1 ------------------------------------------------------------------------------
3 -- GNAT LIBRARY COMPONENTS --
5 -- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_OPERATIONS --
9 -- Copyright (C) 2004-2009, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- This unit was originally developed by Matthew J Heaney. --
28 ------------------------------------------------------------------------------
30 -- The references below to "CLR" refer to the following book, from which
31 -- several of the algorithms here were adapted:
32 -- Introduction to Algorithms
33 -- by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
34 -- Publisher: The MIT Press (June 18, 1990)
37 with System
; use type System
.Address
;
39 package body Ada
.Containers
.Red_Black_Trees
.Generic_Operations
is
41 -----------------------
42 -- Local Subprograms --
43 -----------------------
45 procedure Delete_Fixup
(Tree
: in out Tree_Type
; Node
: Node_Access
);
47 procedure Delete_Swap
(Tree
: in out Tree_Type
; Z
, Y
: Node_Access
);
49 procedure Left_Rotate
(Tree
: in out Tree_Type
; X
: Node_Access
);
50 procedure Right_Rotate
(Tree
: in out Tree_Type
; Y
: Node_Access
);
52 -- Why is all the following code commented out ???
54 -- ---------------------
55 -- -- Check_Invariant --
56 -- ---------------------
58 -- procedure Check_Invariant (Tree : Tree_Type) is
59 -- Root : constant Node_Access := Tree.Root;
61 -- function Check (Node : Node_Access) return Natural;
67 -- function Check (Node : Node_Access) return Natural is
69 -- if Node = null then
73 -- if Color (Node) = Red then
75 -- L : constant Node_Access := Left (Node);
77 -- pragma Assert (L = null or else Color (L) = Black);
82 -- R : constant Node_Access := Right (Node);
84 -- pragma Assert (R = null or else Color (R) = Black);
89 -- NL : constant Natural := Check (Left (Node));
90 -- NR : constant Natural := Check (Right (Node));
92 -- pragma Assert (NL = NR);
98 -- NL : constant Natural := Check (Left (Node));
99 -- NR : constant Natural := Check (Right (Node));
101 -- pragma Assert (NL = NR);
106 -- -- Start of processing for Check_Invariant
109 -- if Root = null then
110 -- pragma Assert (Tree.First = null);
111 -- pragma Assert (Tree.Last = null);
112 -- pragma Assert (Tree.Length = 0);
116 -- pragma Assert (Color (Root) = Black);
117 -- pragma Assert (Tree.Length > 0);
118 -- pragma Assert (Tree.Root /= null);
119 -- pragma Assert (Tree.First /= null);
120 -- pragma Assert (Tree.Last /= null);
121 -- pragma Assert (Parent (Tree.Root) = null);
122 -- pragma Assert ((Tree.Length > 1)
123 -- or else (Tree.First = Tree.Last
124 -- and Tree.First = Tree.Root));
125 -- pragma Assert (Left (Tree.First) = null);
126 -- pragma Assert (Right (Tree.Last) = null);
129 -- L : constant Node_Access := Left (Root);
130 -- R : constant Node_Access := Right (Root);
131 -- NL : constant Natural := Check (L);
132 -- NR : constant Natural := Check (R);
134 -- pragma Assert (NL = NR);
138 -- end Check_Invariant;
144 procedure Delete_Fixup
(Tree
: in out Tree_Type
; Node
: Node_Access
) is
148 X
: Node_Access
:= Node
;
153 and then Color
(X
) = Black
155 if X
= Left
(Parent
(X
)) then
156 W
:= Right
(Parent
(X
));
158 if Color
(W
) = Red
then
159 Set_Color
(W
, Black
);
160 Set_Color
(Parent
(X
), Red
);
161 Left_Rotate
(Tree
, Parent
(X
));
162 W
:= Right
(Parent
(X
));
165 if (Left
(W
) = null or else Color
(Left
(W
)) = Black
)
167 (Right
(W
) = null or else Color
(Right
(W
)) = Black
)
174 or else Color
(Right
(W
)) = Black
176 -- As a condition for setting the color of the left child to
177 -- black, the left child access value must be non-null. A
178 -- truth table analysis shows that if we arrive here, that
179 -- condition holds, so there's no need for an explicit test.
180 -- The assertion is here to document what we know is true.
182 pragma Assert
(Left
(W
) /= null);
183 Set_Color
(Left
(W
), Black
);
186 Right_Rotate
(Tree
, W
);
187 W
:= Right
(Parent
(X
));
190 Set_Color
(W
, Color
(Parent
(X
)));
191 Set_Color
(Parent
(X
), Black
);
192 Set_Color
(Right
(W
), Black
);
193 Left_Rotate
(Tree
, Parent
(X
));
198 pragma Assert
(X
= Right
(Parent
(X
)));
200 W
:= Left
(Parent
(X
));
202 if Color
(W
) = Red
then
203 Set_Color
(W
, Black
);
204 Set_Color
(Parent
(X
), Red
);
205 Right_Rotate
(Tree
, Parent
(X
));
206 W
:= Left
(Parent
(X
));
209 if (Left
(W
) = null or else Color
(Left
(W
)) = Black
)
211 (Right
(W
) = null or else Color
(Right
(W
)) = Black
)
217 if Left
(W
) = null or else Color
(Left
(W
)) = Black
then
219 -- As a condition for setting the color of the right child
220 -- to black, the right child access value must be non-null.
221 -- A truth table analysis shows that if we arrive here, that
222 -- condition holds, so there's no need for an explicit test.
223 -- The assertion is here to document what we know is true.
225 pragma Assert
(Right
(W
) /= null);
226 Set_Color
(Right
(W
), Black
);
229 Left_Rotate
(Tree
, W
);
230 W
:= Left
(Parent
(X
));
233 Set_Color
(W
, Color
(Parent
(X
)));
234 Set_Color
(Parent
(X
), Black
);
235 Set_Color
(Left
(W
), Black
);
236 Right_Rotate
(Tree
, Parent
(X
));
242 Set_Color
(X
, Black
);
245 ---------------------------
246 -- Delete_Node_Sans_Free --
247 ---------------------------
249 procedure Delete_Node_Sans_Free
250 (Tree
: in out Tree_Type
;
257 Z
: constant Node_Access
:= Node
;
258 pragma Assert
(Z
/= null);
261 if Tree
.Busy
> 0 then
262 raise Program_Error
with
263 "attempt to tamper with cursors (container is busy)";
266 -- Why are these all commented out ???
268 -- pragma Assert (Tree.Length > 0);
269 -- pragma Assert (Tree.Root /= null);
270 -- pragma Assert (Tree.First /= null);
271 -- pragma Assert (Tree.Last /= null);
272 -- pragma Assert (Parent (Tree.Root) = null);
273 -- pragma Assert ((Tree.Length > 1)
274 -- or else (Tree.First = Tree.Last
275 -- and then Tree.First = Tree.Root));
276 -- pragma Assert ((Left (Node) = null)
277 -- or else (Parent (Left (Node)) = Node));
278 -- pragma Assert ((Right (Node) = null)
279 -- or else (Parent (Right (Node)) = Node));
280 -- pragma Assert (((Parent (Node) = null) and then (Tree.Root = Node))
281 -- or else ((Parent (Node) /= null) and then
282 -- ((Left (Parent (Node)) = Node)
283 -- or else (Right (Parent (Node)) = Node))));
285 if Left
(Z
) = null then
286 if Right
(Z
) = null then
287 if Z
= Tree
.First
then
288 Tree
.First
:= Parent
(Z
);
291 if Z
= Tree
.Last
then
292 Tree
.Last
:= Parent
(Z
);
295 if Color
(Z
) = Black
then
296 Delete_Fixup
(Tree
, Z
);
299 pragma Assert
(Left
(Z
) = null);
300 pragma Assert
(Right
(Z
) = null);
302 if Z
= Tree
.Root
then
303 pragma Assert
(Tree
.Length
= 1);
304 pragma Assert
(Parent
(Z
) = null);
306 elsif Z
= Left
(Parent
(Z
)) then
307 Set_Left
(Parent
(Z
), null);
309 pragma Assert
(Z
= Right
(Parent
(Z
)));
310 Set_Right
(Parent
(Z
), null);
314 pragma Assert
(Z
/= Tree
.Last
);
318 if Z
= Tree
.First
then
319 Tree
.First
:= Min
(X
);
322 if Z
= Tree
.Root
then
324 elsif Z
= Left
(Parent
(Z
)) then
325 Set_Left
(Parent
(Z
), X
);
327 pragma Assert
(Z
= Right
(Parent
(Z
)));
328 Set_Right
(Parent
(Z
), X
);
331 Set_Parent
(X
, Parent
(Z
));
333 if Color
(Z
) = Black
then
334 Delete_Fixup
(Tree
, X
);
338 elsif Right
(Z
) = null then
339 pragma Assert
(Z
/= Tree
.First
);
343 if Z
= Tree
.Last
then
344 Tree
.Last
:= Max
(X
);
347 if Z
= Tree
.Root
then
349 elsif Z
= Left
(Parent
(Z
)) then
350 Set_Left
(Parent
(Z
), X
);
352 pragma Assert
(Z
= Right
(Parent
(Z
)));
353 Set_Right
(Parent
(Z
), X
);
356 Set_Parent
(X
, Parent
(Z
));
358 if Color
(Z
) = Black
then
359 Delete_Fixup
(Tree
, X
);
363 pragma Assert
(Z
/= Tree
.First
);
364 pragma Assert
(Z
/= Tree
.Last
);
367 pragma Assert
(Left
(Y
) = null);
372 if Y
= Left
(Parent
(Y
)) then
373 pragma Assert
(Parent
(Y
) /= Z
);
374 Delete_Swap
(Tree
, Z
, Y
);
375 Set_Left
(Parent
(Z
), Z
);
378 pragma Assert
(Y
= Right
(Parent
(Y
)));
379 pragma Assert
(Parent
(Y
) = Z
);
380 Set_Parent
(Y
, Parent
(Z
));
382 if Z
= Tree
.Root
then
384 elsif Z
= Left
(Parent
(Z
)) then
385 Set_Left
(Parent
(Z
), Y
);
387 pragma Assert
(Z
= Right
(Parent
(Z
)));
388 Set_Right
(Parent
(Z
), Y
);
391 Set_Left
(Y
, Left
(Z
));
392 Set_Parent
(Left
(Y
), Y
);
399 Y_Color
: constant Color_Type
:= Color
(Y
);
401 Set_Color
(Y
, Color
(Z
));
402 Set_Color
(Z
, Y_Color
);
406 if Color
(Z
) = Black
then
407 Delete_Fixup
(Tree
, Z
);
410 pragma Assert
(Left
(Z
) = null);
411 pragma Assert
(Right
(Z
) = null);
413 if Z
= Right
(Parent
(Z
)) then
414 Set_Right
(Parent
(Z
), null);
416 pragma Assert
(Z
= Left
(Parent
(Z
)));
417 Set_Left
(Parent
(Z
), null);
421 if Y
= Left
(Parent
(Y
)) then
422 pragma Assert
(Parent
(Y
) /= Z
);
424 Delete_Swap
(Tree
, Z
, Y
);
426 Set_Left
(Parent
(Z
), X
);
427 Set_Parent
(X
, Parent
(Z
));
430 pragma Assert
(Y
= Right
(Parent
(Y
)));
431 pragma Assert
(Parent
(Y
) = Z
);
433 Set_Parent
(Y
, Parent
(Z
));
435 if Z
= Tree
.Root
then
437 elsif Z
= Left
(Parent
(Z
)) then
438 Set_Left
(Parent
(Z
), Y
);
440 pragma Assert
(Z
= Right
(Parent
(Z
)));
441 Set_Right
(Parent
(Z
), Y
);
444 Set_Left
(Y
, Left
(Z
));
445 Set_Parent
(Left
(Y
), Y
);
448 Y_Color
: constant Color_Type
:= Color
(Y
);
450 Set_Color
(Y
, Color
(Z
));
451 Set_Color
(Z
, Y_Color
);
455 if Color
(Z
) = Black
then
456 Delete_Fixup
(Tree
, X
);
461 Tree
.Length
:= Tree
.Length
- 1;
462 end Delete_Node_Sans_Free
;
468 procedure Delete_Swap
469 (Tree
: in out Tree_Type
;
472 pragma Assert
(Z
/= Y
);
473 pragma Assert
(Parent
(Y
) /= Z
);
475 Y_Parent
: constant Node_Access
:= Parent
(Y
);
476 Y_Color
: constant Color_Type
:= Color
(Y
);
479 Set_Parent
(Y
, Parent
(Z
));
480 Set_Left
(Y
, Left
(Z
));
481 Set_Right
(Y
, Right
(Z
));
482 Set_Color
(Y
, Color
(Z
));
484 if Tree
.Root
= Z
then
486 elsif Right
(Parent
(Y
)) = Z
then
487 Set_Right
(Parent
(Y
), Y
);
489 pragma Assert
(Left
(Parent
(Y
)) = Z
);
490 Set_Left
(Parent
(Y
), Y
);
493 if Right
(Y
) /= null then
494 Set_Parent
(Right
(Y
), Y
);
497 if Left
(Y
) /= null then
498 Set_Parent
(Left
(Y
), Y
);
501 Set_Parent
(Z
, Y_Parent
);
502 Set_Color
(Z
, Y_Color
);
511 procedure Generic_Adjust
(Tree
: in out Tree_Type
) is
512 N
: constant Count_Type
:= Tree
.Length
;
513 Root
: constant Node_Access
:= Tree
.Root
;
517 pragma Assert
(Root
= null);
518 pragma Assert
(Tree
.Busy
= 0);
519 pragma Assert
(Tree
.Lock
= 0);
528 Tree
.Root
:= Copy_Tree
(Root
);
529 Tree
.First
:= Min
(Tree
.Root
);
530 Tree
.Last
:= Max
(Tree
.Root
);
538 procedure Generic_Clear
(Tree
: in out Tree_Type
) is
539 Root
: Node_Access
:= Tree
.Root
;
541 if Tree
.Busy
> 0 then
542 raise Program_Error
with
543 "attempt to tamper with cursors (container is busy)";
546 Tree
:= (First
=> null,
556 -----------------------
557 -- Generic_Copy_Tree --
558 -----------------------
560 function Generic_Copy_Tree
(Source_Root
: Node_Access
) return Node_Access
is
561 Target_Root
: Node_Access
:= Copy_Node
(Source_Root
);
565 if Right
(Source_Root
) /= null then
567 (Node
=> Target_Root
,
568 Right
=> Generic_Copy_Tree
(Right
(Source_Root
)));
571 (Node
=> Right
(Target_Root
),
572 Parent
=> Target_Root
);
577 X
:= Left
(Source_Root
);
580 Y
: constant Node_Access
:= Copy_Node
(X
);
582 Set_Left
(Node
=> P
, Left
=> Y
);
583 Set_Parent
(Node
=> Y
, Parent
=> P
);
585 if Right
(X
) /= null then
588 Right
=> Generic_Copy_Tree
(Right
(X
)));
603 Delete_Tree
(Target_Root
);
605 end Generic_Copy_Tree
;
607 -------------------------
608 -- Generic_Delete_Tree --
609 -------------------------
611 procedure Generic_Delete_Tree
(X
: in out Node_Access
) is
613 pragma Warnings
(Off
, Y
);
617 Generic_Delete_Tree
(Y
);
622 end Generic_Delete_Tree
;
628 function Generic_Equal
(Left
, Right
: Tree_Type
) return Boolean is
629 L_Node
: Node_Access
;
630 R_Node
: Node_Access
;
633 if Left
'Address = Right
'Address then
637 if Left
.Length
/= Right
.Length
then
641 L_Node
:= Left
.First
;
642 R_Node
:= Right
.First
;
643 while L_Node
/= null loop
644 if not Is_Equal
(L_Node
, R_Node
) then
648 L_Node
:= Next
(L_Node
);
649 R_Node
:= Next
(R_Node
);
655 -----------------------
656 -- Generic_Iteration --
657 -----------------------
659 procedure Generic_Iteration
(Tree
: Tree_Type
) is
660 procedure Iterate
(P
: Node_Access
);
666 procedure Iterate
(P
: Node_Access
) is
667 X
: Node_Access
:= P
;
676 -- Start of processing for Generic_Iteration
680 end Generic_Iteration
;
686 procedure Generic_Move
(Target
, Source
: in out Tree_Type
) is
688 if Target
'Address = Source
'Address then
692 if Source
.Busy
> 0 then
693 raise Program_Error
with
694 "attempt to tamper with cursors (container is busy)";
701 Source
:= (First
=> null,
713 procedure Generic_Read
714 (Stream
: not null access Root_Stream_Type
'Class;
715 Tree
: in out Tree_Type
)
719 Node
, Last_Node
: Node_Access
;
724 Count_Type
'Base'Read (Stream, N);
725 pragma Assert (N >= 0);
731 Node := Read_Node (Stream);
732 pragma Assert (Node /= null);
733 pragma Assert (Color (Node) = Red);
735 Set_Color (Node, Black);
743 for J in Count_Type range 2 .. N loop
745 pragma Assert (Last_Node = Tree.Last);
747 Node := Read_Node (Stream);
748 pragma Assert (Node /= null);
749 pragma Assert (Color (Node) = Red);
751 Set_Right (Node => Last_Node, Right => Node);
753 Set_Parent (Node => Node, Parent => Last_Node);
754 Rebalance_For_Insert (Tree, Node);
755 Tree.Length := Tree.Length + 1;
759 -------------------------------
760 -- Generic_Reverse_Iteration --
761 -------------------------------
763 procedure Generic_Reverse_Iteration (Tree : Tree_Type)
765 procedure Iterate (P : Node_Access);
771 procedure Iterate (P : Node_Access) is
772 X : Node_Access := P;
781 -- Start of processing for Generic_Reverse_Iteration
785 end Generic_Reverse_Iteration;
791 procedure Generic_Write
792 (Stream : not null access Root_Stream_Type'Class;
795 procedure Process (Node : Node_Access);
796 pragma Inline (Process);
799 new Generic_Iteration (Process);
805 procedure Process (Node : Node_Access) is
807 Write_Node (Stream, Node);
810 -- Start of processing for Generic_Write
813 Count_Type'Base'Write
(Stream
, Tree
.Length
);
821 procedure Left_Rotate
(Tree
: in out Tree_Type
; X
: Node_Access
) is
825 Y
: constant Node_Access
:= Right
(X
);
826 pragma Assert
(Y
/= null);
829 Set_Right
(X
, Left
(Y
));
831 if Left
(Y
) /= null then
832 Set_Parent
(Left
(Y
), X
);
835 Set_Parent
(Y
, Parent
(X
));
837 if X
= Tree
.Root
then
839 elsif X
= Left
(Parent
(X
)) then
840 Set_Left
(Parent
(X
), Y
);
842 pragma Assert
(X
= Right
(Parent
(X
)));
843 Set_Right
(Parent
(X
), Y
);
854 function Max
(Node
: Node_Access
) return Node_Access
is
858 X
: Node_Access
:= Node
;
877 function Min
(Node
: Node_Access
) return Node_Access
is
881 X
: Node_Access
:= Node
;
900 function Next
(Node
: Node_Access
) return Node_Access
is
908 if Right
(Node
) /= null then
909 return Min
(Right
(Node
));
913 X
: Node_Access
:= Node
;
914 Y
: Node_Access
:= Parent
(Node
);
918 and then X
= Right
(Y
)
932 function Previous
(Node
: Node_Access
) return Node_Access
is
938 if Left
(Node
) /= null then
939 return Max
(Left
(Node
));
943 X
: Node_Access
:= Node
;
944 Y
: Node_Access
:= Parent
(Node
);
948 and then X
= Left
(Y
)
958 --------------------------
959 -- Rebalance_For_Insert --
960 --------------------------
962 procedure Rebalance_For_Insert
963 (Tree
: in out Tree_Type
;
968 X
: Node_Access
:= Node
;
969 pragma Assert
(X
/= null);
970 pragma Assert
(Color
(X
) = Red
);
975 while X
/= Tree
.Root
and then Color
(Parent
(X
)) = Red
loop
976 if Parent
(X
) = Left
(Parent
(Parent
(X
))) then
977 Y
:= Right
(Parent
(Parent
(X
)));
979 if Y
/= null and then Color
(Y
) = Red
then
980 Set_Color
(Parent
(X
), Black
);
981 Set_Color
(Y
, Black
);
982 Set_Color
(Parent
(Parent
(X
)), Red
);
983 X
:= Parent
(Parent
(X
));
986 if X
= Right
(Parent
(X
)) then
988 Left_Rotate
(Tree
, X
);
991 Set_Color
(Parent
(X
), Black
);
992 Set_Color
(Parent
(Parent
(X
)), Red
);
993 Right_Rotate
(Tree
, Parent
(Parent
(X
)));
997 pragma Assert
(Parent
(X
) = Right
(Parent
(Parent
(X
))));
999 Y
:= Left
(Parent
(Parent
(X
)));
1001 if Y
/= null and then Color
(Y
) = Red
then
1002 Set_Color
(Parent
(X
), Black
);
1003 Set_Color
(Y
, Black
);
1004 Set_Color
(Parent
(Parent
(X
)), Red
);
1005 X
:= Parent
(Parent
(X
));
1008 if X
= Left
(Parent
(X
)) then
1010 Right_Rotate
(Tree
, X
);
1013 Set_Color
(Parent
(X
), Black
);
1014 Set_Color
(Parent
(Parent
(X
)), Red
);
1015 Left_Rotate
(Tree
, Parent
(Parent
(X
)));
1020 Set_Color
(Tree
.Root
, Black
);
1021 end Rebalance_For_Insert
;
1027 procedure Right_Rotate
(Tree
: in out Tree_Type
; Y
: Node_Access
) is
1028 X
: constant Node_Access
:= Left
(Y
);
1029 pragma Assert
(X
/= null);
1032 Set_Left
(Y
, Right
(X
));
1034 if Right
(X
) /= null then
1035 Set_Parent
(Right
(X
), Y
);
1038 Set_Parent
(X
, Parent
(Y
));
1040 if Y
= Tree
.Root
then
1042 elsif Y
= Left
(Parent
(Y
)) then
1043 Set_Left
(Parent
(Y
), X
);
1045 pragma Assert
(Y
= Right
(Parent
(Y
)));
1046 Set_Right
(Parent
(Y
), X
);
1057 function Vet
(Tree
: Tree_Type
; Node
: Node_Access
) return Boolean is
1063 if Parent
(Node
) = Node
1064 or else Left
(Node
) = Node
1065 or else Right
(Node
) = Node
1071 or else Tree
.Root
= null
1072 or else Tree
.First
= null
1073 or else Tree
.Last
= null
1078 if Parent
(Tree
.Root
) /= null then
1082 if Left
(Tree
.First
) /= null then
1086 if Right
(Tree
.Last
) /= null then
1090 if Tree
.Length
= 1 then
1091 if Tree
.First
/= Tree
.Last
1092 or else Tree
.First
/= Tree
.Root
1097 if Node
/= Tree
.First
then
1101 if Parent
(Node
) /= null
1102 or else Left
(Node
) /= null
1103 or else Right
(Node
) /= null
1111 if Tree
.First
= Tree
.Last
then
1115 if Tree
.Length
= 2 then
1116 if Tree
.First
/= Tree
.Root
1117 and then Tree
.Last
/= Tree
.Root
1122 if Tree
.First
/= Node
1123 and then Tree
.Last
/= Node
1129 if Left
(Node
) /= null
1130 and then Parent
(Left
(Node
)) /= Node
1135 if Right
(Node
) /= null
1136 and then Parent
(Right
(Node
)) /= Node
1141 if Parent
(Node
) = null then
1142 if Tree
.Root
/= Node
then
1146 elsif Left
(Parent
(Node
)) /= Node
1147 and then Right
(Parent
(Node
)) /= Node
1155 end Ada
.Containers
.Red_Black_Trees
.Generic_Operations
;