etype
(Formal
))
3040 Is_Predefined_File_Name
3041 (Unit_File_Name
(Get_Source_Unit
(N
))))
3043 Next_Actual
(Actual
);
3044 Next_Formal
(Formal
);
3047 if Debug_Flag_E
then
3048 Write_Str
(" type checking fails in call ");
3049 Write_Int
(Int
(N
));
3050 Write_Str
(" with formal ");
3051 Write_Int
(Int
(Formal
));
3052 Write_Str
(" in subprogram ");
3053 Write_Int
(Int
(Nam
));
3057 if Report
and not Is_Indexed
and not Is_Indirect
then
3059 -- Ada 2005 (AI-251): Complete the error notification
3060 -- to help new Ada 2005 users.
3062 if Is_Class_Wide_Type
(Etype
(Formal
))
3063 and then Is_Interface
(Etype
(Etype
(Formal
)))
3064 and then not Interface_Present_In_Ancestor
3065 (Typ
=> Etype
(Actual
),
3066 Iface
=> Etype
(Etype
(Formal
)))
3069 ("(Ada 2005) does not implement interface }",
3070 Actual
, Etype
(Etype
(Formal
)));
3073 Wrong_Type
(Actual
, Etype
(Formal
));
3075 if Nkind
(Actual
) = N_Op_Eq
3076 and then Nkind
(Left_Opnd
(Actual
)) = N_Identifier
3078 Formal
:= First_Formal
(Nam
);
3079 while Present
(Formal
) loop
3080 if Chars
(Left_Opnd
(Actual
)) = Chars
(Formal
) then
3081 Error_Msg_N
-- CODEFIX
3082 ("possible misspelling of `='>`!", Actual
);
3086 Next_Formal
(Formal
);
3090 if All_Errors_Mode
then
3091 Error_Msg_Sloc
:= Sloc
(Nam
);
3093 if Etype
(Formal
) = Any_Type
then
3095 ("there is no legal actual parameter", Actual
);
3098 if Is_Overloadable
(Nam
)
3099 and then Present
(Alias
(Nam
))
3100 and then not Comes_From_Source
(Nam
)
3103 ("\\ =='> in call to inherited operation & #!",
3106 elsif Ekind
(Nam
) = E_Subprogram_Type
then
3108 Access_To_Subprogram_Typ
:
3109 constant Entity_Id
:=
3111 (Associated_Node_For_Itype
(Nam
));
3114 "\\ =='> in call to dereference of &#!",
3115 Actual
, Access_To_Subprogram_Typ
);
3120 ("\\ =='> in call to &#!", Actual
, Nam
);
3130 -- Normalize_Actuals has verified that a default value exists
3131 -- for this formal. Current actual names a subsequent formal.
3133 Next_Formal
(Formal
);
3137 -- On exit, all actuals match
3139 Indicate_Name_And_Type
;
3141 end Analyze_One_Call
;
3143 ---------------------------
3144 -- Analyze_Operator_Call --
3145 ---------------------------
3147 procedure Analyze_Operator_Call
(N
: Node_Id
; Op_Id
: Entity_Id
) is
3148 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
3149 Act1
: constant Node_Id
:= First_Actual
(N
);
3150 Act2
: constant Node_Id
:= Next_Actual
(Act1
);
3153 -- Binary operator case
3155 if Present
(Act2
) then
3157 -- If more than two operands, then not binary operator after all
3159 if Present
(Next_Actual
(Act2
)) then
3163 -- Otherwise action depends on operator
3173 Find_Arithmetic_Types
(Act1
, Act2
, Op_Id
, N
);
3178 Find_Boolean_Types
(Act1
, Act2
, Op_Id
, N
);
3184 Find_Comparison_Types
(Act1
, Act2
, Op_Id
, N
);
3188 Find_Equality_Types
(Act1
, Act2
, Op_Id
, N
);
3190 when Name_Op_Concat
=>
3191 Find_Concatenation_Types
(Act1
, Act2
, Op_Id
, N
);
3193 -- Is this when others, or should it be an abort???
3199 -- Unary operator case
3203 when Name_Op_Subtract |
3206 Find_Unary_Types
(Act1
, Op_Id
, N
);
3209 Find_Negation_Types
(Act1
, Op_Id
, N
);
3211 -- Is this when others correct, or should it be an abort???
3217 end Analyze_Operator_Call
;
3219 -------------------------------------------
3220 -- Analyze_Overloaded_Selected_Component --
3221 -------------------------------------------
3223 procedure Analyze_Overloaded_Selected_Component
(N
: Node_Id
) is
3224 Nam
: constant Node_Id
:= Prefix
(N
);
3225 Sel
: constant Node_Id
:= Selector_Name
(N
);
3232 Set_Etype
(Sel
, Any_Type
);
3234 Get_First_Interp
(Nam
, I
, It
);
3235 while Present
(It
.Typ
) loop
3236 if Is_Access_Type
(It
.Typ
) then
3237 T
:= Designated_Type
(It
.Typ
);
3238 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
3243 -- Locate the component. For a private prefix the selector can denote
3246 if Is_Record_Type
(T
) or else Is_Private_Type
(T
) then
3248 -- If the prefix is a class-wide type, the visible components are
3249 -- those of the base type.
3251 if Is_Class_Wide_Type
(T
) then
3255 Comp
:= First_Entity
(T
);
3256 while Present
(Comp
) loop
3257 if Chars
(Comp
) = Chars
(Sel
)
3258 and then Is_Visible_Component
(Comp
)
3261 -- AI05-105: if the context is an object renaming with
3262 -- an anonymous access type, the expected type of the
3263 -- object must be anonymous. This is a name resolution rule.
3265 if Nkind
(Parent
(N
)) /= N_Object_Renaming_Declaration
3266 or else No
(Access_Definition
(Parent
(N
)))
3267 or else Ekind
(Etype
(Comp
)) = E_Anonymous_Access_Type
3269 Ekind
(Etype
(Comp
)) = E_Anonymous_Access_Subprogram_Type
3271 Set_Entity
(Sel
, Comp
);
3272 Set_Etype
(Sel
, Etype
(Comp
));
3273 Add_One_Interp
(N
, Etype
(Comp
), Etype
(Comp
));
3274 Check_Implicit_Dereference
(N
, Etype
(Comp
));
3276 -- This also specifies a candidate to resolve the name.
3277 -- Further overloading will be resolved from context.
3278 -- The selector name itself does not carry overloading
3281 Set_Etype
(Nam
, It
.Typ
);
3284 -- Named access type in the context of a renaming
3285 -- declaration with an access definition. Remove
3286 -- inapplicable candidate.
3295 elsif Is_Concurrent_Type
(T
) then
3296 Comp
:= First_Entity
(T
);
3297 while Present
(Comp
)
3298 and then Comp
/= First_Private_Entity
(T
)
3300 if Chars
(Comp
) = Chars
(Sel
) then
3301 if Is_Overloadable
(Comp
) then
3302 Add_One_Interp
(Sel
, Comp
, Etype
(Comp
));
3304 Set_Entity_With_Style_Check
(Sel
, Comp
);
3305 Generate_Reference
(Comp
, Sel
);
3308 Set_Etype
(Sel
, Etype
(Comp
));
3309 Set_Etype
(N
, Etype
(Comp
));
3310 Set_Etype
(Nam
, It
.Typ
);
3312 -- For access type case, introduce explicit dereference for
3313 -- more uniform treatment of entry calls. Do this only once
3314 -- if several interpretations yield an access type.
3316 if Is_Access_Type
(Etype
(Nam
))
3317 and then Nkind
(Nam
) /= N_Explicit_Dereference
3319 Insert_Explicit_Dereference
(Nam
);
3321 (Warn_On_Dereference
, "?implicit dereference", N
);
3328 Set_Is_Overloaded
(N
, Is_Overloaded
(Sel
));
3331 Get_Next_Interp
(I
, It
);
3334 if Etype
(N
) = Any_Type
3335 and then not Try_Object_Operation
(N
)
3337 Error_Msg_NE
("undefined selector& for overloaded prefix", N
, Sel
);
3338 Set_Entity
(Sel
, Any_Id
);
3339 Set_Etype
(Sel
, Any_Type
);
3341 end Analyze_Overloaded_Selected_Component
;
3343 ----------------------------------
3344 -- Analyze_Qualified_Expression --
3345 ----------------------------------
3347 procedure Analyze_Qualified_Expression
(N
: Node_Id
) is
3348 Mark
: constant Entity_Id
:= Subtype_Mark
(N
);
3349 Expr
: constant Node_Id
:= Expression
(N
);
3355 Analyze_Expression
(Expr
);
3357 Set_Etype
(N
, Any_Type
);
3362 if T
= Any_Type
then
3366 Check_Fully_Declared
(T
, N
);
3368 -- If expected type is class-wide, check for exact match before
3369 -- expansion, because if the expression is a dispatching call it
3370 -- may be rewritten as explicit dereference with class-wide result.
3371 -- If expression is overloaded, retain only interpretations that
3372 -- will yield exact matches.
3374 if Is_Class_Wide_Type
(T
) then
3375 if not Is_Overloaded
(Expr
) then
3376 if Base_Type
(Etype
(Expr
)) /= Base_Type
(T
) then
3377 if Nkind
(Expr
) = N_Aggregate
then
3378 Error_Msg_N
("type of aggregate cannot be class-wide", Expr
);
3380 Wrong_Type
(Expr
, T
);
3385 Get_First_Interp
(Expr
, I
, It
);
3387 while Present
(It
.Nam
) loop
3388 if Base_Type
(It
.Typ
) /= Base_Type
(T
) then
3392 Get_Next_Interp
(I
, It
);
3398 end Analyze_Qualified_Expression
;
3400 -----------------------------------
3401 -- Analyze_Quantified_Expression --
3402 -----------------------------------
3404 procedure Analyze_Quantified_Expression
(N
: Node_Id
) is
3405 QE_Scop
: Entity_Id
;
3408 Check_SPARK_Restriction
("quantified expression is not allowed", N
);
3410 -- Create a scope to emulate the loop-like behavior of the quantified
3411 -- expression. The scope is needed to provide proper visibility of the
3414 QE_Scop
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Sloc
(N
), 'L');
3415 Set_Etype
(QE_Scop
, Standard_Void_Type
);
3416 Set_Scope
(QE_Scop
, Current_Scope
);
3417 Set_Parent
(QE_Scop
, N
);
3419 Push_Scope
(QE_Scop
);
3421 -- All constituents are preanalyzed and resolved to avoid untimely
3422 -- generation of various temporaries and types. Full analysis and
3423 -- expansion is carried out when the quantified expression is
3424 -- transformed into an expression with actions.
3426 if Present
(Iterator_Specification
(N
)) then
3427 Preanalyze
(Iterator_Specification
(N
));
3429 Preanalyze
(Loop_Parameter_Specification
(N
));
3432 Preanalyze_And_Resolve
(Condition
(N
), Standard_Boolean
);
3436 Set_Etype
(N
, Standard_Boolean
);
3437 end Analyze_Quantified_Expression
;
3443 procedure Analyze_Range
(N
: Node_Id
) is
3444 L
: constant Node_Id
:= Low_Bound
(N
);
3445 H
: constant Node_Id
:= High_Bound
(N
);
3446 I1
, I2
: Interp_Index
;
3449 procedure Check_Common_Type
(T1
, T2
: Entity_Id
);
3450 -- Verify the compatibility of two types, and choose the
3451 -- non universal one if the other is universal.
3453 procedure Check_High_Bound
(T
: Entity_Id
);
3454 -- Test one interpretation of the low bound against all those
3455 -- of the high bound.
3457 procedure Check_Universal_Expression
(N
: Node_Id
);
3458 -- In Ada 83, reject bounds of a universal range that are not literals
3461 -----------------------
3462 -- Check_Common_Type --
3463 -----------------------
3465 procedure Check_Common_Type
(T1
, T2
: Entity_Id
) is
3467 if Covers
(T1
=> T1
, T2
=> T2
)
3469 Covers
(T1
=> T2
, T2
=> T1
)
3471 if T1
= Universal_Integer
3472 or else T1
= Universal_Real
3473 or else T1
= Any_Character
3475 Add_One_Interp
(N
, Base_Type
(T2
), Base_Type
(T2
));
3478 Add_One_Interp
(N
, T1
, T1
);
3481 Add_One_Interp
(N
, Base_Type
(T1
), Base_Type
(T1
));
3484 end Check_Common_Type
;
3486 ----------------------
3487 -- Check_High_Bound --
3488 ----------------------
3490 procedure Check_High_Bound
(T
: Entity_Id
) is
3492 if not Is_Overloaded
(H
) then
3493 Check_Common_Type
(T
, Etype
(H
));
3495 Get_First_Interp
(H
, I2
, It2
);
3496 while Present
(It2
.Typ
) loop
3497 Check_Common_Type
(T
, It2
.Typ
);
3498 Get_Next_Interp
(I2
, It2
);
3501 end Check_High_Bound
;
3503 -----------------------------
3504 -- Is_Universal_Expression --
3505 -----------------------------
3507 procedure Check_Universal_Expression
(N
: Node_Id
) is
3509 if Etype
(N
) = Universal_Integer
3510 and then Nkind
(N
) /= N_Integer_Literal
3511 and then not Is_Entity_Name
(N
)
3512 and then Nkind
(N
) /= N_Attribute_Reference
3514 Error_Msg_N
("illegal bound in discrete range", N
);
3516 end Check_Universal_Expression
;
3518 -- Start of processing for Analyze_Range
3521 Set_Etype
(N
, Any_Type
);
3522 Analyze_Expression
(L
);
3523 Analyze_Expression
(H
);
3525 if Etype
(L
) = Any_Type
or else Etype
(H
) = Any_Type
then
3529 if not Is_Overloaded
(L
) then
3530 Check_High_Bound
(Etype
(L
));
3532 Get_First_Interp
(L
, I1
, It1
);
3533 while Present
(It1
.Typ
) loop
3534 Check_High_Bound
(It1
.Typ
);
3535 Get_Next_Interp
(I1
, It1
);
3539 -- If result is Any_Type, then we did not find a compatible pair
3541 if Etype
(N
) = Any_Type
then
3542 Error_Msg_N
("incompatible types in range ", N
);
3546 if Ada_Version
= Ada_83
3548 (Nkind
(Parent
(N
)) = N_Loop_Parameter_Specification
3549 or else Nkind
(Parent
(N
)) = N_Constrained_Array_Definition
)
3551 Check_Universal_Expression
(L
);
3552 Check_Universal_Expression
(H
);
3556 -----------------------
3557 -- Analyze_Reference --
3558 -----------------------
3560 procedure Analyze_Reference
(N
: Node_Id
) is
3561 P
: constant Node_Id
:= Prefix
(N
);
3564 Acc_Type
: Entity_Id
;
3569 -- An interesting error check, if we take the 'Reference of an object
3570 -- for which a pragma Atomic or Volatile has been given, and the type
3571 -- of the object is not Atomic or Volatile, then we are in trouble. The
3572 -- problem is that no trace of the atomic/volatile status will remain
3573 -- for the backend to respect when it deals with the resulting pointer,
3574 -- since the pointer type will not be marked atomic (it is a pointer to
3575 -- the base type of the object).
3577 -- It is not clear if that can ever occur, but in case it does, we will
3578 -- generate an error message. Not clear if this message can ever be
3579 -- generated, and pretty clear that it represents a bug if it is, still
3580 -- seems worth checking, except in CodePeer mode where we do not really
3581 -- care and don't want to bother the user.
3585 if Is_Entity_Name
(P
)
3586 and then Is_Object_Reference
(P
)
3587 and then not CodePeer_Mode
3592 if (Has_Atomic_Components
(E
)
3593 and then not Has_Atomic_Components
(T
))
3595 (Has_Volatile_Components
(E
)
3596 and then not Has_Volatile_Components
(T
))
3597 or else (Is_Atomic
(E
) and then not Is_Atomic
(T
))
3598 or else (Is_Volatile
(E
) and then not Is_Volatile
(T
))
3600 Error_Msg_N
("cannot take reference to Atomic/Volatile object", N
);
3604 -- Carry on with normal processing
3606 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
3607 Set_Etype
(Acc_Type
, Acc_Type
);
3608 Set_Directly_Designated_Type
(Acc_Type
, Etype
(P
));
3609 Set_Etype
(N
, Acc_Type
);
3610 end Analyze_Reference
;
3612 --------------------------------
3613 -- Analyze_Selected_Component --
3614 --------------------------------
3616 -- Prefix is a record type or a task or protected type. In the latter case,
3617 -- the selector must denote a visible entry.
3619 procedure Analyze_Selected_Component
(N
: Node_Id
) is
3620 Name
: constant Node_Id
:= Prefix
(N
);
3621 Sel
: constant Node_Id
:= Selector_Name
(N
);
3624 Has_Candidate
: Boolean := False;
3627 Pent
: Entity_Id
:= Empty
;
3628 Prefix_Type
: Entity_Id
;
3630 Type_To_Use
: Entity_Id
;
3631 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
3632 -- a class-wide type, we use its root type, whose components are
3633 -- present in the class-wide type.
3635 Is_Single_Concurrent_Object
: Boolean;
3636 -- Set True if the prefix is a single task or a single protected object
3638 procedure Find_Component_In_Instance
(Rec
: Entity_Id
);
3639 -- In an instance, a component of a private extension may not be visible
3640 -- while it was visible in the generic. Search candidate scope for a
3641 -- component with the proper identifier. This is only done if all other
3642 -- searches have failed. When the match is found (it always will be),
3643 -- the Etype of both N and Sel are set from this component, and the
3644 -- entity of Sel is set to reference this component.
3646 function Has_Mode_Conformant_Spec
(Comp
: Entity_Id
) return Boolean;
3647 -- It is known that the parent of N denotes a subprogram call. Comp
3648 -- is an overloadable component of the concurrent type of the prefix.
3649 -- Determine whether all formals of the parent of N and Comp are mode
3650 -- conformant. If the parent node is not analyzed yet it may be an
3651 -- indexed component rather than a function call.
3653 --------------------------------
3654 -- Find_Component_In_Instance --
3655 --------------------------------
3657 procedure Find_Component_In_Instance
(Rec
: Entity_Id
) is
3661 Comp
:= First_Component
(Rec
);
3662 while Present
(Comp
) loop
3663 if Chars
(Comp
) = Chars
(Sel
) then
3664 Set_Entity_With_Style_Check
(Sel
, Comp
);
3665 Set_Etype
(Sel
, Etype
(Comp
));
3666 Set_Etype
(N
, Etype
(Comp
));
3670 Next_Component
(Comp
);
3673 -- This must succeed because code was legal in the generic
3675 raise Program_Error
;
3676 end Find_Component_In_Instance
;
3678 ------------------------------
3679 -- Has_Mode_Conformant_Spec --
3680 ------------------------------
3682 function Has_Mode_Conformant_Spec
(Comp
: Entity_Id
) return Boolean is
3683 Comp_Param
: Entity_Id
;
3685 Param_Typ
: Entity_Id
;
3688 Comp_Param
:= First_Formal
(Comp
);
3690 if Nkind
(Parent
(N
)) = N_Indexed_Component
then
3691 Param
:= First
(Expressions
(Parent
(N
)));
3693 Param
:= First
(Parameter_Associations
(Parent
(N
)));
3696 while Present
(Comp_Param
)
3697 and then Present
(Param
)
3699 Param_Typ
:= Find_Parameter_Type
(Param
);
3701 if Present
(Param_Typ
)
3703 not Conforming_Types
3704 (Etype
(Comp_Param
), Param_Typ
, Mode_Conformant
)
3709 Next_Formal
(Comp_Param
);
3713 -- One of the specs has additional formals
3715 if Present
(Comp_Param
) or else Present
(Param
) then
3720 end Has_Mode_Conformant_Spec
;
3722 -- Start of processing for Analyze_Selected_Component
3725 Set_Etype
(N
, Any_Type
);
3727 if Is_Overloaded
(Name
) then
3728 Analyze_Overloaded_Selected_Component
(N
);
3731 elsif Etype
(Name
) = Any_Type
then
3732 Set_Entity
(Sel
, Any_Id
);
3733 Set_Etype
(Sel
, Any_Type
);
3737 Prefix_Type
:= Etype
(Name
);
3740 if Is_Access_Type
(Prefix_Type
) then
3742 -- A RACW object can never be used as prefix of a selected component
3743 -- since that means it is dereferenced without being a controlling
3744 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
3745 -- reporting an error, we must check whether this is actually a
3746 -- dispatching call in prefix form.
3748 if Is_Remote_Access_To_Class_Wide_Type
(Prefix_Type
)
3749 and then Comes_From_Source
(N
)
3751 if Try_Object_Operation
(N
) then
3755 ("invalid dereference of a remote access-to-class-wide value",
3759 -- Normal case of selected component applied to access type
3762 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
3764 if Is_Entity_Name
(Name
) then
3765 Pent
:= Entity
(Name
);
3766 elsif Nkind
(Name
) = N_Selected_Component
3767 and then Is_Entity_Name
(Selector_Name
(Name
))
3769 Pent
:= Entity
(Selector_Name
(Name
));
3772 Prefix_Type
:= Process_Implicit_Dereference_Prefix
(Pent
, Name
);
3775 -- If we have an explicit dereference of a remote access-to-class-wide
3776 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
3777 -- have to check for the case of a prefix that is a controlling operand
3778 -- of a prefixed dispatching call, as the dereference is legal in that
3779 -- case. Normally this condition is checked in Validate_Remote_Access_
3780 -- To_Class_Wide_Type, but we have to defer the checking for selected
3781 -- component prefixes because of the prefixed dispatching call case.
3782 -- Note that implicit dereferences are checked for this just above.
3784 elsif Nkind
(Name
) = N_Explicit_Dereference
3785 and then Is_Remote_Access_To_Class_Wide_Type
(Etype
(Prefix
(Name
)))
3786 and then Comes_From_Source
(N
)
3788 if Try_Object_Operation
(N
) then
3792 ("invalid dereference of a remote access-to-class-wide value",
3797 -- (Ada 2005): if the prefix is the limited view of a type, and
3798 -- the context already includes the full view, use the full view
3799 -- in what follows, either to retrieve a component of to find
3800 -- a primitive operation. If the prefix is an explicit dereference,
3801 -- set the type of the prefix to reflect this transformation.
3802 -- If the non-limited view is itself an incomplete type, get the
3803 -- full view if available.
3805 if Is_Incomplete_Type
(Prefix_Type
)
3806 and then From_With_Type
(Prefix_Type
)
3807 and then Present
(Non_Limited_View
(Prefix_Type
))
3809 Prefix_Type
:= Get_Full_View
(Non_Limited_View
(Prefix_Type
));
3811 if Nkind
(N
) = N_Explicit_Dereference
then
3812 Set_Etype
(Prefix
(N
), Prefix_Type
);
3815 elsif Ekind
(Prefix_Type
) = E_Class_Wide_Type
3816 and then From_With_Type
(Prefix_Type
)
3817 and then Present
(Non_Limited_View
(Etype
(Prefix_Type
)))
3820 Class_Wide_Type
(Non_Limited_View
(Etype
(Prefix_Type
)));
3822 if Nkind
(N
) = N_Explicit_Dereference
then
3823 Set_Etype
(Prefix
(N
), Prefix_Type
);
3827 if Ekind
(Prefix_Type
) = E_Private_Subtype
then
3828 Prefix_Type
:= Base_Type
(Prefix_Type
);
3831 Type_To_Use
:= Prefix_Type
;
3833 -- For class-wide types, use the entity list of the root type. This
3834 -- indirection is specially important for private extensions because
3835 -- only the root type get switched (not the class-wide type).
3837 if Is_Class_Wide_Type
(Prefix_Type
) then
3838 Type_To_Use
:= Root_Type
(Prefix_Type
);
3841 -- If the prefix is a single concurrent object, use its name in error
3842 -- messages, rather than that of its anonymous type.
3844 Is_Single_Concurrent_Object
:=
3845 Is_Concurrent_Type
(Prefix_Type
)
3846 and then Is_Internal_Name
(Chars
(Prefix_Type
))
3847 and then not Is_Derived_Type
(Prefix_Type
)
3848 and then Is_Entity_Name
(Name
);
3850 Comp
:= First_Entity
(Type_To_Use
);
3852 -- If the selector has an original discriminant, the node appears in
3853 -- an instance. Replace the discriminant with the corresponding one
3854 -- in the current discriminated type. For nested generics, this must
3855 -- be done transitively, so note the new original discriminant.
3857 if Nkind
(Sel
) = N_Identifier
3858 and then In_Instance
3859 and then Present
(Original_Discriminant
(Sel
))
3861 Comp
:= Find_Corresponding_Discriminant
(Sel
, Prefix_Type
);
3863 -- Mark entity before rewriting, for completeness and because
3864 -- subsequent semantic checks might examine the original node.
3866 Set_Entity
(Sel
, Comp
);
3867 Rewrite
(Selector_Name
(N
),
3868 New_Occurrence_Of
(Comp
, Sloc
(N
)));
3869 Set_Original_Discriminant
(Selector_Name
(N
), Comp
);
3870 Set_Etype
(N
, Etype
(Comp
));
3871 Check_Implicit_Dereference
(N
, Etype
(Comp
));
3873 if Is_Access_Type
(Etype
(Name
)) then
3874 Insert_Explicit_Dereference
(Name
);
3875 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
3878 elsif Is_Record_Type
(Prefix_Type
) then
3880 -- Find component with given name
3881 -- In an instance, if the node is known as a prefixed call, do
3882 -- not examine components whose visibility may be accidental.
3884 while Present
(Comp
) and then not Is_Prefixed_Call
(N
) loop
3885 if Chars
(Comp
) = Chars
(Sel
)
3886 and then Is_Visible_Component
(Comp
)
3888 Set_Entity_With_Style_Check
(Sel
, Comp
);
3889 Set_Etype
(Sel
, Etype
(Comp
));
3891 if Ekind
(Comp
) = E_Discriminant
then
3892 if Is_Unchecked_Union
(Base_Type
(Prefix_Type
)) then
3894 ("cannot reference discriminant of unchecked union",
3898 if Is_Generic_Type
(Prefix_Type
)
3900 Is_Generic_Type
(Root_Type
(Prefix_Type
))
3902 Set_Original_Discriminant
(Sel
, Comp
);
3906 -- Resolve the prefix early otherwise it is not possible to
3907 -- build the actual subtype of the component: it may need
3908 -- to duplicate this prefix and duplication is only allowed
3909 -- on fully resolved expressions.
3913 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
3914 -- subtypes in a package specification.
3917 -- limited with Pkg;
3919 -- type Acc_Inc is access Pkg.T;
3921 -- N : Natural := X.all.Comp; -- ERROR, limited view
3922 -- end Pkg; -- Comp is not visible
3924 if Nkind
(Name
) = N_Explicit_Dereference
3925 and then From_With_Type
(Etype
(Prefix
(Name
)))
3926 and then not Is_Potentially_Use_Visible
(Etype
(Name
))
3927 and then Nkind
(Parent
(Cunit_Entity
(Current_Sem_Unit
))) =
3928 N_Package_Specification
3931 ("premature usage of incomplete}", Prefix
(Name
),
3932 Etype
(Prefix
(Name
)));
3935 -- We never need an actual subtype for the case of a selection
3936 -- for a indexed component of a non-packed array, since in
3937 -- this case gigi generates all the checks and can find the
3938 -- necessary bounds information.
3940 -- We also do not need an actual subtype for the case of a
3941 -- first, last, length, or range attribute applied to a
3942 -- non-packed array, since gigi can again get the bounds in
3943 -- these cases (gigi cannot handle the packed case, since it
3944 -- has the bounds of the packed array type, not the original
3945 -- bounds of the type). However, if the prefix is itself a
3946 -- selected component, as in a.b.c (i), gigi may regard a.b.c
3947 -- as a dynamic-sized temporary, so we do generate an actual
3948 -- subtype for this case.
3950 Parent_N
:= Parent
(N
);
3952 if not Is_Packed
(Etype
(Comp
))
3954 ((Nkind
(Parent_N
) = N_Indexed_Component
3955 and then Nkind
(Name
) /= N_Selected_Component
)
3957 (Nkind
(Parent_N
) = N_Attribute_Reference
3958 and then (Attribute_Name
(Parent_N
) = Name_First
3960 Attribute_Name
(Parent_N
) = Name_Last
3962 Attribute_Name
(Parent_N
) = Name_Length
3964 Attribute_Name
(Parent_N
) = Name_Range
)))
3966 Set_Etype
(N
, Etype
(Comp
));
3968 -- If full analysis is not enabled, we do not generate an
3969 -- actual subtype, because in the absence of expansion
3970 -- reference to a formal of a protected type, for example,
3971 -- will not be properly transformed, and will lead to
3972 -- out-of-scope references in gigi.
3974 -- In all other cases, we currently build an actual subtype.
3975 -- It seems likely that many of these cases can be avoided,
3976 -- but right now, the front end makes direct references to the
3977 -- bounds (e.g. in generating a length check), and if we do
3978 -- not make an actual subtype, we end up getting a direct
3979 -- reference to a discriminant, which will not do.
3981 elsif Full_Analysis
then
3983 Build_Actual_Subtype_Of_Component
(Etype
(Comp
), N
);
3984 Insert_Action
(N
, Act_Decl
);
3986 if No
(Act_Decl
) then
3987 Set_Etype
(N
, Etype
(Comp
));
3990 -- Component type depends on discriminants. Enter the
3991 -- main attributes of the subtype.
3994 Subt
: constant Entity_Id
:=
3995 Defining_Identifier
(Act_Decl
);
3998 Set_Etype
(Subt
, Base_Type
(Etype
(Comp
)));
3999 Set_Ekind
(Subt
, Ekind
(Etype
(Comp
)));
4000 Set_Etype
(N
, Subt
);
4004 -- If Full_Analysis not enabled, just set the Etype
4007 Set_Etype
(N
, Etype
(Comp
));
4010 Check_Implicit_Dereference
(N
, Etype
(N
));
4014 -- If the prefix is a private extension, check only the visible
4015 -- components of the partial view. This must include the tag,
4016 -- which can appear in expanded code in a tag check.
4018 if Ekind
(Type_To_Use
) = E_Record_Type_With_Private
4019 and then Chars
(Selector_Name
(N
)) /= Name_uTag
4021 exit when Comp
= Last_Entity
(Type_To_Use
);
4027 -- Ada 2005 (AI-252): The selected component can be interpreted as
4028 -- a prefixed view of a subprogram. Depending on the context, this is
4029 -- either a name that can appear in a renaming declaration, or part
4030 -- of an enclosing call given in prefix form.
4032 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4033 -- selected component should resolve to a name.
4035 if Ada_Version
>= Ada_2005
4036 and then Is_Tagged_Type
(Prefix_Type
)
4037 and then not Is_Concurrent_Type
(Prefix_Type
)
4039 if Nkind
(Parent
(N
)) = N_Generic_Association
4040 or else Nkind
(Parent
(N
)) = N_Requeue_Statement
4041 or else Nkind
(Parent
(N
)) = N_Subprogram_Renaming_Declaration
4043 if Find_Primitive_Operation
(N
) then
4047 elsif Try_Object_Operation
(N
) then
4051 -- If the transformation fails, it will be necessary to redo the
4052 -- analysis with all errors enabled, to indicate candidate
4053 -- interpretations and reasons for each failure ???
4057 elsif Is_Private_Type
(Prefix_Type
) then
4059 -- Allow access only to discriminants of the type. If the type has
4060 -- no full view, gigi uses the parent type for the components, so we
4061 -- do the same here.
4063 if No
(Full_View
(Prefix_Type
)) then
4064 Type_To_Use
:= Root_Type
(Base_Type
(Prefix_Type
));
4065 Comp
:= First_Entity
(Type_To_Use
);
4068 while Present
(Comp
) loop
4069 if Chars
(Comp
) = Chars
(Sel
) then
4070 if Ekind
(Comp
) = E_Discriminant
then
4071 Set_Entity_With_Style_Check
(Sel
, Comp
);
4072 Generate_Reference
(Comp
, Sel
);
4074 Set_Etype
(Sel
, Etype
(Comp
));
4075 Set_Etype
(N
, Etype
(Comp
));
4076 Check_Implicit_Dereference
(N
, Etype
(N
));
4078 if Is_Generic_Type
(Prefix_Type
)
4079 or else Is_Generic_Type
(Root_Type
(Prefix_Type
))
4081 Set_Original_Discriminant
(Sel
, Comp
);
4084 -- Before declaring an error, check whether this is tagged
4085 -- private type and a call to a primitive operation.
4087 elsif Ada_Version
>= Ada_2005
4088 and then Is_Tagged_Type
(Prefix_Type
)
4089 and then Try_Object_Operation
(N
)
4094 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
4095 Error_Msg_NE
("invisible selector& for }", N
, Sel
);
4096 Set_Entity
(Sel
, Any_Id
);
4097 Set_Etype
(N
, Any_Type
);
4106 elsif Is_Concurrent_Type
(Prefix_Type
) then
4108 -- Find visible operation with given name. For a protected type,
4109 -- the possible candidates are discriminants, entries or protected
4110 -- procedures. For a task type, the set can only include entries or
4111 -- discriminants if the task type is not an enclosing scope. If it
4112 -- is an enclosing scope (e.g. in an inner task) then all entities
4113 -- are visible, but the prefix must denote the enclosing scope, i.e.
4114 -- can only be a direct name or an expanded name.
4116 Set_Etype
(Sel
, Any_Type
);
4117 In_Scope
:= In_Open_Scopes
(Prefix_Type
);
4119 while Present
(Comp
) loop
4120 if Chars
(Comp
) = Chars
(Sel
) then
4121 if Is_Overloadable
(Comp
) then
4122 Add_One_Interp
(Sel
, Comp
, Etype
(Comp
));
4124 -- If the prefix is tagged, the correct interpretation may
4125 -- lie in the primitive or class-wide operations of the
4126 -- type. Perform a simple conformance check to determine
4127 -- whether Try_Object_Operation should be invoked even if
4128 -- a visible entity is found.
4130 if Is_Tagged_Type
(Prefix_Type
)
4132 Nkind_In
(Parent
(N
), N_Procedure_Call_Statement
,
4134 N_Indexed_Component
)
4135 and then Has_Mode_Conformant_Spec
(Comp
)
4137 Has_Candidate
:= True;
4140 -- Note: a selected component may not denote a component of a
4141 -- protected type (4.1.3(7)).
4143 elsif Ekind_In
(Comp
, E_Discriminant
, E_Entry_Family
)
4145 and then not Is_Protected_Type
(Prefix_Type
)
4146 and then Is_Entity_Name
(Name
))
4148 Set_Entity_With_Style_Check
(Sel
, Comp
);
4149 Generate_Reference
(Comp
, Sel
);
4151 -- The selector is not overloadable, so we have a candidate
4154 Has_Candidate
:= True;
4160 Set_Etype
(Sel
, Etype
(Comp
));
4161 Set_Etype
(N
, Etype
(Comp
));
4163 if Ekind
(Comp
) = E_Discriminant
then
4164 Set_Original_Discriminant
(Sel
, Comp
);
4167 -- For access type case, introduce explicit dereference for
4168 -- more uniform treatment of entry calls.
4170 if Is_Access_Type
(Etype
(Name
)) then
4171 Insert_Explicit_Dereference
(Name
);
4173 (Warn_On_Dereference
, "?implicit dereference", N
);
4179 exit when not In_Scope
4181 Comp
= First_Private_Entity
(Base_Type
(Prefix_Type
));
4184 -- If there is no visible entity with the given name or none of the
4185 -- visible entities are plausible interpretations, check whether
4186 -- there is some other primitive operation with that name.
4188 if Ada_Version
>= Ada_2005
4189 and then Is_Tagged_Type
(Prefix_Type
)
4191 if (Etype
(N
) = Any_Type
4192 or else not Has_Candidate
)
4193 and then Try_Object_Operation
(N
)
4197 -- If the context is not syntactically a procedure call, it
4198 -- may be a call to a primitive function declared outside of
4199 -- the synchronized type.
4201 -- If the context is a procedure call, there might still be
4202 -- an overloading between an entry and a primitive procedure
4203 -- declared outside of the synchronized type, called in prefix
4204 -- notation. This is harder to disambiguate because in one case
4205 -- the controlling formal is implicit ???
4207 elsif Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
4208 and then Nkind
(Parent
(N
)) /= N_Indexed_Component
4209 and then Try_Object_Operation
(N
)
4214 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
4215 -- entry or procedure of a tagged concurrent type we must check
4216 -- if there are class-wide subprograms covering the primitive. If
4217 -- true then Try_Object_Operation reports the error.
4220 and then Is_Concurrent_Type
(Prefix_Type
)
4221 and then Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
4223 -- Duplicate the call. This is required to avoid problems with
4224 -- the tree transformations performed by Try_Object_Operation.
4225 -- Set properly the parent of the copied call, because it is
4226 -- about to be reanalyzed.
4230 Par
: constant Node_Id
:= New_Copy_Tree
(Parent
(N
));
4233 Set_Parent
(Par
, Parent
(Parent
(N
)));
4235 if Try_Object_Operation
4236 (Sinfo
.Name
(Par
), CW_Test_Only
=> True)
4244 if Etype
(N
) = Any_Type
and then Is_Protected_Type
(Prefix_Type
) then
4246 -- Case of a prefix of a protected type: selector might denote
4247 -- an invisible private component.
4249 Comp
:= First_Private_Entity
(Base_Type
(Prefix_Type
));
4250 while Present
(Comp
) and then Chars
(Comp
) /= Chars
(Sel
) loop
4254 if Present
(Comp
) then
4255 if Is_Single_Concurrent_Object
then
4256 Error_Msg_Node_2
:= Entity
(Name
);
4257 Error_Msg_NE
("invisible selector& for &", N
, Sel
);
4260 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
4261 Error_Msg_NE
("invisible selector& for }", N
, Sel
);
4267 Set_Is_Overloaded
(N
, Is_Overloaded
(Sel
));
4272 Error_Msg_NE
("invalid prefix in selected component&", N
, Sel
);
4275 -- If N still has no type, the component is not defined in the prefix
4277 if Etype
(N
) = Any_Type
then
4279 if Is_Single_Concurrent_Object
then
4280 Error_Msg_Node_2
:= Entity
(Name
);
4281 Error_Msg_NE
("no selector& for&", N
, Sel
);
4283 Check_Misspelled_Selector
(Type_To_Use
, Sel
);
4285 elsif Is_Generic_Type
(Prefix_Type
)
4286 and then Ekind
(Prefix_Type
) = E_Record_Type_With_Private
4287 and then Prefix_Type
/= Etype
(Prefix_Type
)
4288 and then Is_Record_Type
(Etype
(Prefix_Type
))
4290 -- If this is a derived formal type, the parent may have
4291 -- different visibility at this point. Try for an inherited
4292 -- component before reporting an error.
4294 Set_Etype
(Prefix
(N
), Etype
(Prefix_Type
));
4295 Analyze_Selected_Component
(N
);
4298 -- Similarly, if this is the actual for a formal derived type, the
4299 -- component inherited from the generic parent may not be visible
4300 -- in the actual, but the selected component is legal.
4302 elsif Ekind
(Prefix_Type
) = E_Record_Subtype_With_Private
4303 and then Is_Generic_Actual_Type
(Prefix_Type
)
4304 and then Present
(Full_View
(Prefix_Type
))
4307 Find_Component_In_Instance
4308 (Generic_Parent_Type
(Parent
(Prefix_Type
)));
4311 -- Finally, the formal and the actual may be private extensions,
4312 -- but the generic is declared in a child unit of the parent, and
4313 -- an additional step is needed to retrieve the proper scope.
4316 and then Present
(Parent_Subtype
(Etype
(Base_Type
(Prefix_Type
))))
4318 Find_Component_In_Instance
4319 (Parent_Subtype
(Etype
(Base_Type
(Prefix_Type
))));
4322 -- Component not found, specialize error message when appropriate
4325 if Ekind
(Prefix_Type
) = E_Record_Subtype
then
4327 -- Check whether this is a component of the base type which
4328 -- is absent from a statically constrained subtype. This will
4329 -- raise constraint error at run time, but is not a compile-
4330 -- time error. When the selector is illegal for base type as
4331 -- well fall through and generate a compilation error anyway.
4333 Comp
:= First_Component
(Base_Type
(Prefix_Type
));
4334 while Present
(Comp
) loop
4335 if Chars
(Comp
) = Chars
(Sel
)
4336 and then Is_Visible_Component
(Comp
)
4338 Set_Entity_With_Style_Check
(Sel
, Comp
);
4339 Generate_Reference
(Comp
, Sel
);
4340 Set_Etype
(Sel
, Etype
(Comp
));
4341 Set_Etype
(N
, Etype
(Comp
));
4343 -- Emit appropriate message. Gigi will replace the
4344 -- node subsequently with the appropriate Raise.
4346 -- In Alfa mode, this is made into an error to simplify
4347 -- the processing of the formal verification backend.
4350 Apply_Compile_Time_Constraint_Error
4351 (N
, "component not present in }",
4352 CE_Discriminant_Check_Failed
,
4353 Ent
=> Prefix_Type
, Rep
=> False);
4355 Apply_Compile_Time_Constraint_Error
4356 (N
, "component not present in }?",
4357 CE_Discriminant_Check_Failed
,
4358 Ent
=> Prefix_Type
, Rep
=> False);
4361 Set_Raises_Constraint_Error
(N
);
4365 Next_Component
(Comp
);
4370 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
4371 Error_Msg_NE
("no selector& for}", N
, Sel
);
4373 -- Add information in the case of an incomplete prefix
4375 if Is_Incomplete_Type
(Type_To_Use
) then
4377 Inc
: constant Entity_Id
:= First_Subtype
(Type_To_Use
);
4380 if From_With_Type
(Scope
(Type_To_Use
)) then
4382 ("\limited view of& has no components", N
, Inc
);
4386 ("\premature usage of incomplete type&", N
, Inc
);
4388 if Nkind
(Parent
(Inc
)) =
4389 N_Incomplete_Type_Declaration
4391 -- Record location of premature use in entity so that
4392 -- a continuation message is generated when the
4393 -- completion is seen.
4395 Set_Premature_Use
(Parent
(Inc
), N
);
4401 Check_Misspelled_Selector
(Type_To_Use
, Sel
);
4404 Set_Entity
(Sel
, Any_Id
);
4405 Set_Etype
(Sel
, Any_Type
);
4407 end Analyze_Selected_Component
;
4409 ---------------------------
4410 -- Analyze_Short_Circuit --
4411 ---------------------------
4413 procedure Analyze_Short_Circuit
(N
: Node_Id
) is
4414 L
: constant Node_Id
:= Left_Opnd
(N
);
4415 R
: constant Node_Id
:= Right_Opnd
(N
);
4420 Analyze_Expression
(L
);
4421 Analyze_Expression
(R
);
4422 Set_Etype
(N
, Any_Type
);
4424 if not Is_Overloaded
(L
) then
4425 if Root_Type
(Etype
(L
)) = Standard_Boolean
4426 and then Has_Compatible_Type
(R
, Etype
(L
))
4428 Add_One_Interp
(N
, Etype
(L
), Etype
(L
));
4432 Get_First_Interp
(L
, Ind
, It
);
4433 while Present
(It
.Typ
) loop
4434 if Root_Type
(It
.Typ
) = Standard_Boolean
4435 and then Has_Compatible_Type
(R
, It
.Typ
)
4437 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
4440 Get_Next_Interp
(Ind
, It
);
4444 -- Here we have failed to find an interpretation. Clearly we know that
4445 -- it is not the case that both operands can have an interpretation of
4446 -- Boolean, but this is by far the most likely intended interpretation.
4447 -- So we simply resolve both operands as Booleans, and at least one of
4448 -- these resolutions will generate an error message, and we do not need
4449 -- to give another error message on the short circuit operation itself.
4451 if Etype
(N
) = Any_Type
then
4452 Resolve
(L
, Standard_Boolean
);
4453 Resolve
(R
, Standard_Boolean
);
4454 Set_Etype
(N
, Standard_Boolean
);
4456 end Analyze_Short_Circuit
;
4462 procedure Analyze_Slice
(N
: Node_Id
) is
4463 D
: constant Node_Id
:= Discrete_Range
(N
);
4464 P
: constant Node_Id
:= Prefix
(N
);
4465 Array_Type
: Entity_Id
;
4466 Index_Type
: Entity_Id
;
4468 procedure Analyze_Overloaded_Slice
;
4469 -- If the prefix is overloaded, select those interpretations that
4470 -- yield a one-dimensional array type.
4472 ------------------------------
4473 -- Analyze_Overloaded_Slice --
4474 ------------------------------
4476 procedure Analyze_Overloaded_Slice
is
4482 Set_Etype
(N
, Any_Type
);
4484 Get_First_Interp
(P
, I
, It
);
4485 while Present
(It
.Nam
) loop
4488 if Is_Access_Type
(Typ
) then
4489 Typ
:= Designated_Type
(Typ
);
4490 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
4493 if Is_Array_Type
(Typ
)
4494 and then Number_Dimensions
(Typ
) = 1
4495 and then Has_Compatible_Type
(D
, Etype
(First_Index
(Typ
)))
4497 Add_One_Interp
(N
, Typ
, Typ
);
4500 Get_Next_Interp
(I
, It
);
4503 if Etype
(N
) = Any_Type
then
4504 Error_Msg_N
("expect array type in prefix of slice", N
);
4506 end Analyze_Overloaded_Slice
;
4508 -- Start of processing for Analyze_Slice
4511 if Comes_From_Source
(N
) then
4512 Check_SPARK_Restriction
("slice is not allowed", N
);
4518 if Is_Overloaded
(P
) then
4519 Analyze_Overloaded_Slice
;
4522 Array_Type
:= Etype
(P
);
4523 Set_Etype
(N
, Any_Type
);
4525 if Is_Access_Type
(Array_Type
) then
4526 Array_Type
:= Designated_Type
(Array_Type
);
4527 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
4530 if not Is_Array_Type
(Array_Type
) then
4531 Wrong_Type
(P
, Any_Array
);
4533 elsif Number_Dimensions
(Array_Type
) > 1 then
4535 ("type is not one-dimensional array in slice prefix", N
);
4538 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
4539 Index_Type
:= Etype
(String_Literal_Low_Bound
(Array_Type
));
4541 Index_Type
:= Etype
(First_Index
(Array_Type
));
4544 if not Has_Compatible_Type
(D
, Index_Type
) then
4545 Wrong_Type
(D
, Index_Type
);
4547 Set_Etype
(N
, Array_Type
);
4553 -----------------------------
4554 -- Analyze_Type_Conversion --
4555 -----------------------------
4557 procedure Analyze_Type_Conversion
(N
: Node_Id
) is
4558 Expr
: constant Node_Id
:= Expression
(N
);
4562 -- If Conversion_OK is set, then the Etype is already set, and the
4563 -- only processing required is to analyze the expression. This is
4564 -- used to construct certain "illegal" conversions which are not
4565 -- allowed by Ada semantics, but can be handled OK by Gigi, see
4566 -- Sinfo for further details.
4568 if Conversion_OK
(N
) then
4573 -- Otherwise full type analysis is required, as well as some semantic
4574 -- checks to make sure the argument of the conversion is appropriate.
4576 Find_Type
(Subtype_Mark
(N
));
4577 T
:= Entity
(Subtype_Mark
(N
));
4579 Check_Fully_Declared
(T
, N
);
4580 Analyze_Expression
(Expr
);
4581 Validate_Remote_Type_Type_Conversion
(N
);
4583 -- Only remaining step is validity checks on the argument. These
4584 -- are skipped if the conversion does not come from the source.
4586 if not Comes_From_Source
(N
) then
4589 -- If there was an error in a generic unit, no need to replicate the
4590 -- error message. Conversely, constant-folding in the generic may
4591 -- transform the argument of a conversion into a string literal, which
4592 -- is legal. Therefore the following tests are not performed in an
4595 elsif In_Instance
then
4598 elsif Nkind
(Expr
) = N_Null
then
4599 Error_Msg_N
("argument of conversion cannot be null", N
);
4600 Error_Msg_N
("\use qualified expression instead", N
);
4601 Set_Etype
(N
, Any_Type
);
4603 elsif Nkind
(Expr
) = N_Aggregate
then
4604 Error_Msg_N
("argument of conversion cannot be aggregate", N
);
4605 Error_Msg_N
("\use qualified expression instead", N
);
4607 elsif Nkind
(Expr
) = N_Allocator
then
4608 Error_Msg_N
("argument of conversion cannot be an allocator", N
);
4609 Error_Msg_N
("\use qualified expression instead", N
);
4611 elsif Nkind
(Expr
) = N_String_Literal
then
4612 Error_Msg_N
("argument of conversion cannot be string literal", N
);
4613 Error_Msg_N
("\use qualified expression instead", N
);
4615 elsif Nkind
(Expr
) = N_Character_Literal
then
4616 if Ada_Version
= Ada_83
then
4619 Error_Msg_N
("argument of conversion cannot be character literal",
4621 Error_Msg_N
("\use qualified expression instead", N
);
4624 elsif Nkind
(Expr
) = N_Attribute_Reference
4626 (Attribute_Name
(Expr
) = Name_Access
or else
4627 Attribute_Name
(Expr
) = Name_Unchecked_Access
or else
4628 Attribute_Name
(Expr
) = Name_Unrestricted_Access
)
4630 Error_Msg_N
("argument of conversion cannot be access", N
);
4631 Error_Msg_N
("\use qualified expression instead", N
);
4633 end Analyze_Type_Conversion
;
4635 ----------------------
4636 -- Analyze_Unary_Op --
4637 ----------------------
4639 procedure Analyze_Unary_Op
(N
: Node_Id
) is
4640 R
: constant Node_Id
:= Right_Opnd
(N
);
4641 Op_Id
: Entity_Id
:= Entity
(N
);
4644 Set_Etype
(N
, Any_Type
);
4645 Candidate_Type
:= Empty
;
4647 Analyze_Expression
(R
);
4649 if Present
(Op_Id
) then
4650 if Ekind
(Op_Id
) = E_Operator
then
4651 Find_Unary_Types
(R
, Op_Id
, N
);
4653 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
4657 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
4658 while Present
(Op_Id
) loop
4659 if Ekind
(Op_Id
) = E_Operator
then
4660 if No
(Next_Entity
(First_Entity
(Op_Id
))) then
4661 Find_Unary_Types
(R
, Op_Id
, N
);
4664 elsif Is_Overloadable
(Op_Id
) then
4665 Analyze_User_Defined_Unary_Op
(N
, Op_Id
);
4668 Op_Id
:= Homonym
(Op_Id
);
4673 end Analyze_Unary_Op
;
4675 ----------------------------------
4676 -- Analyze_Unchecked_Expression --
4677 ----------------------------------
4679 procedure Analyze_Unchecked_Expression
(N
: Node_Id
) is
4681 Analyze
(Expression
(N
), Suppress
=> All_Checks
);
4682 Set_Etype
(N
, Etype
(Expression
(N
)));
4683 Save_Interps
(Expression
(N
), N
);
4684 end Analyze_Unchecked_Expression
;
4686 ---------------------------------------
4687 -- Analyze_Unchecked_Type_Conversion --
4688 ---------------------------------------
4690 procedure Analyze_Unchecked_Type_Conversion
(N
: Node_Id
) is
4692 Find_Type
(Subtype_Mark
(N
));
4693 Analyze_Expression
(Expression
(N
));
4694 Set_Etype
(N
, Entity
(Subtype_Mark
(N
)));
4695 end Analyze_Unchecked_Type_Conversion
;
4697 ------------------------------------
4698 -- Analyze_User_Defined_Binary_Op --
4699 ------------------------------------
4701 procedure Analyze_User_Defined_Binary_Op
4706 -- Only do analysis if the operator Comes_From_Source, since otherwise
4707 -- the operator was generated by the expander, and all such operators
4708 -- always refer to the operators in package Standard.
4710 if Comes_From_Source
(N
) then
4712 F1
: constant Entity_Id
:= First_Formal
(Op_Id
);
4713 F2
: constant Entity_Id
:= Next_Formal
(F1
);
4716 -- Verify that Op_Id is a visible binary function. Note that since
4717 -- we know Op_Id is overloaded, potentially use visible means use
4718 -- visible for sure (RM 9.4(11)).
4720 if Ekind
(Op_Id
) = E_Function
4721 and then Present
(F2
)
4722 and then (Is_Immediately_Visible
(Op_Id
)
4723 or else Is_Potentially_Use_Visible
(Op_Id
))
4724 and then Has_Compatible_Type
(Left_Opnd
(N
), Etype
(F1
))
4725 and then Has_Compatible_Type
(Right_Opnd
(N
), Etype
(F2
))
4727 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
4729 -- If the left operand is overloaded, indicate that the
4730 -- current type is a viable candidate. This is redundant
4731 -- in most cases, but for equality and comparison operators
4732 -- where the context does not impose a type on the operands,
4733 -- setting the proper type is necessary to avoid subsequent
4734 -- ambiguities during resolution, when both user-defined and
4735 -- predefined operators may be candidates.
4737 if Is_Overloaded
(Left_Opnd
(N
)) then
4738 Set_Etype
(Left_Opnd
(N
), Etype
(F1
));
4741 if Debug_Flag_E
then
4742 Write_Str
("user defined operator ");
4743 Write_Name
(Chars
(Op_Id
));
4744 Write_Str
(" on node ");
4745 Write_Int
(Int
(N
));
4751 end Analyze_User_Defined_Binary_Op
;
4753 -----------------------------------
4754 -- Analyze_User_Defined_Unary_Op --
4755 -----------------------------------
4757 procedure Analyze_User_Defined_Unary_Op
4762 -- Only do analysis if the operator Comes_From_Source, since otherwise
4763 -- the operator was generated by the expander, and all such operators
4764 -- always refer to the operators in package Standard.
4766 if Comes_From_Source
(N
) then
4768 F
: constant Entity_Id
:= First_Formal
(Op_Id
);
4771 -- Verify that Op_Id is a visible unary function. Note that since
4772 -- we know Op_Id is overloaded, potentially use visible means use
4773 -- visible for sure (RM 9.4(11)).
4775 if Ekind
(Op_Id
) = E_Function
4776 and then No
(Next_Formal
(F
))
4777 and then (Is_Immediately_Visible
(Op_Id
)
4778 or else Is_Potentially_Use_Visible
(Op_Id
))
4779 and then Has_Compatible_Type
(Right_Opnd
(N
), Etype
(F
))
4781 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
4785 end Analyze_User_Defined_Unary_Op
;
4787 ---------------------------
4788 -- Check_Arithmetic_Pair --
4789 ---------------------------
4791 procedure Check_Arithmetic_Pair
4792 (T1
, T2
: Entity_Id
;
4796 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
4798 function Has_Fixed_Op
(Typ
: Entity_Id
; Op
: Entity_Id
) return Boolean;
4799 -- Check whether the fixed-point type Typ has a user-defined operator
4800 -- (multiplication or division) that should hide the corresponding
4801 -- predefined operator. Used to implement Ada 2005 AI-264, to make
4802 -- such operators more visible and therefore useful.
4804 -- If the name of the operation is an expanded name with prefix
4805 -- Standard, the predefined universal fixed operator is available,
4806 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
4808 function Specific_Type
(T1
, T2
: Entity_Id
) return Entity_Id
;
4809 -- Get specific type (i.e. non-universal type if there is one)
4815 function Has_Fixed_Op
(Typ
: Entity_Id
; Op
: Entity_Id
) return Boolean is
4816 Bas
: constant Entity_Id
:= Base_Type
(Typ
);
4822 -- If the universal_fixed operation is given explicitly the rule
4823 -- concerning primitive operations of the type do not apply.
4825 if Nkind
(N
) = N_Function_Call
4826 and then Nkind
(Name
(N
)) = N_Expanded_Name
4827 and then Entity
(Prefix
(Name
(N
))) = Standard_Standard
4832 -- The operation is treated as primitive if it is declared in the
4833 -- same scope as the type, and therefore on the same entity chain.
4835 Ent
:= Next_Entity
(Typ
);
4836 while Present
(Ent
) loop
4837 if Chars
(Ent
) = Chars
(Op
) then
4838 F1
:= First_Formal
(Ent
);
4839 F2
:= Next_Formal
(F1
);
4841 -- The operation counts as primitive if either operand or
4842 -- result are of the given base type, and both operands are
4843 -- fixed point types.
4845 if (Base_Type
(Etype
(F1
)) = Bas
4846 and then Is_Fixed_Point_Type
(Etype
(F2
)))
4849 (Base_Type
(Etype
(F2
)) = Bas
4850 and then Is_Fixed_Point_Type
(Etype
(F1
)))
4853 (Base_Type
(Etype
(Ent
)) = Bas
4854 and then Is_Fixed_Point_Type
(Etype
(F1
))
4855 and then Is_Fixed_Point_Type
(Etype
(F2
)))
4871 function Specific_Type
(T1
, T2
: Entity_Id
) return Entity_Id
is
4873 if T1
= Universal_Integer
or else T1
= Universal_Real
then
4874 return Base_Type
(T2
);
4876 return Base_Type
(T1
);
4880 -- Start of processing for Check_Arithmetic_Pair
4883 if Op_Name
= Name_Op_Add
or else Op_Name
= Name_Op_Subtract
then
4885 if Is_Numeric_Type
(T1
)
4886 and then Is_Numeric_Type
(T2
)
4887 and then (Covers
(T1
=> T1
, T2
=> T2
)
4889 Covers
(T1
=> T2
, T2
=> T1
))
4891 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
4894 elsif Op_Name
= Name_Op_Multiply
or else Op_Name
= Name_Op_Divide
then
4896 if Is_Fixed_Point_Type
(T1
)
4897 and then (Is_Fixed_Point_Type
(T2
)
4898 or else T2
= Universal_Real
)
4900 -- If Treat_Fixed_As_Integer is set then the Etype is already set
4901 -- and no further processing is required (this is the case of an
4902 -- operator constructed by Exp_Fixd for a fixed point operation)
4903 -- Otherwise add one interpretation with universal fixed result
4904 -- If the operator is given in functional notation, it comes
4905 -- from source and Fixed_As_Integer cannot apply.
4907 if (Nkind
(N
) not in N_Op
4908 or else not Treat_Fixed_As_Integer
(N
))
4910 (not Has_Fixed_Op
(T1
, Op_Id
)
4911 or else Nkind
(Parent
(N
)) = N_Type_Conversion
)
4913 Add_One_Interp
(N
, Op_Id
, Universal_Fixed
);
4916 elsif Is_Fixed_Point_Type
(T2
)
4917 and then (Nkind
(N
) not in N_Op
4918 or else not Treat_Fixed_As_Integer
(N
))
4919 and then T1
= Universal_Real
4921 (not Has_Fixed_Op
(T1
, Op_Id
)
4922 or else Nkind
(Parent
(N
)) = N_Type_Conversion
)
4924 Add_One_Interp
(N
, Op_Id
, Universal_Fixed
);
4926 elsif Is_Numeric_Type
(T1
)
4927 and then Is_Numeric_Type
(T2
)
4928 and then (Covers
(T1
=> T1
, T2
=> T2
)
4930 Covers
(T1
=> T2
, T2
=> T1
))
4932 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
4934 elsif Is_Fixed_Point_Type
(T1
)
4935 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
4936 or else T2
= Universal_Integer
)
4938 Add_One_Interp
(N
, Op_Id
, T1
);
4940 elsif T2
= Universal_Real
4941 and then Base_Type
(T1
) = Base_Type
(Standard_Integer
)
4942 and then Op_Name
= Name_Op_Multiply
4944 Add_One_Interp
(N
, Op_Id
, Any_Fixed
);
4946 elsif T1
= Universal_Real
4947 and then Base_Type
(T2
) = Base_Type
(Standard_Integer
)
4949 Add_One_Interp
(N
, Op_Id
, Any_Fixed
);
4951 elsif Is_Fixed_Point_Type
(T2
)
4952 and then (Base_Type
(T1
) = Base_Type
(Standard_Integer
)
4953 or else T1
= Universal_Integer
)
4954 and then Op_Name
= Name_Op_Multiply
4956 Add_One_Interp
(N
, Op_Id
, T2
);
4958 elsif T1
= Universal_Real
and then T2
= Universal_Integer
then
4959 Add_One_Interp
(N
, Op_Id
, T1
);
4961 elsif T2
= Universal_Real
4962 and then T1
= Universal_Integer
4963 and then Op_Name
= Name_Op_Multiply
4965 Add_One_Interp
(N
, Op_Id
, T2
);
4968 elsif Op_Name
= Name_Op_Mod
or else Op_Name
= Name_Op_Rem
then
4970 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
4971 -- set does not require any special processing, since the Etype is
4972 -- already set (case of operation constructed by Exp_Fixed).
4974 if Is_Integer_Type
(T1
)
4975 and then (Covers
(T1
=> T1
, T2
=> T2
)
4977 Covers
(T1
=> T2
, T2
=> T1
))
4979 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
4982 elsif Op_Name
= Name_Op_Expon
then
4983 if Is_Numeric_Type
(T1
)
4984 and then not Is_Fixed_Point_Type
(T1
)
4985 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
4986 or else T2
= Universal_Integer
)
4988 Add_One_Interp
(N
, Op_Id
, Base_Type
(T1
));
4991 else pragma Assert
(Nkind
(N
) in N_Op_Shift
);
4993 -- If not one of the predefined operators, the node may be one
4994 -- of the intrinsic functions. Its kind is always specific, and
4995 -- we can use it directly, rather than the name of the operation.
4997 if Is_Integer_Type
(T1
)
4998 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
4999 or else T2
= Universal_Integer
)
5001 Add_One_Interp
(N
, Op_Id
, Base_Type
(T1
));
5004 end Check_Arithmetic_Pair
;
5006 -------------------------------
5007 -- Check_Misspelled_Selector --
5008 -------------------------------
5010 procedure Check_Misspelled_Selector
5011 (Prefix
: Entity_Id
;
5014 Max_Suggestions
: constant := 2;
5015 Nr_Of_Suggestions
: Natural := 0;
5017 Suggestion_1
: Entity_Id
:= Empty
;
5018 Suggestion_2
: Entity_Id
:= Empty
;
5023 -- All the components of the prefix of selector Sel are matched
5024 -- against Sel and a count is maintained of possible misspellings.
5025 -- When at the end of the analysis there are one or two (not more!)
5026 -- possible misspellings, these misspellings will be suggested as
5027 -- possible correction.
5029 if not (Is_Private_Type
(Prefix
) or else Is_Record_Type
(Prefix
)) then
5031 -- Concurrent types should be handled as well ???
5036 Comp
:= First_Entity
(Prefix
);
5037 while Nr_Of_Suggestions
<= Max_Suggestions
and then Present
(Comp
) loop
5038 if Is_Visible_Component
(Comp
) then
5039 if Is_Bad_Spelling_Of
(Chars
(Comp
), Chars
(Sel
)) then
5040 Nr_Of_Suggestions
:= Nr_Of_Suggestions
+ 1;
5042 case Nr_Of_Suggestions
is
5043 when 1 => Suggestion_1
:= Comp
;
5044 when 2 => Suggestion_2
:= Comp
;
5045 when others => exit;
5050 Comp
:= Next_Entity
(Comp
);
5053 -- Report at most two suggestions
5055 if Nr_Of_Suggestions
= 1 then
5056 Error_Msg_NE
-- CODEFIX
5057 ("\possible misspelling of&", Sel
, Suggestion_1
);
5059 elsif Nr_Of_Suggestions
= 2 then
5060 Error_Msg_Node_2
:= Suggestion_2
;
5061 Error_Msg_NE
-- CODEFIX
5062 ("\possible misspelling of& or&", Sel
, Suggestion_1
);
5064 end Check_Misspelled_Selector
;
5066 ----------------------
5067 -- Defined_In_Scope --
5068 ----------------------
5070 function Defined_In_Scope
(T
: Entity_Id
; S
: Entity_Id
) return Boolean
5072 S1
: constant Entity_Id
:= Scope
(Base_Type
(T
));
5075 or else (S1
= System_Aux_Id
and then S
= Scope
(S1
));
5076 end Defined_In_Scope
;
5082 procedure Diagnose_Call
(N
: Node_Id
; Nam
: Node_Id
) is
5088 Void_Interp_Seen
: Boolean := False;
5091 pragma Warnings
(Off
, Boolean);
5094 if Ada_Version
>= Ada_2005
then
5095 Actual
:= First_Actual
(N
);
5096 while Present
(Actual
) loop
5098 -- Ada 2005 (AI-50217): Post an error in case of premature
5099 -- usage of an entity from the limited view.
5101 if not Analyzed
(Etype
(Actual
))
5102 and then From_With_Type
(Etype
(Actual
))
5104 Error_Msg_Qual_Level
:= 1;
5106 ("missing with_clause for scope of imported type&",
5107 Actual
, Etype
(Actual
));
5108 Error_Msg_Qual_Level
:= 0;
5111 Next_Actual
(Actual
);
5115 -- Analyze each candidate call again, with full error reporting
5119 ("no candidate interpretations match the actuals:!", Nam
);
5120 Err_Mode
:= All_Errors_Mode
;
5121 All_Errors_Mode
:= True;
5123 -- If this is a call to an operation of a concurrent type,
5124 -- the failed interpretations have been removed from the
5125 -- name. Recover them to provide full diagnostics.
5127 if Nkind
(Parent
(Nam
)) = N_Selected_Component
then
5128 Set_Entity
(Nam
, Empty
);
5129 New_Nam
:= New_Copy_Tree
(Parent
(Nam
));
5130 Set_Is_Overloaded
(New_Nam
, False);
5131 Set_Is_Overloaded
(Selector_Name
(New_Nam
), False);
5132 Set_Parent
(New_Nam
, Parent
(Parent
(Nam
)));
5133 Analyze_Selected_Component
(New_Nam
);
5134 Get_First_Interp
(Selector_Name
(New_Nam
), X
, It
);
5136 Get_First_Interp
(Nam
, X
, It
);
5139 while Present
(It
.Nam
) loop
5140 if Etype
(It
.Nam
) = Standard_Void_Type
then
5141 Void_Interp_Seen
:= True;
5144 Analyze_One_Call
(N
, It
.Nam
, True, Success
);
5145 Get_Next_Interp
(X
, It
);
5148 if Nkind
(N
) = N_Function_Call
then
5149 Get_First_Interp
(Nam
, X
, It
);
5150 while Present
(It
.Nam
) loop
5151 if Ekind_In
(It
.Nam
, E_Function
, E_Operator
) then
5154 Get_Next_Interp
(X
, It
);
5158 -- If all interpretations are procedures, this deserves a
5159 -- more precise message. Ditto if this appears as the prefix
5160 -- of a selected component, which may be a lexical error.
5163 ("\context requires function call, found procedure name", Nam
);
5165 if Nkind
(Parent
(N
)) = N_Selected_Component
5166 and then N
= Prefix
(Parent
(N
))
5168 Error_Msg_N
-- CODEFIX
5169 ("\period should probably be semicolon", Parent
(N
));
5172 elsif Nkind
(N
) = N_Procedure_Call_Statement
5173 and then not Void_Interp_Seen
5176 "\function name found in procedure call", Nam
);
5179 All_Errors_Mode
:= Err_Mode
;
5182 ---------------------------
5183 -- Find_Arithmetic_Types --
5184 ---------------------------
5186 procedure Find_Arithmetic_Types
5191 Index1
: Interp_Index
;
5192 Index2
: Interp_Index
;
5196 procedure Check_Right_Argument
(T
: Entity_Id
);
5197 -- Check right operand of operator
5199 --------------------------
5200 -- Check_Right_Argument --
5201 --------------------------
5203 procedure Check_Right_Argument
(T
: Entity_Id
) is
5205 if not Is_Overloaded
(R
) then
5206 Check_Arithmetic_Pair
(T
, Etype
(R
), Op_Id
, N
);
5208 Get_First_Interp
(R
, Index2
, It2
);
5209 while Present
(It2
.Typ
) loop
5210 Check_Arithmetic_Pair
(T
, It2
.Typ
, Op_Id
, N
);
5211 Get_Next_Interp
(Index2
, It2
);
5214 end Check_Right_Argument
;
5216 -- Start of processing for Find_Arithmetic_Types
5219 if not Is_Overloaded
(L
) then
5220 Check_Right_Argument
(Etype
(L
));
5223 Get_First_Interp
(L
, Index1
, It1
);
5224 while Present
(It1
.Typ
) loop
5225 Check_Right_Argument
(It1
.Typ
);
5226 Get_Next_Interp
(Index1
, It1
);
5230 end Find_Arithmetic_Types
;
5232 ------------------------
5233 -- Find_Boolean_Types --
5234 ------------------------
5236 procedure Find_Boolean_Types
5241 Index
: Interp_Index
;
5244 procedure Check_Numeric_Argument
(T
: Entity_Id
);
5245 -- Special case for logical operations one of whose operands is an
5246 -- integer literal. If both are literal the result is any modular type.
5248 ----------------------------
5249 -- Check_Numeric_Argument --
5250 ----------------------------
5252 procedure Check_Numeric_Argument
(T
: Entity_Id
) is
5254 if T
= Universal_Integer
then
5255 Add_One_Interp
(N
, Op_Id
, Any_Modular
);
5257 elsif Is_Modular_Integer_Type
(T
) then
5258 Add_One_Interp
(N
, Op_Id
, T
);
5260 end Check_Numeric_Argument
;
5262 -- Start of processing for Find_Boolean_Types
5265 if not Is_Overloaded
(L
) then
5266 if Etype
(L
) = Universal_Integer
5267 or else Etype
(L
) = Any_Modular
5269 if not Is_Overloaded
(R
) then
5270 Check_Numeric_Argument
(Etype
(R
));
5273 Get_First_Interp
(R
, Index
, It
);
5274 while Present
(It
.Typ
) loop
5275 Check_Numeric_Argument
(It
.Typ
);
5276 Get_Next_Interp
(Index
, It
);
5280 -- If operands are aggregates, we must assume that they may be
5281 -- boolean arrays, and leave disambiguation for the second pass.
5282 -- If only one is an aggregate, verify that the other one has an
5283 -- interpretation as a boolean array
5285 elsif Nkind
(L
) = N_Aggregate
then
5286 if Nkind
(R
) = N_Aggregate
then
5287 Add_One_Interp
(N
, Op_Id
, Etype
(L
));
5289 elsif not Is_Overloaded
(R
) then
5290 if Valid_Boolean_Arg
(Etype
(R
)) then
5291 Add_One_Interp
(N
, Op_Id
, Etype
(R
));
5295 Get_First_Interp
(R
, Index
, It
);
5296 while Present
(It
.Typ
) loop
5297 if Valid_Boolean_Arg
(It
.Typ
) then
5298 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
5301 Get_Next_Interp
(Index
, It
);
5305 elsif Valid_Boolean_Arg
(Etype
(L
))
5306 and then Has_Compatible_Type
(R
, Etype
(L
))
5308 Add_One_Interp
(N
, Op_Id
, Etype
(L
));
5312 Get_First_Interp
(L
, Index
, It
);
5313 while Present
(It
.Typ
) loop
5314 if Valid_Boolean_Arg
(It
.Typ
)
5315 and then Has_Compatible_Type
(R
, It
.Typ
)
5317 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
5320 Get_Next_Interp
(Index
, It
);
5323 end Find_Boolean_Types
;
5325 ---------------------------
5326 -- Find_Comparison_Types --
5327 ---------------------------
5329 procedure Find_Comparison_Types
5334 Index
: Interp_Index
;
5336 Found
: Boolean := False;
5339 Scop
: Entity_Id
:= Empty
;
5341 procedure Try_One_Interp
(T1
: Entity_Id
);
5342 -- Routine to try one proposed interpretation. Note that the context
5343 -- of the operator plays no role in resolving the arguments, so that
5344 -- if there is more than one interpretation of the operands that is
5345 -- compatible with comparison, the operation is ambiguous.
5347 --------------------
5348 -- Try_One_Interp --
5349 --------------------
5351 procedure Try_One_Interp
(T1
: Entity_Id
) is
5354 -- If the operator is an expanded name, then the type of the operand
5355 -- must be defined in the corresponding scope. If the type is
5356 -- universal, the context will impose the correct type.
5359 and then not Defined_In_Scope
(T1
, Scop
)
5360 and then T1
/= Universal_Integer
5361 and then T1
/= Universal_Real
5362 and then T1
/= Any_String
5363 and then T1
/= Any_Composite
5368 if Valid_Comparison_Arg
(T1
)
5369 and then Has_Compatible_Type
(R
, T1
)
5372 and then Base_Type
(T1
) /= Base_Type
(T_F
)
5374 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
5376 if It
= No_Interp
then
5377 Ambiguous_Operands
(N
);
5378 Set_Etype
(L
, Any_Type
);
5392 Find_Non_Universal_Interpretations
(N
, R
, Op_Id
, T1
);
5397 -- Start of processing for Find_Comparison_Types
5400 -- If left operand is aggregate, the right operand has to
5401 -- provide a usable type for it.
5403 if Nkind
(L
) = N_Aggregate
5404 and then Nkind
(R
) /= N_Aggregate
5406 Find_Comparison_Types
(L
=> R
, R
=> L
, Op_Id
=> Op_Id
, N
=> N
);
5410 if Nkind
(N
) = N_Function_Call
5411 and then Nkind
(Name
(N
)) = N_Expanded_Name
5413 Scop
:= Entity
(Prefix
(Name
(N
)));
5415 -- The prefix may be a package renaming, and the subsequent test
5416 -- requires the original package.
5418 if Ekind
(Scop
) = E_Package
5419 and then Present
(Renamed_Entity
(Scop
))
5421 Scop
:= Renamed_Entity
(Scop
);
5422 Set_Entity
(Prefix
(Name
(N
)), Scop
);
5426 if not Is_Overloaded
(L
) then
5427 Try_One_Interp
(Etype
(L
));
5430 Get_First_Interp
(L
, Index
, It
);
5431 while Present
(It
.Typ
) loop
5432 Try_One_Interp
(It
.Typ
);
5433 Get_Next_Interp
(Index
, It
);
5436 end Find_Comparison_Types
;
5438 ----------------------------------------
5439 -- Find_Non_Universal_Interpretations --
5440 ----------------------------------------
5442 procedure Find_Non_Universal_Interpretations
5448 Index
: Interp_Index
;
5452 if T1
= Universal_Integer
5453 or else T1
= Universal_Real
5455 if not Is_Overloaded
(R
) then
5457 (N
, Op_Id
, Standard_Boolean
, Base_Type
(Etype
(R
)));
5459 Get_First_Interp
(R
, Index
, It
);
5460 while Present
(It
.Typ
) loop
5461 if Covers
(It
.Typ
, T1
) then
5463 (N
, Op_Id
, Standard_Boolean
, Base_Type
(It
.Typ
));
5466 Get_Next_Interp
(Index
, It
);
5470 Add_One_Interp
(N
, Op_Id
, Standard_Boolean
, Base_Type
(T1
));
5472 end Find_Non_Universal_Interpretations
;
5474 ------------------------------
5475 -- Find_Concatenation_Types --
5476 ------------------------------
5478 procedure Find_Concatenation_Types
5483 Op_Type
: constant Entity_Id
:= Etype
(Op_Id
);
5486 if Is_Array_Type
(Op_Type
)
5487 and then not Is_Limited_Type
(Op_Type
)
5489 and then (Has_Compatible_Type
(L
, Op_Type
)
5491 Has_Compatible_Type
(L
, Component_Type
(Op_Type
)))
5493 and then (Has_Compatible_Type
(R
, Op_Type
)
5495 Has_Compatible_Type
(R
, Component_Type
(Op_Type
)))
5497 Add_One_Interp
(N
, Op_Id
, Op_Type
);
5499 end Find_Concatenation_Types
;
5501 -------------------------
5502 -- Find_Equality_Types --
5503 -------------------------
5505 procedure Find_Equality_Types
5510 Index
: Interp_Index
;
5512 Found
: Boolean := False;
5515 Scop
: Entity_Id
:= Empty
;
5517 procedure Try_One_Interp
(T1
: Entity_Id
);
5518 -- The context of the equality operator plays no role in resolving the
5519 -- arguments, so that if there is more than one interpretation of the
5520 -- operands that is compatible with equality, the construct is ambiguous
5521 -- and an error can be emitted now, after trying to disambiguate, i.e.
5522 -- applying preference rules.
5524 --------------------
5525 -- Try_One_Interp --
5526 --------------------
5528 procedure Try_One_Interp
(T1
: Entity_Id
) is
5529 Bas
: constant Entity_Id
:= Base_Type
(T1
);
5532 -- If the operator is an expanded name, then the type of the operand
5533 -- must be defined in the corresponding scope. If the type is
5534 -- universal, the context will impose the correct type. An anonymous
5535 -- type for a 'Access reference is also universal in this sense, as
5536 -- the actual type is obtained from context.
5537 -- In Ada 2005, the equality operator for anonymous access types
5538 -- is declared in Standard, and preference rules apply to it.
5540 if Present
(Scop
) then
5541 if Defined_In_Scope
(T1
, Scop
)
5542 or else T1
= Universal_Integer
5543 or else T1
= Universal_Real
5544 or else T1
= Any_Access
5545 or else T1
= Any_String
5546 or else T1
= Any_Composite
5547 or else (Ekind
(T1
) = E_Access_Subprogram_Type
5548 and then not Comes_From_Source
(T1
))
5552 elsif Ekind
(T1
) = E_Anonymous_Access_Type
5553 and then Scop
= Standard_Standard
5558 -- The scope does not contain an operator for the type
5563 -- If we have infix notation, the operator must be usable. Within
5564 -- an instance, if the type is already established we know it is
5565 -- correct. If an operand is universal it is compatible with any
5568 -- In Ada 2005, the equality on anonymous access types is declared
5569 -- in Standard, and is always visible.
5571 elsif In_Open_Scopes
(Scope
(Bas
))
5572 or else Is_Potentially_Use_Visible
(Bas
)
5573 or else In_Use
(Bas
)
5574 or else (In_Use
(Scope
(Bas
)) and then not Is_Hidden
(Bas
))
5575 or else (In_Instance
5577 (First_Subtype
(T1
) = First_Subtype
(Etype
(R
))
5579 (Is_Numeric_Type
(T1
)
5580 and then Is_Universal_Numeric_Type
(Etype
(R
)))))
5581 or else Ekind
(T1
) = E_Anonymous_Access_Type
5586 -- Save candidate type for subsequent error message, if any
5588 if not Is_Limited_Type
(T1
) then
5589 Candidate_Type
:= T1
;
5595 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
5596 -- Do not allow anonymous access types in equality operators.
5598 if Ada_Version
< Ada_2005
5599 and then Ekind
(T1
) = E_Anonymous_Access_Type
5604 if T1
/= Standard_Void_Type
5605 and then Has_Compatible_Type
(R
, T1
)
5607 ((not Is_Limited_Type
(T1
)
5608 and then not Is_Limited_Composite
(T1
))
5612 and then not Is_Limited_Type
(Component_Type
(T1
))
5613 and then Available_Full_View_Of_Component
(T1
)))
5616 and then Base_Type
(T1
) /= Base_Type
(T_F
)
5618 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
5620 if It
= No_Interp
then
5621 Ambiguous_Operands
(N
);
5622 Set_Etype
(L
, Any_Type
);
5635 if not Analyzed
(L
) then
5639 Find_Non_Universal_Interpretations
(N
, R
, Op_Id
, T1
);
5641 -- Case of operator was not visible, Etype still set to Any_Type
5643 if Etype
(N
) = Any_Type
then
5647 elsif Scop
= Standard_Standard
5648 and then Ekind
(T1
) = E_Anonymous_Access_Type
5654 -- Start of processing for Find_Equality_Types
5657 -- If left operand is aggregate, the right operand has to
5658 -- provide a usable type for it.
5660 if Nkind
(L
) = N_Aggregate
5661 and then Nkind
(R
) /= N_Aggregate
5663 Find_Equality_Types
(L
=> R
, R
=> L
, Op_Id
=> Op_Id
, N
=> N
);
5667 if Nkind
(N
) = N_Function_Call
5668 and then Nkind
(Name
(N
)) = N_Expanded_Name
5670 Scop
:= Entity
(Prefix
(Name
(N
)));
5672 -- The prefix may be a package renaming, and the subsequent test
5673 -- requires the original package.
5675 if Ekind
(Scop
) = E_Package
5676 and then Present
(Renamed_Entity
(Scop
))
5678 Scop
:= Renamed_Entity
(Scop
);
5679 Set_Entity
(Prefix
(Name
(N
)), Scop
);
5683 if not Is_Overloaded
(L
) then
5684 Try_One_Interp
(Etype
(L
));
5687 Get_First_Interp
(L
, Index
, It
);
5688 while Present
(It
.Typ
) loop
5689 Try_One_Interp
(It
.Typ
);
5690 Get_Next_Interp
(Index
, It
);
5693 end Find_Equality_Types
;
5695 -------------------------
5696 -- Find_Negation_Types --
5697 -------------------------
5699 procedure Find_Negation_Types
5704 Index
: Interp_Index
;
5708 if not Is_Overloaded
(R
) then
5709 if Etype
(R
) = Universal_Integer
then
5710 Add_One_Interp
(N
, Op_Id
, Any_Modular
);
5711 elsif Valid_Boolean_Arg
(Etype
(R
)) then
5712 Add_One_Interp
(N
, Op_Id
, Etype
(R
));
5716 Get_First_Interp
(R
, Index
, It
);
5717 while Present
(It
.Typ
) loop
5718 if Valid_Boolean_Arg
(It
.Typ
) then
5719 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
5722 Get_Next_Interp
(Index
, It
);
5725 end Find_Negation_Types
;
5727 ------------------------------
5728 -- Find_Primitive_Operation --
5729 ------------------------------
5731 function Find_Primitive_Operation
(N
: Node_Id
) return Boolean is
5732 Obj
: constant Node_Id
:= Prefix
(N
);
5733 Op
: constant Node_Id
:= Selector_Name
(N
);
5740 Set_Etype
(Op
, Any_Type
);
5742 if Is_Access_Type
(Etype
(Obj
)) then
5743 Typ
:= Designated_Type
(Etype
(Obj
));
5748 if Is_Class_Wide_Type
(Typ
) then
5749 Typ
:= Root_Type
(Typ
);
5752 Prims
:= Primitive_Operations
(Typ
);
5754 Prim
:= First_Elmt
(Prims
);
5755 while Present
(Prim
) loop
5756 if Chars
(Node
(Prim
)) = Chars
(Op
) then
5757 Add_One_Interp
(Op
, Node
(Prim
), Etype
(Node
(Prim
)));
5758 Set_Etype
(N
, Etype
(Node
(Prim
)));
5764 -- Now look for class-wide operations of the type or any of its
5765 -- ancestors by iterating over the homonyms of the selector.
5768 Cls_Type
: constant Entity_Id
:= Class_Wide_Type
(Typ
);
5772 Hom
:= Current_Entity
(Op
);
5773 while Present
(Hom
) loop
5774 if (Ekind
(Hom
) = E_Procedure
5776 Ekind
(Hom
) = E_Function
)
5777 and then Scope
(Hom
) = Scope
(Typ
)
5778 and then Present
(First_Formal
(Hom
))
5780 (Base_Type
(Etype
(First_Formal
(Hom
))) = Cls_Type
5782 (Is_Access_Type
(Etype
(First_Formal
(Hom
)))
5784 Ekind
(Etype
(First_Formal
(Hom
))) =
5785 E_Anonymous_Access_Type
5788 (Designated_Type
(Etype
(First_Formal
(Hom
)))) =
5791 Add_One_Interp
(Op
, Hom
, Etype
(Hom
));
5792 Set_Etype
(N
, Etype
(Hom
));
5795 Hom
:= Homonym
(Hom
);
5799 return Etype
(Op
) /= Any_Type
;
5800 end Find_Primitive_Operation
;
5802 ----------------------
5803 -- Find_Unary_Types --
5804 ----------------------
5806 procedure Find_Unary_Types
5811 Index
: Interp_Index
;
5815 if not Is_Overloaded
(R
) then
5816 if Is_Numeric_Type
(Etype
(R
)) then
5817 Add_One_Interp
(N
, Op_Id
, Base_Type
(Etype
(R
)));
5821 Get_First_Interp
(R
, Index
, It
);
5822 while Present
(It
.Typ
) loop
5823 if Is_Numeric_Type
(It
.Typ
) then
5824 Add_One_Interp
(N
, Op_Id
, Base_Type
(It
.Typ
));
5827 Get_Next_Interp
(Index
, It
);
5830 end Find_Unary_Types
;
5836 function Junk_Operand
(N
: Node_Id
) return Boolean is
5840 if Error_Posted
(N
) then
5844 -- Get entity to be tested
5846 if Is_Entity_Name
(N
)
5847 and then Present
(Entity
(N
))
5851 -- An odd case, a procedure name gets converted to a very peculiar
5852 -- function call, and here is where we detect this happening.
5854 elsif Nkind
(N
) = N_Function_Call
5855 and then Is_Entity_Name
(Name
(N
))
5856 and then Present
(Entity
(Name
(N
)))
5860 -- Another odd case, there are at least some cases of selected
5861 -- components where the selected component is not marked as having
5862 -- an entity, even though the selector does have an entity
5864 elsif Nkind
(N
) = N_Selected_Component
5865 and then Present
(Entity
(Selector_Name
(N
)))
5867 Enode
:= Selector_Name
(N
);
5873 -- Now test the entity we got to see if it is a bad case
5875 case Ekind
(Entity
(Enode
)) is
5879 ("package name cannot be used as operand", Enode
);
5881 when Generic_Unit_Kind
=>
5883 ("generic unit name cannot be used as operand", Enode
);
5887 ("subtype name cannot be used as operand", Enode
);
5891 ("entry name cannot be used as operand", Enode
);
5895 ("procedure name cannot be used as operand", Enode
);
5899 ("exception name cannot be used as operand", Enode
);
5901 when E_Block | E_Label | E_Loop
=>
5903 ("label name cannot be used as operand", Enode
);
5913 --------------------
5914 -- Operator_Check --
5915 --------------------
5917 procedure Operator_Check
(N
: Node_Id
) is
5919 Remove_Abstract_Operations
(N
);
5921 -- Test for case of no interpretation found for operator
5923 if Etype
(N
) = Any_Type
then
5927 Op_Id
: Entity_Id
:= Empty
;
5930 R
:= Right_Opnd
(N
);
5932 if Nkind
(N
) in N_Binary_Op
then
5938 -- If either operand has no type, then don't complain further,
5939 -- since this simply means that we have a propagated error.
5942 or else Etype
(R
) = Any_Type
5943 or else (Nkind
(N
) in N_Binary_Op
and then Etype
(L
) = Any_Type
)
5947 -- We explicitly check for the case of concatenation of component
5948 -- with component to avoid reporting spurious matching array types
5949 -- that might happen to be lurking in distant packages (such as
5950 -- run-time packages). This also prevents inconsistencies in the
5951 -- messages for certain ACVC B tests, which can vary depending on
5952 -- types declared in run-time interfaces. Another improvement when
5953 -- aggregates are present is to look for a well-typed operand.
5955 elsif Present
(Candidate_Type
)
5956 and then (Nkind
(N
) /= N_Op_Concat
5957 or else Is_Array_Type
(Etype
(L
))
5958 or else Is_Array_Type
(Etype
(R
)))
5960 if Nkind
(N
) = N_Op_Concat
then
5961 if Etype
(L
) /= Any_Composite
5962 and then Is_Array_Type
(Etype
(L
))
5964 Candidate_Type
:= Etype
(L
);
5966 elsif Etype
(R
) /= Any_Composite
5967 and then Is_Array_Type
(Etype
(R
))
5969 Candidate_Type
:= Etype
(R
);
5973 Error_Msg_NE
-- CODEFIX
5974 ("operator for} is not directly visible!",
5975 N
, First_Subtype
(Candidate_Type
));
5978 U
: constant Node_Id
:=
5979 Cunit
(Get_Source_Unit
(Candidate_Type
));
5981 if Unit_Is_Visible
(U
) then
5982 Error_Msg_N
-- CODEFIX
5983 ("use clause would make operation legal!", N
);
5985 Error_Msg_NE
-- CODEFIX
5986 ("add with_clause and use_clause for&!",
5987 N
, Defining_Entity
(Unit
(U
)));
5992 -- If either operand is a junk operand (e.g. package name), then
5993 -- post appropriate error messages, but do not complain further.
5995 -- Note that the use of OR in this test instead of OR ELSE is
5996 -- quite deliberate, we may as well check both operands in the
5997 -- binary operator case.
5999 elsif Junk_Operand
(R
)
6000 or (Nkind
(N
) in N_Binary_Op
and then Junk_Operand
(L
))
6004 -- If we have a logical operator, one of whose operands is
6005 -- Boolean, then we know that the other operand cannot resolve to
6006 -- Boolean (since we got no interpretations), but in that case we
6007 -- pretty much know that the other operand should be Boolean, so
6008 -- resolve it that way (generating an error)
6010 elsif Nkind_In
(N
, N_Op_And
, N_Op_Or
, N_Op_Xor
) then
6011 if Etype
(L
) = Standard_Boolean
then
6012 Resolve
(R
, Standard_Boolean
);
6014 elsif Etype
(R
) = Standard_Boolean
then
6015 Resolve
(L
, Standard_Boolean
);
6019 -- For an arithmetic operator or comparison operator, if one
6020 -- of the operands is numeric, then we know the other operand
6021 -- is not the same numeric type. If it is a non-numeric type,
6022 -- then probably it is intended to match the other operand.
6024 elsif Nkind_In
(N
, N_Op_Add
,
6030 Nkind_In
(N
, N_Op_Lt
,
6036 if Is_Numeric_Type
(Etype
(L
))
6037 and then not Is_Numeric_Type
(Etype
(R
))
6039 Resolve
(R
, Etype
(L
));
6042 elsif Is_Numeric_Type
(Etype
(R
))
6043 and then not Is_Numeric_Type
(Etype
(L
))
6045 Resolve
(L
, Etype
(R
));
6049 -- Comparisons on A'Access are common enough to deserve a
6052 elsif Nkind_In
(N
, N_Op_Eq
, N_Op_Ne
)
6053 and then Ekind
(Etype
(L
)) = E_Access_Attribute_Type
6054 and then Ekind
(Etype
(R
)) = E_Access_Attribute_Type
6057 ("two access attributes cannot be compared directly", N
);
6059 ("\use qualified expression for one of the operands",
6063 -- Another one for C programmers
6065 elsif Nkind
(N
) = N_Op_Concat
6066 and then Valid_Boolean_Arg
(Etype
(L
))
6067 and then Valid_Boolean_Arg
(Etype
(R
))
6069 Error_Msg_N
("invalid operands for concatenation", N
);
6070 Error_Msg_N
-- CODEFIX
6071 ("\maybe AND was meant", N
);
6074 -- A special case for comparison of access parameter with null
6076 elsif Nkind
(N
) = N_Op_Eq
6077 and then Is_Entity_Name
(L
)
6078 and then Nkind
(Parent
(Entity
(L
))) = N_Parameter_Specification
6079 and then Nkind
(Parameter_Type
(Parent
(Entity
(L
)))) =
6081 and then Nkind
(R
) = N_Null
6083 Error_Msg_N
("access parameter is not allowed to be null", L
);
6084 Error_Msg_N
("\(call would raise Constraint_Error)", L
);
6087 -- Another special case for exponentiation, where the right
6088 -- operand must be Natural, independently of the base.
6090 elsif Nkind
(N
) = N_Op_Expon
6091 and then Is_Numeric_Type
(Etype
(L
))
6092 and then not Is_Overloaded
(R
)
6094 First_Subtype
(Base_Type
(Etype
(R
))) /= Standard_Integer
6095 and then Base_Type
(Etype
(R
)) /= Universal_Integer
6097 if Ada_Version
>= Ada_2012
6098 and then Has_Dimension_System
(Etype
(L
))
6101 ("exponent for dimensioned type must be a rational" &
6102 ", found}", R
, Etype
(R
));
6105 ("exponent must be of type Natural, found}", R
, Etype
(R
));
6111 -- If we fall through then just give general message. Note that in
6112 -- the following messages, if the operand is overloaded we choose
6113 -- an arbitrary type to complain about, but that is probably more
6114 -- useful than not giving a type at all.
6116 if Nkind
(N
) in N_Unary_Op
then
6117 Error_Msg_Node_2
:= Etype
(R
);
6118 Error_Msg_N
("operator& not defined for}", N
);
6122 if Nkind
(N
) in N_Binary_Op
then
6123 if not Is_Overloaded
(L
)
6124 and then not Is_Overloaded
(R
)
6125 and then Base_Type
(Etype
(L
)) = Base_Type
(Etype
(R
))
6127 Error_Msg_Node_2
:= First_Subtype
(Etype
(R
));
6128 Error_Msg_N
("there is no applicable operator& for}", N
);
6131 -- Another attempt to find a fix: one of the candidate
6132 -- interpretations may not be use-visible. This has
6133 -- already been checked for predefined operators, so
6134 -- we examine only user-defined functions.
6136 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
6138 while Present
(Op_Id
) loop
6139 if Ekind
(Op_Id
) /= E_Operator
6140 and then Is_Overloadable
(Op_Id
)
6142 if not Is_Immediately_Visible
(Op_Id
)
6143 and then not In_Use
(Scope
(Op_Id
))
6144 and then not Is_Abstract_Subprogram
(Op_Id
)
6145 and then not Is_Hidden
(Op_Id
)
6146 and then Ekind
(Scope
(Op_Id
)) = E_Package
6149 (L
, Etype
(First_Formal
(Op_Id
)))
6151 (Next_Formal
(First_Formal
(Op_Id
)))
6155 Etype
(Next_Formal
(First_Formal
(Op_Id
))))
6158 ("No legal interpretation for operator&", N
);
6160 ("\use clause on& would make operation legal",
6166 Op_Id
:= Homonym
(Op_Id
);
6170 Error_Msg_N
("invalid operand types for operator&", N
);
6172 if Nkind
(N
) /= N_Op_Concat
then
6173 Error_Msg_NE
("\left operand has}!", N
, Etype
(L
));
6174 Error_Msg_NE
("\right operand has}!", N
, Etype
(R
));
6184 -----------------------------------------
6185 -- Process_Implicit_Dereference_Prefix --
6186 -----------------------------------------
6188 function Process_Implicit_Dereference_Prefix
6190 P
: Entity_Id
) return Entity_Id
6193 Typ
: constant Entity_Id
:= Designated_Type
(Etype
(P
));
6197 and then (Operating_Mode
= Check_Semantics
or else not Expander_Active
)
6199 -- We create a dummy reference to E to ensure that the reference
6200 -- is not considered as part of an assignment (an implicit
6201 -- dereference can never assign to its prefix). The Comes_From_Source
6202 -- attribute needs to be propagated for accurate warnings.
6204 Ref
:= New_Reference_To
(E
, Sloc
(P
));
6205 Set_Comes_From_Source
(Ref
, Comes_From_Source
(P
));
6206 Generate_Reference
(E
, Ref
);
6209 -- An implicit dereference is a legal occurrence of an
6210 -- incomplete type imported through a limited_with clause,
6211 -- if the full view is visible.
6213 if From_With_Type
(Typ
)
6214 and then not From_With_Type
(Scope
(Typ
))
6216 (Is_Immediately_Visible
(Scope
(Typ
))
6218 (Is_Child_Unit
(Scope
(Typ
))
6219 and then Is_Visible_Child_Unit
(Scope
(Typ
))))
6221 return Available_View
(Typ
);
6226 end Process_Implicit_Dereference_Prefix
;
6228 --------------------------------
6229 -- Remove_Abstract_Operations --
6230 --------------------------------
6232 procedure Remove_Abstract_Operations
(N
: Node_Id
) is
6233 Abstract_Op
: Entity_Id
:= Empty
;
6234 Address_Kludge
: Boolean := False;
6238 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
6239 -- activate this if either extensions are enabled, or if the abstract
6240 -- operation in question comes from a predefined file. This latter test
6241 -- allows us to use abstract to make operations invisible to users. In
6242 -- particular, if type Address is non-private and abstract subprograms
6243 -- are used to hide its operators, they will be truly hidden.
6245 type Operand_Position
is (First_Op
, Second_Op
);
6246 Univ_Type
: constant Entity_Id
:= Universal_Interpretation
(N
);
6248 procedure Remove_Address_Interpretations
(Op
: Operand_Position
);
6249 -- Ambiguities may arise when the operands are literal and the address
6250 -- operations in s-auxdec are visible. In that case, remove the
6251 -- interpretation of a literal as Address, to retain the semantics of
6252 -- Address as a private type.
6254 ------------------------------------
6255 -- Remove_Address_Interpretations --
6256 ------------------------------------
6258 procedure Remove_Address_Interpretations
(Op
: Operand_Position
) is
6262 if Is_Overloaded
(N
) then
6263 Get_First_Interp
(N
, I
, It
);
6264 while Present
(It
.Nam
) loop
6265 Formal
:= First_Entity
(It
.Nam
);
6267 if Op
= Second_Op
then
6268 Formal
:= Next_Entity
(Formal
);
6271 if Is_Descendent_Of_Address
(Etype
(Formal
)) then
6272 Address_Kludge
:= True;
6276 Get_Next_Interp
(I
, It
);
6279 end Remove_Address_Interpretations
;
6281 -- Start of processing for Remove_Abstract_Operations
6284 if Is_Overloaded
(N
) then
6285 if Debug_Flag_V
then
6286 Write_Str
("Remove_Abstract_Operations: ");
6287 Write_Overloads
(N
);
6290 Get_First_Interp
(N
, I
, It
);
6292 while Present
(It
.Nam
) loop
6293 if Is_Overloadable
(It
.Nam
)
6294 and then Is_Abstract_Subprogram
(It
.Nam
)
6295 and then not Is_Dispatching_Operation
(It
.Nam
)
6297 Abstract_Op
:= It
.Nam
;
6299 if Is_Descendent_Of_Address
(It
.Typ
) then
6300 Address_Kludge
:= True;
6304 -- In Ada 2005, this operation does not participate in overload
6305 -- resolution. If the operation is defined in a predefined
6306 -- unit, it is one of the operations declared abstract in some
6307 -- variants of System, and it must be removed as well.
6309 elsif Ada_Version
>= Ada_2005
6310 or else Is_Predefined_File_Name
6311 (Unit_File_Name
(Get_Source_Unit
(It
.Nam
)))
6318 Get_Next_Interp
(I
, It
);
6321 if No
(Abstract_Op
) then
6323 -- If some interpretation yields an integer type, it is still
6324 -- possible that there are address interpretations. Remove them
6325 -- if one operand is a literal, to avoid spurious ambiguities
6326 -- on systems where Address is a visible integer type.
6328 if Is_Overloaded
(N
)
6329 and then Nkind
(N
) in N_Op
6330 and then Is_Integer_Type
(Etype
(N
))
6332 if Nkind
(N
) in N_Binary_Op
then
6333 if Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
then
6334 Remove_Address_Interpretations
(Second_Op
);
6336 elsif Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
then
6337 Remove_Address_Interpretations
(First_Op
);
6342 elsif Nkind
(N
) in N_Op
then
6344 -- Remove interpretations that treat literals as addresses. This
6345 -- is never appropriate, even when Address is defined as a visible
6346 -- Integer type. The reason is that we would really prefer Address
6347 -- to behave as a private type, even in this case, which is there
6348 -- only to accommodate oddities of VMS address sizes. If Address
6349 -- is a visible integer type, we get lots of overload ambiguities.
6351 if Nkind
(N
) in N_Binary_Op
then
6353 U1
: constant Boolean :=
6354 Present
(Universal_Interpretation
(Right_Opnd
(N
)));
6355 U2
: constant Boolean :=
6356 Present
(Universal_Interpretation
(Left_Opnd
(N
)));
6360 Remove_Address_Interpretations
(Second_Op
);
6364 Remove_Address_Interpretations
(First_Op
);
6367 if not (U1
and U2
) then
6369 -- Remove corresponding predefined operator, which is
6370 -- always added to the overload set.
6372 Get_First_Interp
(N
, I
, It
);
6373 while Present
(It
.Nam
) loop
6374 if Scope
(It
.Nam
) = Standard_Standard
6375 and then Base_Type
(It
.Typ
) =
6376 Base_Type
(Etype
(Abstract_Op
))
6381 Get_Next_Interp
(I
, It
);
6384 elsif Is_Overloaded
(N
)
6385 and then Present
(Univ_Type
)
6387 -- If both operands have a universal interpretation,
6388 -- it is still necessary to remove interpretations that
6389 -- yield Address. Any remaining ambiguities will be
6390 -- removed in Disambiguate.
6392 Get_First_Interp
(N
, I
, It
);
6393 while Present
(It
.Nam
) loop
6394 if Is_Descendent_Of_Address
(It
.Typ
) then
6397 elsif not Is_Type
(It
.Nam
) then
6398 Set_Entity
(N
, It
.Nam
);
6401 Get_Next_Interp
(I
, It
);
6407 elsif Nkind
(N
) = N_Function_Call
6409 (Nkind
(Name
(N
)) = N_Operator_Symbol
6411 (Nkind
(Name
(N
)) = N_Expanded_Name
6413 Nkind
(Selector_Name
(Name
(N
))) = N_Operator_Symbol
))
6417 Arg1
: constant Node_Id
:= First
(Parameter_Associations
(N
));
6418 U1
: constant Boolean :=
6419 Present
(Universal_Interpretation
(Arg1
));
6420 U2
: constant Boolean :=
6421 Present
(Next
(Arg1
)) and then
6422 Present
(Universal_Interpretation
(Next
(Arg1
)));
6426 Remove_Address_Interpretations
(First_Op
);
6430 Remove_Address_Interpretations
(Second_Op
);
6433 if not (U1
and U2
) then
6434 Get_First_Interp
(N
, I
, It
);
6435 while Present
(It
.Nam
) loop
6436 if Scope
(It
.Nam
) = Standard_Standard
6437 and then It
.Typ
= Base_Type
(Etype
(Abstract_Op
))
6442 Get_Next_Interp
(I
, It
);
6448 -- If the removal has left no valid interpretations, emit an error
6449 -- message now and label node as illegal.
6451 if Present
(Abstract_Op
) then
6452 Get_First_Interp
(N
, I
, It
);
6456 -- Removal of abstract operation left no viable candidate
6458 Set_Etype
(N
, Any_Type
);
6459 Error_Msg_Sloc
:= Sloc
(Abstract_Op
);
6461 ("cannot call abstract operation& declared#", N
, Abstract_Op
);
6463 -- In Ada 2005, an abstract operation may disable predefined
6464 -- operators. Since the context is not yet known, we mark the
6465 -- predefined operators as potentially hidden. Do not include
6466 -- predefined operators when addresses are involved since this
6467 -- case is handled separately.
6469 elsif Ada_Version
>= Ada_2005
6470 and then not Address_Kludge
6472 while Present
(It
.Nam
) loop
6473 if Is_Numeric_Type
(It
.Typ
)
6474 and then Scope
(It
.Typ
) = Standard_Standard
6476 Set_Abstract_Op
(I
, Abstract_Op
);
6479 Get_Next_Interp
(I
, It
);
6484 if Debug_Flag_V
then
6485 Write_Str
("Remove_Abstract_Operations done: ");
6486 Write_Overloads
(N
);
6489 end Remove_Abstract_Operations
;
6491 ----------------------------
6492 -- Try_Container_Indexing --
6493 ----------------------------
6495 function Try_Container_Indexing
6498 Exprs
: List_Id
) return Boolean
6500 Loc
: constant Source_Ptr
:= Sloc
(N
);
6504 Func_Name
: Node_Id
;
6509 -- Check whether type has a specified indexing aspect
6513 if Is_Variable
(Prefix
) then
6514 Func_Name
:= Find_Aspect
(Etype
(Prefix
), Aspect_Variable_Indexing
);
6517 if No
(Func_Name
) then
6518 Func_Name
:= Find_Aspect
(Etype
(Prefix
), Aspect_Constant_Indexing
);
6521 -- If aspect does not exist the expression is illegal. Error is
6522 -- diagnosed in caller.
6524 if No
(Func_Name
) then
6526 -- The prefix itself may be an indexing of a container
6527 -- rewrite as such and re-analyze.
6529 if Has_Implicit_Dereference
(Etype
(Prefix
)) then
6530 Build_Explicit_Dereference
6531 (Prefix
, First_Discriminant
(Etype
(Prefix
)));
6532 return Try_Container_Indexing
(N
, Prefix
, Exprs
);
6539 Assoc
:= New_List
(Relocate_Node
(Prefix
));
6541 -- A generalized iterator may have nore than one index expression, so
6542 -- transfer all of them to the argument list to be used in the call.
6547 Arg
:= First
(Exprs
);
6548 while Present
(Arg
) loop
6549 Append
(Relocate_Node
(Arg
), Assoc
);
6554 if not Is_Overloaded
(Func_Name
) then
6555 Func
:= Entity
(Func_Name
);
6557 Make_Function_Call
(Loc
,
6558 Name
=> New_Occurrence_Of
(Func
, Loc
),
6559 Parameter_Associations
=> Assoc
);
6560 Rewrite
(N
, Indexing
);
6563 -- If the return type of the indexing function is a reference type,
6564 -- add the dereference as a possible interpretation. Note that the
6565 -- indexing aspect may be a function that returns the element type
6566 -- with no intervening implicit dereference.
6568 if Has_Discriminants
(Etype
(Func
)) then
6569 Disc
:= First_Discriminant
(Etype
(Func
));
6570 while Present
(Disc
) loop
6571 if Has_Implicit_Dereference
(Disc
) then
6572 Add_One_Interp
(N
, Disc
, Designated_Type
(Etype
(Disc
)));
6576 Next_Discriminant
(Disc
);
6581 Indexing
:= Make_Function_Call
(Loc
,
6582 Name
=> Make_Identifier
(Loc
, Chars
(Func_Name
)),
6583 Parameter_Associations
=> Assoc
);
6585 Rewrite
(N
, Indexing
);
6593 Get_First_Interp
(Func_Name
, I
, It
);
6594 Set_Etype
(N
, Any_Type
);
6595 while Present
(It
.Nam
) loop
6596 Analyze_One_Call
(N
, It
.Nam
, False, Success
);
6598 Set_Etype
(Name
(N
), It
.Typ
);
6599 Set_Entity
(Name
(N
), It
.Nam
);
6601 -- Add implicit dereference interpretation
6603 if Has_Discriminants
(Etype
(It
.Nam
)) then
6604 Disc
:= First_Discriminant
(Etype
(It
.Nam
));
6605 while Present
(Disc
) loop
6606 if Has_Implicit_Dereference
(Disc
) then
6608 (N
, Disc
, Designated_Type
(Etype
(Disc
)));
6612 Next_Discriminant
(Disc
);
6618 Get_Next_Interp
(I
, It
);
6623 if Etype
(N
) = Any_Type
then
6625 ("container cannot be indexed with&", N
, Etype
(First
(Exprs
)));
6626 Rewrite
(N
, New_Occurrence_Of
(Any_Id
, Loc
));
6632 end Try_Container_Indexing
;
6634 -----------------------
6635 -- Try_Indirect_Call --
6636 -----------------------
6638 function Try_Indirect_Call
6641 Typ
: Entity_Id
) return Boolean
6647 pragma Warnings
(Off
, Call_OK
);
6650 Normalize_Actuals
(N
, Designated_Type
(Typ
), False, Call_OK
);
6652 Actual
:= First_Actual
(N
);
6653 Formal
:= First_Formal
(Designated_Type
(Typ
));
6654 while Present
(Actual
) and then Present
(Formal
) loop
6655 if not Has_Compatible_Type
(Actual
, Etype
(Formal
)) then
6660 Next_Formal
(Formal
);
6663 if No
(Actual
) and then No
(Formal
) then
6664 Add_One_Interp
(N
, Nam
, Etype
(Designated_Type
(Typ
)));
6666 -- Nam is a candidate interpretation for the name in the call,
6667 -- if it is not an indirect call.
6669 if not Is_Type
(Nam
)
6670 and then Is_Entity_Name
(Name
(N
))
6672 Set_Entity
(Name
(N
), Nam
);
6679 end Try_Indirect_Call
;
6681 ----------------------
6682 -- Try_Indexed_Call --
6683 ----------------------
6685 function Try_Indexed_Call
6689 Skip_First
: Boolean) return Boolean
6691 Loc
: constant Source_Ptr
:= Sloc
(N
);
6692 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
6697 Actual
:= First
(Actuals
);
6699 -- If the call was originally written in prefix form, skip the first
6700 -- actual, which is obviously not defaulted.
6706 Index
:= First_Index
(Typ
);
6707 while Present
(Actual
) and then Present
(Index
) loop
6709 -- If the parameter list has a named association, the expression
6710 -- is definitely a call and not an indexed component.
6712 if Nkind
(Actual
) = N_Parameter_Association
then
6716 if Is_Entity_Name
(Actual
)
6717 and then Is_Type
(Entity
(Actual
))
6718 and then No
(Next
(Actual
))
6720 -- A single actual that is a type name indicates a slice if the
6721 -- type is discrete, and an error otherwise.
6723 if Is_Discrete_Type
(Entity
(Actual
)) then
6727 Make_Function_Call
(Loc
,
6728 Name
=> Relocate_Node
(Name
(N
))),
6730 New_Occurrence_Of
(Entity
(Actual
), Sloc
(Actual
))));
6735 Error_Msg_N
("invalid use of type in expression", Actual
);
6736 Set_Etype
(N
, Any_Type
);
6741 elsif not Has_Compatible_Type
(Actual
, Etype
(Index
)) then
6749 if No
(Actual
) and then No
(Index
) then
6750 Add_One_Interp
(N
, Nam
, Component_Type
(Typ
));
6752 -- Nam is a candidate interpretation for the name in the call,
6753 -- if it is not an indirect call.
6755 if not Is_Type
(Nam
)
6756 and then Is_Entity_Name
(Name
(N
))
6758 Set_Entity
(Name
(N
), Nam
);
6765 end Try_Indexed_Call
;
6767 --------------------------
6768 -- Try_Object_Operation --
6769 --------------------------
6771 function Try_Object_Operation
6772 (N
: Node_Id
; CW_Test_Only
: Boolean := False) return Boolean
6774 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
6775 Is_Subprg_Call
: constant Boolean := K
in N_Subprogram_Call
;
6776 Loc
: constant Source_Ptr
:= Sloc
(N
);
6777 Obj
: constant Node_Id
:= Prefix
(N
);
6779 Subprog
: constant Node_Id
:=
6780 Make_Identifier
(Sloc
(Selector_Name
(N
)),
6781 Chars
=> Chars
(Selector_Name
(N
)));
6782 -- Identifier on which possible interpretations will be collected
6784 Report_Error
: Boolean := False;
6785 -- If no candidate interpretation matches the context, redo the
6786 -- analysis with error enabled to provide additional information.
6789 Candidate
: Entity_Id
:= Empty
;
6790 New_Call_Node
: Node_Id
:= Empty
;
6791 Node_To_Replace
: Node_Id
;
6792 Obj_Type
: Entity_Id
:= Etype
(Obj
);
6793 Success
: Boolean := False;
6795 function Valid_Candidate
6798 Subp
: Entity_Id
) return Entity_Id
;
6799 -- If the subprogram is a valid interpretation, record it, and add
6800 -- to the list of interpretations of Subprog. Otherwise return Empty.
6802 procedure Complete_Object_Operation
6803 (Call_Node
: Node_Id
;
6804 Node_To_Replace
: Node_Id
);
6805 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
6806 -- Call_Node, insert the object (or its dereference) as the first actual
6807 -- in the call, and complete the analysis of the call.
6809 procedure Report_Ambiguity
(Op
: Entity_Id
);
6810 -- If a prefixed procedure call is ambiguous, indicate whether the
6811 -- call includes an implicit dereference or an implicit 'Access.
6813 procedure Transform_Object_Operation
6814 (Call_Node
: out Node_Id
;
6815 Node_To_Replace
: out Node_Id
);
6816 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
6817 -- Call_Node is the resulting subprogram call, Node_To_Replace is
6818 -- either N or the parent of N, and Subprog is a reference to the
6819 -- subprogram we are trying to match.
6821 function Try_Class_Wide_Operation
6822 (Call_Node
: Node_Id
;
6823 Node_To_Replace
: Node_Id
) return Boolean;
6824 -- Traverse all ancestor types looking for a class-wide subprogram
6825 -- for which the current operation is a valid non-dispatching call.
6827 procedure Try_One_Prefix_Interpretation
(T
: Entity_Id
);
6828 -- If prefix is overloaded, its interpretation may include different
6829 -- tagged types, and we must examine the primitive operations and
6830 -- the class-wide operations of each in order to find candidate
6831 -- interpretations for the call as a whole.
6833 function Try_Primitive_Operation
6834 (Call_Node
: Node_Id
;
6835 Node_To_Replace
: Node_Id
) return Boolean;
6836 -- Traverse the list of primitive subprograms looking for a dispatching
6837 -- operation for which the current node is a valid call .
6839 ---------------------
6840 -- Valid_Candidate --
6841 ---------------------
6843 function Valid_Candidate
6846 Subp
: Entity_Id
) return Entity_Id
6848 Arr_Type
: Entity_Id
;
6849 Comp_Type
: Entity_Id
;
6852 -- If the subprogram is a valid interpretation, record it in global
6853 -- variable Subprog, to collect all possible overloadings.
6856 if Subp
/= Entity
(Subprog
) then
6857 Add_One_Interp
(Subprog
, Subp
, Etype
(Subp
));
6861 -- If the call may be an indexed call, retrieve component type of
6862 -- resulting expression, and add possible interpretation.
6867 if Nkind
(Call
) = N_Function_Call
6868 and then Nkind
(Parent
(N
)) = N_Indexed_Component
6869 and then Needs_One_Actual
(Subp
)
6871 if Is_Array_Type
(Etype
(Subp
)) then
6872 Arr_Type
:= Etype
(Subp
);
6874 elsif Is_Access_Type
(Etype
(Subp
))
6875 and then Is_Array_Type
(Designated_Type
(Etype
(Subp
)))
6877 Arr_Type
:= Designated_Type
(Etype
(Subp
));
6881 if Present
(Arr_Type
) then
6883 -- Verify that the actuals (excluding the object) match the types
6891 Actual
:= Next
(First_Actual
(Call
));
6892 Index
:= First_Index
(Arr_Type
);
6893 while Present
(Actual
) and then Present
(Index
) loop
6894 if not Has_Compatible_Type
(Actual
, Etype
(Index
)) then
6899 Next_Actual
(Actual
);
6905 and then Present
(Arr_Type
)
6907 Comp_Type
:= Component_Type
(Arr_Type
);
6911 if Present
(Comp_Type
)
6912 and then Etype
(Subprog
) /= Comp_Type
6914 Add_One_Interp
(Subprog
, Subp
, Comp_Type
);
6918 if Etype
(Call
) /= Any_Type
then
6923 end Valid_Candidate
;
6925 -------------------------------
6926 -- Complete_Object_Operation --
6927 -------------------------------
6929 procedure Complete_Object_Operation
6930 (Call_Node
: Node_Id
;
6931 Node_To_Replace
: Node_Id
)
6933 Control
: constant Entity_Id
:= First_Formal
(Entity
(Subprog
));
6934 Formal_Type
: constant Entity_Id
:= Etype
(Control
);
6935 First_Actual
: Node_Id
;
6938 -- Place the name of the operation, with its interpretations,
6939 -- on the rewritten call.
6941 Set_Name
(Call_Node
, Subprog
);
6943 First_Actual
:= First
(Parameter_Associations
(Call_Node
));
6945 -- For cross-reference purposes, treat the new node as being in
6946 -- the source if the original one is. Set entity and type, even
6947 -- though they may be overwritten during resolution if overloaded.
6949 Set_Comes_From_Source
(Subprog
, Comes_From_Source
(N
));
6950 Set_Comes_From_Source
(Call_Node
, Comes_From_Source
(N
));
6952 if Nkind
(N
) = N_Selected_Component
6953 and then not Inside_A_Generic
6955 Set_Entity
(Selector_Name
(N
), Entity
(Subprog
));
6956 Set_Etype
(Selector_Name
(N
), Etype
(Entity
(Subprog
)));
6959 -- If need be, rewrite first actual as an explicit dereference
6960 -- If the call is overloaded, the rewriting can only be done
6961 -- once the primitive operation is identified.
6963 if Is_Overloaded
(Subprog
) then
6965 -- The prefix itself may be overloaded, and its interpretations
6966 -- must be propagated to the new actual in the call.
6968 if Is_Overloaded
(Obj
) then
6969 Save_Interps
(Obj
, First_Actual
);
6972 Rewrite
(First_Actual
, Obj
);
6974 elsif not Is_Access_Type
(Formal_Type
)
6975 and then Is_Access_Type
(Etype
(Obj
))
6977 Rewrite
(First_Actual
,
6978 Make_Explicit_Dereference
(Sloc
(Obj
), Obj
));
6979 Analyze
(First_Actual
);
6981 -- If we need to introduce an explicit dereference, verify that
6982 -- the resulting actual is compatible with the mode of the formal.
6984 if Ekind
(First_Formal
(Entity
(Subprog
))) /= E_In_Parameter
6985 and then Is_Access_Constant
(Etype
(Obj
))
6988 ("expect variable in call to&", Prefix
(N
), Entity
(Subprog
));
6991 -- Conversely, if the formal is an access parameter and the object
6992 -- is not, replace the actual with a 'Access reference. Its analysis
6993 -- will check that the object is aliased.
6995 elsif Is_Access_Type
(Formal_Type
)
6996 and then not Is_Access_Type
(Etype
(Obj
))
6998 -- A special case: A.all'access is illegal if A is an access to a
6999 -- constant and the context requires an access to a variable.
7001 if not Is_Access_Constant
(Formal_Type
) then
7002 if (Nkind
(Obj
) = N_Explicit_Dereference
7003 and then Is_Access_Constant
(Etype
(Prefix
(Obj
))))
7004 or else not Is_Variable
(Obj
)
7007 ("actual for& must be a variable", Obj
, Control
);
7011 Rewrite
(First_Actual
,
7012 Make_Attribute_Reference
(Loc
,
7013 Attribute_Name
=> Name_Access
,
7014 Prefix
=> Relocate_Node
(Obj
)));
7016 if not Is_Aliased_View
(Obj
) then
7018 ("object in prefixed call to& must be aliased"
7019 & " (RM-2005 4.3.1 (13))",
7020 Prefix
(First_Actual
), Subprog
);
7023 Analyze
(First_Actual
);
7026 if Is_Overloaded
(Obj
) then
7027 Save_Interps
(Obj
, First_Actual
);
7030 Rewrite
(First_Actual
, Obj
);
7033 Rewrite
(Node_To_Replace
, Call_Node
);
7035 -- Propagate the interpretations collected in subprog to the new
7036 -- function call node, to be resolved from context.
7038 if Is_Overloaded
(Subprog
) then
7039 Save_Interps
(Subprog
, Node_To_Replace
);
7042 Analyze
(Node_To_Replace
);
7044 -- If the operation has been rewritten into a call, which may get
7045 -- subsequently an explicit dereference, preserve the type on the
7046 -- original node (selected component or indexed component) for
7047 -- subsequent legality tests, e.g. Is_Variable. which examines
7048 -- the original node.
7050 if Nkind
(Node_To_Replace
) = N_Function_Call
then
7052 (Original_Node
(Node_To_Replace
), Etype
(Node_To_Replace
));
7055 end Complete_Object_Operation
;
7057 ----------------------
7058 -- Report_Ambiguity --
7059 ----------------------
7061 procedure Report_Ambiguity
(Op
: Entity_Id
) is
7062 Access_Actual
: constant Boolean :=
7063 Is_Access_Type
(Etype
(Prefix
(N
)));
7064 Access_Formal
: Boolean := False;
7067 Error_Msg_Sloc
:= Sloc
(Op
);
7069 if Present
(First_Formal
(Op
)) then
7070 Access_Formal
:= Is_Access_Type
(Etype
(First_Formal
(Op
)));
7073 if Access_Formal
and then not Access_Actual
then
7074 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
7076 ("\possible interpretation"
7077 & " (inherited, with implicit 'Access) #", N
);
7080 ("\possible interpretation (with implicit 'Access) #", N
);
7083 elsif not Access_Formal
and then Access_Actual
then
7084 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
7086 ("\possible interpretation"
7087 & " ( inherited, with implicit dereference) #", N
);
7090 ("\possible interpretation (with implicit dereference) #", N
);
7094 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
7095 Error_Msg_N
("\possible interpretation (inherited)#", N
);
7097 Error_Msg_N
-- CODEFIX
7098 ("\possible interpretation#", N
);
7101 end Report_Ambiguity
;
7103 --------------------------------
7104 -- Transform_Object_Operation --
7105 --------------------------------
7107 procedure Transform_Object_Operation
7108 (Call_Node
: out Node_Id
;
7109 Node_To_Replace
: out Node_Id
)
7111 Dummy
: constant Node_Id
:= New_Copy
(Obj
);
7112 -- Placeholder used as a first parameter in the call, replaced
7113 -- eventually by the proper object.
7115 Parent_Node
: constant Node_Id
:= Parent
(N
);
7121 -- Common case covering 1) Call to a procedure and 2) Call to a
7122 -- function that has some additional actuals.
7124 if Nkind
(Parent_Node
) in N_Subprogram_Call
7126 -- N is a selected component node containing the name of the
7127 -- subprogram. If N is not the name of the parent node we must
7128 -- not replace the parent node by the new construct. This case
7129 -- occurs when N is a parameterless call to a subprogram that
7130 -- is an actual parameter of a call to another subprogram. For
7132 -- Some_Subprogram (..., Obj.Operation, ...)
7134 and then Name
(Parent_Node
) = N
7136 Node_To_Replace
:= Parent_Node
;
7138 Actuals
:= Parameter_Associations
(Parent_Node
);
7140 if Present
(Actuals
) then
7141 Prepend
(Dummy
, Actuals
);
7143 Actuals
:= New_List
(Dummy
);
7146 if Nkind
(Parent_Node
) = N_Procedure_Call_Statement
then
7148 Make_Procedure_Call_Statement
(Loc
,
7149 Name
=> New_Copy
(Subprog
),
7150 Parameter_Associations
=> Actuals
);
7154 Make_Function_Call
(Loc
,
7155 Name
=> New_Copy
(Subprog
),
7156 Parameter_Associations
=> Actuals
);
7160 -- Before analysis, a function call appears as an indexed component
7161 -- if there are no named associations.
7163 elsif Nkind
(Parent_Node
) = N_Indexed_Component
7164 and then N
= Prefix
(Parent_Node
)
7166 Node_To_Replace
:= Parent_Node
;
7167 Actuals
:= Expressions
(Parent_Node
);
7169 Actual
:= First
(Actuals
);
7170 while Present
(Actual
) loop
7175 Prepend
(Dummy
, Actuals
);
7178 Make_Function_Call
(Loc
,
7179 Name
=> New_Copy
(Subprog
),
7180 Parameter_Associations
=> Actuals
);
7182 -- Parameterless call: Obj.F is rewritten as F (Obj)
7185 Node_To_Replace
:= N
;
7188 Make_Function_Call
(Loc
,
7189 Name
=> New_Copy
(Subprog
),
7190 Parameter_Associations
=> New_List
(Dummy
));
7192 end Transform_Object_Operation
;
7194 ------------------------------
7195 -- Try_Class_Wide_Operation --
7196 ------------------------------
7198 function Try_Class_Wide_Operation
7199 (Call_Node
: Node_Id
;
7200 Node_To_Replace
: Node_Id
) return Boolean
7202 Anc_Type
: Entity_Id
;
7203 Matching_Op
: Entity_Id
:= Empty
;
7206 procedure Traverse_Homonyms
7207 (Anc_Type
: Entity_Id
;
7208 Error
: out Boolean);
7209 -- Traverse the homonym chain of the subprogram searching for those
7210 -- homonyms whose first formal has the Anc_Type's class-wide type,
7211 -- or an anonymous access type designating the class-wide type. If
7212 -- an ambiguity is detected, then Error is set to True.
7214 procedure Traverse_Interfaces
7215 (Anc_Type
: Entity_Id
;
7216 Error
: out Boolean);
7217 -- Traverse the list of interfaces, if any, associated with Anc_Type
7218 -- and search for acceptable class-wide homonyms associated with each
7219 -- interface. If an ambiguity is detected, then Error is set to True.
7221 -----------------------
7222 -- Traverse_Homonyms --
7223 -----------------------
7225 procedure Traverse_Homonyms
7226 (Anc_Type
: Entity_Id
;
7227 Error
: out Boolean)
7229 Cls_Type
: Entity_Id
;
7237 Cls_Type
:= Class_Wide_Type
(Anc_Type
);
7239 Hom
:= Current_Entity
(Subprog
);
7241 -- Find a non-hidden operation whose first parameter is of the
7242 -- class-wide type, a subtype thereof, or an anonymous access
7243 -- to same. If in an instance, the operation can be considered
7244 -- even if hidden (it may be hidden because the instantiation is
7245 -- expanded after the containing package has been analyzed).
7247 while Present
(Hom
) loop
7248 if Ekind_In
(Hom
, E_Procedure
, E_Function
)
7249 and then (not Is_Hidden
(Hom
) or else In_Instance
)
7250 and then Scope
(Hom
) = Scope
(Anc_Type
)
7251 and then Present
(First_Formal
(Hom
))
7253 (Base_Type
(Etype
(First_Formal
(Hom
))) = Cls_Type
7255 (Is_Access_Type
(Etype
(First_Formal
(Hom
)))
7257 Ekind
(Etype
(First_Formal
(Hom
))) =
7258 E_Anonymous_Access_Type
7261 (Designated_Type
(Etype
(First_Formal
(Hom
)))) =
7264 -- If the context is a procedure call, ignore functions
7265 -- in the name of the call.
7267 if Ekind
(Hom
) = E_Function
7268 and then Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
7269 and then N
= Name
(Parent
(N
))
7273 -- If the context is a function call, ignore procedures
7274 -- in the name of the call.
7276 elsif Ekind
(Hom
) = E_Procedure
7277 and then Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
7282 Set_Etype
(Call_Node
, Any_Type
);
7283 Set_Is_Overloaded
(Call_Node
, False);
7286 if No
(Matching_Op
) then
7287 Hom_Ref
:= New_Reference_To
(Hom
, Sloc
(Subprog
));
7288 Set_Etype
(Call_Node
, Any_Type
);
7289 Set_Parent
(Call_Node
, Parent
(Node_To_Replace
));
7291 Set_Name
(Call_Node
, Hom_Ref
);
7296 Report
=> Report_Error
,
7298 Skip_First
=> True);
7301 Valid_Candidate
(Success
, Call_Node
, Hom
);
7307 Report
=> Report_Error
,
7309 Skip_First
=> True);
7311 if Present
(Valid_Candidate
(Success
, Call_Node
, Hom
))
7312 and then Nkind
(Call_Node
) /= N_Function_Call
7314 Error_Msg_NE
("ambiguous call to&", N
, Hom
);
7315 Report_Ambiguity
(Matching_Op
);
7316 Report_Ambiguity
(Hom
);
7324 Hom
:= Homonym
(Hom
);
7326 end Traverse_Homonyms
;
7328 -------------------------
7329 -- Traverse_Interfaces --
7330 -------------------------
7332 procedure Traverse_Interfaces
7333 (Anc_Type
: Entity_Id
;
7334 Error
: out Boolean)
7336 Intface_List
: constant List_Id
:=
7337 Abstract_Interface_List
(Anc_Type
);
7343 if Is_Non_Empty_List
(Intface_List
) then
7344 Intface
:= First
(Intface_List
);
7345 while Present
(Intface
) loop
7347 -- Look for acceptable class-wide homonyms associated with
7350 Traverse_Homonyms
(Etype
(Intface
), Error
);
7356 -- Continue the search by looking at each of the interface's
7357 -- associated interface ancestors.
7359 Traverse_Interfaces
(Etype
(Intface
), Error
);
7368 end Traverse_Interfaces
;
7370 -- Start of processing for Try_Class_Wide_Operation
7373 -- If we are searching only for conflicting class-wide subprograms
7374 -- then initialize directly Matching_Op with the target entity.
7376 if CW_Test_Only
then
7377 Matching_Op
:= Entity
(Selector_Name
(N
));
7380 -- Loop through ancestor types (including interfaces), traversing
7381 -- the homonym chain of the subprogram, trying out those homonyms
7382 -- whose first formal has the class-wide type of the ancestor, or
7383 -- an anonymous access type designating the class-wide type.
7385 Anc_Type
:= Obj_Type
;
7387 -- Look for a match among homonyms associated with the ancestor
7389 Traverse_Homonyms
(Anc_Type
, Error
);
7395 -- Continue the search for matches among homonyms associated with
7396 -- any interfaces implemented by the ancestor.
7398 Traverse_Interfaces
(Anc_Type
, Error
);
7404 exit when Etype
(Anc_Type
) = Anc_Type
;
7405 Anc_Type
:= Etype
(Anc_Type
);
7408 if Present
(Matching_Op
) then
7409 Set_Etype
(Call_Node
, Etype
(Matching_Op
));
7412 return Present
(Matching_Op
);
7413 end Try_Class_Wide_Operation
;
7415 -----------------------------------
7416 -- Try_One_Prefix_Interpretation --
7417 -----------------------------------
7419 procedure Try_One_Prefix_Interpretation
(T
: Entity_Id
) is
7423 if Is_Access_Type
(Obj_Type
) then
7424 Obj_Type
:= Designated_Type
(Obj_Type
);
7427 if Ekind
(Obj_Type
) = E_Private_Subtype
then
7428 Obj_Type
:= Base_Type
(Obj_Type
);
7431 if Is_Class_Wide_Type
(Obj_Type
) then
7432 Obj_Type
:= Etype
(Class_Wide_Type
(Obj_Type
));
7435 -- The type may have be obtained through a limited_with clause,
7436 -- in which case the primitive operations are available on its
7437 -- non-limited view. If still incomplete, retrieve full view.
7439 if Ekind
(Obj_Type
) = E_Incomplete_Type
7440 and then From_With_Type
(Obj_Type
)
7442 Obj_Type
:= Get_Full_View
(Non_Limited_View
(Obj_Type
));
7445 -- If the object is not tagged, or the type is still an incomplete
7446 -- type, this is not a prefixed call.
7448 if not Is_Tagged_Type
(Obj_Type
)
7449 or else Is_Incomplete_Type
(Obj_Type
)
7455 Dup_Call_Node
: constant Node_Id
:= New_Copy
(New_Call_Node
);
7456 CW_Result
: Boolean;
7457 Prim_Result
: Boolean;
7458 pragma Unreferenced
(CW_Result
);
7461 if not CW_Test_Only
then
7463 Try_Primitive_Operation
7464 (Call_Node
=> New_Call_Node
,
7465 Node_To_Replace
=> Node_To_Replace
);
7468 -- Check if there is a class-wide subprogram covering the
7469 -- primitive. This check must be done even if a candidate
7470 -- was found in order to report ambiguous calls.
7472 if not (Prim_Result
) then
7474 Try_Class_Wide_Operation
7475 (Call_Node
=> New_Call_Node
,
7476 Node_To_Replace
=> Node_To_Replace
);
7478 -- If we found a primitive we search for class-wide subprograms
7479 -- using a duplicate of the call node (done to avoid missing its
7480 -- decoration if there is no ambiguity).
7484 Try_Class_Wide_Operation
7485 (Call_Node
=> Dup_Call_Node
,
7486 Node_To_Replace
=> Node_To_Replace
);
7489 end Try_One_Prefix_Interpretation
;
7491 -----------------------------
7492 -- Try_Primitive_Operation --
7493 -----------------------------
7495 function Try_Primitive_Operation
7496 (Call_Node
: Node_Id
;
7497 Node_To_Replace
: Node_Id
) return Boolean
7500 Prim_Op
: Entity_Id
;
7501 Matching_Op
: Entity_Id
:= Empty
;
7502 Prim_Op_Ref
: Node_Id
:= Empty
;
7504 Corr_Type
: Entity_Id
:= Empty
;
7505 -- If the prefix is a synchronized type, the controlling type of
7506 -- the primitive operation is the corresponding record type, else
7507 -- this is the object type itself.
7509 Success
: Boolean := False;
7511 function Collect_Generic_Type_Ops
(T
: Entity_Id
) return Elist_Id
;
7512 -- For tagged types the candidate interpretations are found in
7513 -- the list of primitive operations of the type and its ancestors.
7514 -- For formal tagged types we have to find the operations declared
7515 -- in the same scope as the type (including in the generic formal
7516 -- part) because the type itself carries no primitive operations,
7517 -- except for formal derived types that inherit the operations of
7518 -- the parent and progenitors.
7519 -- If the context is a generic subprogram body, the generic formals
7520 -- are visible by name, but are not in the entity list of the
7521 -- subprogram because that list starts with the subprogram formals.
7522 -- We retrieve the candidate operations from the generic declaration.
7524 function Is_Private_Overriding
(Op
: Entity_Id
) return Boolean;
7525 -- An operation that overrides an inherited operation in the private
7526 -- part of its package may be hidden, but if the inherited operation
7527 -- is visible a direct call to it will dispatch to the private one,
7528 -- which is therefore a valid candidate.
7530 function Valid_First_Argument_Of
(Op
: Entity_Id
) return Boolean;
7531 -- Verify that the prefix, dereferenced if need be, is a valid
7532 -- controlling argument in a call to Op. The remaining actuals
7533 -- are checked in the subsequent call to Analyze_One_Call.
7535 ------------------------------
7536 -- Collect_Generic_Type_Ops --
7537 ------------------------------
7539 function Collect_Generic_Type_Ops
(T
: Entity_Id
) return Elist_Id
is
7540 Bas
: constant Entity_Id
:= Base_Type
(T
);
7541 Candidates
: constant Elist_Id
:= New_Elmt_List
;
7545 procedure Check_Candidate
;
7546 -- The operation is a candidate if its first parameter is a
7547 -- controlling operand of the desired type.
7549 -----------------------
7550 -- Check_Candidate; --
7551 -----------------------
7553 procedure Check_Candidate
is
7555 Formal
:= First_Formal
(Subp
);
7558 and then Is_Controlling_Formal
(Formal
)
7560 (Base_Type
(Etype
(Formal
)) = Bas
7562 (Is_Access_Type
(Etype
(Formal
))
7563 and then Designated_Type
(Etype
(Formal
)) = Bas
))
7565 Append_Elmt
(Subp
, Candidates
);
7567 end Check_Candidate
;
7569 -- Start of processing for Collect_Generic_Type_Ops
7572 if Is_Derived_Type
(T
) then
7573 return Primitive_Operations
(T
);
7575 elsif Ekind_In
(Scope
(T
), E_Procedure
, E_Function
) then
7577 -- Scan the list of generic formals to find subprograms
7578 -- that may have a first controlling formal of the type.
7580 if Nkind
(Unit_Declaration_Node
(Scope
(T
)))
7581 = N_Generic_Subprogram_Declaration
7588 First
(Generic_Formal_Declarations
7589 (Unit_Declaration_Node
(Scope
(T
))));
7590 while Present
(Decl
) loop
7591 if Nkind
(Decl
) in N_Formal_Subprogram_Declaration
then
7592 Subp
:= Defining_Entity
(Decl
);
7603 -- Scan the list of entities declared in the same scope as
7604 -- the type. In general this will be an open scope, given that
7605 -- the call we are analyzing can only appear within a generic
7606 -- declaration or body (either the one that declares T, or a
7609 -- For a subtype representing a generic actual type, go to the
7612 if Is_Generic_Actual_Type
(T
) then
7613 Subp
:= First_Entity
(Scope
(Base_Type
(T
)));
7615 Subp
:= First_Entity
(Scope
(T
));
7618 while Present
(Subp
) loop
7619 if Is_Overloadable
(Subp
) then
7628 end Collect_Generic_Type_Ops
;
7630 ---------------------------
7631 -- Is_Private_Overriding --
7632 ---------------------------
7634 function Is_Private_Overriding
(Op
: Entity_Id
) return Boolean is
7635 Visible_Op
: constant Entity_Id
:= Homonym
(Op
);
7638 return Present
(Visible_Op
)
7639 and then Scope
(Op
) = Scope
(Visible_Op
)
7640 and then not Comes_From_Source
(Visible_Op
)
7641 and then Alias
(Visible_Op
) = Op
7642 and then not Is_Hidden
(Visible_Op
);
7643 end Is_Private_Overriding
;
7645 -----------------------------
7646 -- Valid_First_Argument_Of --
7647 -----------------------------
7649 function Valid_First_Argument_Of
(Op
: Entity_Id
) return Boolean is
7650 Typ
: Entity_Id
:= Etype
(First_Formal
(Op
));
7653 if Is_Concurrent_Type
(Typ
)
7654 and then Present
(Corresponding_Record_Type
(Typ
))
7656 Typ
:= Corresponding_Record_Type
(Typ
);
7659 -- Simple case. Object may be a subtype of the tagged type or
7660 -- may be the corresponding record of a synchronized type.
7662 return Obj_Type
= Typ
7663 or else Base_Type
(Obj_Type
) = Typ
7664 or else Corr_Type
= Typ
7666 -- Prefix can be dereferenced
7669 (Is_Access_Type
(Corr_Type
)
7670 and then Designated_Type
(Corr_Type
) = Typ
)
7672 -- Formal is an access parameter, for which the object
7673 -- can provide an access.
7676 (Ekind
(Typ
) = E_Anonymous_Access_Type
7678 Base_Type
(Designated_Type
(Typ
)) = Base_Type
(Corr_Type
));
7679 end Valid_First_Argument_Of
;
7681 -- Start of processing for Try_Primitive_Operation
7684 -- Look for subprograms in the list of primitive operations. The name
7685 -- must be identical, and the kind of call indicates the expected
7686 -- kind of operation (function or procedure). If the type is a
7687 -- (tagged) synchronized type, the primitive ops are attached to the
7688 -- corresponding record (base) type.
7690 if Is_Concurrent_Type
(Obj_Type
) then
7691 if Present
(Corresponding_Record_Type
(Obj_Type
)) then
7692 Corr_Type
:= Base_Type
(Corresponding_Record_Type
(Obj_Type
));
7693 Elmt
:= First_Elmt
(Primitive_Operations
(Corr_Type
));
7695 Corr_Type
:= Obj_Type
;
7696 Elmt
:= First_Elmt
(Collect_Generic_Type_Ops
(Obj_Type
));
7699 elsif not Is_Generic_Type
(Obj_Type
) then
7700 Corr_Type
:= Obj_Type
;
7701 Elmt
:= First_Elmt
(Primitive_Operations
(Obj_Type
));
7704 Corr_Type
:= Obj_Type
;
7705 Elmt
:= First_Elmt
(Collect_Generic_Type_Ops
(Obj_Type
));
7708 while Present
(Elmt
) loop
7709 Prim_Op
:= Node
(Elmt
);
7711 if Chars
(Prim_Op
) = Chars
(Subprog
)
7712 and then Present
(First_Formal
(Prim_Op
))
7713 and then Valid_First_Argument_Of
(Prim_Op
)
7715 (Nkind
(Call_Node
) = N_Function_Call
)
7716 = (Ekind
(Prim_Op
) = E_Function
)
7718 -- Ada 2005 (AI-251): If this primitive operation corresponds
7719 -- with an immediate ancestor interface there is no need to add
7720 -- it to the list of interpretations; the corresponding aliased
7721 -- primitive is also in this list of primitive operations and
7722 -- will be used instead.
7724 if (Present
(Interface_Alias
(Prim_Op
))
7725 and then Is_Ancestor
(Find_Dispatching_Type
7726 (Alias
(Prim_Op
)), Corr_Type
))
7728 -- Do not consider hidden primitives unless the type is in an
7729 -- open scope or we are within an instance, where visibility
7730 -- is known to be correct, or else if this is an overriding
7731 -- operation in the private part for an inherited operation.
7733 or else (Is_Hidden
(Prim_Op
)
7734 and then not Is_Immediately_Visible
(Obj_Type
)
7735 and then not In_Instance
7736 and then not Is_Private_Overriding
(Prim_Op
))
7741 Set_Etype
(Call_Node
, Any_Type
);
7742 Set_Is_Overloaded
(Call_Node
, False);
7744 if No
(Matching_Op
) then
7745 Prim_Op_Ref
:= New_Reference_To
(Prim_Op
, Sloc
(Subprog
));
7746 Candidate
:= Prim_Op
;
7748 Set_Parent
(Call_Node
, Parent
(Node_To_Replace
));
7750 Set_Name
(Call_Node
, Prim_Op_Ref
);
7756 Report
=> Report_Error
,
7758 Skip_First
=> True);
7760 Matching_Op
:= Valid_Candidate
(Success
, Call_Node
, Prim_Op
);
7762 -- More than one interpretation, collect for subsequent
7763 -- disambiguation. If this is a procedure call and there
7764 -- is another match, report ambiguity now.
7770 Report
=> Report_Error
,
7772 Skip_First
=> True);
7774 if Present
(Valid_Candidate
(Success
, Call_Node
, Prim_Op
))
7775 and then Nkind
(Call_Node
) /= N_Function_Call
7777 Error_Msg_NE
("ambiguous call to&", N
, Prim_Op
);
7778 Report_Ambiguity
(Matching_Op
);
7779 Report_Ambiguity
(Prim_Op
);
7789 if Present
(Matching_Op
) then
7790 Set_Etype
(Call_Node
, Etype
(Matching_Op
));
7793 return Present
(Matching_Op
);
7794 end Try_Primitive_Operation
;
7796 -- Start of processing for Try_Object_Operation
7799 Analyze_Expression
(Obj
);
7801 -- Analyze the actuals if node is known to be a subprogram call
7803 if Is_Subprg_Call
and then N
= Name
(Parent
(N
)) then
7804 Actual
:= First
(Parameter_Associations
(Parent
(N
)));
7805 while Present
(Actual
) loop
7806 Analyze_Expression
(Actual
);
7811 -- Build a subprogram call node, using a copy of Obj as its first
7812 -- actual. This is a placeholder, to be replaced by an explicit
7813 -- dereference when needed.
7815 Transform_Object_Operation
7816 (Call_Node
=> New_Call_Node
,
7817 Node_To_Replace
=> Node_To_Replace
);
7819 Set_Etype
(New_Call_Node
, Any_Type
);
7820 Set_Etype
(Subprog
, Any_Type
);
7821 Set_Parent
(New_Call_Node
, Parent
(Node_To_Replace
));
7823 if not Is_Overloaded
(Obj
) then
7824 Try_One_Prefix_Interpretation
(Obj_Type
);
7831 Get_First_Interp
(Obj
, I
, It
);
7832 while Present
(It
.Nam
) loop
7833 Try_One_Prefix_Interpretation
(It
.Typ
);
7834 Get_Next_Interp
(I
, It
);
7839 if Etype
(New_Call_Node
) /= Any_Type
then
7841 -- No need to complete the tree transformations if we are only
7842 -- searching for conflicting class-wide subprograms
7844 if CW_Test_Only
then
7847 Complete_Object_Operation
7848 (Call_Node
=> New_Call_Node
,
7849 Node_To_Replace
=> Node_To_Replace
);
7853 elsif Present
(Candidate
) then
7855 -- The argument list is not type correct. Re-analyze with error
7856 -- reporting enabled, and use one of the possible candidates.
7857 -- In All_Errors_Mode, re-analyze all failed interpretations.
7859 if All_Errors_Mode
then
7860 Report_Error
:= True;
7861 if Try_Primitive_Operation
7862 (Call_Node
=> New_Call_Node
,
7863 Node_To_Replace
=> Node_To_Replace
)
7866 Try_Class_Wide_Operation
7867 (Call_Node
=> New_Call_Node
,
7868 Node_To_Replace
=> Node_To_Replace
)
7875 (N
=> New_Call_Node
,
7879 Skip_First
=> True);
7882 -- No need for further errors
7887 -- There was no candidate operation, so report it as an error
7888 -- in the caller: Analyze_Selected_Component.
7892 end Try_Object_Operation
;
7898 procedure wpo
(T
: Entity_Id
) is
7903 if not Is_Tagged_Type
(T
) then
7907 E
:= First_Elmt
(Primitive_Operations
(Base_Type
(T
)));
7908 while Present
(E
) loop
7910 Write_Int
(Int
(Op
));
7911 Write_Str
(" === ");
7912 Write_Name
(Chars
(Op
));
7914 Write_Name
(Chars
(Scope
(Op
)));