1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Einfo
; use Einfo
;
29 with Errout
; use Errout
;
30 with Exp_Aggr
; use Exp_Aggr
;
31 with Exp_Atag
; use Exp_Atag
;
32 with Exp_Ch4
; use Exp_Ch4
;
33 with Exp_Ch6
; use Exp_Ch6
;
34 with Exp_Ch7
; use Exp_Ch7
;
35 with Exp_Ch9
; use Exp_Ch9
;
36 with Exp_Ch11
; use Exp_Ch11
;
37 with Exp_Dbug
; use Exp_Dbug
;
38 with Exp_Disp
; use Exp_Disp
;
39 with Exp_Dist
; use Exp_Dist
;
40 with Exp_Smem
; use Exp_Smem
;
41 with Exp_Strm
; use Exp_Strm
;
42 with Exp_Tss
; use Exp_Tss
;
43 with Exp_Util
; use Exp_Util
;
44 with Freeze
; use Freeze
;
45 with Namet
; use Namet
;
46 with Nlists
; use Nlists
;
47 with Nmake
; use Nmake
;
49 with Restrict
; use Restrict
;
50 with Rident
; use Rident
;
51 with Rtsfind
; use Rtsfind
;
53 with Sem_Aux
; use Sem_Aux
;
54 with Sem_Attr
; use Sem_Attr
;
55 with Sem_Cat
; use Sem_Cat
;
56 with Sem_Ch3
; use Sem_Ch3
;
57 with Sem_Ch6
; use Sem_Ch6
;
58 with Sem_Ch8
; use Sem_Ch8
;
59 with Sem_Disp
; use Sem_Disp
;
60 with Sem_Eval
; use Sem_Eval
;
61 with Sem_Mech
; use Sem_Mech
;
62 with Sem_Res
; use Sem_Res
;
63 with Sem_SCIL
; use Sem_SCIL
;
64 with Sem_Type
; use Sem_Type
;
65 with Sem_Util
; use Sem_Util
;
66 with Sinfo
; use Sinfo
;
67 with Stand
; use Stand
;
68 with Snames
; use Snames
;
69 with Targparm
; use Targparm
;
70 with Tbuild
; use Tbuild
;
71 with Ttypes
; use Ttypes
;
72 with Validsw
; use Validsw
;
74 package body Exp_Ch3
is
76 -----------------------
77 -- Local Subprograms --
78 -----------------------
80 procedure Adjust_Discriminants
(Rtype
: Entity_Id
);
81 -- This is used when freezing a record type. It attempts to construct
82 -- more restrictive subtypes for discriminants so that the max size of
83 -- the record can be calculated more accurately. See the body of this
84 -- procedure for details.
86 procedure Build_Array_Init_Proc
(A_Type
: Entity_Id
; Nod
: Node_Id
);
87 -- Build initialization procedure for given array type. Nod is a node
88 -- used for attachment of any actions required in its construction.
89 -- It also supplies the source location used for the procedure.
91 function Build_Discriminant_Formals
93 Use_Dl
: Boolean) return List_Id
;
94 -- This function uses the discriminants of a type to build a list of
95 -- formal parameters, used in Build_Init_Procedure among other places.
96 -- If the flag Use_Dl is set, the list is built using the already
97 -- defined discriminals of the type, as is the case for concurrent
98 -- types with discriminants. Otherwise new identifiers are created,
99 -- with the source names of the discriminants.
101 function Build_Equivalent_Array_Aggregate
(T
: Entity_Id
) return Node_Id
;
102 -- This function builds a static aggregate that can serve as the initial
103 -- value for an array type whose bounds are static, and whose component
104 -- type is a composite type that has a static equivalent aggregate.
105 -- The equivalent array aggregate is used both for object initialization
106 -- and for component initialization, when used in the following function.
108 function Build_Equivalent_Record_Aggregate
(T
: Entity_Id
) return Node_Id
;
109 -- This function builds a static aggregate that can serve as the initial
110 -- value for a record type whose components are scalar and initialized
111 -- with compile-time values, or arrays with similar initialization or
112 -- defaults. When possible, initialization of an object of the type can
113 -- be achieved by using a copy of the aggregate as an initial value, thus
114 -- removing the implicit call that would otherwise constitute elaboration
117 procedure Build_Record_Init_Proc
(N
: Node_Id
; Rec_Ent
: Entity_Id
);
118 -- Build record initialization procedure. N is the type declaration
119 -- node, and Rec_Ent is the corresponding entity for the record type.
121 procedure Build_Slice_Assignment
(Typ
: Entity_Id
);
122 -- Build assignment procedure for one-dimensional arrays of controlled
123 -- types. Other array and slice assignments are expanded in-line, but
124 -- the code expansion for controlled components (when control actions
125 -- are active) can lead to very large blocks that GCC3 handles poorly.
127 procedure Build_Untagged_Equality
(Typ
: Entity_Id
);
128 -- AI05-0123: Equality on untagged records composes. This procedure
129 -- builds the equality routine for an untagged record that has components
130 -- of a record type that has user-defined primitive equality operations.
131 -- The resulting operation is a TSS subprogram.
133 procedure Build_Variant_Record_Equality
(Typ
: Entity_Id
);
134 -- Create An Equality function for the non-tagged variant record 'Typ'
135 -- and attach it to the TSS list
137 procedure Check_Stream_Attributes
(Typ
: Entity_Id
);
138 -- Check that if a limited extension has a parent with user-defined stream
139 -- attributes, and does not itself have user-defined stream-attributes,
140 -- then any limited component of the extension also has the corresponding
141 -- user-defined stream attributes.
143 procedure Clean_Task_Names
145 Proc_Id
: Entity_Id
);
146 -- If an initialization procedure includes calls to generate names
147 -- for task subcomponents, indicate that secondary stack cleanup is
148 -- needed after an initialization. Typ is the component type, and Proc_Id
149 -- the initialization procedure for the enclosing composite type.
151 procedure Expand_Tagged_Root
(T
: Entity_Id
);
152 -- Add a field _Tag at the beginning of the record. This field carries
153 -- the value of the access to the Dispatch table. This procedure is only
154 -- called on root type, the _Tag field being inherited by the descendants.
156 procedure Expand_Freeze_Array_Type
(N
: Node_Id
);
157 -- Freeze an array type. Deals with building the initialization procedure,
158 -- creating the packed array type for a packed array and also with the
159 -- creation of the controlling procedures for the controlled case. The
160 -- argument N is the N_Freeze_Entity node for the type.
162 procedure Expand_Freeze_Class_Wide_Type
(N
: Node_Id
);
163 -- Freeze a class-wide type. Build routine Finalize_Address for the purpose
164 -- of finalizing controlled derivations from the class-wide's root type.
166 procedure Expand_Freeze_Enumeration_Type
(N
: Node_Id
);
167 -- Freeze enumeration type with non-standard representation. Builds the
168 -- array and function needed to convert between enumeration pos and
169 -- enumeration representation values. N is the N_Freeze_Entity node
172 procedure Expand_Freeze_Record_Type
(N
: Node_Id
);
173 -- Freeze record type. Builds all necessary discriminant checking
174 -- and other ancillary functions, and builds dispatch tables where
175 -- needed. The argument N is the N_Freeze_Entity node. This processing
176 -- applies only to E_Record_Type entities, not to class wide types,
177 -- record subtypes, or private types.
179 procedure Freeze_Stream_Operations
(N
: Node_Id
; Typ
: Entity_Id
);
180 -- Treat user-defined stream operations as renaming_as_body if the
181 -- subprogram they rename is not frozen when the type is frozen.
183 procedure Initialization_Warning
(E
: Entity_Id
);
184 -- If static elaboration of the package is requested, indicate
185 -- when a type does meet the conditions for static initialization. If
186 -- E is a type, it has components that have no static initialization.
187 -- if E is an entity, its initial expression is not compile-time known.
189 function Init_Formals
(Typ
: Entity_Id
) return List_Id
;
190 -- This function builds the list of formals for an initialization routine.
191 -- The first formal is always _Init with the given type. For task value
192 -- record types and types containing tasks, three additional formals are
195 -- _Master : Master_Id
196 -- _Chain : in out Activation_Chain
197 -- _Task_Name : String
199 -- The caller must append additional entries for discriminants if required.
201 function In_Runtime
(E
: Entity_Id
) return Boolean;
202 -- Check if E is defined in the RTL (in a child of Ada or System). Used
203 -- to avoid to bring in the overhead of _Input, _Output for tagged types.
205 function Is_User_Defined_Equality
(Prim
: Node_Id
) return Boolean;
206 -- Returns true if Prim is a user defined equality function
208 function Is_Variable_Size_Array
(E
: Entity_Id
) return Boolean;
209 -- Returns true if E has variable size components
211 function Is_Variable_Size_Record
(E
: Entity_Id
) return Boolean;
212 -- Returns true if E has variable size components
214 function Make_Eq_Body
216 Eq_Name
: Name_Id
) return Node_Id
;
217 -- Build the body of a primitive equality operation for a tagged record
218 -- type, or in Ada 2012 for any record type that has components with a
219 -- user-defined equality. Factored out of Predefined_Primitive_Bodies.
221 function Make_Eq_Case
224 Discr
: Entity_Id
:= Empty
) return List_Id
;
225 -- Building block for variant record equality. Defined to share the code
226 -- between the tagged and non-tagged case. Given a Component_List node CL,
227 -- it generates an 'if' followed by a 'case' statement that compares all
228 -- components of local temporaries named X and Y (that are declared as
229 -- formals at some upper level). E provides the Sloc to be used for the
230 -- generated code. Discr is used as the case statement switch in the case
231 -- of Unchecked_Union equality.
235 L
: List_Id
) return Node_Id
;
236 -- Building block for variant record equality. Defined to share the code
237 -- between the tagged and non-tagged case. Given the list of components
238 -- (or discriminants) L, it generates a return statement that compares all
239 -- components of local temporaries named X and Y (that are declared as
240 -- formals at some upper level). E provides the Sloc to be used for the
243 function Make_Neq_Body
(Tag_Typ
: Entity_Id
) return Node_Id
;
244 -- Search for a renaming of the inequality dispatching primitive of
245 -- this tagged type. If found then build and return the corresponding
246 -- rename-as-body inequality subprogram; otherwise return Empty.
248 procedure Make_Predefined_Primitive_Specs
249 (Tag_Typ
: Entity_Id
;
250 Predef_List
: out List_Id
;
251 Renamed_Eq
: out Entity_Id
);
252 -- Create a list with the specs of the predefined primitive operations.
253 -- For tagged types that are interfaces all these primitives are defined
256 -- The following entries are present for all tagged types, and provide
257 -- the results of the corresponding attribute applied to the object.
258 -- Dispatching is required in general, since the result of the attribute
259 -- will vary with the actual object subtype.
261 -- _size provides result of 'Size attribute
262 -- typSR provides result of 'Read attribute
263 -- typSW provides result of 'Write attribute
264 -- typSI provides result of 'Input attribute
265 -- typSO provides result of 'Output attribute
267 -- The following entries are additionally present for non-limited tagged
268 -- types, and implement additional dispatching operations for predefined
271 -- _equality implements "=" operator
272 -- _assign implements assignment operation
273 -- typDF implements deep finalization
274 -- typDA implements deep adjust
276 -- The latter two are empty procedures unless the type contains some
277 -- controlled components that require finalization actions (the deep
278 -- in the name refers to the fact that the action applies to components).
280 -- The list is returned in Predef_List. The Parameter Renamed_Eq either
281 -- returns the value Empty, or else the defining unit name for the
282 -- predefined equality function in the case where the type has a primitive
283 -- operation that is a renaming of predefined equality (but only if there
284 -- is also an overriding user-defined equality function). The returned
285 -- Renamed_Eq will be passed to the corresponding parameter of
286 -- Predefined_Primitive_Bodies.
288 function Has_New_Non_Standard_Rep
(T
: Entity_Id
) return Boolean;
289 -- returns True if there are representation clauses for type T that are not
290 -- inherited. If the result is false, the init_proc and the discriminant
291 -- checking functions of the parent can be reused by a derived type.
293 procedure Make_Controlling_Function_Wrappers
294 (Tag_Typ
: Entity_Id
;
295 Decl_List
: out List_Id
;
296 Body_List
: out List_Id
);
297 -- Ada 2005 (AI-391): Makes specs and bodies for the wrapper functions
298 -- associated with inherited functions with controlling results which
299 -- are not overridden. The body of each wrapper function consists solely
300 -- of a return statement whose expression is an extension aggregate
301 -- invoking the inherited subprogram's parent subprogram and extended
302 -- with a null association list.
304 function Make_Null_Procedure_Specs
(Tag_Typ
: Entity_Id
) return List_Id
;
305 -- Ada 2005 (AI-251): Makes specs for null procedures associated with any
306 -- null procedures inherited from an interface type that have not been
307 -- overridden. Only one null procedure will be created for a given set of
308 -- inherited null procedures with homographic profiles.
310 function Predef_Spec_Or_Body
315 Ret_Type
: Entity_Id
:= Empty
;
316 For_Body
: Boolean := False) return Node_Id
;
317 -- This function generates the appropriate expansion for a predefined
318 -- primitive operation specified by its name, parameter profile and
319 -- return type (Empty means this is a procedure). If For_Body is false,
320 -- then the returned node is a subprogram declaration. If For_Body is
321 -- true, then the returned node is a empty subprogram body containing
322 -- no declarations and no statements.
324 function Predef_Stream_Attr_Spec
327 Name
: TSS_Name_Type
;
328 For_Body
: Boolean := False) return Node_Id
;
329 -- Specialized version of Predef_Spec_Or_Body that apply to read, write,
330 -- input and output attribute whose specs are constructed in Exp_Strm.
332 function Predef_Deep_Spec
335 Name
: TSS_Name_Type
;
336 For_Body
: Boolean := False) return Node_Id
;
337 -- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
338 -- and _deep_finalize
340 function Predefined_Primitive_Bodies
341 (Tag_Typ
: Entity_Id
;
342 Renamed_Eq
: Entity_Id
) return List_Id
;
343 -- Create the bodies of the predefined primitives that are described in
344 -- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
345 -- the defining unit name of the type's predefined equality as returned
346 -- by Make_Predefined_Primitive_Specs.
348 function Predefined_Primitive_Freeze
(Tag_Typ
: Entity_Id
) return List_Id
;
349 -- Freeze entities of all predefined primitive operations. This is needed
350 -- because the bodies of these operations do not normally do any freezing.
352 function Stream_Operation_OK
354 Operation
: TSS_Name_Type
) return Boolean;
355 -- Check whether the named stream operation must be emitted for a given
356 -- type. The rules for inheritance of stream attributes by type extensions
357 -- are enforced by this function. Furthermore, various restrictions prevent
358 -- the generation of these operations, as a useful optimization or for
359 -- certification purposes.
361 --------------------------
362 -- Adjust_Discriminants --
363 --------------------------
365 -- This procedure attempts to define subtypes for discriminants that are
366 -- more restrictive than those declared. Such a replacement is possible if
367 -- we can demonstrate that values outside the restricted range would cause
368 -- constraint errors in any case. The advantage of restricting the
369 -- discriminant types in this way is that the maximum size of the variant
370 -- record can be calculated more conservatively.
372 -- An example of a situation in which we can perform this type of
373 -- restriction is the following:
375 -- subtype B is range 1 .. 10;
376 -- type Q is array (B range <>) of Integer;
378 -- type V (N : Natural) is record
382 -- In this situation, we can restrict the upper bound of N to 10, since
383 -- any larger value would cause a constraint error in any case.
385 -- There are many situations in which such restriction is possible, but
386 -- for now, we just look for cases like the above, where the component
387 -- in question is a one dimensional array whose upper bound is one of
388 -- the record discriminants. Also the component must not be part of
389 -- any variant part, since then the component does not always exist.
391 procedure Adjust_Discriminants
(Rtype
: Entity_Id
) is
392 Loc
: constant Source_Ptr
:= Sloc
(Rtype
);
409 Comp
:= First_Component
(Rtype
);
410 while Present
(Comp
) loop
412 -- If our parent is a variant, quit, we do not look at components
413 -- that are in variant parts, because they may not always exist.
415 P
:= Parent
(Comp
); -- component declaration
416 P
:= Parent
(P
); -- component list
418 exit when Nkind
(Parent
(P
)) = N_Variant
;
420 -- We are looking for a one dimensional array type
422 Ctyp
:= Etype
(Comp
);
424 if not Is_Array_Type
(Ctyp
)
425 or else Number_Dimensions
(Ctyp
) > 1
430 -- The lower bound must be constant, and the upper bound is a
431 -- discriminant (which is a discriminant of the current record).
433 Ityp
:= Etype
(First_Index
(Ctyp
));
434 Lo
:= Type_Low_Bound
(Ityp
);
435 Hi
:= Type_High_Bound
(Ityp
);
437 if not Compile_Time_Known_Value
(Lo
)
438 or else Nkind
(Hi
) /= N_Identifier
439 or else No
(Entity
(Hi
))
440 or else Ekind
(Entity
(Hi
)) /= E_Discriminant
445 -- We have an array with appropriate bounds
447 Loval
:= Expr_Value
(Lo
);
448 Discr
:= Entity
(Hi
);
449 Dtyp
:= Etype
(Discr
);
451 -- See if the discriminant has a known upper bound
453 Dhi
:= Type_High_Bound
(Dtyp
);
455 if not Compile_Time_Known_Value
(Dhi
) then
459 Dhiv
:= Expr_Value
(Dhi
);
461 -- See if base type of component array has known upper bound
463 Ahi
:= Type_High_Bound
(Etype
(First_Index
(Base_Type
(Ctyp
))));
465 if not Compile_Time_Known_Value
(Ahi
) then
469 Ahiv
:= Expr_Value
(Ahi
);
471 -- The condition for doing the restriction is that the high bound
472 -- of the discriminant is greater than the low bound of the array,
473 -- and is also greater than the high bound of the base type index.
475 if Dhiv
> Loval
and then Dhiv
> Ahiv
then
477 -- We can reset the upper bound of the discriminant type to
478 -- whichever is larger, the low bound of the component, or
479 -- the high bound of the base type array index.
481 -- We build a subtype that is declared as
483 -- subtype Tnn is discr_type range discr_type'First .. max;
485 -- And insert this declaration into the tree. The type of the
486 -- discriminant is then reset to this more restricted subtype.
488 Tnn
:= Make_Temporary
(Loc
, 'T');
490 Insert_Action
(Declaration_Node
(Rtype
),
491 Make_Subtype_Declaration
(Loc
,
492 Defining_Identifier
=> Tnn
,
493 Subtype_Indication
=>
494 Make_Subtype_Indication
(Loc
,
495 Subtype_Mark
=> New_Occurrence_Of
(Dtyp
, Loc
),
497 Make_Range_Constraint
(Loc
,
501 Make_Attribute_Reference
(Loc
,
502 Attribute_Name
=> Name_First
,
503 Prefix
=> New_Occurrence_Of
(Dtyp
, Loc
)),
505 Make_Integer_Literal
(Loc
,
506 Intval
=> UI_Max
(Loval
, Ahiv
)))))));
508 Set_Etype
(Discr
, Tnn
);
512 Next_Component
(Comp
);
514 end Adjust_Discriminants
;
516 ---------------------------
517 -- Build_Array_Init_Proc --
518 ---------------------------
520 procedure Build_Array_Init_Proc
(A_Type
: Entity_Id
; Nod
: Node_Id
) is
521 Comp_Type
: constant Entity_Id
:= Component_Type
(A_Type
);
522 Body_Stmts
: List_Id
;
523 Has_Default_Init
: Boolean;
524 Index_List
: List_Id
;
528 function Init_Component
return List_Id
;
529 -- Create one statement to initialize one array component, designated
530 -- by a full set of indexes.
532 function Init_One_Dimension
(N
: Int
) return List_Id
;
533 -- Create loop to initialize one dimension of the array. The single
534 -- statement in the loop body initializes the inner dimensions if any,
535 -- or else the single component. Note that this procedure is called
536 -- recursively, with N being the dimension to be initialized. A call
537 -- with N greater than the number of dimensions simply generates the
538 -- component initialization, terminating the recursion.
544 function Init_Component
return List_Id
is
549 Make_Indexed_Component
(Loc
,
550 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
551 Expressions
=> Index_List
);
553 if Has_Default_Aspect
(A_Type
) then
554 Set_Assignment_OK
(Comp
);
556 Make_Assignment_Statement
(Loc
,
559 Convert_To
(Comp_Type
,
560 Default_Aspect_Component_Value
(First_Subtype
(A_Type
)))));
562 elsif Needs_Simple_Initialization
(Comp_Type
) then
563 Set_Assignment_OK
(Comp
);
565 Make_Assignment_Statement
(Loc
,
569 (Comp_Type
, Nod
, Component_Size
(A_Type
))));
572 Clean_Task_Names
(Comp_Type
, Proc_Id
);
574 Build_Initialization_Call
575 (Loc
, Comp
, Comp_Type
,
576 In_Init_Proc
=> True,
577 Enclos_Type
=> A_Type
);
581 ------------------------
582 -- Init_One_Dimension --
583 ------------------------
585 function Init_One_Dimension
(N
: Int
) return List_Id
is
589 -- If the component does not need initializing, then there is nothing
590 -- to do here, so we return a null body. This occurs when generating
591 -- the dummy Init_Proc needed for Initialize_Scalars processing.
593 if not Has_Non_Null_Base_Init_Proc
(Comp_Type
)
594 and then not Needs_Simple_Initialization
(Comp_Type
)
595 and then not Has_Task
(Comp_Type
)
596 and then not Has_Default_Aspect
(A_Type
)
598 return New_List
(Make_Null_Statement
(Loc
));
600 -- If all dimensions dealt with, we simply initialize the component
602 elsif N
> Number_Dimensions
(A_Type
) then
603 return Init_Component
;
605 -- Here we generate the required loop
609 Make_Defining_Identifier
(Loc
, New_External_Name
('J', N
));
611 Append
(New_Reference_To
(Index
, Loc
), Index_List
);
614 Make_Implicit_Loop_Statement
(Nod
,
617 Make_Iteration_Scheme
(Loc
,
618 Loop_Parameter_Specification
=>
619 Make_Loop_Parameter_Specification
(Loc
,
620 Defining_Identifier
=> Index
,
621 Discrete_Subtype_Definition
=>
622 Make_Attribute_Reference
(Loc
,
623 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
624 Attribute_Name
=> Name_Range
,
625 Expressions
=> New_List
(
626 Make_Integer_Literal
(Loc
, N
))))),
627 Statements
=> Init_One_Dimension
(N
+ 1)));
629 end Init_One_Dimension
;
631 -- Start of processing for Build_Array_Init_Proc
634 -- The init proc is created when analyzing the freeze node for the type,
635 -- but it properly belongs with the array type declaration. However, if
636 -- the freeze node is for a subtype of a type declared in another unit
637 -- it seems preferable to use the freeze node as the source location of
638 -- of the init proc. In any case this is preferable for gcov usage, and
639 -- the Sloc is not otherwise used by the compiler.
641 if In_Open_Scopes
(Scope
(A_Type
)) then
642 Loc
:= Sloc
(A_Type
);
647 -- Nothing to generate in the following cases:
649 -- 1. Initialization is suppressed for the type
650 -- 2. The type is a value type, in the CIL sense.
651 -- 3. The type has CIL/JVM convention.
652 -- 4. An initialization already exists for the base type
654 if Initialization_Suppressed
(A_Type
)
655 or else Is_Value_Type
(Comp_Type
)
656 or else Convention
(A_Type
) = Convention_CIL
657 or else Convention
(A_Type
) = Convention_Java
658 or else Present
(Base_Init_Proc
(A_Type
))
663 Index_List
:= New_List
;
665 -- We need an initialization procedure if any of the following is true:
667 -- 1. The component type has an initialization procedure
668 -- 2. The component type needs simple initialization
669 -- 3. Tasks are present
670 -- 4. The type is marked as a public entity
671 -- 5. The array type has a Default_Component_Value aspect
673 -- The reason for the public entity test is to deal properly with the
674 -- Initialize_Scalars pragma. This pragma can be set in the client and
675 -- not in the declaring package, this means the client will make a call
676 -- to the initialization procedure (because one of conditions 1-3 must
677 -- apply in this case), and we must generate a procedure (even if it is
678 -- null) to satisfy the call in this case.
680 -- Exception: do not build an array init_proc for a type whose root
681 -- type is Standard.String or Standard.Wide_[Wide_]String, since there
682 -- is no place to put the code, and in any case we handle initialization
683 -- of such types (in the Initialize_Scalars case, that's the only time
684 -- the issue arises) in a special manner anyway which does not need an
687 Has_Default_Init
:= Has_Non_Null_Base_Init_Proc
(Comp_Type
)
688 or else Needs_Simple_Initialization
(Comp_Type
)
689 or else Has_Task
(Comp_Type
)
690 or else Has_Default_Aspect
(A_Type
);
693 or else (not Restriction_Active
(No_Initialize_Scalars
)
694 and then Is_Public
(A_Type
)
695 and then Root_Type
(A_Type
) /= Standard_String
696 and then Root_Type
(A_Type
) /= Standard_Wide_String
697 and then Root_Type
(A_Type
) /= Standard_Wide_Wide_String
)
700 Make_Defining_Identifier
(Loc
,
701 Chars
=> Make_Init_Proc_Name
(A_Type
));
703 -- If No_Default_Initialization restriction is active, then we don't
704 -- want to build an init_proc, but we need to mark that an init_proc
705 -- would be needed if this restriction was not active (so that we can
706 -- detect attempts to call it), so set a dummy init_proc in place.
707 -- This is only done though when actual default initialization is
708 -- needed (and not done when only Is_Public is True), since otherwise
709 -- objects such as arrays of scalars could be wrongly flagged as
710 -- violating the restriction.
712 if Restriction_Active
(No_Default_Initialization
) then
713 if Has_Default_Init
then
714 Set_Init_Proc
(A_Type
, Proc_Id
);
720 Body_Stmts
:= Init_One_Dimension
(1);
723 Make_Subprogram_Body
(Loc
,
725 Make_Procedure_Specification
(Loc
,
726 Defining_Unit_Name
=> Proc_Id
,
727 Parameter_Specifications
=> Init_Formals
(A_Type
)),
728 Declarations
=> New_List
,
729 Handled_Statement_Sequence
=>
730 Make_Handled_Sequence_Of_Statements
(Loc
,
731 Statements
=> Body_Stmts
)));
733 Set_Ekind
(Proc_Id
, E_Procedure
);
734 Set_Is_Public
(Proc_Id
, Is_Public
(A_Type
));
735 Set_Is_Internal
(Proc_Id
);
736 Set_Has_Completion
(Proc_Id
);
738 if not Debug_Generated_Code
then
739 Set_Debug_Info_Off
(Proc_Id
);
742 -- Set inlined unless controlled stuff or tasks around, in which
743 -- case we do not want to inline, because nested stuff may cause
744 -- difficulties in inter-unit inlining, and furthermore there is
745 -- in any case no point in inlining such complex init procs.
747 if not Has_Task
(Proc_Id
)
748 and then not Needs_Finalization
(Proc_Id
)
750 Set_Is_Inlined
(Proc_Id
);
753 -- Associate Init_Proc with type, and determine if the procedure
754 -- is null (happens because of the Initialize_Scalars pragma case,
755 -- where we have to generate a null procedure in case it is called
756 -- by a client with Initialize_Scalars set). Such procedures have
757 -- to be generated, but do not have to be called, so we mark them
758 -- as null to suppress the call.
760 Set_Init_Proc
(A_Type
, Proc_Id
);
762 if List_Length
(Body_Stmts
) = 1
764 -- We must skip SCIL nodes because they may have been added to this
765 -- list by Insert_Actions.
767 and then Nkind
(First_Non_SCIL_Node
(Body_Stmts
)) = N_Null_Statement
769 Set_Is_Null_Init_Proc
(Proc_Id
);
772 -- Try to build a static aggregate to statically initialize
773 -- objects of the type. This can only be done for constrained
774 -- one-dimensional arrays with static bounds.
776 Set_Static_Initialization
778 Build_Equivalent_Array_Aggregate
(First_Subtype
(A_Type
)));
781 end Build_Array_Init_Proc
;
783 --------------------------------
784 -- Build_Array_Invariant_Proc --
785 --------------------------------
787 procedure Build_Array_Invariant_Proc
(A_Type
: Entity_Id
; Nod
: Node_Id
) is
788 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
790 Object_Name
: constant Name_Id
:= New_Internal_Name
('I');
791 -- Name for argument of invariant procedure
793 Object_Entity
: constant Node_Id
:=
794 Make_Defining_Identifier
(Loc
, Object_Name
);
795 -- The procedure declaration entity for the argument
797 Body_Stmts
: List_Id
;
798 Index_List
: List_Id
;
802 function Build_Component_Invariant_Call
return Node_Id
;
803 -- Create one statement to verify invariant on one array component,
804 -- designated by a full set of indexes.
806 function Check_One_Dimension
(N
: Int
) return List_Id
;
807 -- Create loop to check on one dimension of the array. The single
808 -- statement in the loop body checks the inner dimensions if any, or
809 -- else a single component. This procedure is called recursively, with
810 -- N being the dimension to be initialized. A call with N greater than
811 -- the number of dimensions generates the component initialization
812 -- and terminates the recursion.
814 ------------------------------------
815 -- Build_Component_Invariant_Call --
816 ------------------------------------
818 function Build_Component_Invariant_Call
return Node_Id
is
822 Make_Indexed_Component
(Loc
,
823 Prefix
=> New_Occurrence_Of
(Object_Entity
, Loc
),
824 Expressions
=> Index_List
);
826 Make_Procedure_Call_Statement
(Loc
,
829 (Invariant_Procedure
(Component_Type
(A_Type
)), Loc
),
830 Parameter_Associations
=> New_List
(Comp
));
831 end Build_Component_Invariant_Call
;
833 -------------------------
834 -- Check_One_Dimension --
835 -------------------------
837 function Check_One_Dimension
(N
: Int
) return List_Id
is
841 -- If all dimensions dealt with, we simply check invariant of the
844 if N
> Number_Dimensions
(A_Type
) then
845 return New_List
(Build_Component_Invariant_Call
);
847 -- Else generate one loop and recurse
851 Make_Defining_Identifier
(Loc
, New_External_Name
('J', N
));
853 Append
(New_Reference_To
(Index
, Loc
), Index_List
);
856 Make_Implicit_Loop_Statement
(Nod
,
859 Make_Iteration_Scheme
(Loc
,
860 Loop_Parameter_Specification
=>
861 Make_Loop_Parameter_Specification
(Loc
,
862 Defining_Identifier
=> Index
,
863 Discrete_Subtype_Definition
=>
864 Make_Attribute_Reference
(Loc
,
866 New_Occurrence_Of
(Object_Entity
, Loc
),
867 Attribute_Name
=> Name_Range
,
868 Expressions
=> New_List
(
869 Make_Integer_Literal
(Loc
, N
))))),
870 Statements
=> Check_One_Dimension
(N
+ 1)));
872 end Check_One_Dimension
;
874 -- Start of processing for Build_Array_Invariant_Proc
877 Index_List
:= New_List
;
880 Make_Defining_Identifier
(Loc
,
881 Chars
=> New_External_Name
(Chars
(A_Type
), "Invariant"));
882 Set_Has_Invariants
(Proc_Id
);
883 Set_Invariant_Procedure
(A_Type
, Proc_Id
);
885 Body_Stmts
:= Check_One_Dimension
(1);
888 Make_Subprogram_Body
(Loc
,
890 Make_Procedure_Specification
(Loc
,
891 Defining_Unit_Name
=> Proc_Id
,
892 Parameter_Specifications
=> New_List
(
893 Make_Parameter_Specification
(Loc
,
894 Defining_Identifier
=> Object_Entity
,
895 Parameter_Type
=> New_Occurrence_Of
(A_Type
, Loc
)))),
897 Declarations
=> Empty_List
,
898 Handled_Statement_Sequence
=>
899 Make_Handled_Sequence_Of_Statements
(Loc
,
900 Statements
=> Body_Stmts
));
902 Set_Ekind
(Proc_Id
, E_Procedure
);
903 Set_Is_Public
(Proc_Id
, Is_Public
(A_Type
));
904 Set_Is_Internal
(Proc_Id
);
905 Set_Has_Completion
(Proc_Id
);
907 if not Debug_Generated_Code
then
908 Set_Debug_Info_Off
(Proc_Id
);
911 -- The procedure body is placed after the freeze node for the type.
913 Insert_After
(Nod
, Proc_Body
);
915 end Build_Array_Invariant_Proc
;
917 --------------------------------
918 -- Build_Discr_Checking_Funcs --
919 --------------------------------
921 procedure Build_Discr_Checking_Funcs
(N
: Node_Id
) is
924 Enclosing_Func_Id
: Entity_Id
;
929 function Build_Case_Statement
930 (Case_Id
: Entity_Id
;
931 Variant
: Node_Id
) return Node_Id
;
932 -- Build a case statement containing only two alternatives. The first
933 -- alternative corresponds exactly to the discrete choices given on the
934 -- variant with contains the components that we are generating the
935 -- checks for. If the discriminant is one of these return False. The
936 -- second alternative is an OTHERS choice that will return True
937 -- indicating the discriminant did not match.
939 function Build_Dcheck_Function
940 (Case_Id
: Entity_Id
;
941 Variant
: Node_Id
) return Entity_Id
;
942 -- Build the discriminant checking function for a given variant
944 procedure Build_Dcheck_Functions
(Variant_Part_Node
: Node_Id
);
945 -- Builds the discriminant checking function for each variant of the
946 -- given variant part of the record type.
948 --------------------------
949 -- Build_Case_Statement --
950 --------------------------
952 function Build_Case_Statement
953 (Case_Id
: Entity_Id
;
954 Variant
: Node_Id
) return Node_Id
956 Alt_List
: constant List_Id
:= New_List
;
957 Actuals_List
: List_Id
;
959 Case_Alt_Node
: Node_Id
;
961 Choice_List
: List_Id
;
963 Return_Node
: Node_Id
;
966 Case_Node
:= New_Node
(N_Case_Statement
, Loc
);
968 -- Replace the discriminant which controls the variant, with the name
969 -- of the formal of the checking function.
971 Set_Expression
(Case_Node
, Make_Identifier
(Loc
, Chars
(Case_Id
)));
973 Choice
:= First
(Discrete_Choices
(Variant
));
975 if Nkind
(Choice
) = N_Others_Choice
then
976 Choice_List
:= New_Copy_List
(Others_Discrete_Choices
(Choice
));
978 Choice_List
:= New_Copy_List
(Discrete_Choices
(Variant
));
981 if not Is_Empty_List
(Choice_List
) then
982 Case_Alt_Node
:= New_Node
(N_Case_Statement_Alternative
, Loc
);
983 Set_Discrete_Choices
(Case_Alt_Node
, Choice_List
);
985 -- In case this is a nested variant, we need to return the result
986 -- of the discriminant checking function for the immediately
987 -- enclosing variant.
989 if Present
(Enclosing_Func_Id
) then
990 Actuals_List
:= New_List
;
992 D
:= First_Discriminant
(Rec_Id
);
993 while Present
(D
) loop
994 Append
(Make_Identifier
(Loc
, Chars
(D
)), Actuals_List
);
995 Next_Discriminant
(D
);
999 Make_Simple_Return_Statement
(Loc
,
1001 Make_Function_Call
(Loc
,
1003 New_Reference_To
(Enclosing_Func_Id
, Loc
),
1004 Parameter_Associations
=>
1009 Make_Simple_Return_Statement
(Loc
,
1011 New_Reference_To
(Standard_False
, Loc
));
1014 Set_Statements
(Case_Alt_Node
, New_List
(Return_Node
));
1015 Append
(Case_Alt_Node
, Alt_List
);
1018 Case_Alt_Node
:= New_Node
(N_Case_Statement_Alternative
, Loc
);
1019 Choice_List
:= New_List
(New_Node
(N_Others_Choice
, Loc
));
1020 Set_Discrete_Choices
(Case_Alt_Node
, Choice_List
);
1023 Make_Simple_Return_Statement
(Loc
,
1025 New_Reference_To
(Standard_True
, Loc
));
1027 Set_Statements
(Case_Alt_Node
, New_List
(Return_Node
));
1028 Append
(Case_Alt_Node
, Alt_List
);
1030 Set_Alternatives
(Case_Node
, Alt_List
);
1032 end Build_Case_Statement
;
1034 ---------------------------
1035 -- Build_Dcheck_Function --
1036 ---------------------------
1038 function Build_Dcheck_Function
1039 (Case_Id
: Entity_Id
;
1040 Variant
: Node_Id
) return Entity_Id
1042 Body_Node
: Node_Id
;
1043 Func_Id
: Entity_Id
;
1044 Parameter_List
: List_Id
;
1045 Spec_Node
: Node_Id
;
1048 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
1049 Sequence
:= Sequence
+ 1;
1052 Make_Defining_Identifier
(Loc
,
1053 Chars
=> New_External_Name
(Chars
(Rec_Id
), 'D', Sequence
));
1055 Spec_Node
:= New_Node
(N_Function_Specification
, Loc
);
1056 Set_Defining_Unit_Name
(Spec_Node
, Func_Id
);
1058 Parameter_List
:= Build_Discriminant_Formals
(Rec_Id
, False);
1060 Set_Parameter_Specifications
(Spec_Node
, Parameter_List
);
1061 Set_Result_Definition
(Spec_Node
,
1062 New_Reference_To
(Standard_Boolean
, Loc
));
1063 Set_Specification
(Body_Node
, Spec_Node
);
1064 Set_Declarations
(Body_Node
, New_List
);
1066 Set_Handled_Statement_Sequence
(Body_Node
,
1067 Make_Handled_Sequence_Of_Statements
(Loc
,
1068 Statements
=> New_List
(
1069 Build_Case_Statement
(Case_Id
, Variant
))));
1071 Set_Ekind
(Func_Id
, E_Function
);
1072 Set_Mechanism
(Func_Id
, Default_Mechanism
);
1073 Set_Is_Inlined
(Func_Id
, True);
1074 Set_Is_Pure
(Func_Id
, True);
1075 Set_Is_Public
(Func_Id
, Is_Public
(Rec_Id
));
1076 Set_Is_Internal
(Func_Id
, True);
1078 if not Debug_Generated_Code
then
1079 Set_Debug_Info_Off
(Func_Id
);
1082 Analyze
(Body_Node
);
1084 Append_Freeze_Action
(Rec_Id
, Body_Node
);
1085 Set_Dcheck_Function
(Variant
, Func_Id
);
1087 end Build_Dcheck_Function
;
1089 ----------------------------
1090 -- Build_Dcheck_Functions --
1091 ----------------------------
1093 procedure Build_Dcheck_Functions
(Variant_Part_Node
: Node_Id
) is
1094 Component_List_Node
: Node_Id
;
1096 Discr_Name
: Entity_Id
;
1097 Func_Id
: Entity_Id
;
1099 Saved_Enclosing_Func_Id
: Entity_Id
;
1102 -- Build the discriminant-checking function for each variant, and
1103 -- label all components of that variant with the function's name.
1104 -- We only Generate a discriminant-checking function when the
1105 -- variant is not empty, to prevent the creation of dead code.
1106 -- The exception to that is when Frontend_Layout_On_Target is set,
1107 -- because the variant record size function generated in package
1108 -- Layout needs to generate calls to all discriminant-checking
1109 -- functions, including those for empty variants.
1111 Discr_Name
:= Entity
(Name
(Variant_Part_Node
));
1112 Variant
:= First_Non_Pragma
(Variants
(Variant_Part_Node
));
1114 while Present
(Variant
) loop
1115 Component_List_Node
:= Component_List
(Variant
);
1117 if not Null_Present
(Component_List_Node
)
1118 or else Frontend_Layout_On_Target
1120 Func_Id
:= Build_Dcheck_Function
(Discr_Name
, Variant
);
1122 First_Non_Pragma
(Component_Items
(Component_List_Node
));
1124 while Present
(Decl
) loop
1125 Set_Discriminant_Checking_Func
1126 (Defining_Identifier
(Decl
), Func_Id
);
1128 Next_Non_Pragma
(Decl
);
1131 if Present
(Variant_Part
(Component_List_Node
)) then
1132 Saved_Enclosing_Func_Id
:= Enclosing_Func_Id
;
1133 Enclosing_Func_Id
:= Func_Id
;
1134 Build_Dcheck_Functions
(Variant_Part
(Component_List_Node
));
1135 Enclosing_Func_Id
:= Saved_Enclosing_Func_Id
;
1139 Next_Non_Pragma
(Variant
);
1141 end Build_Dcheck_Functions
;
1143 -- Start of processing for Build_Discr_Checking_Funcs
1146 -- Only build if not done already
1148 if not Discr_Check_Funcs_Built
(N
) then
1149 Type_Def
:= Type_Definition
(N
);
1151 if Nkind
(Type_Def
) = N_Record_Definition
then
1152 if No
(Component_List
(Type_Def
)) then -- null record.
1155 V
:= Variant_Part
(Component_List
(Type_Def
));
1158 else pragma Assert
(Nkind
(Type_Def
) = N_Derived_Type_Definition
);
1159 if No
(Component_List
(Record_Extension_Part
(Type_Def
))) then
1163 (Component_List
(Record_Extension_Part
(Type_Def
)));
1167 Rec_Id
:= Defining_Identifier
(N
);
1169 if Present
(V
) and then not Is_Unchecked_Union
(Rec_Id
) then
1171 Enclosing_Func_Id
:= Empty
;
1172 Build_Dcheck_Functions
(V
);
1175 Set_Discr_Check_Funcs_Built
(N
);
1177 end Build_Discr_Checking_Funcs
;
1179 --------------------------------
1180 -- Build_Discriminant_Formals --
1181 --------------------------------
1183 function Build_Discriminant_Formals
1184 (Rec_Id
: Entity_Id
;
1185 Use_Dl
: Boolean) return List_Id
1187 Loc
: Source_Ptr
:= Sloc
(Rec_Id
);
1188 Parameter_List
: constant List_Id
:= New_List
;
1191 Formal_Type
: Entity_Id
;
1192 Param_Spec_Node
: Node_Id
;
1195 if Has_Discriminants
(Rec_Id
) then
1196 D
:= First_Discriminant
(Rec_Id
);
1197 while Present
(D
) loop
1201 Formal
:= Discriminal
(D
);
1202 Formal_Type
:= Etype
(Formal
);
1204 Formal
:= Make_Defining_Identifier
(Loc
, Chars
(D
));
1205 Formal_Type
:= Etype
(D
);
1209 Make_Parameter_Specification
(Loc
,
1210 Defining_Identifier
=> Formal
,
1212 New_Reference_To
(Formal_Type
, Loc
));
1213 Append
(Param_Spec_Node
, Parameter_List
);
1214 Next_Discriminant
(D
);
1218 return Parameter_List
;
1219 end Build_Discriminant_Formals
;
1221 --------------------------------------
1222 -- Build_Equivalent_Array_Aggregate --
1223 --------------------------------------
1225 function Build_Equivalent_Array_Aggregate
(T
: Entity_Id
) return Node_Id
is
1226 Loc
: constant Source_Ptr
:= Sloc
(T
);
1227 Comp_Type
: constant Entity_Id
:= Component_Type
(T
);
1228 Index_Type
: constant Entity_Id
:= Etype
(First_Index
(T
));
1229 Proc
: constant Entity_Id
:= Base_Init_Proc
(T
);
1235 if not Is_Constrained
(T
)
1236 or else Number_Dimensions
(T
) > 1
1239 Initialization_Warning
(T
);
1243 Lo
:= Type_Low_Bound
(Index_Type
);
1244 Hi
:= Type_High_Bound
(Index_Type
);
1246 if not Compile_Time_Known_Value
(Lo
)
1247 or else not Compile_Time_Known_Value
(Hi
)
1249 Initialization_Warning
(T
);
1253 if Is_Record_Type
(Comp_Type
)
1254 and then Present
(Base_Init_Proc
(Comp_Type
))
1256 Expr
:= Static_Initialization
(Base_Init_Proc
(Comp_Type
));
1259 Initialization_Warning
(T
);
1264 Initialization_Warning
(T
);
1268 Aggr
:= Make_Aggregate
(Loc
, No_List
, New_List
);
1269 Set_Etype
(Aggr
, T
);
1270 Set_Aggregate_Bounds
(Aggr
,
1272 Low_Bound
=> New_Copy
(Lo
),
1273 High_Bound
=> New_Copy
(Hi
)));
1274 Set_Parent
(Aggr
, Parent
(Proc
));
1276 Append_To
(Component_Associations
(Aggr
),
1277 Make_Component_Association
(Loc
,
1281 Low_Bound
=> New_Copy
(Lo
),
1282 High_Bound
=> New_Copy
(Hi
))),
1283 Expression
=> Expr
));
1285 if Static_Array_Aggregate
(Aggr
) then
1288 Initialization_Warning
(T
);
1291 end Build_Equivalent_Array_Aggregate
;
1293 ---------------------------------------
1294 -- Build_Equivalent_Record_Aggregate --
1295 ---------------------------------------
1297 function Build_Equivalent_Record_Aggregate
(T
: Entity_Id
) return Node_Id
is
1300 Comp_Type
: Entity_Id
;
1302 -- Start of processing for Build_Equivalent_Record_Aggregate
1305 if not Is_Record_Type
(T
)
1306 or else Has_Discriminants
(T
)
1307 or else Is_Limited_Type
(T
)
1308 or else Has_Non_Standard_Rep
(T
)
1310 Initialization_Warning
(T
);
1314 Comp
:= First_Component
(T
);
1316 -- A null record needs no warning
1322 while Present
(Comp
) loop
1324 -- Array components are acceptable if initialized by a positional
1325 -- aggregate with static components.
1327 if Is_Array_Type
(Etype
(Comp
)) then
1328 Comp_Type
:= Component_Type
(Etype
(Comp
));
1330 if Nkind
(Parent
(Comp
)) /= N_Component_Declaration
1331 or else No
(Expression
(Parent
(Comp
)))
1332 or else Nkind
(Expression
(Parent
(Comp
))) /= N_Aggregate
1334 Initialization_Warning
(T
);
1337 elsif Is_Scalar_Type
(Component_Type
(Etype
(Comp
)))
1339 (not Compile_Time_Known_Value
(Type_Low_Bound
(Comp_Type
))
1341 not Compile_Time_Known_Value
(Type_High_Bound
(Comp_Type
)))
1343 Initialization_Warning
(T
);
1347 not Static_Array_Aggregate
(Expression
(Parent
(Comp
)))
1349 Initialization_Warning
(T
);
1353 elsif Is_Scalar_Type
(Etype
(Comp
)) then
1354 Comp_Type
:= Etype
(Comp
);
1356 if Nkind
(Parent
(Comp
)) /= N_Component_Declaration
1357 or else No
(Expression
(Parent
(Comp
)))
1358 or else not Compile_Time_Known_Value
(Expression
(Parent
(Comp
)))
1359 or else not Compile_Time_Known_Value
(Type_Low_Bound
(Comp_Type
))
1361 Compile_Time_Known_Value
(Type_High_Bound
(Comp_Type
))
1363 Initialization_Warning
(T
);
1367 -- For now, other types are excluded
1370 Initialization_Warning
(T
);
1374 Next_Component
(Comp
);
1377 -- All components have static initialization. Build positional aggregate
1378 -- from the given expressions or defaults.
1380 Agg
:= Make_Aggregate
(Sloc
(T
), New_List
, New_List
);
1381 Set_Parent
(Agg
, Parent
(T
));
1383 Comp
:= First_Component
(T
);
1384 while Present
(Comp
) loop
1386 (New_Copy_Tree
(Expression
(Parent
(Comp
))), Expressions
(Agg
));
1387 Next_Component
(Comp
);
1390 Analyze_And_Resolve
(Agg
, T
);
1392 end Build_Equivalent_Record_Aggregate
;
1394 -------------------------------
1395 -- Build_Initialization_Call --
1396 -------------------------------
1398 -- References to a discriminant inside the record type declaration can
1399 -- appear either in the subtype_indication to constrain a record or an
1400 -- array, or as part of a larger expression given for the initial value
1401 -- of a component. In both of these cases N appears in the record
1402 -- initialization procedure and needs to be replaced by the formal
1403 -- parameter of the initialization procedure which corresponds to that
1406 -- In the example below, references to discriminants D1 and D2 in proc_1
1407 -- are replaced by references to formals with the same name
1410 -- A similar replacement is done for calls to any record initialization
1411 -- procedure for any components that are themselves of a record type.
1413 -- type R (D1, D2 : Integer) is record
1414 -- X : Integer := F * D1;
1415 -- Y : Integer := F * D2;
1418 -- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
1422 -- Out_2.X := F * D1;
1423 -- Out_2.Y := F * D2;
1426 function Build_Initialization_Call
1430 In_Init_Proc
: Boolean := False;
1431 Enclos_Type
: Entity_Id
:= Empty
;
1432 Discr_Map
: Elist_Id
:= New_Elmt_List
;
1433 With_Default_Init
: Boolean := False;
1434 Constructor_Ref
: Node_Id
:= Empty
) return List_Id
1436 Res
: constant List_Id
:= New_List
;
1442 First_Arg
: Node_Id
;
1443 Full_Init_Type
: Entity_Id
;
1444 Full_Type
: Entity_Id
:= Typ
;
1445 Init_Type
: Entity_Id
;
1449 pragma Assert
(Constructor_Ref
= Empty
1450 or else Is_CPP_Constructor_Call
(Constructor_Ref
));
1452 if No
(Constructor_Ref
) then
1453 Proc
:= Base_Init_Proc
(Typ
);
1455 Proc
:= Base_Init_Proc
(Typ
, Entity
(Name
(Constructor_Ref
)));
1458 pragma Assert
(Present
(Proc
));
1459 Init_Type
:= Etype
(First_Formal
(Proc
));
1460 Full_Init_Type
:= Underlying_Type
(Init_Type
);
1462 -- Nothing to do if the Init_Proc is null, unless Initialize_Scalars
1463 -- is active (in which case we make the call anyway, since in the
1464 -- actual compiled client it may be non null).
1465 -- Also nothing to do for value types.
1467 if (Is_Null_Init_Proc
(Proc
) and then not Init_Or_Norm_Scalars
)
1468 or else Is_Value_Type
(Typ
)
1470 (Is_Array_Type
(Typ
) and then Is_Value_Type
(Component_Type
(Typ
)))
1475 -- Go to full view if private type. In the case of successive
1476 -- private derivations, this can require more than one step.
1478 while Is_Private_Type
(Full_Type
)
1479 and then Present
(Full_View
(Full_Type
))
1481 Full_Type
:= Full_View
(Full_Type
);
1484 -- If Typ is derived, the procedure is the initialization procedure for
1485 -- the root type. Wrap the argument in an conversion to make it type
1486 -- honest. Actually it isn't quite type honest, because there can be
1487 -- conflicts of views in the private type case. That is why we set
1488 -- Conversion_OK in the conversion node.
1490 if (Is_Record_Type
(Typ
)
1491 or else Is_Array_Type
(Typ
)
1492 or else Is_Private_Type
(Typ
))
1493 and then Init_Type
/= Base_Type
(Typ
)
1495 First_Arg
:= OK_Convert_To
(Etype
(Init_Type
), Id_Ref
);
1496 Set_Etype
(First_Arg
, Init_Type
);
1499 First_Arg
:= Id_Ref
;
1502 Args
:= New_List
(Convert_Concurrent
(First_Arg
, Typ
));
1504 -- In the tasks case, add _Master as the value of the _Master parameter
1505 -- and _Chain as the value of the _Chain parameter. At the outer level,
1506 -- these will be variables holding the corresponding values obtained
1507 -- from GNARL. At inner levels, they will be the parameters passed down
1508 -- through the outer routines.
1510 if Has_Task
(Full_Type
) then
1511 if Restriction_Active
(No_Task_Hierarchy
) then
1513 New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
));
1515 Append_To
(Args
, Make_Identifier
(Loc
, Name_uMaster
));
1518 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
1520 -- Ada 2005 (AI-287): In case of default initialized components
1521 -- with tasks, we generate a null string actual parameter.
1522 -- This is just a workaround that must be improved later???
1524 if With_Default_Init
then
1526 Make_String_Literal
(Loc
,
1531 Build_Task_Image_Decls
(Loc
, Id_Ref
, Enclos_Type
, In_Init_Proc
);
1532 Decl
:= Last
(Decls
);
1535 New_Occurrence_Of
(Defining_Identifier
(Decl
), Loc
));
1536 Append_List
(Decls
, Res
);
1544 -- Add discriminant values if discriminants are present
1546 if Has_Discriminants
(Full_Init_Type
) then
1547 Discr
:= First_Discriminant
(Full_Init_Type
);
1549 while Present
(Discr
) loop
1551 -- If this is a discriminated concurrent type, the init_proc
1552 -- for the corresponding record is being called. Use that type
1553 -- directly to find the discriminant value, to handle properly
1554 -- intervening renamed discriminants.
1557 T
: Entity_Id
:= Full_Type
;
1560 if Is_Protected_Type
(T
) then
1561 T
:= Corresponding_Record_Type
(T
);
1563 elsif Is_Private_Type
(T
)
1564 and then Present
(Underlying_Full_View
(T
))
1565 and then Is_Protected_Type
(Underlying_Full_View
(T
))
1567 T
:= Corresponding_Record_Type
(Underlying_Full_View
(T
));
1571 Get_Discriminant_Value
(
1574 Discriminant_Constraint
(Full_Type
));
1577 -- If the target has access discriminants, and is constrained by
1578 -- an access to the enclosing construct, i.e. a current instance,
1579 -- replace the reference to the type by a reference to the object.
1581 if Nkind
(Arg
) = N_Attribute_Reference
1582 and then Is_Access_Type
(Etype
(Arg
))
1583 and then Is_Entity_Name
(Prefix
(Arg
))
1584 and then Is_Type
(Entity
(Prefix
(Arg
)))
1587 Make_Attribute_Reference
(Loc
,
1588 Prefix
=> New_Copy
(Prefix
(Id_Ref
)),
1589 Attribute_Name
=> Name_Unrestricted_Access
);
1591 elsif In_Init_Proc
then
1593 -- Replace any possible references to the discriminant in the
1594 -- call to the record initialization procedure with references
1595 -- to the appropriate formal parameter.
1597 if Nkind
(Arg
) = N_Identifier
1598 and then Ekind
(Entity
(Arg
)) = E_Discriminant
1600 Arg
:= New_Reference_To
(Discriminal
(Entity
(Arg
)), Loc
);
1602 -- Otherwise make a copy of the default expression. Note that
1603 -- we use the current Sloc for this, because we do not want the
1604 -- call to appear to be at the declaration point. Within the
1605 -- expression, replace discriminants with their discriminals.
1609 New_Copy_Tree
(Arg
, Map
=> Discr_Map
, New_Sloc
=> Loc
);
1613 if Is_Constrained
(Full_Type
) then
1614 Arg
:= Duplicate_Subexpr_No_Checks
(Arg
);
1616 -- The constraints come from the discriminant default exps,
1617 -- they must be reevaluated, so we use New_Copy_Tree but we
1618 -- ensure the proper Sloc (for any embedded calls).
1620 Arg
:= New_Copy_Tree
(Arg
, New_Sloc
=> Loc
);
1624 -- Ada 2005 (AI-287): In case of default initialized components,
1625 -- if the component is constrained with a discriminant of the
1626 -- enclosing type, we need to generate the corresponding selected
1627 -- component node to access the discriminant value. In other cases
1628 -- this is not required, either because we are inside the init
1629 -- proc and we use the corresponding formal, or else because the
1630 -- component is constrained by an expression.
1632 if With_Default_Init
1633 and then Nkind
(Id_Ref
) = N_Selected_Component
1634 and then Nkind
(Arg
) = N_Identifier
1635 and then Ekind
(Entity
(Arg
)) = E_Discriminant
1638 Make_Selected_Component
(Loc
,
1639 Prefix
=> New_Copy_Tree
(Prefix
(Id_Ref
)),
1640 Selector_Name
=> Arg
));
1642 Append_To
(Args
, Arg
);
1645 Next_Discriminant
(Discr
);
1649 -- If this is a call to initialize the parent component of a derived
1650 -- tagged type, indicate that the tag should not be set in the parent.
1652 if Is_Tagged_Type
(Full_Init_Type
)
1653 and then not Is_CPP_Class
(Full_Init_Type
)
1654 and then Nkind
(Id_Ref
) = N_Selected_Component
1655 and then Chars
(Selector_Name
(Id_Ref
)) = Name_uParent
1657 Append_To
(Args
, New_Occurrence_Of
(Standard_False
, Loc
));
1659 elsif Present
(Constructor_Ref
) then
1660 Append_List_To
(Args
,
1661 New_Copy_List
(Parameter_Associations
(Constructor_Ref
)));
1665 Make_Procedure_Call_Statement
(Loc
,
1666 Name
=> New_Occurrence_Of
(Proc
, Loc
),
1667 Parameter_Associations
=> Args
));
1669 if Needs_Finalization
(Typ
)
1670 and then Nkind
(Id_Ref
) = N_Selected_Component
1672 if Chars
(Selector_Name
(Id_Ref
)) /= Name_uParent
then
1675 (Obj_Ref
=> New_Copy_Tree
(First_Arg
),
1683 when RE_Not_Available
=>
1685 end Build_Initialization_Call
;
1687 ----------------------------
1688 -- Build_Record_Init_Proc --
1689 ----------------------------
1691 procedure Build_Record_Init_Proc
(N
: Node_Id
; Rec_Ent
: Entity_Id
) is
1692 Decls
: constant List_Id
:= New_List
;
1693 Discr_Map
: constant Elist_Id
:= New_Elmt_List
;
1694 Loc
: constant Source_Ptr
:= Sloc
(Rec_Ent
);
1696 Proc_Id
: Entity_Id
;
1697 Rec_Type
: Entity_Id
;
1698 Set_Tag
: Entity_Id
:= Empty
;
1700 function Build_Assignment
(Id
: Entity_Id
; N
: Node_Id
) return List_Id
;
1701 -- Build an assignment statement which assigns the default expression
1702 -- to its corresponding record component if defined. The left hand side
1703 -- of the assignment is marked Assignment_OK so that initialization of
1704 -- limited private records works correctly. This routine may also build
1705 -- an adjustment call if the component is controlled.
1707 procedure Build_Discriminant_Assignments
(Statement_List
: List_Id
);
1708 -- If the record has discriminants, add assignment statements to
1709 -- Statement_List to initialize the discriminant values from the
1710 -- arguments of the initialization procedure.
1712 function Build_Init_Statements
(Comp_List
: Node_Id
) return List_Id
;
1713 -- Build a list representing a sequence of statements which initialize
1714 -- components of the given component list. This may involve building
1715 -- case statements for the variant parts. Append any locally declared
1716 -- objects on list Decls.
1718 function Build_Init_Call_Thru
(Parameters
: List_Id
) return List_Id
;
1719 -- Given a non-tagged type-derivation that declares discriminants,
1722 -- type R (R1, R2 : Integer) is record ... end record;
1724 -- type D (D1 : Integer) is new R (1, D1);
1726 -- we make the _init_proc of D be
1728 -- procedure _init_proc (X : D; D1 : Integer) is
1730 -- _init_proc (R (X), 1, D1);
1733 -- This function builds the call statement in this _init_proc.
1735 procedure Build_CPP_Init_Procedure
;
1736 -- Build the tree corresponding to the procedure specification and body
1737 -- of the IC procedure that initializes the C++ part of the dispatch
1738 -- table of an Ada tagged type that is a derivation of a CPP type.
1739 -- Install it as the CPP_Init TSS.
1741 procedure Build_Init_Procedure
;
1742 -- Build the tree corresponding to the procedure specification and body
1743 -- of the initialization procedure and install it as the _init TSS.
1745 procedure Build_Offset_To_Top_Functions
;
1746 -- Ada 2005 (AI-251): Build the tree corresponding to the procedure spec
1747 -- and body of Offset_To_Top, a function used in conjuction with types
1748 -- having secondary dispatch tables.
1750 procedure Build_Record_Checks
(S
: Node_Id
; Check_List
: List_Id
);
1751 -- Add range checks to components of discriminated records. S is a
1752 -- subtype indication of a record component. Check_List is a list
1753 -- to which the check actions are appended.
1755 function Component_Needs_Simple_Initialization
1756 (T
: Entity_Id
) return Boolean;
1757 -- Determine if a component needs simple initialization, given its type
1758 -- T. This routine is the same as Needs_Simple_Initialization except for
1759 -- components of type Tag and Interface_Tag. These two access types do
1760 -- not require initialization since they are explicitly initialized by
1763 function Parent_Subtype_Renaming_Discrims
return Boolean;
1764 -- Returns True for base types N that rename discriminants, else False
1766 function Requires_Init_Proc
(Rec_Id
: Entity_Id
) return Boolean;
1767 -- Determine whether a record initialization procedure needs to be
1768 -- generated for the given record type.
1770 ----------------------
1771 -- Build_Assignment --
1772 ----------------------
1774 function Build_Assignment
(Id
: Entity_Id
; N
: Node_Id
) return List_Id
is
1775 N_Loc
: constant Source_Ptr
:= Sloc
(N
);
1776 Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Id
));
1778 Kind
: Node_Kind
:= Nkind
(N
);
1784 Make_Selected_Component
(N_Loc
,
1785 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
1786 Selector_Name
=> New_Occurrence_Of
(Id
, N_Loc
));
1787 Set_Assignment_OK
(Lhs
);
1789 -- Case of an access attribute applied to the current instance.
1790 -- Replace the reference to the type by a reference to the actual
1791 -- object. (Note that this handles the case of the top level of
1792 -- the expression being given by such an attribute, but does not
1793 -- cover uses nested within an initial value expression. Nested
1794 -- uses are unlikely to occur in practice, but are theoretically
1795 -- possible.) It is not clear how to handle them without fully
1796 -- traversing the expression. ???
1798 if Kind
= N_Attribute_Reference
1799 and then (Attribute_Name
(N
) = Name_Unchecked_Access
1801 Attribute_Name
(N
) = Name_Unrestricted_Access
)
1802 and then Is_Entity_Name
(Prefix
(N
))
1803 and then Is_Type
(Entity
(Prefix
(N
)))
1804 and then Entity
(Prefix
(N
)) = Rec_Type
1807 Make_Attribute_Reference
(N_Loc
,
1809 Make_Identifier
(N_Loc
, Name_uInit
),
1810 Attribute_Name
=> Name_Unrestricted_Access
);
1813 -- Take a copy of Exp to ensure that later copies of this component
1814 -- declaration in derived types see the original tree, not a node
1815 -- rewritten during expansion of the init_proc. If the copy contains
1816 -- itypes, the scope of the new itypes is the init_proc being built.
1818 Exp
:= New_Copy_Tree
(Exp
, New_Scope
=> Proc_Id
);
1821 Make_Assignment_Statement
(Loc
,
1823 Expression
=> Exp
));
1825 Set_No_Ctrl_Actions
(First
(Res
));
1827 -- Adjust the tag if tagged (because of possible view conversions).
1828 -- Suppress the tag adjustment when VM_Target because VM tags are
1829 -- represented implicitly in objects.
1831 if Is_Tagged_Type
(Typ
)
1832 and then Tagged_Type_Expansion
1835 Make_Assignment_Statement
(N_Loc
,
1837 Make_Selected_Component
(N_Loc
,
1839 New_Copy_Tree
(Lhs
, New_Scope
=> Proc_Id
),
1841 New_Reference_To
(First_Tag_Component
(Typ
), N_Loc
)),
1844 Unchecked_Convert_To
(RTE
(RE_Tag
),
1848 (Access_Disp_Table
(Underlying_Type
(Typ
)))),
1852 -- Adjust the component if controlled except if it is an aggregate
1853 -- that will be expanded inline.
1855 if Kind
= N_Qualified_Expression
then
1856 Kind
:= Nkind
(Expression
(N
));
1859 if Needs_Finalization
(Typ
)
1860 and then not (Nkind_In
(Kind
, N_Aggregate
, N_Extension_Aggregate
))
1861 and then not Is_Immutably_Limited_Type
(Typ
)
1865 (Obj_Ref
=> New_Copy_Tree
(Lhs
),
1866 Typ
=> Etype
(Id
)));
1872 when RE_Not_Available
=>
1874 end Build_Assignment
;
1876 ------------------------------------
1877 -- Build_Discriminant_Assignments --
1878 ------------------------------------
1880 procedure Build_Discriminant_Assignments
(Statement_List
: List_Id
) is
1881 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Rec_Type
);
1886 if Has_Discriminants
(Rec_Type
)
1887 and then not Is_Unchecked_Union
(Rec_Type
)
1889 D
:= First_Discriminant
(Rec_Type
);
1890 while Present
(D
) loop
1892 -- Don't generate the assignment for discriminants in derived
1893 -- tagged types if the discriminant is a renaming of some
1894 -- ancestor discriminant. This initialization will be done
1895 -- when initializing the _parent field of the derived record.
1898 and then Present
(Corresponding_Discriminant
(D
))
1904 Append_List_To
(Statement_List
,
1905 Build_Assignment
(D
,
1906 New_Reference_To
(Discriminal
(D
), D_Loc
)));
1909 Next_Discriminant
(D
);
1912 end Build_Discriminant_Assignments
;
1914 --------------------------
1915 -- Build_Init_Call_Thru --
1916 --------------------------
1918 function Build_Init_Call_Thru
(Parameters
: List_Id
) return List_Id
is
1919 Parent_Proc
: constant Entity_Id
:=
1920 Base_Init_Proc
(Etype
(Rec_Type
));
1922 Parent_Type
: constant Entity_Id
:=
1923 Etype
(First_Formal
(Parent_Proc
));
1925 Uparent_Type
: constant Entity_Id
:=
1926 Underlying_Type
(Parent_Type
);
1928 First_Discr_Param
: Node_Id
;
1932 First_Arg
: Node_Id
;
1933 Parent_Discr
: Entity_Id
;
1937 -- First argument (_Init) is the object to be initialized.
1938 -- ??? not sure where to get a reasonable Loc for First_Arg
1941 OK_Convert_To
(Parent_Type
,
1942 New_Reference_To
(Defining_Identifier
(First
(Parameters
)), Loc
));
1944 Set_Etype
(First_Arg
, Parent_Type
);
1946 Args
:= New_List
(Convert_Concurrent
(First_Arg
, Rec_Type
));
1948 -- In the tasks case,
1949 -- add _Master as the value of the _Master parameter
1950 -- add _Chain as the value of the _Chain parameter.
1951 -- add _Task_Name as the value of the _Task_Name parameter.
1952 -- At the outer level, these will be variables holding the
1953 -- corresponding values obtained from GNARL or the expander.
1955 -- At inner levels, they will be the parameters passed down through
1956 -- the outer routines.
1958 First_Discr_Param
:= Next
(First
(Parameters
));
1960 if Has_Task
(Rec_Type
) then
1961 if Restriction_Active
(No_Task_Hierarchy
) then
1963 New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
));
1965 Append_To
(Args
, Make_Identifier
(Loc
, Name_uMaster
));
1968 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
1969 Append_To
(Args
, Make_Identifier
(Loc
, Name_uTask_Name
));
1970 First_Discr_Param
:= Next
(Next
(Next
(First_Discr_Param
)));
1973 -- Append discriminant values
1975 if Has_Discriminants
(Uparent_Type
) then
1976 pragma Assert
(not Is_Tagged_Type
(Uparent_Type
));
1978 Parent_Discr
:= First_Discriminant
(Uparent_Type
);
1979 while Present
(Parent_Discr
) loop
1981 -- Get the initial value for this discriminant
1982 -- ??? needs to be cleaned up to use parent_Discr_Constr
1986 Discr
: Entity_Id
:=
1987 First_Stored_Discriminant
(Uparent_Type
);
1989 Discr_Value
: Elmt_Id
:=
1990 First_Elmt
(Stored_Constraint
(Rec_Type
));
1993 while Original_Record_Component
(Parent_Discr
) /= Discr
loop
1994 Next_Stored_Discriminant
(Discr
);
1995 Next_Elmt
(Discr_Value
);
1998 Arg
:= Node
(Discr_Value
);
2001 -- Append it to the list
2003 if Nkind
(Arg
) = N_Identifier
2004 and then Ekind
(Entity
(Arg
)) = E_Discriminant
2007 New_Reference_To
(Discriminal
(Entity
(Arg
)), Loc
));
2009 -- Case of access discriminants. We replace the reference
2010 -- to the type by a reference to the actual object.
2012 -- Is above comment right??? Use of New_Copy below seems mighty
2016 Append_To
(Args
, New_Copy
(Arg
));
2019 Next_Discriminant
(Parent_Discr
);
2025 Make_Procedure_Call_Statement
(Loc
,
2027 New_Occurrence_Of
(Parent_Proc
, Loc
),
2028 Parameter_Associations
=> Args
));
2031 end Build_Init_Call_Thru
;
2033 -----------------------------------
2034 -- Build_Offset_To_Top_Functions --
2035 -----------------------------------
2037 procedure Build_Offset_To_Top_Functions
is
2039 procedure Build_Offset_To_Top_Function
(Iface_Comp
: Entity_Id
);
2041 -- function Fxx (O : Address) return Storage_Offset is
2042 -- type Acc is access all <Typ>;
2044 -- return Acc!(O).Iface_Comp'Position;
2047 ----------------------------------
2048 -- Build_Offset_To_Top_Function --
2049 ----------------------------------
2051 procedure Build_Offset_To_Top_Function
(Iface_Comp
: Entity_Id
) is
2052 Body_Node
: Node_Id
;
2053 Func_Id
: Entity_Id
;
2054 Spec_Node
: Node_Id
;
2055 Acc_Type
: Entity_Id
;
2058 Func_Id
:= Make_Temporary
(Loc
, 'F');
2059 Set_DT_Offset_To_Top_Func
(Iface_Comp
, Func_Id
);
2062 -- function Fxx (O : in Rec_Typ) return Storage_Offset;
2064 Spec_Node
:= New_Node
(N_Function_Specification
, Loc
);
2065 Set_Defining_Unit_Name
(Spec_Node
, Func_Id
);
2066 Set_Parameter_Specifications
(Spec_Node
, New_List
(
2067 Make_Parameter_Specification
(Loc
,
2068 Defining_Identifier
=>
2069 Make_Defining_Identifier
(Loc
, Name_uO
),
2072 New_Reference_To
(RTE
(RE_Address
), Loc
))));
2073 Set_Result_Definition
(Spec_Node
,
2074 New_Reference_To
(RTE
(RE_Storage_Offset
), Loc
));
2077 -- function Fxx (O : in Rec_Typ) return Storage_Offset is
2079 -- return O.Iface_Comp'Position;
2082 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
2083 Set_Specification
(Body_Node
, Spec_Node
);
2085 Acc_Type
:= Make_Temporary
(Loc
, 'T');
2086 Set_Declarations
(Body_Node
, New_List
(
2087 Make_Full_Type_Declaration
(Loc
,
2088 Defining_Identifier
=> Acc_Type
,
2090 Make_Access_To_Object_Definition
(Loc
,
2091 All_Present
=> True,
2092 Null_Exclusion_Present
=> False,
2093 Constant_Present
=> False,
2094 Subtype_Indication
=>
2095 New_Reference_To
(Rec_Type
, Loc
)))));
2097 Set_Handled_Statement_Sequence
(Body_Node
,
2098 Make_Handled_Sequence_Of_Statements
(Loc
,
2099 Statements
=> New_List
(
2100 Make_Simple_Return_Statement
(Loc
,
2102 Make_Attribute_Reference
(Loc
,
2104 Make_Selected_Component
(Loc
,
2106 Unchecked_Convert_To
(Acc_Type
,
2107 Make_Identifier
(Loc
, Name_uO
)),
2109 New_Reference_To
(Iface_Comp
, Loc
)),
2110 Attribute_Name
=> Name_Position
)))));
2112 Set_Ekind
(Func_Id
, E_Function
);
2113 Set_Mechanism
(Func_Id
, Default_Mechanism
);
2114 Set_Is_Internal
(Func_Id
, True);
2116 if not Debug_Generated_Code
then
2117 Set_Debug_Info_Off
(Func_Id
);
2120 Analyze
(Body_Node
);
2122 Append_Freeze_Action
(Rec_Type
, Body_Node
);
2123 end Build_Offset_To_Top_Function
;
2127 Iface_Comp
: Node_Id
;
2128 Iface_Comp_Elmt
: Elmt_Id
;
2129 Ifaces_Comp_List
: Elist_Id
;
2131 -- Start of processing for Build_Offset_To_Top_Functions
2134 -- Offset_To_Top_Functions are built only for derivations of types
2135 -- with discriminants that cover interface types.
2136 -- Nothing is needed either in case of virtual machines, since
2137 -- interfaces are handled directly by the VM.
2139 if not Is_Tagged_Type
(Rec_Type
)
2140 or else Etype
(Rec_Type
) = Rec_Type
2141 or else not Has_Discriminants
(Etype
(Rec_Type
))
2142 or else not Tagged_Type_Expansion
2147 Collect_Interface_Components
(Rec_Type
, Ifaces_Comp_List
);
2149 -- For each interface type with secondary dispatch table we generate
2150 -- the Offset_To_Top_Functions (required to displace the pointer in
2151 -- interface conversions)
2153 Iface_Comp_Elmt
:= First_Elmt
(Ifaces_Comp_List
);
2154 while Present
(Iface_Comp_Elmt
) loop
2155 Iface_Comp
:= Node
(Iface_Comp_Elmt
);
2156 pragma Assert
(Is_Interface
(Related_Type
(Iface_Comp
)));
2158 -- If the interface is a parent of Rec_Type it shares the primary
2159 -- dispatch table and hence there is no need to build the function
2161 if not Is_Ancestor
(Related_Type
(Iface_Comp
), Rec_Type
,
2162 Use_Full_View
=> True)
2164 Build_Offset_To_Top_Function
(Iface_Comp
);
2167 Next_Elmt
(Iface_Comp_Elmt
);
2169 end Build_Offset_To_Top_Functions
;
2171 ------------------------------
2172 -- Build_CPP_Init_Procedure --
2173 ------------------------------
2175 procedure Build_CPP_Init_Procedure
is
2176 Body_Node
: Node_Id
;
2177 Body_Stmts
: List_Id
;
2178 Flag_Id
: Entity_Id
;
2179 Flag_Decl
: Node_Id
;
2180 Handled_Stmt_Node
: Node_Id
;
2181 Init_Tags_List
: List_Id
;
2182 Proc_Id
: Entity_Id
;
2183 Proc_Spec_Node
: Node_Id
;
2186 -- Check cases requiring no IC routine
2188 if not Is_CPP_Class
(Root_Type
(Rec_Type
))
2189 or else Is_CPP_Class
(Rec_Type
)
2190 or else CPP_Num_Prims
(Rec_Type
) = 0
2191 or else not Tagged_Type_Expansion
2192 or else No_Run_Time_Mode
2199 -- Flag : Boolean := False;
2201 -- procedure Typ_IC is
2204 -- Copy C++ dispatch table slots from parent
2205 -- Update C++ slots of overridden primitives
2209 Flag_Id
:= Make_Temporary
(Loc
, 'F');
2212 Make_Object_Declaration
(Loc
,
2213 Defining_Identifier
=> Flag_Id
,
2214 Object_Definition
=>
2215 New_Reference_To
(Standard_Boolean
, Loc
),
2217 New_Reference_To
(Standard_True
, Loc
));
2219 Analyze
(Flag_Decl
);
2220 Append_Freeze_Action
(Rec_Type
, Flag_Decl
);
2222 Body_Stmts
:= New_List
;
2223 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
2225 Proc_Spec_Node
:= New_Node
(N_Procedure_Specification
, Loc
);
2228 Make_Defining_Identifier
(Loc
,
2229 Chars
=> Make_TSS_Name
(Rec_Type
, TSS_CPP_Init_Proc
));
2231 Set_Ekind
(Proc_Id
, E_Procedure
);
2232 Set_Is_Internal
(Proc_Id
);
2234 Set_Defining_Unit_Name
(Proc_Spec_Node
, Proc_Id
);
2236 Set_Parameter_Specifications
(Proc_Spec_Node
, New_List
);
2237 Set_Specification
(Body_Node
, Proc_Spec_Node
);
2238 Set_Declarations
(Body_Node
, New_List
);
2240 Init_Tags_List
:= Build_Inherit_CPP_Prims
(Rec_Type
);
2242 Append_To
(Init_Tags_List
,
2243 Make_Assignment_Statement
(Loc
,
2245 New_Reference_To
(Flag_Id
, Loc
),
2247 New_Reference_To
(Standard_False
, Loc
)));
2249 Append_To
(Body_Stmts
,
2250 Make_If_Statement
(Loc
,
2251 Condition
=> New_Occurrence_Of
(Flag_Id
, Loc
),
2252 Then_Statements
=> Init_Tags_List
));
2254 Handled_Stmt_Node
:=
2255 New_Node
(N_Handled_Sequence_Of_Statements
, Loc
);
2256 Set_Statements
(Handled_Stmt_Node
, Body_Stmts
);
2257 Set_Exception_Handlers
(Handled_Stmt_Node
, No_List
);
2258 Set_Handled_Statement_Sequence
(Body_Node
, Handled_Stmt_Node
);
2260 if not Debug_Generated_Code
then
2261 Set_Debug_Info_Off
(Proc_Id
);
2264 -- Associate CPP_Init_Proc with type
2266 Set_Init_Proc
(Rec_Type
, Proc_Id
);
2267 end Build_CPP_Init_Procedure
;
2269 --------------------------
2270 -- Build_Init_Procedure --
2271 --------------------------
2273 procedure Build_Init_Procedure
is
2274 Body_Stmts
: List_Id
;
2275 Body_Node
: Node_Id
;
2276 Handled_Stmt_Node
: Node_Id
;
2277 Init_Tags_List
: List_Id
;
2278 Parameters
: List_Id
;
2279 Proc_Spec_Node
: Node_Id
;
2280 Record_Extension_Node
: Node_Id
;
2283 Body_Stmts
:= New_List
;
2284 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
2285 Set_Ekind
(Proc_Id
, E_Procedure
);
2287 Proc_Spec_Node
:= New_Node
(N_Procedure_Specification
, Loc
);
2288 Set_Defining_Unit_Name
(Proc_Spec_Node
, Proc_Id
);
2290 Parameters
:= Init_Formals
(Rec_Type
);
2291 Append_List_To
(Parameters
,
2292 Build_Discriminant_Formals
(Rec_Type
, True));
2294 -- For tagged types, we add a flag to indicate whether the routine
2295 -- is called to initialize a parent component in the init_proc of
2296 -- a type extension. If the flag is false, we do not set the tag
2297 -- because it has been set already in the extension.
2299 if Is_Tagged_Type
(Rec_Type
) then
2300 Set_Tag
:= Make_Temporary
(Loc
, 'P');
2302 Append_To
(Parameters
,
2303 Make_Parameter_Specification
(Loc
,
2304 Defining_Identifier
=> Set_Tag
,
2306 New_Occurrence_Of
(Standard_Boolean
, Loc
),
2308 New_Occurrence_Of
(Standard_True
, Loc
)));
2311 Set_Parameter_Specifications
(Proc_Spec_Node
, Parameters
);
2312 Set_Specification
(Body_Node
, Proc_Spec_Node
);
2313 Set_Declarations
(Body_Node
, Decls
);
2315 -- N is a Derived_Type_Definition that renames the parameters of the
2316 -- ancestor type. We initialize it by expanding our discriminants and
2317 -- call the ancestor _init_proc with a type-converted object.
2319 if Parent_Subtype_Renaming_Discrims
then
2320 Append_List_To
(Body_Stmts
, Build_Init_Call_Thru
(Parameters
));
2322 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
2323 Build_Discriminant_Assignments
(Body_Stmts
);
2325 if not Null_Present
(Type_Definition
(N
)) then
2326 Append_List_To
(Body_Stmts
,
2327 Build_Init_Statements
(
2328 Component_List
(Type_Definition
(N
))));
2331 -- N is a Derived_Type_Definition with a possible non-empty
2332 -- extension. The initialization of a type extension consists in the
2333 -- initialization of the components in the extension.
2336 Build_Discriminant_Assignments
(Body_Stmts
);
2338 Record_Extension_Node
:=
2339 Record_Extension_Part
(Type_Definition
(N
));
2341 if not Null_Present
(Record_Extension_Node
) then
2343 Stmts
: constant List_Id
:=
2344 Build_Init_Statements
(
2345 Component_List
(Record_Extension_Node
));
2348 -- The parent field must be initialized first because
2349 -- the offset of the new discriminants may depend on it
2351 Prepend_To
(Body_Stmts
, Remove_Head
(Stmts
));
2352 Append_List_To
(Body_Stmts
, Stmts
);
2357 -- Add here the assignment to instantiate the Tag
2359 -- The assignment corresponds to the code:
2361 -- _Init._Tag := Typ'Tag;
2363 -- Suppress the tag assignment when VM_Target because VM tags are
2364 -- represented implicitly in objects. It is also suppressed in case
2365 -- of CPP_Class types because in this case the tag is initialized in
2368 if Is_Tagged_Type
(Rec_Type
)
2369 and then Tagged_Type_Expansion
2370 and then not No_Run_Time_Mode
2372 -- Case 1: Ada tagged types with no CPP ancestor. Set the tags of
2373 -- the actual object and invoke the IP of the parent (in this
2374 -- order). The tag must be initialized before the call to the IP
2375 -- of the parent and the assignments to other components because
2376 -- the initial value of the components may depend on the tag (eg.
2377 -- through a dispatching operation on an access to the current
2378 -- type). The tag assignment is not done when initializing the
2379 -- parent component of a type extension, because in that case the
2380 -- tag is set in the extension.
2382 if not Is_CPP_Class
(Root_Type
(Rec_Type
)) then
2384 -- Initialize the primary tag component
2386 Init_Tags_List
:= New_List
(
2387 Make_Assignment_Statement
(Loc
,
2389 Make_Selected_Component
(Loc
,
2390 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2393 (First_Tag_Component
(Rec_Type
), Loc
)),
2397 (First_Elmt
(Access_Disp_Table
(Rec_Type
))), Loc
)));
2399 -- Ada 2005 (AI-251): Initialize the secondary tags components
2400 -- located at fixed positions (tags whose position depends on
2401 -- variable size components are initialized later ---see below)
2403 if Ada_Version
>= Ada_2005
2404 and then not Is_Interface
(Rec_Type
)
2405 and then Has_Interfaces
(Rec_Type
)
2409 Target
=> Make_Identifier
(Loc
, Name_uInit
),
2410 Stmts_List
=> Init_Tags_List
,
2411 Fixed_Comps
=> True,
2412 Variable_Comps
=> False);
2415 Prepend_To
(Body_Stmts
,
2416 Make_If_Statement
(Loc
,
2417 Condition
=> New_Occurrence_Of
(Set_Tag
, Loc
),
2418 Then_Statements
=> Init_Tags_List
));
2420 -- Case 2: CPP type. The imported C++ constructor takes care of
2421 -- tags initialization. No action needed here because the IP
2422 -- is built by Set_CPP_Constructors; in this case the IP is a
2423 -- wrapper that invokes the C++ constructor and copies the C++
2424 -- tags locally. Done to inherit the C++ slots in Ada derivations
2427 elsif Is_CPP_Class
(Rec_Type
) then
2428 pragma Assert
(False);
2431 -- Case 3: Combined hierarchy containing C++ types and Ada tagged
2432 -- type derivations. Derivations of imported C++ classes add a
2433 -- complication, because we cannot inhibit tag setting in the
2434 -- constructor for the parent. Hence we initialize the tag after
2435 -- the call to the parent IP (that is, in reverse order compared
2436 -- with pure Ada hierarchies ---see comment on case 1).
2439 -- Initialize the primary tag
2441 Init_Tags_List
:= New_List
(
2442 Make_Assignment_Statement
(Loc
,
2444 Make_Selected_Component
(Loc
,
2445 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2448 (First_Tag_Component
(Rec_Type
), Loc
)),
2452 (First_Elmt
(Access_Disp_Table
(Rec_Type
))), Loc
)));
2454 -- Ada 2005 (AI-251): Initialize the secondary tags components
2455 -- located at fixed positions (tags whose position depends on
2456 -- variable size components are initialized later ---see below)
2458 if Ada_Version
>= Ada_2005
2459 and then not Is_Interface
(Rec_Type
)
2460 and then Has_Interfaces
(Rec_Type
)
2464 Target
=> Make_Identifier
(Loc
, Name_uInit
),
2465 Stmts_List
=> Init_Tags_List
,
2466 Fixed_Comps
=> True,
2467 Variable_Comps
=> False);
2470 -- Initialize the tag component after invocation of parent IP.
2473 -- parent_IP(_init.parent); // Invokes the C++ constructor
2474 -- [ typIC; ] // Inherit C++ slots from parent
2481 -- Search for the call to the IP of the parent. We assume
2482 -- that the first init_proc call is for the parent.
2484 Ins_Nod
:= First
(Body_Stmts
);
2485 while Present
(Next
(Ins_Nod
))
2486 and then (Nkind
(Ins_Nod
) /= N_Procedure_Call_Statement
2487 or else not Is_Init_Proc
(Name
(Ins_Nod
)))
2492 -- The IC routine copies the inherited slots of the C+ part
2493 -- of the dispatch table from the parent and updates the
2494 -- overridden C++ slots.
2496 if CPP_Num_Prims
(Rec_Type
) > 0 then
2498 Init_DT
: Entity_Id
;
2502 Init_DT
:= CPP_Init_Proc
(Rec_Type
);
2503 pragma Assert
(Present
(Init_DT
));
2506 Make_Procedure_Call_Statement
(Loc
,
2507 New_Reference_To
(Init_DT
, Loc
));
2508 Insert_After
(Ins_Nod
, New_Nod
);
2510 -- Update location of init tag statements
2516 Insert_List_After
(Ins_Nod
, Init_Tags_List
);
2520 -- Ada 2005 (AI-251): Initialize the secondary tag components
2521 -- located at variable positions. We delay the generation of this
2522 -- code until here because the value of the attribute 'Position
2523 -- applied to variable size components of the parent type that
2524 -- depend on discriminants is only safely read at runtime after
2525 -- the parent components have been initialized.
2527 if Ada_Version
>= Ada_2005
2528 and then not Is_Interface
(Rec_Type
)
2529 and then Has_Interfaces
(Rec_Type
)
2530 and then Has_Discriminants
(Etype
(Rec_Type
))
2531 and then Is_Variable_Size_Record
(Etype
(Rec_Type
))
2533 Init_Tags_List
:= New_List
;
2537 Target
=> Make_Identifier
(Loc
, Name_uInit
),
2538 Stmts_List
=> Init_Tags_List
,
2539 Fixed_Comps
=> False,
2540 Variable_Comps
=> True);
2542 if Is_Non_Empty_List
(Init_Tags_List
) then
2543 Append_List_To
(Body_Stmts
, Init_Tags_List
);
2548 Handled_Stmt_Node
:= New_Node
(N_Handled_Sequence_Of_Statements
, Loc
);
2549 Set_Statements
(Handled_Stmt_Node
, Body_Stmts
);
2552 -- Local_DF_Id (_init, C1, ..., CN);
2556 and then Needs_Finalization
(Rec_Type
)
2557 and then not Is_Abstract_Type
(Rec_Type
)
2558 and then not Restriction_Active
(No_Exception_Propagation
)
2561 Local_DF_Id
: Entity_Id
;
2564 -- Create a local version of Deep_Finalize which has indication
2565 -- of partial initialization state.
2567 Local_DF_Id
:= Make_Temporary
(Loc
, 'F');
2570 Make_Local_Deep_Finalize
(Rec_Type
, Local_DF_Id
));
2572 Set_Exception_Handlers
(Handled_Stmt_Node
, New_List
(
2573 Make_Exception_Handler
(Loc
,
2574 Exception_Choices
=> New_List
(
2575 Make_Others_Choice
(Loc
)),
2577 Statements
=> New_List
(
2578 Make_Procedure_Call_Statement
(Loc
,
2580 New_Reference_To
(Local_DF_Id
, Loc
),
2582 Parameter_Associations
=> New_List
(
2583 Make_Identifier
(Loc
, Name_uInit
),
2584 New_Reference_To
(Standard_False
, Loc
))),
2586 Make_Raise_Statement
(Loc
)))));
2589 Set_Exception_Handlers
(Handled_Stmt_Node
, No_List
);
2592 Set_Handled_Statement_Sequence
(Body_Node
, Handled_Stmt_Node
);
2594 if not Debug_Generated_Code
then
2595 Set_Debug_Info_Off
(Proc_Id
);
2598 -- Associate Init_Proc with type, and determine if the procedure
2599 -- is null (happens because of the Initialize_Scalars pragma case,
2600 -- where we have to generate a null procedure in case it is called
2601 -- by a client with Initialize_Scalars set). Such procedures have
2602 -- to be generated, but do not have to be called, so we mark them
2603 -- as null to suppress the call.
2605 Set_Init_Proc
(Rec_Type
, Proc_Id
);
2607 if List_Length
(Body_Stmts
) = 1
2609 -- We must skip SCIL nodes because they may have been added to this
2610 -- list by Insert_Actions.
2612 and then Nkind
(First_Non_SCIL_Node
(Body_Stmts
)) = N_Null_Statement
2613 and then VM_Target
= No_VM
2615 -- Even though the init proc may be null at this time it might get
2616 -- some stuff added to it later by the VM backend.
2618 Set_Is_Null_Init_Proc
(Proc_Id
);
2620 end Build_Init_Procedure
;
2622 ---------------------------
2623 -- Build_Init_Statements --
2624 ---------------------------
2626 function Build_Init_Statements
(Comp_List
: Node_Id
) return List_Id
is
2627 Checks
: constant List_Id
:= New_List
;
2628 Actions
: List_Id
:= No_List
;
2629 Comp_Loc
: Source_Ptr
;
2630 Counter_Id
: Entity_Id
:= Empty
;
2638 procedure Increment_Counter
(Loc
: Source_Ptr
);
2639 -- Generate an "increment by one" statement for the current counter
2640 -- and append it to the list Stmts.
2642 procedure Make_Counter
(Loc
: Source_Ptr
);
2643 -- Create a new counter for the current component list. The routine
2644 -- creates a new defining Id, adds an object declaration and sets
2645 -- the Id generator for the next variant.
2647 -----------------------
2648 -- Increment_Counter --
2649 -----------------------
2651 procedure Increment_Counter
(Loc
: Source_Ptr
) is
2654 -- Counter := Counter + 1;
2657 Make_Assignment_Statement
(Loc
,
2658 Name
=> New_Reference_To
(Counter_Id
, Loc
),
2661 Left_Opnd
=> New_Reference_To
(Counter_Id
, Loc
),
2662 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1))));
2663 end Increment_Counter
;
2669 procedure Make_Counter
(Loc
: Source_Ptr
) is
2671 -- Increment the Id generator
2673 Counter
:= Counter
+ 1;
2675 -- Create the entity and declaration
2678 Make_Defining_Identifier
(Loc
,
2679 Chars
=> New_External_Name
('C', Counter
));
2682 -- Cnn : Integer := 0;
2685 Make_Object_Declaration
(Loc
,
2686 Defining_Identifier
=> Counter_Id
,
2687 Object_Definition
=>
2688 New_Reference_To
(Standard_Integer
, Loc
),
2690 Make_Integer_Literal
(Loc
, 0)));
2693 -- Start of processing for Build_Init_Statements
2696 if Null_Present
(Comp_List
) then
2697 return New_List
(Make_Null_Statement
(Loc
));
2702 -- Loop through visible declarations of task types and protected
2703 -- types moving any expanded code from the spec to the body of the
2706 if Is_Task_Record_Type
(Rec_Type
)
2707 or else Is_Protected_Record_Type
(Rec_Type
)
2710 Decl
: constant Node_Id
:=
2711 Parent
(Corresponding_Concurrent_Type
(Rec_Type
));
2717 if Is_Task_Record_Type
(Rec_Type
) then
2718 Def
:= Task_Definition
(Decl
);
2720 Def
:= Protected_Definition
(Decl
);
2723 if Present
(Def
) then
2724 N1
:= First
(Visible_Declarations
(Def
));
2725 while Present
(N1
) loop
2729 if Nkind
(N2
) in N_Statement_Other_Than_Procedure_Call
2730 or else Nkind
(N2
) in N_Raise_xxx_Error
2731 or else Nkind
(N2
) = N_Procedure_Call_Statement
2734 New_Copy_Tree
(N2
, New_Scope
=> Proc_Id
));
2735 Rewrite
(N2
, Make_Null_Statement
(Sloc
(N2
)));
2743 -- Loop through components, skipping pragmas, in 2 steps. The first
2744 -- step deals with regular components. The second step deals with
2745 -- components have per object constraints, and no explicit initia-
2750 -- First pass : regular components
2752 Decl
:= First_Non_Pragma
(Component_Items
(Comp_List
));
2753 while Present
(Decl
) loop
2754 Comp_Loc
:= Sloc
(Decl
);
2756 (Subtype_Indication
(Component_Definition
(Decl
)), Checks
);
2758 Id
:= Defining_Identifier
(Decl
);
2761 -- Leave any processing of per-object constrained component for
2764 if Has_Access_Constraint
(Id
)
2765 and then No
(Expression
(Decl
))
2769 -- Regular component cases
2772 -- Explicit initialization
2774 if Present
(Expression
(Decl
)) then
2775 if Is_CPP_Constructor_Call
(Expression
(Decl
)) then
2777 Build_Initialization_Call
2780 Make_Selected_Component
(Comp_Loc
,
2782 Make_Identifier
(Comp_Loc
, Name_uInit
),
2784 New_Occurrence_Of
(Id
, Comp_Loc
)),
2786 In_Init_Proc
=> True,
2787 Enclos_Type
=> Rec_Type
,
2788 Discr_Map
=> Discr_Map
,
2789 Constructor_Ref
=> Expression
(Decl
));
2791 Actions
:= Build_Assignment
(Id
, Expression
(Decl
));
2794 -- CPU, Dispatching_Domain, Priority and Size components are
2795 -- filled with the corresponding rep item expression of the
2796 -- concurrent type (if any).
2798 elsif Ekind
(Scope
(Id
)) = E_Record_Type
2799 and then Present
(Corresponding_Concurrent_Type
(Scope
(Id
)))
2800 and then (Chars
(Id
) = Name_uCPU
or else
2801 Chars
(Id
) = Name_uDispatching_Domain
or else
2802 Chars
(Id
) = Name_uPriority
)
2810 if Chars
(Id
) = Name_uCPU
then
2813 elsif Chars
(Id
) = Name_uDispatching_Domain
then
2814 Nam
:= Name_Dispatching_Domain
;
2816 elsif Chars
(Id
) = Name_uPriority
then
2817 Nam
:= Name_Priority
;
2820 -- Get the Rep Item (aspect specification, attribute
2821 -- definition clause or pragma) of the corresponding
2826 (Corresponding_Concurrent_Type
(Scope
(Id
)),
2828 Check_Parents
=> False);
2830 if Present
(Ritem
) then
2834 if Nkind
(Ritem
) = N_Pragma
then
2835 Exp
:= First
(Pragma_Argument_Associations
(Ritem
));
2837 if Nkind
(Exp
) = N_Pragma_Argument_Association
then
2838 Exp
:= Expression
(Exp
);
2841 -- Conversion for Priority expression
2843 if Nam
= Name_Priority
then
2844 if Pragma_Name
(Ritem
) = Name_Priority
2845 and then not GNAT_Mode
2847 Exp
:= Convert_To
(RTE
(RE_Priority
), Exp
);
2850 Convert_To
(RTE
(RE_Any_Priority
), Exp
);
2854 -- Aspect/Attribute definition clause case
2857 Exp
:= Expression
(Ritem
);
2859 -- Conversion for Priority expression
2861 if Nam
= Name_Priority
then
2862 if Chars
(Ritem
) = Name_Priority
2863 and then not GNAT_Mode
2865 Exp
:= Convert_To
(RTE
(RE_Priority
), Exp
);
2868 Convert_To
(RTE
(RE_Any_Priority
), Exp
);
2873 -- Conversion for Dispatching_Domain value
2875 if Nam
= Name_Dispatching_Domain
then
2877 Unchecked_Convert_To
2878 (RTE
(RE_Dispatching_Domain_Access
), Exp
);
2881 Actions
:= Build_Assignment
(Id
, Exp
);
2883 -- Nothing needed if no Rep Item
2890 -- Composite component with its own Init_Proc
2892 elsif not Is_Interface
(Typ
)
2893 and then Has_Non_Null_Base_Init_Proc
(Typ
)
2896 Build_Initialization_Call
2898 Make_Selected_Component
(Comp_Loc
,
2900 Make_Identifier
(Comp_Loc
, Name_uInit
),
2901 Selector_Name
=> New_Occurrence_Of
(Id
, Comp_Loc
)),
2903 In_Init_Proc
=> True,
2904 Enclos_Type
=> Rec_Type
,
2905 Discr_Map
=> Discr_Map
);
2907 Clean_Task_Names
(Typ
, Proc_Id
);
2909 -- Simple initialization
2911 elsif Component_Needs_Simple_Initialization
(Typ
) then
2914 (Id
, Get_Simple_Init_Val
(Typ
, N
, Esize
(Id
)));
2916 -- Nothing needed for this case
2922 if Present
(Checks
) then
2923 Append_List_To
(Stmts
, Checks
);
2926 if Present
(Actions
) then
2927 Append_List_To
(Stmts
, Actions
);
2929 -- Preserve the initialization state in the current counter
2931 if Chars
(Id
) /= Name_uParent
2932 and then Needs_Finalization
(Typ
)
2934 if No
(Counter_Id
) then
2935 Make_Counter
(Comp_Loc
);
2938 Increment_Counter
(Comp_Loc
);
2943 Next_Non_Pragma
(Decl
);
2946 -- Set up tasks and protected object support. This needs to be done
2947 -- before any component with a per-object access discriminant
2948 -- constraint, or any variant part (which may contain such
2949 -- components) is initialized, because the initialization of these
2950 -- components may reference the enclosing concurrent object.
2952 -- For a task record type, add the task create call and calls to bind
2953 -- any interrupt (signal) entries.
2955 if Is_Task_Record_Type
(Rec_Type
) then
2957 -- In the case of the restricted run time the ATCB has already
2958 -- been preallocated.
2960 if Restricted_Profile
then
2962 Make_Assignment_Statement
(Loc
,
2964 Make_Selected_Component
(Loc
,
2965 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2966 Selector_Name
=> Make_Identifier
(Loc
, Name_uTask_Id
)),
2968 Make_Attribute_Reference
(Loc
,
2970 Make_Selected_Component
(Loc
,
2971 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2972 Selector_Name
=> Make_Identifier
(Loc
, Name_uATCB
)),
2973 Attribute_Name
=> Name_Unchecked_Access
)));
2976 Append_To
(Stmts
, Make_Task_Create_Call
(Rec_Type
));
2978 -- Generate the statements which map a string entry name to a
2979 -- task entry index. Note that the task may not have entries.
2981 if Entry_Names_OK
then
2982 Names
:= Build_Entry_Names
(Rec_Type
);
2984 if Present
(Names
) then
2985 Append_To
(Stmts
, Names
);
2990 Task_Type
: constant Entity_Id
:=
2991 Corresponding_Concurrent_Type
(Rec_Type
);
2992 Task_Decl
: constant Node_Id
:= Parent
(Task_Type
);
2993 Task_Def
: constant Node_Id
:= Task_Definition
(Task_Decl
);
2994 Decl_Loc
: Source_Ptr
;
2999 if Present
(Task_Def
) then
3000 Vis_Decl
:= First
(Visible_Declarations
(Task_Def
));
3001 while Present
(Vis_Decl
) loop
3002 Decl_Loc
:= Sloc
(Vis_Decl
);
3004 if Nkind
(Vis_Decl
) = N_Attribute_Definition_Clause
then
3005 if Get_Attribute_Id
(Chars
(Vis_Decl
)) =
3008 Ent
:= Entity
(Name
(Vis_Decl
));
3010 if Ekind
(Ent
) = E_Entry
then
3012 Make_Procedure_Call_Statement
(Decl_Loc
,
3014 New_Reference_To
(RTE
(
3015 RE_Bind_Interrupt_To_Entry
), Decl_Loc
),
3016 Parameter_Associations
=> New_List
(
3017 Make_Selected_Component
(Decl_Loc
,
3019 Make_Identifier
(Decl_Loc
, Name_uInit
),
3022 (Decl_Loc
, Name_uTask_Id
)),
3023 Entry_Index_Expression
3024 (Decl_Loc
, Ent
, Empty
, Task_Type
),
3025 Expression
(Vis_Decl
))));
3036 -- For a protected type, add statements generated by
3037 -- Make_Initialize_Protection.
3039 if Is_Protected_Record_Type
(Rec_Type
) then
3040 Append_List_To
(Stmts
,
3041 Make_Initialize_Protection
(Rec_Type
));
3043 -- Generate the statements which map a string entry name to a
3044 -- protected entry index. Note that the protected type may not
3047 if Entry_Names_OK
then
3048 Names
:= Build_Entry_Names
(Rec_Type
);
3050 if Present
(Names
) then
3051 Append_To
(Stmts
, Names
);
3056 -- Second pass: components with per-object constraints
3059 Decl
:= First_Non_Pragma
(Component_Items
(Comp_List
));
3060 while Present
(Decl
) loop
3061 Comp_Loc
:= Sloc
(Decl
);
3062 Id
:= Defining_Identifier
(Decl
);
3065 if Has_Access_Constraint
(Id
)
3066 and then No
(Expression
(Decl
))
3068 if Has_Non_Null_Base_Init_Proc
(Typ
) then
3069 Append_List_To
(Stmts
,
3070 Build_Initialization_Call
(Comp_Loc
,
3071 Make_Selected_Component
(Comp_Loc
,
3073 Make_Identifier
(Comp_Loc
, Name_uInit
),
3074 Selector_Name
=> New_Occurrence_Of
(Id
, Comp_Loc
)),
3076 In_Init_Proc
=> True,
3077 Enclos_Type
=> Rec_Type
,
3078 Discr_Map
=> Discr_Map
));
3080 Clean_Task_Names
(Typ
, Proc_Id
);
3082 -- Preserve the initialization state in the current
3085 if Needs_Finalization
(Typ
) then
3086 if No
(Counter_Id
) then
3087 Make_Counter
(Comp_Loc
);
3090 Increment_Counter
(Comp_Loc
);
3093 elsif Component_Needs_Simple_Initialization
(Typ
) then
3094 Append_List_To
(Stmts
,
3096 (Id
, Get_Simple_Init_Val
(Typ
, N
, Esize
(Id
))));
3100 Next_Non_Pragma
(Decl
);
3104 -- Process the variant part
3106 if Present
(Variant_Part
(Comp_List
)) then
3108 Variant_Alts
: constant List_Id
:= New_List
;
3109 Var_Loc
: Source_Ptr
;
3114 First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
3115 while Present
(Variant
) loop
3116 Var_Loc
:= Sloc
(Variant
);
3117 Append_To
(Variant_Alts
,
3118 Make_Case_Statement_Alternative
(Var_Loc
,
3120 New_Copy_List
(Discrete_Choices
(Variant
)),
3122 Build_Init_Statements
(Component_List
(Variant
))));
3123 Next_Non_Pragma
(Variant
);
3126 -- The expression of the case statement which is a reference
3127 -- to one of the discriminants is replaced by the appropriate
3128 -- formal parameter of the initialization procedure.
3131 Make_Case_Statement
(Var_Loc
,
3133 New_Reference_To
(Discriminal
(
3134 Entity
(Name
(Variant_Part
(Comp_List
)))), Var_Loc
),
3135 Alternatives
=> Variant_Alts
));
3139 -- If no initializations when generated for component declarations
3140 -- corresponding to this Stmts, append a null statement to Stmts to
3141 -- to make it a valid Ada tree.
3143 if Is_Empty_List
(Stmts
) then
3144 Append
(Make_Null_Statement
(Loc
), Stmts
);
3150 when RE_Not_Available
=>
3152 end Build_Init_Statements
;
3154 -------------------------
3155 -- Build_Record_Checks --
3156 -------------------------
3158 procedure Build_Record_Checks
(S
: Node_Id
; Check_List
: List_Id
) is
3159 Subtype_Mark_Id
: Entity_Id
;
3161 procedure Constrain_Array
3163 Check_List
: List_Id
);
3164 -- Apply a list of index constraints to an unconstrained array type.
3165 -- The first parameter is the entity for the resulting subtype.
3166 -- Check_List is a list to which the check actions are appended.
3168 ---------------------
3169 -- Constrain_Array --
3170 ---------------------
3172 procedure Constrain_Array
3174 Check_List
: List_Id
)
3176 C
: constant Node_Id
:= Constraint
(SI
);
3177 Number_Of_Constraints
: Nat
:= 0;
3181 procedure Constrain_Index
3184 Check_List
: List_Id
);
3185 -- Process an index constraint in a constrained array declaration.
3186 -- The constraint can be either a subtype name or a range with or
3187 -- without an explicit subtype mark. Index is the corresponding
3188 -- index of the unconstrained array. S is the range expression.
3189 -- Check_List is a list to which the check actions are appended.
3191 ---------------------
3192 -- Constrain_Index --
3193 ---------------------
3195 procedure Constrain_Index
3198 Check_List
: List_Id
)
3200 T
: constant Entity_Id
:= Etype
(Index
);
3203 if Nkind
(S
) = N_Range
then
3204 Process_Range_Expr_In_Decl
(S
, T
, Check_List
);
3206 end Constrain_Index
;
3208 -- Start of processing for Constrain_Array
3211 T
:= Entity
(Subtype_Mark
(SI
));
3213 if Ekind
(T
) in Access_Kind
then
3214 T
:= Designated_Type
(T
);
3217 S
:= First
(Constraints
(C
));
3219 while Present
(S
) loop
3220 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
3224 -- In either case, the index constraint must provide a discrete
3225 -- range for each index of the array type and the type of each
3226 -- discrete range must be the same as that of the corresponding
3227 -- index. (RM 3.6.1)
3229 S
:= First
(Constraints
(C
));
3230 Index
:= First_Index
(T
);
3233 -- Apply constraints to each index type
3235 for J
in 1 .. Number_Of_Constraints
loop
3236 Constrain_Index
(Index
, S
, Check_List
);
3240 end Constrain_Array
;
3242 -- Start of processing for Build_Record_Checks
3245 if Nkind
(S
) = N_Subtype_Indication
then
3246 Find_Type
(Subtype_Mark
(S
));
3247 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
3249 -- Remaining processing depends on type
3251 case Ekind
(Subtype_Mark_Id
) is
3254 Constrain_Array
(S
, Check_List
);
3260 end Build_Record_Checks
;
3262 -------------------------------------------
3263 -- Component_Needs_Simple_Initialization --
3264 -------------------------------------------
3266 function Component_Needs_Simple_Initialization
3267 (T
: Entity_Id
) return Boolean
3271 Needs_Simple_Initialization
(T
)
3272 and then not Is_RTE
(T
, RE_Tag
)
3274 -- Ada 2005 (AI-251): Check also the tag of abstract interfaces
3276 and then not Is_RTE
(T
, RE_Interface_Tag
);
3277 end Component_Needs_Simple_Initialization
;
3279 --------------------------------------
3280 -- Parent_Subtype_Renaming_Discrims --
3281 --------------------------------------
3283 function Parent_Subtype_Renaming_Discrims
return Boolean is
3288 if Base_Type
(Rec_Ent
) /= Rec_Ent
then
3292 if Etype
(Rec_Ent
) = Rec_Ent
3293 or else not Has_Discriminants
(Rec_Ent
)
3294 or else Is_Constrained
(Rec_Ent
)
3295 or else Is_Tagged_Type
(Rec_Ent
)
3300 -- If there are no explicit stored discriminants we have inherited
3301 -- the root type discriminants so far, so no renamings occurred.
3303 if First_Discriminant
(Rec_Ent
) =
3304 First_Stored_Discriminant
(Rec_Ent
)
3309 -- Check if we have done some trivial renaming of the parent
3310 -- discriminants, i.e. something like
3312 -- type DT (X1, X2: int) is new PT (X1, X2);
3314 De
:= First_Discriminant
(Rec_Ent
);
3315 Dp
:= First_Discriminant
(Etype
(Rec_Ent
));
3316 while Present
(De
) loop
3317 pragma Assert
(Present
(Dp
));
3319 if Corresponding_Discriminant
(De
) /= Dp
then
3323 Next_Discriminant
(De
);
3324 Next_Discriminant
(Dp
);
3327 return Present
(Dp
);
3328 end Parent_Subtype_Renaming_Discrims
;
3330 ------------------------
3331 -- Requires_Init_Proc --
3332 ------------------------
3334 function Requires_Init_Proc
(Rec_Id
: Entity_Id
) return Boolean is
3335 Comp_Decl
: Node_Id
;
3340 -- Definitely do not need one if specifically suppressed
3342 if Initialization_Suppressed
(Rec_Id
) then
3346 -- If it is a type derived from a type with unknown discriminants,
3347 -- we cannot build an initialization procedure for it.
3349 if Has_Unknown_Discriminants
(Rec_Id
)
3350 or else Has_Unknown_Discriminants
(Etype
(Rec_Id
))
3355 -- Otherwise we need to generate an initialization procedure if
3356 -- Is_CPP_Class is False and at least one of the following applies:
3358 -- 1. Discriminants are present, since they need to be initialized
3359 -- with the appropriate discriminant constraint expressions.
3360 -- However, the discriminant of an unchecked union does not
3361 -- count, since the discriminant is not present.
3363 -- 2. The type is a tagged type, since the implicit Tag component
3364 -- needs to be initialized with a pointer to the dispatch table.
3366 -- 3. The type contains tasks
3368 -- 4. One or more components has an initial value
3370 -- 5. One or more components is for a type which itself requires
3371 -- an initialization procedure.
3373 -- 6. One or more components is a type that requires simple
3374 -- initialization (see Needs_Simple_Initialization), except
3375 -- that types Tag and Interface_Tag are excluded, since fields
3376 -- of these types are initialized by other means.
3378 -- 7. The type is the record type built for a task type (since at
3379 -- the very least, Create_Task must be called)
3381 -- 8. The type is the record type built for a protected type (since
3382 -- at least Initialize_Protection must be called)
3384 -- 9. The type is marked as a public entity. The reason we add this
3385 -- case (even if none of the above apply) is to properly handle
3386 -- Initialize_Scalars. If a package is compiled without an IS
3387 -- pragma, and the client is compiled with an IS pragma, then
3388 -- the client will think an initialization procedure is present
3389 -- and call it, when in fact no such procedure is required, but
3390 -- since the call is generated, there had better be a routine
3391 -- at the other end of the call, even if it does nothing!)
3393 -- Note: the reason we exclude the CPP_Class case is because in this
3394 -- case the initialization is performed by the C++ constructors, and
3395 -- the IP is built by Set_CPP_Constructors.
3397 if Is_CPP_Class
(Rec_Id
) then
3400 elsif Is_Interface
(Rec_Id
) then
3403 elsif (Has_Discriminants
(Rec_Id
)
3404 and then not Is_Unchecked_Union
(Rec_Id
))
3405 or else Is_Tagged_Type
(Rec_Id
)
3406 or else Is_Concurrent_Record_Type
(Rec_Id
)
3407 or else Has_Task
(Rec_Id
)
3412 Id
:= First_Component
(Rec_Id
);
3413 while Present
(Id
) loop
3414 Comp_Decl
:= Parent
(Id
);
3417 if Present
(Expression
(Comp_Decl
))
3418 or else Has_Non_Null_Base_Init_Proc
(Typ
)
3419 or else Component_Needs_Simple_Initialization
(Typ
)
3424 Next_Component
(Id
);
3427 -- As explained above, a record initialization procedure is needed
3428 -- for public types in case Initialize_Scalars applies to a client.
3429 -- However, such a procedure is not needed in the case where either
3430 -- of restrictions No_Initialize_Scalars or No_Default_Initialization
3431 -- applies. No_Initialize_Scalars excludes the possibility of using
3432 -- Initialize_Scalars in any partition, and No_Default_Initialization
3433 -- implies that no initialization should ever be done for objects of
3434 -- the type, so is incompatible with Initialize_Scalars.
3436 if not Restriction_Active
(No_Initialize_Scalars
)
3437 and then not Restriction_Active
(No_Default_Initialization
)
3438 and then Is_Public
(Rec_Id
)
3444 end Requires_Init_Proc
;
3446 -- Start of processing for Build_Record_Init_Proc
3449 -- Check for value type, which means no initialization required
3451 Rec_Type
:= Defining_Identifier
(N
);
3453 if Is_Value_Type
(Rec_Type
) then
3457 -- This may be full declaration of a private type, in which case
3458 -- the visible entity is a record, and the private entity has been
3459 -- exchanged with it in the private part of the current package.
3460 -- The initialization procedure is built for the record type, which
3461 -- is retrievable from the private entity.
3463 if Is_Incomplete_Or_Private_Type
(Rec_Type
) then
3464 Rec_Type
:= Underlying_Type
(Rec_Type
);
3467 -- If there are discriminants, build the discriminant map to replace
3468 -- discriminants by their discriminals in complex bound expressions.
3469 -- These only arise for the corresponding records of synchronized types.
3471 if Is_Concurrent_Record_Type
(Rec_Type
)
3472 and then Has_Discriminants
(Rec_Type
)
3477 Disc
:= First_Discriminant
(Rec_Type
);
3478 while Present
(Disc
) loop
3479 Append_Elmt
(Disc
, Discr_Map
);
3480 Append_Elmt
(Discriminal
(Disc
), Discr_Map
);
3481 Next_Discriminant
(Disc
);
3486 -- Derived types that have no type extension can use the initialization
3487 -- procedure of their parent and do not need a procedure of their own.
3488 -- This is only correct if there are no representation clauses for the
3489 -- type or its parent, and if the parent has in fact been frozen so
3490 -- that its initialization procedure exists.
3492 if Is_Derived_Type
(Rec_Type
)
3493 and then not Is_Tagged_Type
(Rec_Type
)
3494 and then not Is_Unchecked_Union
(Rec_Type
)
3495 and then not Has_New_Non_Standard_Rep
(Rec_Type
)
3496 and then not Parent_Subtype_Renaming_Discrims
3497 and then Has_Non_Null_Base_Init_Proc
(Etype
(Rec_Type
))
3499 Copy_TSS
(Base_Init_Proc
(Etype
(Rec_Type
)), Rec_Type
);
3501 -- Otherwise if we need an initialization procedure, then build one,
3502 -- mark it as public and inlinable and as having a completion.
3504 elsif Requires_Init_Proc
(Rec_Type
)
3505 or else Is_Unchecked_Union
(Rec_Type
)
3508 Make_Defining_Identifier
(Loc
,
3509 Chars
=> Make_Init_Proc_Name
(Rec_Type
));
3511 -- If No_Default_Initialization restriction is active, then we don't
3512 -- want to build an init_proc, but we need to mark that an init_proc
3513 -- would be needed if this restriction was not active (so that we can
3514 -- detect attempts to call it), so set a dummy init_proc in place.
3516 if Restriction_Active
(No_Default_Initialization
) then
3517 Set_Init_Proc
(Rec_Type
, Proc_Id
);
3521 Build_Offset_To_Top_Functions
;
3522 Build_CPP_Init_Procedure
;
3523 Build_Init_Procedure
;
3524 Set_Is_Public
(Proc_Id
, Is_Public
(Rec_Ent
));
3526 -- The initialization of protected records is not worth inlining.
3527 -- In addition, when compiled for another unit for inlining purposes,
3528 -- it may make reference to entities that have not been elaborated
3529 -- yet. The initialization of controlled records contains a nested
3530 -- clean-up procedure that makes it impractical to inline as well,
3531 -- and leads to undefined symbols if inlined in a different unit.
3532 -- Similar considerations apply to task types.
3534 if not Is_Concurrent_Type
(Rec_Type
)
3535 and then not Has_Task
(Rec_Type
)
3536 and then not Needs_Finalization
(Rec_Type
)
3538 Set_Is_Inlined
(Proc_Id
);
3541 Set_Is_Internal
(Proc_Id
);
3542 Set_Has_Completion
(Proc_Id
);
3544 if not Debug_Generated_Code
then
3545 Set_Debug_Info_Off
(Proc_Id
);
3549 Agg
: constant Node_Id
:=
3550 Build_Equivalent_Record_Aggregate
(Rec_Type
);
3552 procedure Collect_Itypes
(Comp
: Node_Id
);
3553 -- Generate references to itypes in the aggregate, because
3554 -- the first use of the aggregate may be in a nested scope.
3556 --------------------
3557 -- Collect_Itypes --
3558 --------------------
3560 procedure Collect_Itypes
(Comp
: Node_Id
) is
3563 Typ
: constant Entity_Id
:= Etype
(Comp
);
3566 if Is_Array_Type
(Typ
)
3567 and then Is_Itype
(Typ
)
3569 Ref
:= Make_Itype_Reference
(Loc
);
3570 Set_Itype
(Ref
, Typ
);
3571 Append_Freeze_Action
(Rec_Type
, Ref
);
3573 Ref
:= Make_Itype_Reference
(Loc
);
3574 Set_Itype
(Ref
, Etype
(First_Index
(Typ
)));
3575 Append_Freeze_Action
(Rec_Type
, Ref
);
3577 Sub_Aggr
:= First
(Expressions
(Comp
));
3579 -- Recurse on nested arrays
3581 while Present
(Sub_Aggr
) loop
3582 Collect_Itypes
(Sub_Aggr
);
3589 -- If there is a static initialization aggregate for the type,
3590 -- generate itype references for the types of its (sub)components,
3591 -- to prevent out-of-scope errors in the resulting tree.
3592 -- The aggregate may have been rewritten as a Raise node, in which
3593 -- case there are no relevant itypes.
3596 and then Nkind
(Agg
) = N_Aggregate
3598 Set_Static_Initialization
(Proc_Id
, Agg
);
3603 Comp
:= First
(Component_Associations
(Agg
));
3604 while Present
(Comp
) loop
3605 Collect_Itypes
(Expression
(Comp
));
3612 end Build_Record_Init_Proc
;
3614 ----------------------------
3615 -- Build_Slice_Assignment --
3616 ----------------------------
3618 -- Generates the following subprogram:
3621 -- (Source, Target : Array_Type,
3622 -- Left_Lo, Left_Hi : Index;
3623 -- Right_Lo, Right_Hi : Index;
3631 -- if Left_Hi < Left_Lo then
3644 -- Target (Li1) := Source (Ri1);
3647 -- exit when Li1 = Left_Lo;
3648 -- Li1 := Index'pred (Li1);
3649 -- Ri1 := Index'pred (Ri1);
3651 -- exit when Li1 = Left_Hi;
3652 -- Li1 := Index'succ (Li1);
3653 -- Ri1 := Index'succ (Ri1);
3658 procedure Build_Slice_Assignment
(Typ
: Entity_Id
) is
3659 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
3660 Index
: constant Entity_Id
:= Base_Type
(Etype
(First_Index
(Typ
)));
3662 Larray
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
3663 Rarray
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
3664 Left_Lo
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L');
3665 Left_Hi
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L');
3666 Right_Lo
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
3667 Right_Hi
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
3668 Rev
: constant Entity_Id
:= Make_Temporary
(Loc
, 'D');
3669 -- Formal parameters of procedure
3671 Proc_Name
: constant Entity_Id
:=
3672 Make_Defining_Identifier
(Loc
,
3673 Chars
=> Make_TSS_Name
(Typ
, TSS_Slice_Assign
));
3675 Lnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L');
3676 Rnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
3677 -- Subscripts for left and right sides
3684 -- Build declarations for indexes
3689 Make_Object_Declaration
(Loc
,
3690 Defining_Identifier
=> Lnn
,
3691 Object_Definition
=>
3692 New_Occurrence_Of
(Index
, Loc
)));
3695 Make_Object_Declaration
(Loc
,
3696 Defining_Identifier
=> Rnn
,
3697 Object_Definition
=>
3698 New_Occurrence_Of
(Index
, Loc
)));
3702 -- Build test for empty slice case
3705 Make_If_Statement
(Loc
,
3708 Left_Opnd
=> New_Occurrence_Of
(Left_Hi
, Loc
),
3709 Right_Opnd
=> New_Occurrence_Of
(Left_Lo
, Loc
)),
3710 Then_Statements
=> New_List
(Make_Simple_Return_Statement
(Loc
))));
3712 -- Build initializations for indexes
3715 F_Init
: constant List_Id
:= New_List
;
3716 B_Init
: constant List_Id
:= New_List
;
3720 Make_Assignment_Statement
(Loc
,
3721 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
3722 Expression
=> New_Occurrence_Of
(Left_Lo
, Loc
)));
3725 Make_Assignment_Statement
(Loc
,
3726 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
3727 Expression
=> New_Occurrence_Of
(Right_Lo
, Loc
)));
3730 Make_Assignment_Statement
(Loc
,
3731 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
3732 Expression
=> New_Occurrence_Of
(Left_Hi
, Loc
)));
3735 Make_Assignment_Statement
(Loc
,
3736 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
3737 Expression
=> New_Occurrence_Of
(Right_Hi
, Loc
)));
3740 Make_If_Statement
(Loc
,
3741 Condition
=> New_Occurrence_Of
(Rev
, Loc
),
3742 Then_Statements
=> B_Init
,
3743 Else_Statements
=> F_Init
));
3746 -- Now construct the assignment statement
3749 Make_Loop_Statement
(Loc
,
3750 Statements
=> New_List
(
3751 Make_Assignment_Statement
(Loc
,
3753 Make_Indexed_Component
(Loc
,
3754 Prefix
=> New_Occurrence_Of
(Larray
, Loc
),
3755 Expressions
=> New_List
(New_Occurrence_Of
(Lnn
, Loc
))),
3757 Make_Indexed_Component
(Loc
,
3758 Prefix
=> New_Occurrence_Of
(Rarray
, Loc
),
3759 Expressions
=> New_List
(New_Occurrence_Of
(Rnn
, Loc
))))),
3760 End_Label
=> Empty
);
3762 -- Build the exit condition and increment/decrement statements
3765 F_Ass
: constant List_Id
:= New_List
;
3766 B_Ass
: constant List_Id
:= New_List
;
3770 Make_Exit_Statement
(Loc
,
3773 Left_Opnd
=> New_Occurrence_Of
(Lnn
, Loc
),
3774 Right_Opnd
=> New_Occurrence_Of
(Left_Hi
, Loc
))));
3777 Make_Assignment_Statement
(Loc
,
3778 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
3780 Make_Attribute_Reference
(Loc
,
3782 New_Occurrence_Of
(Index
, Loc
),
3783 Attribute_Name
=> Name_Succ
,
3784 Expressions
=> New_List
(
3785 New_Occurrence_Of
(Lnn
, Loc
)))));
3788 Make_Assignment_Statement
(Loc
,
3789 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
3791 Make_Attribute_Reference
(Loc
,
3793 New_Occurrence_Of
(Index
, Loc
),
3794 Attribute_Name
=> Name_Succ
,
3795 Expressions
=> New_List
(
3796 New_Occurrence_Of
(Rnn
, Loc
)))));
3799 Make_Exit_Statement
(Loc
,
3802 Left_Opnd
=> New_Occurrence_Of
(Lnn
, Loc
),
3803 Right_Opnd
=> New_Occurrence_Of
(Left_Lo
, Loc
))));
3806 Make_Assignment_Statement
(Loc
,
3807 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
3809 Make_Attribute_Reference
(Loc
,
3811 New_Occurrence_Of
(Index
, Loc
),
3812 Attribute_Name
=> Name_Pred
,
3813 Expressions
=> New_List
(
3814 New_Occurrence_Of
(Lnn
, Loc
)))));
3817 Make_Assignment_Statement
(Loc
,
3818 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
3820 Make_Attribute_Reference
(Loc
,
3822 New_Occurrence_Of
(Index
, Loc
),
3823 Attribute_Name
=> Name_Pred
,
3824 Expressions
=> New_List
(
3825 New_Occurrence_Of
(Rnn
, Loc
)))));
3827 Append_To
(Statements
(Loops
),
3828 Make_If_Statement
(Loc
,
3829 Condition
=> New_Occurrence_Of
(Rev
, Loc
),
3830 Then_Statements
=> B_Ass
,
3831 Else_Statements
=> F_Ass
));
3834 Append_To
(Stats
, Loops
);
3838 Formals
: List_Id
:= New_List
;
3841 Formals
:= New_List
(
3842 Make_Parameter_Specification
(Loc
,
3843 Defining_Identifier
=> Larray
,
3844 Out_Present
=> True,
3846 New_Reference_To
(Base_Type
(Typ
), Loc
)),
3848 Make_Parameter_Specification
(Loc
,
3849 Defining_Identifier
=> Rarray
,
3851 New_Reference_To
(Base_Type
(Typ
), Loc
)),
3853 Make_Parameter_Specification
(Loc
,
3854 Defining_Identifier
=> Left_Lo
,
3856 New_Reference_To
(Index
, Loc
)),
3858 Make_Parameter_Specification
(Loc
,
3859 Defining_Identifier
=> Left_Hi
,
3861 New_Reference_To
(Index
, Loc
)),
3863 Make_Parameter_Specification
(Loc
,
3864 Defining_Identifier
=> Right_Lo
,
3866 New_Reference_To
(Index
, Loc
)),
3868 Make_Parameter_Specification
(Loc
,
3869 Defining_Identifier
=> Right_Hi
,
3871 New_Reference_To
(Index
, Loc
)));
3874 Make_Parameter_Specification
(Loc
,
3875 Defining_Identifier
=> Rev
,
3877 New_Reference_To
(Standard_Boolean
, Loc
)));
3880 Make_Procedure_Specification
(Loc
,
3881 Defining_Unit_Name
=> Proc_Name
,
3882 Parameter_Specifications
=> Formals
);
3885 Make_Subprogram_Body
(Loc
,
3886 Specification
=> Spec
,
3887 Declarations
=> Decls
,
3888 Handled_Statement_Sequence
=>
3889 Make_Handled_Sequence_Of_Statements
(Loc
,
3890 Statements
=> Stats
)));
3893 Set_TSS
(Typ
, Proc_Name
);
3894 Set_Is_Pure
(Proc_Name
);
3895 end Build_Slice_Assignment
;
3897 -----------------------------
3898 -- Build_Untagged_Equality --
3899 -----------------------------
3901 procedure Build_Untagged_Equality
(Typ
: Entity_Id
) is
3909 function User_Defined_Eq
(T
: Entity_Id
) return Entity_Id
;
3910 -- Check whether the type T has a user-defined primitive equality. If so
3911 -- return it, else return Empty. If true for a component of Typ, we have
3912 -- to build the primitive equality for it.
3914 ---------------------
3915 -- User_Defined_Eq --
3916 ---------------------
3918 function User_Defined_Eq
(T
: Entity_Id
) return Entity_Id
is
3923 Op
:= TSS
(T
, TSS_Composite_Equality
);
3925 if Present
(Op
) then
3929 Prim
:= First_Elmt
(Collect_Primitive_Operations
(T
));
3930 while Present
(Prim
) loop
3933 if Chars
(Op
) = Name_Op_Eq
3934 and then Etype
(Op
) = Standard_Boolean
3935 and then Etype
(First_Formal
(Op
)) = T
3936 and then Etype
(Next_Formal
(First_Formal
(Op
))) = T
3945 end User_Defined_Eq
;
3947 -- Start of processing for Build_Untagged_Equality
3950 -- If a record component has a primitive equality operation, we must
3951 -- build the corresponding one for the current type.
3954 Comp
:= First_Component
(Typ
);
3955 while Present
(Comp
) loop
3956 if Is_Record_Type
(Etype
(Comp
))
3957 and then Present
(User_Defined_Eq
(Etype
(Comp
)))
3962 Next_Component
(Comp
);
3965 -- If there is a user-defined equality for the type, we do not create
3966 -- the implicit one.
3968 Prim
:= First_Elmt
(Collect_Primitive_Operations
(Typ
));
3970 while Present
(Prim
) loop
3971 if Chars
(Node
(Prim
)) = Name_Op_Eq
3972 and then Comes_From_Source
(Node
(Prim
))
3974 -- Don't we also need to check formal types and return type as in
3975 -- User_Defined_Eq above???
3978 Eq_Op
:= Node
(Prim
);
3986 -- If the type is derived, inherit the operation, if present, from the
3987 -- parent type. It may have been declared after the type derivation. If
3988 -- the parent type itself is derived, it may have inherited an operation
3989 -- that has itself been overridden, so update its alias and related
3990 -- flags. Ditto for inequality.
3992 if No
(Eq_Op
) and then Is_Derived_Type
(Typ
) then
3993 Prim
:= First_Elmt
(Collect_Primitive_Operations
(Etype
(Typ
)));
3994 while Present
(Prim
) loop
3995 if Chars
(Node
(Prim
)) = Name_Op_Eq
then
3996 Copy_TSS
(Node
(Prim
), Typ
);
4000 Op
: constant Entity_Id
:= User_Defined_Eq
(Typ
);
4001 Eq_Op
: constant Entity_Id
:= Node
(Prim
);
4002 NE_Op
: constant Entity_Id
:= Next_Entity
(Eq_Op
);
4005 if Present
(Op
) then
4006 Set_Alias
(Op
, Eq_Op
);
4007 Set_Is_Abstract_Subprogram
4008 (Op
, Is_Abstract_Subprogram
(Eq_Op
));
4010 if Chars
(Next_Entity
(Op
)) = Name_Op_Ne
then
4011 Set_Is_Abstract_Subprogram
4012 (Next_Entity
(Op
), Is_Abstract_Subprogram
(NE_Op
));
4024 -- If not inherited and not user-defined, build body as for a type with
4025 -- tagged components.
4029 Make_Eq_Body
(Typ
, Make_TSS_Name
(Typ
, TSS_Composite_Equality
));
4030 Op
:= Defining_Entity
(Decl
);
4034 if Is_Library_Level_Entity
(Typ
) then
4038 end Build_Untagged_Equality
;
4040 ------------------------------------
4041 -- Build_Variant_Record_Equality --
4042 ------------------------------------
4046 -- function _Equality (X, Y : T) return Boolean is
4048 -- -- Compare discriminants
4050 -- if False or else X.D1 /= Y.D1 or else X.D2 /= Y.D2 then
4054 -- -- Compare components
4056 -- if False or else X.C1 /= Y.C1 or else X.C2 /= Y.C2 then
4060 -- -- Compare variant part
4064 -- if False or else X.C2 /= Y.C2 or else X.C3 /= Y.C3 then
4069 -- if False or else X.Cn /= Y.Cn then
4077 procedure Build_Variant_Record_Equality
(Typ
: Entity_Id
) is
4078 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
4080 F
: constant Entity_Id
:=
4081 Make_Defining_Identifier
(Loc
,
4082 Chars
=> Make_TSS_Name
(Typ
, TSS_Composite_Equality
));
4084 X
: constant Entity_Id
:=
4085 Make_Defining_Identifier
(Loc
,
4088 Y
: constant Entity_Id
:=
4089 Make_Defining_Identifier
(Loc
,
4092 Def
: constant Node_Id
:= Parent
(Typ
);
4093 Comps
: constant Node_Id
:= Component_List
(Type_Definition
(Def
));
4094 Stmts
: constant List_Id
:= New_List
;
4095 Pspecs
: constant List_Id
:= New_List
;
4098 -- Derived Unchecked_Union types no longer inherit the equality function
4101 if Is_Derived_Type
(Typ
)
4102 and then not Is_Unchecked_Union
(Typ
)
4103 and then not Has_New_Non_Standard_Rep
(Typ
)
4106 Parent_Eq
: constant Entity_Id
:=
4107 TSS
(Root_Type
(Typ
), TSS_Composite_Equality
);
4110 if Present
(Parent_Eq
) then
4111 Copy_TSS
(Parent_Eq
, Typ
);
4118 Make_Subprogram_Body
(Loc
,
4120 Make_Function_Specification
(Loc
,
4121 Defining_Unit_Name
=> F
,
4122 Parameter_Specifications
=> Pspecs
,
4123 Result_Definition
=> New_Reference_To
(Standard_Boolean
, Loc
)),
4124 Declarations
=> New_List
,
4125 Handled_Statement_Sequence
=>
4126 Make_Handled_Sequence_Of_Statements
(Loc
,
4127 Statements
=> Stmts
)));
4130 Make_Parameter_Specification
(Loc
,
4131 Defining_Identifier
=> X
,
4132 Parameter_Type
=> New_Reference_To
(Typ
, Loc
)));
4135 Make_Parameter_Specification
(Loc
,
4136 Defining_Identifier
=> Y
,
4137 Parameter_Type
=> New_Reference_To
(Typ
, Loc
)));
4139 -- Unchecked_Unions require additional machinery to support equality.
4140 -- Two extra parameters (A and B) are added to the equality function
4141 -- parameter list in order to capture the inferred values of the
4142 -- discriminants in later calls.
4144 if Is_Unchecked_Union
(Typ
) then
4146 Discr_Type
: constant Node_Id
:= Etype
(First_Discriminant
(Typ
));
4148 A
: constant Node_Id
:=
4149 Make_Defining_Identifier
(Loc
,
4152 B
: constant Node_Id
:=
4153 Make_Defining_Identifier
(Loc
,
4157 -- Add A and B to the parameter list
4160 Make_Parameter_Specification
(Loc
,
4161 Defining_Identifier
=> A
,
4162 Parameter_Type
=> New_Reference_To
(Discr_Type
, Loc
)));
4165 Make_Parameter_Specification
(Loc
,
4166 Defining_Identifier
=> B
,
4167 Parameter_Type
=> New_Reference_To
(Discr_Type
, Loc
)));
4169 -- Generate the following header code to compare the inferred
4177 Make_If_Statement
(Loc
,
4180 Left_Opnd
=> New_Reference_To
(A
, Loc
),
4181 Right_Opnd
=> New_Reference_To
(B
, Loc
)),
4182 Then_Statements
=> New_List
(
4183 Make_Simple_Return_Statement
(Loc
,
4184 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
)))));
4186 -- Generate component-by-component comparison. Note that we must
4187 -- propagate one of the inferred discriminant formals to act as
4188 -- the case statement switch.
4190 Append_List_To
(Stmts
,
4191 Make_Eq_Case
(Typ
, Comps
, A
));
4194 -- Normal case (not unchecked union)
4199 Discriminant_Specifications
(Def
)));
4201 Append_List_To
(Stmts
,
4202 Make_Eq_Case
(Typ
, Comps
));
4206 Make_Simple_Return_Statement
(Loc
,
4207 Expression
=> New_Reference_To
(Standard_True
, Loc
)));
4212 if not Debug_Generated_Code
then
4213 Set_Debug_Info_Off
(F
);
4215 end Build_Variant_Record_Equality
;
4217 -----------------------------
4218 -- Check_Stream_Attributes --
4219 -----------------------------
4221 procedure Check_Stream_Attributes
(Typ
: Entity_Id
) is
4223 Par_Read
: constant Boolean :=
4224 Stream_Attribute_Available
(Typ
, TSS_Stream_Read
)
4225 and then not Has_Specified_Stream_Read
(Typ
);
4226 Par_Write
: constant Boolean :=
4227 Stream_Attribute_Available
(Typ
, TSS_Stream_Write
)
4228 and then not Has_Specified_Stream_Write
(Typ
);
4230 procedure Check_Attr
(Nam
: Name_Id
; TSS_Nam
: TSS_Name_Type
);
4231 -- Check that Comp has a user-specified Nam stream attribute
4237 procedure Check_Attr
(Nam
: Name_Id
; TSS_Nam
: TSS_Name_Type
) is
4239 if not Stream_Attribute_Available
(Etype
(Comp
), TSS_Nam
) then
4240 Error_Msg_Name_1
:= Nam
;
4242 ("|component& in limited extension must have% attribute", Comp
);
4246 -- Start of processing for Check_Stream_Attributes
4249 if Par_Read
or else Par_Write
then
4250 Comp
:= First_Component
(Typ
);
4251 while Present
(Comp
) loop
4252 if Comes_From_Source
(Comp
)
4253 and then Original_Record_Component
(Comp
) = Comp
4254 and then Is_Limited_Type
(Etype
(Comp
))
4257 Check_Attr
(Name_Read
, TSS_Stream_Read
);
4261 Check_Attr
(Name_Write
, TSS_Stream_Write
);
4265 Next_Component
(Comp
);
4268 end Check_Stream_Attributes
;
4270 -----------------------------
4271 -- Expand_Record_Extension --
4272 -----------------------------
4274 -- Add a field _parent at the beginning of the record extension. This is
4275 -- used to implement inheritance. Here are some examples of expansion:
4277 -- 1. no discriminants
4278 -- type T2 is new T1 with null record;
4280 -- type T2 is new T1 with record
4284 -- 2. renamed discriminants
4285 -- type T2 (B, C : Int) is new T1 (A => B) with record
4286 -- _Parent : T1 (A => B);
4290 -- 3. inherited discriminants
4291 -- type T2 is new T1 with record -- discriminant A inherited
4292 -- _Parent : T1 (A);
4296 procedure Expand_Record_Extension
(T
: Entity_Id
; Def
: Node_Id
) is
4297 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
4298 Loc
: constant Source_Ptr
:= Sloc
(Def
);
4299 Rec_Ext_Part
: Node_Id
:= Record_Extension_Part
(Def
);
4300 Par_Subtype
: Entity_Id
;
4301 Comp_List
: Node_Id
;
4302 Comp_Decl
: Node_Id
;
4305 List_Constr
: constant List_Id
:= New_List
;
4308 -- Expand_Record_Extension is called directly from the semantics, so
4309 -- we must check to see whether expansion is active before proceeding
4311 if not Expander_Active
then
4315 -- This may be a derivation of an untagged private type whose full
4316 -- view is tagged, in which case the Derived_Type_Definition has no
4317 -- extension part. Build an empty one now.
4319 if No
(Rec_Ext_Part
) then
4321 Make_Record_Definition
(Loc
,
4323 Component_List
=> Empty
,
4324 Null_Present
=> True);
4326 Set_Record_Extension_Part
(Def
, Rec_Ext_Part
);
4327 Mark_Rewrite_Insertion
(Rec_Ext_Part
);
4330 Comp_List
:= Component_List
(Rec_Ext_Part
);
4332 Parent_N
:= Make_Defining_Identifier
(Loc
, Name_uParent
);
4334 -- If the derived type inherits its discriminants the type of the
4335 -- _parent field must be constrained by the inherited discriminants
4337 if Has_Discriminants
(T
)
4338 and then Nkind
(Indic
) /= N_Subtype_Indication
4339 and then not Is_Constrained
(Entity
(Indic
))
4341 D
:= First_Discriminant
(T
);
4342 while Present
(D
) loop
4343 Append_To
(List_Constr
, New_Occurrence_Of
(D
, Loc
));
4344 Next_Discriminant
(D
);
4349 Make_Subtype_Indication
(Loc
,
4350 Subtype_Mark
=> New_Reference_To
(Entity
(Indic
), Loc
),
4352 Make_Index_Or_Discriminant_Constraint
(Loc
,
4353 Constraints
=> List_Constr
)),
4356 -- Otherwise the original subtype_indication is just what is needed
4359 Par_Subtype
:= Process_Subtype
(New_Copy_Tree
(Indic
), Def
);
4362 Set_Parent_Subtype
(T
, Par_Subtype
);
4365 Make_Component_Declaration
(Loc
,
4366 Defining_Identifier
=> Parent_N
,
4367 Component_Definition
=>
4368 Make_Component_Definition
(Loc
,
4369 Aliased_Present
=> False,
4370 Subtype_Indication
=> New_Reference_To
(Par_Subtype
, Loc
)));
4372 if Null_Present
(Rec_Ext_Part
) then
4373 Set_Component_List
(Rec_Ext_Part
,
4374 Make_Component_List
(Loc
,
4375 Component_Items
=> New_List
(Comp_Decl
),
4376 Variant_Part
=> Empty
,
4377 Null_Present
=> False));
4378 Set_Null_Present
(Rec_Ext_Part
, False);
4380 elsif Null_Present
(Comp_List
)
4381 or else Is_Empty_List
(Component_Items
(Comp_List
))
4383 Set_Component_Items
(Comp_List
, New_List
(Comp_Decl
));
4384 Set_Null_Present
(Comp_List
, False);
4387 Insert_Before
(First
(Component_Items
(Comp_List
)), Comp_Decl
);
4390 Analyze
(Comp_Decl
);
4391 end Expand_Record_Extension
;
4393 ------------------------------------
4394 -- Expand_N_Full_Type_Declaration --
4395 ------------------------------------
4397 procedure Expand_N_Full_Type_Declaration
(N
: Node_Id
) is
4399 procedure Build_Master
(Ptr_Typ
: Entity_Id
);
4400 -- Create the master associated with Ptr_Typ
4406 procedure Build_Master
(Ptr_Typ
: Entity_Id
) is
4407 Desig_Typ
: constant Entity_Id
:= Designated_Type
(Ptr_Typ
);
4410 -- Anonymous access types are created for the components of the
4411 -- record parameter for an entry declaration. No master is created
4414 if Comes_From_Source
(N
)
4415 and then Has_Task
(Desig_Typ
)
4417 Build_Master_Entity
(Ptr_Typ
);
4418 Build_Master_Renaming
(Ptr_Typ
);
4420 -- Create a class-wide master because a Master_Id must be generated
4421 -- for access-to-limited-class-wide types whose root may be extended
4422 -- with task components.
4424 -- Note: This code covers access-to-limited-interfaces because they
4425 -- can be used to reference tasks implementing them.
4427 elsif Is_Limited_Class_Wide_Type
(Desig_Typ
)
4428 and then Tasking_Allowed
4430 -- Do not create a class-wide master for types whose convention is
4431 -- Java since these types cannot embed Ada tasks anyway. Note that
4432 -- the following test cannot catch the following case:
4434 -- package java.lang.Object is
4435 -- type Typ is tagged limited private;
4436 -- type Ref is access all Typ'Class;
4438 -- type Typ is tagged limited ...;
4439 -- pragma Convention (Typ, Java)
4442 -- Because the convention appears after we have done the
4443 -- processing for type Ref.
4445 and then Convention
(Desig_Typ
) /= Convention_Java
4446 and then Convention
(Desig_Typ
) /= Convention_CIL
4448 Build_Class_Wide_Master
(Ptr_Typ
);
4452 -- Local declarations
4454 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
4455 B_Id
: constant Entity_Id
:= Base_Type
(Def_Id
);
4459 -- Start of processing for Expand_N_Full_Type_Declaration
4462 if Is_Access_Type
(Def_Id
) then
4463 Build_Master
(Def_Id
);
4465 if Ekind
(Def_Id
) = E_Access_Protected_Subprogram_Type
then
4466 Expand_Access_Protected_Subprogram_Type
(N
);
4469 -- Array of anonymous access-to-task pointers
4471 elsif Ada_Version
>= Ada_2005
4472 and then Is_Array_Type
(Def_Id
)
4473 and then Is_Access_Type
(Component_Type
(Def_Id
))
4474 and then Ekind
(Component_Type
(Def_Id
)) = E_Anonymous_Access_Type
4476 Build_Master
(Component_Type
(Def_Id
));
4478 elsif Has_Task
(Def_Id
) then
4479 Expand_Previous_Access_Type
(Def_Id
);
4481 -- Check the components of a record type or array of records for
4482 -- anonymous access-to-task pointers.
4484 elsif Ada_Version
>= Ada_2005
4485 and then (Is_Record_Type
(Def_Id
)
4487 (Is_Array_Type
(Def_Id
)
4488 and then Is_Record_Type
(Component_Type
(Def_Id
))))
4497 if Is_Array_Type
(Def_Id
) then
4498 Comp
:= First_Entity
(Component_Type
(Def_Id
));
4500 Comp
:= First_Entity
(Def_Id
);
4503 -- Examine all components looking for anonymous access-to-task
4507 while Present
(Comp
) loop
4508 Typ
:= Etype
(Comp
);
4510 if Ekind
(Typ
) = E_Anonymous_Access_Type
4511 and then Has_Task
(Available_View
(Designated_Type
(Typ
)))
4512 and then No
(Master_Id
(Typ
))
4514 -- Ensure that the record or array type have a _master
4517 Build_Master_Entity
(Def_Id
);
4518 Build_Master_Renaming
(Typ
);
4519 M_Id
:= Master_Id
(Typ
);
4523 -- Reuse the same master to service any additional types
4526 Set_Master_Id
(Typ
, M_Id
);
4535 Par_Id
:= Etype
(B_Id
);
4537 -- The parent type is private then we need to inherit any TSS operations
4538 -- from the full view.
4540 if Ekind
(Par_Id
) in Private_Kind
4541 and then Present
(Full_View
(Par_Id
))
4543 Par_Id
:= Base_Type
(Full_View
(Par_Id
));
4546 if Nkind
(Type_Definition
(Original_Node
(N
))) =
4547 N_Derived_Type_Definition
4548 and then not Is_Tagged_Type
(Def_Id
)
4549 and then Present
(Freeze_Node
(Par_Id
))
4550 and then Present
(TSS_Elist
(Freeze_Node
(Par_Id
)))
4552 Ensure_Freeze_Node
(B_Id
);
4553 FN
:= Freeze_Node
(B_Id
);
4555 if No
(TSS_Elist
(FN
)) then
4556 Set_TSS_Elist
(FN
, New_Elmt_List
);
4560 T_E
: constant Elist_Id
:= TSS_Elist
(FN
);
4564 Elmt
:= First_Elmt
(TSS_Elist
(Freeze_Node
(Par_Id
)));
4565 while Present
(Elmt
) loop
4566 if Chars
(Node
(Elmt
)) /= Name_uInit
then
4567 Append_Elmt
(Node
(Elmt
), T_E
);
4573 -- If the derived type itself is private with a full view, then
4574 -- associate the full view with the inherited TSS_Elist as well.
4576 if Ekind
(B_Id
) in Private_Kind
4577 and then Present
(Full_View
(B_Id
))
4579 Ensure_Freeze_Node
(Base_Type
(Full_View
(B_Id
)));
4581 (Freeze_Node
(Base_Type
(Full_View
(B_Id
))), TSS_Elist
(FN
));
4585 end Expand_N_Full_Type_Declaration
;
4587 ---------------------------------
4588 -- Expand_N_Object_Declaration --
4589 ---------------------------------
4591 procedure Expand_N_Object_Declaration
(N
: Node_Id
) is
4592 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
4593 Expr
: constant Node_Id
:= Expression
(N
);
4594 Loc
: constant Source_Ptr
:= Sloc
(N
);
4595 Typ
: constant Entity_Id
:= Etype
(Def_Id
);
4596 Base_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
4601 Init_After
: Node_Id
:= N
;
4602 -- Node after which the init proc call is to be inserted. This is
4603 -- normally N, except for the case of a shared passive variable, in
4604 -- which case the init proc call must be inserted only after the bodies
4605 -- of the shared variable procedures have been seen.
4607 function Rewrite_As_Renaming
return Boolean;
4608 -- Indicate whether to rewrite a declaration with initialization into an
4609 -- object renaming declaration (see below).
4611 -------------------------
4612 -- Rewrite_As_Renaming --
4613 -------------------------
4615 function Rewrite_As_Renaming
return Boolean is
4617 return not Aliased_Present
(N
)
4618 and then Is_Entity_Name
(Expr_Q
)
4619 and then Ekind
(Entity
(Expr_Q
)) = E_Variable
4620 and then OK_To_Rename
(Entity
(Expr_Q
))
4621 and then Is_Entity_Name
(Object_Definition
(N
));
4622 end Rewrite_As_Renaming
;
4624 -- Start of processing for Expand_N_Object_Declaration
4627 -- Don't do anything for deferred constants. All proper actions will be
4628 -- expanded during the full declaration.
4630 if No
(Expr
) and Constant_Present
(N
) then
4634 -- First we do special processing for objects of a tagged type where
4635 -- this is the point at which the type is frozen. The creation of the
4636 -- dispatch table and the initialization procedure have to be deferred
4637 -- to this point, since we reference previously declared primitive
4640 -- Force construction of dispatch tables of library level tagged types
4642 if Tagged_Type_Expansion
4643 and then Static_Dispatch_Tables
4644 and then Is_Library_Level_Entity
(Def_Id
)
4645 and then Is_Library_Level_Tagged_Type
(Base_Typ
)
4646 and then (Ekind
(Base_Typ
) = E_Record_Type
4647 or else Ekind
(Base_Typ
) = E_Protected_Type
4648 or else Ekind
(Base_Typ
) = E_Task_Type
)
4649 and then not Has_Dispatch_Table
(Base_Typ
)
4652 New_Nodes
: List_Id
:= No_List
;
4655 if Is_Concurrent_Type
(Base_Typ
) then
4656 New_Nodes
:= Make_DT
(Corresponding_Record_Type
(Base_Typ
), N
);
4658 New_Nodes
:= Make_DT
(Base_Typ
, N
);
4661 if not Is_Empty_List
(New_Nodes
) then
4662 Insert_List_Before
(N
, New_Nodes
);
4667 -- Make shared memory routines for shared passive variable
4669 if Is_Shared_Passive
(Def_Id
) then
4670 Init_After
:= Make_Shared_Var_Procs
(N
);
4673 -- If tasks being declared, make sure we have an activation chain
4674 -- defined for the tasks (has no effect if we already have one), and
4675 -- also that a Master variable is established and that the appropriate
4676 -- enclosing construct is established as a task master.
4678 if Has_Task
(Typ
) then
4679 Build_Activation_Chain_Entity
(N
);
4680 Build_Master_Entity
(Def_Id
);
4683 -- Default initialization required, and no expression present
4687 -- For the default initialization case, if we have a private type
4688 -- with invariants, and invariant checks are enabled, then insert an
4689 -- invariant check after the object declaration. Note that it is OK
4690 -- to clobber the object with an invalid value since if the exception
4691 -- is raised, then the object will go out of scope.
4693 if Has_Invariants
(Typ
)
4694 and then Present
(Invariant_Procedure
(Typ
))
4697 Make_Invariant_Call
(New_Occurrence_Of
(Def_Id
, Loc
)));
4700 -- Expand Initialize call for controlled objects. One may wonder why
4701 -- the Initialize Call is not done in the regular Init procedure
4702 -- attached to the record type. That's because the init procedure is
4703 -- recursively called on each component, including _Parent, thus the
4704 -- Init call for a controlled object would generate not only one
4705 -- Initialize call as it is required but one for each ancestor of
4706 -- its type. This processing is suppressed if No_Initialization set.
4708 if not Needs_Finalization
(Typ
)
4709 or else No_Initialization
(N
)
4713 elsif not Abort_Allowed
4714 or else not Comes_From_Source
(N
)
4716 Insert_Action_After
(Init_After
,
4718 (Obj_Ref
=> New_Occurrence_Of
(Def_Id
, Loc
),
4719 Typ
=> Base_Type
(Typ
)));
4724 -- We need to protect the initialize call
4728 -- Initialize (...);
4730 -- Undefer_Abort.all;
4733 -- ??? this won't protect the initialize call for controlled
4734 -- components which are part of the init proc, so this block
4735 -- should probably also contain the call to _init_proc but this
4736 -- requires some code reorganization...
4739 L
: constant List_Id
:= New_List
(
4741 (Obj_Ref
=> New_Occurrence_Of
(Def_Id
, Loc
),
4742 Typ
=> Base_Type
(Typ
)));
4744 Blk
: constant Node_Id
:=
4745 Make_Block_Statement
(Loc
,
4746 Handled_Statement_Sequence
=>
4747 Make_Handled_Sequence_Of_Statements
(Loc
, L
));
4750 Prepend_To
(L
, Build_Runtime_Call
(Loc
, RE_Abort_Defer
));
4751 Set_At_End_Proc
(Handled_Statement_Sequence
(Blk
),
4752 New_Occurrence_Of
(RTE
(RE_Abort_Undefer_Direct
), Loc
));
4753 Insert_Actions_After
(Init_After
, New_List
(Blk
));
4754 Expand_At_End_Handler
4755 (Handled_Statement_Sequence
(Blk
), Entity
(Identifier
(Blk
)));
4759 -- Call type initialization procedure if there is one. We build the
4760 -- call and put it immediately after the object declaration, so that
4761 -- it will be expanded in the usual manner. Note that this will
4762 -- result in proper handling of defaulted discriminants.
4764 -- Need call if there is a base init proc
4766 if Has_Non_Null_Base_Init_Proc
(Typ
)
4768 -- Suppress call if No_Initialization set on declaration
4770 and then not No_Initialization
(N
)
4772 -- Suppress call for special case of value type for VM
4774 and then not Is_Value_Type
(Typ
)
4776 -- Suppress call if initialization suppressed for the type
4778 and then not Initialization_Suppressed
(Typ
)
4780 -- Return without initializing when No_Default_Initialization
4781 -- applies. Note that the actual restriction check occurs later,
4782 -- when the object is frozen, because we don't know yet whether
4783 -- the object is imported, which is a case where the check does
4786 if Restriction_Active
(No_Default_Initialization
) then
4790 -- The call to the initialization procedure does NOT freeze the
4791 -- object being initialized. This is because the call is not a
4792 -- source level call. This works fine, because the only possible
4793 -- statements depending on freeze status that can appear after the
4794 -- Init_Proc call are rep clauses which can safely appear after
4795 -- actual references to the object. Note that this call may
4796 -- subsequently be removed (if a pragma Import is encountered),
4797 -- or moved to the freeze actions for the object (e.g. if an
4798 -- address clause is applied to the object, causing it to get
4799 -- delayed freezing).
4801 Id_Ref
:= New_Reference_To
(Def_Id
, Loc
);
4802 Set_Must_Not_Freeze
(Id_Ref
);
4803 Set_Assignment_OK
(Id_Ref
);
4806 Init_Expr
: constant Node_Id
:=
4807 Static_Initialization
(Base_Init_Proc
(Typ
));
4810 if Present
(Init_Expr
) then
4812 (N
, New_Copy_Tree
(Init_Expr
, New_Scope
=> Current_Scope
));
4816 Initialization_Warning
(Id_Ref
);
4818 Insert_Actions_After
(Init_After
,
4819 Build_Initialization_Call
(Loc
, Id_Ref
, Typ
));
4823 -- If simple initialization is required, then set an appropriate
4824 -- simple initialization expression in place. This special
4825 -- initialization is required even though No_Init_Flag is present,
4826 -- but is not needed if there was an explicit initialization.
4828 -- An internally generated temporary needs no initialization because
4829 -- it will be assigned subsequently. In particular, there is no point
4830 -- in applying Initialize_Scalars to such a temporary.
4832 elsif Needs_Simple_Initialization
4835 and then not Has_Following_Address_Clause
(N
))
4836 and then not Is_Internal
(Def_Id
)
4837 and then not Has_Init_Expression
(N
)
4839 Set_No_Initialization
(N
, False);
4840 Set_Expression
(N
, Get_Simple_Init_Val
(Typ
, N
, Esize
(Def_Id
)));
4841 Analyze_And_Resolve
(Expression
(N
), Typ
);
4844 -- Generate attribute for Persistent_BSS if needed
4846 if Persistent_BSS_Mode
4847 and then Comes_From_Source
(N
)
4848 and then Is_Potentially_Persistent_Type
(Typ
)
4849 and then not Has_Init_Expression
(N
)
4850 and then Is_Library_Level_Entity
(Def_Id
)
4856 Make_Linker_Section_Pragma
4857 (Def_Id
, Sloc
(N
), ".persistent.bss");
4858 Insert_After
(N
, Prag
);
4863 -- If access type, then we know it is null if not initialized
4865 if Is_Access_Type
(Typ
) then
4866 Set_Is_Known_Null
(Def_Id
);
4869 -- Explicit initialization present
4872 -- Obtain actual expression from qualified expression
4874 if Nkind
(Expr
) = N_Qualified_Expression
then
4875 Expr_Q
:= Expression
(Expr
);
4880 -- When we have the appropriate type of aggregate in the expression
4881 -- (it has been determined during analysis of the aggregate by
4882 -- setting the delay flag), let's perform in place assignment and
4883 -- thus avoid creating a temporary.
4885 if Is_Delayed_Aggregate
(Expr_Q
) then
4886 Convert_Aggr_In_Object_Decl
(N
);
4888 -- Ada 2005 (AI-318-02): If the initialization expression is a call
4889 -- to a build-in-place function, then access to the declared object
4890 -- must be passed to the function. Currently we limit such functions
4891 -- to those with constrained limited result subtypes, but eventually
4892 -- plan to expand the allowed forms of functions that are treated as
4895 elsif Ada_Version
>= Ada_2005
4896 and then Is_Build_In_Place_Function_Call
(Expr_Q
)
4898 Make_Build_In_Place_Call_In_Object_Declaration
(N
, Expr_Q
);
4900 -- The previous call expands the expression initializing the
4901 -- built-in-place object into further code that will be analyzed
4902 -- later. No further expansion needed here.
4906 -- Ada 2005 (AI-251): Rewrite the expression that initializes a
4907 -- class-wide interface object to ensure that we copy the full
4908 -- object, unless we are targetting a VM where interfaces are handled
4909 -- by VM itself. Note that if the root type of Typ is an ancestor of
4910 -- Expr's type, both types share the same dispatch table and there is
4911 -- no need to displace the pointer.
4913 elsif Comes_From_Source
(N
)
4914 and then Is_Interface
(Typ
)
4916 pragma Assert
(Is_Class_Wide_Type
(Typ
));
4918 -- If the object is a return object of an inherently limited type,
4919 -- which implies build-in-place treatment, bypass the special
4920 -- treatment of class-wide interface initialization below. In this
4921 -- case, the expansion of the return statement will take care of
4922 -- creating the object (via allocator) and initializing it.
4924 if Is_Return_Object
(Def_Id
)
4925 and then Is_Immutably_Limited_Type
(Typ
)
4929 elsif Tagged_Type_Expansion
then
4931 Iface
: constant Entity_Id
:= Root_Type
(Typ
);
4932 Expr_N
: Node_Id
:= Expr
;
4933 Expr_Typ
: Entity_Id
;
4939 -- If the original node of the expression was a conversion
4940 -- to this specific class-wide interface type then restore
4941 -- the original node because we must copy the object before
4942 -- displacing the pointer to reference the secondary tag
4943 -- component. This code must be kept synchronized with the
4944 -- expansion done by routine Expand_Interface_Conversion
4946 if not Comes_From_Source
(Expr_N
)
4947 and then Nkind
(Expr_N
) = N_Explicit_Dereference
4948 and then Nkind
(Original_Node
(Expr_N
)) = N_Type_Conversion
4949 and then Etype
(Original_Node
(Expr_N
)) = Typ
4951 Rewrite
(Expr_N
, Original_Node
(Expression
(N
)));
4954 -- Avoid expansion of redundant interface conversion
4956 if Is_Interface
(Etype
(Expr_N
))
4957 and then Nkind
(Expr_N
) = N_Type_Conversion
4958 and then Etype
(Expr_N
) = Typ
4960 Expr_N
:= Expression
(Expr_N
);
4961 Set_Expression
(N
, Expr_N
);
4964 Obj_Id
:= Make_Temporary
(Loc
, 'D', Expr_N
);
4965 Expr_Typ
:= Base_Type
(Etype
(Expr_N
));
4967 if Is_Class_Wide_Type
(Expr_Typ
) then
4968 Expr_Typ
:= Root_Type
(Expr_Typ
);
4972 -- CW : I'Class := Obj;
4975 -- type Ityp is not null access I'Class;
4976 -- CW : I'Class renames Ityp(Tmp.I_Tag'Address).all;
4978 if Comes_From_Source
(Expr_N
)
4979 and then Nkind
(Expr_N
) = N_Identifier
4980 and then not Is_Interface
(Expr_Typ
)
4981 and then Interface_Present_In_Ancestor
(Expr_Typ
, Typ
)
4982 and then (Expr_Typ
= Etype
(Expr_Typ
)
4984 Is_Variable_Size_Record
(Etype
(Expr_Typ
)))
4989 Make_Object_Declaration
(Loc
,
4990 Defining_Identifier
=> Obj_Id
,
4991 Object_Definition
=>
4992 New_Occurrence_Of
(Expr_Typ
, Loc
),
4994 Relocate_Node
(Expr_N
)));
4996 -- Statically reference the tag associated with the
5000 Make_Selected_Component
(Loc
,
5001 Prefix
=> New_Occurrence_Of
(Obj_Id
, Loc
),
5004 (Find_Interface_Tag
(Expr_Typ
, Iface
), Loc
));
5007 -- IW : I'Class := Obj;
5009 -- type Equiv_Record is record ... end record;
5010 -- implicit subtype CW is <Class_Wide_Subtype>;
5011 -- Tmp : CW := CW!(Obj);
5012 -- type Ityp is not null access I'Class;
5013 -- IW : I'Class renames
5014 -- Ityp!(Displace (Temp'Address, I'Tag)).all;
5017 -- Generate the equivalent record type and update the
5018 -- subtype indication to reference it.
5020 Expand_Subtype_From_Expr
5023 Subtype_Indic
=> Object_Definition
(N
),
5026 if not Is_Interface
(Etype
(Expr_N
)) then
5027 New_Expr
:= Relocate_Node
(Expr_N
);
5029 -- For interface types we use 'Address which displaces
5030 -- the pointer to the base of the object (if required)
5034 Unchecked_Convert_To
(Etype
(Object_Definition
(N
)),
5035 Make_Explicit_Dereference
(Loc
,
5036 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
5037 Make_Attribute_Reference
(Loc
,
5038 Prefix
=> Relocate_Node
(Expr_N
),
5039 Attribute_Name
=> Name_Address
))));
5044 if not Is_Limited_Record
(Expr_Typ
) then
5046 Make_Object_Declaration
(Loc
,
5047 Defining_Identifier
=> Obj_Id
,
5048 Object_Definition
=>
5050 (Etype
(Object_Definition
(N
)), Loc
),
5051 Expression
=> New_Expr
));
5053 -- Rename limited type object since they cannot be copied
5054 -- This case occurs when the initialization expression
5055 -- has been previously expanded into a temporary object.
5057 else pragma Assert
(not Comes_From_Source
(Expr_Q
));
5059 Make_Object_Renaming_Declaration
(Loc
,
5060 Defining_Identifier
=> Obj_Id
,
5063 (Etype
(Object_Definition
(N
)), Loc
),
5065 Unchecked_Convert_To
5066 (Etype
(Object_Definition
(N
)), New_Expr
)));
5069 -- Dynamically reference the tag associated with the
5073 Make_Function_Call
(Loc
,
5074 Name
=> New_Reference_To
(RTE
(RE_Displace
), Loc
),
5075 Parameter_Associations
=> New_List
(
5076 Make_Attribute_Reference
(Loc
,
5077 Prefix
=> New_Occurrence_Of
(Obj_Id
, Loc
),
5078 Attribute_Name
=> Name_Address
),
5080 (Node
(First_Elmt
(Access_Disp_Table
(Iface
))),
5085 Make_Object_Renaming_Declaration
(Loc
,
5086 Defining_Identifier
=> Make_Temporary
(Loc
, 'D'),
5087 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
5088 Name
=> Convert_Tag_To_Interface
(Typ
, Tag_Comp
)));
5090 -- If the original entity comes from source, then mark the
5091 -- new entity as needing debug information, even though it's
5092 -- defined by a generated renaming that does not come from
5093 -- source, so that Materialize_Entity will be set on the
5094 -- entity when Debug_Renaming_Declaration is called during
5097 if Comes_From_Source
(Def_Id
) then
5098 Set_Debug_Info_Needed
(Defining_Identifier
(N
));
5101 Analyze
(N
, Suppress
=> All_Checks
);
5103 -- Replace internal identifier of rewritten node by the
5104 -- identifier found in the sources. We also have to exchange
5105 -- entities containing their defining identifiers to ensure
5106 -- the correct replacement of the object declaration by this
5107 -- object renaming declaration ---because these identifiers
5108 -- were previously added by Enter_Name to the current scope.
5109 -- We must preserve the homonym chain of the source entity
5110 -- as well. We must also preserve the kind of the entity,
5111 -- which may be a constant.
5113 Set_Chars
(Defining_Identifier
(N
), Chars
(Def_Id
));
5114 Set_Homonym
(Defining_Identifier
(N
), Homonym
(Def_Id
));
5115 Set_Ekind
(Defining_Identifier
(N
), Ekind
(Def_Id
));
5116 Exchange_Entities
(Defining_Identifier
(N
), Def_Id
);
5122 -- Common case of explicit object initialization
5125 -- In most cases, we must check that the initial value meets any
5126 -- constraint imposed by the declared type. However, there is one
5127 -- very important exception to this rule. If the entity has an
5128 -- unconstrained nominal subtype, then it acquired its constraints
5129 -- from the expression in the first place, and not only does this
5130 -- mean that the constraint check is not needed, but an attempt to
5131 -- perform the constraint check can cause order of elaboration
5134 if not Is_Constr_Subt_For_U_Nominal
(Typ
) then
5136 -- If this is an allocator for an aggregate that has been
5137 -- allocated in place, delay checks until assignments are
5138 -- made, because the discriminants are not initialized.
5140 if Nkind
(Expr
) = N_Allocator
5141 and then No_Initialization
(Expr
)
5145 -- Otherwise apply a constraint check now if no prev error
5147 elsif Nkind
(Expr
) /= N_Error
then
5148 Apply_Constraint_Check
(Expr
, Typ
);
5150 -- If the expression has been marked as requiring a range
5151 -- generate it now and reset the flag.
5153 if Do_Range_Check
(Expr
) then
5154 Set_Do_Range_Check
(Expr
, False);
5156 if not Suppress_Assignment_Checks
(N
) then
5157 Generate_Range_Check
5158 (Expr
, Typ
, CE_Range_Check_Failed
);
5164 -- If the type is controlled and not inherently limited, then
5165 -- the target is adjusted after the copy and attached to the
5166 -- finalization list. However, no adjustment is done in the case
5167 -- where the object was initialized by a call to a function whose
5168 -- result is built in place, since no copy occurred. (Eventually
5169 -- we plan to support in-place function results for some cases
5170 -- of nonlimited types. ???) Similarly, no adjustment is required
5171 -- if we are going to rewrite the object declaration into a
5172 -- renaming declaration.
5174 if Needs_Finalization
(Typ
)
5175 and then not Is_Immutably_Limited_Type
(Typ
)
5176 and then not Rewrite_As_Renaming
5178 Insert_Action_After
(Init_After
,
5180 Obj_Ref
=> New_Reference_To
(Def_Id
, Loc
),
5181 Typ
=> Base_Type
(Typ
)));
5184 -- For tagged types, when an init value is given, the tag has to
5185 -- be re-initialized separately in order to avoid the propagation
5186 -- of a wrong tag coming from a view conversion unless the type
5187 -- is class wide (in this case the tag comes from the init value).
5188 -- Suppress the tag assignment when VM_Target because VM tags are
5189 -- represented implicitly in objects. Ditto for types that are
5190 -- CPP_CLASS, and for initializations that are aggregates, because
5191 -- they have to have the right tag.
5193 if Is_Tagged_Type
(Typ
)
5194 and then not Is_Class_Wide_Type
(Typ
)
5195 and then not Is_CPP_Class
(Typ
)
5196 and then Tagged_Type_Expansion
5197 and then Nkind
(Expr
) /= N_Aggregate
5200 Full_Typ
: constant Entity_Id
:= Underlying_Type
(Typ
);
5203 -- The re-assignment of the tag has to be done even if the
5204 -- object is a constant. The assignment must be analyzed
5205 -- after the declaration.
5208 Make_Selected_Component
(Loc
,
5209 Prefix
=> New_Occurrence_Of
(Def_Id
, Loc
),
5211 New_Reference_To
(First_Tag_Component
(Full_Typ
),
5213 Set_Assignment_OK
(New_Ref
);
5215 Insert_Action_After
(Init_After
,
5216 Make_Assignment_Statement
(Loc
,
5219 Unchecked_Convert_To
(RTE
(RE_Tag
),
5221 (Node
(First_Elmt
(Access_Disp_Table
(Full_Typ
))),
5225 -- Handle C++ constructor calls. Note that we do not check that
5226 -- Typ is a tagged type since the equivalent Ada type of a C++
5227 -- class that has no virtual methods is a non-tagged limited
5230 elsif Is_CPP_Constructor_Call
(Expr
) then
5232 -- The call to the initialization procedure does NOT freeze the
5233 -- object being initialized.
5235 Id_Ref
:= New_Reference_To
(Def_Id
, Loc
);
5236 Set_Must_Not_Freeze
(Id_Ref
);
5237 Set_Assignment_OK
(Id_Ref
);
5239 Insert_Actions_After
(Init_After
,
5240 Build_Initialization_Call
(Loc
, Id_Ref
, Typ
,
5241 Constructor_Ref
=> Expr
));
5243 -- We remove here the original call to the constructor
5244 -- to avoid its management in the backend
5246 Set_Expression
(N
, Empty
);
5249 -- For discrete types, set the Is_Known_Valid flag if the
5250 -- initializing value is known to be valid.
5252 elsif Is_Discrete_Type
(Typ
) and then Expr_Known_Valid
(Expr
) then
5253 Set_Is_Known_Valid
(Def_Id
);
5255 elsif Is_Access_Type
(Typ
) then
5257 -- For access types set the Is_Known_Non_Null flag if the
5258 -- initializing value is known to be non-null. We can also set
5259 -- Can_Never_Be_Null if this is a constant.
5261 if Known_Non_Null
(Expr
) then
5262 Set_Is_Known_Non_Null
(Def_Id
, True);
5264 if Constant_Present
(N
) then
5265 Set_Can_Never_Be_Null
(Def_Id
);
5270 -- If validity checking on copies, validate initial expression.
5271 -- But skip this if declaration is for a generic type, since it
5272 -- makes no sense to validate generic types. Not clear if this
5273 -- can happen for legal programs, but it definitely can arise
5274 -- from previous instantiation errors.
5276 if Validity_Checks_On
5277 and then Validity_Check_Copies
5278 and then not Is_Generic_Type
(Etype
(Def_Id
))
5280 Ensure_Valid
(Expr
);
5281 Set_Is_Known_Valid
(Def_Id
);
5285 -- Cases where the back end cannot handle the initialization directly
5286 -- In such cases, we expand an assignment that will be appropriately
5287 -- handled by Expand_N_Assignment_Statement.
5289 -- The exclusion of the unconstrained case is wrong, but for now it
5290 -- is too much trouble ???
5292 if (Is_Possibly_Unaligned_Slice
(Expr
)
5293 or else (Is_Possibly_Unaligned_Object
(Expr
)
5294 and then not Represented_As_Scalar
(Etype
(Expr
))))
5295 and then not (Is_Array_Type
(Etype
(Expr
))
5296 and then not Is_Constrained
(Etype
(Expr
)))
5299 Stat
: constant Node_Id
:=
5300 Make_Assignment_Statement
(Loc
,
5301 Name
=> New_Reference_To
(Def_Id
, Loc
),
5302 Expression
=> Relocate_Node
(Expr
));
5304 Set_Expression
(N
, Empty
);
5305 Set_No_Initialization
(N
);
5306 Set_Assignment_OK
(Name
(Stat
));
5307 Set_No_Ctrl_Actions
(Stat
);
5308 Insert_After_And_Analyze
(Init_After
, Stat
);
5312 -- Final transformation, if the initializing expression is an entity
5313 -- for a variable with OK_To_Rename set, then we transform:
5319 -- X : typ renames expr
5321 -- provided that X is not aliased. The aliased case has to be
5322 -- excluded in general because Expr will not be aliased in general.
5324 if Rewrite_As_Renaming
then
5326 Make_Object_Renaming_Declaration
(Loc
,
5327 Defining_Identifier
=> Defining_Identifier
(N
),
5328 Subtype_Mark
=> Object_Definition
(N
),
5331 -- We do not analyze this renaming declaration, because all its
5332 -- components have already been analyzed, and if we were to go
5333 -- ahead and analyze it, we would in effect be trying to generate
5334 -- another declaration of X, which won't do!
5336 Set_Renamed_Object
(Defining_Identifier
(N
), Expr_Q
);
5339 -- We do need to deal with debug issues for this renaming
5341 -- First, if entity comes from source, then mark it as needing
5342 -- debug information, even though it is defined by a generated
5343 -- renaming that does not come from source.
5345 if Comes_From_Source
(Defining_Identifier
(N
)) then
5346 Set_Debug_Info_Needed
(Defining_Identifier
(N
));
5349 -- Now call the routine to generate debug info for the renaming
5352 Decl
: constant Node_Id
:= Debug_Renaming_Declaration
(N
);
5354 if Present
(Decl
) then
5355 Insert_Action
(N
, Decl
);
5361 if Nkind
(N
) = N_Object_Declaration
5362 and then Nkind
(Object_Definition
(N
)) = N_Access_Definition
5363 and then not Is_Local_Anonymous_Access
(Etype
(Def_Id
))
5365 -- An Ada 2012 stand-alone object of an anonymous access type
5368 Loc
: constant Source_Ptr
:= Sloc
(N
);
5370 Level
: constant Entity_Id
:=
5371 Make_Defining_Identifier
(Sloc
(N
),
5373 New_External_Name
(Chars
(Def_Id
), Suffix
=> "L"));
5375 Level_Expr
: Node_Id
;
5376 Level_Decl
: Node_Id
;
5379 Set_Ekind
(Level
, Ekind
(Def_Id
));
5380 Set_Etype
(Level
, Standard_Natural
);
5381 Set_Scope
(Level
, Scope
(Def_Id
));
5385 -- Set accessibility level of null
5388 Make_Integer_Literal
(Loc
, Scope_Depth
(Standard_Standard
));
5391 Level_Expr
:= Dynamic_Accessibility_Level
(Expr
);
5394 Level_Decl
:= Make_Object_Declaration
(Loc
,
5395 Defining_Identifier
=> Level
,
5396 Object_Definition
=> New_Occurrence_Of
(Standard_Natural
, Loc
),
5397 Expression
=> Level_Expr
,
5398 Constant_Present
=> Constant_Present
(N
),
5399 Has_Init_Expression
=> True);
5401 Insert_Action_After
(Init_After
, Level_Decl
);
5403 Set_Extra_Accessibility
(Def_Id
, Level
);
5407 -- Exception on library entity not available
5410 when RE_Not_Available
=>
5412 end Expand_N_Object_Declaration
;
5414 ---------------------------------
5415 -- Expand_N_Subtype_Indication --
5416 ---------------------------------
5418 -- Add a check on the range of the subtype. The static case is partially
5419 -- duplicated by Process_Range_Expr_In_Decl in Sem_Ch3, but we still need
5420 -- to check here for the static case in order to avoid generating
5421 -- extraneous expanded code. Also deal with validity checking.
5423 procedure Expand_N_Subtype_Indication
(N
: Node_Id
) is
5424 Ran
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
5425 Typ
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
5428 if Nkind
(Constraint
(N
)) = N_Range_Constraint
then
5429 Validity_Check_Range
(Range_Expression
(Constraint
(N
)));
5432 if Nkind_In
(Parent
(N
), N_Constrained_Array_Definition
, N_Slice
) then
5433 Apply_Range_Check
(Ran
, Typ
);
5435 end Expand_N_Subtype_Indication
;
5437 ---------------------------
5438 -- Expand_N_Variant_Part --
5439 ---------------------------
5441 -- If the last variant does not contain the Others choice, replace it with
5442 -- an N_Others_Choice node since Gigi always wants an Others. Note that we
5443 -- do not bother to call Analyze on the modified variant part, since its
5444 -- only effect would be to compute the Others_Discrete_Choices node
5445 -- laboriously, and of course we already know the list of choices that
5446 -- corresponds to the others choice (it's the list we are replacing!)
5448 procedure Expand_N_Variant_Part
(N
: Node_Id
) is
5449 Last_Var
: constant Node_Id
:= Last_Non_Pragma
(Variants
(N
));
5450 Others_Node
: Node_Id
;
5452 if Nkind
(First
(Discrete_Choices
(Last_Var
))) /= N_Others_Choice
then
5453 Others_Node
:= Make_Others_Choice
(Sloc
(Last_Var
));
5454 Set_Others_Discrete_Choices
5455 (Others_Node
, Discrete_Choices
(Last_Var
));
5456 Set_Discrete_Choices
(Last_Var
, New_List
(Others_Node
));
5458 end Expand_N_Variant_Part
;
5460 ---------------------------------
5461 -- Expand_Previous_Access_Type --
5462 ---------------------------------
5464 procedure Expand_Previous_Access_Type
(Def_Id
: Entity_Id
) is
5465 Ptr_Typ
: Entity_Id
;
5468 -- Find all access types in the current scope whose designated type is
5469 -- Def_Id and build master renamings for them.
5471 Ptr_Typ
:= First_Entity
(Current_Scope
);
5472 while Present
(Ptr_Typ
) loop
5473 if Is_Access_Type
(Ptr_Typ
)
5474 and then Designated_Type
(Ptr_Typ
) = Def_Id
5475 and then No
(Master_Id
(Ptr_Typ
))
5477 -- Ensure that the designated type has a master
5479 Build_Master_Entity
(Def_Id
);
5481 -- Private and incomplete types complicate the insertion of master
5482 -- renamings because the access type may precede the full view of
5483 -- the designated type. For this reason, the master renamings are
5484 -- inserted relative to the designated type.
5486 Build_Master_Renaming
(Ptr_Typ
, Ins_Nod
=> Parent
(Def_Id
));
5489 Next_Entity
(Ptr_Typ
);
5491 end Expand_Previous_Access_Type
;
5493 ------------------------
5494 -- Expand_Tagged_Root --
5495 ------------------------
5497 procedure Expand_Tagged_Root
(T
: Entity_Id
) is
5498 Def
: constant Node_Id
:= Type_Definition
(Parent
(T
));
5499 Comp_List
: Node_Id
;
5500 Comp_Decl
: Node_Id
;
5501 Sloc_N
: Source_Ptr
;
5504 if Null_Present
(Def
) then
5505 Set_Component_List
(Def
,
5506 Make_Component_List
(Sloc
(Def
),
5507 Component_Items
=> Empty_List
,
5508 Variant_Part
=> Empty
,
5509 Null_Present
=> True));
5512 Comp_List
:= Component_List
(Def
);
5514 if Null_Present
(Comp_List
)
5515 or else Is_Empty_List
(Component_Items
(Comp_List
))
5517 Sloc_N
:= Sloc
(Comp_List
);
5519 Sloc_N
:= Sloc
(First
(Component_Items
(Comp_List
)));
5523 Make_Component_Declaration
(Sloc_N
,
5524 Defining_Identifier
=> First_Tag_Component
(T
),
5525 Component_Definition
=>
5526 Make_Component_Definition
(Sloc_N
,
5527 Aliased_Present
=> False,
5528 Subtype_Indication
=> New_Reference_To
(RTE
(RE_Tag
), Sloc_N
)));
5530 if Null_Present
(Comp_List
)
5531 or else Is_Empty_List
(Component_Items
(Comp_List
))
5533 Set_Component_Items
(Comp_List
, New_List
(Comp_Decl
));
5534 Set_Null_Present
(Comp_List
, False);
5537 Insert_Before
(First
(Component_Items
(Comp_List
)), Comp_Decl
);
5540 -- We don't Analyze the whole expansion because the tag component has
5541 -- already been analyzed previously. Here we just insure that the tree
5542 -- is coherent with the semantic decoration
5544 Find_Type
(Subtype_Indication
(Component_Definition
(Comp_Decl
)));
5547 when RE_Not_Available
=>
5549 end Expand_Tagged_Root
;
5551 ----------------------
5552 -- Clean_Task_Names --
5553 ----------------------
5555 procedure Clean_Task_Names
5557 Proc_Id
: Entity_Id
)
5561 and then not Restriction_Active
(No_Implicit_Heap_Allocations
)
5562 and then not Global_Discard_Names
5563 and then Tagged_Type_Expansion
5565 Set_Uses_Sec_Stack
(Proc_Id
);
5567 end Clean_Task_Names
;
5569 ------------------------------
5570 -- Expand_Freeze_Array_Type --
5571 ------------------------------
5573 procedure Expand_Freeze_Array_Type
(N
: Node_Id
) is
5574 Typ
: constant Entity_Id
:= Entity
(N
);
5575 Comp_Typ
: constant Entity_Id
:= Component_Type
(Typ
);
5576 Base
: constant Entity_Id
:= Base_Type
(Typ
);
5579 if not Is_Bit_Packed_Array
(Typ
) then
5581 -- If the component contains tasks, so does the array type. This may
5582 -- not be indicated in the array type because the component may have
5583 -- been a private type at the point of definition. Same if component
5584 -- type is controlled.
5586 Set_Has_Task
(Base
, Has_Task
(Comp_Typ
));
5587 Set_Has_Controlled_Component
(Base
,
5588 Has_Controlled_Component
(Comp_Typ
)
5589 or else Is_Controlled
(Comp_Typ
));
5591 if No
(Init_Proc
(Base
)) then
5593 -- If this is an anonymous array created for a declaration with
5594 -- an initial value, its init_proc will never be called. The
5595 -- initial value itself may have been expanded into assignments,
5596 -- in which case the object declaration is carries the
5597 -- No_Initialization flag.
5600 and then Nkind
(Associated_Node_For_Itype
(Base
)) =
5601 N_Object_Declaration
5602 and then (Present
(Expression
(Associated_Node_For_Itype
(Base
)))
5604 No_Initialization
(Associated_Node_For_Itype
(Base
)))
5608 -- We do not need an init proc for string or wide [wide] string,
5609 -- since the only time these need initialization in normalize or
5610 -- initialize scalars mode, and these types are treated specially
5611 -- and do not need initialization procedures.
5613 elsif Root_Type
(Base
) = Standard_String
5614 or else Root_Type
(Base
) = Standard_Wide_String
5615 or else Root_Type
(Base
) = Standard_Wide_Wide_String
5619 -- Otherwise we have to build an init proc for the subtype
5622 Build_Array_Init_Proc
(Base
, N
);
5627 if Has_Controlled_Component
(Base
) then
5628 Build_Controlling_Procs
(Base
);
5630 if not Is_Limited_Type
(Comp_Typ
)
5631 and then Number_Dimensions
(Typ
) = 1
5633 Build_Slice_Assignment
(Typ
);
5637 -- Create a finalization master to service the anonymous access
5638 -- components of the array.
5640 if Ekind
(Comp_Typ
) = E_Anonymous_Access_Type
5641 and then Needs_Finalization
(Designated_Type
(Comp_Typ
))
5643 Build_Finalization_Master
5645 Ins_Node
=> Parent
(Typ
),
5646 Encl_Scope
=> Scope
(Typ
));
5650 -- For packed case, default initialization, except if the component type
5651 -- is itself a packed structure with an initialization procedure, or
5652 -- initialize/normalize scalars active, and we have a base type, or the
5653 -- type is public, because in that case a client might specify
5654 -- Normalize_Scalars and there better be a public Init_Proc for it.
5656 elsif (Present
(Init_Proc
(Component_Type
(Base
)))
5657 and then No
(Base_Init_Proc
(Base
)))
5658 or else (Init_Or_Norm_Scalars
and then Base
= Typ
)
5659 or else Is_Public
(Typ
)
5661 Build_Array_Init_Proc
(Base
, N
);
5664 if Has_Invariants
(Component_Type
(Base
)) then
5665 Build_Array_Invariant_Proc
(Base
, N
);
5667 end Expand_Freeze_Array_Type
;
5669 -----------------------------------
5670 -- Expand_Freeze_Class_Wide_Type --
5671 -----------------------------------
5673 procedure Expand_Freeze_Class_Wide_Type
(N
: Node_Id
) is
5674 Typ
: constant Entity_Id
:= Entity
(N
);
5675 Root
: constant Entity_Id
:= Root_Type
(Typ
);
5677 function Is_C_Derivation
(Typ
: Entity_Id
) return Boolean;
5678 -- Given a type, determine whether it is derived from a C or C++ root
5680 ---------------------
5681 -- Is_C_Derivation --
5682 ---------------------
5684 function Is_C_Derivation
(Typ
: Entity_Id
) return Boolean is
5685 T
: Entity_Id
:= Typ
;
5690 or else Convention
(T
) = Convention_C
5691 or else Convention
(T
) = Convention_CPP
5696 exit when T
= Etype
(T
);
5702 end Is_C_Derivation
;
5704 -- Start of processing for Expand_Freeze_Class_Wide_Type
5707 -- Certain run-time configurations and targets do not provide support
5708 -- for controlled types.
5710 if Restriction_Active
(No_Finalization
) then
5713 -- Do not create TSS routine Finalize_Address when dispatching calls are
5714 -- disabled since the core of the routine is a dispatching call.
5716 elsif Restriction_Active
(No_Dispatching_Calls
) then
5719 -- Do not create TSS routine Finalize_Address for concurrent class-wide
5720 -- types. Ignore C, C++, CIL and Java types since it is assumed that the
5721 -- non-Ada side will handle their destruction.
5723 elsif Is_Concurrent_Type
(Root
)
5724 or else Is_C_Derivation
(Root
)
5725 or else Convention
(Typ
) = Convention_CIL
5726 or else Convention
(Typ
) = Convention_CPP
5727 or else Convention
(Typ
) = Convention_Java
5731 -- Do not create TSS routine Finalize_Address for .NET/JVM because these
5732 -- targets do not support address arithmetic and unchecked conversions.
5734 elsif VM_Target
/= No_VM
then
5737 -- Do not create TSS routine Finalize_Address when compiling in CodePeer
5738 -- mode since the routine contains an Unchecked_Conversion.
5740 elsif CodePeer_Mode
then
5743 -- Do not create TSS routine Finalize_Address when compiling in Alfa
5744 -- mode because it is not necessary and results in useless expansion.
5746 elsif Alfa_Mode
then
5750 -- Create the body of TSS primitive Finalize_Address. This automatically
5751 -- sets the TSS entry for the class-wide type.
5753 Make_Finalize_Address_Body
(Typ
);
5754 end Expand_Freeze_Class_Wide_Type
;
5756 ------------------------------------
5757 -- Expand_Freeze_Enumeration_Type --
5758 ------------------------------------
5760 procedure Expand_Freeze_Enumeration_Type
(N
: Node_Id
) is
5761 Typ
: constant Entity_Id
:= Entity
(N
);
5762 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
5769 Is_Contiguous
: Boolean;
5774 pragma Warnings
(Off
, Func
);
5777 -- Various optimizations possible if given representation is contiguous
5779 Is_Contiguous
:= True;
5781 Ent
:= First_Literal
(Typ
);
5782 Last_Repval
:= Enumeration_Rep
(Ent
);
5785 while Present
(Ent
) loop
5786 if Enumeration_Rep
(Ent
) - Last_Repval
/= 1 then
5787 Is_Contiguous
:= False;
5790 Last_Repval
:= Enumeration_Rep
(Ent
);
5796 if Is_Contiguous
then
5797 Set_Has_Contiguous_Rep
(Typ
);
5798 Ent
:= First_Literal
(Typ
);
5800 Lst
:= New_List
(New_Reference_To
(Ent
, Sloc
(Ent
)));
5803 -- Build list of literal references
5808 Ent
:= First_Literal
(Typ
);
5809 while Present
(Ent
) loop
5810 Append_To
(Lst
, New_Reference_To
(Ent
, Sloc
(Ent
)));
5816 -- Now build an array declaration
5818 -- typA : array (Natural range 0 .. num - 1) of ctype :=
5819 -- (v, v, v, v, v, ....)
5821 -- where ctype is the corresponding integer type. If the representation
5822 -- is contiguous, we only keep the first literal, which provides the
5823 -- offset for Pos_To_Rep computations.
5826 Make_Defining_Identifier
(Loc
,
5827 Chars
=> New_External_Name
(Chars
(Typ
), 'A'));
5829 Append_Freeze_Action
(Typ
,
5830 Make_Object_Declaration
(Loc
,
5831 Defining_Identifier
=> Arr
,
5832 Constant_Present
=> True,
5834 Object_Definition
=>
5835 Make_Constrained_Array_Definition
(Loc
,
5836 Discrete_Subtype_Definitions
=> New_List
(
5837 Make_Subtype_Indication
(Loc
,
5838 Subtype_Mark
=> New_Reference_To
(Standard_Natural
, Loc
),
5840 Make_Range_Constraint
(Loc
,
5844 Make_Integer_Literal
(Loc
, 0),
5846 Make_Integer_Literal
(Loc
, Num
- 1))))),
5848 Component_Definition
=>
5849 Make_Component_Definition
(Loc
,
5850 Aliased_Present
=> False,
5851 Subtype_Indication
=> New_Reference_To
(Typ
, Loc
))),
5854 Make_Aggregate
(Loc
,
5855 Expressions
=> Lst
)));
5857 Set_Enum_Pos_To_Rep
(Typ
, Arr
);
5859 -- Now we build the function that converts representation values to
5860 -- position values. This function has the form:
5862 -- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
5865 -- when enum-lit'Enum_Rep => return posval;
5866 -- when enum-lit'Enum_Rep => return posval;
5869 -- [raise Constraint_Error when F "invalid data"]
5874 -- Note: the F parameter determines whether the others case (no valid
5875 -- representation) raises Constraint_Error or returns a unique value
5876 -- of minus one. The latter case is used, e.g. in 'Valid code.
5878 -- Note: the reason we use Enum_Rep values in the case here is to avoid
5879 -- the code generator making inappropriate assumptions about the range
5880 -- of the values in the case where the value is invalid. ityp is a
5881 -- signed or unsigned integer type of appropriate width.
5883 -- Note: if exceptions are not supported, then we suppress the raise
5884 -- and return -1 unconditionally (this is an erroneous program in any
5885 -- case and there is no obligation to raise Constraint_Error here!) We
5886 -- also do this if pragma Restrictions (No_Exceptions) is active.
5888 -- Is this right??? What about No_Exception_Propagation???
5890 -- Representations are signed
5892 if Enumeration_Rep
(First_Literal
(Typ
)) < 0 then
5894 -- The underlying type is signed. Reset the Is_Unsigned_Type
5895 -- explicitly, because it might have been inherited from
5898 Set_Is_Unsigned_Type
(Typ
, False);
5900 if Esize
(Typ
) <= Standard_Integer_Size
then
5901 Ityp
:= Standard_Integer
;
5903 Ityp
:= Universal_Integer
;
5906 -- Representations are unsigned
5909 if Esize
(Typ
) <= Standard_Integer_Size
then
5910 Ityp
:= RTE
(RE_Unsigned
);
5912 Ityp
:= RTE
(RE_Long_Long_Unsigned
);
5916 -- The body of the function is a case statement. First collect case
5917 -- alternatives, or optimize the contiguous case.
5921 -- If representation is contiguous, Pos is computed by subtracting
5922 -- the representation of the first literal.
5924 if Is_Contiguous
then
5925 Ent
:= First_Literal
(Typ
);
5927 if Enumeration_Rep
(Ent
) = Last_Repval
then
5929 -- Another special case: for a single literal, Pos is zero
5931 Pos_Expr
:= Make_Integer_Literal
(Loc
, Uint_0
);
5935 Convert_To
(Standard_Integer
,
5936 Make_Op_Subtract
(Loc
,
5938 Unchecked_Convert_To
5939 (Ityp
, Make_Identifier
(Loc
, Name_uA
)),
5941 Make_Integer_Literal
(Loc
,
5942 Intval
=> Enumeration_Rep
(First_Literal
(Typ
)))));
5946 Make_Case_Statement_Alternative
(Loc
,
5947 Discrete_Choices
=> New_List
(
5948 Make_Range
(Sloc
(Enumeration_Rep_Expr
(Ent
)),
5950 Make_Integer_Literal
(Loc
,
5951 Intval
=> Enumeration_Rep
(Ent
)),
5953 Make_Integer_Literal
(Loc
, Intval
=> Last_Repval
))),
5955 Statements
=> New_List
(
5956 Make_Simple_Return_Statement
(Loc
,
5957 Expression
=> Pos_Expr
))));
5960 Ent
:= First_Literal
(Typ
);
5961 while Present
(Ent
) loop
5963 Make_Case_Statement_Alternative
(Loc
,
5964 Discrete_Choices
=> New_List
(
5965 Make_Integer_Literal
(Sloc
(Enumeration_Rep_Expr
(Ent
)),
5966 Intval
=> Enumeration_Rep
(Ent
))),
5968 Statements
=> New_List
(
5969 Make_Simple_Return_Statement
(Loc
,
5971 Make_Integer_Literal
(Loc
,
5972 Intval
=> Enumeration_Pos
(Ent
))))));
5978 -- In normal mode, add the others clause with the test
5980 if not No_Exception_Handlers_Set
then
5982 Make_Case_Statement_Alternative
(Loc
,
5983 Discrete_Choices
=> New_List
(Make_Others_Choice
(Loc
)),
5984 Statements
=> New_List
(
5985 Make_Raise_Constraint_Error
(Loc
,
5986 Condition
=> Make_Identifier
(Loc
, Name_uF
),
5987 Reason
=> CE_Invalid_Data
),
5988 Make_Simple_Return_Statement
(Loc
,
5990 Make_Integer_Literal
(Loc
, -1)))));
5992 -- If either of the restrictions No_Exceptions_Handlers/Propagation is
5993 -- active then return -1 (we cannot usefully raise Constraint_Error in
5994 -- this case). See description above for further details.
5998 Make_Case_Statement_Alternative
(Loc
,
5999 Discrete_Choices
=> New_List
(Make_Others_Choice
(Loc
)),
6000 Statements
=> New_List
(
6001 Make_Simple_Return_Statement
(Loc
,
6003 Make_Integer_Literal
(Loc
, -1)))));
6006 -- Now we can build the function body
6009 Make_Defining_Identifier
(Loc
, Make_TSS_Name
(Typ
, TSS_Rep_To_Pos
));
6012 Make_Subprogram_Body
(Loc
,
6014 Make_Function_Specification
(Loc
,
6015 Defining_Unit_Name
=> Fent
,
6016 Parameter_Specifications
=> New_List
(
6017 Make_Parameter_Specification
(Loc
,
6018 Defining_Identifier
=>
6019 Make_Defining_Identifier
(Loc
, Name_uA
),
6020 Parameter_Type
=> New_Reference_To
(Typ
, Loc
)),
6021 Make_Parameter_Specification
(Loc
,
6022 Defining_Identifier
=>
6023 Make_Defining_Identifier
(Loc
, Name_uF
),
6024 Parameter_Type
=> New_Reference_To
(Standard_Boolean
, Loc
))),
6026 Result_Definition
=> New_Reference_To
(Standard_Integer
, Loc
)),
6028 Declarations
=> Empty_List
,
6030 Handled_Statement_Sequence
=>
6031 Make_Handled_Sequence_Of_Statements
(Loc
,
6032 Statements
=> New_List
(
6033 Make_Case_Statement
(Loc
,
6035 Unchecked_Convert_To
6036 (Ityp
, Make_Identifier
(Loc
, Name_uA
)),
6037 Alternatives
=> Lst
))));
6039 Set_TSS
(Typ
, Fent
);
6041 -- Set Pure flag (it will be reset if the current context is not Pure).
6042 -- We also pretend there was a pragma Pure_Function so that for purposes
6043 -- of optimization and constant-folding, we will consider the function
6044 -- Pure even if we are not in a Pure context).
6047 Set_Has_Pragma_Pure_Function
(Fent
);
6049 -- Unless we are in -gnatD mode, where we are debugging generated code,
6050 -- this is an internal entity for which we don't need debug info.
6052 if not Debug_Generated_Code
then
6053 Set_Debug_Info_Off
(Fent
);
6057 when RE_Not_Available
=>
6059 end Expand_Freeze_Enumeration_Type
;
6061 -------------------------------
6062 -- Expand_Freeze_Record_Type --
6063 -------------------------------
6065 procedure Expand_Freeze_Record_Type
(N
: Node_Id
) is
6066 Def_Id
: constant Node_Id
:= Entity
(N
);
6067 Type_Decl
: constant Node_Id
:= Parent
(Def_Id
);
6069 Comp_Typ
: Entity_Id
;
6071 Predef_List
: List_Id
;
6073 Renamed_Eq
: Node_Id
:= Empty
;
6074 -- Defining unit name for the predefined equality function in the case
6075 -- where the type has a primitive operation that is a renaming of
6076 -- predefined equality (but only if there is also an overriding
6077 -- user-defined equality function). Used to pass this entity from
6078 -- Make_Predefined_Primitive_Specs to Predefined_Primitive_Bodies.
6080 Wrapper_Decl_List
: List_Id
:= No_List
;
6081 Wrapper_Body_List
: List_Id
:= No_List
;
6083 -- Start of processing for Expand_Freeze_Record_Type
6086 -- Build discriminant checking functions if not a derived type (for
6087 -- derived types that are not tagged types, always use the discriminant
6088 -- checking functions of the parent type). However, for untagged types
6089 -- the derivation may have taken place before the parent was frozen, so
6090 -- we copy explicitly the discriminant checking functions from the
6091 -- parent into the components of the derived type.
6093 if not Is_Derived_Type
(Def_Id
)
6094 or else Has_New_Non_Standard_Rep
(Def_Id
)
6095 or else Is_Tagged_Type
(Def_Id
)
6097 Build_Discr_Checking_Funcs
(Type_Decl
);
6099 elsif Is_Derived_Type
(Def_Id
)
6100 and then not Is_Tagged_Type
(Def_Id
)
6102 -- If we have a derived Unchecked_Union, we do not inherit the
6103 -- discriminant checking functions from the parent type since the
6104 -- discriminants are non existent.
6106 and then not Is_Unchecked_Union
(Def_Id
)
6107 and then Has_Discriminants
(Def_Id
)
6110 Old_Comp
: Entity_Id
;
6114 First_Component
(Base_Type
(Underlying_Type
(Etype
(Def_Id
))));
6115 Comp
:= First_Component
(Def_Id
);
6116 while Present
(Comp
) loop
6117 if Ekind
(Comp
) = E_Component
6118 and then Chars
(Comp
) = Chars
(Old_Comp
)
6120 Set_Discriminant_Checking_Func
(Comp
,
6121 Discriminant_Checking_Func
(Old_Comp
));
6124 Next_Component
(Old_Comp
);
6125 Next_Component
(Comp
);
6130 if Is_Derived_Type
(Def_Id
)
6131 and then Is_Limited_Type
(Def_Id
)
6132 and then Is_Tagged_Type
(Def_Id
)
6134 Check_Stream_Attributes
(Def_Id
);
6137 -- Update task and controlled component flags, because some of the
6138 -- component types may have been private at the point of the record
6139 -- declaration. Detect anonymous access-to-controlled components.
6143 Comp
:= First_Component
(Def_Id
);
6144 while Present
(Comp
) loop
6145 Comp_Typ
:= Etype
(Comp
);
6147 if Has_Task
(Comp_Typ
) then
6148 Set_Has_Task
(Def_Id
);
6150 -- Do not set Has_Controlled_Component on a class-wide equivalent
6151 -- type. See Make_CW_Equivalent_Type.
6153 elsif not Is_Class_Wide_Equivalent_Type
(Def_Id
)
6154 and then (Has_Controlled_Component
(Comp_Typ
)
6155 or else (Chars
(Comp
) /= Name_uParent
6156 and then Is_Controlled
(Comp_Typ
)))
6158 Set_Has_Controlled_Component
(Def_Id
);
6160 -- Non-self-referential anonymous access-to-controlled component
6162 elsif Ekind
(Comp_Typ
) = E_Anonymous_Access_Type
6163 and then Needs_Finalization
(Designated_Type
(Comp_Typ
))
6164 and then Designated_Type
(Comp_Typ
) /= Def_Id
6169 Next_Component
(Comp
);
6172 -- Handle constructors of non-tagged CPP_Class types
6174 if not Is_Tagged_Type
(Def_Id
) and then Is_CPP_Class
(Def_Id
) then
6175 Set_CPP_Constructors
(Def_Id
);
6178 -- Creation of the Dispatch Table. Note that a Dispatch Table is built
6179 -- for regular tagged types as well as for Ada types deriving from a C++
6180 -- Class, but not for tagged types directly corresponding to C++ classes
6181 -- In the later case we assume that it is created in the C++ side and we
6184 if Is_Tagged_Type
(Def_Id
) then
6186 -- Add the _Tag component
6188 if Underlying_Type
(Etype
(Def_Id
)) = Def_Id
then
6189 Expand_Tagged_Root
(Def_Id
);
6192 if Is_CPP_Class
(Def_Id
) then
6193 Set_All_DT_Position
(Def_Id
);
6195 -- Create the tag entities with a minimum decoration
6197 if Tagged_Type_Expansion
then
6198 Append_Freeze_Actions
(Def_Id
, Make_Tags
(Def_Id
));
6201 Set_CPP_Constructors
(Def_Id
);
6204 if not Building_Static_DT
(Def_Id
) then
6206 -- Usually inherited primitives are not delayed but the first
6207 -- Ada extension of a CPP_Class is an exception since the
6208 -- address of the inherited subprogram has to be inserted in
6209 -- the new Ada Dispatch Table and this is a freezing action.
6211 -- Similarly, if this is an inherited operation whose parent is
6212 -- not frozen yet, it is not in the DT of the parent, and we
6213 -- generate an explicit freeze node for the inherited operation
6214 -- so it is properly inserted in the DT of the current type.
6221 Elmt
:= First_Elmt
(Primitive_Operations
(Def_Id
));
6222 while Present
(Elmt
) loop
6223 Subp
:= Node
(Elmt
);
6225 if Present
(Alias
(Subp
)) then
6226 if Is_CPP_Class
(Etype
(Def_Id
)) then
6227 Set_Has_Delayed_Freeze
(Subp
);
6229 elsif Has_Delayed_Freeze
(Alias
(Subp
))
6230 and then not Is_Frozen
(Alias
(Subp
))
6232 Set_Is_Frozen
(Subp
, False);
6233 Set_Has_Delayed_Freeze
(Subp
);
6242 -- Unfreeze momentarily the type to add the predefined primitives
6243 -- operations. The reason we unfreeze is so that these predefined
6244 -- operations will indeed end up as primitive operations (which
6245 -- must be before the freeze point).
6247 Set_Is_Frozen
(Def_Id
, False);
6249 -- Do not add the spec of predefined primitives in case of
6250 -- CPP tagged type derivations that have convention CPP.
6252 if Is_CPP_Class
(Root_Type
(Def_Id
))
6253 and then Convention
(Def_Id
) = Convention_CPP
6257 -- Do not add the spec of predefined primitives in case of
6258 -- CIL and Java tagged types
6260 elsif Convention
(Def_Id
) = Convention_CIL
6261 or else Convention
(Def_Id
) = Convention_Java
6265 -- Do not add the spec of the predefined primitives if we are
6266 -- compiling under restriction No_Dispatching_Calls.
6268 elsif not Restriction_Active
(No_Dispatching_Calls
) then
6269 Make_Predefined_Primitive_Specs
6270 (Def_Id
, Predef_List
, Renamed_Eq
);
6271 Insert_List_Before_And_Analyze
(N
, Predef_List
);
6274 -- Ada 2005 (AI-391): For a nonabstract null extension, create
6275 -- wrapper functions for each nonoverridden inherited function
6276 -- with a controlling result of the type. The wrapper for such
6277 -- a function returns an extension aggregate that invokes the
6280 if Ada_Version
>= Ada_2005
6281 and then not Is_Abstract_Type
(Def_Id
)
6282 and then Is_Null_Extension
(Def_Id
)
6284 Make_Controlling_Function_Wrappers
6285 (Def_Id
, Wrapper_Decl_List
, Wrapper_Body_List
);
6286 Insert_List_Before_And_Analyze
(N
, Wrapper_Decl_List
);
6289 -- Ada 2005 (AI-251): For a nonabstract type extension, build
6290 -- null procedure declarations for each set of homographic null
6291 -- procedures that are inherited from interface types but not
6292 -- overridden. This is done to ensure that the dispatch table
6293 -- entry associated with such null primitives are properly filled.
6295 if Ada_Version
>= Ada_2005
6296 and then Etype
(Def_Id
) /= Def_Id
6297 and then not Is_Abstract_Type
(Def_Id
)
6298 and then Has_Interfaces
(Def_Id
)
6300 Insert_Actions
(N
, Make_Null_Procedure_Specs
(Def_Id
));
6303 Set_Is_Frozen
(Def_Id
);
6304 if not Is_Derived_Type
(Def_Id
)
6305 or else Is_Tagged_Type
(Etype
(Def_Id
))
6307 Set_All_DT_Position
(Def_Id
);
6310 -- Create and decorate the tags. Suppress their creation when
6311 -- VM_Target because the dispatching mechanism is handled
6312 -- internally by the VMs.
6314 if Tagged_Type_Expansion
then
6315 Append_Freeze_Actions
(Def_Id
, Make_Tags
(Def_Id
));
6317 -- Generate dispatch table of locally defined tagged type.
6318 -- Dispatch tables of library level tagged types are built
6319 -- later (see Analyze_Declarations).
6321 if not Building_Static_DT
(Def_Id
) then
6322 Append_Freeze_Actions
(Def_Id
, Make_DT
(Def_Id
));
6325 elsif VM_Target
/= No_VM
then
6326 Append_Freeze_Actions
(Def_Id
, Make_VM_TSD
(Def_Id
));
6329 -- If the type has unknown discriminants, propagate dispatching
6330 -- information to its underlying record view, which does not get
6331 -- its own dispatch table.
6333 if Is_Derived_Type
(Def_Id
)
6334 and then Has_Unknown_Discriminants
(Def_Id
)
6335 and then Present
(Underlying_Record_View
(Def_Id
))
6338 Rep
: constant Entity_Id
:= Underlying_Record_View
(Def_Id
);
6340 Set_Access_Disp_Table
6341 (Rep
, Access_Disp_Table
(Def_Id
));
6342 Set_Dispatch_Table_Wrappers
6343 (Rep
, Dispatch_Table_Wrappers
(Def_Id
));
6344 Set_Direct_Primitive_Operations
6345 (Rep
, Direct_Primitive_Operations
(Def_Id
));
6349 -- Make sure that the primitives Initialize, Adjust and Finalize
6350 -- are Frozen before other TSS subprograms. We don't want them
6353 if Is_Controlled
(Def_Id
) then
6354 if not Is_Limited_Type
(Def_Id
) then
6355 Append_Freeze_Actions
(Def_Id
,
6357 (Find_Prim_Op
(Def_Id
, Name_Adjust
), Def_Id
));
6360 Append_Freeze_Actions
(Def_Id
,
6362 (Find_Prim_Op
(Def_Id
, Name_Initialize
), Def_Id
));
6364 Append_Freeze_Actions
(Def_Id
,
6366 (Find_Prim_Op
(Def_Id
, Name_Finalize
), Def_Id
));
6369 -- Freeze rest of primitive operations. There is no need to handle
6370 -- the predefined primitives if we are compiling under restriction
6371 -- No_Dispatching_Calls.
6373 if not Restriction_Active
(No_Dispatching_Calls
) then
6374 Append_Freeze_Actions
6375 (Def_Id
, Predefined_Primitive_Freeze
(Def_Id
));
6379 -- In the non-tagged case, ever since Ada 83 an equality function must
6380 -- be provided for variant records that are not unchecked unions.
6381 -- In Ada 2012 the equality function composes, and thus must be built
6382 -- explicitly just as for tagged records.
6384 elsif Has_Discriminants
(Def_Id
)
6385 and then not Is_Limited_Type
(Def_Id
)
6388 Comps
: constant Node_Id
:=
6389 Component_List
(Type_Definition
(Type_Decl
));
6392 and then Present
(Variant_Part
(Comps
))
6394 Build_Variant_Record_Equality
(Def_Id
);
6398 -- Otherwise create primitive equality operation (AI05-0123)
6400 -- This is done unconditionally to ensure that tools can be linked
6401 -- properly with user programs compiled with older language versions.
6402 -- In addition, this is needed because "=" composes for bounded strings
6403 -- in all language versions (see Exp_Ch4.Expand_Composite_Equality).
6405 elsif Comes_From_Source
(Def_Id
)
6406 and then Convention
(Def_Id
) = Convention_Ada
6407 and then not Is_Limited_Type
(Def_Id
)
6409 Build_Untagged_Equality
(Def_Id
);
6412 -- Before building the record initialization procedure, if we are
6413 -- dealing with a concurrent record value type, then we must go through
6414 -- the discriminants, exchanging discriminals between the concurrent
6415 -- type and the concurrent record value type. See the section "Handling
6416 -- of Discriminants" in the Einfo spec for details.
6418 if Is_Concurrent_Record_Type
(Def_Id
)
6419 and then Has_Discriminants
(Def_Id
)
6422 Ctyp
: constant Entity_Id
:=
6423 Corresponding_Concurrent_Type
(Def_Id
);
6424 Conc_Discr
: Entity_Id
;
6425 Rec_Discr
: Entity_Id
;
6429 Conc_Discr
:= First_Discriminant
(Ctyp
);
6430 Rec_Discr
:= First_Discriminant
(Def_Id
);
6431 while Present
(Conc_Discr
) loop
6432 Temp
:= Discriminal
(Conc_Discr
);
6433 Set_Discriminal
(Conc_Discr
, Discriminal
(Rec_Discr
));
6434 Set_Discriminal
(Rec_Discr
, Temp
);
6436 Set_Discriminal_Link
(Discriminal
(Conc_Discr
), Conc_Discr
);
6437 Set_Discriminal_Link
(Discriminal
(Rec_Discr
), Rec_Discr
);
6439 Next_Discriminant
(Conc_Discr
);
6440 Next_Discriminant
(Rec_Discr
);
6445 if Has_Controlled_Component
(Def_Id
) then
6446 Build_Controlling_Procs
(Def_Id
);
6449 Adjust_Discriminants
(Def_Id
);
6451 if Tagged_Type_Expansion
or else not Is_Interface
(Def_Id
) then
6453 -- Do not need init for interfaces on e.g. CIL since they're
6454 -- abstract. Helps operation of peverify (the PE Verify tool).
6456 Build_Record_Init_Proc
(Type_Decl
, Def_Id
);
6459 -- For tagged type that are not interfaces, build bodies of primitive
6460 -- operations. Note: do this after building the record initialization
6461 -- procedure, since the primitive operations may need the initialization
6462 -- routine. There is no need to add predefined primitives of interfaces
6463 -- because all their predefined primitives are abstract.
6465 if Is_Tagged_Type
(Def_Id
)
6466 and then not Is_Interface
(Def_Id
)
6468 -- Do not add the body of predefined primitives in case of
6469 -- CPP tagged type derivations that have convention CPP.
6471 if Is_CPP_Class
(Root_Type
(Def_Id
))
6472 and then Convention
(Def_Id
) = Convention_CPP
6476 -- Do not add the body of predefined primitives in case of
6477 -- CIL and Java tagged types.
6479 elsif Convention
(Def_Id
) = Convention_CIL
6480 or else Convention
(Def_Id
) = Convention_Java
6484 -- Do not add the body of the predefined primitives if we are
6485 -- compiling under restriction No_Dispatching_Calls or if we are
6486 -- compiling a CPP tagged type.
6488 elsif not Restriction_Active
(No_Dispatching_Calls
) then
6490 -- Create the body of TSS primitive Finalize_Address. This must
6491 -- be done before the bodies of all predefined primitives are
6492 -- created. If Def_Id is limited, Stream_Input and Stream_Read
6493 -- may produce build-in-place allocations and for those the
6494 -- expander needs Finalize_Address. Do not create the body of
6495 -- Finalize_Address in Alfa mode since it is not needed.
6497 if not Alfa_Mode
then
6498 Make_Finalize_Address_Body
(Def_Id
);
6501 Predef_List
:= Predefined_Primitive_Bodies
(Def_Id
, Renamed_Eq
);
6502 Append_Freeze_Actions
(Def_Id
, Predef_List
);
6505 -- Ada 2005 (AI-391): If any wrappers were created for nonoverridden
6506 -- inherited functions, then add their bodies to the freeze actions.
6508 if Present
(Wrapper_Body_List
) then
6509 Append_Freeze_Actions
(Def_Id
, Wrapper_Body_List
);
6512 -- Create extra formals for the primitive operations of the type.
6513 -- This must be done before analyzing the body of the initialization
6514 -- procedure, because a self-referential type might call one of these
6515 -- primitives in the body of the init_proc itself.
6522 Elmt
:= First_Elmt
(Primitive_Operations
(Def_Id
));
6523 while Present
(Elmt
) loop
6524 Subp
:= Node
(Elmt
);
6525 if not Has_Foreign_Convention
(Subp
)
6526 and then not Is_Predefined_Dispatching_Operation
(Subp
)
6528 Create_Extra_Formals
(Subp
);
6536 -- Create a heterogeneous finalization master to service the anonymous
6537 -- access-to-controlled components of the record type.
6541 Encl_Scope
: constant Entity_Id
:= Scope
(Def_Id
);
6542 Ins_Node
: constant Node_Id
:= Parent
(Def_Id
);
6543 Loc
: constant Source_Ptr
:= Sloc
(Def_Id
);
6544 Fin_Mas_Id
: Entity_Id
;
6546 Attributes_Set
: Boolean := False;
6547 Master_Built
: Boolean := False;
6548 -- Two flags which control the creation and initialization of a
6549 -- common heterogeneous master.
6552 Comp
:= First_Component
(Def_Id
);
6553 while Present
(Comp
) loop
6554 Comp_Typ
:= Etype
(Comp
);
6556 -- A non-self-referential anonymous access-to-controlled
6559 if Ekind
(Comp_Typ
) = E_Anonymous_Access_Type
6560 and then Needs_Finalization
(Designated_Type
(Comp_Typ
))
6561 and then Designated_Type
(Comp_Typ
) /= Def_Id
6563 if VM_Target
= No_VM
then
6565 -- Build a homogeneous master for the first anonymous
6566 -- access-to-controlled component. This master may be
6567 -- converted into a heterogeneous collection if more
6568 -- components are to follow.
6570 if not Master_Built
then
6571 Master_Built
:= True;
6573 -- All anonymous access-to-controlled types allocate
6574 -- on the global pool.
6576 Set_Associated_Storage_Pool
(Comp_Typ
,
6577 Get_Global_Pool_For_Access_Type
(Comp_Typ
));
6579 Build_Finalization_Master
6581 Ins_Node
=> Ins_Node
,
6582 Encl_Scope
=> Encl_Scope
);
6584 Fin_Mas_Id
:= Finalization_Master
(Comp_Typ
);
6586 -- Subsequent anonymous access-to-controlled components
6587 -- reuse the already available master.
6590 -- All anonymous access-to-controlled types allocate
6591 -- on the global pool.
6593 Set_Associated_Storage_Pool
(Comp_Typ
,
6594 Get_Global_Pool_For_Access_Type
(Comp_Typ
));
6596 -- Shared the master among multiple components
6598 Set_Finalization_Master
(Comp_Typ
, Fin_Mas_Id
);
6600 -- Convert the master into a heterogeneous collection.
6603 -- Set_Is_Heterogeneous (<Fin_Mas_Id>);
6605 if not Attributes_Set
then
6606 Attributes_Set
:= True;
6608 Insert_Action
(Ins_Node
,
6609 Make_Procedure_Call_Statement
(Loc
,
6612 (RTE
(RE_Set_Is_Heterogeneous
), Loc
),
6613 Parameter_Associations
=> New_List
(
6614 New_Reference_To
(Fin_Mas_Id
, Loc
))));
6618 -- Since .NET/JVM targets do not support heterogeneous
6619 -- masters, each component must have its own master.
6622 Build_Finalization_Master
6624 Ins_Node
=> Ins_Node
,
6625 Encl_Scope
=> Encl_Scope
);
6629 Next_Component
(Comp
);
6633 end Expand_Freeze_Record_Type
;
6635 ------------------------------
6636 -- Freeze_Stream_Operations --
6637 ------------------------------
6639 procedure Freeze_Stream_Operations
(N
: Node_Id
; Typ
: Entity_Id
) is
6640 Names
: constant array (1 .. 4) of TSS_Name_Type
:=
6645 Stream_Op
: Entity_Id
;
6648 -- Primitive operations of tagged types are frozen when the dispatch
6649 -- table is constructed.
6651 if not Comes_From_Source
(Typ
)
6652 or else Is_Tagged_Type
(Typ
)
6657 for J
in Names
'Range loop
6658 Stream_Op
:= TSS
(Typ
, Names
(J
));
6660 if Present
(Stream_Op
)
6661 and then Is_Subprogram
(Stream_Op
)
6662 and then Nkind
(Unit_Declaration_Node
(Stream_Op
)) =
6663 N_Subprogram_Declaration
6664 and then not Is_Frozen
(Stream_Op
)
6666 Append_Freeze_Actions
(Typ
, Freeze_Entity
(Stream_Op
, N
));
6669 end Freeze_Stream_Operations
;
6675 -- Full type declarations are expanded at the point at which the type is
6676 -- frozen. The formal N is the Freeze_Node for the type. Any statements or
6677 -- declarations generated by the freezing (e.g. the procedure generated
6678 -- for initialization) are chained in the Actions field list of the freeze
6679 -- node using Append_Freeze_Actions.
6681 function Freeze_Type
(N
: Node_Id
) return Boolean is
6682 Def_Id
: constant Entity_Id
:= Entity
(N
);
6683 RACW_Seen
: Boolean := False;
6684 Result
: Boolean := False;
6687 -- Process associated access types needing special processing
6689 if Present
(Access_Types_To_Process
(N
)) then
6691 E
: Elmt_Id
:= First_Elmt
(Access_Types_To_Process
(N
));
6693 while Present
(E
) loop
6695 if Is_Remote_Access_To_Class_Wide_Type
(Node
(E
)) then
6696 Validate_RACW_Primitives
(Node
(E
));
6706 -- If there are RACWs designating this type, make stubs now
6708 Remote_Types_Tagged_Full_View_Encountered
(Def_Id
);
6712 -- Freeze processing for record types
6714 if Is_Record_Type
(Def_Id
) then
6715 if Ekind
(Def_Id
) = E_Record_Type
then
6716 Expand_Freeze_Record_Type
(N
);
6718 elsif Is_Class_Wide_Type
(Def_Id
) then
6719 Expand_Freeze_Class_Wide_Type
(N
);
6722 -- Freeze processing for array types
6724 elsif Is_Array_Type
(Def_Id
) then
6725 Expand_Freeze_Array_Type
(N
);
6727 -- Freeze processing for access types
6729 -- For pool-specific access types, find out the pool object used for
6730 -- this type, needs actual expansion of it in some cases. Here are the
6731 -- different cases :
6733 -- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
6734 -- ---> don't use any storage pool
6736 -- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
6738 -- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
6740 -- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
6741 -- ---> Storage Pool is the specified one
6743 -- See GNAT Pool packages in the Run-Time for more details
6745 elsif Ekind_In
(Def_Id
, E_Access_Type
, E_General_Access_Type
) then
6747 Loc
: constant Source_Ptr
:= Sloc
(N
);
6748 Desig_Type
: constant Entity_Id
:= Designated_Type
(Def_Id
);
6749 Pool_Object
: Entity_Id
;
6751 Freeze_Action_Typ
: Entity_Id
;
6756 -- Rep Clause "for Def_Id'Storage_Size use 0;"
6757 -- ---> don't use any storage pool
6759 if No_Pool_Assigned
(Def_Id
) then
6764 -- Rep Clause : for Def_Id'Storage_Size use Expr.
6766 -- Def_Id__Pool : Stack_Bounded_Pool
6767 -- (Expr, DT'Size, DT'Alignment);
6769 elsif Has_Storage_Size_Clause
(Def_Id
) then
6775 -- For unconstrained composite types we give a size of zero
6776 -- so that the pool knows that it needs a special algorithm
6777 -- for variable size object allocation.
6779 if Is_Composite_Type
(Desig_Type
)
6780 and then not Is_Constrained
(Desig_Type
)
6783 Make_Integer_Literal
(Loc
, 0);
6786 Make_Integer_Literal
(Loc
, Maximum_Alignment
);
6790 Make_Attribute_Reference
(Loc
,
6791 Prefix
=> New_Reference_To
(Desig_Type
, Loc
),
6792 Attribute_Name
=> Name_Max_Size_In_Storage_Elements
);
6795 Make_Attribute_Reference
(Loc
,
6796 Prefix
=> New_Reference_To
(Desig_Type
, Loc
),
6797 Attribute_Name
=> Name_Alignment
);
6801 Make_Defining_Identifier
(Loc
,
6802 Chars
=> New_External_Name
(Chars
(Def_Id
), 'P'));
6804 -- We put the code associated with the pools in the entity
6805 -- that has the later freeze node, usually the access type
6806 -- but it can also be the designated_type; because the pool
6807 -- code requires both those types to be frozen
6809 if Is_Frozen
(Desig_Type
)
6810 and then (No
(Freeze_Node
(Desig_Type
))
6811 or else Analyzed
(Freeze_Node
(Desig_Type
)))
6813 Freeze_Action_Typ
:= Def_Id
;
6815 -- A Taft amendment type cannot get the freeze actions
6816 -- since the full view is not there.
6818 elsif Is_Incomplete_Or_Private_Type
(Desig_Type
)
6819 and then No
(Full_View
(Desig_Type
))
6821 Freeze_Action_Typ
:= Def_Id
;
6824 Freeze_Action_Typ
:= Desig_Type
;
6827 Append_Freeze_Action
(Freeze_Action_Typ
,
6828 Make_Object_Declaration
(Loc
,
6829 Defining_Identifier
=> Pool_Object
,
6830 Object_Definition
=>
6831 Make_Subtype_Indication
(Loc
,
6834 (RTE
(RE_Stack_Bounded_Pool
), Loc
),
6837 Make_Index_Or_Discriminant_Constraint
(Loc
,
6838 Constraints
=> New_List
(
6840 -- First discriminant is the Pool Size
6843 Storage_Size_Variable
(Def_Id
), Loc
),
6845 -- Second discriminant is the element size
6849 -- Third discriminant is the alignment
6854 Set_Associated_Storage_Pool
(Def_Id
, Pool_Object
);
6858 -- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
6859 -- ---> Storage Pool is the specified one
6861 -- When compiling in Ada 2012 mode, ensure that the accessibility
6862 -- level of the subpool access type is not deeper than that of the
6863 -- pool_with_subpools. This check is not performed on .NET/JVM
6864 -- since those targets do not support pools.
6866 elsif Ada_Version
>= Ada_2012
6867 and then Present
(Associated_Storage_Pool
(Def_Id
))
6868 and then VM_Target
= No_VM
6871 Loc
: constant Source_Ptr
:= Sloc
(Def_Id
);
6872 Pool
: constant Entity_Id
:=
6873 Associated_Storage_Pool
(Def_Id
);
6874 RSPWS
: constant Entity_Id
:=
6875 RTE
(RE_Root_Storage_Pool_With_Subpools
);
6878 -- It is known that the accessibility level of the access
6879 -- type is deeper than that of the pool.
6881 if Type_Access_Level
(Def_Id
) > Object_Access_Level
(Pool
)
6882 and then not Accessibility_Checks_Suppressed
(Def_Id
)
6883 and then not Accessibility_Checks_Suppressed
(Pool
)
6885 -- Static case: the pool is known to be a descendant of
6886 -- Root_Storage_Pool_With_Subpools.
6888 if Is_Ancestor
(RSPWS
, Etype
(Pool
)) then
6890 ("?subpool access type has deeper accessibility " &
6891 "level than pool", Def_Id
);
6893 Append_Freeze_Action
(Def_Id
,
6894 Make_Raise_Program_Error
(Loc
,
6895 Reason
=> PE_Accessibility_Check_Failed
));
6897 -- Dynamic case: when the pool is of a class-wide type,
6898 -- it may or may not support subpools depending on the
6899 -- path of derivation. Generate:
6901 -- if Def_Id in RSPWS'Class then
6902 -- raise Program_Error;
6905 elsif Is_Class_Wide_Type
(Etype
(Pool
)) then
6906 Append_Freeze_Action
(Def_Id
,
6907 Make_If_Statement
(Loc
,
6911 New_Reference_To
(Pool
, Loc
),
6914 (Class_Wide_Type
(RSPWS
), Loc
)),
6916 Then_Statements
=> New_List
(
6917 Make_Raise_Program_Error
(Loc
,
6918 Reason
=> PE_Accessibility_Check_Failed
))));
6924 -- For access-to-controlled types (including class-wide types and
6925 -- Taft-amendment types, which potentially have controlled
6926 -- components), expand the list controller object that will store
6927 -- the dynamically allocated objects. Don't do this transformation
6928 -- for expander-generated access types, but do it for types that
6929 -- are the full view of types derived from other private types.
6930 -- Also suppress the list controller in the case of a designated
6931 -- type with convention Java, since this is used when binding to
6932 -- Java API specs, where there's no equivalent of a finalization
6933 -- list and we don't want to pull in the finalization support if
6936 if not Comes_From_Source
(Def_Id
)
6937 and then not Has_Private_Declaration
(Def_Id
)
6941 -- An exception is made for types defined in the run-time because
6942 -- Ada.Tags.Tag itself is such a type and cannot afford this
6943 -- unnecessary overhead that would generates a loop in the
6944 -- expansion scheme. Another exception is if Restrictions
6945 -- (No_Finalization) is active, since then we know nothing is
6948 elsif Restriction_Active
(No_Finalization
)
6949 or else In_Runtime
(Def_Id
)
6953 -- Assume that incomplete and private types are always completed
6954 -- by a controlled full view.
6956 elsif Needs_Finalization
(Desig_Type
)
6958 (Is_Incomplete_Or_Private_Type
(Desig_Type
)
6959 and then No
(Full_View
(Desig_Type
)))
6961 (Is_Array_Type
(Desig_Type
)
6962 and then Needs_Finalization
(Component_Type
(Desig_Type
)))
6964 Build_Finalization_Master
(Def_Id
);
6968 -- Freeze processing for enumeration types
6970 elsif Ekind
(Def_Id
) = E_Enumeration_Type
then
6972 -- We only have something to do if we have a non-standard
6973 -- representation (i.e. at least one literal whose pos value
6974 -- is not the same as its representation)
6976 if Has_Non_Standard_Rep
(Def_Id
) then
6977 Expand_Freeze_Enumeration_Type
(N
);
6980 -- Private types that are completed by a derivation from a private
6981 -- type have an internally generated full view, that needs to be
6982 -- frozen. This must be done explicitly because the two views share
6983 -- the freeze node, and the underlying full view is not visible when
6984 -- the freeze node is analyzed.
6986 elsif Is_Private_Type
(Def_Id
)
6987 and then Is_Derived_Type
(Def_Id
)
6988 and then Present
(Full_View
(Def_Id
))
6989 and then Is_Itype
(Full_View
(Def_Id
))
6990 and then Has_Private_Declaration
(Full_View
(Def_Id
))
6991 and then Freeze_Node
(Full_View
(Def_Id
)) = N
6993 Set_Entity
(N
, Full_View
(Def_Id
));
6994 Result
:= Freeze_Type
(N
);
6995 Set_Entity
(N
, Def_Id
);
6997 -- All other types require no expander action. There are such cases
6998 -- (e.g. task types and protected types). In such cases, the freeze
6999 -- nodes are there for use by Gigi.
7003 Freeze_Stream_Operations
(N
, Def_Id
);
7007 when RE_Not_Available
=>
7011 -------------------------
7012 -- Get_Simple_Init_Val --
7013 -------------------------
7015 function Get_Simple_Init_Val
7018 Size
: Uint
:= No_Uint
) return Node_Id
7020 Loc
: constant Source_Ptr
:= Sloc
(N
);
7026 -- This is the size to be used for computation of the appropriate
7027 -- initial value for the Normalize_Scalars and Initialize_Scalars case.
7029 IV_Attribute
: constant Boolean :=
7030 Nkind
(N
) = N_Attribute_Reference
7031 and then Attribute_Name
(N
) = Name_Invalid_Value
;
7035 -- These are the values computed by the procedure Check_Subtype_Bounds
7037 procedure Check_Subtype_Bounds
;
7038 -- This procedure examines the subtype T, and its ancestor subtypes and
7039 -- derived types to determine the best known information about the
7040 -- bounds of the subtype. After the call Lo_Bound is set either to
7041 -- No_Uint if no information can be determined, or to a value which
7042 -- represents a known low bound, i.e. a valid value of the subtype can
7043 -- not be less than this value. Hi_Bound is similarly set to a known
7044 -- high bound (valid value cannot be greater than this).
7046 --------------------------
7047 -- Check_Subtype_Bounds --
7048 --------------------------
7050 procedure Check_Subtype_Bounds
is
7059 Lo_Bound
:= No_Uint
;
7060 Hi_Bound
:= No_Uint
;
7062 -- Loop to climb ancestor subtypes and derived types
7066 if not Is_Discrete_Type
(ST1
) then
7070 Lo
:= Type_Low_Bound
(ST1
);
7071 Hi
:= Type_High_Bound
(ST1
);
7073 if Compile_Time_Known_Value
(Lo
) then
7074 Loval
:= Expr_Value
(Lo
);
7076 if Lo_Bound
= No_Uint
or else Lo_Bound
< Loval
then
7081 if Compile_Time_Known_Value
(Hi
) then
7082 Hival
:= Expr_Value
(Hi
);
7084 if Hi_Bound
= No_Uint
or else Hi_Bound
> Hival
then
7089 ST2
:= Ancestor_Subtype
(ST1
);
7095 exit when ST1
= ST2
;
7098 end Check_Subtype_Bounds
;
7100 -- Start of processing for Get_Simple_Init_Val
7103 -- For a private type, we should always have an underlying type
7104 -- (because this was already checked in Needs_Simple_Initialization).
7105 -- What we do is to get the value for the underlying type and then do
7106 -- an Unchecked_Convert to the private type.
7108 if Is_Private_Type
(T
) then
7109 Val
:= Get_Simple_Init_Val
(Underlying_Type
(T
), N
, Size
);
7111 -- A special case, if the underlying value is null, then qualify it
7112 -- with the underlying type, so that the null is properly typed
7113 -- Similarly, if it is an aggregate it must be qualified, because an
7114 -- unchecked conversion does not provide a context for it.
7116 if Nkind_In
(Val
, N_Null
, N_Aggregate
) then
7118 Make_Qualified_Expression
(Loc
,
7120 New_Occurrence_Of
(Underlying_Type
(T
), Loc
),
7124 Result
:= Unchecked_Convert_To
(T
, Val
);
7126 -- Don't truncate result (important for Initialize/Normalize_Scalars)
7128 if Nkind
(Result
) = N_Unchecked_Type_Conversion
7129 and then Is_Scalar_Type
(Underlying_Type
(T
))
7131 Set_No_Truncation
(Result
);
7136 -- Scalars with Default_Value aspect. The first subtype may now be
7137 -- private, so retrieve value from underlying type.
7139 elsif Is_Scalar_Type
(T
) and then Has_Default_Aspect
(T
) then
7140 if Is_Private_Type
(First_Subtype
(T
)) then
7141 return Unchecked_Convert_To
(T
,
7142 Default_Aspect_Value
(Full_View
(First_Subtype
(T
))));
7145 Convert_To
(T
, Default_Aspect_Value
(First_Subtype
(T
)));
7148 -- Otherwise, for scalars, we must have normalize/initialize scalars
7149 -- case, or if the node N is an 'Invalid_Value attribute node.
7151 elsif Is_Scalar_Type
(T
) then
7152 pragma Assert
(Init_Or_Norm_Scalars
or IV_Attribute
);
7154 -- Compute size of object. If it is given by the caller, we can use
7155 -- it directly, otherwise we use Esize (T) as an estimate. As far as
7156 -- we know this covers all cases correctly.
7158 if Size
= No_Uint
or else Size
<= Uint_0
then
7159 Size_To_Use
:= UI_Max
(Uint_1
, Esize
(T
));
7161 Size_To_Use
:= Size
;
7164 -- Maximum size to use is 64 bits, since we will create values of
7165 -- type Unsigned_64 and the range must fit this type.
7167 if Size_To_Use
/= No_Uint
and then Size_To_Use
> Uint_64
then
7168 Size_To_Use
:= Uint_64
;
7171 -- Check known bounds of subtype
7173 Check_Subtype_Bounds
;
7175 -- Processing for Normalize_Scalars case
7177 if Normalize_Scalars
and then not IV_Attribute
then
7179 -- If zero is invalid, it is a convenient value to use that is
7180 -- for sure an appropriate invalid value in all situations.
7182 if Lo_Bound
/= No_Uint
and then Lo_Bound
> Uint_0
then
7183 Val
:= Make_Integer_Literal
(Loc
, 0);
7185 -- Cases where all one bits is the appropriate invalid value
7187 -- For modular types, all 1 bits is either invalid or valid. If
7188 -- it is valid, then there is nothing that can be done since there
7189 -- are no invalid values (we ruled out zero already).
7191 -- For signed integer types that have no negative values, either
7192 -- there is room for negative values, or there is not. If there
7193 -- is, then all 1-bits may be interpreted as minus one, which is
7194 -- certainly invalid. Alternatively it is treated as the largest
7195 -- positive value, in which case the observation for modular types
7198 -- For float types, all 1-bits is a NaN (not a number), which is
7199 -- certainly an appropriately invalid value.
7201 elsif Is_Unsigned_Type
(T
)
7202 or else Is_Floating_Point_Type
(T
)
7203 or else Is_Enumeration_Type
(T
)
7205 Val
:= Make_Integer_Literal
(Loc
, 2 ** Size_To_Use
- 1);
7207 -- Resolve as Unsigned_64, because the largest number we can
7208 -- generate is out of range of universal integer.
7210 Analyze_And_Resolve
(Val
, RTE
(RE_Unsigned_64
));
7212 -- Case of signed types
7216 Signed_Size
: constant Uint
:=
7217 UI_Min
(Uint_63
, Size_To_Use
- 1);
7220 -- Normally we like to use the most negative number. The one
7221 -- exception is when this number is in the known subtype
7222 -- range and the largest positive number is not in the known
7225 -- For this exceptional case, use largest positive value
7227 if Lo_Bound
/= No_Uint
and then Hi_Bound
/= No_Uint
7228 and then Lo_Bound
<= (-(2 ** Signed_Size
))
7229 and then Hi_Bound
< 2 ** Signed_Size
7231 Val
:= Make_Integer_Literal
(Loc
, 2 ** Signed_Size
- 1);
7233 -- Normal case of largest negative value
7236 Val
:= Make_Integer_Literal
(Loc
, -(2 ** Signed_Size
));
7241 -- Here for Initialize_Scalars case (or Invalid_Value attribute used)
7244 -- For float types, use float values from System.Scalar_Values
7246 if Is_Floating_Point_Type
(T
) then
7247 if Root_Type
(T
) = Standard_Short_Float
then
7248 Val_RE
:= RE_IS_Isf
;
7249 elsif Root_Type
(T
) = Standard_Float
then
7250 Val_RE
:= RE_IS_Ifl
;
7251 elsif Root_Type
(T
) = Standard_Long_Float
then
7252 Val_RE
:= RE_IS_Ilf
;
7253 else pragma Assert
(Root_Type
(T
) = Standard_Long_Long_Float
);
7254 Val_RE
:= RE_IS_Ill
;
7257 -- If zero is invalid, use zero values from System.Scalar_Values
7259 elsif Lo_Bound
/= No_Uint
and then Lo_Bound
> Uint_0
then
7260 if Size_To_Use
<= 8 then
7261 Val_RE
:= RE_IS_Iz1
;
7262 elsif Size_To_Use
<= 16 then
7263 Val_RE
:= RE_IS_Iz2
;
7264 elsif Size_To_Use
<= 32 then
7265 Val_RE
:= RE_IS_Iz4
;
7267 Val_RE
:= RE_IS_Iz8
;
7270 -- For unsigned, use unsigned values from System.Scalar_Values
7272 elsif Is_Unsigned_Type
(T
) then
7273 if Size_To_Use
<= 8 then
7274 Val_RE
:= RE_IS_Iu1
;
7275 elsif Size_To_Use
<= 16 then
7276 Val_RE
:= RE_IS_Iu2
;
7277 elsif Size_To_Use
<= 32 then
7278 Val_RE
:= RE_IS_Iu4
;
7280 Val_RE
:= RE_IS_Iu8
;
7283 -- For signed, use signed values from System.Scalar_Values
7286 if Size_To_Use
<= 8 then
7287 Val_RE
:= RE_IS_Is1
;
7288 elsif Size_To_Use
<= 16 then
7289 Val_RE
:= RE_IS_Is2
;
7290 elsif Size_To_Use
<= 32 then
7291 Val_RE
:= RE_IS_Is4
;
7293 Val_RE
:= RE_IS_Is8
;
7297 Val
:= New_Occurrence_Of
(RTE
(Val_RE
), Loc
);
7300 -- The final expression is obtained by doing an unchecked conversion
7301 -- of this result to the base type of the required subtype. We use
7302 -- the base type to prevent the unchecked conversion from chopping
7303 -- bits, and then we set Kill_Range_Check to preserve the "bad"
7306 Result
:= Unchecked_Convert_To
(Base_Type
(T
), Val
);
7308 -- Ensure result is not truncated, since we want the "bad" bits, and
7309 -- also kill range check on result.
7311 if Nkind
(Result
) = N_Unchecked_Type_Conversion
then
7312 Set_No_Truncation
(Result
);
7313 Set_Kill_Range_Check
(Result
, True);
7318 -- String or Wide_[Wide]_String (must have Initialize_Scalars set)
7320 elsif Root_Type
(T
) = Standard_String
7322 Root_Type
(T
) = Standard_Wide_String
7324 Root_Type
(T
) = Standard_Wide_Wide_String
7326 pragma Assert
(Init_Or_Norm_Scalars
);
7329 Make_Aggregate
(Loc
,
7330 Component_Associations
=> New_List
(
7331 Make_Component_Association
(Loc
,
7332 Choices
=> New_List
(
7333 Make_Others_Choice
(Loc
)),
7336 (Component_Type
(T
), N
, Esize
(Root_Type
(T
))))));
7338 -- Access type is initialized to null
7340 elsif Is_Access_Type
(T
) then
7341 return Make_Null
(Loc
);
7343 -- No other possibilities should arise, since we should only be calling
7344 -- Get_Simple_Init_Val if Needs_Simple_Initialization returned True,
7345 -- indicating one of the above cases held.
7348 raise Program_Error
;
7352 when RE_Not_Available
=>
7354 end Get_Simple_Init_Val
;
7356 ------------------------------
7357 -- Has_New_Non_Standard_Rep --
7358 ------------------------------
7360 function Has_New_Non_Standard_Rep
(T
: Entity_Id
) return Boolean is
7362 if not Is_Derived_Type
(T
) then
7363 return Has_Non_Standard_Rep
(T
)
7364 or else Has_Non_Standard_Rep
(Root_Type
(T
));
7366 -- If Has_Non_Standard_Rep is not set on the derived type, the
7367 -- representation is fully inherited.
7369 elsif not Has_Non_Standard_Rep
(T
) then
7373 return First_Rep_Item
(T
) /= First_Rep_Item
(Root_Type
(T
));
7375 -- May need a more precise check here: the First_Rep_Item may
7376 -- be a stream attribute, which does not affect the representation
7379 end Has_New_Non_Standard_Rep
;
7385 function In_Runtime
(E
: Entity_Id
) return Boolean is
7390 while Scope
(S1
) /= Standard_Standard
loop
7394 return Is_RTU
(S1
, System
) or else Is_RTU
(S1
, Ada
);
7397 ----------------------------
7398 -- Initialization_Warning --
7399 ----------------------------
7401 procedure Initialization_Warning
(E
: Entity_Id
) is
7402 Warning_Needed
: Boolean;
7405 Warning_Needed
:= False;
7407 if Ekind
(Current_Scope
) = E_Package
7408 and then Static_Elaboration_Desired
(Current_Scope
)
7411 if Is_Record_Type
(E
) then
7412 if Has_Discriminants
(E
)
7413 or else Is_Limited_Type
(E
)
7414 or else Has_Non_Standard_Rep
(E
)
7416 Warning_Needed
:= True;
7419 -- Verify that at least one component has an initialization
7420 -- expression. No need for a warning on a type if all its
7421 -- components have no initialization.
7427 Comp
:= First_Component
(E
);
7428 while Present
(Comp
) loop
7429 if Ekind
(Comp
) = E_Discriminant
7431 (Nkind
(Parent
(Comp
)) = N_Component_Declaration
7432 and then Present
(Expression
(Parent
(Comp
))))
7434 Warning_Needed
:= True;
7438 Next_Component
(Comp
);
7443 if Warning_Needed
then
7445 ("Objects of the type cannot be initialized " &
7446 "statically by default?",
7452 Error_Msg_N
("Object cannot be initialized statically?", E
);
7455 end Initialization_Warning
;
7461 function Init_Formals
(Typ
: Entity_Id
) return List_Id
is
7462 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
7466 -- First parameter is always _Init : in out typ. Note that we need
7467 -- this to be in/out because in the case of the task record value,
7468 -- there are default record fields (_Priority, _Size, -Task_Info)
7469 -- that may be referenced in the generated initialization routine.
7471 Formals
:= New_List
(
7472 Make_Parameter_Specification
(Loc
,
7473 Defining_Identifier
=>
7474 Make_Defining_Identifier
(Loc
, Name_uInit
),
7476 Out_Present
=> True,
7477 Parameter_Type
=> New_Reference_To
(Typ
, Loc
)));
7479 -- For task record value, or type that contains tasks, add two more
7480 -- formals, _Master : Master_Id and _Chain : in out Activation_Chain
7481 -- We also add these parameters for the task record type case.
7484 or else (Is_Record_Type
(Typ
) and then Is_Task_Record_Type
(Typ
))
7487 Make_Parameter_Specification
(Loc
,
7488 Defining_Identifier
=>
7489 Make_Defining_Identifier
(Loc
, Name_uMaster
),
7490 Parameter_Type
=> New_Reference_To
(RTE
(RE_Master_Id
), Loc
)));
7493 Make_Parameter_Specification
(Loc
,
7494 Defining_Identifier
=>
7495 Make_Defining_Identifier
(Loc
, Name_uChain
),
7497 Out_Present
=> True,
7499 New_Reference_To
(RTE
(RE_Activation_Chain
), Loc
)));
7502 Make_Parameter_Specification
(Loc
,
7503 Defining_Identifier
=>
7504 Make_Defining_Identifier
(Loc
, Name_uTask_Name
),
7507 New_Reference_To
(Standard_String
, Loc
)));
7513 when RE_Not_Available
=>
7517 -------------------------
7518 -- Init_Secondary_Tags --
7519 -------------------------
7521 procedure Init_Secondary_Tags
7524 Stmts_List
: List_Id
;
7525 Fixed_Comps
: Boolean := True;
7526 Variable_Comps
: Boolean := True)
7528 Loc
: constant Source_Ptr
:= Sloc
(Target
);
7530 -- Inherit the C++ tag of the secondary dispatch table of Typ associated
7531 -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
7533 procedure Initialize_Tag
7536 Tag_Comp
: Entity_Id
;
7537 Iface_Tag
: Node_Id
);
7538 -- Initialize the tag of the secondary dispatch table of Typ associated
7539 -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
7540 -- Compiling under the CPP full ABI compatibility mode, if the ancestor
7541 -- of Typ CPP tagged type we generate code to inherit the contents of
7542 -- the dispatch table directly from the ancestor.
7544 --------------------
7545 -- Initialize_Tag --
7546 --------------------
7548 procedure Initialize_Tag
7551 Tag_Comp
: Entity_Id
;
7552 Iface_Tag
: Node_Id
)
7554 Comp_Typ
: Entity_Id
;
7555 Offset_To_Top_Comp
: Entity_Id
:= Empty
;
7558 -- Initialize the pointer to the secondary DT associated with the
7561 if not Is_Ancestor
(Iface
, Typ
, Use_Full_View
=> True) then
7562 Append_To
(Stmts_List
,
7563 Make_Assignment_Statement
(Loc
,
7565 Make_Selected_Component
(Loc
,
7566 Prefix
=> New_Copy_Tree
(Target
),
7567 Selector_Name
=> New_Reference_To
(Tag_Comp
, Loc
)),
7569 New_Reference_To
(Iface_Tag
, Loc
)));
7572 Comp_Typ
:= Scope
(Tag_Comp
);
7574 -- Initialize the entries of the table of interfaces. We generate a
7575 -- different call when the parent of the type has variable size
7578 if Comp_Typ
/= Etype
(Comp_Typ
)
7579 and then Is_Variable_Size_Record
(Etype
(Comp_Typ
))
7580 and then Chars
(Tag_Comp
) /= Name_uTag
7582 pragma Assert
(Present
(DT_Offset_To_Top_Func
(Tag_Comp
)));
7584 -- Issue error if Set_Dynamic_Offset_To_Top is not available in a
7585 -- configurable run-time environment.
7587 if not RTE_Available
(RE_Set_Dynamic_Offset_To_Top
) then
7589 ("variable size record with interface types", Typ
);
7594 -- Set_Dynamic_Offset_To_Top
7596 -- Interface_T => Iface'Tag,
7597 -- Offset_Value => n,
7598 -- Offset_Func => Fn'Address)
7600 Append_To
(Stmts_List
,
7601 Make_Procedure_Call_Statement
(Loc
,
7602 Name
=> New_Reference_To
7603 (RTE
(RE_Set_Dynamic_Offset_To_Top
), Loc
),
7604 Parameter_Associations
=> New_List
(
7605 Make_Attribute_Reference
(Loc
,
7606 Prefix
=> New_Copy_Tree
(Target
),
7607 Attribute_Name
=> Name_Address
),
7609 Unchecked_Convert_To
(RTE
(RE_Tag
),
7611 (Node
(First_Elmt
(Access_Disp_Table
(Iface
))),
7614 Unchecked_Convert_To
7615 (RTE
(RE_Storage_Offset
),
7616 Make_Attribute_Reference
(Loc
,
7618 Make_Selected_Component
(Loc
,
7619 Prefix
=> New_Copy_Tree
(Target
),
7621 New_Reference_To
(Tag_Comp
, Loc
)),
7622 Attribute_Name
=> Name_Position
)),
7624 Unchecked_Convert_To
(RTE
(RE_Offset_To_Top_Function_Ptr
),
7625 Make_Attribute_Reference
(Loc
,
7626 Prefix
=> New_Reference_To
7627 (DT_Offset_To_Top_Func
(Tag_Comp
), Loc
),
7628 Attribute_Name
=> Name_Address
)))));
7630 -- In this case the next component stores the value of the
7631 -- offset to the top.
7633 Offset_To_Top_Comp
:= Next_Entity
(Tag_Comp
);
7634 pragma Assert
(Present
(Offset_To_Top_Comp
));
7636 Append_To
(Stmts_List
,
7637 Make_Assignment_Statement
(Loc
,
7639 Make_Selected_Component
(Loc
,
7640 Prefix
=> New_Copy_Tree
(Target
),
7641 Selector_Name
=> New_Reference_To
7642 (Offset_To_Top_Comp
, Loc
)),
7644 Make_Attribute_Reference
(Loc
,
7646 Make_Selected_Component
(Loc
,
7647 Prefix
=> New_Copy_Tree
(Target
),
7649 New_Reference_To
(Tag_Comp
, Loc
)),
7650 Attribute_Name
=> Name_Position
)));
7652 -- Normal case: No discriminants in the parent type
7655 -- Don't need to set any value if this interface shares
7656 -- the primary dispatch table.
7658 if not Is_Ancestor
(Iface
, Typ
, Use_Full_View
=> True) then
7659 Append_To
(Stmts_List
,
7660 Build_Set_Static_Offset_To_Top
(Loc
,
7661 Iface_Tag
=> New_Reference_To
(Iface_Tag
, Loc
),
7663 Unchecked_Convert_To
(RTE
(RE_Storage_Offset
),
7664 Make_Attribute_Reference
(Loc
,
7666 Make_Selected_Component
(Loc
,
7667 Prefix
=> New_Copy_Tree
(Target
),
7669 New_Reference_To
(Tag_Comp
, Loc
)),
7670 Attribute_Name
=> Name_Position
))));
7674 -- Register_Interface_Offset
7676 -- Interface_T => Iface'Tag,
7677 -- Is_Constant => True,
7678 -- Offset_Value => n,
7679 -- Offset_Func => null);
7681 if RTE_Available
(RE_Register_Interface_Offset
) then
7682 Append_To
(Stmts_List
,
7683 Make_Procedure_Call_Statement
(Loc
,
7684 Name
=> New_Reference_To
7685 (RTE
(RE_Register_Interface_Offset
), Loc
),
7686 Parameter_Associations
=> New_List
(
7687 Make_Attribute_Reference
(Loc
,
7688 Prefix
=> New_Copy_Tree
(Target
),
7689 Attribute_Name
=> Name_Address
),
7691 Unchecked_Convert_To
(RTE
(RE_Tag
),
7693 (Node
(First_Elmt
(Access_Disp_Table
(Iface
))), Loc
)),
7695 New_Occurrence_Of
(Standard_True
, Loc
),
7697 Unchecked_Convert_To
7698 (RTE
(RE_Storage_Offset
),
7699 Make_Attribute_Reference
(Loc
,
7701 Make_Selected_Component
(Loc
,
7702 Prefix
=> New_Copy_Tree
(Target
),
7704 New_Reference_To
(Tag_Comp
, Loc
)),
7705 Attribute_Name
=> Name_Position
)),
7714 Full_Typ
: Entity_Id
;
7715 Ifaces_List
: Elist_Id
;
7716 Ifaces_Comp_List
: Elist_Id
;
7717 Ifaces_Tag_List
: Elist_Id
;
7718 Iface_Elmt
: Elmt_Id
;
7719 Iface_Comp_Elmt
: Elmt_Id
;
7720 Iface_Tag_Elmt
: Elmt_Id
;
7722 In_Variable_Pos
: Boolean;
7724 -- Start of processing for Init_Secondary_Tags
7727 -- Handle private types
7729 if Present
(Full_View
(Typ
)) then
7730 Full_Typ
:= Full_View
(Typ
);
7735 Collect_Interfaces_Info
7736 (Full_Typ
, Ifaces_List
, Ifaces_Comp_List
, Ifaces_Tag_List
);
7738 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
7739 Iface_Comp_Elmt
:= First_Elmt
(Ifaces_Comp_List
);
7740 Iface_Tag_Elmt
:= First_Elmt
(Ifaces_Tag_List
);
7741 while Present
(Iface_Elmt
) loop
7742 Tag_Comp
:= Node
(Iface_Comp_Elmt
);
7744 -- Check if parent of record type has variable size components
7746 In_Variable_Pos
:= Scope
(Tag_Comp
) /= Etype
(Scope
(Tag_Comp
))
7747 and then Is_Variable_Size_Record
(Etype
(Scope
(Tag_Comp
)));
7749 -- If we are compiling under the CPP full ABI compatibility mode and
7750 -- the ancestor is a CPP_Pragma tagged type then we generate code to
7751 -- initialize the secondary tag components from tags that reference
7752 -- secondary tables filled with copy of parent slots.
7754 if Is_CPP_Class
(Root_Type
(Full_Typ
)) then
7756 -- Reject interface components located at variable offset in
7757 -- C++ derivations. This is currently unsupported.
7759 if not Fixed_Comps
and then In_Variable_Pos
then
7761 -- Locate the first dynamic component of the record. Done to
7762 -- improve the text of the warning.
7766 Comp_Typ
: Entity_Id
;
7769 Comp
:= First_Entity
(Typ
);
7770 while Present
(Comp
) loop
7771 Comp_Typ
:= Etype
(Comp
);
7773 if Ekind
(Comp
) /= E_Discriminant
7774 and then not Is_Tag
(Comp
)
7777 (Is_Record_Type
(Comp_Typ
)
7778 and then Is_Variable_Size_Record
7779 (Base_Type
(Comp_Typ
)))
7781 (Is_Array_Type
(Comp_Typ
)
7782 and then Is_Variable_Size_Array
(Comp_Typ
));
7788 pragma Assert
(Present
(Comp
));
7789 Error_Msg_Node_2
:= Comp
;
7791 ("parent type & with dynamic component & cannot be parent"
7792 & " of 'C'P'P derivation if new interfaces are present",
7793 Typ
, Scope
(Original_Record_Component
(Comp
)));
7796 Sloc
(Scope
(Original_Record_Component
(Comp
)));
7798 ("type derived from 'C'P'P type & defined #",
7799 Typ
, Scope
(Original_Record_Component
(Comp
)));
7801 -- Avoid duplicated warnings
7806 -- Initialize secondary tags
7809 Append_To
(Stmts_List
,
7810 Make_Assignment_Statement
(Loc
,
7812 Make_Selected_Component
(Loc
,
7813 Prefix
=> New_Copy_Tree
(Target
),
7815 New_Reference_To
(Node
(Iface_Comp_Elmt
), Loc
)),
7817 New_Reference_To
(Node
(Iface_Tag_Elmt
), Loc
)));
7820 -- Otherwise generate code to initialize the tag
7823 if (In_Variable_Pos
and then Variable_Comps
)
7824 or else (not In_Variable_Pos
and then Fixed_Comps
)
7826 Initialize_Tag
(Full_Typ
,
7827 Iface
=> Node
(Iface_Elmt
),
7828 Tag_Comp
=> Tag_Comp
,
7829 Iface_Tag
=> Node
(Iface_Tag_Elmt
));
7833 Next_Elmt
(Iface_Elmt
);
7834 Next_Elmt
(Iface_Comp_Elmt
);
7835 Next_Elmt
(Iface_Tag_Elmt
);
7837 end Init_Secondary_Tags
;
7839 ------------------------
7840 -- Is_User_Defined_Eq --
7841 ------------------------
7843 function Is_User_Defined_Equality
(Prim
: Node_Id
) return Boolean is
7845 return Chars
(Prim
) = Name_Op_Eq
7846 and then Etype
(First_Formal
(Prim
)) =
7847 Etype
(Next_Formal
(First_Formal
(Prim
)))
7848 and then Base_Type
(Etype
(Prim
)) = Standard_Boolean
;
7849 end Is_User_Defined_Equality
;
7851 ----------------------------
7852 -- Is_Variable_Size_Array --
7853 ----------------------------
7855 function Is_Variable_Size_Array
(E
: Entity_Id
) return Boolean is
7859 pragma Assert
(Is_Array_Type
(E
));
7861 -- Check if some index is initialized with a non-constant value
7863 Idx
:= First_Index
(E
);
7864 while Present
(Idx
) loop
7865 if Nkind
(Idx
) = N_Range
then
7866 if not Is_Constant_Bound
(Low_Bound
(Idx
))
7867 or else not Is_Constant_Bound
(High_Bound
(Idx
))
7873 Idx
:= Next_Index
(Idx
);
7877 end Is_Variable_Size_Array
;
7879 -----------------------------
7880 -- Is_Variable_Size_Record --
7881 -----------------------------
7883 function Is_Variable_Size_Record
(E
: Entity_Id
) return Boolean is
7885 Comp_Typ
: Entity_Id
;
7888 pragma Assert
(Is_Record_Type
(E
));
7890 Comp
:= First_Entity
(E
);
7891 while Present
(Comp
) loop
7892 Comp_Typ
:= Etype
(Comp
);
7894 -- Recursive call if the record type has discriminants
7896 if Is_Record_Type
(Comp_Typ
)
7897 and then Has_Discriminants
(Comp_Typ
)
7898 and then Is_Variable_Size_Record
(Comp_Typ
)
7902 elsif Is_Array_Type
(Comp_Typ
)
7903 and then Is_Variable_Size_Array
(Comp_Typ
)
7912 end Is_Variable_Size_Record
;
7914 ----------------------------------------
7915 -- Make_Controlling_Function_Wrappers --
7916 ----------------------------------------
7918 procedure Make_Controlling_Function_Wrappers
7919 (Tag_Typ
: Entity_Id
;
7920 Decl_List
: out List_Id
;
7921 Body_List
: out List_Id
)
7923 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
7924 Prim_Elmt
: Elmt_Id
;
7926 Actual_List
: List_Id
;
7927 Formal_List
: List_Id
;
7929 Par_Formal
: Entity_Id
;
7930 Formal_Node
: Node_Id
;
7931 Func_Body
: Node_Id
;
7932 Func_Decl
: Node_Id
;
7933 Func_Spec
: Node_Id
;
7934 Return_Stmt
: Node_Id
;
7937 Decl_List
:= New_List
;
7938 Body_List
:= New_List
;
7940 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
7942 while Present
(Prim_Elmt
) loop
7943 Subp
:= Node
(Prim_Elmt
);
7945 -- If a primitive function with a controlling result of the type has
7946 -- not been overridden by the user, then we must create a wrapper
7947 -- function here that effectively overrides it and invokes the
7948 -- (non-abstract) parent function. This can only occur for a null
7949 -- extension. Note that functions with anonymous controlling access
7950 -- results don't qualify and must be overridden. We also exclude
7951 -- Input attributes, since each type will have its own version of
7952 -- Input constructed by the expander. The test for Comes_From_Source
7953 -- is needed to distinguish inherited operations from renamings
7954 -- (which also have Alias set).
7956 -- The function may be abstract, or require_Overriding may be set
7957 -- for it, because tests for null extensions may already have reset
7958 -- the Is_Abstract_Subprogram_Flag. If Requires_Overriding is not
7959 -- set, functions that need wrappers are recognized by having an
7960 -- alias that returns the parent type.
7962 if Comes_From_Source
(Subp
)
7963 or else No
(Alias
(Subp
))
7964 or else Ekind
(Subp
) /= E_Function
7965 or else not Has_Controlling_Result
(Subp
)
7966 or else Is_Access_Type
(Etype
(Subp
))
7967 or else Is_Abstract_Subprogram
(Alias
(Subp
))
7968 or else Is_TSS
(Subp
, TSS_Stream_Input
)
7972 elsif Is_Abstract_Subprogram
(Subp
)
7973 or else Requires_Overriding
(Subp
)
7975 (Is_Null_Extension
(Etype
(Subp
))
7976 and then Etype
(Alias
(Subp
)) /= Etype
(Subp
))
7978 Formal_List
:= No_List
;
7979 Formal
:= First_Formal
(Subp
);
7981 if Present
(Formal
) then
7982 Formal_List
:= New_List
;
7984 while Present
(Formal
) loop
7986 (Make_Parameter_Specification
7988 Defining_Identifier
=>
7989 Make_Defining_Identifier
(Sloc
(Formal
),
7990 Chars
=> Chars
(Formal
)),
7991 In_Present
=> In_Present
(Parent
(Formal
)),
7992 Out_Present
=> Out_Present
(Parent
(Formal
)),
7993 Null_Exclusion_Present
=>
7994 Null_Exclusion_Present
(Parent
(Formal
)),
7996 New_Reference_To
(Etype
(Formal
), Loc
),
7998 New_Copy_Tree
(Expression
(Parent
(Formal
)))),
8001 Next_Formal
(Formal
);
8006 Make_Function_Specification
(Loc
,
8007 Defining_Unit_Name
=>
8008 Make_Defining_Identifier
(Loc
,
8009 Chars
=> Chars
(Subp
)),
8010 Parameter_Specifications
=> Formal_List
,
8011 Result_Definition
=>
8012 New_Reference_To
(Etype
(Subp
), Loc
));
8014 Func_Decl
:= Make_Subprogram_Declaration
(Loc
, Func_Spec
);
8015 Append_To
(Decl_List
, Func_Decl
);
8017 -- Build a wrapper body that calls the parent function. The body
8018 -- contains a single return statement that returns an extension
8019 -- aggregate whose ancestor part is a call to the parent function,
8020 -- passing the formals as actuals (with any controlling arguments
8021 -- converted to the types of the corresponding formals of the
8022 -- parent function, which might be anonymous access types), and
8023 -- having a null extension.
8025 Formal
:= First_Formal
(Subp
);
8026 Par_Formal
:= First_Formal
(Alias
(Subp
));
8027 Formal_Node
:= First
(Formal_List
);
8029 if Present
(Formal
) then
8030 Actual_List
:= New_List
;
8032 Actual_List
:= No_List
;
8035 while Present
(Formal
) loop
8036 if Is_Controlling_Formal
(Formal
) then
8037 Append_To
(Actual_List
,
8038 Make_Type_Conversion
(Loc
,
8040 New_Occurrence_Of
(Etype
(Par_Formal
), Loc
),
8043 (Defining_Identifier
(Formal_Node
), Loc
)));
8048 (Defining_Identifier
(Formal_Node
), Loc
));
8051 Next_Formal
(Formal
);
8052 Next_Formal
(Par_Formal
);
8057 Make_Simple_Return_Statement
(Loc
,
8059 Make_Extension_Aggregate
(Loc
,
8061 Make_Function_Call
(Loc
,
8062 Name
=> New_Reference_To
(Alias
(Subp
), Loc
),
8063 Parameter_Associations
=> Actual_List
),
8064 Null_Record_Present
=> True));
8067 Make_Subprogram_Body
(Loc
,
8068 Specification
=> New_Copy_Tree
(Func_Spec
),
8069 Declarations
=> Empty_List
,
8070 Handled_Statement_Sequence
=>
8071 Make_Handled_Sequence_Of_Statements
(Loc
,
8072 Statements
=> New_List
(Return_Stmt
)));
8074 Set_Defining_Unit_Name
8075 (Specification
(Func_Body
),
8076 Make_Defining_Identifier
(Loc
, Chars
(Subp
)));
8078 Append_To
(Body_List
, Func_Body
);
8080 -- Replace the inherited function with the wrapper function
8081 -- in the primitive operations list.
8083 Override_Dispatching_Operation
8084 (Tag_Typ
, Subp
, New_Op
=> Defining_Unit_Name
(Func_Spec
));
8088 Next_Elmt
(Prim_Elmt
);
8090 end Make_Controlling_Function_Wrappers
;
8096 function Make_Eq_Body
8098 Eq_Name
: Name_Id
) return Node_Id
8100 Loc
: constant Source_Ptr
:= Sloc
(Parent
(Typ
));
8102 Def
: constant Node_Id
:= Parent
(Typ
);
8103 Stmts
: constant List_Id
:= New_List
;
8104 Variant_Case
: Boolean := Has_Discriminants
(Typ
);
8105 Comps
: Node_Id
:= Empty
;
8106 Typ_Def
: Node_Id
:= Type_Definition
(Def
);
8110 Predef_Spec_Or_Body
(Loc
,
8113 Profile
=> New_List
(
8114 Make_Parameter_Specification
(Loc
,
8115 Defining_Identifier
=>
8116 Make_Defining_Identifier
(Loc
, Name_X
),
8117 Parameter_Type
=> New_Reference_To
(Typ
, Loc
)),
8119 Make_Parameter_Specification
(Loc
,
8120 Defining_Identifier
=>
8121 Make_Defining_Identifier
(Loc
, Name_Y
),
8122 Parameter_Type
=> New_Reference_To
(Typ
, Loc
))),
8124 Ret_Type
=> Standard_Boolean
,
8127 if Variant_Case
then
8128 if Nkind
(Typ_Def
) = N_Derived_Type_Definition
then
8129 Typ_Def
:= Record_Extension_Part
(Typ_Def
);
8132 if Present
(Typ_Def
) then
8133 Comps
:= Component_List
(Typ_Def
);
8137 Present
(Comps
) and then Present
(Variant_Part
(Comps
));
8140 if Variant_Case
then
8142 Make_Eq_If
(Typ
, Discriminant_Specifications
(Def
)));
8143 Append_List_To
(Stmts
, Make_Eq_Case
(Typ
, Comps
));
8145 Make_Simple_Return_Statement
(Loc
,
8146 Expression
=> New_Reference_To
(Standard_True
, Loc
)));
8150 Make_Simple_Return_Statement
(Loc
,
8152 Expand_Record_Equality
8155 Lhs
=> Make_Identifier
(Loc
, Name_X
),
8156 Rhs
=> Make_Identifier
(Loc
, Name_Y
),
8157 Bodies
=> Declarations
(Decl
))));
8160 Set_Handled_Statement_Sequence
8161 (Decl
, Make_Handled_Sequence_Of_Statements
(Loc
, Stmts
));
8169 -- <Make_Eq_If shared components>
8171 -- when V1 => <Make_Eq_Case> on subcomponents
8173 -- when Vn => <Make_Eq_Case> on subcomponents
8176 function Make_Eq_Case
8179 Discr
: Entity_Id
:= Empty
) return List_Id
8181 Loc
: constant Source_Ptr
:= Sloc
(E
);
8182 Result
: constant List_Id
:= New_List
;
8187 Append_To
(Result
, Make_Eq_If
(E
, Component_Items
(CL
)));
8189 if No
(Variant_Part
(CL
)) then
8193 Variant
:= First_Non_Pragma
(Variants
(Variant_Part
(CL
)));
8195 if No
(Variant
) then
8199 Alt_List
:= New_List
;
8201 while Present
(Variant
) loop
8202 Append_To
(Alt_List
,
8203 Make_Case_Statement_Alternative
(Loc
,
8204 Discrete_Choices
=> New_Copy_List
(Discrete_Choices
(Variant
)),
8205 Statements
=> Make_Eq_Case
(E
, Component_List
(Variant
))));
8207 Next_Non_Pragma
(Variant
);
8210 -- If we have an Unchecked_Union, use one of the parameters that
8211 -- captures the discriminants.
8213 if Is_Unchecked_Union
(E
) then
8215 Make_Case_Statement
(Loc
,
8216 Expression
=> New_Reference_To
(Discr
, Loc
),
8217 Alternatives
=> Alt_List
));
8221 Make_Case_Statement
(Loc
,
8223 Make_Selected_Component
(Loc
,
8224 Prefix
=> Make_Identifier
(Loc
, Name_X
),
8225 Selector_Name
=> New_Copy
(Name
(Variant_Part
(CL
)))),
8226 Alternatives
=> Alt_List
));
8247 -- or a null statement if the list L is empty
8251 L
: List_Id
) return Node_Id
8253 Loc
: constant Source_Ptr
:= Sloc
(E
);
8255 Field_Name
: Name_Id
;
8260 return Make_Null_Statement
(Loc
);
8265 C
:= First_Non_Pragma
(L
);
8266 while Present
(C
) loop
8267 Field_Name
:= Chars
(Defining_Identifier
(C
));
8269 -- The tags must not be compared: they are not part of the value.
8270 -- Ditto for parent interfaces because their equality operator is
8273 -- Note also that in the following, we use Make_Identifier for
8274 -- the component names. Use of New_Reference_To to identify the
8275 -- components would be incorrect because the wrong entities for
8276 -- discriminants could be picked up in the private type case.
8278 if Field_Name
= Name_uParent
8279 and then Is_Interface
(Etype
(Defining_Identifier
(C
)))
8283 elsif Field_Name
/= Name_uTag
then
8284 Evolve_Or_Else
(Cond
,
8287 Make_Selected_Component
(Loc
,
8288 Prefix
=> Make_Identifier
(Loc
, Name_X
),
8289 Selector_Name
=> Make_Identifier
(Loc
, Field_Name
)),
8292 Make_Selected_Component
(Loc
,
8293 Prefix
=> Make_Identifier
(Loc
, Name_Y
),
8294 Selector_Name
=> Make_Identifier
(Loc
, Field_Name
))));
8297 Next_Non_Pragma
(C
);
8301 return Make_Null_Statement
(Loc
);
8305 Make_Implicit_If_Statement
(E
,
8307 Then_Statements
=> New_List
(
8308 Make_Simple_Return_Statement
(Loc
,
8309 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
))));
8314 --------------------
8316 --------------------
8318 function Make_Neq_Body
(Tag_Typ
: Entity_Id
) return Node_Id
is
8320 function Is_Predefined_Neq_Renaming
(Prim
: Node_Id
) return Boolean;
8321 -- Returns true if Prim is a renaming of an unresolved predefined
8322 -- inequality operation.
8324 --------------------------------
8325 -- Is_Predefined_Neq_Renaming --
8326 --------------------------------
8328 function Is_Predefined_Neq_Renaming
(Prim
: Node_Id
) return Boolean is
8330 return Chars
(Prim
) /= Name_Op_Ne
8331 and then Present
(Alias
(Prim
))
8332 and then Comes_From_Source
(Prim
)
8333 and then Is_Intrinsic_Subprogram
(Alias
(Prim
))
8334 and then Chars
(Alias
(Prim
)) = Name_Op_Ne
;
8335 end Is_Predefined_Neq_Renaming
;
8339 Loc
: constant Source_Ptr
:= Sloc
(Parent
(Tag_Typ
));
8340 Stmts
: constant List_Id
:= New_List
;
8342 Eq_Prim
: Entity_Id
;
8343 Left_Op
: Entity_Id
;
8344 Renaming_Prim
: Entity_Id
;
8345 Right_Op
: Entity_Id
;
8348 -- Start of processing for Make_Neq_Body
8351 -- For a call on a renaming of a dispatching subprogram that is
8352 -- overridden, if the overriding occurred before the renaming, then
8353 -- the body executed is that of the overriding declaration, even if the
8354 -- overriding declaration is not visible at the place of the renaming;
8355 -- otherwise, the inherited or predefined subprogram is called, see
8358 -- Stage 1: Search for a renaming of the inequality primitive and also
8359 -- search for an overriding of the equality primitive located before the
8360 -- renaming declaration.
8368 Renaming_Prim
:= Empty
;
8370 Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
8371 while Present
(Elmt
) loop
8372 Prim
:= Node
(Elmt
);
8374 if Is_User_Defined_Equality
(Prim
)
8375 and then No
(Alias
(Prim
))
8377 if No
(Renaming_Prim
) then
8378 pragma Assert
(No
(Eq_Prim
));
8382 elsif Is_Predefined_Neq_Renaming
(Prim
) then
8383 Renaming_Prim
:= Prim
;
8390 -- No further action needed if no renaming was found
8392 if No
(Renaming_Prim
) then
8396 -- Stage 2: Replace the renaming declaration by a subprogram declaration
8397 -- (required to add its body)
8399 Decl
:= Parent
(Parent
(Renaming_Prim
));
8401 Make_Subprogram_Declaration
(Loc
,
8402 Specification
=> Specification
(Decl
)));
8403 Set_Analyzed
(Decl
);
8405 -- Remove the decoration of intrinsic renaming subprogram
8407 Set_Is_Intrinsic_Subprogram
(Renaming_Prim
, False);
8408 Set_Convention
(Renaming_Prim
, Convention_Ada
);
8409 Set_Alias
(Renaming_Prim
, Empty
);
8410 Set_Has_Completion
(Renaming_Prim
, False);
8412 -- Stage 3: Build the corresponding body
8414 Left_Op
:= First_Formal
(Renaming_Prim
);
8415 Right_Op
:= Next_Formal
(Left_Op
);
8418 Predef_Spec_Or_Body
(Loc
,
8420 Name
=> Chars
(Renaming_Prim
),
8421 Profile
=> New_List
(
8422 Make_Parameter_Specification
(Loc
,
8423 Defining_Identifier
=>
8424 Make_Defining_Identifier
(Loc
, Chars
(Left_Op
)),
8425 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)),
8427 Make_Parameter_Specification
(Loc
,
8428 Defining_Identifier
=>
8429 Make_Defining_Identifier
(Loc
, Chars
(Right_Op
)),
8430 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
8432 Ret_Type
=> Standard_Boolean
,
8435 -- If the overriding of the equality primitive occurred before the
8436 -- renaming, then generate:
8438 -- function <Neq_Name> (X : Y : Typ) return Boolean is
8440 -- return not Oeq (X, Y);
8443 if Present
(Eq_Prim
) then
8446 -- Otherwise build a nested subprogram which performs the predefined
8447 -- evaluation of the equality operator. That is, generate:
8449 -- function <Neq_Name> (X : Y : Typ) return Boolean is
8450 -- function Oeq (X : Y) return Boolean is
8452 -- <<body of default implementation>>
8455 -- return not Oeq (X, Y);
8460 Local_Subp
: Node_Id
;
8462 Local_Subp
:= Make_Eq_Body
(Tag_Typ
, Name_Op_Eq
);
8463 Set_Declarations
(Decl
, New_List
(Local_Subp
));
8464 Target
:= Defining_Entity
(Local_Subp
);
8469 Make_Simple_Return_Statement
(Loc
,
8472 Make_Function_Call
(Loc
,
8473 Name
=> New_Reference_To
(Target
, Loc
),
8474 Parameter_Associations
=> New_List
(
8475 Make_Identifier
(Loc
, Chars
(Left_Op
)),
8476 Make_Identifier
(Loc
, Chars
(Right_Op
)))))));
8478 Set_Handled_Statement_Sequence
8479 (Decl
, Make_Handled_Sequence_Of_Statements
(Loc
, Stmts
));
8483 -------------------------------
8484 -- Make_Null_Procedure_Specs --
8485 -------------------------------
8487 function Make_Null_Procedure_Specs
(Tag_Typ
: Entity_Id
) return List_Id
is
8488 Decl_List
: constant List_Id
:= New_List
;
8489 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
8491 Formal_List
: List_Id
;
8492 New_Param_Spec
: Node_Id
;
8493 Parent_Subp
: Entity_Id
;
8494 Prim_Elmt
: Elmt_Id
;
8498 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
8499 while Present
(Prim_Elmt
) loop
8500 Subp
:= Node
(Prim_Elmt
);
8502 -- If a null procedure inherited from an interface has not been
8503 -- overridden, then we build a null procedure declaration to
8504 -- override the inherited procedure.
8506 Parent_Subp
:= Alias
(Subp
);
8508 if Present
(Parent_Subp
)
8509 and then Is_Null_Interface_Primitive
(Parent_Subp
)
8511 Formal_List
:= No_List
;
8512 Formal
:= First_Formal
(Subp
);
8514 if Present
(Formal
) then
8515 Formal_List
:= New_List
;
8517 while Present
(Formal
) loop
8519 -- Copy the parameter spec including default expressions
8522 New_Copy_Tree
(Parent
(Formal
), New_Sloc
=> Loc
);
8524 -- Generate a new defining identifier for the new formal.
8525 -- required because New_Copy_Tree does not duplicate
8526 -- semantic fields (except itypes).
8528 Set_Defining_Identifier
(New_Param_Spec
,
8529 Make_Defining_Identifier
(Sloc
(Formal
),
8530 Chars
=> Chars
(Formal
)));
8532 -- For controlling arguments we must change their
8533 -- parameter type to reference the tagged type (instead
8534 -- of the interface type)
8536 if Is_Controlling_Formal
(Formal
) then
8537 if Nkind
(Parameter_Type
(Parent
(Formal
)))
8540 Set_Parameter_Type
(New_Param_Spec
,
8541 New_Occurrence_Of
(Tag_Typ
, Loc
));
8544 (Nkind
(Parameter_Type
(Parent
(Formal
)))
8545 = N_Access_Definition
);
8546 Set_Subtype_Mark
(Parameter_Type
(New_Param_Spec
),
8547 New_Occurrence_Of
(Tag_Typ
, Loc
));
8551 Append
(New_Param_Spec
, Formal_List
);
8553 Next_Formal
(Formal
);
8557 Append_To
(Decl_List
,
8558 Make_Subprogram_Declaration
(Loc
,
8559 Make_Procedure_Specification
(Loc
,
8560 Defining_Unit_Name
=>
8561 Make_Defining_Identifier
(Loc
, Chars
(Subp
)),
8562 Parameter_Specifications
=> Formal_List
,
8563 Null_Present
=> True)));
8566 Next_Elmt
(Prim_Elmt
);
8570 end Make_Null_Procedure_Specs
;
8572 -------------------------------------
8573 -- Make_Predefined_Primitive_Specs --
8574 -------------------------------------
8576 procedure Make_Predefined_Primitive_Specs
8577 (Tag_Typ
: Entity_Id
;
8578 Predef_List
: out List_Id
;
8579 Renamed_Eq
: out Entity_Id
)
8581 function Is_Predefined_Eq_Renaming
(Prim
: Node_Id
) return Boolean;
8582 -- Returns true if Prim is a renaming of an unresolved predefined
8583 -- equality operation.
8585 -------------------------------
8586 -- Is_Predefined_Eq_Renaming --
8587 -------------------------------
8589 function Is_Predefined_Eq_Renaming
(Prim
: Node_Id
) return Boolean is
8591 return Chars
(Prim
) /= Name_Op_Eq
8592 and then Present
(Alias
(Prim
))
8593 and then Comes_From_Source
(Prim
)
8594 and then Is_Intrinsic_Subprogram
(Alias
(Prim
))
8595 and then Chars
(Alias
(Prim
)) = Name_Op_Eq
;
8596 end Is_Predefined_Eq_Renaming
;
8600 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
8601 Res
: constant List_Id
:= New_List
;
8602 Eq_Name
: Name_Id
:= Name_Op_Eq
;
8603 Eq_Needed
: Boolean;
8607 Has_Predef_Eq_Renaming
: Boolean := False;
8608 -- Set to True if Tag_Typ has a primitive that renames the predefined
8609 -- equality operator. Used to implement (RM 8-5-4(8)).
8611 -- Start of processing for Make_Predefined_Primitive_Specs
8614 Renamed_Eq
:= Empty
;
8618 Append_To
(Res
, Predef_Spec_Or_Body
(Loc
,
8621 Profile
=> New_List
(
8622 Make_Parameter_Specification
(Loc
,
8623 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
8624 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
8626 Ret_Type
=> Standard_Long_Long_Integer
));
8628 -- Specs for dispatching stream attributes
8631 Stream_Op_TSS_Names
:
8632 constant array (Integer range <>) of TSS_Name_Type
:=
8639 for Op
in Stream_Op_TSS_Names
'Range loop
8640 if Stream_Operation_OK
(Tag_Typ
, Stream_Op_TSS_Names
(Op
)) then
8642 Predef_Stream_Attr_Spec
(Loc
, Tag_Typ
,
8643 Stream_Op_TSS_Names
(Op
)));
8648 -- Spec of "=" is expanded if the type is not limited and if a user
8649 -- defined "=" was not already declared for the non-full view of a
8650 -- private extension
8652 if not Is_Limited_Type
(Tag_Typ
) then
8654 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
8655 while Present
(Prim
) loop
8657 -- If a primitive is encountered that renames the predefined
8658 -- equality operator before reaching any explicit equality
8659 -- primitive, then we still need to create a predefined equality
8660 -- function, because calls to it can occur via the renaming. A
8661 -- new name is created for the equality to avoid conflicting with
8662 -- any user-defined equality. (Note that this doesn't account for
8663 -- renamings of equality nested within subpackages???)
8665 if Is_Predefined_Eq_Renaming
(Node
(Prim
)) then
8666 Has_Predef_Eq_Renaming
:= True;
8667 Eq_Name
:= New_External_Name
(Chars
(Node
(Prim
)), 'E');
8669 -- User-defined equality
8671 elsif Is_User_Defined_Equality
(Node
(Prim
)) then
8672 if No
(Alias
(Node
(Prim
)))
8673 or else Nkind
(Unit_Declaration_Node
(Node
(Prim
))) =
8674 N_Subprogram_Renaming_Declaration
8679 -- If the parent is not an interface type and has an abstract
8680 -- equality function, the inherited equality is abstract as
8681 -- well, and no body can be created for it.
8683 elsif not Is_Interface
(Etype
(Tag_Typ
))
8684 and then Present
(Alias
(Node
(Prim
)))
8685 and then Is_Abstract_Subprogram
(Alias
(Node
(Prim
)))
8690 -- If the type has an equality function corresponding with
8691 -- a primitive defined in an interface type, the inherited
8692 -- equality is abstract as well, and no body can be created
8695 elsif Present
(Alias
(Node
(Prim
)))
8696 and then Comes_From_Source
(Ultimate_Alias
(Node
(Prim
)))
8699 (Find_Dispatching_Type
(Ultimate_Alias
(Node
(Prim
))))
8709 -- If a renaming of predefined equality was found but there was no
8710 -- user-defined equality (so Eq_Needed is still true), then set the
8711 -- name back to Name_Op_Eq. But in the case where a user-defined
8712 -- equality was located after such a renaming, then the predefined
8713 -- equality function is still needed, so Eq_Needed must be set back
8716 if Eq_Name
/= Name_Op_Eq
then
8718 Eq_Name
:= Name_Op_Eq
;
8725 Eq_Spec
:= Predef_Spec_Or_Body
(Loc
,
8728 Profile
=> New_List
(
8729 Make_Parameter_Specification
(Loc
,
8730 Defining_Identifier
=>
8731 Make_Defining_Identifier
(Loc
, Name_X
),
8732 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)),
8733 Make_Parameter_Specification
(Loc
,
8734 Defining_Identifier
=>
8735 Make_Defining_Identifier
(Loc
, Name_Y
),
8736 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
8737 Ret_Type
=> Standard_Boolean
);
8738 Append_To
(Res
, Eq_Spec
);
8740 if Has_Predef_Eq_Renaming
then
8741 Renamed_Eq
:= Defining_Unit_Name
(Specification
(Eq_Spec
));
8743 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
8744 while Present
(Prim
) loop
8746 -- Any renamings of equality that appeared before an
8747 -- overriding equality must be updated to refer to the
8748 -- entity for the predefined equality, otherwise calls via
8749 -- the renaming would get incorrectly resolved to call the
8750 -- user-defined equality function.
8752 if Is_Predefined_Eq_Renaming
(Node
(Prim
)) then
8753 Set_Alias
(Node
(Prim
), Renamed_Eq
);
8755 -- Exit upon encountering a user-defined equality
8757 elsif Chars
(Node
(Prim
)) = Name_Op_Eq
8758 and then No
(Alias
(Node
(Prim
)))
8768 -- Spec for dispatching assignment
8770 Append_To
(Res
, Predef_Spec_Or_Body
(Loc
,
8772 Name
=> Name_uAssign
,
8773 Profile
=> New_List
(
8774 Make_Parameter_Specification
(Loc
,
8775 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
8776 Out_Present
=> True,
8777 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)),
8779 Make_Parameter_Specification
(Loc
,
8780 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_Y
),
8781 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)))));
8784 -- Ada 2005: Generate declarations for the following primitive
8785 -- operations for limited interfaces and synchronized types that
8786 -- implement a limited interface.
8788 -- Disp_Asynchronous_Select
8789 -- Disp_Conditional_Select
8790 -- Disp_Get_Prim_Op_Kind
8793 -- Disp_Timed_Select
8795 -- Disable the generation of these bodies if No_Dispatching_Calls,
8796 -- Ravenscar or ZFP is active.
8798 if Ada_Version
>= Ada_2005
8799 and then not Restriction_Active
(No_Dispatching_Calls
)
8800 and then not Restriction_Active
(No_Select_Statements
)
8801 and then RTE_Available
(RE_Select_Specific_Data
)
8803 -- These primitives are defined abstract in interface types
8805 if Is_Interface
(Tag_Typ
)
8806 and then Is_Limited_Record
(Tag_Typ
)
8809 Make_Abstract_Subprogram_Declaration
(Loc
,
8811 Make_Disp_Asynchronous_Select_Spec
(Tag_Typ
)));
8814 Make_Abstract_Subprogram_Declaration
(Loc
,
8816 Make_Disp_Conditional_Select_Spec
(Tag_Typ
)));
8819 Make_Abstract_Subprogram_Declaration
(Loc
,
8821 Make_Disp_Get_Prim_Op_Kind_Spec
(Tag_Typ
)));
8824 Make_Abstract_Subprogram_Declaration
(Loc
,
8826 Make_Disp_Get_Task_Id_Spec
(Tag_Typ
)));
8829 Make_Abstract_Subprogram_Declaration
(Loc
,
8831 Make_Disp_Requeue_Spec
(Tag_Typ
)));
8834 Make_Abstract_Subprogram_Declaration
(Loc
,
8836 Make_Disp_Timed_Select_Spec
(Tag_Typ
)));
8838 -- If the ancestor is an interface type we declare non-abstract
8839 -- primitives to override the abstract primitives of the interface
8842 -- In VM targets we define these primitives in all root tagged types
8843 -- that are not interface types. Done because in VM targets we don't
8844 -- have secondary dispatch tables and any derivation of Tag_Typ may
8845 -- cover limited interfaces (which always have these primitives since
8846 -- they may be ancestors of synchronized interface types).
8848 elsif (not Is_Interface
(Tag_Typ
)
8849 and then Is_Interface
(Etype
(Tag_Typ
))
8850 and then Is_Limited_Record
(Etype
(Tag_Typ
)))
8852 (Is_Concurrent_Record_Type
(Tag_Typ
)
8853 and then Has_Interfaces
(Tag_Typ
))
8855 (not Tagged_Type_Expansion
8856 and then not Is_Interface
(Tag_Typ
)
8857 and then Tag_Typ
= Root_Type
(Tag_Typ
))
8860 Make_Subprogram_Declaration
(Loc
,
8862 Make_Disp_Asynchronous_Select_Spec
(Tag_Typ
)));
8865 Make_Subprogram_Declaration
(Loc
,
8867 Make_Disp_Conditional_Select_Spec
(Tag_Typ
)));
8870 Make_Subprogram_Declaration
(Loc
,
8872 Make_Disp_Get_Prim_Op_Kind_Spec
(Tag_Typ
)));
8875 Make_Subprogram_Declaration
(Loc
,
8877 Make_Disp_Get_Task_Id_Spec
(Tag_Typ
)));
8880 Make_Subprogram_Declaration
(Loc
,
8882 Make_Disp_Requeue_Spec
(Tag_Typ
)));
8885 Make_Subprogram_Declaration
(Loc
,
8887 Make_Disp_Timed_Select_Spec
(Tag_Typ
)));
8891 -- All tagged types receive their own Deep_Adjust and Deep_Finalize
8892 -- regardless of whether they are controlled or may contain controlled
8895 -- Do not generate the routines if finalization is disabled
8897 if Restriction_Active
(No_Finalization
) then
8900 -- Finalization is not available for CIL value types
8902 elsif Is_Value_Type
(Tag_Typ
) then
8906 if not Is_Limited_Type
(Tag_Typ
) then
8907 Append_To
(Res
, Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Adjust
));
8910 Append_To
(Res
, Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Finalize
));
8914 end Make_Predefined_Primitive_Specs
;
8916 ---------------------------------
8917 -- Needs_Simple_Initialization --
8918 ---------------------------------
8920 function Needs_Simple_Initialization
8922 Consider_IS
: Boolean := True) return Boolean
8924 Consider_IS_NS
: constant Boolean :=
8926 or (Initialize_Scalars
and Consider_IS
);
8929 -- Never need initialization if it is suppressed
8931 if Initialization_Suppressed
(T
) then
8935 -- Check for private type, in which case test applies to the underlying
8936 -- type of the private type.
8938 if Is_Private_Type
(T
) then
8940 RT
: constant Entity_Id
:= Underlying_Type
(T
);
8943 if Present
(RT
) then
8944 return Needs_Simple_Initialization
(RT
);
8950 -- Scalar type with Default_Value aspect requires initialization
8952 elsif Is_Scalar_Type
(T
) and then Has_Default_Aspect
(T
) then
8955 -- Cases needing simple initialization are access types, and, if pragma
8956 -- Normalize_Scalars or Initialize_Scalars is in effect, then all scalar
8959 elsif Is_Access_Type
(T
)
8960 or else (Consider_IS_NS
and then (Is_Scalar_Type
(T
)))
8964 -- If Initialize/Normalize_Scalars is in effect, string objects also
8965 -- need initialization, unless they are created in the course of
8966 -- expanding an aggregate (since in the latter case they will be
8967 -- filled with appropriate initializing values before they are used).
8969 elsif Consider_IS_NS
8971 (Root_Type
(T
) = Standard_String
8972 or else Root_Type
(T
) = Standard_Wide_String
8973 or else Root_Type
(T
) = Standard_Wide_Wide_String
)
8976 or else Nkind
(Associated_Node_For_Itype
(T
)) /= N_Aggregate
)
8983 end Needs_Simple_Initialization
;
8985 ----------------------
8986 -- Predef_Deep_Spec --
8987 ----------------------
8989 function Predef_Deep_Spec
8991 Tag_Typ
: Entity_Id
;
8992 Name
: TSS_Name_Type
;
8993 For_Body
: Boolean := False) return Node_Id
8998 -- V : in out Tag_Typ
9000 Formals
:= New_List
(
9001 Make_Parameter_Specification
(Loc
,
9002 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_V
),
9004 Out_Present
=> True,
9005 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)));
9007 -- F : Boolean := True
9009 if Name
= TSS_Deep_Adjust
9010 or else Name
= TSS_Deep_Finalize
9013 Make_Parameter_Specification
(Loc
,
9014 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_F
),
9015 Parameter_Type
=> New_Reference_To
(Standard_Boolean
, Loc
),
9016 Expression
=> New_Reference_To
(Standard_True
, Loc
)));
9020 Predef_Spec_Or_Body
(Loc
,
9021 Name
=> Make_TSS_Name
(Tag_Typ
, Name
),
9024 For_Body
=> For_Body
);
9027 when RE_Not_Available
=>
9029 end Predef_Deep_Spec
;
9031 -------------------------
9032 -- Predef_Spec_Or_Body --
9033 -------------------------
9035 function Predef_Spec_Or_Body
9037 Tag_Typ
: Entity_Id
;
9040 Ret_Type
: Entity_Id
:= Empty
;
9041 For_Body
: Boolean := False) return Node_Id
9043 Id
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name
);
9047 Set_Is_Public
(Id
, Is_Public
(Tag_Typ
));
9049 -- The internal flag is set to mark these declarations because they have
9050 -- specific properties. First, they are primitives even if they are not
9051 -- defined in the type scope (the freezing point is not necessarily in
9052 -- the same scope). Second, the predefined equality can be overridden by
9053 -- a user-defined equality, no body will be generated in this case.
9055 Set_Is_Internal
(Id
);
9057 if not Debug_Generated_Code
then
9058 Set_Debug_Info_Off
(Id
);
9061 if No
(Ret_Type
) then
9063 Make_Procedure_Specification
(Loc
,
9064 Defining_Unit_Name
=> Id
,
9065 Parameter_Specifications
=> Profile
);
9068 Make_Function_Specification
(Loc
,
9069 Defining_Unit_Name
=> Id
,
9070 Parameter_Specifications
=> Profile
,
9071 Result_Definition
=> New_Reference_To
(Ret_Type
, Loc
));
9074 if Is_Interface
(Tag_Typ
) then
9075 return Make_Abstract_Subprogram_Declaration
(Loc
, Spec
);
9077 -- If body case, return empty subprogram body. Note that this is ill-
9078 -- formed, because there is not even a null statement, and certainly not
9079 -- a return in the function case. The caller is expected to do surgery
9080 -- on the body to add the appropriate stuff.
9083 return Make_Subprogram_Body
(Loc
, Spec
, Empty_List
, Empty
);
9085 -- For the case of an Input attribute predefined for an abstract type,
9086 -- generate an abstract specification. This will never be called, but we
9087 -- need the slot allocated in the dispatching table so that attributes
9088 -- typ'Class'Input and typ'Class'Output will work properly.
9090 elsif Is_TSS
(Name
, TSS_Stream_Input
)
9091 and then Is_Abstract_Type
(Tag_Typ
)
9093 return Make_Abstract_Subprogram_Declaration
(Loc
, Spec
);
9095 -- Normal spec case, where we return a subprogram declaration
9098 return Make_Subprogram_Declaration
(Loc
, Spec
);
9100 end Predef_Spec_Or_Body
;
9102 -----------------------------
9103 -- Predef_Stream_Attr_Spec --
9104 -----------------------------
9106 function Predef_Stream_Attr_Spec
9108 Tag_Typ
: Entity_Id
;
9109 Name
: TSS_Name_Type
;
9110 For_Body
: Boolean := False) return Node_Id
9112 Ret_Type
: Entity_Id
;
9115 if Name
= TSS_Stream_Input
then
9116 Ret_Type
:= Tag_Typ
;
9124 Name
=> Make_TSS_Name
(Tag_Typ
, Name
),
9126 Profile
=> Build_Stream_Attr_Profile
(Loc
, Tag_Typ
, Name
),
9127 Ret_Type
=> Ret_Type
,
9128 For_Body
=> For_Body
);
9129 end Predef_Stream_Attr_Spec
;
9131 ---------------------------------
9132 -- Predefined_Primitive_Bodies --
9133 ---------------------------------
9135 function Predefined_Primitive_Bodies
9136 (Tag_Typ
: Entity_Id
;
9137 Renamed_Eq
: Entity_Id
) return List_Id
9139 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
9140 Res
: constant List_Id
:= New_List
;
9143 Eq_Needed
: Boolean;
9147 pragma Warnings
(Off
, Ent
);
9150 pragma Assert
(not Is_Interface
(Tag_Typ
));
9152 -- See if we have a predefined "=" operator
9154 if Present
(Renamed_Eq
) then
9156 Eq_Name
:= Chars
(Renamed_Eq
);
9158 -- If the parent is an interface type then it has defined all the
9159 -- predefined primitives abstract and we need to check if the type
9160 -- has some user defined "=" function to avoid generating it.
9162 elsif Is_Interface
(Etype
(Tag_Typ
)) then
9164 Eq_Name
:= Name_Op_Eq
;
9166 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
9167 while Present
(Prim
) loop
9168 if Chars
(Node
(Prim
)) = Name_Op_Eq
9169 and then not Is_Internal
(Node
(Prim
))
9183 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
9184 while Present
(Prim
) loop
9185 if Chars
(Node
(Prim
)) = Name_Op_Eq
9186 and then Is_Internal
(Node
(Prim
))
9189 Eq_Name
:= Name_Op_Eq
;
9199 Decl
:= Predef_Spec_Or_Body
(Loc
,
9202 Profile
=> New_List
(
9203 Make_Parameter_Specification
(Loc
,
9204 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
9205 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
9207 Ret_Type
=> Standard_Long_Long_Integer
,
9210 Set_Handled_Statement_Sequence
(Decl
,
9211 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
9212 Make_Simple_Return_Statement
(Loc
,
9214 Make_Attribute_Reference
(Loc
,
9215 Prefix
=> Make_Identifier
(Loc
, Name_X
),
9216 Attribute_Name
=> Name_Size
)))));
9218 Append_To
(Res
, Decl
);
9220 -- Bodies for Dispatching stream IO routines. We need these only for
9221 -- non-limited types (in the limited case there is no dispatching).
9222 -- We also skip them if dispatching or finalization are not available.
9224 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Read
)
9225 and then No
(TSS
(Tag_Typ
, TSS_Stream_Read
))
9227 Build_Record_Read_Procedure
(Loc
, Tag_Typ
, Decl
, Ent
);
9228 Append_To
(Res
, Decl
);
9231 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Write
)
9232 and then No
(TSS
(Tag_Typ
, TSS_Stream_Write
))
9234 Build_Record_Write_Procedure
(Loc
, Tag_Typ
, Decl
, Ent
);
9235 Append_To
(Res
, Decl
);
9238 -- Skip body of _Input for the abstract case, since the corresponding
9239 -- spec is abstract (see Predef_Spec_Or_Body).
9241 if not Is_Abstract_Type
(Tag_Typ
)
9242 and then Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Input
)
9243 and then No
(TSS
(Tag_Typ
, TSS_Stream_Input
))
9245 Build_Record_Or_Elementary_Input_Function
9246 (Loc
, Tag_Typ
, Decl
, Ent
);
9247 Append_To
(Res
, Decl
);
9250 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Output
)
9251 and then No
(TSS
(Tag_Typ
, TSS_Stream_Output
))
9253 Build_Record_Or_Elementary_Output_Procedure
9254 (Loc
, Tag_Typ
, Decl
, Ent
);
9255 Append_To
(Res
, Decl
);
9258 -- Ada 2005: Generate bodies for the following primitive operations for
9259 -- limited interfaces and synchronized types that implement a limited
9262 -- disp_asynchronous_select
9263 -- disp_conditional_select
9264 -- disp_get_prim_op_kind
9266 -- disp_timed_select
9268 -- The interface versions will have null bodies
9270 -- Disable the generation of these bodies if No_Dispatching_Calls,
9271 -- Ravenscar or ZFP is active.
9273 -- In VM targets we define these primitives in all root tagged types
9274 -- that are not interface types. Done because in VM targets we don't
9275 -- have secondary dispatch tables and any derivation of Tag_Typ may
9276 -- cover limited interfaces (which always have these primitives since
9277 -- they may be ancestors of synchronized interface types).
9279 if Ada_Version
>= Ada_2005
9280 and then not Is_Interface
(Tag_Typ
)
9282 ((Is_Interface
(Etype
(Tag_Typ
))
9283 and then Is_Limited_Record
(Etype
(Tag_Typ
)))
9285 (Is_Concurrent_Record_Type
(Tag_Typ
)
9286 and then Has_Interfaces
(Tag_Typ
))
9288 (not Tagged_Type_Expansion
9289 and then Tag_Typ
= Root_Type
(Tag_Typ
)))
9290 and then not Restriction_Active
(No_Dispatching_Calls
)
9291 and then not Restriction_Active
(No_Select_Statements
)
9292 and then RTE_Available
(RE_Select_Specific_Data
)
9294 Append_To
(Res
, Make_Disp_Asynchronous_Select_Body
(Tag_Typ
));
9295 Append_To
(Res
, Make_Disp_Conditional_Select_Body
(Tag_Typ
));
9296 Append_To
(Res
, Make_Disp_Get_Prim_Op_Kind_Body
(Tag_Typ
));
9297 Append_To
(Res
, Make_Disp_Get_Task_Id_Body
(Tag_Typ
));
9298 Append_To
(Res
, Make_Disp_Requeue_Body
(Tag_Typ
));
9299 Append_To
(Res
, Make_Disp_Timed_Select_Body
(Tag_Typ
));
9302 if not Is_Limited_Type
(Tag_Typ
)
9303 and then not Is_Interface
(Tag_Typ
)
9305 -- Body for equality
9308 Decl
:= Make_Eq_Body
(Tag_Typ
, Eq_Name
);
9309 Append_To
(Res
, Decl
);
9312 -- Body for inequality (if required!)
9314 Decl
:= Make_Neq_Body
(Tag_Typ
);
9316 if Present
(Decl
) then
9317 Append_To
(Res
, Decl
);
9320 -- Body for dispatching assignment
9323 Predef_Spec_Or_Body
(Loc
,
9325 Name
=> Name_uAssign
,
9326 Profile
=> New_List
(
9327 Make_Parameter_Specification
(Loc
,
9328 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
9329 Out_Present
=> True,
9330 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)),
9332 Make_Parameter_Specification
(Loc
,
9333 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_Y
),
9334 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
9337 Set_Handled_Statement_Sequence
(Decl
,
9338 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
9339 Make_Assignment_Statement
(Loc
,
9340 Name
=> Make_Identifier
(Loc
, Name_X
),
9341 Expression
=> Make_Identifier
(Loc
, Name_Y
)))));
9343 Append_To
(Res
, Decl
);
9346 -- Generate empty bodies of routines Deep_Adjust and Deep_Finalize for
9347 -- tagged types which do not contain controlled components.
9349 -- Do not generate the routines if finalization is disabled
9351 if Restriction_Active
(No_Finalization
) then
9354 elsif not Has_Controlled_Component
(Tag_Typ
) then
9355 if not Is_Limited_Type
(Tag_Typ
) then
9356 Decl
:= Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Adjust
, True);
9358 if Is_Controlled
(Tag_Typ
) then
9359 Set_Handled_Statement_Sequence
(Decl
,
9360 Make_Handled_Sequence_Of_Statements
(Loc
,
9361 Statements
=> New_List
(
9363 Obj_Ref
=> Make_Identifier
(Loc
, Name_V
),
9366 Set_Handled_Statement_Sequence
(Decl
,
9367 Make_Handled_Sequence_Of_Statements
(Loc
,
9368 Statements
=> New_List
(
9369 Make_Null_Statement
(Loc
))));
9372 Append_To
(Res
, Decl
);
9375 Decl
:= Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Finalize
, True);
9377 if Is_Controlled
(Tag_Typ
) then
9378 Set_Handled_Statement_Sequence
(Decl
,
9379 Make_Handled_Sequence_Of_Statements
(Loc
,
9380 Statements
=> New_List
(
9382 (Obj_Ref
=> Make_Identifier
(Loc
, Name_V
),
9385 Set_Handled_Statement_Sequence
(Decl
,
9386 Make_Handled_Sequence_Of_Statements
(Loc
,
9387 Statements
=> New_List
(Make_Null_Statement
(Loc
))));
9390 Append_To
(Res
, Decl
);
9394 end Predefined_Primitive_Bodies
;
9396 ---------------------------------
9397 -- Predefined_Primitive_Freeze --
9398 ---------------------------------
9400 function Predefined_Primitive_Freeze
9401 (Tag_Typ
: Entity_Id
) return List_Id
9403 Res
: constant List_Id
:= New_List
;
9408 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
9409 while Present
(Prim
) loop
9410 if Is_Predefined_Dispatching_Operation
(Node
(Prim
)) then
9411 Frnodes
:= Freeze_Entity
(Node
(Prim
), Tag_Typ
);
9413 if Present
(Frnodes
) then
9414 Append_List_To
(Res
, Frnodes
);
9422 end Predefined_Primitive_Freeze
;
9424 -------------------------
9425 -- Stream_Operation_OK --
9426 -------------------------
9428 function Stream_Operation_OK
9430 Operation
: TSS_Name_Type
) return Boolean
9432 Has_Predefined_Or_Specified_Stream_Attribute
: Boolean := False;
9435 -- Special case of a limited type extension: a default implementation
9436 -- of the stream attributes Read or Write exists if that attribute
9437 -- has been specified or is available for an ancestor type; a default
9438 -- implementation of the attribute Output (resp. Input) exists if the
9439 -- attribute has been specified or Write (resp. Read) is available for
9440 -- an ancestor type. The last condition only applies under Ada 2005.
9442 if Is_Limited_Type
(Typ
)
9443 and then Is_Tagged_Type
(Typ
)
9445 if Operation
= TSS_Stream_Read
then
9446 Has_Predefined_Or_Specified_Stream_Attribute
:=
9447 Has_Specified_Stream_Read
(Typ
);
9449 elsif Operation
= TSS_Stream_Write
then
9450 Has_Predefined_Or_Specified_Stream_Attribute
:=
9451 Has_Specified_Stream_Write
(Typ
);
9453 elsif Operation
= TSS_Stream_Input
then
9454 Has_Predefined_Or_Specified_Stream_Attribute
:=
9455 Has_Specified_Stream_Input
(Typ
)
9457 (Ada_Version
>= Ada_2005
9458 and then Stream_Operation_OK
(Typ
, TSS_Stream_Read
));
9460 elsif Operation
= TSS_Stream_Output
then
9461 Has_Predefined_Or_Specified_Stream_Attribute
:=
9462 Has_Specified_Stream_Output
(Typ
)
9464 (Ada_Version
>= Ada_2005
9465 and then Stream_Operation_OK
(Typ
, TSS_Stream_Write
));
9468 -- Case of inherited TSS_Stream_Read or TSS_Stream_Write
9470 if not Has_Predefined_Or_Specified_Stream_Attribute
9471 and then Is_Derived_Type
(Typ
)
9472 and then (Operation
= TSS_Stream_Read
9473 or else Operation
= TSS_Stream_Write
)
9475 Has_Predefined_Or_Specified_Stream_Attribute
:=
9477 (Find_Inherited_TSS
(Base_Type
(Etype
(Typ
)), Operation
));
9481 -- If the type is not limited, or else is limited but the attribute is
9482 -- explicitly specified or is predefined for the type, then return True,
9483 -- unless other conditions prevail, such as restrictions prohibiting
9484 -- streams or dispatching operations. We also return True for limited
9485 -- interfaces, because they may be extended by nonlimited types and
9486 -- permit inheritance in this case (addresses cases where an abstract
9487 -- extension doesn't get 'Input declared, as per comments below, but
9488 -- 'Class'Input must still be allowed). Note that attempts to apply
9489 -- stream attributes to a limited interface or its class-wide type
9490 -- (or limited extensions thereof) will still get properly rejected
9491 -- by Check_Stream_Attribute.
9493 -- We exclude the Input operation from being a predefined subprogram in
9494 -- the case where the associated type is an abstract extension, because
9495 -- the attribute is not callable in that case, per 13.13.2(49/2). Also,
9496 -- we don't want an abstract version created because types derived from
9497 -- the abstract type may not even have Input available (for example if
9498 -- derived from a private view of the abstract type that doesn't have
9499 -- a visible Input), but a VM such as .NET or the Java VM can treat the
9500 -- operation as inherited anyway, and we don't want an abstract function
9501 -- to be (implicitly) inherited in that case because it can lead to a VM
9504 -- Do not generate stream routines for type Finalization_Master because
9505 -- a master may never appear in types and therefore cannot be read or
9509 (not Is_Limited_Type
(Typ
)
9510 or else Is_Interface
(Typ
)
9511 or else Has_Predefined_Or_Specified_Stream_Attribute
)
9513 (Operation
/= TSS_Stream_Input
9514 or else not Is_Abstract_Type
(Typ
)
9515 or else not Is_Derived_Type
(Typ
))
9516 and then not Has_Unknown_Discriminants
(Typ
)
9520 (Is_Task_Interface
(Typ
)
9521 or else Is_Protected_Interface
(Typ
)
9522 or else Is_Synchronized_Interface
(Typ
)))
9523 and then not Restriction_Active
(No_Streams
)
9524 and then not Restriction_Active
(No_Dispatch
)
9525 and then not No_Run_Time_Mode
9526 and then RTE_Available
(RE_Tag
)
9527 and then No
(Type_Without_Stream_Operation
(Typ
))
9528 and then RTE_Available
(RE_Root_Stream_Type
)
9529 and then not Is_RTE
(Typ
, RE_Finalization_Master
);
9530 end Stream_Operation_OK
;