2013-09-20 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / tree-vect-loop.c
blob2871ba1ce751501f37f577acc46aad16a4ebcbb0
1 /* Loop Vectorization
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-ssa.h"
32 #include "tree-pass.h"
33 #include "cfgloop.h"
34 #include "expr.h"
35 #include "recog.h"
36 #include "optabs.h"
37 #include "params.h"
38 #include "diagnostic-core.h"
39 #include "tree-chrec.h"
40 #include "tree-scalar-evolution.h"
41 #include "tree-vectorizer.h"
42 #include "target.h"
44 /* Loop Vectorization Pass.
46 This pass tries to vectorize loops.
48 For example, the vectorizer transforms the following simple loop:
50 short a[N]; short b[N]; short c[N]; int i;
52 for (i=0; i<N; i++){
53 a[i] = b[i] + c[i];
56 as if it was manually vectorized by rewriting the source code into:
58 typedef int __attribute__((mode(V8HI))) v8hi;
59 short a[N]; short b[N]; short c[N]; int i;
60 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
61 v8hi va, vb, vc;
63 for (i=0; i<N/8; i++){
64 vb = pb[i];
65 vc = pc[i];
66 va = vb + vc;
67 pa[i] = va;
70 The main entry to this pass is vectorize_loops(), in which
71 the vectorizer applies a set of analyses on a given set of loops,
72 followed by the actual vectorization transformation for the loops that
73 had successfully passed the analysis phase.
74 Throughout this pass we make a distinction between two types of
75 data: scalars (which are represented by SSA_NAMES), and memory references
76 ("data-refs"). These two types of data require different handling both
77 during analysis and transformation. The types of data-refs that the
78 vectorizer currently supports are ARRAY_REFS which base is an array DECL
79 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
80 accesses are required to have a simple (consecutive) access pattern.
82 Analysis phase:
83 ===============
84 The driver for the analysis phase is vect_analyze_loop().
85 It applies a set of analyses, some of which rely on the scalar evolution
86 analyzer (scev) developed by Sebastian Pop.
88 During the analysis phase the vectorizer records some information
89 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
90 loop, as well as general information about the loop as a whole, which is
91 recorded in a "loop_vec_info" struct attached to each loop.
93 Transformation phase:
94 =====================
95 The loop transformation phase scans all the stmts in the loop, and
96 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
97 the loop that needs to be vectorized. It inserts the vector code sequence
98 just before the scalar stmt S, and records a pointer to the vector code
99 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
100 attached to S). This pointer will be used for the vectorization of following
101 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
102 otherwise, we rely on dead code elimination for removing it.
104 For example, say stmt S1 was vectorized into stmt VS1:
106 VS1: vb = px[i];
107 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
108 S2: a = b;
110 To vectorize stmt S2, the vectorizer first finds the stmt that defines
111 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
112 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
113 resulting sequence would be:
115 VS1: vb = px[i];
116 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
117 VS2: va = vb;
118 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
120 Operands that are not SSA_NAMEs, are data-refs that appear in
121 load/store operations (like 'x[i]' in S1), and are handled differently.
123 Target modeling:
124 =================
125 Currently the only target specific information that is used is the
126 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
127 Targets that can support different sizes of vectors, for now will need
128 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
129 flexibility will be added in the future.
131 Since we only vectorize operations which vector form can be
132 expressed using existing tree codes, to verify that an operation is
133 supported, the vectorizer checks the relevant optab at the relevant
134 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
135 the value found is CODE_FOR_nothing, then there's no target support, and
136 we can't vectorize the stmt.
138 For additional information on this project see:
139 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
142 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
144 /* Function vect_determine_vectorization_factor
146 Determine the vectorization factor (VF). VF is the number of data elements
147 that are operated upon in parallel in a single iteration of the vectorized
148 loop. For example, when vectorizing a loop that operates on 4byte elements,
149 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
150 elements can fit in a single vector register.
152 We currently support vectorization of loops in which all types operated upon
153 are of the same size. Therefore this function currently sets VF according to
154 the size of the types operated upon, and fails if there are multiple sizes
155 in the loop.
157 VF is also the factor by which the loop iterations are strip-mined, e.g.:
158 original loop:
159 for (i=0; i<N; i++){
160 a[i] = b[i] + c[i];
163 vectorized loop:
164 for (i=0; i<N; i+=VF){
165 a[i:VF] = b[i:VF] + c[i:VF];
169 static bool
170 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
172 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
173 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
174 int nbbs = loop->num_nodes;
175 gimple_stmt_iterator si;
176 unsigned int vectorization_factor = 0;
177 tree scalar_type;
178 gimple phi;
179 tree vectype;
180 unsigned int nunits;
181 stmt_vec_info stmt_info;
182 int i;
183 HOST_WIDE_INT dummy;
184 gimple stmt, pattern_stmt = NULL;
185 gimple_seq pattern_def_seq = NULL;
186 gimple_stmt_iterator pattern_def_si = gsi_none ();
187 bool analyze_pattern_stmt = false;
189 if (dump_enabled_p ())
190 dump_printf_loc (MSG_NOTE, vect_location,
191 "=== vect_determine_vectorization_factor ===\n");
193 for (i = 0; i < nbbs; i++)
195 basic_block bb = bbs[i];
197 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
199 phi = gsi_stmt (si);
200 stmt_info = vinfo_for_stmt (phi);
201 if (dump_enabled_p ())
203 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
204 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
205 dump_printf (MSG_NOTE, "\n");
208 gcc_assert (stmt_info);
210 if (STMT_VINFO_RELEVANT_P (stmt_info))
212 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
213 scalar_type = TREE_TYPE (PHI_RESULT (phi));
215 if (dump_enabled_p ())
217 dump_printf_loc (MSG_NOTE, vect_location,
218 "get vectype for scalar type: ");
219 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
220 dump_printf (MSG_NOTE, "\n");
223 vectype = get_vectype_for_scalar_type (scalar_type);
224 if (!vectype)
226 if (dump_enabled_p ())
228 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
229 "not vectorized: unsupported "
230 "data-type ");
231 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
232 scalar_type);
233 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
235 return false;
237 STMT_VINFO_VECTYPE (stmt_info) = vectype;
239 if (dump_enabled_p ())
241 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
242 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
243 dump_printf (MSG_NOTE, "\n");
246 nunits = TYPE_VECTOR_SUBPARTS (vectype);
247 if (dump_enabled_p ())
248 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n",
249 nunits);
251 if (!vectorization_factor
252 || (nunits > vectorization_factor))
253 vectorization_factor = nunits;
257 for (si = gsi_start_bb (bb); !gsi_end_p (si) || analyze_pattern_stmt;)
259 tree vf_vectype;
261 if (analyze_pattern_stmt)
262 stmt = pattern_stmt;
263 else
264 stmt = gsi_stmt (si);
266 stmt_info = vinfo_for_stmt (stmt);
268 if (dump_enabled_p ())
270 dump_printf_loc (MSG_NOTE, vect_location,
271 "==> examining statement: ");
272 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
273 dump_printf (MSG_NOTE, "\n");
276 gcc_assert (stmt_info);
278 /* Skip stmts which do not need to be vectorized. */
279 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
280 && !STMT_VINFO_LIVE_P (stmt_info))
281 || gimple_clobber_p (stmt))
283 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
284 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
285 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
286 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
288 stmt = pattern_stmt;
289 stmt_info = vinfo_for_stmt (pattern_stmt);
290 if (dump_enabled_p ())
292 dump_printf_loc (MSG_NOTE, vect_location,
293 "==> examining pattern statement: ");
294 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
295 dump_printf (MSG_NOTE, "\n");
298 else
300 if (dump_enabled_p ())
301 dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
302 gsi_next (&si);
303 continue;
306 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
307 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
308 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
309 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
310 analyze_pattern_stmt = true;
312 /* If a pattern statement has def stmts, analyze them too. */
313 if (is_pattern_stmt_p (stmt_info))
315 if (pattern_def_seq == NULL)
317 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
318 pattern_def_si = gsi_start (pattern_def_seq);
320 else if (!gsi_end_p (pattern_def_si))
321 gsi_next (&pattern_def_si);
322 if (pattern_def_seq != NULL)
324 gimple pattern_def_stmt = NULL;
325 stmt_vec_info pattern_def_stmt_info = NULL;
327 while (!gsi_end_p (pattern_def_si))
329 pattern_def_stmt = gsi_stmt (pattern_def_si);
330 pattern_def_stmt_info
331 = vinfo_for_stmt (pattern_def_stmt);
332 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
333 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
334 break;
335 gsi_next (&pattern_def_si);
338 if (!gsi_end_p (pattern_def_si))
340 if (dump_enabled_p ())
342 dump_printf_loc (MSG_NOTE, vect_location,
343 "==> examining pattern def stmt: ");
344 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
345 pattern_def_stmt, 0);
346 dump_printf (MSG_NOTE, "\n");
349 stmt = pattern_def_stmt;
350 stmt_info = pattern_def_stmt_info;
352 else
354 pattern_def_si = gsi_none ();
355 analyze_pattern_stmt = false;
358 else
359 analyze_pattern_stmt = false;
362 if (gimple_get_lhs (stmt) == NULL_TREE)
364 if (dump_enabled_p ())
366 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
367 "not vectorized: irregular stmt.");
368 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
370 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
372 return false;
375 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
377 if (dump_enabled_p ())
379 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
380 "not vectorized: vector stmt in loop:");
381 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
382 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
384 return false;
387 if (STMT_VINFO_VECTYPE (stmt_info))
389 /* The only case when a vectype had been already set is for stmts
390 that contain a dataref, or for "pattern-stmts" (stmts
391 generated by the vectorizer to represent/replace a certain
392 idiom). */
393 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
394 || is_pattern_stmt_p (stmt_info)
395 || !gsi_end_p (pattern_def_si));
396 vectype = STMT_VINFO_VECTYPE (stmt_info);
398 else
400 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
401 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
402 if (dump_enabled_p ())
404 dump_printf_loc (MSG_NOTE, vect_location,
405 "get vectype for scalar type: ");
406 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
407 dump_printf (MSG_NOTE, "\n");
409 vectype = get_vectype_for_scalar_type (scalar_type);
410 if (!vectype)
412 if (dump_enabled_p ())
414 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
415 "not vectorized: unsupported "
416 "data-type ");
417 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
418 scalar_type);
419 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
421 return false;
424 STMT_VINFO_VECTYPE (stmt_info) = vectype;
426 if (dump_enabled_p ())
428 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
429 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
430 dump_printf (MSG_NOTE, "\n");
434 /* The vectorization factor is according to the smallest
435 scalar type (or the largest vector size, but we only
436 support one vector size per loop). */
437 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
438 &dummy);
439 if (dump_enabled_p ())
441 dump_printf_loc (MSG_NOTE, vect_location,
442 "get vectype for scalar type: ");
443 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
444 dump_printf (MSG_NOTE, "\n");
446 vf_vectype = get_vectype_for_scalar_type (scalar_type);
447 if (!vf_vectype)
449 if (dump_enabled_p ())
451 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
452 "not vectorized: unsupported data-type ");
453 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
454 scalar_type);
455 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
457 return false;
460 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
461 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
463 if (dump_enabled_p ())
465 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
466 "not vectorized: different sized vector "
467 "types in statement, ");
468 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
469 vectype);
470 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
471 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
472 vf_vectype);
473 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
475 return false;
478 if (dump_enabled_p ())
480 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
481 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
482 dump_printf (MSG_NOTE, "\n");
485 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
486 if (dump_enabled_p ())
487 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n", nunits);
488 if (!vectorization_factor
489 || (nunits > vectorization_factor))
490 vectorization_factor = nunits;
492 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
494 pattern_def_seq = NULL;
495 gsi_next (&si);
500 /* TODO: Analyze cost. Decide if worth while to vectorize. */
501 if (dump_enabled_p ())
502 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d\n",
503 vectorization_factor);
504 if (vectorization_factor <= 1)
506 if (dump_enabled_p ())
507 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
508 "not vectorized: unsupported data-type\n");
509 return false;
511 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
513 return true;
517 /* Function vect_is_simple_iv_evolution.
519 FORNOW: A simple evolution of an induction variables in the loop is
520 considered a polynomial evolution. */
522 static bool
523 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
524 tree * step)
526 tree init_expr;
527 tree step_expr;
528 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
529 basic_block bb;
531 /* When there is no evolution in this loop, the evolution function
532 is not "simple". */
533 if (evolution_part == NULL_TREE)
534 return false;
536 /* When the evolution is a polynomial of degree >= 2
537 the evolution function is not "simple". */
538 if (tree_is_chrec (evolution_part))
539 return false;
541 step_expr = evolution_part;
542 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
544 if (dump_enabled_p ())
546 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
547 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
548 dump_printf (MSG_NOTE, ", init: ");
549 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
550 dump_printf (MSG_NOTE, "\n");
553 *init = init_expr;
554 *step = step_expr;
556 if (TREE_CODE (step_expr) != INTEGER_CST
557 && (TREE_CODE (step_expr) != SSA_NAME
558 || ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
559 && flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
560 || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
561 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
562 || !flag_associative_math)))
563 && (TREE_CODE (step_expr) != REAL_CST
564 || !flag_associative_math))
566 if (dump_enabled_p ())
567 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
568 "step unknown.\n");
569 return false;
572 return true;
575 /* Function vect_analyze_scalar_cycles_1.
577 Examine the cross iteration def-use cycles of scalar variables
578 in LOOP. LOOP_VINFO represents the loop that is now being
579 considered for vectorization (can be LOOP, or an outer-loop
580 enclosing LOOP). */
582 static void
583 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
585 basic_block bb = loop->header;
586 tree init, step;
587 vec<gimple> worklist;
588 worklist.create (64);
589 gimple_stmt_iterator gsi;
590 bool double_reduc;
592 if (dump_enabled_p ())
593 dump_printf_loc (MSG_NOTE, vect_location,
594 "=== vect_analyze_scalar_cycles ===\n");
596 /* First - identify all inductions. Reduction detection assumes that all the
597 inductions have been identified, therefore, this order must not be
598 changed. */
599 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
601 gimple phi = gsi_stmt (gsi);
602 tree access_fn = NULL;
603 tree def = PHI_RESULT (phi);
604 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
606 if (dump_enabled_p ())
608 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
609 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
610 dump_printf (MSG_NOTE, "\n");
613 /* Skip virtual phi's. The data dependences that are associated with
614 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
615 if (virtual_operand_p (def))
616 continue;
618 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
620 /* Analyze the evolution function. */
621 access_fn = analyze_scalar_evolution (loop, def);
622 if (access_fn)
624 STRIP_NOPS (access_fn);
625 if (dump_enabled_p ())
627 dump_printf_loc (MSG_NOTE, vect_location,
628 "Access function of PHI: ");
629 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
630 dump_printf (MSG_NOTE, "\n");
632 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
633 = evolution_part_in_loop_num (access_fn, loop->num);
636 if (!access_fn
637 || !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
638 || (LOOP_VINFO_LOOP (loop_vinfo) != loop
639 && TREE_CODE (step) != INTEGER_CST))
641 worklist.safe_push (phi);
642 continue;
645 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
647 if (dump_enabled_p ())
648 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
649 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
653 /* Second - identify all reductions and nested cycles. */
654 while (worklist.length () > 0)
656 gimple phi = worklist.pop ();
657 tree def = PHI_RESULT (phi);
658 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
659 gimple reduc_stmt;
660 bool nested_cycle;
662 if (dump_enabled_p ())
664 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
665 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
666 dump_printf (MSG_NOTE, "\n");
669 gcc_assert (!virtual_operand_p (def)
670 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
672 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
673 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
674 &double_reduc);
675 if (reduc_stmt)
677 if (double_reduc)
679 if (dump_enabled_p ())
680 dump_printf_loc (MSG_NOTE, vect_location,
681 "Detected double reduction.\n");
683 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
684 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
685 vect_double_reduction_def;
687 else
689 if (nested_cycle)
691 if (dump_enabled_p ())
692 dump_printf_loc (MSG_NOTE, vect_location,
693 "Detected vectorizable nested cycle.\n");
695 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
696 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
697 vect_nested_cycle;
699 else
701 if (dump_enabled_p ())
702 dump_printf_loc (MSG_NOTE, vect_location,
703 "Detected reduction.\n");
705 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
706 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
707 vect_reduction_def;
708 /* Store the reduction cycles for possible vectorization in
709 loop-aware SLP. */
710 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
714 else
715 if (dump_enabled_p ())
716 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
717 "Unknown def-use cycle pattern.\n");
720 worklist.release ();
724 /* Function vect_analyze_scalar_cycles.
726 Examine the cross iteration def-use cycles of scalar variables, by
727 analyzing the loop-header PHIs of scalar variables. Classify each
728 cycle as one of the following: invariant, induction, reduction, unknown.
729 We do that for the loop represented by LOOP_VINFO, and also to its
730 inner-loop, if exists.
731 Examples for scalar cycles:
733 Example1: reduction:
735 loop1:
736 for (i=0; i<N; i++)
737 sum += a[i];
739 Example2: induction:
741 loop2:
742 for (i=0; i<N; i++)
743 a[i] = i; */
745 static void
746 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
748 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
750 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
752 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
753 Reductions in such inner-loop therefore have different properties than
754 the reductions in the nest that gets vectorized:
755 1. When vectorized, they are executed in the same order as in the original
756 scalar loop, so we can't change the order of computation when
757 vectorizing them.
758 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
759 current checks are too strict. */
761 if (loop->inner)
762 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
765 /* Function vect_get_loop_niters.
767 Determine how many iterations the loop is executed.
768 If an expression that represents the number of iterations
769 can be constructed, place it in NUMBER_OF_ITERATIONS.
770 Return the loop exit condition. */
772 static gimple
773 vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
775 tree niters;
777 if (dump_enabled_p ())
778 dump_printf_loc (MSG_NOTE, vect_location,
779 "=== get_loop_niters ===\n");
780 niters = number_of_exit_cond_executions (loop);
782 if (niters != NULL_TREE
783 && niters != chrec_dont_know)
785 *number_of_iterations = niters;
787 if (dump_enabled_p ())
789 dump_printf_loc (MSG_NOTE, vect_location, "==> get_loop_niters:");
790 dump_generic_expr (MSG_NOTE, TDF_SLIM, *number_of_iterations);
791 dump_printf (MSG_NOTE, "\n");
795 return get_loop_exit_condition (loop);
799 /* Function bb_in_loop_p
801 Used as predicate for dfs order traversal of the loop bbs. */
803 static bool
804 bb_in_loop_p (const_basic_block bb, const void *data)
806 const struct loop *const loop = (const struct loop *)data;
807 if (flow_bb_inside_loop_p (loop, bb))
808 return true;
809 return false;
813 /* Function new_loop_vec_info.
815 Create and initialize a new loop_vec_info struct for LOOP, as well as
816 stmt_vec_info structs for all the stmts in LOOP. */
818 static loop_vec_info
819 new_loop_vec_info (struct loop *loop)
821 loop_vec_info res;
822 basic_block *bbs;
823 gimple_stmt_iterator si;
824 unsigned int i, nbbs;
826 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
827 LOOP_VINFO_LOOP (res) = loop;
829 bbs = get_loop_body (loop);
831 /* Create/Update stmt_info for all stmts in the loop. */
832 for (i = 0; i < loop->num_nodes; i++)
834 basic_block bb = bbs[i];
836 /* BBs in a nested inner-loop will have been already processed (because
837 we will have called vect_analyze_loop_form for any nested inner-loop).
838 Therefore, for stmts in an inner-loop we just want to update the
839 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
840 loop_info of the outer-loop we are currently considering to vectorize
841 (instead of the loop_info of the inner-loop).
842 For stmts in other BBs we need to create a stmt_info from scratch. */
843 if (bb->loop_father != loop)
845 /* Inner-loop bb. */
846 gcc_assert (loop->inner && bb->loop_father == loop->inner);
847 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
849 gimple phi = gsi_stmt (si);
850 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
851 loop_vec_info inner_loop_vinfo =
852 STMT_VINFO_LOOP_VINFO (stmt_info);
853 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
854 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
856 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
858 gimple stmt = gsi_stmt (si);
859 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
860 loop_vec_info inner_loop_vinfo =
861 STMT_VINFO_LOOP_VINFO (stmt_info);
862 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
863 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
866 else
868 /* bb in current nest. */
869 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
871 gimple phi = gsi_stmt (si);
872 gimple_set_uid (phi, 0);
873 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
876 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
878 gimple stmt = gsi_stmt (si);
879 gimple_set_uid (stmt, 0);
880 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
885 /* CHECKME: We want to visit all BBs before their successors (except for
886 latch blocks, for which this assertion wouldn't hold). In the simple
887 case of the loop forms we allow, a dfs order of the BBs would the same
888 as reversed postorder traversal, so we are safe. */
890 free (bbs);
891 bbs = XCNEWVEC (basic_block, loop->num_nodes);
892 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
893 bbs, loop->num_nodes, loop);
894 gcc_assert (nbbs == loop->num_nodes);
896 LOOP_VINFO_BBS (res) = bbs;
897 LOOP_VINFO_NITERS (res) = NULL;
898 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
899 LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
900 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
901 LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
902 LOOP_VINFO_VECT_FACTOR (res) = 0;
903 LOOP_VINFO_LOOP_NEST (res).create (3);
904 LOOP_VINFO_DATAREFS (res).create (10);
905 LOOP_VINFO_DDRS (res).create (10 * 10);
906 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
907 LOOP_VINFO_MAY_MISALIGN_STMTS (res).create (
908 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
909 LOOP_VINFO_MAY_ALIAS_DDRS (res).create (
910 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
911 LOOP_VINFO_GROUPED_STORES (res).create (10);
912 LOOP_VINFO_REDUCTIONS (res).create (10);
913 LOOP_VINFO_REDUCTION_CHAINS (res).create (10);
914 LOOP_VINFO_SLP_INSTANCES (res).create (10);
915 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
916 LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
917 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
918 LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
920 return res;
924 /* Function destroy_loop_vec_info.
926 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
927 stmts in the loop. */
929 void
930 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
932 struct loop *loop;
933 basic_block *bbs;
934 int nbbs;
935 gimple_stmt_iterator si;
936 int j;
937 vec<slp_instance> slp_instances;
938 slp_instance instance;
939 bool swapped;
941 if (!loop_vinfo)
942 return;
944 loop = LOOP_VINFO_LOOP (loop_vinfo);
946 bbs = LOOP_VINFO_BBS (loop_vinfo);
947 nbbs = clean_stmts ? loop->num_nodes : 0;
948 swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
950 for (j = 0; j < nbbs; j++)
952 basic_block bb = bbs[j];
953 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
954 free_stmt_vec_info (gsi_stmt (si));
956 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
958 gimple stmt = gsi_stmt (si);
960 /* We may have broken canonical form by moving a constant
961 into RHS1 of a commutative op. Fix such occurrences. */
962 if (swapped && is_gimple_assign (stmt))
964 enum tree_code code = gimple_assign_rhs_code (stmt);
966 if ((code == PLUS_EXPR
967 || code == POINTER_PLUS_EXPR
968 || code == MULT_EXPR)
969 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
970 swap_tree_operands (stmt,
971 gimple_assign_rhs1_ptr (stmt),
972 gimple_assign_rhs2_ptr (stmt));
975 /* Free stmt_vec_info. */
976 free_stmt_vec_info (stmt);
977 gsi_next (&si);
981 free (LOOP_VINFO_BBS (loop_vinfo));
982 vect_destroy_datarefs (loop_vinfo, NULL);
983 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
984 LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
985 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
986 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
987 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
988 FOR_EACH_VEC_ELT (slp_instances, j, instance)
989 vect_free_slp_instance (instance);
991 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
992 LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
993 LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
994 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
996 if (LOOP_VINFO_PEELING_HTAB (loop_vinfo).is_created ())
997 LOOP_VINFO_PEELING_HTAB (loop_vinfo).dispose ();
999 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
1001 free (loop_vinfo);
1002 loop->aux = NULL;
1006 /* Function vect_analyze_loop_1.
1008 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1009 for it. The different analyses will record information in the
1010 loop_vec_info struct. This is a subset of the analyses applied in
1011 vect_analyze_loop, to be applied on an inner-loop nested in the loop
1012 that is now considered for (outer-loop) vectorization. */
1014 static loop_vec_info
1015 vect_analyze_loop_1 (struct loop *loop)
1017 loop_vec_info loop_vinfo;
1019 if (dump_enabled_p ())
1020 dump_printf_loc (MSG_NOTE, vect_location,
1021 "===== analyze_loop_nest_1 =====\n");
1023 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
1025 loop_vinfo = vect_analyze_loop_form (loop);
1026 if (!loop_vinfo)
1028 if (dump_enabled_p ())
1029 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1030 "bad inner-loop form.\n");
1031 return NULL;
1034 return loop_vinfo;
1038 /* Function vect_analyze_loop_form.
1040 Verify that certain CFG restrictions hold, including:
1041 - the loop has a pre-header
1042 - the loop has a single entry and exit
1043 - the loop exit condition is simple enough, and the number of iterations
1044 can be analyzed (a countable loop). */
1046 loop_vec_info
1047 vect_analyze_loop_form (struct loop *loop)
1049 loop_vec_info loop_vinfo;
1050 gimple loop_cond;
1051 tree number_of_iterations = NULL;
1052 loop_vec_info inner_loop_vinfo = NULL;
1054 if (dump_enabled_p ())
1055 dump_printf_loc (MSG_NOTE, vect_location,
1056 "=== vect_analyze_loop_form ===\n");
1058 /* Different restrictions apply when we are considering an inner-most loop,
1059 vs. an outer (nested) loop.
1060 (FORNOW. May want to relax some of these restrictions in the future). */
1062 if (!loop->inner)
1064 /* Inner-most loop. We currently require that the number of BBs is
1065 exactly 2 (the header and latch). Vectorizable inner-most loops
1066 look like this:
1068 (pre-header)
1070 header <--------+
1071 | | |
1072 | +--> latch --+
1074 (exit-bb) */
1076 if (loop->num_nodes != 2)
1078 if (dump_enabled_p ())
1079 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1080 "not vectorized: control flow in loop.\n");
1081 return NULL;
1084 if (empty_block_p (loop->header))
1086 if (dump_enabled_p ())
1087 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1088 "not vectorized: empty loop.\n");
1089 return NULL;
1092 else
1094 struct loop *innerloop = loop->inner;
1095 edge entryedge;
1097 /* Nested loop. We currently require that the loop is doubly-nested,
1098 contains a single inner loop, and the number of BBs is exactly 5.
1099 Vectorizable outer-loops look like this:
1101 (pre-header)
1103 header <---+
1105 inner-loop |
1107 tail ------+
1109 (exit-bb)
1111 The inner-loop has the properties expected of inner-most loops
1112 as described above. */
1114 if ((loop->inner)->inner || (loop->inner)->next)
1116 if (dump_enabled_p ())
1117 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1118 "not vectorized: multiple nested loops.\n");
1119 return NULL;
1122 /* Analyze the inner-loop. */
1123 inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
1124 if (!inner_loop_vinfo)
1126 if (dump_enabled_p ())
1127 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1128 "not vectorized: Bad inner loop.\n");
1129 return NULL;
1132 if (!expr_invariant_in_loop_p (loop,
1133 LOOP_VINFO_NITERS (inner_loop_vinfo)))
1135 if (dump_enabled_p ())
1136 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1137 "not vectorized: inner-loop count not"
1138 " invariant.\n");
1139 destroy_loop_vec_info (inner_loop_vinfo, true);
1140 return NULL;
1143 if (loop->num_nodes != 5)
1145 if (dump_enabled_p ())
1146 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1147 "not vectorized: control flow in loop.\n");
1148 destroy_loop_vec_info (inner_loop_vinfo, true);
1149 return NULL;
1152 gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
1153 entryedge = EDGE_PRED (innerloop->header, 0);
1154 if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
1155 entryedge = EDGE_PRED (innerloop->header, 1);
1157 if (entryedge->src != loop->header
1158 || !single_exit (innerloop)
1159 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1161 if (dump_enabled_p ())
1162 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1163 "not vectorized: unsupported outerloop form.\n");
1164 destroy_loop_vec_info (inner_loop_vinfo, true);
1165 return NULL;
1168 if (dump_enabled_p ())
1169 dump_printf_loc (MSG_NOTE, vect_location,
1170 "Considering outer-loop vectorization.\n");
1173 if (!single_exit (loop)
1174 || EDGE_COUNT (loop->header->preds) != 2)
1176 if (dump_enabled_p ())
1178 if (!single_exit (loop))
1179 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1180 "not vectorized: multiple exits.\n");
1181 else if (EDGE_COUNT (loop->header->preds) != 2)
1182 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1183 "not vectorized: too many incoming edges.\n");
1185 if (inner_loop_vinfo)
1186 destroy_loop_vec_info (inner_loop_vinfo, true);
1187 return NULL;
1190 /* We assume that the loop exit condition is at the end of the loop. i.e,
1191 that the loop is represented as a do-while (with a proper if-guard
1192 before the loop if needed), where the loop header contains all the
1193 executable statements, and the latch is empty. */
1194 if (!empty_block_p (loop->latch)
1195 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1197 if (dump_enabled_p ())
1198 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1199 "not vectorized: latch block not empty.\n");
1200 if (inner_loop_vinfo)
1201 destroy_loop_vec_info (inner_loop_vinfo, true);
1202 return NULL;
1205 /* Make sure there exists a single-predecessor exit bb: */
1206 if (!single_pred_p (single_exit (loop)->dest))
1208 edge e = single_exit (loop);
1209 if (!(e->flags & EDGE_ABNORMAL))
1211 split_loop_exit_edge (e);
1212 if (dump_enabled_p ())
1213 dump_printf (MSG_NOTE, "split exit edge.\n");
1215 else
1217 if (dump_enabled_p ())
1218 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1219 "not vectorized: abnormal loop exit edge.\n");
1220 if (inner_loop_vinfo)
1221 destroy_loop_vec_info (inner_loop_vinfo, true);
1222 return NULL;
1226 loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
1227 if (!loop_cond)
1229 if (dump_enabled_p ())
1230 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1231 "not vectorized: complicated exit condition.\n");
1232 if (inner_loop_vinfo)
1233 destroy_loop_vec_info (inner_loop_vinfo, true);
1234 return NULL;
1237 if (!number_of_iterations)
1239 if (dump_enabled_p ())
1240 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1241 "not vectorized: number of iterations cannot be "
1242 "computed.\n");
1243 if (inner_loop_vinfo)
1244 destroy_loop_vec_info (inner_loop_vinfo, true);
1245 return NULL;
1248 if (chrec_contains_undetermined (number_of_iterations))
1250 if (dump_enabled_p ())
1251 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1252 "Infinite number of iterations.\n");
1253 if (inner_loop_vinfo)
1254 destroy_loop_vec_info (inner_loop_vinfo, true);
1255 return NULL;
1258 if (!NITERS_KNOWN_P (number_of_iterations))
1260 if (dump_enabled_p ())
1262 dump_printf_loc (MSG_NOTE, vect_location,
1263 "Symbolic number of iterations is ");
1264 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1265 dump_printf (MSG_NOTE, "\n");
1268 else if (TREE_INT_CST_LOW (number_of_iterations) == 0)
1270 if (dump_enabled_p ())
1271 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1272 "not vectorized: number of iterations = 0.\n");
1273 if (inner_loop_vinfo)
1274 destroy_loop_vec_info (inner_loop_vinfo, true);
1275 return NULL;
1278 loop_vinfo = new_loop_vec_info (loop);
1279 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1280 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1282 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1284 /* CHECKME: May want to keep it around it in the future. */
1285 if (inner_loop_vinfo)
1286 destroy_loop_vec_info (inner_loop_vinfo, false);
1288 gcc_assert (!loop->aux);
1289 loop->aux = loop_vinfo;
1290 return loop_vinfo;
1294 /* Function vect_analyze_loop_operations.
1296 Scan the loop stmts and make sure they are all vectorizable. */
1298 static bool
1299 vect_analyze_loop_operations (loop_vec_info loop_vinfo, bool slp)
1301 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1302 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1303 int nbbs = loop->num_nodes;
1304 gimple_stmt_iterator si;
1305 unsigned int vectorization_factor = 0;
1306 int i;
1307 gimple phi;
1308 stmt_vec_info stmt_info;
1309 bool need_to_vectorize = false;
1310 int min_profitable_iters;
1311 int min_scalar_loop_bound;
1312 unsigned int th;
1313 bool only_slp_in_loop = true, ok;
1314 HOST_WIDE_INT max_niter;
1315 HOST_WIDE_INT estimated_niter;
1316 int min_profitable_estimate;
1318 if (dump_enabled_p ())
1319 dump_printf_loc (MSG_NOTE, vect_location,
1320 "=== vect_analyze_loop_operations ===\n");
1322 gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1323 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1324 if (slp)
1326 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1327 vectorization factor of the loop is the unrolling factor required by
1328 the SLP instances. If that unrolling factor is 1, we say, that we
1329 perform pure SLP on loop - cross iteration parallelism is not
1330 exploited. */
1331 for (i = 0; i < nbbs; i++)
1333 basic_block bb = bbs[i];
1334 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1336 gimple stmt = gsi_stmt (si);
1337 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1338 gcc_assert (stmt_info);
1339 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1340 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1341 && !PURE_SLP_STMT (stmt_info))
1342 /* STMT needs both SLP and loop-based vectorization. */
1343 only_slp_in_loop = false;
1347 if (only_slp_in_loop)
1348 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1349 else
1350 vectorization_factor = least_common_multiple (vectorization_factor,
1351 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1353 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1354 if (dump_enabled_p ())
1355 dump_printf_loc (MSG_NOTE, vect_location,
1356 "Updating vectorization factor to %d\n",
1357 vectorization_factor);
1360 for (i = 0; i < nbbs; i++)
1362 basic_block bb = bbs[i];
1364 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1366 phi = gsi_stmt (si);
1367 ok = true;
1369 stmt_info = vinfo_for_stmt (phi);
1370 if (dump_enabled_p ())
1372 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1373 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1374 dump_printf (MSG_NOTE, "\n");
1377 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1378 (i.e., a phi in the tail of the outer-loop). */
1379 if (! is_loop_header_bb_p (bb))
1381 /* FORNOW: we currently don't support the case that these phis
1382 are not used in the outerloop (unless it is double reduction,
1383 i.e., this phi is vect_reduction_def), cause this case
1384 requires to actually do something here. */
1385 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1386 || STMT_VINFO_LIVE_P (stmt_info))
1387 && STMT_VINFO_DEF_TYPE (stmt_info)
1388 != vect_double_reduction_def)
1390 if (dump_enabled_p ())
1391 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1392 "Unsupported loop-closed phi in "
1393 "outer-loop.\n");
1394 return false;
1397 /* If PHI is used in the outer loop, we check that its operand
1398 is defined in the inner loop. */
1399 if (STMT_VINFO_RELEVANT_P (stmt_info))
1401 tree phi_op;
1402 gimple op_def_stmt;
1404 if (gimple_phi_num_args (phi) != 1)
1405 return false;
1407 phi_op = PHI_ARG_DEF (phi, 0);
1408 if (TREE_CODE (phi_op) != SSA_NAME)
1409 return false;
1411 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1412 if (gimple_nop_p (op_def_stmt)
1413 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1414 || !vinfo_for_stmt (op_def_stmt))
1415 return false;
1417 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1418 != vect_used_in_outer
1419 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1420 != vect_used_in_outer_by_reduction)
1421 return false;
1424 continue;
1427 gcc_assert (stmt_info);
1429 if (STMT_VINFO_LIVE_P (stmt_info))
1431 /* FORNOW: not yet supported. */
1432 if (dump_enabled_p ())
1433 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1434 "not vectorized: value used after loop.\n");
1435 return false;
1438 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1439 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1441 /* A scalar-dependence cycle that we don't support. */
1442 if (dump_enabled_p ())
1443 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1444 "not vectorized: scalar dependence cycle.\n");
1445 return false;
1448 if (STMT_VINFO_RELEVANT_P (stmt_info))
1450 need_to_vectorize = true;
1451 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1452 ok = vectorizable_induction (phi, NULL, NULL);
1455 if (!ok)
1457 if (dump_enabled_p ())
1459 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1460 "not vectorized: relevant phi not "
1461 "supported: ");
1462 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1463 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1465 return false;
1469 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1471 gimple stmt = gsi_stmt (si);
1472 if (!gimple_clobber_p (stmt)
1473 && !vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1474 return false;
1476 } /* bbs */
1478 /* All operations in the loop are either irrelevant (deal with loop
1479 control, or dead), or only used outside the loop and can be moved
1480 out of the loop (e.g. invariants, inductions). The loop can be
1481 optimized away by scalar optimizations. We're better off not
1482 touching this loop. */
1483 if (!need_to_vectorize)
1485 if (dump_enabled_p ())
1486 dump_printf_loc (MSG_NOTE, vect_location,
1487 "All the computation can be taken out of the loop.\n");
1488 if (dump_enabled_p ())
1489 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1490 "not vectorized: redundant loop. no profit to "
1491 "vectorize.\n");
1492 return false;
1495 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
1496 dump_printf_loc (MSG_NOTE, vect_location,
1497 "vectorization_factor = %d, niters = "
1498 HOST_WIDE_INT_PRINT_DEC "\n", vectorization_factor,
1499 LOOP_VINFO_INT_NITERS (loop_vinfo));
1501 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1502 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1503 || ((max_niter = max_stmt_executions_int (loop)) != -1
1504 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
1506 if (dump_enabled_p ())
1507 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1508 "not vectorized: iteration count too small.\n");
1509 if (dump_enabled_p ())
1510 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1511 "not vectorized: iteration count smaller than "
1512 "vectorization factor.\n");
1513 return false;
1516 /* Analyze cost. Decide if worth while to vectorize. */
1518 /* Once VF is set, SLP costs should be updated since the number of created
1519 vector stmts depends on VF. */
1520 vect_update_slp_costs_according_to_vf (loop_vinfo);
1522 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
1523 &min_profitable_estimate);
1524 LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
1526 if (min_profitable_iters < 0)
1528 if (dump_enabled_p ())
1529 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1530 "not vectorized: vectorization not profitable.\n");
1531 if (dump_enabled_p ())
1532 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1533 "not vectorized: vector version will never be "
1534 "profitable.\n");
1535 return false;
1538 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1539 * vectorization_factor) - 1);
1542 /* Use the cost model only if it is more conservative than user specified
1543 threshold. */
1545 th = (unsigned) min_scalar_loop_bound;
1546 if (min_profitable_iters
1547 && (!min_scalar_loop_bound
1548 || min_profitable_iters > min_scalar_loop_bound))
1549 th = (unsigned) min_profitable_iters;
1551 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1552 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
1554 if (dump_enabled_p ())
1555 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1556 "not vectorized: vectorization not profitable.\n");
1557 if (dump_enabled_p ())
1558 dump_printf_loc (MSG_NOTE, vect_location,
1559 "not vectorized: iteration count smaller than user "
1560 "specified loop bound parameter or minimum profitable "
1561 "iterations (whichever is more conservative).\n");
1562 return false;
1565 if ((estimated_niter = estimated_stmt_executions_int (loop)) != -1
1566 && ((unsigned HOST_WIDE_INT) estimated_niter
1567 <= MAX (th, (unsigned)min_profitable_estimate)))
1569 if (dump_enabled_p ())
1570 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1571 "not vectorized: estimated iteration count too "
1572 "small.\n");
1573 if (dump_enabled_p ())
1574 dump_printf_loc (MSG_NOTE, vect_location,
1575 "not vectorized: estimated iteration count smaller "
1576 "than specified loop bound parameter or minimum "
1577 "profitable iterations (whichever is more "
1578 "conservative).\n");
1579 return false;
1582 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1583 || LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0
1584 || LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
1586 if (dump_enabled_p ())
1587 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required.\n");
1588 if (!vect_can_advance_ivs_p (loop_vinfo))
1590 if (dump_enabled_p ())
1591 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1592 "not vectorized: can't create epilog loop 1.\n");
1593 return false;
1595 if (!slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1597 if (dump_enabled_p ())
1598 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1599 "not vectorized: can't create epilog loop 2.\n");
1600 return false;
1604 return true;
1608 /* Function vect_analyze_loop_2.
1610 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1611 for it. The different analyses will record information in the
1612 loop_vec_info struct. */
1613 static bool
1614 vect_analyze_loop_2 (loop_vec_info loop_vinfo)
1616 bool ok, slp = false;
1617 int max_vf = MAX_VECTORIZATION_FACTOR;
1618 int min_vf = 2;
1620 /* Find all data references in the loop (which correspond to vdefs/vuses)
1621 and analyze their evolution in the loop. Also adjust the minimal
1622 vectorization factor according to the loads and stores.
1624 FORNOW: Handle only simple, array references, which
1625 alignment can be forced, and aligned pointer-references. */
1627 ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf);
1628 if (!ok)
1630 if (dump_enabled_p ())
1631 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1632 "bad data references.\n");
1633 return false;
1636 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1637 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1639 ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
1640 if (!ok)
1642 if (dump_enabled_p ())
1643 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1644 "bad data access.\n");
1645 return false;
1648 /* Classify all cross-iteration scalar data-flow cycles.
1649 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1651 vect_analyze_scalar_cycles (loop_vinfo);
1653 vect_pattern_recog (loop_vinfo, NULL);
1655 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1657 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1658 if (!ok)
1660 if (dump_enabled_p ())
1661 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1662 "unexpected pattern.\n");
1663 return false;
1666 /* Analyze data dependences between the data-refs in the loop
1667 and adjust the maximum vectorization factor according to
1668 the dependences.
1669 FORNOW: fail at the first data dependence that we encounter. */
1671 ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
1672 if (!ok
1673 || max_vf < min_vf)
1675 if (dump_enabled_p ())
1676 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1677 "bad data dependence.\n");
1678 return false;
1681 ok = vect_determine_vectorization_factor (loop_vinfo);
1682 if (!ok)
1684 if (dump_enabled_p ())
1685 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1686 "can't determine vectorization factor.\n");
1687 return false;
1689 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1691 if (dump_enabled_p ())
1692 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1693 "bad data dependence.\n");
1694 return false;
1697 /* Analyze the alignment of the data-refs in the loop.
1698 Fail if a data reference is found that cannot be vectorized. */
1700 ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
1701 if (!ok)
1703 if (dump_enabled_p ())
1704 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1705 "bad data alignment.\n");
1706 return false;
1709 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1710 It is important to call pruning after vect_analyze_data_ref_accesses,
1711 since we use grouping information gathered by interleaving analysis. */
1712 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
1713 if (!ok)
1715 if (dump_enabled_p ())
1716 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1717 "too long list of versioning for alias "
1718 "run-time tests.\n");
1719 return false;
1722 /* This pass will decide on using loop versioning and/or loop peeling in
1723 order to enhance the alignment of data references in the loop. */
1725 ok = vect_enhance_data_refs_alignment (loop_vinfo);
1726 if (!ok)
1728 if (dump_enabled_p ())
1729 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1730 "bad data alignment.\n");
1731 return false;
1734 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1735 ok = vect_analyze_slp (loop_vinfo, NULL);
1736 if (ok)
1738 /* Decide which possible SLP instances to SLP. */
1739 slp = vect_make_slp_decision (loop_vinfo);
1741 /* Find stmts that need to be both vectorized and SLPed. */
1742 vect_detect_hybrid_slp (loop_vinfo);
1744 else
1745 return false;
1747 /* Scan all the operations in the loop and make sure they are
1748 vectorizable. */
1750 ok = vect_analyze_loop_operations (loop_vinfo, slp);
1751 if (!ok)
1753 if (dump_enabled_p ())
1754 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1755 "bad operation or unsupported loop bound.\n");
1756 return false;
1759 return true;
1762 /* Function vect_analyze_loop.
1764 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1765 for it. The different analyses will record information in the
1766 loop_vec_info struct. */
1767 loop_vec_info
1768 vect_analyze_loop (struct loop *loop)
1770 loop_vec_info loop_vinfo;
1771 unsigned int vector_sizes;
1773 /* Autodetect first vector size we try. */
1774 current_vector_size = 0;
1775 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
1777 if (dump_enabled_p ())
1778 dump_printf_loc (MSG_NOTE, vect_location,
1779 "===== analyze_loop_nest =====\n");
1781 if (loop_outer (loop)
1782 && loop_vec_info_for_loop (loop_outer (loop))
1783 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
1785 if (dump_enabled_p ())
1786 dump_printf_loc (MSG_NOTE, vect_location,
1787 "outer-loop already vectorized.\n");
1788 return NULL;
1791 while (1)
1793 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
1794 loop_vinfo = vect_analyze_loop_form (loop);
1795 if (!loop_vinfo)
1797 if (dump_enabled_p ())
1798 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1799 "bad loop form.\n");
1800 return NULL;
1803 if (vect_analyze_loop_2 (loop_vinfo))
1805 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
1807 return loop_vinfo;
1810 destroy_loop_vec_info (loop_vinfo, true);
1812 vector_sizes &= ~current_vector_size;
1813 if (vector_sizes == 0
1814 || current_vector_size == 0)
1815 return NULL;
1817 /* Try the next biggest vector size. */
1818 current_vector_size = 1 << floor_log2 (vector_sizes);
1819 if (dump_enabled_p ())
1820 dump_printf_loc (MSG_NOTE, vect_location,
1821 "***** Re-trying analysis with "
1822 "vector size %d\n", current_vector_size);
1827 /* Function reduction_code_for_scalar_code
1829 Input:
1830 CODE - tree_code of a reduction operations.
1832 Output:
1833 REDUC_CODE - the corresponding tree-code to be used to reduce the
1834 vector of partial results into a single scalar result (which
1835 will also reside in a vector) or ERROR_MARK if the operation is
1836 a supported reduction operation, but does not have such tree-code.
1838 Return FALSE if CODE currently cannot be vectorized as reduction. */
1840 static bool
1841 reduction_code_for_scalar_code (enum tree_code code,
1842 enum tree_code *reduc_code)
1844 switch (code)
1846 case MAX_EXPR:
1847 *reduc_code = REDUC_MAX_EXPR;
1848 return true;
1850 case MIN_EXPR:
1851 *reduc_code = REDUC_MIN_EXPR;
1852 return true;
1854 case PLUS_EXPR:
1855 *reduc_code = REDUC_PLUS_EXPR;
1856 return true;
1858 case MULT_EXPR:
1859 case MINUS_EXPR:
1860 case BIT_IOR_EXPR:
1861 case BIT_XOR_EXPR:
1862 case BIT_AND_EXPR:
1863 *reduc_code = ERROR_MARK;
1864 return true;
1866 default:
1867 return false;
1872 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
1873 STMT is printed with a message MSG. */
1875 static void
1876 report_vect_op (int msg_type, gimple stmt, const char *msg)
1878 dump_printf_loc (msg_type, vect_location, "%s", msg);
1879 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
1880 dump_printf (msg_type, "\n");
1884 /* Detect SLP reduction of the form:
1886 #a1 = phi <a5, a0>
1887 a2 = operation (a1)
1888 a3 = operation (a2)
1889 a4 = operation (a3)
1890 a5 = operation (a4)
1892 #a = phi <a5>
1894 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
1895 FIRST_STMT is the first reduction stmt in the chain
1896 (a2 = operation (a1)).
1898 Return TRUE if a reduction chain was detected. */
1900 static bool
1901 vect_is_slp_reduction (loop_vec_info loop_info, gimple phi, gimple first_stmt)
1903 struct loop *loop = (gimple_bb (phi))->loop_father;
1904 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
1905 enum tree_code code;
1906 gimple current_stmt = NULL, loop_use_stmt = NULL, first, next_stmt;
1907 stmt_vec_info use_stmt_info, current_stmt_info;
1908 tree lhs;
1909 imm_use_iterator imm_iter;
1910 use_operand_p use_p;
1911 int nloop_uses, size = 0, n_out_of_loop_uses;
1912 bool found = false;
1914 if (loop != vect_loop)
1915 return false;
1917 lhs = PHI_RESULT (phi);
1918 code = gimple_assign_rhs_code (first_stmt);
1919 while (1)
1921 nloop_uses = 0;
1922 n_out_of_loop_uses = 0;
1923 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
1925 gimple use_stmt = USE_STMT (use_p);
1926 if (is_gimple_debug (use_stmt))
1927 continue;
1929 use_stmt = USE_STMT (use_p);
1931 /* Check if we got back to the reduction phi. */
1932 if (use_stmt == phi)
1934 loop_use_stmt = use_stmt;
1935 found = true;
1936 break;
1939 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
1941 if (vinfo_for_stmt (use_stmt)
1942 && !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
1944 loop_use_stmt = use_stmt;
1945 nloop_uses++;
1948 else
1949 n_out_of_loop_uses++;
1951 /* There are can be either a single use in the loop or two uses in
1952 phi nodes. */
1953 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
1954 return false;
1957 if (found)
1958 break;
1960 /* We reached a statement with no loop uses. */
1961 if (nloop_uses == 0)
1962 return false;
1964 /* This is a loop exit phi, and we haven't reached the reduction phi. */
1965 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
1966 return false;
1968 if (!is_gimple_assign (loop_use_stmt)
1969 || code != gimple_assign_rhs_code (loop_use_stmt)
1970 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
1971 return false;
1973 /* Insert USE_STMT into reduction chain. */
1974 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
1975 if (current_stmt)
1977 current_stmt_info = vinfo_for_stmt (current_stmt);
1978 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
1979 GROUP_FIRST_ELEMENT (use_stmt_info)
1980 = GROUP_FIRST_ELEMENT (current_stmt_info);
1982 else
1983 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
1985 lhs = gimple_assign_lhs (loop_use_stmt);
1986 current_stmt = loop_use_stmt;
1987 size++;
1990 if (!found || loop_use_stmt != phi || size < 2)
1991 return false;
1993 /* Swap the operands, if needed, to make the reduction operand be the second
1994 operand. */
1995 lhs = PHI_RESULT (phi);
1996 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
1997 while (next_stmt)
1999 if (gimple_assign_rhs2 (next_stmt) == lhs)
2001 tree op = gimple_assign_rhs1 (next_stmt);
2002 gimple def_stmt = NULL;
2004 if (TREE_CODE (op) == SSA_NAME)
2005 def_stmt = SSA_NAME_DEF_STMT (op);
2007 /* Check that the other def is either defined in the loop
2008 ("vect_internal_def"), or it's an induction (defined by a
2009 loop-header phi-node). */
2010 if (def_stmt
2011 && gimple_bb (def_stmt)
2012 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2013 && (is_gimple_assign (def_stmt)
2014 || is_gimple_call (def_stmt)
2015 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2016 == vect_induction_def
2017 || (gimple_code (def_stmt) == GIMPLE_PHI
2018 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2019 == vect_internal_def
2020 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2022 lhs = gimple_assign_lhs (next_stmt);
2023 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2024 continue;
2027 return false;
2029 else
2031 tree op = gimple_assign_rhs2 (next_stmt);
2032 gimple def_stmt = NULL;
2034 if (TREE_CODE (op) == SSA_NAME)
2035 def_stmt = SSA_NAME_DEF_STMT (op);
2037 /* Check that the other def is either defined in the loop
2038 ("vect_internal_def"), or it's an induction (defined by a
2039 loop-header phi-node). */
2040 if (def_stmt
2041 && gimple_bb (def_stmt)
2042 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2043 && (is_gimple_assign (def_stmt)
2044 || is_gimple_call (def_stmt)
2045 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2046 == vect_induction_def
2047 || (gimple_code (def_stmt) == GIMPLE_PHI
2048 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2049 == vect_internal_def
2050 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2052 if (dump_enabled_p ())
2054 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2055 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2056 dump_printf (MSG_NOTE, "\n");
2059 swap_tree_operands (next_stmt,
2060 gimple_assign_rhs1_ptr (next_stmt),
2061 gimple_assign_rhs2_ptr (next_stmt));
2062 update_stmt (next_stmt);
2064 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2065 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2067 else
2068 return false;
2071 lhs = gimple_assign_lhs (next_stmt);
2072 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2075 /* Save the chain for further analysis in SLP detection. */
2076 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2077 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2078 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2080 return true;
2084 /* Function vect_is_simple_reduction_1
2086 (1) Detect a cross-iteration def-use cycle that represents a simple
2087 reduction computation. We look for the following pattern:
2089 loop_header:
2090 a1 = phi < a0, a2 >
2091 a3 = ...
2092 a2 = operation (a3, a1)
2094 such that:
2095 1. operation is commutative and associative and it is safe to
2096 change the order of the computation (if CHECK_REDUCTION is true)
2097 2. no uses for a2 in the loop (a2 is used out of the loop)
2098 3. no uses of a1 in the loop besides the reduction operation
2099 4. no uses of a1 outside the loop.
2101 Conditions 1,4 are tested here.
2102 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2104 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2105 nested cycles, if CHECK_REDUCTION is false.
2107 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2108 reductions:
2110 a1 = phi < a0, a2 >
2111 inner loop (def of a3)
2112 a2 = phi < a3 >
2114 If MODIFY is true it tries also to rework the code in-place to enable
2115 detection of more reduction patterns. For the time being we rewrite
2116 "res -= RHS" into "rhs += -RHS" when it seems worthwhile.
2119 static gimple
2120 vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
2121 bool check_reduction, bool *double_reduc,
2122 bool modify)
2124 struct loop *loop = (gimple_bb (phi))->loop_father;
2125 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2126 edge latch_e = loop_latch_edge (loop);
2127 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2128 gimple def_stmt, def1 = NULL, def2 = NULL;
2129 enum tree_code orig_code, code;
2130 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2131 tree type;
2132 int nloop_uses;
2133 tree name;
2134 imm_use_iterator imm_iter;
2135 use_operand_p use_p;
2136 bool phi_def;
2138 *double_reduc = false;
2140 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
2141 otherwise, we assume outer loop vectorization. */
2142 gcc_assert ((check_reduction && loop == vect_loop)
2143 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
2145 name = PHI_RESULT (phi);
2146 nloop_uses = 0;
2147 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2149 gimple use_stmt = USE_STMT (use_p);
2150 if (is_gimple_debug (use_stmt))
2151 continue;
2153 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2155 if (dump_enabled_p ())
2156 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2157 "intermediate value used outside loop.\n");
2159 return NULL;
2162 if (vinfo_for_stmt (use_stmt)
2163 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2164 nloop_uses++;
2165 if (nloop_uses > 1)
2167 if (dump_enabled_p ())
2168 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2169 "reduction used in loop.\n");
2170 return NULL;
2174 if (TREE_CODE (loop_arg) != SSA_NAME)
2176 if (dump_enabled_p ())
2178 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2179 "reduction: not ssa_name: ");
2180 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2181 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2183 return NULL;
2186 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2187 if (!def_stmt)
2189 if (dump_enabled_p ())
2190 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2191 "reduction: no def_stmt.\n");
2192 return NULL;
2195 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
2197 if (dump_enabled_p ())
2199 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
2200 dump_printf (MSG_NOTE, "\n");
2202 return NULL;
2205 if (is_gimple_assign (def_stmt))
2207 name = gimple_assign_lhs (def_stmt);
2208 phi_def = false;
2210 else
2212 name = PHI_RESULT (def_stmt);
2213 phi_def = true;
2216 nloop_uses = 0;
2217 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2219 gimple use_stmt = USE_STMT (use_p);
2220 if (is_gimple_debug (use_stmt))
2221 continue;
2222 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
2223 && vinfo_for_stmt (use_stmt)
2224 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2225 nloop_uses++;
2226 if (nloop_uses > 1)
2228 if (dump_enabled_p ())
2229 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2230 "reduction used in loop.\n");
2231 return NULL;
2235 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2236 defined in the inner loop. */
2237 if (phi_def)
2239 op1 = PHI_ARG_DEF (def_stmt, 0);
2241 if (gimple_phi_num_args (def_stmt) != 1
2242 || TREE_CODE (op1) != SSA_NAME)
2244 if (dump_enabled_p ())
2245 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2246 "unsupported phi node definition.\n");
2248 return NULL;
2251 def1 = SSA_NAME_DEF_STMT (op1);
2252 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2253 && loop->inner
2254 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2255 && is_gimple_assign (def1))
2257 if (dump_enabled_p ())
2258 report_vect_op (MSG_NOTE, def_stmt,
2259 "detected double reduction: ");
2261 *double_reduc = true;
2262 return def_stmt;
2265 return NULL;
2268 code = orig_code = gimple_assign_rhs_code (def_stmt);
2270 /* We can handle "res -= x[i]", which is non-associative by
2271 simply rewriting this into "res += -x[i]". Avoid changing
2272 gimple instruction for the first simple tests and only do this
2273 if we're allowed to change code at all. */
2274 if (code == MINUS_EXPR
2275 && modify
2276 && (op1 = gimple_assign_rhs1 (def_stmt))
2277 && TREE_CODE (op1) == SSA_NAME
2278 && SSA_NAME_DEF_STMT (op1) == phi)
2279 code = PLUS_EXPR;
2281 if (check_reduction
2282 && (!commutative_tree_code (code) || !associative_tree_code (code)))
2284 if (dump_enabled_p ())
2285 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2286 "reduction: not commutative/associative: ");
2287 return NULL;
2290 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
2292 if (code != COND_EXPR)
2294 if (dump_enabled_p ())
2295 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2296 "reduction: not binary operation: ");
2298 return NULL;
2301 op3 = gimple_assign_rhs1 (def_stmt);
2302 if (COMPARISON_CLASS_P (op3))
2304 op4 = TREE_OPERAND (op3, 1);
2305 op3 = TREE_OPERAND (op3, 0);
2308 op1 = gimple_assign_rhs2 (def_stmt);
2309 op2 = gimple_assign_rhs3 (def_stmt);
2311 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2313 if (dump_enabled_p ())
2314 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2315 "reduction: uses not ssa_names: ");
2317 return NULL;
2320 else
2322 op1 = gimple_assign_rhs1 (def_stmt);
2323 op2 = gimple_assign_rhs2 (def_stmt);
2325 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2327 if (dump_enabled_p ())
2328 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2329 "reduction: uses not ssa_names: ");
2331 return NULL;
2335 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2336 if ((TREE_CODE (op1) == SSA_NAME
2337 && !types_compatible_p (type,TREE_TYPE (op1)))
2338 || (TREE_CODE (op2) == SSA_NAME
2339 && !types_compatible_p (type, TREE_TYPE (op2)))
2340 || (op3 && TREE_CODE (op3) == SSA_NAME
2341 && !types_compatible_p (type, TREE_TYPE (op3)))
2342 || (op4 && TREE_CODE (op4) == SSA_NAME
2343 && !types_compatible_p (type, TREE_TYPE (op4))))
2345 if (dump_enabled_p ())
2347 dump_printf_loc (MSG_NOTE, vect_location,
2348 "reduction: multiple types: operation type: ");
2349 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
2350 dump_printf (MSG_NOTE, ", operands types: ");
2351 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2352 TREE_TYPE (op1));
2353 dump_printf (MSG_NOTE, ",");
2354 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2355 TREE_TYPE (op2));
2356 if (op3)
2358 dump_printf (MSG_NOTE, ",");
2359 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2360 TREE_TYPE (op3));
2363 if (op4)
2365 dump_printf (MSG_NOTE, ",");
2366 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2367 TREE_TYPE (op4));
2369 dump_printf (MSG_NOTE, "\n");
2372 return NULL;
2375 /* Check that it's ok to change the order of the computation.
2376 Generally, when vectorizing a reduction we change the order of the
2377 computation. This may change the behavior of the program in some
2378 cases, so we need to check that this is ok. One exception is when
2379 vectorizing an outer-loop: the inner-loop is executed sequentially,
2380 and therefore vectorizing reductions in the inner-loop during
2381 outer-loop vectorization is safe. */
2383 /* CHECKME: check for !flag_finite_math_only too? */
2384 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
2385 && check_reduction)
2387 /* Changing the order of operations changes the semantics. */
2388 if (dump_enabled_p ())
2389 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2390 "reduction: unsafe fp math optimization: ");
2391 return NULL;
2393 else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
2394 && check_reduction)
2396 /* Changing the order of operations changes the semantics. */
2397 if (dump_enabled_p ())
2398 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2399 "reduction: unsafe int math optimization: ");
2400 return NULL;
2402 else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
2404 /* Changing the order of operations changes the semantics. */
2405 if (dump_enabled_p ())
2406 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2407 "reduction: unsafe fixed-point math optimization: ");
2408 return NULL;
2411 /* If we detected "res -= x[i]" earlier, rewrite it into
2412 "res += -x[i]" now. If this turns out to be useless reassoc
2413 will clean it up again. */
2414 if (orig_code == MINUS_EXPR)
2416 tree rhs = gimple_assign_rhs2 (def_stmt);
2417 tree negrhs = make_ssa_name (TREE_TYPE (rhs), NULL);
2418 gimple negate_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, negrhs,
2419 rhs, NULL);
2420 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
2421 set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
2422 loop_info, NULL));
2423 gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
2424 gimple_assign_set_rhs2 (def_stmt, negrhs);
2425 gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
2426 update_stmt (def_stmt);
2429 /* Reduction is safe. We're dealing with one of the following:
2430 1) integer arithmetic and no trapv
2431 2) floating point arithmetic, and special flags permit this optimization
2432 3) nested cycle (i.e., outer loop vectorization). */
2433 if (TREE_CODE (op1) == SSA_NAME)
2434 def1 = SSA_NAME_DEF_STMT (op1);
2436 if (TREE_CODE (op2) == SSA_NAME)
2437 def2 = SSA_NAME_DEF_STMT (op2);
2439 if (code != COND_EXPR
2440 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
2442 if (dump_enabled_p ())
2443 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
2444 return NULL;
2447 /* Check that one def is the reduction def, defined by PHI,
2448 the other def is either defined in the loop ("vect_internal_def"),
2449 or it's an induction (defined by a loop-header phi-node). */
2451 if (def2 && def2 == phi
2452 && (code == COND_EXPR
2453 || !def1 || gimple_nop_p (def1)
2454 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
2455 && (is_gimple_assign (def1)
2456 || is_gimple_call (def1)
2457 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2458 == vect_induction_def
2459 || (gimple_code (def1) == GIMPLE_PHI
2460 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2461 == vect_internal_def
2462 && !is_loop_header_bb_p (gimple_bb (def1)))))))
2464 if (dump_enabled_p ())
2465 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2466 return def_stmt;
2469 if (def1 && def1 == phi
2470 && (code == COND_EXPR
2471 || !def2 || gimple_nop_p (def2)
2472 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
2473 && (is_gimple_assign (def2)
2474 || is_gimple_call (def2)
2475 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2476 == vect_induction_def
2477 || (gimple_code (def2) == GIMPLE_PHI
2478 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2479 == vect_internal_def
2480 && !is_loop_header_bb_p (gimple_bb (def2)))))))
2482 if (check_reduction)
2484 /* Swap operands (just for simplicity - so that the rest of the code
2485 can assume that the reduction variable is always the last (second)
2486 argument). */
2487 if (dump_enabled_p ())
2488 report_vect_op (MSG_NOTE, def_stmt,
2489 "detected reduction: need to swap operands: ");
2491 swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
2492 gimple_assign_rhs2_ptr (def_stmt));
2494 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
2495 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2497 else
2499 if (dump_enabled_p ())
2500 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2503 return def_stmt;
2506 /* Try to find SLP reduction chain. */
2507 if (check_reduction && vect_is_slp_reduction (loop_info, phi, def_stmt))
2509 if (dump_enabled_p ())
2510 report_vect_op (MSG_NOTE, def_stmt,
2511 "reduction: detected reduction chain: ");
2513 return def_stmt;
2516 if (dump_enabled_p ())
2517 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2518 "reduction: unknown pattern: ");
2520 return NULL;
2523 /* Wrapper around vect_is_simple_reduction_1, that won't modify code
2524 in-place. Arguments as there. */
2526 static gimple
2527 vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
2528 bool check_reduction, bool *double_reduc)
2530 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2531 double_reduc, false);
2534 /* Wrapper around vect_is_simple_reduction_1, which will modify code
2535 in-place if it enables detection of more reductions. Arguments
2536 as there. */
2538 gimple
2539 vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
2540 bool check_reduction, bool *double_reduc)
2542 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2543 double_reduc, true);
2546 /* Calculate the cost of one scalar iteration of the loop. */
2548 vect_get_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
2550 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2551 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2552 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
2553 int innerloop_iters, i, stmt_cost;
2555 /* Count statements in scalar loop. Using this as scalar cost for a single
2556 iteration for now.
2558 TODO: Add outer loop support.
2560 TODO: Consider assigning different costs to different scalar
2561 statements. */
2563 /* FORNOW. */
2564 innerloop_iters = 1;
2565 if (loop->inner)
2566 innerloop_iters = 50; /* FIXME */
2568 for (i = 0; i < nbbs; i++)
2570 gimple_stmt_iterator si;
2571 basic_block bb = bbs[i];
2573 if (bb->loop_father == loop->inner)
2574 factor = innerloop_iters;
2575 else
2576 factor = 1;
2578 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2580 gimple stmt = gsi_stmt (si);
2581 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2583 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
2584 continue;
2586 /* Skip stmts that are not vectorized inside the loop. */
2587 if (stmt_info
2588 && !STMT_VINFO_RELEVANT_P (stmt_info)
2589 && (!STMT_VINFO_LIVE_P (stmt_info)
2590 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
2591 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
2592 continue;
2594 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
2596 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
2597 stmt_cost = vect_get_stmt_cost (scalar_load);
2598 else
2599 stmt_cost = vect_get_stmt_cost (scalar_store);
2601 else
2602 stmt_cost = vect_get_stmt_cost (scalar_stmt);
2604 scalar_single_iter_cost += stmt_cost * factor;
2607 return scalar_single_iter_cost;
2610 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
2612 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
2613 int *peel_iters_epilogue,
2614 int scalar_single_iter_cost,
2615 stmt_vector_for_cost *prologue_cost_vec,
2616 stmt_vector_for_cost *epilogue_cost_vec)
2618 int retval = 0;
2619 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2621 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2623 *peel_iters_epilogue = vf/2;
2624 if (dump_enabled_p ())
2625 dump_printf_loc (MSG_NOTE, vect_location,
2626 "cost model: epilogue peel iters set to vf/2 "
2627 "because loop iterations are unknown .\n");
2629 /* If peeled iterations are known but number of scalar loop
2630 iterations are unknown, count a taken branch per peeled loop. */
2631 retval = record_stmt_cost (prologue_cost_vec, 2, cond_branch_taken,
2632 NULL, 0, vect_prologue);
2634 else
2636 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
2637 peel_iters_prologue = niters < peel_iters_prologue ?
2638 niters : peel_iters_prologue;
2639 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
2640 /* If we need to peel for gaps, but no peeling is required, we have to
2641 peel VF iterations. */
2642 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
2643 *peel_iters_epilogue = vf;
2646 if (peel_iters_prologue)
2647 retval += record_stmt_cost (prologue_cost_vec,
2648 peel_iters_prologue * scalar_single_iter_cost,
2649 scalar_stmt, NULL, 0, vect_prologue);
2650 if (*peel_iters_epilogue)
2651 retval += record_stmt_cost (epilogue_cost_vec,
2652 *peel_iters_epilogue * scalar_single_iter_cost,
2653 scalar_stmt, NULL, 0, vect_epilogue);
2654 return retval;
2657 /* Function vect_estimate_min_profitable_iters
2659 Return the number of iterations required for the vector version of the
2660 loop to be profitable relative to the cost of the scalar version of the
2661 loop. */
2663 static void
2664 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
2665 int *ret_min_profitable_niters,
2666 int *ret_min_profitable_estimate)
2668 int min_profitable_iters;
2669 int min_profitable_estimate;
2670 int peel_iters_prologue;
2671 int peel_iters_epilogue;
2672 unsigned vec_inside_cost = 0;
2673 int vec_outside_cost = 0;
2674 unsigned vec_prologue_cost = 0;
2675 unsigned vec_epilogue_cost = 0;
2676 int scalar_single_iter_cost = 0;
2677 int scalar_outside_cost = 0;
2678 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2679 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
2680 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2682 /* Cost model disabled. */
2683 if (!flag_vect_cost_model)
2685 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
2686 *ret_min_profitable_niters = 0;
2687 *ret_min_profitable_estimate = 0;
2688 return;
2691 /* Requires loop versioning tests to handle misalignment. */
2692 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2694 /* FIXME: Make cost depend on complexity of individual check. */
2695 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
2696 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2697 vect_prologue);
2698 dump_printf (MSG_NOTE,
2699 "cost model: Adding cost of checks for loop "
2700 "versioning to treat misalignment.\n");
2703 /* Requires loop versioning with alias checks. */
2704 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2706 /* FIXME: Make cost depend on complexity of individual check. */
2707 unsigned len = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).length ();
2708 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2709 vect_prologue);
2710 dump_printf (MSG_NOTE,
2711 "cost model: Adding cost of checks for loop "
2712 "versioning aliasing.\n");
2715 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2716 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2717 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
2718 vect_prologue);
2720 /* Count statements in scalar loop. Using this as scalar cost for a single
2721 iteration for now.
2723 TODO: Add outer loop support.
2725 TODO: Consider assigning different costs to different scalar
2726 statements. */
2728 scalar_single_iter_cost = vect_get_single_scalar_iteration_cost (loop_vinfo);
2730 /* Add additional cost for the peeled instructions in prologue and epilogue
2731 loop.
2733 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
2734 at compile-time - we assume it's vf/2 (the worst would be vf-1).
2736 TODO: Build an expression that represents peel_iters for prologue and
2737 epilogue to be used in a run-time test. */
2739 if (npeel < 0)
2741 peel_iters_prologue = vf/2;
2742 dump_printf (MSG_NOTE, "cost model: "
2743 "prologue peel iters set to vf/2.\n");
2745 /* If peeling for alignment is unknown, loop bound of main loop becomes
2746 unknown. */
2747 peel_iters_epilogue = vf/2;
2748 dump_printf (MSG_NOTE, "cost model: "
2749 "epilogue peel iters set to vf/2 because "
2750 "peeling for alignment is unknown.\n");
2752 /* If peeled iterations are unknown, count a taken branch and a not taken
2753 branch per peeled loop. Even if scalar loop iterations are known,
2754 vector iterations are not known since peeled prologue iterations are
2755 not known. Hence guards remain the same. */
2756 (void) add_stmt_cost (target_cost_data, 2, cond_branch_taken,
2757 NULL, 0, vect_prologue);
2758 (void) add_stmt_cost (target_cost_data, 2, cond_branch_not_taken,
2759 NULL, 0, vect_prologue);
2760 /* FORNOW: Don't attempt to pass individual scalar instructions to
2761 the model; just assume linear cost for scalar iterations. */
2762 (void) add_stmt_cost (target_cost_data,
2763 peel_iters_prologue * scalar_single_iter_cost,
2764 scalar_stmt, NULL, 0, vect_prologue);
2765 (void) add_stmt_cost (target_cost_data,
2766 peel_iters_epilogue * scalar_single_iter_cost,
2767 scalar_stmt, NULL, 0, vect_epilogue);
2769 else
2771 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
2772 stmt_info_for_cost *si;
2773 int j;
2774 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2776 prologue_cost_vec.create (2);
2777 epilogue_cost_vec.create (2);
2778 peel_iters_prologue = npeel;
2780 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
2781 &peel_iters_epilogue,
2782 scalar_single_iter_cost,
2783 &prologue_cost_vec,
2784 &epilogue_cost_vec);
2786 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
2788 struct _stmt_vec_info *stmt_info
2789 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2790 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2791 si->misalign, vect_prologue);
2794 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
2796 struct _stmt_vec_info *stmt_info
2797 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2798 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2799 si->misalign, vect_epilogue);
2802 prologue_cost_vec.release ();
2803 epilogue_cost_vec.release ();
2806 /* FORNOW: The scalar outside cost is incremented in one of the
2807 following ways:
2809 1. The vectorizer checks for alignment and aliasing and generates
2810 a condition that allows dynamic vectorization. A cost model
2811 check is ANDED with the versioning condition. Hence scalar code
2812 path now has the added cost of the versioning check.
2814 if (cost > th & versioning_check)
2815 jmp to vector code
2817 Hence run-time scalar is incremented by not-taken branch cost.
2819 2. The vectorizer then checks if a prologue is required. If the
2820 cost model check was not done before during versioning, it has to
2821 be done before the prologue check.
2823 if (cost <= th)
2824 prologue = scalar_iters
2825 if (prologue == 0)
2826 jmp to vector code
2827 else
2828 execute prologue
2829 if (prologue == num_iters)
2830 go to exit
2832 Hence the run-time scalar cost is incremented by a taken branch,
2833 plus a not-taken branch, plus a taken branch cost.
2835 3. The vectorizer then checks if an epilogue is required. If the
2836 cost model check was not done before during prologue check, it
2837 has to be done with the epilogue check.
2839 if (prologue == 0)
2840 jmp to vector code
2841 else
2842 execute prologue
2843 if (prologue == num_iters)
2844 go to exit
2845 vector code:
2846 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
2847 jmp to epilogue
2849 Hence the run-time scalar cost should be incremented by 2 taken
2850 branches.
2852 TODO: The back end may reorder the BBS's differently and reverse
2853 conditions/branch directions. Change the estimates below to
2854 something more reasonable. */
2856 /* If the number of iterations is known and we do not do versioning, we can
2857 decide whether to vectorize at compile time. Hence the scalar version
2858 do not carry cost model guard costs. */
2859 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2860 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2861 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2863 /* Cost model check occurs at versioning. */
2864 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2865 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2866 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
2867 else
2869 /* Cost model check occurs at prologue generation. */
2870 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2871 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
2872 + vect_get_stmt_cost (cond_branch_not_taken);
2873 /* Cost model check occurs at epilogue generation. */
2874 else
2875 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
2879 /* Complete the target-specific cost calculations. */
2880 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
2881 &vec_inside_cost, &vec_epilogue_cost);
2883 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
2885 /* Calculate number of iterations required to make the vector version
2886 profitable, relative to the loop bodies only. The following condition
2887 must hold true:
2888 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
2889 where
2890 SIC = scalar iteration cost, VIC = vector iteration cost,
2891 VOC = vector outside cost, VF = vectorization factor,
2892 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
2893 SOC = scalar outside cost for run time cost model check. */
2895 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
2897 if (vec_outside_cost <= 0)
2898 min_profitable_iters = 1;
2899 else
2901 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
2902 - vec_inside_cost * peel_iters_prologue
2903 - vec_inside_cost * peel_iters_epilogue)
2904 / ((scalar_single_iter_cost * vf)
2905 - vec_inside_cost);
2907 if ((scalar_single_iter_cost * vf * min_profitable_iters)
2908 <= (((int) vec_inside_cost * min_profitable_iters)
2909 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
2910 min_profitable_iters++;
2913 /* vector version will never be profitable. */
2914 else
2916 if (dump_enabled_p ())
2917 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2918 "cost model: the vector iteration cost = %d "
2919 "divided by the scalar iteration cost = %d "
2920 "is greater or equal to the vectorization factor = %d"
2921 ".\n",
2922 vec_inside_cost, scalar_single_iter_cost, vf);
2923 *ret_min_profitable_niters = -1;
2924 *ret_min_profitable_estimate = -1;
2925 return;
2928 if (dump_enabled_p ())
2930 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
2931 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
2932 vec_inside_cost);
2933 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
2934 vec_prologue_cost);
2935 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
2936 vec_epilogue_cost);
2937 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
2938 scalar_single_iter_cost);
2939 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
2940 scalar_outside_cost);
2941 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
2942 vec_outside_cost);
2943 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
2944 peel_iters_prologue);
2945 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
2946 peel_iters_epilogue);
2947 dump_printf (MSG_NOTE,
2948 " Calculated minimum iters for profitability: %d\n",
2949 min_profitable_iters);
2950 dump_printf (MSG_NOTE, "\n");
2953 min_profitable_iters =
2954 min_profitable_iters < vf ? vf : min_profitable_iters;
2956 /* Because the condition we create is:
2957 if (niters <= min_profitable_iters)
2958 then skip the vectorized loop. */
2959 min_profitable_iters--;
2961 if (dump_enabled_p ())
2962 dump_printf_loc (MSG_NOTE, vect_location,
2963 " Runtime profitability threshold = %d\n",
2964 min_profitable_iters);
2966 *ret_min_profitable_niters = min_profitable_iters;
2968 /* Calculate number of iterations required to make the vector version
2969 profitable, relative to the loop bodies only.
2971 Non-vectorized variant is SIC * niters and it must win over vector
2972 variant on the expected loop trip count. The following condition must hold true:
2973 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
2975 if (vec_outside_cost <= 0)
2976 min_profitable_estimate = 1;
2977 else
2979 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
2980 - vec_inside_cost * peel_iters_prologue
2981 - vec_inside_cost * peel_iters_epilogue)
2982 / ((scalar_single_iter_cost * vf)
2983 - vec_inside_cost);
2985 min_profitable_estimate --;
2986 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
2987 if (dump_enabled_p ())
2988 dump_printf_loc (MSG_NOTE, vect_location,
2989 " Static estimate profitability threshold = %d\n",
2990 min_profitable_iters);
2992 *ret_min_profitable_estimate = min_profitable_estimate;
2996 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
2997 functions. Design better to avoid maintenance issues. */
2999 /* Function vect_model_reduction_cost.
3001 Models cost for a reduction operation, including the vector ops
3002 generated within the strip-mine loop, the initial definition before
3003 the loop, and the epilogue code that must be generated. */
3005 static bool
3006 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
3007 int ncopies)
3009 int prologue_cost = 0, epilogue_cost = 0;
3010 enum tree_code code;
3011 optab optab;
3012 tree vectype;
3013 gimple stmt, orig_stmt;
3014 tree reduction_op;
3015 enum machine_mode mode;
3016 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3017 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3018 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3020 /* Cost of reduction op inside loop. */
3021 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3022 stmt_info, 0, vect_body);
3023 stmt = STMT_VINFO_STMT (stmt_info);
3025 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3027 case GIMPLE_SINGLE_RHS:
3028 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
3029 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
3030 break;
3031 case GIMPLE_UNARY_RHS:
3032 reduction_op = gimple_assign_rhs1 (stmt);
3033 break;
3034 case GIMPLE_BINARY_RHS:
3035 reduction_op = gimple_assign_rhs2 (stmt);
3036 break;
3037 case GIMPLE_TERNARY_RHS:
3038 reduction_op = gimple_assign_rhs3 (stmt);
3039 break;
3040 default:
3041 gcc_unreachable ();
3044 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3045 if (!vectype)
3047 if (dump_enabled_p ())
3049 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3050 "unsupported data-type ");
3051 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
3052 TREE_TYPE (reduction_op));
3053 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3055 return false;
3058 mode = TYPE_MODE (vectype);
3059 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3061 if (!orig_stmt)
3062 orig_stmt = STMT_VINFO_STMT (stmt_info);
3064 code = gimple_assign_rhs_code (orig_stmt);
3066 /* Add in cost for initial definition. */
3067 prologue_cost += add_stmt_cost (target_cost_data, 1, scalar_to_vec,
3068 stmt_info, 0, vect_prologue);
3070 /* Determine cost of epilogue code.
3072 We have a reduction operator that will reduce the vector in one statement.
3073 Also requires scalar extract. */
3075 if (!nested_in_vect_loop_p (loop, orig_stmt))
3077 if (reduc_code != ERROR_MARK)
3079 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3080 stmt_info, 0, vect_epilogue);
3081 epilogue_cost += add_stmt_cost (target_cost_data, 1, vec_to_scalar,
3082 stmt_info, 0, vect_epilogue);
3084 else
3086 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
3087 tree bitsize =
3088 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3089 int element_bitsize = tree_low_cst (bitsize, 1);
3090 int nelements = vec_size_in_bits / element_bitsize;
3092 optab = optab_for_tree_code (code, vectype, optab_default);
3094 /* We have a whole vector shift available. */
3095 if (VECTOR_MODE_P (mode)
3096 && optab_handler (optab, mode) != CODE_FOR_nothing
3097 && optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3099 /* Final reduction via vector shifts and the reduction operator.
3100 Also requires scalar extract. */
3101 epilogue_cost += add_stmt_cost (target_cost_data,
3102 exact_log2 (nelements) * 2,
3103 vector_stmt, stmt_info, 0,
3104 vect_epilogue);
3105 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3106 vec_to_scalar, stmt_info, 0,
3107 vect_epilogue);
3109 else
3110 /* Use extracts and reduction op for final reduction. For N
3111 elements, we have N extracts and N-1 reduction ops. */
3112 epilogue_cost += add_stmt_cost (target_cost_data,
3113 nelements + nelements - 1,
3114 vector_stmt, stmt_info, 0,
3115 vect_epilogue);
3119 if (dump_enabled_p ())
3120 dump_printf (MSG_NOTE,
3121 "vect_model_reduction_cost: inside_cost = %d, "
3122 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
3123 prologue_cost, epilogue_cost);
3125 return true;
3129 /* Function vect_model_induction_cost.
3131 Models cost for induction operations. */
3133 static void
3134 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3136 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3137 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3138 unsigned inside_cost, prologue_cost;
3140 /* loop cost for vec_loop. */
3141 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3142 stmt_info, 0, vect_body);
3144 /* prologue cost for vec_init and vec_step. */
3145 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3146 stmt_info, 0, vect_prologue);
3148 if (dump_enabled_p ())
3149 dump_printf_loc (MSG_NOTE, vect_location,
3150 "vect_model_induction_cost: inside_cost = %d, "
3151 "prologue_cost = %d .\n", inside_cost, prologue_cost);
3155 /* Function get_initial_def_for_induction
3157 Input:
3158 STMT - a stmt that performs an induction operation in the loop.
3159 IV_PHI - the initial value of the induction variable
3161 Output:
3162 Return a vector variable, initialized with the first VF values of
3163 the induction variable. E.g., for an iv with IV_PHI='X' and
3164 evolution S, for a vector of 4 units, we want to return:
3165 [X, X + S, X + 2*S, X + 3*S]. */
3167 static tree
3168 get_initial_def_for_induction (gimple iv_phi)
3170 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
3171 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3172 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3173 tree vectype;
3174 int nunits;
3175 edge pe = loop_preheader_edge (loop);
3176 struct loop *iv_loop;
3177 basic_block new_bb;
3178 tree new_vec, vec_init, vec_step, t;
3179 tree access_fn;
3180 tree new_var;
3181 tree new_name;
3182 gimple init_stmt, induction_phi, new_stmt;
3183 tree induc_def, vec_def, vec_dest;
3184 tree init_expr, step_expr;
3185 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3186 int i;
3187 bool ok;
3188 int ncopies;
3189 tree expr;
3190 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
3191 bool nested_in_vect_loop = false;
3192 gimple_seq stmts = NULL;
3193 imm_use_iterator imm_iter;
3194 use_operand_p use_p;
3195 gimple exit_phi;
3196 edge latch_e;
3197 tree loop_arg;
3198 gimple_stmt_iterator si;
3199 basic_block bb = gimple_bb (iv_phi);
3200 tree stepvectype;
3201 tree resvectype;
3203 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
3204 if (nested_in_vect_loop_p (loop, iv_phi))
3206 nested_in_vect_loop = true;
3207 iv_loop = loop->inner;
3209 else
3210 iv_loop = loop;
3211 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
3213 latch_e = loop_latch_edge (iv_loop);
3214 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
3216 access_fn = analyze_scalar_evolution (iv_loop, PHI_RESULT (iv_phi));
3217 gcc_assert (access_fn);
3218 STRIP_NOPS (access_fn);
3219 ok = vect_is_simple_iv_evolution (iv_loop->num, access_fn,
3220 &init_expr, &step_expr);
3221 gcc_assert (ok);
3222 pe = loop_preheader_edge (iv_loop);
3224 vectype = get_vectype_for_scalar_type (TREE_TYPE (init_expr));
3225 resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
3226 gcc_assert (vectype);
3227 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3228 ncopies = vf / nunits;
3230 gcc_assert (phi_info);
3231 gcc_assert (ncopies >= 1);
3233 /* Find the first insertion point in the BB. */
3234 si = gsi_after_labels (bb);
3236 /* Create the vector that holds the initial_value of the induction. */
3237 if (nested_in_vect_loop)
3239 /* iv_loop is nested in the loop to be vectorized. init_expr had already
3240 been created during vectorization of previous stmts. We obtain it
3241 from the STMT_VINFO_VEC_STMT of the defining stmt. */
3242 tree iv_def = PHI_ARG_DEF_FROM_EDGE (iv_phi,
3243 loop_preheader_edge (iv_loop));
3244 vec_init = vect_get_vec_def_for_operand (iv_def, iv_phi, NULL);
3245 /* If the initial value is not of proper type, convert it. */
3246 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
3248 new_stmt = gimple_build_assign_with_ops
3249 (VIEW_CONVERT_EXPR,
3250 vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_"),
3251 build1 (VIEW_CONVERT_EXPR, vectype, vec_init), NULL_TREE);
3252 vec_init = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3253 gimple_assign_set_lhs (new_stmt, vec_init);
3254 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
3255 new_stmt);
3256 gcc_assert (!new_bb);
3257 set_vinfo_for_stmt (new_stmt,
3258 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3261 else
3263 vec<constructor_elt, va_gc> *v;
3265 /* iv_loop is the loop to be vectorized. Create:
3266 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
3267 new_var = vect_get_new_vect_var (TREE_TYPE (vectype),
3268 vect_scalar_var, "var_");
3269 new_name = force_gimple_operand (fold_convert (TREE_TYPE (vectype),
3270 init_expr),
3271 &stmts, false, new_var);
3272 if (stmts)
3274 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3275 gcc_assert (!new_bb);
3278 vec_alloc (v, nunits);
3279 bool constant_p = is_gimple_min_invariant (new_name);
3280 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3281 for (i = 1; i < nunits; i++)
3283 /* Create: new_name_i = new_name + step_expr */
3284 new_name = fold_build2 (PLUS_EXPR, TREE_TYPE (new_name),
3285 new_name, step_expr);
3286 if (!is_gimple_min_invariant (new_name))
3288 init_stmt = gimple_build_assign (new_var, new_name);
3289 new_name = make_ssa_name (new_var, init_stmt);
3290 gimple_assign_set_lhs (init_stmt, new_name);
3291 new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
3292 gcc_assert (!new_bb);
3293 if (dump_enabled_p ())
3295 dump_printf_loc (MSG_NOTE, vect_location,
3296 "created new init_stmt: ");
3297 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, init_stmt, 0);
3298 dump_printf (MSG_NOTE, "\n");
3300 constant_p = false;
3302 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3304 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
3305 if (constant_p)
3306 new_vec = build_vector_from_ctor (vectype, v);
3307 else
3308 new_vec = build_constructor (vectype, v);
3309 vec_init = vect_init_vector (iv_phi, new_vec, vectype, NULL);
3313 /* Create the vector that holds the step of the induction. */
3314 if (nested_in_vect_loop)
3315 /* iv_loop is nested in the loop to be vectorized. Generate:
3316 vec_step = [S, S, S, S] */
3317 new_name = step_expr;
3318 else
3320 /* iv_loop is the loop to be vectorized. Generate:
3321 vec_step = [VF*S, VF*S, VF*S, VF*S] */
3322 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
3324 expr = build_int_cst (integer_type_node, vf);
3325 expr = fold_convert (TREE_TYPE (step_expr), expr);
3327 else
3328 expr = build_int_cst (TREE_TYPE (step_expr), vf);
3329 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3330 expr, step_expr);
3331 if (TREE_CODE (step_expr) == SSA_NAME)
3332 new_name = vect_init_vector (iv_phi, new_name,
3333 TREE_TYPE (step_expr), NULL);
3336 t = unshare_expr (new_name);
3337 gcc_assert (CONSTANT_CLASS_P (new_name)
3338 || TREE_CODE (new_name) == SSA_NAME);
3339 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
3340 gcc_assert (stepvectype);
3341 new_vec = build_vector_from_val (stepvectype, t);
3342 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3345 /* Create the following def-use cycle:
3346 loop prolog:
3347 vec_init = ...
3348 vec_step = ...
3349 loop:
3350 vec_iv = PHI <vec_init, vec_loop>
3352 STMT
3354 vec_loop = vec_iv + vec_step; */
3356 /* Create the induction-phi that defines the induction-operand. */
3357 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
3358 induction_phi = create_phi_node (vec_dest, iv_loop->header);
3359 set_vinfo_for_stmt (induction_phi,
3360 new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
3361 induc_def = PHI_RESULT (induction_phi);
3363 /* Create the iv update inside the loop */
3364 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3365 induc_def, vec_step);
3366 vec_def = make_ssa_name (vec_dest, new_stmt);
3367 gimple_assign_set_lhs (new_stmt, vec_def);
3368 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3369 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
3370 NULL));
3372 /* Set the arguments of the phi node: */
3373 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
3374 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
3375 UNKNOWN_LOCATION);
3378 /* In case that vectorization factor (VF) is bigger than the number
3379 of elements that we can fit in a vectype (nunits), we have to generate
3380 more than one vector stmt - i.e - we need to "unroll" the
3381 vector stmt by a factor VF/nunits. For more details see documentation
3382 in vectorizable_operation. */
3384 if (ncopies > 1)
3386 stmt_vec_info prev_stmt_vinfo;
3387 /* FORNOW. This restriction should be relaxed. */
3388 gcc_assert (!nested_in_vect_loop);
3390 /* Create the vector that holds the step of the induction. */
3391 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
3393 expr = build_int_cst (integer_type_node, nunits);
3394 expr = fold_convert (TREE_TYPE (step_expr), expr);
3396 else
3397 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
3398 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3399 expr, step_expr);
3400 if (TREE_CODE (step_expr) == SSA_NAME)
3401 new_name = vect_init_vector (iv_phi, new_name,
3402 TREE_TYPE (step_expr), NULL);
3403 t = unshare_expr (new_name);
3404 gcc_assert (CONSTANT_CLASS_P (new_name)
3405 || TREE_CODE (new_name) == SSA_NAME);
3406 new_vec = build_vector_from_val (stepvectype, t);
3407 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3409 vec_def = induc_def;
3410 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
3411 for (i = 1; i < ncopies; i++)
3413 /* vec_i = vec_prev + vec_step */
3414 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3415 vec_def, vec_step);
3416 vec_def = make_ssa_name (vec_dest, new_stmt);
3417 gimple_assign_set_lhs (new_stmt, vec_def);
3419 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3420 if (!useless_type_conversion_p (resvectype, vectype))
3422 new_stmt = gimple_build_assign_with_ops
3423 (VIEW_CONVERT_EXPR,
3424 vect_get_new_vect_var (resvectype, vect_simple_var,
3425 "vec_iv_"),
3426 build1 (VIEW_CONVERT_EXPR, resvectype,
3427 gimple_assign_lhs (new_stmt)), NULL_TREE);
3428 gimple_assign_set_lhs (new_stmt,
3429 make_ssa_name
3430 (gimple_assign_lhs (new_stmt), new_stmt));
3431 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3433 set_vinfo_for_stmt (new_stmt,
3434 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3435 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
3436 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
3440 if (nested_in_vect_loop)
3442 /* Find the loop-closed exit-phi of the induction, and record
3443 the final vector of induction results: */
3444 exit_phi = NULL;
3445 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
3447 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (USE_STMT (use_p))))
3449 exit_phi = USE_STMT (use_p);
3450 break;
3453 if (exit_phi)
3455 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
3456 /* FORNOW. Currently not supporting the case that an inner-loop induction
3457 is not used in the outer-loop (i.e. only outside the outer-loop). */
3458 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
3459 && !STMT_VINFO_LIVE_P (stmt_vinfo));
3461 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
3462 if (dump_enabled_p ())
3464 dump_printf_loc (MSG_NOTE, vect_location,
3465 "vector of inductions after inner-loop:");
3466 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
3467 dump_printf (MSG_NOTE, "\n");
3473 if (dump_enabled_p ())
3475 dump_printf_loc (MSG_NOTE, vect_location,
3476 "transform induction: created def-use cycle: ");
3477 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
3478 dump_printf (MSG_NOTE, "\n");
3479 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
3480 SSA_NAME_DEF_STMT (vec_def), 0);
3481 dump_printf (MSG_NOTE, "\n");
3484 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
3485 if (!useless_type_conversion_p (resvectype, vectype))
3487 new_stmt = gimple_build_assign_with_ops
3488 (VIEW_CONVERT_EXPR,
3489 vect_get_new_vect_var (resvectype, vect_simple_var, "vec_iv_"),
3490 build1 (VIEW_CONVERT_EXPR, resvectype, induc_def), NULL_TREE);
3491 induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3492 gimple_assign_set_lhs (new_stmt, induc_def);
3493 si = gsi_after_labels (bb);
3494 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3495 set_vinfo_for_stmt (new_stmt,
3496 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3497 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
3498 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
3501 return induc_def;
3505 /* Function get_initial_def_for_reduction
3507 Input:
3508 STMT - a stmt that performs a reduction operation in the loop.
3509 INIT_VAL - the initial value of the reduction variable
3511 Output:
3512 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3513 of the reduction (used for adjusting the epilog - see below).
3514 Return a vector variable, initialized according to the operation that STMT
3515 performs. This vector will be used as the initial value of the
3516 vector of partial results.
3518 Option1 (adjust in epilog): Initialize the vector as follows:
3519 add/bit or/xor: [0,0,...,0,0]
3520 mult/bit and: [1,1,...,1,1]
3521 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3522 and when necessary (e.g. add/mult case) let the caller know
3523 that it needs to adjust the result by init_val.
3525 Option2: Initialize the vector as follows:
3526 add/bit or/xor: [init_val,0,0,...,0]
3527 mult/bit and: [init_val,1,1,...,1]
3528 min/max/cond_expr: [init_val,init_val,...,init_val]
3529 and no adjustments are needed.
3531 For example, for the following code:
3533 s = init_val;
3534 for (i=0;i<n;i++)
3535 s = s + a[i];
3537 STMT is 's = s + a[i]', and the reduction variable is 's'.
3538 For a vector of 4 units, we want to return either [0,0,0,init_val],
3539 or [0,0,0,0] and let the caller know that it needs to adjust
3540 the result at the end by 'init_val'.
3542 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3543 initialization vector is simpler (same element in all entries), if
3544 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3546 A cost model should help decide between these two schemes. */
3548 tree
3549 get_initial_def_for_reduction (gimple stmt, tree init_val,
3550 tree *adjustment_def)
3552 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
3553 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3554 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3555 tree scalar_type = TREE_TYPE (init_val);
3556 tree vectype = get_vectype_for_scalar_type (scalar_type);
3557 int nunits;
3558 enum tree_code code = gimple_assign_rhs_code (stmt);
3559 tree def_for_init;
3560 tree init_def;
3561 tree *elts;
3562 int i;
3563 bool nested_in_vect_loop = false;
3564 tree init_value;
3565 REAL_VALUE_TYPE real_init_val = dconst0;
3566 int int_init_val = 0;
3567 gimple def_stmt = NULL;
3569 gcc_assert (vectype);
3570 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3572 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
3573 || SCALAR_FLOAT_TYPE_P (scalar_type));
3575 if (nested_in_vect_loop_p (loop, stmt))
3576 nested_in_vect_loop = true;
3577 else
3578 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
3580 /* In case of double reduction we only create a vector variable to be put
3581 in the reduction phi node. The actual statement creation is done in
3582 vect_create_epilog_for_reduction. */
3583 if (adjustment_def && nested_in_vect_loop
3584 && TREE_CODE (init_val) == SSA_NAME
3585 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
3586 && gimple_code (def_stmt) == GIMPLE_PHI
3587 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
3588 && vinfo_for_stmt (def_stmt)
3589 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
3590 == vect_double_reduction_def)
3592 *adjustment_def = NULL;
3593 return vect_create_destination_var (init_val, vectype);
3596 if (TREE_CONSTANT (init_val))
3598 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3599 init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
3600 else
3601 init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
3603 else
3604 init_value = init_val;
3606 switch (code)
3608 case WIDEN_SUM_EXPR:
3609 case DOT_PROD_EXPR:
3610 case PLUS_EXPR:
3611 case MINUS_EXPR:
3612 case BIT_IOR_EXPR:
3613 case BIT_XOR_EXPR:
3614 case MULT_EXPR:
3615 case BIT_AND_EXPR:
3616 /* ADJUSMENT_DEF is NULL when called from
3617 vect_create_epilog_for_reduction to vectorize double reduction. */
3618 if (adjustment_def)
3620 if (nested_in_vect_loop)
3621 *adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
3622 NULL);
3623 else
3624 *adjustment_def = init_val;
3627 if (code == MULT_EXPR)
3629 real_init_val = dconst1;
3630 int_init_val = 1;
3633 if (code == BIT_AND_EXPR)
3634 int_init_val = -1;
3636 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3637 def_for_init = build_real (scalar_type, real_init_val);
3638 else
3639 def_for_init = build_int_cst (scalar_type, int_init_val);
3641 /* Create a vector of '0' or '1' except the first element. */
3642 elts = XALLOCAVEC (tree, nunits);
3643 for (i = nunits - 2; i >= 0; --i)
3644 elts[i + 1] = def_for_init;
3646 /* Option1: the first element is '0' or '1' as well. */
3647 if (adjustment_def)
3649 elts[0] = def_for_init;
3650 init_def = build_vector (vectype, elts);
3651 break;
3654 /* Option2: the first element is INIT_VAL. */
3655 elts[0] = init_val;
3656 if (TREE_CONSTANT (init_val))
3657 init_def = build_vector (vectype, elts);
3658 else
3660 vec<constructor_elt, va_gc> *v;
3661 vec_alloc (v, nunits);
3662 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
3663 for (i = 1; i < nunits; ++i)
3664 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
3665 init_def = build_constructor (vectype, v);
3668 break;
3670 case MIN_EXPR:
3671 case MAX_EXPR:
3672 case COND_EXPR:
3673 if (adjustment_def)
3675 *adjustment_def = NULL_TREE;
3676 init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
3677 break;
3680 init_def = build_vector_from_val (vectype, init_value);
3681 break;
3683 default:
3684 gcc_unreachable ();
3687 return init_def;
3691 /* Function vect_create_epilog_for_reduction
3693 Create code at the loop-epilog to finalize the result of a reduction
3694 computation.
3696 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
3697 reduction statements.
3698 STMT is the scalar reduction stmt that is being vectorized.
3699 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
3700 number of elements that we can fit in a vectype (nunits). In this case
3701 we have to generate more than one vector stmt - i.e - we need to "unroll"
3702 the vector stmt by a factor VF/nunits. For more details see documentation
3703 in vectorizable_operation.
3704 REDUC_CODE is the tree-code for the epilog reduction.
3705 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
3706 computation.
3707 REDUC_INDEX is the index of the operand in the right hand side of the
3708 statement that is defined by REDUCTION_PHI.
3709 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
3710 SLP_NODE is an SLP node containing a group of reduction statements. The
3711 first one in this group is STMT.
3713 This function:
3714 1. Creates the reduction def-use cycles: sets the arguments for
3715 REDUCTION_PHIS:
3716 The loop-entry argument is the vectorized initial-value of the reduction.
3717 The loop-latch argument is taken from VECT_DEFS - the vector of partial
3718 sums.
3719 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
3720 by applying the operation specified by REDUC_CODE if available, or by
3721 other means (whole-vector shifts or a scalar loop).
3722 The function also creates a new phi node at the loop exit to preserve
3723 loop-closed form, as illustrated below.
3725 The flow at the entry to this function:
3727 loop:
3728 vec_def = phi <null, null> # REDUCTION_PHI
3729 VECT_DEF = vector_stmt # vectorized form of STMT
3730 s_loop = scalar_stmt # (scalar) STMT
3731 loop_exit:
3732 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3733 use <s_out0>
3734 use <s_out0>
3736 The above is transformed by this function into:
3738 loop:
3739 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3740 VECT_DEF = vector_stmt # vectorized form of STMT
3741 s_loop = scalar_stmt # (scalar) STMT
3742 loop_exit:
3743 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3744 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3745 v_out2 = reduce <v_out1>
3746 s_out3 = extract_field <v_out2, 0>
3747 s_out4 = adjust_result <s_out3>
3748 use <s_out4>
3749 use <s_out4>
3752 static void
3753 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple stmt,
3754 int ncopies, enum tree_code reduc_code,
3755 vec<gimple> reduction_phis,
3756 int reduc_index, bool double_reduc,
3757 slp_tree slp_node)
3759 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3760 stmt_vec_info prev_phi_info;
3761 tree vectype;
3762 enum machine_mode mode;
3763 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3764 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
3765 basic_block exit_bb;
3766 tree scalar_dest;
3767 tree scalar_type;
3768 gimple new_phi = NULL, phi;
3769 gimple_stmt_iterator exit_gsi;
3770 tree vec_dest;
3771 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
3772 gimple epilog_stmt = NULL;
3773 enum tree_code code = gimple_assign_rhs_code (stmt);
3774 gimple exit_phi;
3775 tree bitsize, bitpos;
3776 tree adjustment_def = NULL;
3777 tree vec_initial_def = NULL;
3778 tree reduction_op, expr, def;
3779 tree orig_name, scalar_result;
3780 imm_use_iterator imm_iter, phi_imm_iter;
3781 use_operand_p use_p, phi_use_p;
3782 bool extract_scalar_result = false;
3783 gimple use_stmt, orig_stmt, reduction_phi = NULL;
3784 bool nested_in_vect_loop = false;
3785 vec<gimple> new_phis = vNULL;
3786 vec<gimple> inner_phis = vNULL;
3787 enum vect_def_type dt = vect_unknown_def_type;
3788 int j, i;
3789 vec<tree> scalar_results = vNULL;
3790 unsigned int group_size = 1, k, ratio;
3791 vec<tree> vec_initial_defs = vNULL;
3792 vec<gimple> phis;
3793 bool slp_reduc = false;
3794 tree new_phi_result;
3795 gimple inner_phi = NULL;
3797 if (slp_node)
3798 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
3800 if (nested_in_vect_loop_p (loop, stmt))
3802 outer_loop = loop;
3803 loop = loop->inner;
3804 nested_in_vect_loop = true;
3805 gcc_assert (!slp_node);
3808 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3810 case GIMPLE_SINGLE_RHS:
3811 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3812 == ternary_op);
3813 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3814 break;
3815 case GIMPLE_UNARY_RHS:
3816 reduction_op = gimple_assign_rhs1 (stmt);
3817 break;
3818 case GIMPLE_BINARY_RHS:
3819 reduction_op = reduc_index ?
3820 gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt);
3821 break;
3822 case GIMPLE_TERNARY_RHS:
3823 reduction_op = gimple_op (stmt, reduc_index + 1);
3824 break;
3825 default:
3826 gcc_unreachable ();
3829 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3830 gcc_assert (vectype);
3831 mode = TYPE_MODE (vectype);
3833 /* 1. Create the reduction def-use cycle:
3834 Set the arguments of REDUCTION_PHIS, i.e., transform
3836 loop:
3837 vec_def = phi <null, null> # REDUCTION_PHI
3838 VECT_DEF = vector_stmt # vectorized form of STMT
3841 into:
3843 loop:
3844 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3845 VECT_DEF = vector_stmt # vectorized form of STMT
3848 (in case of SLP, do it for all the phis). */
3850 /* Get the loop-entry arguments. */
3851 if (slp_node)
3852 vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
3853 NULL, slp_node, reduc_index);
3854 else
3856 vec_initial_defs.create (1);
3857 /* For the case of reduction, vect_get_vec_def_for_operand returns
3858 the scalar def before the loop, that defines the initial value
3859 of the reduction variable. */
3860 vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
3861 &adjustment_def);
3862 vec_initial_defs.quick_push (vec_initial_def);
3865 /* Set phi nodes arguments. */
3866 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
3868 tree vec_init_def = vec_initial_defs[i];
3869 tree def = vect_defs[i];
3870 for (j = 0; j < ncopies; j++)
3872 /* Set the loop-entry arg of the reduction-phi. */
3873 add_phi_arg (phi, vec_init_def, loop_preheader_edge (loop),
3874 UNKNOWN_LOCATION);
3876 /* Set the loop-latch arg for the reduction-phi. */
3877 if (j > 0)
3878 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
3880 add_phi_arg (phi, def, loop_latch_edge (loop), UNKNOWN_LOCATION);
3882 if (dump_enabled_p ())
3884 dump_printf_loc (MSG_NOTE, vect_location,
3885 "transform reduction: created def-use cycle: ");
3886 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
3887 dump_printf (MSG_NOTE, "\n");
3888 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
3889 dump_printf (MSG_NOTE, "\n");
3892 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3896 vec_initial_defs.release ();
3898 /* 2. Create epilog code.
3899 The reduction epilog code operates across the elements of the vector
3900 of partial results computed by the vectorized loop.
3901 The reduction epilog code consists of:
3903 step 1: compute the scalar result in a vector (v_out2)
3904 step 2: extract the scalar result (s_out3) from the vector (v_out2)
3905 step 3: adjust the scalar result (s_out3) if needed.
3907 Step 1 can be accomplished using one the following three schemes:
3908 (scheme 1) using reduc_code, if available.
3909 (scheme 2) using whole-vector shifts, if available.
3910 (scheme 3) using a scalar loop. In this case steps 1+2 above are
3911 combined.
3913 The overall epilog code looks like this:
3915 s_out0 = phi <s_loop> # original EXIT_PHI
3916 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3917 v_out2 = reduce <v_out1> # step 1
3918 s_out3 = extract_field <v_out2, 0> # step 2
3919 s_out4 = adjust_result <s_out3> # step 3
3921 (step 3 is optional, and steps 1 and 2 may be combined).
3922 Lastly, the uses of s_out0 are replaced by s_out4. */
3925 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
3926 v_out1 = phi <VECT_DEF>
3927 Store them in NEW_PHIS. */
3929 exit_bb = single_exit (loop)->dest;
3930 prev_phi_info = NULL;
3931 new_phis.create (vect_defs.length ());
3932 FOR_EACH_VEC_ELT (vect_defs, i, def)
3934 for (j = 0; j < ncopies; j++)
3936 tree new_def = copy_ssa_name (def, NULL);
3937 phi = create_phi_node (new_def, exit_bb);
3938 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
3939 if (j == 0)
3940 new_phis.quick_push (phi);
3941 else
3943 def = vect_get_vec_def_for_stmt_copy (dt, def);
3944 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
3947 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
3948 prev_phi_info = vinfo_for_stmt (phi);
3952 /* The epilogue is created for the outer-loop, i.e., for the loop being
3953 vectorized. Create exit phis for the outer loop. */
3954 if (double_reduc)
3956 loop = outer_loop;
3957 exit_bb = single_exit (loop)->dest;
3958 inner_phis.create (vect_defs.length ());
3959 FOR_EACH_VEC_ELT (new_phis, i, phi)
3961 tree new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
3962 gimple outer_phi = create_phi_node (new_result, exit_bb);
3963 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
3964 PHI_RESULT (phi));
3965 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
3966 loop_vinfo, NULL));
3967 inner_phis.quick_push (phi);
3968 new_phis[i] = outer_phi;
3969 prev_phi_info = vinfo_for_stmt (outer_phi);
3970 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
3972 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3973 new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
3974 outer_phi = create_phi_node (new_result, exit_bb);
3975 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
3976 PHI_RESULT (phi));
3977 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
3978 loop_vinfo, NULL));
3979 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
3980 prev_phi_info = vinfo_for_stmt (outer_phi);
3985 exit_gsi = gsi_after_labels (exit_bb);
3987 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
3988 (i.e. when reduc_code is not available) and in the final adjustment
3989 code (if needed). Also get the original scalar reduction variable as
3990 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
3991 represents a reduction pattern), the tree-code and scalar-def are
3992 taken from the original stmt that the pattern-stmt (STMT) replaces.
3993 Otherwise (it is a regular reduction) - the tree-code and scalar-def
3994 are taken from STMT. */
3996 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3997 if (!orig_stmt)
3999 /* Regular reduction */
4000 orig_stmt = stmt;
4002 else
4004 /* Reduction pattern */
4005 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
4006 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
4007 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
4010 code = gimple_assign_rhs_code (orig_stmt);
4011 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
4012 partial results are added and not subtracted. */
4013 if (code == MINUS_EXPR)
4014 code = PLUS_EXPR;
4016 scalar_dest = gimple_assign_lhs (orig_stmt);
4017 scalar_type = TREE_TYPE (scalar_dest);
4018 scalar_results.create (group_size);
4019 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
4020 bitsize = TYPE_SIZE (scalar_type);
4022 /* In case this is a reduction in an inner-loop while vectorizing an outer
4023 loop - we don't need to extract a single scalar result at the end of the
4024 inner-loop (unless it is double reduction, i.e., the use of reduction is
4025 outside the outer-loop). The final vector of partial results will be used
4026 in the vectorized outer-loop, or reduced to a scalar result at the end of
4027 the outer-loop. */
4028 if (nested_in_vect_loop && !double_reduc)
4029 goto vect_finalize_reduction;
4031 /* SLP reduction without reduction chain, e.g.,
4032 # a1 = phi <a2, a0>
4033 # b1 = phi <b2, b0>
4034 a2 = operation (a1)
4035 b2 = operation (b1) */
4036 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
4038 /* In case of reduction chain, e.g.,
4039 # a1 = phi <a3, a0>
4040 a2 = operation (a1)
4041 a3 = operation (a2),
4043 we may end up with more than one vector result. Here we reduce them to
4044 one vector. */
4045 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4047 tree first_vect = PHI_RESULT (new_phis[0]);
4048 tree tmp;
4049 gimple new_vec_stmt = NULL;
4051 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4052 for (k = 1; k < new_phis.length (); k++)
4054 gimple next_phi = new_phis[k];
4055 tree second_vect = PHI_RESULT (next_phi);
4057 tmp = build2 (code, vectype, first_vect, second_vect);
4058 new_vec_stmt = gimple_build_assign (vec_dest, tmp);
4059 first_vect = make_ssa_name (vec_dest, new_vec_stmt);
4060 gimple_assign_set_lhs (new_vec_stmt, first_vect);
4061 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4064 new_phi_result = first_vect;
4065 if (new_vec_stmt)
4067 new_phis.truncate (0);
4068 new_phis.safe_push (new_vec_stmt);
4071 else
4072 new_phi_result = PHI_RESULT (new_phis[0]);
4074 /* 2.3 Create the reduction code, using one of the three schemes described
4075 above. In SLP we simply need to extract all the elements from the
4076 vector (without reducing them), so we use scalar shifts. */
4077 if (reduc_code != ERROR_MARK && !slp_reduc)
4079 tree tmp;
4081 /*** Case 1: Create:
4082 v_out2 = reduc_expr <v_out1> */
4084 if (dump_enabled_p ())
4085 dump_printf_loc (MSG_NOTE, vect_location,
4086 "Reduce using direct vector reduction.\n");
4088 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4089 tmp = build1 (reduc_code, vectype, new_phi_result);
4090 epilog_stmt = gimple_build_assign (vec_dest, tmp);
4091 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4092 gimple_assign_set_lhs (epilog_stmt, new_temp);
4093 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4095 extract_scalar_result = true;
4097 else
4099 enum tree_code shift_code = ERROR_MARK;
4100 bool have_whole_vector_shift = true;
4101 int bit_offset;
4102 int element_bitsize = tree_low_cst (bitsize, 1);
4103 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
4104 tree vec_temp;
4106 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
4107 shift_code = VEC_RSHIFT_EXPR;
4108 else
4109 have_whole_vector_shift = false;
4111 /* Regardless of whether we have a whole vector shift, if we're
4112 emulating the operation via tree-vect-generic, we don't want
4113 to use it. Only the first round of the reduction is likely
4114 to still be profitable via emulation. */
4115 /* ??? It might be better to emit a reduction tree code here, so that
4116 tree-vect-generic can expand the first round via bit tricks. */
4117 if (!VECTOR_MODE_P (mode))
4118 have_whole_vector_shift = false;
4119 else
4121 optab optab = optab_for_tree_code (code, vectype, optab_default);
4122 if (optab_handler (optab, mode) == CODE_FOR_nothing)
4123 have_whole_vector_shift = false;
4126 if (have_whole_vector_shift && !slp_reduc)
4128 /*** Case 2: Create:
4129 for (offset = VS/2; offset >= element_size; offset/=2)
4131 Create: va' = vec_shift <va, offset>
4132 Create: va = vop <va, va'>
4133 } */
4135 if (dump_enabled_p ())
4136 dump_printf_loc (MSG_NOTE, vect_location,
4137 "Reduce using vector shifts\n");
4139 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4140 new_temp = new_phi_result;
4141 for (bit_offset = vec_size_in_bits/2;
4142 bit_offset >= element_bitsize;
4143 bit_offset /= 2)
4145 tree bitpos = size_int (bit_offset);
4147 epilog_stmt = gimple_build_assign_with_ops (shift_code,
4148 vec_dest, new_temp, bitpos);
4149 new_name = make_ssa_name (vec_dest, epilog_stmt);
4150 gimple_assign_set_lhs (epilog_stmt, new_name);
4151 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4153 epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
4154 new_name, new_temp);
4155 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4156 gimple_assign_set_lhs (epilog_stmt, new_temp);
4157 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4160 extract_scalar_result = true;
4162 else
4164 tree rhs;
4166 /*** Case 3: Create:
4167 s = extract_field <v_out2, 0>
4168 for (offset = element_size;
4169 offset < vector_size;
4170 offset += element_size;)
4172 Create: s' = extract_field <v_out2, offset>
4173 Create: s = op <s, s'> // For non SLP cases
4174 } */
4176 if (dump_enabled_p ())
4177 dump_printf_loc (MSG_NOTE, vect_location,
4178 "Reduce using scalar code.\n");
4180 vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
4181 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
4183 if (gimple_code (new_phi) == GIMPLE_PHI)
4184 vec_temp = PHI_RESULT (new_phi);
4185 else
4186 vec_temp = gimple_assign_lhs (new_phi);
4187 rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
4188 bitsize_zero_node);
4189 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4190 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4191 gimple_assign_set_lhs (epilog_stmt, new_temp);
4192 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4194 /* In SLP we don't need to apply reduction operation, so we just
4195 collect s' values in SCALAR_RESULTS. */
4196 if (slp_reduc)
4197 scalar_results.safe_push (new_temp);
4199 for (bit_offset = element_bitsize;
4200 bit_offset < vec_size_in_bits;
4201 bit_offset += element_bitsize)
4203 tree bitpos = bitsize_int (bit_offset);
4204 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
4205 bitsize, bitpos);
4207 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4208 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
4209 gimple_assign_set_lhs (epilog_stmt, new_name);
4210 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4212 if (slp_reduc)
4214 /* In SLP we don't need to apply reduction operation, so
4215 we just collect s' values in SCALAR_RESULTS. */
4216 new_temp = new_name;
4217 scalar_results.safe_push (new_name);
4219 else
4221 epilog_stmt = gimple_build_assign_with_ops (code,
4222 new_scalar_dest, new_name, new_temp);
4223 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4224 gimple_assign_set_lhs (epilog_stmt, new_temp);
4225 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4230 /* The only case where we need to reduce scalar results in SLP, is
4231 unrolling. If the size of SCALAR_RESULTS is greater than
4232 GROUP_SIZE, we reduce them combining elements modulo
4233 GROUP_SIZE. */
4234 if (slp_reduc)
4236 tree res, first_res, new_res;
4237 gimple new_stmt;
4239 /* Reduce multiple scalar results in case of SLP unrolling. */
4240 for (j = group_size; scalar_results.iterate (j, &res);
4241 j++)
4243 first_res = scalar_results[j % group_size];
4244 new_stmt = gimple_build_assign_with_ops (code,
4245 new_scalar_dest, first_res, res);
4246 new_res = make_ssa_name (new_scalar_dest, new_stmt);
4247 gimple_assign_set_lhs (new_stmt, new_res);
4248 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
4249 scalar_results[j % group_size] = new_res;
4252 else
4253 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
4254 scalar_results.safe_push (new_temp);
4256 extract_scalar_result = false;
4260 /* 2.4 Extract the final scalar result. Create:
4261 s_out3 = extract_field <v_out2, bitpos> */
4263 if (extract_scalar_result)
4265 tree rhs;
4267 if (dump_enabled_p ())
4268 dump_printf_loc (MSG_NOTE, vect_location,
4269 "extract scalar result\n");
4271 if (BYTES_BIG_ENDIAN)
4272 bitpos = size_binop (MULT_EXPR,
4273 bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
4274 TYPE_SIZE (scalar_type));
4275 else
4276 bitpos = bitsize_zero_node;
4278 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
4279 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4280 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4281 gimple_assign_set_lhs (epilog_stmt, new_temp);
4282 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4283 scalar_results.safe_push (new_temp);
4286 vect_finalize_reduction:
4288 if (double_reduc)
4289 loop = loop->inner;
4291 /* 2.5 Adjust the final result by the initial value of the reduction
4292 variable. (When such adjustment is not needed, then
4293 'adjustment_def' is zero). For example, if code is PLUS we create:
4294 new_temp = loop_exit_def + adjustment_def */
4296 if (adjustment_def)
4298 gcc_assert (!slp_reduc);
4299 if (nested_in_vect_loop)
4301 new_phi = new_phis[0];
4302 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
4303 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
4304 new_dest = vect_create_destination_var (scalar_dest, vectype);
4306 else
4308 new_temp = scalar_results[0];
4309 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
4310 expr = build2 (code, scalar_type, new_temp, adjustment_def);
4311 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
4314 epilog_stmt = gimple_build_assign (new_dest, expr);
4315 new_temp = make_ssa_name (new_dest, epilog_stmt);
4316 gimple_assign_set_lhs (epilog_stmt, new_temp);
4317 SSA_NAME_DEF_STMT (new_temp) = epilog_stmt;
4318 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4319 if (nested_in_vect_loop)
4321 set_vinfo_for_stmt (epilog_stmt,
4322 new_stmt_vec_info (epilog_stmt, loop_vinfo,
4323 NULL));
4324 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
4325 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
4327 if (!double_reduc)
4328 scalar_results.quick_push (new_temp);
4329 else
4330 scalar_results[0] = new_temp;
4332 else
4333 scalar_results[0] = new_temp;
4335 new_phis[0] = epilog_stmt;
4338 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
4339 phis with new adjusted scalar results, i.e., replace use <s_out0>
4340 with use <s_out4>.
4342 Transform:
4343 loop_exit:
4344 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4345 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4346 v_out2 = reduce <v_out1>
4347 s_out3 = extract_field <v_out2, 0>
4348 s_out4 = adjust_result <s_out3>
4349 use <s_out0>
4350 use <s_out0>
4352 into:
4354 loop_exit:
4355 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4356 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4357 v_out2 = reduce <v_out1>
4358 s_out3 = extract_field <v_out2, 0>
4359 s_out4 = adjust_result <s_out3>
4360 use <s_out4>
4361 use <s_out4> */
4364 /* In SLP reduction chain we reduce vector results into one vector if
4365 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
4366 the last stmt in the reduction chain, since we are looking for the loop
4367 exit phi node. */
4368 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4370 scalar_dest = gimple_assign_lhs (
4371 SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1]);
4372 group_size = 1;
4375 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
4376 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
4377 need to match SCALAR_RESULTS with corresponding statements. The first
4378 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
4379 the first vector stmt, etc.
4380 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
4381 if (group_size > new_phis.length ())
4383 ratio = group_size / new_phis.length ();
4384 gcc_assert (!(group_size % new_phis.length ()));
4386 else
4387 ratio = 1;
4389 for (k = 0; k < group_size; k++)
4391 if (k % ratio == 0)
4393 epilog_stmt = new_phis[k / ratio];
4394 reduction_phi = reduction_phis[k / ratio];
4395 if (double_reduc)
4396 inner_phi = inner_phis[k / ratio];
4399 if (slp_reduc)
4401 gimple current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
4403 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
4404 /* SLP statements can't participate in patterns. */
4405 gcc_assert (!orig_stmt);
4406 scalar_dest = gimple_assign_lhs (current_stmt);
4409 phis.create (3);
4410 /* Find the loop-closed-use at the loop exit of the original scalar
4411 result. (The reduction result is expected to have two immediate uses -
4412 one at the latch block, and one at the loop exit). */
4413 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4414 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
4415 phis.safe_push (USE_STMT (use_p));
4417 /* While we expect to have found an exit_phi because of loop-closed-ssa
4418 form we can end up without one if the scalar cycle is dead. */
4420 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4422 if (outer_loop)
4424 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
4425 gimple vect_phi;
4427 /* FORNOW. Currently not supporting the case that an inner-loop
4428 reduction is not used in the outer-loop (but only outside the
4429 outer-loop), unless it is double reduction. */
4430 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
4431 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
4432 || double_reduc);
4434 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
4435 if (!double_reduc
4436 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
4437 != vect_double_reduction_def)
4438 continue;
4440 /* Handle double reduction:
4442 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
4443 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
4444 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
4445 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
4447 At that point the regular reduction (stmt2 and stmt3) is
4448 already vectorized, as well as the exit phi node, stmt4.
4449 Here we vectorize the phi node of double reduction, stmt1, and
4450 update all relevant statements. */
4452 /* Go through all the uses of s2 to find double reduction phi
4453 node, i.e., stmt1 above. */
4454 orig_name = PHI_RESULT (exit_phi);
4455 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4457 stmt_vec_info use_stmt_vinfo;
4458 stmt_vec_info new_phi_vinfo;
4459 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
4460 basic_block bb = gimple_bb (use_stmt);
4461 gimple use;
4463 /* Check that USE_STMT is really double reduction phi
4464 node. */
4465 if (gimple_code (use_stmt) != GIMPLE_PHI
4466 || gimple_phi_num_args (use_stmt) != 2
4467 || bb->loop_father != outer_loop)
4468 continue;
4469 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
4470 if (!use_stmt_vinfo
4471 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
4472 != vect_double_reduction_def)
4473 continue;
4475 /* Create vector phi node for double reduction:
4476 vs1 = phi <vs0, vs2>
4477 vs1 was created previously in this function by a call to
4478 vect_get_vec_def_for_operand and is stored in
4479 vec_initial_def;
4480 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
4481 vs0 is created here. */
4483 /* Create vector phi node. */
4484 vect_phi = create_phi_node (vec_initial_def, bb);
4485 new_phi_vinfo = new_stmt_vec_info (vect_phi,
4486 loop_vec_info_for_loop (outer_loop), NULL);
4487 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
4489 /* Create vs0 - initial def of the double reduction phi. */
4490 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
4491 loop_preheader_edge (outer_loop));
4492 init_def = get_initial_def_for_reduction (stmt,
4493 preheader_arg, NULL);
4494 vect_phi_init = vect_init_vector (use_stmt, init_def,
4495 vectype, NULL);
4497 /* Update phi node arguments with vs0 and vs2. */
4498 add_phi_arg (vect_phi, vect_phi_init,
4499 loop_preheader_edge (outer_loop),
4500 UNKNOWN_LOCATION);
4501 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
4502 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
4503 if (dump_enabled_p ())
4505 dump_printf_loc (MSG_NOTE, vect_location,
4506 "created double reduction phi node: ");
4507 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
4508 dump_printf (MSG_NOTE, "\n");
4511 vect_phi_res = PHI_RESULT (vect_phi);
4513 /* Replace the use, i.e., set the correct vs1 in the regular
4514 reduction phi node. FORNOW, NCOPIES is always 1, so the
4515 loop is redundant. */
4516 use = reduction_phi;
4517 for (j = 0; j < ncopies; j++)
4519 edge pr_edge = loop_preheader_edge (loop);
4520 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
4521 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
4527 phis.release ();
4528 if (nested_in_vect_loop)
4530 if (double_reduc)
4531 loop = outer_loop;
4532 else
4533 continue;
4536 phis.create (3);
4537 /* Find the loop-closed-use at the loop exit of the original scalar
4538 result. (The reduction result is expected to have two immediate uses,
4539 one at the latch block, and one at the loop exit). For double
4540 reductions we are looking for exit phis of the outer loop. */
4541 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4543 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
4544 phis.safe_push (USE_STMT (use_p));
4545 else
4547 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
4549 tree phi_res = PHI_RESULT (USE_STMT (use_p));
4551 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
4553 if (!flow_bb_inside_loop_p (loop,
4554 gimple_bb (USE_STMT (phi_use_p))))
4555 phis.safe_push (USE_STMT (phi_use_p));
4561 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4563 /* Replace the uses: */
4564 orig_name = PHI_RESULT (exit_phi);
4565 scalar_result = scalar_results[k];
4566 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4567 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
4568 SET_USE (use_p, scalar_result);
4571 phis.release ();
4574 scalar_results.release ();
4575 inner_phis.release ();
4576 new_phis.release ();
4580 /* Function vectorizable_reduction.
4582 Check if STMT performs a reduction operation that can be vectorized.
4583 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4584 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
4585 Return FALSE if not a vectorizable STMT, TRUE otherwise.
4587 This function also handles reduction idioms (patterns) that have been
4588 recognized in advance during vect_pattern_recog. In this case, STMT may be
4589 of this form:
4590 X = pattern_expr (arg0, arg1, ..., X)
4591 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
4592 sequence that had been detected and replaced by the pattern-stmt (STMT).
4594 In some cases of reduction patterns, the type of the reduction variable X is
4595 different than the type of the other arguments of STMT.
4596 In such cases, the vectype that is used when transforming STMT into a vector
4597 stmt is different than the vectype that is used to determine the
4598 vectorization factor, because it consists of a different number of elements
4599 than the actual number of elements that are being operated upon in parallel.
4601 For example, consider an accumulation of shorts into an int accumulator.
4602 On some targets it's possible to vectorize this pattern operating on 8
4603 shorts at a time (hence, the vectype for purposes of determining the
4604 vectorization factor should be V8HI); on the other hand, the vectype that
4605 is used to create the vector form is actually V4SI (the type of the result).
4607 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
4608 indicates what is the actual level of parallelism (V8HI in the example), so
4609 that the right vectorization factor would be derived. This vectype
4610 corresponds to the type of arguments to the reduction stmt, and should *NOT*
4611 be used to create the vectorized stmt. The right vectype for the vectorized
4612 stmt is obtained from the type of the result X:
4613 get_vectype_for_scalar_type (TREE_TYPE (X))
4615 This means that, contrary to "regular" reductions (or "regular" stmts in
4616 general), the following equation:
4617 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
4618 does *NOT* necessarily hold for reduction patterns. */
4620 bool
4621 vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
4622 gimple *vec_stmt, slp_tree slp_node)
4624 tree vec_dest;
4625 tree scalar_dest;
4626 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
4627 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4628 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4629 tree vectype_in = NULL_TREE;
4630 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4631 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4632 enum tree_code code, orig_code, epilog_reduc_code;
4633 enum machine_mode vec_mode;
4634 int op_type;
4635 optab optab, reduc_optab;
4636 tree new_temp = NULL_TREE;
4637 tree def;
4638 gimple def_stmt;
4639 enum vect_def_type dt;
4640 gimple new_phi = NULL;
4641 tree scalar_type;
4642 bool is_simple_use;
4643 gimple orig_stmt;
4644 stmt_vec_info orig_stmt_info;
4645 tree expr = NULL_TREE;
4646 int i;
4647 int ncopies;
4648 int epilog_copies;
4649 stmt_vec_info prev_stmt_info, prev_phi_info;
4650 bool single_defuse_cycle = false;
4651 tree reduc_def = NULL_TREE;
4652 gimple new_stmt = NULL;
4653 int j;
4654 tree ops[3];
4655 bool nested_cycle = false, found_nested_cycle_def = false;
4656 gimple reduc_def_stmt = NULL;
4657 /* The default is that the reduction variable is the last in statement. */
4658 int reduc_index = 2;
4659 bool double_reduc = false, dummy;
4660 basic_block def_bb;
4661 struct loop * def_stmt_loop, *outer_loop = NULL;
4662 tree def_arg;
4663 gimple def_arg_stmt;
4664 vec<tree> vec_oprnds0 = vNULL;
4665 vec<tree> vec_oprnds1 = vNULL;
4666 vec<tree> vect_defs = vNULL;
4667 vec<gimple> phis = vNULL;
4668 int vec_num;
4669 tree def0, def1, tem, op0, op1 = NULL_TREE;
4671 /* In case of reduction chain we switch to the first stmt in the chain, but
4672 we don't update STMT_INFO, since only the last stmt is marked as reduction
4673 and has reduction properties. */
4674 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4675 stmt = GROUP_FIRST_ELEMENT (stmt_info);
4677 if (nested_in_vect_loop_p (loop, stmt))
4679 outer_loop = loop;
4680 loop = loop->inner;
4681 nested_cycle = true;
4684 /* 1. Is vectorizable reduction? */
4685 /* Not supportable if the reduction variable is used in the loop, unless
4686 it's a reduction chain. */
4687 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
4688 && !GROUP_FIRST_ELEMENT (stmt_info))
4689 return false;
4691 /* Reductions that are not used even in an enclosing outer-loop,
4692 are expected to be "live" (used out of the loop). */
4693 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
4694 && !STMT_VINFO_LIVE_P (stmt_info))
4695 return false;
4697 /* Make sure it was already recognized as a reduction computation. */
4698 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
4699 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
4700 return false;
4702 /* 2. Has this been recognized as a reduction pattern?
4704 Check if STMT represents a pattern that has been recognized
4705 in earlier analysis stages. For stmts that represent a pattern,
4706 the STMT_VINFO_RELATED_STMT field records the last stmt in
4707 the original sequence that constitutes the pattern. */
4709 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4710 if (orig_stmt)
4712 orig_stmt_info = vinfo_for_stmt (orig_stmt);
4713 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
4714 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
4717 /* 3. Check the operands of the operation. The first operands are defined
4718 inside the loop body. The last operand is the reduction variable,
4719 which is defined by the loop-header-phi. */
4721 gcc_assert (is_gimple_assign (stmt));
4723 /* Flatten RHS. */
4724 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
4726 case GIMPLE_SINGLE_RHS:
4727 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
4728 if (op_type == ternary_op)
4730 tree rhs = gimple_assign_rhs1 (stmt);
4731 ops[0] = TREE_OPERAND (rhs, 0);
4732 ops[1] = TREE_OPERAND (rhs, 1);
4733 ops[2] = TREE_OPERAND (rhs, 2);
4734 code = TREE_CODE (rhs);
4736 else
4737 return false;
4738 break;
4740 case GIMPLE_BINARY_RHS:
4741 code = gimple_assign_rhs_code (stmt);
4742 op_type = TREE_CODE_LENGTH (code);
4743 gcc_assert (op_type == binary_op);
4744 ops[0] = gimple_assign_rhs1 (stmt);
4745 ops[1] = gimple_assign_rhs2 (stmt);
4746 break;
4748 case GIMPLE_TERNARY_RHS:
4749 code = gimple_assign_rhs_code (stmt);
4750 op_type = TREE_CODE_LENGTH (code);
4751 gcc_assert (op_type == ternary_op);
4752 ops[0] = gimple_assign_rhs1 (stmt);
4753 ops[1] = gimple_assign_rhs2 (stmt);
4754 ops[2] = gimple_assign_rhs3 (stmt);
4755 break;
4757 case GIMPLE_UNARY_RHS:
4758 return false;
4760 default:
4761 gcc_unreachable ();
4764 if (code == COND_EXPR && slp_node)
4765 return false;
4767 scalar_dest = gimple_assign_lhs (stmt);
4768 scalar_type = TREE_TYPE (scalar_dest);
4769 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
4770 && !SCALAR_FLOAT_TYPE_P (scalar_type))
4771 return false;
4773 /* Do not try to vectorize bit-precision reductions. */
4774 if ((TYPE_PRECISION (scalar_type)
4775 != GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
4776 return false;
4778 /* All uses but the last are expected to be defined in the loop.
4779 The last use is the reduction variable. In case of nested cycle this
4780 assumption is not true: we use reduc_index to record the index of the
4781 reduction variable. */
4782 for (i = 0; i < op_type - 1; i++)
4784 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
4785 if (i == 0 && code == COND_EXPR)
4786 continue;
4788 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
4789 &def_stmt, &def, &dt, &tem);
4790 if (!vectype_in)
4791 vectype_in = tem;
4792 gcc_assert (is_simple_use);
4794 if (dt != vect_internal_def
4795 && dt != vect_external_def
4796 && dt != vect_constant_def
4797 && dt != vect_induction_def
4798 && !(dt == vect_nested_cycle && nested_cycle))
4799 return false;
4801 if (dt == vect_nested_cycle)
4803 found_nested_cycle_def = true;
4804 reduc_def_stmt = def_stmt;
4805 reduc_index = i;
4809 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
4810 &def_stmt, &def, &dt, &tem);
4811 if (!vectype_in)
4812 vectype_in = tem;
4813 gcc_assert (is_simple_use);
4814 if (!(dt == vect_reduction_def
4815 || dt == vect_nested_cycle
4816 || ((dt == vect_internal_def || dt == vect_external_def
4817 || dt == vect_constant_def || dt == vect_induction_def)
4818 && nested_cycle && found_nested_cycle_def)))
4820 /* For pattern recognized stmts, orig_stmt might be a reduction,
4821 but some helper statements for the pattern might not, or
4822 might be COND_EXPRs with reduction uses in the condition. */
4823 gcc_assert (orig_stmt);
4824 return false;
4826 if (!found_nested_cycle_def)
4827 reduc_def_stmt = def_stmt;
4829 gcc_assert (gimple_code (reduc_def_stmt) == GIMPLE_PHI);
4830 if (orig_stmt)
4831 gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
4832 reduc_def_stmt,
4833 !nested_cycle,
4834 &dummy));
4835 else
4837 gimple tmp = vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
4838 !nested_cycle, &dummy);
4839 /* We changed STMT to be the first stmt in reduction chain, hence we
4840 check that in this case the first element in the chain is STMT. */
4841 gcc_assert (stmt == tmp
4842 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
4845 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
4846 return false;
4848 if (slp_node || PURE_SLP_STMT (stmt_info))
4849 ncopies = 1;
4850 else
4851 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4852 / TYPE_VECTOR_SUBPARTS (vectype_in));
4854 gcc_assert (ncopies >= 1);
4856 vec_mode = TYPE_MODE (vectype_in);
4858 if (code == COND_EXPR)
4860 if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0, NULL))
4862 if (dump_enabled_p ())
4863 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4864 "unsupported condition in reduction\n");
4866 return false;
4869 else
4871 /* 4. Supportable by target? */
4873 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
4874 || code == LROTATE_EXPR || code == RROTATE_EXPR)
4876 /* Shifts and rotates are only supported by vectorizable_shifts,
4877 not vectorizable_reduction. */
4878 if (dump_enabled_p ())
4879 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4880 "unsupported shift or rotation.\n");
4881 return false;
4884 /* 4.1. check support for the operation in the loop */
4885 optab = optab_for_tree_code (code, vectype_in, optab_default);
4886 if (!optab)
4888 if (dump_enabled_p ())
4889 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4890 "no optab.\n");
4892 return false;
4895 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
4897 if (dump_enabled_p ())
4898 dump_printf (MSG_NOTE, "op not supported by target.\n");
4900 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
4901 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4902 < vect_min_worthwhile_factor (code))
4903 return false;
4905 if (dump_enabled_p ())
4906 dump_printf (MSG_NOTE, "proceeding using word mode.\n");
4909 /* Worthwhile without SIMD support? */
4910 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
4911 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4912 < vect_min_worthwhile_factor (code))
4914 if (dump_enabled_p ())
4915 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4916 "not worthwhile without SIMD support.\n");
4918 return false;
4922 /* 4.2. Check support for the epilog operation.
4924 If STMT represents a reduction pattern, then the type of the
4925 reduction variable may be different than the type of the rest
4926 of the arguments. For example, consider the case of accumulation
4927 of shorts into an int accumulator; The original code:
4928 S1: int_a = (int) short_a;
4929 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
4931 was replaced with:
4932 STMT: int_acc = widen_sum <short_a, int_acc>
4934 This means that:
4935 1. The tree-code that is used to create the vector operation in the
4936 epilog code (that reduces the partial results) is not the
4937 tree-code of STMT, but is rather the tree-code of the original
4938 stmt from the pattern that STMT is replacing. I.e, in the example
4939 above we want to use 'widen_sum' in the loop, but 'plus' in the
4940 epilog.
4941 2. The type (mode) we use to check available target support
4942 for the vector operation to be created in the *epilog*, is
4943 determined by the type of the reduction variable (in the example
4944 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
4945 However the type (mode) we use to check available target support
4946 for the vector operation to be created *inside the loop*, is
4947 determined by the type of the other arguments to STMT (in the
4948 example we'd check this: optab_handler (widen_sum_optab,
4949 vect_short_mode)).
4951 This is contrary to "regular" reductions, in which the types of all
4952 the arguments are the same as the type of the reduction variable.
4953 For "regular" reductions we can therefore use the same vector type
4954 (and also the same tree-code) when generating the epilog code and
4955 when generating the code inside the loop. */
4957 if (orig_stmt)
4959 /* This is a reduction pattern: get the vectype from the type of the
4960 reduction variable, and get the tree-code from orig_stmt. */
4961 orig_code = gimple_assign_rhs_code (orig_stmt);
4962 gcc_assert (vectype_out);
4963 vec_mode = TYPE_MODE (vectype_out);
4965 else
4967 /* Regular reduction: use the same vectype and tree-code as used for
4968 the vector code inside the loop can be used for the epilog code. */
4969 orig_code = code;
4972 if (nested_cycle)
4974 def_bb = gimple_bb (reduc_def_stmt);
4975 def_stmt_loop = def_bb->loop_father;
4976 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
4977 loop_preheader_edge (def_stmt_loop));
4978 if (TREE_CODE (def_arg) == SSA_NAME
4979 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
4980 && gimple_code (def_arg_stmt) == GIMPLE_PHI
4981 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
4982 && vinfo_for_stmt (def_arg_stmt)
4983 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
4984 == vect_double_reduction_def)
4985 double_reduc = true;
4988 epilog_reduc_code = ERROR_MARK;
4989 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
4991 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
4992 optab_default);
4993 if (!reduc_optab)
4995 if (dump_enabled_p ())
4996 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4997 "no optab for reduction.\n");
4999 epilog_reduc_code = ERROR_MARK;
5002 if (reduc_optab
5003 && optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
5005 if (dump_enabled_p ())
5006 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5007 "reduc op not supported by target.\n");
5009 epilog_reduc_code = ERROR_MARK;
5012 else
5014 if (!nested_cycle || double_reduc)
5016 if (dump_enabled_p ())
5017 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5018 "no reduc code for scalar code.\n");
5020 return false;
5024 if (double_reduc && ncopies > 1)
5026 if (dump_enabled_p ())
5027 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5028 "multiple types in double reduction\n");
5030 return false;
5033 /* In case of widenning multiplication by a constant, we update the type
5034 of the constant to be the type of the other operand. We check that the
5035 constant fits the type in the pattern recognition pass. */
5036 if (code == DOT_PROD_EXPR
5037 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
5039 if (TREE_CODE (ops[0]) == INTEGER_CST)
5040 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
5041 else if (TREE_CODE (ops[1]) == INTEGER_CST)
5042 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
5043 else
5045 if (dump_enabled_p ())
5046 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5047 "invalid types in dot-prod\n");
5049 return false;
5053 if (!vec_stmt) /* transformation not required. */
5055 if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
5056 return false;
5057 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
5058 return true;
5061 /** Transform. **/
5063 if (dump_enabled_p ())
5064 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
5066 /* FORNOW: Multiple types are not supported for condition. */
5067 if (code == COND_EXPR)
5068 gcc_assert (ncopies == 1);
5070 /* Create the destination vector */
5071 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
5073 /* In case the vectorization factor (VF) is bigger than the number
5074 of elements that we can fit in a vectype (nunits), we have to generate
5075 more than one vector stmt - i.e - we need to "unroll" the
5076 vector stmt by a factor VF/nunits. For more details see documentation
5077 in vectorizable_operation. */
5079 /* If the reduction is used in an outer loop we need to generate
5080 VF intermediate results, like so (e.g. for ncopies=2):
5081 r0 = phi (init, r0)
5082 r1 = phi (init, r1)
5083 r0 = x0 + r0;
5084 r1 = x1 + r1;
5085 (i.e. we generate VF results in 2 registers).
5086 In this case we have a separate def-use cycle for each copy, and therefore
5087 for each copy we get the vector def for the reduction variable from the
5088 respective phi node created for this copy.
5090 Otherwise (the reduction is unused in the loop nest), we can combine
5091 together intermediate results, like so (e.g. for ncopies=2):
5092 r = phi (init, r)
5093 r = x0 + r;
5094 r = x1 + r;
5095 (i.e. we generate VF/2 results in a single register).
5096 In this case for each copy we get the vector def for the reduction variable
5097 from the vectorized reduction operation generated in the previous iteration.
5100 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
5102 single_defuse_cycle = true;
5103 epilog_copies = 1;
5105 else
5106 epilog_copies = ncopies;
5108 prev_stmt_info = NULL;
5109 prev_phi_info = NULL;
5110 if (slp_node)
5112 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5113 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out)
5114 == TYPE_VECTOR_SUBPARTS (vectype_in));
5116 else
5118 vec_num = 1;
5119 vec_oprnds0.create (1);
5120 if (op_type == ternary_op)
5121 vec_oprnds1.create (1);
5124 phis.create (vec_num);
5125 vect_defs.create (vec_num);
5126 if (!slp_node)
5127 vect_defs.quick_push (NULL_TREE);
5129 for (j = 0; j < ncopies; j++)
5131 if (j == 0 || !single_defuse_cycle)
5133 for (i = 0; i < vec_num; i++)
5135 /* Create the reduction-phi that defines the reduction
5136 operand. */
5137 new_phi = create_phi_node (vec_dest, loop->header);
5138 set_vinfo_for_stmt (new_phi,
5139 new_stmt_vec_info (new_phi, loop_vinfo,
5140 NULL));
5141 if (j == 0 || slp_node)
5142 phis.quick_push (new_phi);
5146 if (code == COND_EXPR)
5148 gcc_assert (!slp_node);
5149 vectorizable_condition (stmt, gsi, vec_stmt,
5150 PHI_RESULT (phis[0]),
5151 reduc_index, NULL);
5152 /* Multiple types are not supported for condition. */
5153 break;
5156 /* Handle uses. */
5157 if (j == 0)
5159 op0 = ops[!reduc_index];
5160 if (op_type == ternary_op)
5162 if (reduc_index == 0)
5163 op1 = ops[2];
5164 else
5165 op1 = ops[1];
5168 if (slp_node)
5169 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
5170 slp_node, -1);
5171 else
5173 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
5174 stmt, NULL);
5175 vec_oprnds0.quick_push (loop_vec_def0);
5176 if (op_type == ternary_op)
5178 loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt,
5179 NULL);
5180 vec_oprnds1.quick_push (loop_vec_def1);
5184 else
5186 if (!slp_node)
5188 enum vect_def_type dt;
5189 gimple dummy_stmt;
5190 tree dummy;
5192 vect_is_simple_use (ops[!reduc_index], stmt, loop_vinfo, NULL,
5193 &dummy_stmt, &dummy, &dt);
5194 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
5195 loop_vec_def0);
5196 vec_oprnds0[0] = loop_vec_def0;
5197 if (op_type == ternary_op)
5199 vect_is_simple_use (op1, stmt, loop_vinfo, NULL, &dummy_stmt,
5200 &dummy, &dt);
5201 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
5202 loop_vec_def1);
5203 vec_oprnds1[0] = loop_vec_def1;
5207 if (single_defuse_cycle)
5208 reduc_def = gimple_assign_lhs (new_stmt);
5210 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
5213 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
5215 if (slp_node)
5216 reduc_def = PHI_RESULT (phis[i]);
5217 else
5219 if (!single_defuse_cycle || j == 0)
5220 reduc_def = PHI_RESULT (new_phi);
5223 def1 = ((op_type == ternary_op)
5224 ? vec_oprnds1[i] : NULL);
5225 if (op_type == binary_op)
5227 if (reduc_index == 0)
5228 expr = build2 (code, vectype_out, reduc_def, def0);
5229 else
5230 expr = build2 (code, vectype_out, def0, reduc_def);
5232 else
5234 if (reduc_index == 0)
5235 expr = build3 (code, vectype_out, reduc_def, def0, def1);
5236 else
5238 if (reduc_index == 1)
5239 expr = build3 (code, vectype_out, def0, reduc_def, def1);
5240 else
5241 expr = build3 (code, vectype_out, def0, def1, reduc_def);
5245 new_stmt = gimple_build_assign (vec_dest, expr);
5246 new_temp = make_ssa_name (vec_dest, new_stmt);
5247 gimple_assign_set_lhs (new_stmt, new_temp);
5248 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5250 if (slp_node)
5252 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5253 vect_defs.quick_push (new_temp);
5255 else
5256 vect_defs[0] = new_temp;
5259 if (slp_node)
5260 continue;
5262 if (j == 0)
5263 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5264 else
5265 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5267 prev_stmt_info = vinfo_for_stmt (new_stmt);
5268 prev_phi_info = vinfo_for_stmt (new_phi);
5271 /* Finalize the reduction-phi (set its arguments) and create the
5272 epilog reduction code. */
5273 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
5275 new_temp = gimple_assign_lhs (*vec_stmt);
5276 vect_defs[0] = new_temp;
5279 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
5280 epilog_reduc_code, phis, reduc_index,
5281 double_reduc, slp_node);
5283 phis.release ();
5284 vect_defs.release ();
5285 vec_oprnds0.release ();
5286 vec_oprnds1.release ();
5288 return true;
5291 /* Function vect_min_worthwhile_factor.
5293 For a loop where we could vectorize the operation indicated by CODE,
5294 return the minimum vectorization factor that makes it worthwhile
5295 to use generic vectors. */
5297 vect_min_worthwhile_factor (enum tree_code code)
5299 switch (code)
5301 case PLUS_EXPR:
5302 case MINUS_EXPR:
5303 case NEGATE_EXPR:
5304 return 4;
5306 case BIT_AND_EXPR:
5307 case BIT_IOR_EXPR:
5308 case BIT_XOR_EXPR:
5309 case BIT_NOT_EXPR:
5310 return 2;
5312 default:
5313 return INT_MAX;
5318 /* Function vectorizable_induction
5320 Check if PHI performs an induction computation that can be vectorized.
5321 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
5322 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
5323 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
5325 bool
5326 vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5327 gimple *vec_stmt)
5329 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
5330 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5331 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5332 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5333 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
5334 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
5335 tree vec_def;
5337 gcc_assert (ncopies >= 1);
5338 /* FORNOW. These restrictions should be relaxed. */
5339 if (nested_in_vect_loop_p (loop, phi))
5341 imm_use_iterator imm_iter;
5342 use_operand_p use_p;
5343 gimple exit_phi;
5344 edge latch_e;
5345 tree loop_arg;
5347 if (ncopies > 1)
5349 if (dump_enabled_p ())
5350 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5351 "multiple types in nested loop.\n");
5352 return false;
5355 exit_phi = NULL;
5356 latch_e = loop_latch_edge (loop->inner);
5357 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
5358 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
5360 if (!flow_bb_inside_loop_p (loop->inner,
5361 gimple_bb (USE_STMT (use_p))))
5363 exit_phi = USE_STMT (use_p);
5364 break;
5367 if (exit_phi)
5369 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
5370 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5371 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
5373 if (dump_enabled_p ())
5374 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5375 "inner-loop induction only used outside "
5376 "of the outer vectorized loop.\n");
5377 return false;
5382 if (!STMT_VINFO_RELEVANT_P (stmt_info))
5383 return false;
5385 /* FORNOW: SLP not supported. */
5386 if (STMT_SLP_TYPE (stmt_info))
5387 return false;
5389 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
5391 if (gimple_code (phi) != GIMPLE_PHI)
5392 return false;
5394 if (!vec_stmt) /* transformation not required. */
5396 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
5397 if (dump_enabled_p ())
5398 dump_printf_loc (MSG_NOTE, vect_location,
5399 "=== vectorizable_induction ===\n");
5400 vect_model_induction_cost (stmt_info, ncopies);
5401 return true;
5404 /** Transform. **/
5406 if (dump_enabled_p ())
5407 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
5409 vec_def = get_initial_def_for_induction (phi);
5410 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
5411 return true;
5414 /* Function vectorizable_live_operation.
5416 STMT computes a value that is used outside the loop. Check if
5417 it can be supported. */
5419 bool
5420 vectorizable_live_operation (gimple stmt,
5421 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5422 gimple *vec_stmt)
5424 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5425 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5426 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5427 int i;
5428 int op_type;
5429 tree op;
5430 tree def;
5431 gimple def_stmt;
5432 enum vect_def_type dt;
5433 enum tree_code code;
5434 enum gimple_rhs_class rhs_class;
5436 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
5438 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
5439 return false;
5441 if (!is_gimple_assign (stmt))
5443 if (gimple_call_internal_p (stmt)
5444 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE
5445 && gimple_call_lhs (stmt)
5446 && loop->simduid
5447 && TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME
5448 && loop->simduid
5449 == SSA_NAME_VAR (gimple_call_arg (stmt, 0)))
5451 edge e = single_exit (loop);
5452 basic_block merge_bb = e->dest;
5453 imm_use_iterator imm_iter;
5454 use_operand_p use_p;
5455 tree lhs = gimple_call_lhs (stmt);
5457 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
5459 gimple use_stmt = USE_STMT (use_p);
5460 if (gimple_code (use_stmt) == GIMPLE_PHI
5461 || gimple_bb (use_stmt) == merge_bb)
5463 if (vec_stmt)
5465 tree vfm1
5466 = build_int_cst (unsigned_type_node,
5467 loop_vinfo->vectorization_factor - 1);
5468 SET_PHI_ARG_DEF (use_stmt, e->dest_idx, vfm1);
5470 return true;
5475 return false;
5478 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
5479 return false;
5481 /* FORNOW. CHECKME. */
5482 if (nested_in_vect_loop_p (loop, stmt))
5483 return false;
5485 code = gimple_assign_rhs_code (stmt);
5486 op_type = TREE_CODE_LENGTH (code);
5487 rhs_class = get_gimple_rhs_class (code);
5488 gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
5489 gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
5491 /* FORNOW: support only if all uses are invariant. This means
5492 that the scalar operations can remain in place, unvectorized.
5493 The original last scalar value that they compute will be used. */
5495 for (i = 0; i < op_type; i++)
5497 if (rhs_class == GIMPLE_SINGLE_RHS)
5498 op = TREE_OPERAND (gimple_op (stmt, 1), i);
5499 else
5500 op = gimple_op (stmt, i + 1);
5501 if (op
5502 && !vect_is_simple_use (op, stmt, loop_vinfo, NULL, &def_stmt, &def,
5503 &dt))
5505 if (dump_enabled_p ())
5506 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5507 "use not simple.\n");
5508 return false;
5511 if (dt != vect_external_def && dt != vect_constant_def)
5512 return false;
5515 /* No transformation is required for the cases we currently support. */
5516 return true;
5519 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
5521 static void
5522 vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
5524 ssa_op_iter op_iter;
5525 imm_use_iterator imm_iter;
5526 def_operand_p def_p;
5527 gimple ustmt;
5529 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
5531 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
5533 basic_block bb;
5535 if (!is_gimple_debug (ustmt))
5536 continue;
5538 bb = gimple_bb (ustmt);
5540 if (!flow_bb_inside_loop_p (loop, bb))
5542 if (gimple_debug_bind_p (ustmt))
5544 if (dump_enabled_p ())
5545 dump_printf_loc (MSG_NOTE, vect_location,
5546 "killing debug use\n");
5548 gimple_debug_bind_reset_value (ustmt);
5549 update_stmt (ustmt);
5551 else
5552 gcc_unreachable ();
5558 /* Function vect_transform_loop.
5560 The analysis phase has determined that the loop is vectorizable.
5561 Vectorize the loop - created vectorized stmts to replace the scalar
5562 stmts in the loop, and update the loop exit condition. */
5564 void
5565 vect_transform_loop (loop_vec_info loop_vinfo)
5567 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5568 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
5569 int nbbs = loop->num_nodes;
5570 gimple_stmt_iterator si;
5571 int i;
5572 tree ratio = NULL;
5573 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5574 bool grouped_store;
5575 bool slp_scheduled = false;
5576 unsigned int nunits;
5577 gimple stmt, pattern_stmt;
5578 gimple_seq pattern_def_seq = NULL;
5579 gimple_stmt_iterator pattern_def_si = gsi_none ();
5580 bool transform_pattern_stmt = false;
5581 bool check_profitability = false;
5582 int th;
5583 /* Record number of iterations before we started tampering with the profile. */
5584 gcov_type expected_iterations = expected_loop_iterations_unbounded (loop);
5586 if (dump_enabled_p ())
5587 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===\n");
5589 /* If profile is inprecise, we have chance to fix it up. */
5590 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5591 expected_iterations = LOOP_VINFO_INT_NITERS (loop_vinfo);
5593 /* Use the more conservative vectorization threshold. If the number
5594 of iterations is constant assume the cost check has been performed
5595 by our caller. If the threshold makes all loops profitable that
5596 run at least the vectorization factor number of times checking
5597 is pointless, too. */
5598 th = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
5599 * LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
5600 th = MAX (th, LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo));
5601 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1
5602 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5604 if (dump_enabled_p ())
5605 dump_printf_loc (MSG_NOTE, vect_location,
5606 "Profitability threshold is %d loop iterations.\n",
5607 th);
5608 check_profitability = true;
5611 /* Version the loop first, if required, so the profitability check
5612 comes first. */
5614 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
5615 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
5617 vect_loop_versioning (loop_vinfo, th, check_profitability);
5618 check_profitability = false;
5621 /* Peel the loop if there are data refs with unknown alignment.
5622 Only one data ref with unknown store is allowed. */
5624 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
5626 vect_do_peeling_for_alignment (loop_vinfo, th, check_profitability);
5627 check_profitability = false;
5630 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
5631 compile time constant), or it is a constant that doesn't divide by the
5632 vectorization factor, then an epilog loop needs to be created.
5633 We therefore duplicate the loop: the original loop will be vectorized,
5634 and will compute the first (n/VF) iterations. The second copy of the loop
5635 will remain scalar and will compute the remaining (n%VF) iterations.
5636 (VF is the vectorization factor). */
5638 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
5639 || (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
5640 && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0)
5641 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
5642 vect_do_peeling_for_loop_bound (loop_vinfo, &ratio,
5643 th, check_profitability);
5644 else
5645 ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
5646 LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
5648 /* 1) Make sure the loop header has exactly two entries
5649 2) Make sure we have a preheader basic block. */
5651 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
5653 split_edge (loop_preheader_edge (loop));
5655 /* FORNOW: the vectorizer supports only loops which body consist
5656 of one basic block (header + empty latch). When the vectorizer will
5657 support more involved loop forms, the order by which the BBs are
5658 traversed need to be reconsidered. */
5660 for (i = 0; i < nbbs; i++)
5662 basic_block bb = bbs[i];
5663 stmt_vec_info stmt_info;
5664 gimple phi;
5666 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5668 phi = gsi_stmt (si);
5669 if (dump_enabled_p ())
5671 dump_printf_loc (MSG_NOTE, vect_location,
5672 "------>vectorizing phi: ");
5673 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
5674 dump_printf (MSG_NOTE, "\n");
5676 stmt_info = vinfo_for_stmt (phi);
5677 if (!stmt_info)
5678 continue;
5680 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5681 vect_loop_kill_debug_uses (loop, phi);
5683 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5684 && !STMT_VINFO_LIVE_P (stmt_info))
5685 continue;
5687 if ((TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
5688 != (unsigned HOST_WIDE_INT) vectorization_factor)
5689 && dump_enabled_p ())
5690 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
5692 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
5694 if (dump_enabled_p ())
5695 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
5696 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
5700 pattern_stmt = NULL;
5701 for (si = gsi_start_bb (bb); !gsi_end_p (si) || transform_pattern_stmt;)
5703 bool is_store;
5705 if (transform_pattern_stmt)
5706 stmt = pattern_stmt;
5707 else
5709 stmt = gsi_stmt (si);
5710 /* During vectorization remove existing clobber stmts. */
5711 if (gimple_clobber_p (stmt))
5713 unlink_stmt_vdef (stmt);
5714 gsi_remove (&si, true);
5715 release_defs (stmt);
5716 continue;
5720 if (dump_enabled_p ())
5722 dump_printf_loc (MSG_NOTE, vect_location,
5723 "------>vectorizing statement: ");
5724 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
5725 dump_printf (MSG_NOTE, "\n");
5728 stmt_info = vinfo_for_stmt (stmt);
5730 /* vector stmts created in the outer-loop during vectorization of
5731 stmts in an inner-loop may not have a stmt_info, and do not
5732 need to be vectorized. */
5733 if (!stmt_info)
5735 gsi_next (&si);
5736 continue;
5739 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5740 vect_loop_kill_debug_uses (loop, stmt);
5742 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5743 && !STMT_VINFO_LIVE_P (stmt_info))
5745 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5746 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5747 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5748 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5750 stmt = pattern_stmt;
5751 stmt_info = vinfo_for_stmt (stmt);
5753 else
5755 gsi_next (&si);
5756 continue;
5759 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5760 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5761 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5762 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5763 transform_pattern_stmt = true;
5765 /* If pattern statement has def stmts, vectorize them too. */
5766 if (is_pattern_stmt_p (stmt_info))
5768 if (pattern_def_seq == NULL)
5770 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
5771 pattern_def_si = gsi_start (pattern_def_seq);
5773 else if (!gsi_end_p (pattern_def_si))
5774 gsi_next (&pattern_def_si);
5775 if (pattern_def_seq != NULL)
5777 gimple pattern_def_stmt = NULL;
5778 stmt_vec_info pattern_def_stmt_info = NULL;
5780 while (!gsi_end_p (pattern_def_si))
5782 pattern_def_stmt = gsi_stmt (pattern_def_si);
5783 pattern_def_stmt_info
5784 = vinfo_for_stmt (pattern_def_stmt);
5785 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
5786 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
5787 break;
5788 gsi_next (&pattern_def_si);
5791 if (!gsi_end_p (pattern_def_si))
5793 if (dump_enabled_p ())
5795 dump_printf_loc (MSG_NOTE, vect_location,
5796 "==> vectorizing pattern def "
5797 "stmt: ");
5798 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
5799 pattern_def_stmt, 0);
5800 dump_printf (MSG_NOTE, "\n");
5803 stmt = pattern_def_stmt;
5804 stmt_info = pattern_def_stmt_info;
5806 else
5808 pattern_def_si = gsi_none ();
5809 transform_pattern_stmt = false;
5812 else
5813 transform_pattern_stmt = false;
5816 gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
5817 nunits = (unsigned int) TYPE_VECTOR_SUBPARTS (
5818 STMT_VINFO_VECTYPE (stmt_info));
5819 if (!STMT_SLP_TYPE (stmt_info)
5820 && nunits != (unsigned int) vectorization_factor
5821 && dump_enabled_p ())
5822 /* For SLP VF is set according to unrolling factor, and not to
5823 vector size, hence for SLP this print is not valid. */
5824 dump_printf_loc (MSG_NOTE, vect_location,
5825 "multiple-types.\n");
5827 /* SLP. Schedule all the SLP instances when the first SLP stmt is
5828 reached. */
5829 if (STMT_SLP_TYPE (stmt_info))
5831 if (!slp_scheduled)
5833 slp_scheduled = true;
5835 if (dump_enabled_p ())
5836 dump_printf_loc (MSG_NOTE, vect_location,
5837 "=== scheduling SLP instances ===\n");
5839 vect_schedule_slp (loop_vinfo, NULL);
5842 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
5843 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
5845 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
5847 pattern_def_seq = NULL;
5848 gsi_next (&si);
5850 continue;
5854 /* -------- vectorize statement ------------ */
5855 if (dump_enabled_p ())
5856 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
5858 grouped_store = false;
5859 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
5860 if (is_store)
5862 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
5864 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
5865 interleaving chain was completed - free all the stores in
5866 the chain. */
5867 gsi_next (&si);
5868 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
5869 continue;
5871 else
5873 /* Free the attached stmt_vec_info and remove the stmt. */
5874 gimple store = gsi_stmt (si);
5875 free_stmt_vec_info (store);
5876 unlink_stmt_vdef (store);
5877 gsi_remove (&si, true);
5878 release_defs (store);
5879 continue;
5883 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
5885 pattern_def_seq = NULL;
5886 gsi_next (&si);
5888 } /* stmts in BB */
5889 } /* BBs in loop */
5891 slpeel_make_loop_iterate_ntimes (loop, ratio);
5893 /* Reduce loop iterations by the vectorization factor. */
5894 scale_loop_profile (loop, GCOV_COMPUTE_SCALE (1, vectorization_factor),
5895 expected_iterations / vectorization_factor);
5896 loop->nb_iterations_upper_bound
5897 = loop->nb_iterations_upper_bound.udiv (double_int::from_uhwi (vectorization_factor),
5898 FLOOR_DIV_EXPR);
5899 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
5900 && loop->nb_iterations_upper_bound != double_int_zero)
5901 loop->nb_iterations_upper_bound = loop->nb_iterations_upper_bound - double_int_one;
5902 if (loop->any_estimate)
5904 loop->nb_iterations_estimate
5905 = loop->nb_iterations_estimate.udiv (double_int::from_uhwi (vectorization_factor),
5906 FLOOR_DIV_EXPR);
5907 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
5908 && loop->nb_iterations_estimate != double_int_zero)
5909 loop->nb_iterations_estimate = loop->nb_iterations_estimate - double_int_one;
5912 if (dump_enabled_p ())
5914 dump_printf_loc (MSG_NOTE, vect_location,
5915 "LOOP VECTORIZED\n");
5916 if (loop->inner)
5917 dump_printf_loc (MSG_NOTE, vect_location,
5918 "OUTER LOOP VECTORIZED\n");
5919 dump_printf (MSG_NOTE, "\n");