1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
25 #include "rtl-error.h"
27 #include "insn-config.h"
28 #include "insn-attr.h"
29 #include "hard-reg-set.h"
32 #include "addresses.h"
36 #include "basic-block.h"
39 #include "tree-pass.h"
41 #include "insn-codes.h"
43 #ifndef STACK_PUSH_CODE
44 #ifdef STACK_GROWS_DOWNWARD
45 #define STACK_PUSH_CODE PRE_DEC
47 #define STACK_PUSH_CODE PRE_INC
51 #ifndef STACK_POP_CODE
52 #ifdef STACK_GROWS_DOWNWARD
53 #define STACK_POP_CODE POST_INC
55 #define STACK_POP_CODE POST_DEC
59 static void validate_replace_rtx_1 (rtx
*, rtx
, rtx
, rtx
, bool);
60 static void validate_replace_src_1 (rtx
*, void *);
61 static rtx
split_insn (rtx
);
63 /* Nonzero means allow operands to be volatile.
64 This should be 0 if you are generating rtl, such as if you are calling
65 the functions in optabs.c and expmed.c (most of the time).
66 This should be 1 if all valid insns need to be recognized,
67 such as in reginfo.c and final.c and reload.c.
69 init_recog and init_recog_no_volatile are responsible for setting this. */
73 struct recog_data_d recog_data
;
75 /* Contains a vector of operand_alternative structures for every operand.
76 Set up by preprocess_constraints. */
77 struct operand_alternative recog_op_alt
[MAX_RECOG_OPERANDS
][MAX_RECOG_ALTERNATIVES
];
79 /* On return from `constrain_operands', indicate which alternative
82 int which_alternative
;
84 /* Nonzero after end of reload pass.
85 Set to 1 or 0 by toplev.c.
86 Controls the significance of (SUBREG (MEM)). */
90 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
91 int epilogue_completed
;
93 /* Initialize data used by the function `recog'.
94 This must be called once in the compilation of a function
95 before any insn recognition may be done in the function. */
98 init_recog_no_volatile (void)
110 /* Return true if labels in asm operands BODY are LABEL_REFs. */
113 asm_labels_ok (rtx body
)
118 asmop
= extract_asm_operands (body
);
119 if (asmop
== NULL_RTX
)
122 for (i
= 0; i
< ASM_OPERANDS_LABEL_LENGTH (asmop
); i
++)
123 if (GET_CODE (ASM_OPERANDS_LABEL (asmop
, i
)) != LABEL_REF
)
129 /* Check that X is an insn-body for an `asm' with operands
130 and that the operands mentioned in it are legitimate. */
133 check_asm_operands (rtx x
)
137 const char **constraints
;
140 if (!asm_labels_ok (x
))
143 /* Post-reload, be more strict with things. */
144 if (reload_completed
)
146 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
147 extract_insn (make_insn_raw (x
));
148 constrain_operands (1);
149 return which_alternative
>= 0;
152 noperands
= asm_noperands (x
);
158 operands
= XALLOCAVEC (rtx
, noperands
);
159 constraints
= XALLOCAVEC (const char *, noperands
);
161 decode_asm_operands (x
, operands
, NULL
, constraints
, NULL
, NULL
);
163 for (i
= 0; i
< noperands
; i
++)
165 const char *c
= constraints
[i
];
168 if (! asm_operand_ok (operands
[i
], c
, constraints
))
175 /* Static data for the next two routines. */
177 typedef struct change_t
186 static change_t
*changes
;
187 static int changes_allocated
;
189 static int num_changes
= 0;
191 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
192 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
193 the change is simply made.
195 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
196 will be called with the address and mode as parameters. If OBJECT is
197 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
200 IN_GROUP is nonzero if this is part of a group of changes that must be
201 performed as a group. In that case, the changes will be stored. The
202 function `apply_change_group' will validate and apply the changes.
204 If IN_GROUP is zero, this is a single change. Try to recognize the insn
205 or validate the memory reference with the change applied. If the result
206 is not valid for the machine, suppress the change and return zero.
207 Otherwise, perform the change and return 1. */
210 validate_change_1 (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
, bool unshare
)
214 if (old
== new_rtx
|| rtx_equal_p (old
, new_rtx
))
217 gcc_assert (in_group
!= 0 || num_changes
== 0);
221 /* Save the information describing this change. */
222 if (num_changes
>= changes_allocated
)
224 if (changes_allocated
== 0)
225 /* This value allows for repeated substitutions inside complex
226 indexed addresses, or changes in up to 5 insns. */
227 changes_allocated
= MAX_RECOG_OPERANDS
* 5;
229 changes_allocated
*= 2;
231 changes
= XRESIZEVEC (change_t
, changes
, changes_allocated
);
234 changes
[num_changes
].object
= object
;
235 changes
[num_changes
].loc
= loc
;
236 changes
[num_changes
].old
= old
;
237 changes
[num_changes
].unshare
= unshare
;
239 if (object
&& !MEM_P (object
))
241 /* Set INSN_CODE to force rerecognition of insn. Save old code in
243 changes
[num_changes
].old_code
= INSN_CODE (object
);
244 INSN_CODE (object
) = -1;
249 /* If we are making a group of changes, return 1. Otherwise, validate the
250 change group we made. */
255 return apply_change_group ();
258 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
262 validate_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
264 return validate_change_1 (object
, loc
, new_rtx
, in_group
, false);
267 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
271 validate_unshare_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
273 return validate_change_1 (object
, loc
, new_rtx
, in_group
, true);
277 /* Keep X canonicalized if some changes have made it non-canonical; only
278 modifies the operands of X, not (for example) its code. Simplifications
279 are not the job of this routine.
281 Return true if anything was changed. */
283 canonicalize_change_group (rtx insn
, rtx x
)
285 if (COMMUTATIVE_P (x
)
286 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
288 /* Oops, the caller has made X no longer canonical.
289 Let's redo the changes in the correct order. */
290 rtx tem
= XEXP (x
, 0);
291 validate_unshare_change (insn
, &XEXP (x
, 0), XEXP (x
, 1), 1);
292 validate_unshare_change (insn
, &XEXP (x
, 1), tem
, 1);
300 /* This subroutine of apply_change_group verifies whether the changes to INSN
301 were valid; i.e. whether INSN can still be recognized.
303 If IN_GROUP is true clobbers which have to be added in order to
304 match the instructions will be added to the current change group.
305 Otherwise the changes will take effect immediately. */
308 insn_invalid_p (rtx insn
, bool in_group
)
310 rtx pat
= PATTERN (insn
);
311 int num_clobbers
= 0;
312 /* If we are before reload and the pattern is a SET, see if we can add
314 int icode
= recog (pat
, insn
,
315 (GET_CODE (pat
) == SET
316 && ! reload_completed
&& ! reload_in_progress
)
317 ? &num_clobbers
: 0);
318 int is_asm
= icode
< 0 && asm_noperands (PATTERN (insn
)) >= 0;
321 /* If this is an asm and the operand aren't legal, then fail. Likewise if
322 this is not an asm and the insn wasn't recognized. */
323 if ((is_asm
&& ! check_asm_operands (PATTERN (insn
)))
324 || (!is_asm
&& icode
< 0))
327 /* If we have to add CLOBBERs, fail if we have to add ones that reference
328 hard registers since our callers can't know if they are live or not.
329 Otherwise, add them. */
330 if (num_clobbers
> 0)
334 if (added_clobbers_hard_reg_p (icode
))
337 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (num_clobbers
+ 1));
338 XVECEXP (newpat
, 0, 0) = pat
;
339 add_clobbers (newpat
, icode
);
341 validate_change (insn
, &PATTERN (insn
), newpat
, 1);
343 PATTERN (insn
) = pat
= newpat
;
346 /* After reload, verify that all constraints are satisfied. */
347 if (reload_completed
)
351 if (! constrain_operands (1))
355 INSN_CODE (insn
) = icode
;
359 /* Return number of changes made and not validated yet. */
361 num_changes_pending (void)
366 /* Tentatively apply the changes numbered NUM and up.
367 Return 1 if all changes are valid, zero otherwise. */
370 verify_changes (int num
)
373 rtx last_validated
= NULL_RTX
;
375 /* The changes have been applied and all INSN_CODEs have been reset to force
378 The changes are valid if we aren't given an object, or if we are
379 given a MEM and it still is a valid address, or if this is in insn
380 and it is recognized. In the latter case, if reload has completed,
381 we also require that the operands meet the constraints for
384 for (i
= num
; i
< num_changes
; i
++)
386 rtx object
= changes
[i
].object
;
388 /* If there is no object to test or if it is the same as the one we
389 already tested, ignore it. */
390 if (object
== 0 || object
== last_validated
)
395 if (! memory_address_addr_space_p (GET_MODE (object
),
397 MEM_ADDR_SPACE (object
)))
400 else if (/* changes[i].old might be zero, e.g. when putting a
401 REG_FRAME_RELATED_EXPR into a previously empty list. */
403 && REG_P (changes
[i
].old
)
404 && asm_noperands (PATTERN (object
)) > 0
405 && REG_EXPR (changes
[i
].old
) != NULL_TREE
406 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes
[i
].old
))
407 && DECL_REGISTER (REG_EXPR (changes
[i
].old
)))
409 /* Don't allow changes of hard register operands to inline
410 assemblies if they have been defined as register asm ("x"). */
413 else if (DEBUG_INSN_P (object
))
415 else if (insn_invalid_p (object
, true))
417 rtx pat
= PATTERN (object
);
419 /* Perhaps we couldn't recognize the insn because there were
420 extra CLOBBERs at the end. If so, try to re-recognize
421 without the last CLOBBER (later iterations will cause each of
422 them to be eliminated, in turn). But don't do this if we
423 have an ASM_OPERAND. */
424 if (GET_CODE (pat
) == PARALLEL
425 && GET_CODE (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1)) == CLOBBER
426 && asm_noperands (PATTERN (object
)) < 0)
430 if (XVECLEN (pat
, 0) == 2)
431 newpat
= XVECEXP (pat
, 0, 0);
437 = gen_rtx_PARALLEL (VOIDmode
,
438 rtvec_alloc (XVECLEN (pat
, 0) - 1));
439 for (j
= 0; j
< XVECLEN (newpat
, 0); j
++)
440 XVECEXP (newpat
, 0, j
) = XVECEXP (pat
, 0, j
);
443 /* Add a new change to this group to replace the pattern
444 with this new pattern. Then consider this change
445 as having succeeded. The change we added will
446 cause the entire call to fail if things remain invalid.
448 Note that this can lose if a later change than the one
449 we are processing specified &XVECEXP (PATTERN (object), 0, X)
450 but this shouldn't occur. */
452 validate_change (object
, &PATTERN (object
), newpat
, 1);
455 else if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
456 || GET_CODE (pat
) == VAR_LOCATION
)
457 /* If this insn is a CLOBBER or USE, it is always valid, but is
463 last_validated
= object
;
466 return (i
== num_changes
);
469 /* A group of changes has previously been issued with validate_change
470 and verified with verify_changes. Call df_insn_rescan for each of
471 the insn changed and clear num_changes. */
474 confirm_change_group (void)
477 rtx last_object
= NULL
;
479 for (i
= 0; i
< num_changes
; i
++)
481 rtx object
= changes
[i
].object
;
483 if (changes
[i
].unshare
)
484 *changes
[i
].loc
= copy_rtx (*changes
[i
].loc
);
486 /* Avoid unnecessary rescanning when multiple changes to same instruction
490 if (object
!= last_object
&& last_object
&& INSN_P (last_object
))
491 df_insn_rescan (last_object
);
492 last_object
= object
;
496 if (last_object
&& INSN_P (last_object
))
497 df_insn_rescan (last_object
);
501 /* Apply a group of changes previously issued with `validate_change'.
502 If all changes are valid, call confirm_change_group and return 1,
503 otherwise, call cancel_changes and return 0. */
506 apply_change_group (void)
508 if (verify_changes (0))
510 confirm_change_group ();
521 /* Return the number of changes so far in the current group. */
524 num_validated_changes (void)
529 /* Retract the changes numbered NUM and up. */
532 cancel_changes (int num
)
536 /* Back out all the changes. Do this in the opposite order in which
538 for (i
= num_changes
- 1; i
>= num
; i
--)
540 *changes
[i
].loc
= changes
[i
].old
;
541 if (changes
[i
].object
&& !MEM_P (changes
[i
].object
))
542 INSN_CODE (changes
[i
].object
) = changes
[i
].old_code
;
547 /* Reduce conditional compilation elsewhere. */
550 #define CODE_FOR_extv CODE_FOR_nothing
554 #define CODE_FOR_extzv CODE_FOR_nothing
557 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
561 simplify_while_replacing (rtx
*loc
, rtx to
, rtx object
,
562 enum machine_mode op0_mode
)
565 enum rtx_code code
= GET_CODE (x
);
568 if (SWAPPABLE_OPERANDS_P (x
)
569 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
571 validate_unshare_change (object
, loc
,
572 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x
) ? code
573 : swap_condition (code
),
574 GET_MODE (x
), XEXP (x
, 1),
583 /* If we have a PLUS whose second operand is now a CONST_INT, use
584 simplify_gen_binary to try to simplify it.
585 ??? We may want later to remove this, once simplification is
586 separated from this function. */
587 if (CONST_INT_P (XEXP (x
, 1)) && XEXP (x
, 1) == to
)
588 validate_change (object
, loc
,
590 (PLUS
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1)), 1);
593 if (CONST_SCALAR_INT_P (XEXP (x
, 1)))
594 validate_change (object
, loc
,
596 (PLUS
, GET_MODE (x
), XEXP (x
, 0),
597 simplify_gen_unary (NEG
,
598 GET_MODE (x
), XEXP (x
, 1),
603 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
605 new_rtx
= simplify_gen_unary (code
, GET_MODE (x
), XEXP (x
, 0),
607 /* If any of the above failed, substitute in something that
608 we know won't be recognized. */
610 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
611 validate_change (object
, loc
, new_rtx
, 1);
615 /* All subregs possible to simplify should be simplified. */
616 new_rtx
= simplify_subreg (GET_MODE (x
), SUBREG_REG (x
), op0_mode
,
619 /* Subregs of VOIDmode operands are incorrect. */
620 if (!new_rtx
&& GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
621 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
623 validate_change (object
, loc
, new_rtx
, 1);
627 /* If we are replacing a register with memory, try to change the memory
628 to be the mode required for memory in extract operations (this isn't
629 likely to be an insertion operation; if it was, nothing bad will
630 happen, we might just fail in some cases). */
632 if (MEM_P (XEXP (x
, 0))
633 && CONST_INT_P (XEXP (x
, 1))
634 && CONST_INT_P (XEXP (x
, 2))
635 && !mode_dependent_address_p (XEXP (XEXP (x
, 0), 0),
636 MEM_ADDR_SPACE (XEXP (x
, 0)))
637 && !MEM_VOLATILE_P (XEXP (x
, 0)))
639 enum machine_mode wanted_mode
= VOIDmode
;
640 enum machine_mode is_mode
= GET_MODE (XEXP (x
, 0));
641 int pos
= INTVAL (XEXP (x
, 2));
643 if (GET_CODE (x
) == ZERO_EXTRACT
&& HAVE_extzv
)
645 wanted_mode
= insn_data
[CODE_FOR_extzv
].operand
[1].mode
;
646 if (wanted_mode
== VOIDmode
)
647 wanted_mode
= word_mode
;
649 else if (GET_CODE (x
) == SIGN_EXTRACT
&& HAVE_extv
)
651 wanted_mode
= insn_data
[CODE_FOR_extv
].operand
[1].mode
;
652 if (wanted_mode
== VOIDmode
)
653 wanted_mode
= word_mode
;
656 /* If we have a narrower mode, we can do something. */
657 if (wanted_mode
!= VOIDmode
658 && GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
660 int offset
= pos
/ BITS_PER_UNIT
;
663 /* If the bytes and bits are counted differently, we
664 must adjust the offset. */
665 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
667 (GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (wanted_mode
) -
670 gcc_assert (GET_MODE_PRECISION (wanted_mode
)
671 == GET_MODE_BITSIZE (wanted_mode
));
672 pos
%= GET_MODE_BITSIZE (wanted_mode
);
674 newmem
= adjust_address_nv (XEXP (x
, 0), wanted_mode
, offset
);
676 validate_change (object
, &XEXP (x
, 2), GEN_INT (pos
), 1);
677 validate_change (object
, &XEXP (x
, 0), newmem
, 1);
688 /* Replace every occurrence of FROM in X with TO. Mark each change with
689 validate_change passing OBJECT. */
692 validate_replace_rtx_1 (rtx
*loc
, rtx from
, rtx to
, rtx object
,
699 enum machine_mode op0_mode
= VOIDmode
;
700 int prev_changes
= num_changes
;
706 fmt
= GET_RTX_FORMAT (code
);
708 op0_mode
= GET_MODE (XEXP (x
, 0));
710 /* X matches FROM if it is the same rtx or they are both referring to the
711 same register in the same mode. Avoid calling rtx_equal_p unless the
712 operands look similar. */
715 || (REG_P (x
) && REG_P (from
)
716 && GET_MODE (x
) == GET_MODE (from
)
717 && REGNO (x
) == REGNO (from
))
718 || (GET_CODE (x
) == GET_CODE (from
) && GET_MODE (x
) == GET_MODE (from
)
719 && rtx_equal_p (x
, from
)))
721 validate_unshare_change (object
, loc
, to
, 1);
725 /* Call ourself recursively to perform the replacements.
726 We must not replace inside already replaced expression, otherwise we
727 get infinite recursion for replacements like (reg X)->(subreg (reg X))
728 done by regmove, so we must special case shared ASM_OPERANDS. */
730 if (GET_CODE (x
) == PARALLEL
)
732 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
734 if (j
&& GET_CODE (XVECEXP (x
, 0, j
)) == SET
735 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == ASM_OPERANDS
)
737 /* Verify that operands are really shared. */
738 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x
, 0, 0)))
739 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
741 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x
, 0, j
)),
742 from
, to
, object
, simplify
);
745 validate_replace_rtx_1 (&XVECEXP (x
, 0, j
), from
, to
, object
,
750 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
753 validate_replace_rtx_1 (&XEXP (x
, i
), from
, to
, object
, simplify
);
754 else if (fmt
[i
] == 'E')
755 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
756 validate_replace_rtx_1 (&XVECEXP (x
, i
, j
), from
, to
, object
,
760 /* If we didn't substitute, there is nothing more to do. */
761 if (num_changes
== prev_changes
)
764 /* Allow substituted expression to have different mode. This is used by
765 regmove to change mode of pseudo register. */
766 if (fmt
[0] == 'e' && GET_MODE (XEXP (x
, 0)) != VOIDmode
)
767 op0_mode
= GET_MODE (XEXP (x
, 0));
769 /* Do changes needed to keep rtx consistent. Don't do any other
770 simplifications, as it is not our job. */
772 simplify_while_replacing (loc
, to
, object
, op0_mode
);
775 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
776 with TO. After all changes have been made, validate by seeing
777 if INSN is still valid. */
780 validate_replace_rtx_subexp (rtx from
, rtx to
, rtx insn
, rtx
*loc
)
782 validate_replace_rtx_1 (loc
, from
, to
, insn
, true);
783 return apply_change_group ();
786 /* Try replacing every occurrence of FROM in INSN with TO. After all
787 changes have been made, validate by seeing if INSN is still valid. */
790 validate_replace_rtx (rtx from
, rtx to
, rtx insn
)
792 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
793 return apply_change_group ();
796 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
797 is a part of INSN. After all changes have been made, validate by seeing if
799 validate_replace_rtx (from, to, insn) is equivalent to
800 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
803 validate_replace_rtx_part (rtx from
, rtx to
, rtx
*where
, rtx insn
)
805 validate_replace_rtx_1 (where
, from
, to
, insn
, true);
806 return apply_change_group ();
809 /* Same as above, but do not simplify rtx afterwards. */
811 validate_replace_rtx_part_nosimplify (rtx from
, rtx to
, rtx
*where
,
814 validate_replace_rtx_1 (where
, from
, to
, insn
, false);
815 return apply_change_group ();
819 /* Try replacing every occurrence of FROM in INSN with TO. This also
820 will replace in REG_EQUAL and REG_EQUIV notes. */
823 validate_replace_rtx_group (rtx from
, rtx to
, rtx insn
)
826 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
827 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
828 if (REG_NOTE_KIND (note
) == REG_EQUAL
829 || REG_NOTE_KIND (note
) == REG_EQUIV
)
830 validate_replace_rtx_1 (&XEXP (note
, 0), from
, to
, insn
, true);
833 /* Function called by note_uses to replace used subexpressions. */
834 struct validate_replace_src_data
836 rtx from
; /* Old RTX */
837 rtx to
; /* New RTX */
838 rtx insn
; /* Insn in which substitution is occurring. */
842 validate_replace_src_1 (rtx
*x
, void *data
)
844 struct validate_replace_src_data
*d
845 = (struct validate_replace_src_data
*) data
;
847 validate_replace_rtx_1 (x
, d
->from
, d
->to
, d
->insn
, true);
850 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
854 validate_replace_src_group (rtx from
, rtx to
, rtx insn
)
856 struct validate_replace_src_data d
;
861 note_uses (&PATTERN (insn
), validate_replace_src_1
, &d
);
864 /* Try simplify INSN.
865 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
866 pattern and return true if something was simplified. */
869 validate_simplify_insn (rtx insn
)
875 pat
= PATTERN (insn
);
877 if (GET_CODE (pat
) == SET
)
879 newpat
= simplify_rtx (SET_SRC (pat
));
880 if (newpat
&& !rtx_equal_p (SET_SRC (pat
), newpat
))
881 validate_change (insn
, &SET_SRC (pat
), newpat
, 1);
882 newpat
= simplify_rtx (SET_DEST (pat
));
883 if (newpat
&& !rtx_equal_p (SET_DEST (pat
), newpat
))
884 validate_change (insn
, &SET_DEST (pat
), newpat
, 1);
886 else if (GET_CODE (pat
) == PARALLEL
)
887 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
889 rtx s
= XVECEXP (pat
, 0, i
);
891 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
)
893 newpat
= simplify_rtx (SET_SRC (s
));
894 if (newpat
&& !rtx_equal_p (SET_SRC (s
), newpat
))
895 validate_change (insn
, &SET_SRC (s
), newpat
, 1);
896 newpat
= simplify_rtx (SET_DEST (s
));
897 if (newpat
&& !rtx_equal_p (SET_DEST (s
), newpat
))
898 validate_change (insn
, &SET_DEST (s
), newpat
, 1);
901 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
905 /* Return 1 if the insn using CC0 set by INSN does not contain
906 any ordered tests applied to the condition codes.
907 EQ and NE tests do not count. */
910 next_insn_tests_no_inequality (rtx insn
)
912 rtx next
= next_cc0_user (insn
);
914 /* If there is no next insn, we have to take the conservative choice. */
918 return (INSN_P (next
)
919 && ! inequality_comparisons_p (PATTERN (next
)));
923 /* Return 1 if OP is a valid general operand for machine mode MODE.
924 This is either a register reference, a memory reference,
925 or a constant. In the case of a memory reference, the address
926 is checked for general validity for the target machine.
928 Register and memory references must have mode MODE in order to be valid,
929 but some constants have no machine mode and are valid for any mode.
931 If MODE is VOIDmode, OP is checked for validity for whatever mode
934 The main use of this function is as a predicate in match_operand
935 expressions in the machine description. */
938 general_operand (rtx op
, enum machine_mode mode
)
940 enum rtx_code code
= GET_CODE (op
);
942 if (mode
== VOIDmode
)
943 mode
= GET_MODE (op
);
945 /* Don't accept CONST_INT or anything similar
946 if the caller wants something floating. */
947 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
948 && GET_MODE_CLASS (mode
) != MODE_INT
949 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
954 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
958 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
960 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
961 && targetm
.legitimate_constant_p (mode
== VOIDmode
965 /* Except for certain constants with VOIDmode, already checked for,
966 OP's mode must match MODE if MODE specifies a mode. */
968 if (GET_MODE (op
) != mode
)
973 rtx sub
= SUBREG_REG (op
);
975 #ifdef INSN_SCHEDULING
976 /* On machines that have insn scheduling, we want all memory
977 reference to be explicit, so outlaw paradoxical SUBREGs.
978 However, we must allow them after reload so that they can
979 get cleaned up by cleanup_subreg_operands. */
980 if (!reload_completed
&& MEM_P (sub
)
981 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (sub
)))
984 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
985 may result in incorrect reference. We should simplify all valid
986 subregs of MEM anyway. But allow this after reload because we
987 might be called from cleanup_subreg_operands.
989 ??? This is a kludge. */
990 if (!reload_completed
&& SUBREG_BYTE (op
) != 0
994 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
995 create such rtl, and we must reject it. */
996 if (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
997 /* LRA can use subreg to store a floating point value in an
998 integer mode. Although the floating point and the
999 integer modes need the same number of hard registers, the
1000 size of floating point mode can be less than the integer
1002 && ! lra_in_progress
1003 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
1007 code
= GET_CODE (op
);
1011 return (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1012 || in_hard_reg_set_p (operand_reg_set
, GET_MODE (op
), REGNO (op
)));
1016 rtx y
= XEXP (op
, 0);
1018 if (! volatile_ok
&& MEM_VOLATILE_P (op
))
1021 /* Use the mem's mode, since it will be reloaded thus. */
1022 if (memory_address_addr_space_p (GET_MODE (op
), y
, MEM_ADDR_SPACE (op
)))
1029 /* Return 1 if OP is a valid memory address for a memory reference
1032 The main use of this function is as a predicate in match_operand
1033 expressions in the machine description. */
1036 address_operand (rtx op
, enum machine_mode mode
)
1038 return memory_address_p (mode
, op
);
1041 /* Return 1 if OP is a register reference of mode MODE.
1042 If MODE is VOIDmode, accept a register in any mode.
1044 The main use of this function is as a predicate in match_operand
1045 expressions in the machine description. */
1048 register_operand (rtx op
, enum machine_mode mode
)
1050 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1053 if (GET_CODE (op
) == SUBREG
)
1055 rtx sub
= SUBREG_REG (op
);
1057 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1058 because it is guaranteed to be reloaded into one.
1059 Just make sure the MEM is valid in itself.
1060 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1061 but currently it does result from (SUBREG (REG)...) where the
1062 reg went on the stack.) */
1063 if (! reload_completed
&& MEM_P (sub
))
1064 return general_operand (op
, mode
);
1066 #ifdef CANNOT_CHANGE_MODE_CLASS
1068 && REGNO (sub
) < FIRST_PSEUDO_REGISTER
1069 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub
), GET_MODE (sub
), mode
)
1070 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_INT
1071 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_FLOAT
1072 /* LRA can generate some invalid SUBREGS just for matched
1073 operand reload presentation. LRA needs to treat them as
1075 && ! LRA_SUBREG_P (op
))
1079 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1080 create such rtl, and we must reject it. */
1081 if (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
1082 /* LRA can use subreg to store a floating point value in an
1083 integer mode. Although the floating point and the
1084 integer modes need the same number of hard registers, the
1085 size of floating point mode can be less than the integer
1087 && ! lra_in_progress
1088 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
1095 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1096 || in_hard_reg_set_p (operand_reg_set
,
1097 GET_MODE (op
), REGNO (op
))));
1100 /* Return 1 for a register in Pmode; ignore the tested mode. */
1103 pmode_register_operand (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
1105 return register_operand (op
, Pmode
);
1108 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1109 or a hard register. */
1112 scratch_operand (rtx op
, enum machine_mode mode
)
1114 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1117 return (GET_CODE (op
) == SCRATCH
1119 && (lra_in_progress
|| REGNO (op
) < FIRST_PSEUDO_REGISTER
)));
1122 /* Return 1 if OP is a valid immediate operand for mode MODE.
1124 The main use of this function is as a predicate in match_operand
1125 expressions in the machine description. */
1128 immediate_operand (rtx op
, enum machine_mode mode
)
1130 /* Don't accept CONST_INT or anything similar
1131 if the caller wants something floating. */
1132 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1133 && GET_MODE_CLASS (mode
) != MODE_INT
1134 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1137 if (CONST_INT_P (op
)
1139 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1142 return (CONSTANT_P (op
)
1143 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
1144 || GET_MODE (op
) == VOIDmode
)
1145 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1146 && targetm
.legitimate_constant_p (mode
== VOIDmode
1151 /* Returns 1 if OP is an operand that is a CONST_INT. */
1154 const_int_operand (rtx op
, enum machine_mode mode
)
1156 if (!CONST_INT_P (op
))
1159 if (mode
!= VOIDmode
1160 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1166 /* Returns 1 if OP is an operand that is a constant integer or constant
1167 floating-point number. */
1170 const_double_operand (rtx op
, enum machine_mode mode
)
1172 /* Don't accept CONST_INT or anything similar
1173 if the caller wants something floating. */
1174 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1175 && GET_MODE_CLASS (mode
) != MODE_INT
1176 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1179 return ((CONST_DOUBLE_P (op
) || CONST_INT_P (op
))
1180 && (mode
== VOIDmode
|| GET_MODE (op
) == mode
1181 || GET_MODE (op
) == VOIDmode
));
1184 /* Return 1 if OP is a general operand that is not an immediate operand. */
1187 nonimmediate_operand (rtx op
, enum machine_mode mode
)
1189 return (general_operand (op
, mode
) && ! CONSTANT_P (op
));
1192 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1195 nonmemory_operand (rtx op
, enum machine_mode mode
)
1197 if (CONSTANT_P (op
))
1198 return immediate_operand (op
, mode
);
1200 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1203 if (GET_CODE (op
) == SUBREG
)
1205 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1206 because it is guaranteed to be reloaded into one.
1207 Just make sure the MEM is valid in itself.
1208 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1209 but currently it does result from (SUBREG (REG)...) where the
1210 reg went on the stack.) */
1211 if (! reload_completed
&& MEM_P (SUBREG_REG (op
)))
1212 return general_operand (op
, mode
);
1213 op
= SUBREG_REG (op
);
1217 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1218 || in_hard_reg_set_p (operand_reg_set
,
1219 GET_MODE (op
), REGNO (op
))));
1222 /* Return 1 if OP is a valid operand that stands for pushing a
1223 value of mode MODE onto the stack.
1225 The main use of this function is as a predicate in match_operand
1226 expressions in the machine description. */
1229 push_operand (rtx op
, enum machine_mode mode
)
1231 unsigned int rounded_size
= GET_MODE_SIZE (mode
);
1233 #ifdef PUSH_ROUNDING
1234 rounded_size
= PUSH_ROUNDING (rounded_size
);
1240 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1245 if (rounded_size
== GET_MODE_SIZE (mode
))
1247 if (GET_CODE (op
) != STACK_PUSH_CODE
)
1252 if (GET_CODE (op
) != PRE_MODIFY
1253 || GET_CODE (XEXP (op
, 1)) != PLUS
1254 || XEXP (XEXP (op
, 1), 0) != XEXP (op
, 0)
1255 || !CONST_INT_P (XEXP (XEXP (op
, 1), 1))
1256 #ifdef STACK_GROWS_DOWNWARD
1257 || INTVAL (XEXP (XEXP (op
, 1), 1)) != - (int) rounded_size
1259 || INTVAL (XEXP (XEXP (op
, 1), 1)) != (int) rounded_size
1265 return XEXP (op
, 0) == stack_pointer_rtx
;
1268 /* Return 1 if OP is a valid operand that stands for popping a
1269 value of mode MODE off the stack.
1271 The main use of this function is as a predicate in match_operand
1272 expressions in the machine description. */
1275 pop_operand (rtx op
, enum machine_mode mode
)
1280 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1285 if (GET_CODE (op
) != STACK_POP_CODE
)
1288 return XEXP (op
, 0) == stack_pointer_rtx
;
1291 /* Return 1 if ADDR is a valid memory address
1292 for mode MODE in address space AS. */
1295 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED
,
1296 rtx addr
, addr_space_t as
)
1298 #ifdef GO_IF_LEGITIMATE_ADDRESS
1299 gcc_assert (ADDR_SPACE_GENERIC_P (as
));
1300 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1306 return targetm
.addr_space
.legitimate_address_p (mode
, addr
, 0, as
);
1310 /* Return 1 if OP is a valid memory reference with mode MODE,
1311 including a valid address.
1313 The main use of this function is as a predicate in match_operand
1314 expressions in the machine description. */
1317 memory_operand (rtx op
, enum machine_mode mode
)
1321 if (! reload_completed
)
1322 /* Note that no SUBREG is a memory operand before end of reload pass,
1323 because (SUBREG (MEM...)) forces reloading into a register. */
1324 return MEM_P (op
) && general_operand (op
, mode
);
1326 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1330 if (GET_CODE (inner
) == SUBREG
)
1331 inner
= SUBREG_REG (inner
);
1333 return (MEM_P (inner
) && general_operand (op
, mode
));
1336 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1337 that is, a memory reference whose address is a general_operand. */
1340 indirect_operand (rtx op
, enum machine_mode mode
)
1342 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1343 if (! reload_completed
1344 && GET_CODE (op
) == SUBREG
&& MEM_P (SUBREG_REG (op
)))
1346 int offset
= SUBREG_BYTE (op
);
1347 rtx inner
= SUBREG_REG (op
);
1349 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1352 /* The only way that we can have a general_operand as the resulting
1353 address is if OFFSET is zero and the address already is an operand
1354 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1357 return ((offset
== 0 && general_operand (XEXP (inner
, 0), Pmode
))
1358 || (GET_CODE (XEXP (inner
, 0)) == PLUS
1359 && CONST_INT_P (XEXP (XEXP (inner
, 0), 1))
1360 && INTVAL (XEXP (XEXP (inner
, 0), 1)) == -offset
1361 && general_operand (XEXP (XEXP (inner
, 0), 0), Pmode
)));
1365 && memory_operand (op
, mode
)
1366 && general_operand (XEXP (op
, 0), Pmode
));
1369 /* Return 1 if this is an ordered comparison operator (not including
1370 ORDERED and UNORDERED). */
1373 ordered_comparison_operator (rtx op
, enum machine_mode mode
)
1375 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1377 switch (GET_CODE (op
))
1395 /* Return 1 if this is a comparison operator. This allows the use of
1396 MATCH_OPERATOR to recognize all the branch insns. */
1399 comparison_operator (rtx op
, enum machine_mode mode
)
1401 return ((mode
== VOIDmode
|| GET_MODE (op
) == mode
)
1402 && COMPARISON_P (op
));
1405 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1408 extract_asm_operands (rtx body
)
1411 switch (GET_CODE (body
))
1417 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1418 tmp
= SET_SRC (body
);
1419 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1424 tmp
= XVECEXP (body
, 0, 0);
1425 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1427 if (GET_CODE (tmp
) == SET
)
1429 tmp
= SET_SRC (tmp
);
1430 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1441 /* If BODY is an insn body that uses ASM_OPERANDS,
1442 return the number of operands (both input and output) in the insn.
1443 Otherwise return -1. */
1446 asm_noperands (const_rtx body
)
1448 rtx asm_op
= extract_asm_operands (CONST_CAST_RTX (body
));
1454 if (GET_CODE (body
) == SET
)
1456 else if (GET_CODE (body
) == PARALLEL
)
1459 if (GET_CODE (XVECEXP (body
, 0, 0)) == SET
)
1461 /* Multiple output operands, or 1 output plus some clobbers:
1463 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1464 /* Count backwards through CLOBBERs to determine number of SETs. */
1465 for (i
= XVECLEN (body
, 0); i
> 0; i
--)
1467 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) == SET
)
1469 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) != CLOBBER
)
1473 /* N_SETS is now number of output operands. */
1476 /* Verify that all the SETs we have
1477 came from a single original asm_operands insn
1478 (so that invalid combinations are blocked). */
1479 for (i
= 0; i
< n_sets
; i
++)
1481 rtx elt
= XVECEXP (body
, 0, i
);
1482 if (GET_CODE (elt
) != SET
)
1484 if (GET_CODE (SET_SRC (elt
)) != ASM_OPERANDS
)
1486 /* If these ASM_OPERANDS rtx's came from different original insns
1487 then they aren't allowed together. */
1488 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt
))
1489 != ASM_OPERANDS_INPUT_VEC (asm_op
))
1495 /* 0 outputs, but some clobbers:
1496 body is [(asm_operands ...) (clobber (reg ...))...]. */
1497 /* Make sure all the other parallel things really are clobbers. */
1498 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1499 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1504 return (ASM_OPERANDS_INPUT_LENGTH (asm_op
)
1505 + ASM_OPERANDS_LABEL_LENGTH (asm_op
) + n_sets
);
1508 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1509 copy its operands (both input and output) into the vector OPERANDS,
1510 the locations of the operands within the insn into the vector OPERAND_LOCS,
1511 and the constraints for the operands into CONSTRAINTS.
1512 Write the modes of the operands into MODES.
1513 Return the assembler-template.
1515 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1516 we don't store that info. */
1519 decode_asm_operands (rtx body
, rtx
*operands
, rtx
**operand_locs
,
1520 const char **constraints
, enum machine_mode
*modes
,
1523 int nbase
= 0, n
, i
;
1526 switch (GET_CODE (body
))
1529 /* Zero output asm: BODY is (asm_operands ...). */
1534 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1535 asmop
= SET_SRC (body
);
1537 /* The output is in the SET.
1538 Its constraint is in the ASM_OPERANDS itself. */
1540 operands
[0] = SET_DEST (body
);
1542 operand_locs
[0] = &SET_DEST (body
);
1544 constraints
[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop
);
1546 modes
[0] = GET_MODE (SET_DEST (body
));
1552 int nparallel
= XVECLEN (body
, 0); /* Includes CLOBBERs. */
1554 asmop
= XVECEXP (body
, 0, 0);
1555 if (GET_CODE (asmop
) == SET
)
1557 asmop
= SET_SRC (asmop
);
1559 /* At least one output, plus some CLOBBERs. The outputs are in
1560 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1561 for (i
= 0; i
< nparallel
; i
++)
1563 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
1564 break; /* Past last SET */
1566 operands
[i
] = SET_DEST (XVECEXP (body
, 0, i
));
1568 operand_locs
[i
] = &SET_DEST (XVECEXP (body
, 0, i
));
1570 constraints
[i
] = XSTR (SET_SRC (XVECEXP (body
, 0, i
)), 1);
1572 modes
[i
] = GET_MODE (SET_DEST (XVECEXP (body
, 0, i
)));
1583 n
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1584 for (i
= 0; i
< n
; i
++)
1587 operand_locs
[nbase
+ i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1589 operands
[nbase
+ i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1591 constraints
[nbase
+ i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1593 modes
[nbase
+ i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1597 n
= ASM_OPERANDS_LABEL_LENGTH (asmop
);
1598 for (i
= 0; i
< n
; i
++)
1601 operand_locs
[nbase
+ i
] = &ASM_OPERANDS_LABEL (asmop
, i
);
1603 operands
[nbase
+ i
] = ASM_OPERANDS_LABEL (asmop
, i
);
1605 constraints
[nbase
+ i
] = "";
1607 modes
[nbase
+ i
] = Pmode
;
1611 *loc
= ASM_OPERANDS_SOURCE_LOCATION (asmop
);
1613 return ASM_OPERANDS_TEMPLATE (asmop
);
1616 /* Check if an asm_operand matches its constraints.
1617 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1620 asm_operand_ok (rtx op
, const char *constraint
, const char **constraints
)
1624 bool incdec_ok
= false;
1627 /* Use constrain_operands after reload. */
1628 gcc_assert (!reload_completed
);
1630 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1631 many alternatives as required to match the other operands. */
1632 if (*constraint
== '\0')
1637 char c
= *constraint
;
1654 case '0': case '1': case '2': case '3': case '4':
1655 case '5': case '6': case '7': case '8': case '9':
1656 /* If caller provided constraints pointer, look up
1657 the matching constraint. Otherwise, our caller should have
1658 given us the proper matching constraint, but we can't
1659 actually fail the check if they didn't. Indicate that
1660 results are inconclusive. */
1664 unsigned long match
;
1666 match
= strtoul (constraint
, &end
, 10);
1668 result
= asm_operand_ok (op
, constraints
[match
], NULL
);
1669 constraint
= (const char *) end
;
1675 while (ISDIGIT (*constraint
));
1682 if (address_operand (op
, VOIDmode
))
1686 case TARGET_MEM_CONSTRAINT
:
1687 case 'V': /* non-offsettable */
1688 if (memory_operand (op
, VOIDmode
))
1692 case 'o': /* offsettable */
1693 if (offsettable_nonstrict_memref_p (op
))
1698 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1699 excepting those that expand_call created. Further, on some
1700 machines which do not have generalized auto inc/dec, an inc/dec
1701 is not a memory_operand.
1703 Match any memory and hope things are resolved after reload. */
1707 || GET_CODE (XEXP (op
, 0)) == PRE_DEC
1708 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
1718 || GET_CODE (XEXP (op
, 0)) == PRE_INC
1719 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
1728 if (CONST_DOUBLE_AS_FLOAT_P (op
)
1729 || (GET_CODE (op
) == CONST_VECTOR
1730 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
1735 if (CONST_DOUBLE_AS_FLOAT_P (op
)
1736 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'G', constraint
))
1740 if (CONST_DOUBLE_AS_FLOAT_P (op
)
1741 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'H', constraint
))
1746 if (CONST_SCALAR_INT_P (op
))
1751 if (CONSTANT_P (op
) && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
)))
1756 if (CONST_SCALAR_INT_P (op
))
1761 if (CONST_INT_P (op
)
1762 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'I', constraint
))
1766 if (CONST_INT_P (op
)
1767 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'J', constraint
))
1771 if (CONST_INT_P (op
)
1772 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'K', constraint
))
1776 if (CONST_INT_P (op
)
1777 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'L', constraint
))
1781 if (CONST_INT_P (op
)
1782 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'M', constraint
))
1786 if (CONST_INT_P (op
)
1787 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'N', constraint
))
1791 if (CONST_INT_P (op
)
1792 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'O', constraint
))
1796 if (CONST_INT_P (op
)
1797 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'P', constraint
))
1806 if (general_operand (op
, VOIDmode
))
1811 /* For all other letters, we first check for a register class,
1812 otherwise it is an EXTRA_CONSTRAINT. */
1813 if (REG_CLASS_FROM_CONSTRAINT (c
, constraint
) != NO_REGS
)
1816 if (GET_MODE (op
) == BLKmode
)
1818 if (register_operand (op
, VOIDmode
))
1821 #ifdef EXTRA_CONSTRAINT_STR
1822 else if (EXTRA_MEMORY_CONSTRAINT (c
, constraint
))
1823 /* Every memory operand can be reloaded to fit. */
1824 result
= result
|| memory_operand (op
, VOIDmode
);
1825 else if (EXTRA_ADDRESS_CONSTRAINT (c
, constraint
))
1826 /* Every address operand can be reloaded to fit. */
1827 result
= result
|| address_operand (op
, VOIDmode
);
1828 else if (EXTRA_CONSTRAINT_STR (op
, c
, constraint
))
1833 len
= CONSTRAINT_LEN (c
, constraint
);
1836 while (--len
&& *constraint
);
1842 /* For operands without < or > constraints reject side-effects. */
1843 if (!incdec_ok
&& result
&& MEM_P (op
))
1844 switch (GET_CODE (XEXP (op
, 0)))
1861 /* Given an rtx *P, if it is a sum containing an integer constant term,
1862 return the location (type rtx *) of the pointer to that constant term.
1863 Otherwise, return a null pointer. */
1866 find_constant_term_loc (rtx
*p
)
1869 enum rtx_code code
= GET_CODE (*p
);
1871 /* If *P IS such a constant term, P is its location. */
1873 if (code
== CONST_INT
|| code
== SYMBOL_REF
|| code
== LABEL_REF
1877 /* Otherwise, if not a sum, it has no constant term. */
1879 if (GET_CODE (*p
) != PLUS
)
1882 /* If one of the summands is constant, return its location. */
1884 if (XEXP (*p
, 0) && CONSTANT_P (XEXP (*p
, 0))
1885 && XEXP (*p
, 1) && CONSTANT_P (XEXP (*p
, 1)))
1888 /* Otherwise, check each summand for containing a constant term. */
1890 if (XEXP (*p
, 0) != 0)
1892 tem
= find_constant_term_loc (&XEXP (*p
, 0));
1897 if (XEXP (*p
, 1) != 0)
1899 tem
= find_constant_term_loc (&XEXP (*p
, 1));
1907 /* Return 1 if OP is a memory reference
1908 whose address contains no side effects
1909 and remains valid after the addition
1910 of a positive integer less than the
1911 size of the object being referenced.
1913 We assume that the original address is valid and do not check it.
1915 This uses strict_memory_address_p as a subroutine, so
1916 don't use it before reload. */
1919 offsettable_memref_p (rtx op
)
1921 return ((MEM_P (op
))
1922 && offsettable_address_addr_space_p (1, GET_MODE (op
), XEXP (op
, 0),
1923 MEM_ADDR_SPACE (op
)));
1926 /* Similar, but don't require a strictly valid mem ref:
1927 consider pseudo-regs valid as index or base regs. */
1930 offsettable_nonstrict_memref_p (rtx op
)
1932 return ((MEM_P (op
))
1933 && offsettable_address_addr_space_p (0, GET_MODE (op
), XEXP (op
, 0),
1934 MEM_ADDR_SPACE (op
)));
1937 /* Return 1 if Y is a memory address which contains no side effects
1938 and would remain valid for address space AS after the addition of
1939 a positive integer less than the size of that mode.
1941 We assume that the original address is valid and do not check it.
1942 We do check that it is valid for narrower modes.
1944 If STRICTP is nonzero, we require a strictly valid address,
1945 for the sake of use in reload.c. */
1948 offsettable_address_addr_space_p (int strictp
, enum machine_mode mode
, rtx y
,
1951 enum rtx_code ycode
= GET_CODE (y
);
1955 int (*addressp
) (enum machine_mode
, rtx
, addr_space_t
) =
1956 (strictp
? strict_memory_address_addr_space_p
1957 : memory_address_addr_space_p
);
1958 unsigned int mode_sz
= GET_MODE_SIZE (mode
);
1960 if (CONSTANT_ADDRESS_P (y
))
1963 /* Adjusting an offsettable address involves changing to a narrower mode.
1964 Make sure that's OK. */
1966 if (mode_dependent_address_p (y
, as
))
1969 enum machine_mode address_mode
= GET_MODE (y
);
1970 if (address_mode
== VOIDmode
)
1971 address_mode
= targetm
.addr_space
.address_mode (as
);
1972 #ifdef POINTERS_EXTEND_UNSIGNED
1973 enum machine_mode pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
1976 /* ??? How much offset does an offsettable BLKmode reference need?
1977 Clearly that depends on the situation in which it's being used.
1978 However, the current situation in which we test 0xffffffff is
1979 less than ideal. Caveat user. */
1981 mode_sz
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
1983 /* If the expression contains a constant term,
1984 see if it remains valid when max possible offset is added. */
1986 if ((ycode
== PLUS
) && (y2
= find_constant_term_loc (&y1
)))
1991 *y2
= plus_constant (address_mode
, *y2
, mode_sz
- 1);
1992 /* Use QImode because an odd displacement may be automatically invalid
1993 for any wider mode. But it should be valid for a single byte. */
1994 good
= (*addressp
) (QImode
, y
, as
);
1996 /* In any case, restore old contents of memory. */
2001 if (GET_RTX_CLASS (ycode
) == RTX_AUTOINC
)
2004 /* The offset added here is chosen as the maximum offset that
2005 any instruction could need to add when operating on something
2006 of the specified mode. We assume that if Y and Y+c are
2007 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2008 go inside a LO_SUM here, so we do so as well. */
2009 if (GET_CODE (y
) == LO_SUM
2011 && mode_sz
<= GET_MODE_ALIGNMENT (mode
) / BITS_PER_UNIT
)
2012 z
= gen_rtx_LO_SUM (address_mode
, XEXP (y
, 0),
2013 plus_constant (address_mode
, XEXP (y
, 1),
2015 #ifdef POINTERS_EXTEND_UNSIGNED
2016 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2017 else if (POINTERS_EXTEND_UNSIGNED
> 0
2018 && GET_CODE (y
) == ZERO_EXTEND
2019 && GET_MODE (XEXP (y
, 0)) == pointer_mode
)
2020 z
= gen_rtx_ZERO_EXTEND (address_mode
,
2021 plus_constant (pointer_mode
, XEXP (y
, 0),
2025 z
= plus_constant (address_mode
, y
, mode_sz
- 1);
2027 /* Use QImode because an odd displacement may be automatically invalid
2028 for any wider mode. But it should be valid for a single byte. */
2029 return (*addressp
) (QImode
, z
, as
);
2032 /* Return 1 if ADDR is an address-expression whose effect depends
2033 on the mode of the memory reference it is used in.
2035 ADDRSPACE is the address space associated with the address.
2037 Autoincrement addressing is a typical example of mode-dependence
2038 because the amount of the increment depends on the mode. */
2041 mode_dependent_address_p (rtx addr
, addr_space_t addrspace
)
2043 /* Auto-increment addressing with anything other than post_modify
2044 or pre_modify always introduces a mode dependency. Catch such
2045 cases now instead of deferring to the target. */
2046 if (GET_CODE (addr
) == PRE_INC
2047 || GET_CODE (addr
) == POST_INC
2048 || GET_CODE (addr
) == PRE_DEC
2049 || GET_CODE (addr
) == POST_DEC
)
2052 return targetm
.mode_dependent_address_p (addr
, addrspace
);
2055 /* Like extract_insn, but save insn extracted and don't extract again, when
2056 called again for the same insn expecting that recog_data still contain the
2057 valid information. This is used primary by gen_attr infrastructure that
2058 often does extract insn again and again. */
2060 extract_insn_cached (rtx insn
)
2062 if (recog_data
.insn
== insn
&& INSN_CODE (insn
) >= 0)
2064 extract_insn (insn
);
2065 recog_data
.insn
= insn
;
2068 /* Do cached extract_insn, constrain_operands and complain about failures.
2069 Used by insn_attrtab. */
2071 extract_constrain_insn_cached (rtx insn
)
2073 extract_insn_cached (insn
);
2074 if (which_alternative
== -1
2075 && !constrain_operands (reload_completed
))
2076 fatal_insn_not_found (insn
);
2079 /* Do cached constrain_operands and complain about failures. */
2081 constrain_operands_cached (int strict
)
2083 if (which_alternative
== -1)
2084 return constrain_operands (strict
);
2089 /* Analyze INSN and fill in recog_data. */
2092 extract_insn (rtx insn
)
2097 rtx body
= PATTERN (insn
);
2099 recog_data
.n_operands
= 0;
2100 recog_data
.n_alternatives
= 0;
2101 recog_data
.n_dups
= 0;
2102 recog_data
.is_asm
= false;
2104 switch (GET_CODE (body
))
2115 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
2120 if ((GET_CODE (XVECEXP (body
, 0, 0)) == SET
2121 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
2122 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
2128 recog_data
.n_operands
= noperands
= asm_noperands (body
);
2131 /* This insn is an `asm' with operands. */
2133 /* expand_asm_operands makes sure there aren't too many operands. */
2134 gcc_assert (noperands
<= MAX_RECOG_OPERANDS
);
2136 /* Now get the operand values and constraints out of the insn. */
2137 decode_asm_operands (body
, recog_data
.operand
,
2138 recog_data
.operand_loc
,
2139 recog_data
.constraints
,
2140 recog_data
.operand_mode
, NULL
);
2141 memset (recog_data
.is_operator
, 0, sizeof recog_data
.is_operator
);
2144 const char *p
= recog_data
.constraints
[0];
2145 recog_data
.n_alternatives
= 1;
2147 recog_data
.n_alternatives
+= (*p
++ == ',');
2149 recog_data
.is_asm
= true;
2152 fatal_insn_not_found (insn
);
2156 /* Ordinary insn: recognize it, get the operands via insn_extract
2157 and get the constraints. */
2159 icode
= recog_memoized (insn
);
2161 fatal_insn_not_found (insn
);
2163 recog_data
.n_operands
= noperands
= insn_data
[icode
].n_operands
;
2164 recog_data
.n_alternatives
= insn_data
[icode
].n_alternatives
;
2165 recog_data
.n_dups
= insn_data
[icode
].n_dups
;
2167 insn_extract (insn
);
2169 for (i
= 0; i
< noperands
; i
++)
2171 recog_data
.constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2172 recog_data
.is_operator
[i
] = insn_data
[icode
].operand
[i
].is_operator
;
2173 recog_data
.operand_mode
[i
] = insn_data
[icode
].operand
[i
].mode
;
2174 /* VOIDmode match_operands gets mode from their real operand. */
2175 if (recog_data
.operand_mode
[i
] == VOIDmode
)
2176 recog_data
.operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2179 for (i
= 0; i
< noperands
; i
++)
2180 recog_data
.operand_type
[i
]
2181 = (recog_data
.constraints
[i
][0] == '=' ? OP_OUT
2182 : recog_data
.constraints
[i
][0] == '+' ? OP_INOUT
2185 gcc_assert (recog_data
.n_alternatives
<= MAX_RECOG_ALTERNATIVES
);
2187 if (INSN_CODE (insn
) < 0)
2188 for (i
= 0; i
< recog_data
.n_alternatives
; i
++)
2189 recog_data
.alternative_enabled_p
[i
] = true;
2192 recog_data
.insn
= insn
;
2193 for (i
= 0; i
< recog_data
.n_alternatives
; i
++)
2195 which_alternative
= i
;
2196 recog_data
.alternative_enabled_p
[i
]
2197 = HAVE_ATTR_enabled
? get_attr_enabled (insn
) : 1;
2201 recog_data
.insn
= NULL
;
2202 which_alternative
= -1;
2205 /* After calling extract_insn, you can use this function to extract some
2206 information from the constraint strings into a more usable form.
2207 The collected data is stored in recog_op_alt. */
2209 preprocess_constraints (void)
2213 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2214 memset (recog_op_alt
[i
], 0, (recog_data
.n_alternatives
2215 * sizeof (struct operand_alternative
)));
2217 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2220 struct operand_alternative
*op_alt
;
2221 const char *p
= recog_data
.constraints
[i
];
2223 op_alt
= recog_op_alt
[i
];
2225 for (j
= 0; j
< recog_data
.n_alternatives
; j
++)
2227 op_alt
[j
].cl
= NO_REGS
;
2228 op_alt
[j
].constraint
= p
;
2229 op_alt
[j
].matches
= -1;
2230 op_alt
[j
].matched
= -1;
2232 if (!recog_data
.alternative_enabled_p
[j
])
2234 p
= skip_alternative (p
);
2238 if (*p
== '\0' || *p
== ',')
2240 op_alt
[j
].anything_ok
= 1;
2250 while (c
!= ',' && c
!= '\0');
2251 if (c
== ',' || c
== '\0')
2259 case '=': case '+': case '*': case '%':
2260 case 'E': case 'F': case 'G': case 'H':
2261 case 's': case 'i': case 'n':
2262 case 'I': case 'J': case 'K': case 'L':
2263 case 'M': case 'N': case 'O': case 'P':
2264 /* These don't say anything we care about. */
2268 op_alt
[j
].reject
+= 6;
2271 op_alt
[j
].reject
+= 600;
2274 op_alt
[j
].earlyclobber
= 1;
2277 case '0': case '1': case '2': case '3': case '4':
2278 case '5': case '6': case '7': case '8': case '9':
2281 op_alt
[j
].matches
= strtoul (p
, &end
, 10);
2282 recog_op_alt
[op_alt
[j
].matches
][j
].matched
= i
;
2287 case TARGET_MEM_CONSTRAINT
:
2288 op_alt
[j
].memory_ok
= 1;
2291 op_alt
[j
].decmem_ok
= 1;
2294 op_alt
[j
].incmem_ok
= 1;
2297 op_alt
[j
].nonoffmem_ok
= 1;
2300 op_alt
[j
].offmem_ok
= 1;
2303 op_alt
[j
].anything_ok
= 1;
2307 op_alt
[j
].is_address
= 1;
2308 op_alt
[j
].cl
= reg_class_subunion
[(int) op_alt
[j
].cl
]
2309 [(int) base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
2316 reg_class_subunion
[(int) op_alt
[j
].cl
][(int) GENERAL_REGS
];
2320 if (EXTRA_MEMORY_CONSTRAINT (c
, p
))
2322 op_alt
[j
].memory_ok
= 1;
2325 if (EXTRA_ADDRESS_CONSTRAINT (c
, p
))
2327 op_alt
[j
].is_address
= 1;
2329 = (reg_class_subunion
2330 [(int) op_alt
[j
].cl
]
2331 [(int) base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
2332 ADDRESS
, SCRATCH
)]);
2337 = (reg_class_subunion
2338 [(int) op_alt
[j
].cl
]
2339 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c
, p
)]);
2342 p
+= CONSTRAINT_LEN (c
, p
);
2348 /* Check the operands of an insn against the insn's operand constraints
2349 and return 1 if they are valid.
2350 The information about the insn's operands, constraints, operand modes
2351 etc. is obtained from the global variables set up by extract_insn.
2353 WHICH_ALTERNATIVE is set to a number which indicates which
2354 alternative of constraints was matched: 0 for the first alternative,
2355 1 for the next, etc.
2357 In addition, when two operands are required to match
2358 and it happens that the output operand is (reg) while the
2359 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2360 make the output operand look like the input.
2361 This is because the output operand is the one the template will print.
2363 This is used in final, just before printing the assembler code and by
2364 the routines that determine an insn's attribute.
2366 If STRICT is a positive nonzero value, it means that we have been
2367 called after reload has been completed. In that case, we must
2368 do all checks strictly. If it is zero, it means that we have been called
2369 before reload has completed. In that case, we first try to see if we can
2370 find an alternative that matches strictly. If not, we try again, this
2371 time assuming that reload will fix up the insn. This provides a "best
2372 guess" for the alternative and is used to compute attributes of insns prior
2373 to reload. A negative value of STRICT is used for this internal call. */
2381 constrain_operands (int strict
)
2383 const char *constraints
[MAX_RECOG_OPERANDS
];
2384 int matching_operands
[MAX_RECOG_OPERANDS
];
2385 int earlyclobber
[MAX_RECOG_OPERANDS
];
2388 struct funny_match funny_match
[MAX_RECOG_OPERANDS
];
2389 int funny_match_index
;
2391 which_alternative
= 0;
2392 if (recog_data
.n_operands
== 0 || recog_data
.n_alternatives
== 0)
2395 for (c
= 0; c
< recog_data
.n_operands
; c
++)
2397 constraints
[c
] = recog_data
.constraints
[c
];
2398 matching_operands
[c
] = -1;
2403 int seen_earlyclobber_at
= -1;
2406 funny_match_index
= 0;
2408 if (!recog_data
.alternative_enabled_p
[which_alternative
])
2412 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2413 constraints
[i
] = skip_alternative (constraints
[i
]);
2415 which_alternative
++;
2419 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2421 rtx op
= recog_data
.operand
[opno
];
2422 enum machine_mode mode
= GET_MODE (op
);
2423 const char *p
= constraints
[opno
];
2429 earlyclobber
[opno
] = 0;
2431 /* A unary operator may be accepted by the predicate, but it
2432 is irrelevant for matching constraints. */
2436 if (GET_CODE (op
) == SUBREG
)
2438 if (REG_P (SUBREG_REG (op
))
2439 && REGNO (SUBREG_REG (op
)) < FIRST_PSEUDO_REGISTER
)
2440 offset
= subreg_regno_offset (REGNO (SUBREG_REG (op
)),
2441 GET_MODE (SUBREG_REG (op
)),
2444 op
= SUBREG_REG (op
);
2447 /* An empty constraint or empty alternative
2448 allows anything which matched the pattern. */
2449 if (*p
== 0 || *p
== ',')
2453 switch (c
= *p
, len
= CONSTRAINT_LEN (c
, p
), c
)
2462 case '?': case '!': case '*': case '%':
2467 /* Ignore rest of this alternative as far as
2468 constraint checking is concerned. */
2471 while (*p
&& *p
!= ',');
2476 earlyclobber
[opno
] = 1;
2477 if (seen_earlyclobber_at
< 0)
2478 seen_earlyclobber_at
= opno
;
2481 case '0': case '1': case '2': case '3': case '4':
2482 case '5': case '6': case '7': case '8': case '9':
2484 /* This operand must be the same as a previous one.
2485 This kind of constraint is used for instructions such
2486 as add when they take only two operands.
2488 Note that the lower-numbered operand is passed first.
2490 If we are not testing strictly, assume that this
2491 constraint will be satisfied. */
2496 match
= strtoul (p
, &end
, 10);
2503 rtx op1
= recog_data
.operand
[match
];
2504 rtx op2
= recog_data
.operand
[opno
];
2506 /* A unary operator may be accepted by the predicate,
2507 but it is irrelevant for matching constraints. */
2509 op1
= XEXP (op1
, 0);
2511 op2
= XEXP (op2
, 0);
2513 val
= operands_match_p (op1
, op2
);
2516 matching_operands
[opno
] = match
;
2517 matching_operands
[match
] = opno
;
2522 /* If output is *x and input is *--x, arrange later
2523 to change the output to *--x as well, since the
2524 output op is the one that will be printed. */
2525 if (val
== 2 && strict
> 0)
2527 funny_match
[funny_match_index
].this_op
= opno
;
2528 funny_match
[funny_match_index
++].other
= match
;
2535 /* p is used for address_operands. When we are called by
2536 gen_reload, no one will have checked that the address is
2537 strictly valid, i.e., that all pseudos requiring hard regs
2538 have gotten them. */
2540 || (strict_memory_address_p (recog_data
.operand_mode
[opno
],
2545 /* No need to check general_operand again;
2546 it was done in insn-recog.c. Well, except that reload
2547 doesn't check the validity of its replacements, but
2548 that should only matter when there's a bug. */
2550 /* Anything goes unless it is a REG and really has a hard reg
2551 but the hard reg is not in the class GENERAL_REGS. */
2555 || GENERAL_REGS
== ALL_REGS
2556 || (reload_in_progress
2557 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2558 || reg_fits_class_p (op
, GENERAL_REGS
, offset
, mode
))
2561 else if (strict
< 0 || general_operand (op
, mode
))
2566 /* This is used for a MATCH_SCRATCH in the cases when
2567 we don't actually need anything. So anything goes
2572 case TARGET_MEM_CONSTRAINT
:
2573 /* Memory operands must be valid, to the extent
2574 required by STRICT. */
2578 && !strict_memory_address_addr_space_p
2579 (GET_MODE (op
), XEXP (op
, 0),
2580 MEM_ADDR_SPACE (op
)))
2583 && !memory_address_addr_space_p
2584 (GET_MODE (op
), XEXP (op
, 0),
2585 MEM_ADDR_SPACE (op
)))
2589 /* Before reload, accept what reload can turn into mem. */
2590 else if (strict
< 0 && CONSTANT_P (op
))
2592 /* During reload, accept a pseudo */
2593 else if (reload_in_progress
&& REG_P (op
)
2594 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2600 && (GET_CODE (XEXP (op
, 0)) == PRE_DEC
2601 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
2607 && (GET_CODE (XEXP (op
, 0)) == PRE_INC
2608 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
2614 if (CONST_DOUBLE_AS_FLOAT_P (op
)
2615 || (GET_CODE (op
) == CONST_VECTOR
2616 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
2622 if (CONST_DOUBLE_AS_FLOAT_P (op
)
2623 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, c
, p
))
2628 if (CONST_SCALAR_INT_P (op
))
2631 if (CONSTANT_P (op
))
2636 if (CONST_SCALAR_INT_P (op
))
2648 if (CONST_INT_P (op
)
2649 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), c
, p
))
2655 && ((strict
> 0 && ! offsettable_memref_p (op
))
2657 && !(CONSTANT_P (op
) || MEM_P (op
)))
2658 || (reload_in_progress
2660 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))))
2665 if ((strict
> 0 && offsettable_memref_p (op
))
2666 || (strict
== 0 && offsettable_nonstrict_memref_p (op
))
2667 /* Before reload, accept what reload can handle. */
2669 && (CONSTANT_P (op
) || MEM_P (op
)))
2670 /* During reload, accept a pseudo */
2671 || (reload_in_progress
&& REG_P (op
)
2672 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))
2681 ? GENERAL_REGS
: REG_CLASS_FROM_CONSTRAINT (c
, p
));
2687 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2688 || (strict
== 0 && GET_CODE (op
) == SCRATCH
)
2690 && reg_fits_class_p (op
, cl
, offset
, mode
)))
2693 #ifdef EXTRA_CONSTRAINT_STR
2694 else if (EXTRA_CONSTRAINT_STR (op
, c
, p
))
2697 else if (EXTRA_MEMORY_CONSTRAINT (c
, p
)
2698 /* Every memory operand can be reloaded to fit. */
2699 && ((strict
< 0 && MEM_P (op
))
2700 /* Before reload, accept what reload can turn
2702 || (strict
< 0 && CONSTANT_P (op
))
2703 /* During reload, accept a pseudo */
2704 || (reload_in_progress
&& REG_P (op
)
2705 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)))
2707 else if (EXTRA_ADDRESS_CONSTRAINT (c
, p
)
2708 /* Every address operand can be reloaded to fit. */
2711 /* Cater to architectures like IA-64 that define extra memory
2712 constraints without using define_memory_constraint. */
2713 else if (reload_in_progress
2715 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
2716 && reg_renumber
[REGNO (op
)] < 0
2717 && reg_equiv_mem (REGNO (op
)) != 0
2718 && EXTRA_CONSTRAINT_STR
2719 (reg_equiv_mem (REGNO (op
)), c
, p
))
2725 while (p
+= len
, c
);
2727 constraints
[opno
] = p
;
2728 /* If this operand did not win somehow,
2729 this alternative loses. */
2733 /* This alternative won; the operands are ok.
2734 Change whichever operands this alternative says to change. */
2739 /* See if any earlyclobber operand conflicts with some other
2742 if (strict
> 0 && seen_earlyclobber_at
>= 0)
2743 for (eopno
= seen_earlyclobber_at
;
2744 eopno
< recog_data
.n_operands
;
2746 /* Ignore earlyclobber operands now in memory,
2747 because we would often report failure when we have
2748 two memory operands, one of which was formerly a REG. */
2749 if (earlyclobber
[eopno
]
2750 && REG_P (recog_data
.operand
[eopno
]))
2751 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2752 if ((MEM_P (recog_data
.operand
[opno
])
2753 || recog_data
.operand_type
[opno
] != OP_OUT
)
2755 /* Ignore things like match_operator operands. */
2756 && *recog_data
.constraints
[opno
] != 0
2757 && ! (matching_operands
[opno
] == eopno
2758 && operands_match_p (recog_data
.operand
[opno
],
2759 recog_data
.operand
[eopno
]))
2760 && ! safe_from_earlyclobber (recog_data
.operand
[opno
],
2761 recog_data
.operand
[eopno
]))
2766 while (--funny_match_index
>= 0)
2768 recog_data
.operand
[funny_match
[funny_match_index
].other
]
2769 = recog_data
.operand
[funny_match
[funny_match_index
].this_op
];
2773 /* For operands without < or > constraints reject side-effects. */
2774 if (recog_data
.is_asm
)
2776 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2777 if (MEM_P (recog_data
.operand
[opno
]))
2778 switch (GET_CODE (XEXP (recog_data
.operand
[opno
], 0)))
2786 if (strchr (recog_data
.constraints
[opno
], '<') == NULL
2787 && strchr (recog_data
.constraints
[opno
], '>')
2800 which_alternative
++;
2802 while (which_alternative
< recog_data
.n_alternatives
);
2804 which_alternative
= -1;
2805 /* If we are about to reject this, but we are not to test strictly,
2806 try a very loose test. Only return failure if it fails also. */
2808 return constrain_operands (-1);
2813 /* Return true iff OPERAND (assumed to be a REG rtx)
2814 is a hard reg in class CLASS when its regno is offset by OFFSET
2815 and changed to mode MODE.
2816 If REG occupies multiple hard regs, all of them must be in CLASS. */
2819 reg_fits_class_p (const_rtx operand
, reg_class_t cl
, int offset
,
2820 enum machine_mode mode
)
2822 unsigned int regno
= REGNO (operand
);
2827 /* Regno must not be a pseudo register. Offset may be negative. */
2828 return (HARD_REGISTER_NUM_P (regno
)
2829 && HARD_REGISTER_NUM_P (regno
+ offset
)
2830 && in_hard_reg_set_p (reg_class_contents
[(int) cl
], mode
,
2834 /* Split single instruction. Helper function for split_all_insns and
2835 split_all_insns_noflow. Return last insn in the sequence if successful,
2836 or NULL if unsuccessful. */
2839 split_insn (rtx insn
)
2841 /* Split insns here to get max fine-grain parallelism. */
2842 rtx first
= PREV_INSN (insn
);
2843 rtx last
= try_split (PATTERN (insn
), insn
, 1);
2844 rtx insn_set
, last_set
, note
;
2849 /* If the original instruction was a single set that was known to be
2850 equivalent to a constant, see if we can say the same about the last
2851 instruction in the split sequence. The two instructions must set
2852 the same destination. */
2853 insn_set
= single_set (insn
);
2856 last_set
= single_set (last
);
2857 if (last_set
&& rtx_equal_p (SET_DEST (last_set
), SET_DEST (insn_set
)))
2859 note
= find_reg_equal_equiv_note (insn
);
2860 if (note
&& CONSTANT_P (XEXP (note
, 0)))
2861 set_unique_reg_note (last
, REG_EQUAL
, XEXP (note
, 0));
2862 else if (CONSTANT_P (SET_SRC (insn_set
)))
2863 set_unique_reg_note (last
, REG_EQUAL
,
2864 copy_rtx (SET_SRC (insn_set
)));
2868 /* try_split returns the NOTE that INSN became. */
2869 SET_INSN_DELETED (insn
);
2871 /* ??? Coddle to md files that generate subregs in post-reload
2872 splitters instead of computing the proper hard register. */
2873 if (reload_completed
&& first
!= last
)
2875 first
= NEXT_INSN (first
);
2879 cleanup_subreg_operands (first
);
2882 first
= NEXT_INSN (first
);
2889 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2892 split_all_insns (void)
2898 blocks
= sbitmap_alloc (last_basic_block
);
2899 bitmap_clear (blocks
);
2902 FOR_EACH_BB_REVERSE (bb
)
2905 bool finish
= false;
2907 rtl_profile_for_bb (bb
);
2908 for (insn
= BB_HEAD (bb
); !finish
; insn
= next
)
2910 /* Can't use `next_real_insn' because that might go across
2911 CODE_LABELS and short-out basic blocks. */
2912 next
= NEXT_INSN (insn
);
2913 finish
= (insn
== BB_END (bb
));
2916 rtx set
= single_set (insn
);
2918 /* Don't split no-op move insns. These should silently
2919 disappear later in final. Splitting such insns would
2920 break the code that handles LIBCALL blocks. */
2921 if (set
&& set_noop_p (set
))
2923 /* Nops get in the way while scheduling, so delete them
2924 now if register allocation has already been done. It
2925 is too risky to try to do this before register
2926 allocation, and there are unlikely to be very many
2927 nops then anyways. */
2928 if (reload_completed
)
2929 delete_insn_and_edges (insn
);
2933 if (split_insn (insn
))
2935 bitmap_set_bit (blocks
, bb
->index
);
2943 default_rtl_profile ();
2945 find_many_sub_basic_blocks (blocks
);
2947 #ifdef ENABLE_CHECKING
2948 verify_flow_info ();
2951 sbitmap_free (blocks
);
2954 /* Same as split_all_insns, but do not expect CFG to be available.
2955 Used by machine dependent reorg passes. */
2958 split_all_insns_noflow (void)
2962 for (insn
= get_insns (); insn
; insn
= next
)
2964 next
= NEXT_INSN (insn
);
2967 /* Don't split no-op move insns. These should silently
2968 disappear later in final. Splitting such insns would
2969 break the code that handles LIBCALL blocks. */
2970 rtx set
= single_set (insn
);
2971 if (set
&& set_noop_p (set
))
2973 /* Nops get in the way while scheduling, so delete them
2974 now if register allocation has already been done. It
2975 is too risky to try to do this before register
2976 allocation, and there are unlikely to be very many
2979 ??? Should we use delete_insn when the CFG isn't valid? */
2980 if (reload_completed
)
2981 delete_insn_and_edges (insn
);
2990 #ifdef HAVE_peephole2
2991 struct peep2_insn_data
2997 static struct peep2_insn_data peep2_insn_data
[MAX_INSNS_PER_PEEP2
+ 1];
2998 static int peep2_current
;
3000 static bool peep2_do_rebuild_jump_labels
;
3001 static bool peep2_do_cleanup_cfg
;
3003 /* The number of instructions available to match a peep2. */
3004 int peep2_current_count
;
3006 /* A non-insn marker indicating the last insn of the block.
3007 The live_before regset for this element is correct, indicating
3008 DF_LIVE_OUT for the block. */
3009 #define PEEP2_EOB pc_rtx
3011 /* Wrap N to fit into the peep2_insn_data buffer. */
3014 peep2_buf_position (int n
)
3016 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
3017 n
-= MAX_INSNS_PER_PEEP2
+ 1;
3021 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3022 does not exist. Used by the recognizer to find the next insn to match
3023 in a multi-insn pattern. */
3026 peep2_next_insn (int n
)
3028 gcc_assert (n
<= peep2_current_count
);
3030 n
= peep2_buf_position (peep2_current
+ n
);
3032 return peep2_insn_data
[n
].insn
;
3035 /* Return true if REGNO is dead before the Nth non-note insn
3039 peep2_regno_dead_p (int ofs
, int regno
)
3041 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
3043 ofs
= peep2_buf_position (peep2_current
+ ofs
);
3045 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
3047 return ! REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
);
3050 /* Similarly for a REG. */
3053 peep2_reg_dead_p (int ofs
, rtx reg
)
3057 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
3059 ofs
= peep2_buf_position (peep2_current
+ ofs
);
3061 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
3063 regno
= REGNO (reg
);
3064 n
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
3066 if (REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
+ n
))
3071 /* Try to find a hard register of mode MODE, matching the register class in
3072 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3073 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3074 in which case the only condition is that the register must be available
3075 before CURRENT_INSN.
3076 Registers that already have bits set in REG_SET will not be considered.
3078 If an appropriate register is available, it will be returned and the
3079 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3083 peep2_find_free_register (int from
, int to
, const char *class_str
,
3084 enum machine_mode mode
, HARD_REG_SET
*reg_set
)
3086 static int search_ofs
;
3092 gcc_assert (from
< MAX_INSNS_PER_PEEP2
+ 1);
3093 gcc_assert (to
< MAX_INSNS_PER_PEEP2
+ 1);
3095 from
= peep2_buf_position (peep2_current
+ from
);
3096 to
= peep2_buf_position (peep2_current
+ to
);
3098 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
3099 REG_SET_TO_HARD_REG_SET (live
, peep2_insn_data
[from
].live_before
);
3103 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
3105 /* Don't use registers set or clobbered by the insn. */
3106 for (def_rec
= DF_INSN_DEFS (peep2_insn_data
[from
].insn
);
3107 *def_rec
; def_rec
++)
3108 SET_HARD_REG_BIT (live
, DF_REF_REGNO (*def_rec
));
3110 from
= peep2_buf_position (from
+ 1);
3113 cl
= (class_str
[0] == 'r' ? GENERAL_REGS
3114 : REG_CLASS_FROM_CONSTRAINT (class_str
[0], class_str
));
3116 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3118 int raw_regno
, regno
, success
, j
;
3120 /* Distribute the free registers as much as possible. */
3121 raw_regno
= search_ofs
+ i
;
3122 if (raw_regno
>= FIRST_PSEUDO_REGISTER
)
3123 raw_regno
-= FIRST_PSEUDO_REGISTER
;
3124 #ifdef REG_ALLOC_ORDER
3125 regno
= reg_alloc_order
[raw_regno
];
3130 /* Can it support the mode we need? */
3131 if (! HARD_REGNO_MODE_OK (regno
, mode
))
3135 for (j
= 0; success
&& j
< hard_regno_nregs
[regno
][mode
]; j
++)
3137 /* Don't allocate fixed registers. */
3138 if (fixed_regs
[regno
+ j
])
3143 /* Don't allocate global registers. */
3144 if (global_regs
[regno
+ j
])
3149 /* Make sure the register is of the right class. */
3150 if (! TEST_HARD_REG_BIT (reg_class_contents
[cl
], regno
+ j
))
3155 /* And that we don't create an extra save/restore. */
3156 if (! call_used_regs
[regno
+ j
] && ! df_regs_ever_live_p (regno
+ j
))
3162 if (! targetm
.hard_regno_scratch_ok (regno
+ j
))
3168 /* And we don't clobber traceback for noreturn functions. */
3169 if ((regno
+ j
== FRAME_POINTER_REGNUM
3170 || regno
+ j
== HARD_FRAME_POINTER_REGNUM
)
3171 && (! reload_completed
|| frame_pointer_needed
))
3177 if (TEST_HARD_REG_BIT (*reg_set
, regno
+ j
)
3178 || TEST_HARD_REG_BIT (live
, regno
+ j
))
3187 add_to_hard_reg_set (reg_set
, mode
, regno
);
3189 /* Start the next search with the next register. */
3190 if (++raw_regno
>= FIRST_PSEUDO_REGISTER
)
3192 search_ofs
= raw_regno
;
3194 return gen_rtx_REG (mode
, regno
);
3202 /* Forget all currently tracked instructions, only remember current
3206 peep2_reinit_state (regset live
)
3210 /* Indicate that all slots except the last holds invalid data. */
3211 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
; ++i
)
3212 peep2_insn_data
[i
].insn
= NULL_RTX
;
3213 peep2_current_count
= 0;
3215 /* Indicate that the last slot contains live_after data. */
3216 peep2_insn_data
[MAX_INSNS_PER_PEEP2
].insn
= PEEP2_EOB
;
3217 peep2_current
= MAX_INSNS_PER_PEEP2
;
3219 COPY_REG_SET (peep2_insn_data
[MAX_INSNS_PER_PEEP2
].live_before
, live
);
3222 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3223 starting at INSN. Perform the replacement, removing the old insns and
3224 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3225 if the replacement is rejected. */
3228 peep2_attempt (basic_block bb
, rtx insn
, int match_len
, rtx attempt
)
3231 rtx last
, eh_note
, as_note
, before_try
, x
;
3232 rtx old_insn
, new_insn
;
3233 bool was_call
= false;
3235 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3236 match more than one insn, or to be split into more than one insn. */
3237 old_insn
= peep2_insn_data
[peep2_current
].insn
;
3238 if (RTX_FRAME_RELATED_P (old_insn
))
3240 bool any_note
= false;
3246 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3247 may be in the stream for the purpose of register allocation. */
3248 if (active_insn_p (attempt
))
3251 new_insn
= next_active_insn (attempt
);
3252 if (next_active_insn (new_insn
))
3255 /* We have a 1-1 replacement. Copy over any frame-related info. */
3256 RTX_FRAME_RELATED_P (new_insn
) = 1;
3258 /* Allow the backend to fill in a note during the split. */
3259 for (note
= REG_NOTES (new_insn
); note
; note
= XEXP (note
, 1))
3260 switch (REG_NOTE_KIND (note
))
3262 case REG_FRAME_RELATED_EXPR
:
3263 case REG_CFA_DEF_CFA
:
3264 case REG_CFA_ADJUST_CFA
:
3265 case REG_CFA_OFFSET
:
3266 case REG_CFA_REGISTER
:
3267 case REG_CFA_EXPRESSION
:
3268 case REG_CFA_RESTORE
:
3269 case REG_CFA_SET_VDRAP
:
3276 /* If the backend didn't supply a note, copy one over. */
3278 for (note
= REG_NOTES (old_insn
); note
; note
= XEXP (note
, 1))
3279 switch (REG_NOTE_KIND (note
))
3281 case REG_FRAME_RELATED_EXPR
:
3282 case REG_CFA_DEF_CFA
:
3283 case REG_CFA_ADJUST_CFA
:
3284 case REG_CFA_OFFSET
:
3285 case REG_CFA_REGISTER
:
3286 case REG_CFA_EXPRESSION
:
3287 case REG_CFA_RESTORE
:
3288 case REG_CFA_SET_VDRAP
:
3289 add_reg_note (new_insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3296 /* If there still isn't a note, make sure the unwind info sees the
3297 same expression as before the split. */
3300 rtx old_set
, new_set
;
3302 /* The old insn had better have been simple, or annotated. */
3303 old_set
= single_set (old_insn
);
3304 gcc_assert (old_set
!= NULL
);
3306 new_set
= single_set (new_insn
);
3307 if (!new_set
|| !rtx_equal_p (new_set
, old_set
))
3308 add_reg_note (new_insn
, REG_FRAME_RELATED_EXPR
, old_set
);
3311 /* Copy prologue/epilogue status. This is required in order to keep
3312 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3313 maybe_copy_prologue_epilogue_insn (old_insn
, new_insn
);
3316 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3317 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3318 cfg-related call notes. */
3319 for (i
= 0; i
<= match_len
; ++i
)
3324 j
= peep2_buf_position (peep2_current
+ i
);
3325 old_insn
= peep2_insn_data
[j
].insn
;
3326 if (!CALL_P (old_insn
))
3331 while (new_insn
!= NULL_RTX
)
3333 if (CALL_P (new_insn
))
3335 new_insn
= NEXT_INSN (new_insn
);
3338 gcc_assert (new_insn
!= NULL_RTX
);
3340 CALL_INSN_FUNCTION_USAGE (new_insn
)
3341 = CALL_INSN_FUNCTION_USAGE (old_insn
);
3343 for (note
= REG_NOTES (old_insn
);
3345 note
= XEXP (note
, 1))
3346 switch (REG_NOTE_KIND (note
))
3351 add_reg_note (new_insn
, REG_NOTE_KIND (note
),
3355 /* Discard all other reg notes. */
3359 /* Croak if there is another call in the sequence. */
3360 while (++i
<= match_len
)
3362 j
= peep2_buf_position (peep2_current
+ i
);
3363 old_insn
= peep2_insn_data
[j
].insn
;
3364 gcc_assert (!CALL_P (old_insn
));
3369 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3370 move those notes over to the new sequence. */
3372 for (i
= match_len
; i
>= 0; --i
)
3374 int j
= peep2_buf_position (peep2_current
+ i
);
3375 old_insn
= peep2_insn_data
[j
].insn
;
3377 as_note
= find_reg_note (old_insn
, REG_ARGS_SIZE
, NULL
);
3382 i
= peep2_buf_position (peep2_current
+ match_len
);
3383 eh_note
= find_reg_note (peep2_insn_data
[i
].insn
, REG_EH_REGION
, NULL_RTX
);
3385 /* Replace the old sequence with the new. */
3386 last
= emit_insn_after_setloc (attempt
,
3387 peep2_insn_data
[i
].insn
,
3388 INSN_LOCATION (peep2_insn_data
[i
].insn
));
3389 before_try
= PREV_INSN (insn
);
3390 delete_insn_chain (insn
, peep2_insn_data
[i
].insn
, false);
3392 /* Re-insert the EH_REGION notes. */
3393 if (eh_note
|| (was_call
&& nonlocal_goto_handler_labels
))
3398 FOR_EACH_EDGE (eh_edge
, ei
, bb
->succs
)
3399 if (eh_edge
->flags
& (EDGE_EH
| EDGE_ABNORMAL_CALL
))
3403 copy_reg_eh_region_note_backward (eh_note
, last
, before_try
);
3406 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
3407 if (x
!= BB_END (bb
)
3408 && (can_throw_internal (x
)
3409 || can_nonlocal_goto (x
)))
3414 nfte
= split_block (bb
, x
);
3415 flags
= (eh_edge
->flags
3416 & (EDGE_EH
| EDGE_ABNORMAL
));
3418 flags
|= EDGE_ABNORMAL_CALL
;
3419 nehe
= make_edge (nfte
->src
, eh_edge
->dest
,
3422 nehe
->probability
= eh_edge
->probability
;
3424 = REG_BR_PROB_BASE
- nehe
->probability
;
3426 peep2_do_cleanup_cfg
|= purge_dead_edges (nfte
->dest
);
3431 /* Converting possibly trapping insn to non-trapping is
3432 possible. Zap dummy outgoing edges. */
3433 peep2_do_cleanup_cfg
|= purge_dead_edges (bb
);
3436 /* Re-insert the ARGS_SIZE notes. */
3438 fixup_args_size_notes (before_try
, last
, INTVAL (XEXP (as_note
, 0)));
3440 /* If we generated a jump instruction, it won't have
3441 JUMP_LABEL set. Recompute after we're done. */
3442 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
3445 peep2_do_rebuild_jump_labels
= true;
3452 /* After performing a replacement in basic block BB, fix up the life
3453 information in our buffer. LAST is the last of the insns that we
3454 emitted as a replacement. PREV is the insn before the start of
3455 the replacement. MATCH_LEN is the number of instructions that were
3456 matched, and which now need to be replaced in the buffer. */
3459 peep2_update_life (basic_block bb
, int match_len
, rtx last
, rtx prev
)
3461 int i
= peep2_buf_position (peep2_current
+ match_len
+ 1);
3465 INIT_REG_SET (&live
);
3466 COPY_REG_SET (&live
, peep2_insn_data
[i
].live_before
);
3468 gcc_assert (peep2_current_count
>= match_len
+ 1);
3469 peep2_current_count
-= match_len
+ 1;
3477 if (peep2_current_count
< MAX_INSNS_PER_PEEP2
)
3479 peep2_current_count
++;
3481 i
= MAX_INSNS_PER_PEEP2
;
3482 peep2_insn_data
[i
].insn
= x
;
3483 df_simulate_one_insn_backwards (bb
, x
, &live
);
3484 COPY_REG_SET (peep2_insn_data
[i
].live_before
, &live
);
3490 CLEAR_REG_SET (&live
);
3495 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3496 Return true if we added it, false otherwise. The caller will try to match
3497 peepholes against the buffer if we return false; otherwise it will try to
3498 add more instructions to the buffer. */
3501 peep2_fill_buffer (basic_block bb
, rtx insn
, regset live
)
3505 /* Once we have filled the maximum number of insns the buffer can hold,
3506 allow the caller to match the insns against peepholes. We wait until
3507 the buffer is full in case the target has similar peepholes of different
3508 length; we always want to match the longest if possible. */
3509 if (peep2_current_count
== MAX_INSNS_PER_PEEP2
)
3512 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3513 any other pattern, lest it change the semantics of the frame info. */
3514 if (RTX_FRAME_RELATED_P (insn
))
3516 /* Let the buffer drain first. */
3517 if (peep2_current_count
> 0)
3519 /* Now the insn will be the only thing in the buffer. */
3522 pos
= peep2_buf_position (peep2_current
+ peep2_current_count
);
3523 peep2_insn_data
[pos
].insn
= insn
;
3524 COPY_REG_SET (peep2_insn_data
[pos
].live_before
, live
);
3525 peep2_current_count
++;
3527 df_simulate_one_insn_forwards (bb
, insn
, live
);
3531 /* Perform the peephole2 optimization pass. */
3534 peephole2_optimize (void)
3541 peep2_do_cleanup_cfg
= false;
3542 peep2_do_rebuild_jump_labels
= false;
3544 df_set_flags (DF_LR_RUN_DCE
);
3545 df_note_add_problem ();
3548 /* Initialize the regsets we're going to use. */
3549 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3550 peep2_insn_data
[i
].live_before
= BITMAP_ALLOC (®_obstack
);
3551 live
= BITMAP_ALLOC (®_obstack
);
3553 FOR_EACH_BB_REVERSE (bb
)
3555 bool past_end
= false;
3558 rtl_profile_for_bb (bb
);
3560 /* Start up propagation. */
3561 bitmap_copy (live
, DF_LR_IN (bb
));
3562 df_simulate_initialize_forwards (bb
, live
);
3563 peep2_reinit_state (live
);
3565 insn
= BB_HEAD (bb
);
3571 if (!past_end
&& !NONDEBUG_INSN_P (insn
))
3574 insn
= NEXT_INSN (insn
);
3575 if (insn
== NEXT_INSN (BB_END (bb
)))
3579 if (!past_end
&& peep2_fill_buffer (bb
, insn
, live
))
3582 /* If we did not fill an empty buffer, it signals the end of the
3584 if (peep2_current_count
== 0)
3587 /* The buffer filled to the current maximum, so try to match. */
3589 pos
= peep2_buf_position (peep2_current
+ peep2_current_count
);
3590 peep2_insn_data
[pos
].insn
= PEEP2_EOB
;
3591 COPY_REG_SET (peep2_insn_data
[pos
].live_before
, live
);
3593 /* Match the peephole. */
3594 head
= peep2_insn_data
[peep2_current
].insn
;
3595 attempt
= peephole2_insns (PATTERN (head
), head
, &match_len
);
3596 if (attempt
!= NULL
)
3598 rtx last
= peep2_attempt (bb
, head
, match_len
, attempt
);
3601 peep2_update_life (bb
, match_len
, last
, PREV_INSN (attempt
));
3606 /* No match: advance the buffer by one insn. */
3607 peep2_current
= peep2_buf_position (peep2_current
+ 1);
3608 peep2_current_count
--;
3612 default_rtl_profile ();
3613 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3614 BITMAP_FREE (peep2_insn_data
[i
].live_before
);
3616 if (peep2_do_rebuild_jump_labels
)
3617 rebuild_jump_labels (get_insns ());
3619 #endif /* HAVE_peephole2 */
3621 /* Common predicates for use with define_bypass. */
3623 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3624 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3625 must be either a single_set or a PARALLEL with SETs inside. */
3628 store_data_bypass_p (rtx out_insn
, rtx in_insn
)
3630 rtx out_set
, in_set
;
3631 rtx out_pat
, in_pat
;
3632 rtx out_exp
, in_exp
;
3635 in_set
= single_set (in_insn
);
3638 if (!MEM_P (SET_DEST (in_set
)))
3641 out_set
= single_set (out_insn
);
3644 if (reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_set
)))
3649 out_pat
= PATTERN (out_insn
);
3651 if (GET_CODE (out_pat
) != PARALLEL
)
3654 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3656 out_exp
= XVECEXP (out_pat
, 0, i
);
3658 if (GET_CODE (out_exp
) == CLOBBER
)
3661 gcc_assert (GET_CODE (out_exp
) == SET
);
3663 if (reg_mentioned_p (SET_DEST (out_exp
), SET_DEST (in_set
)))
3670 in_pat
= PATTERN (in_insn
);
3671 gcc_assert (GET_CODE (in_pat
) == PARALLEL
);
3673 for (i
= 0; i
< XVECLEN (in_pat
, 0); i
++)
3675 in_exp
= XVECEXP (in_pat
, 0, i
);
3677 if (GET_CODE (in_exp
) == CLOBBER
)
3680 gcc_assert (GET_CODE (in_exp
) == SET
);
3682 if (!MEM_P (SET_DEST (in_exp
)))
3685 out_set
= single_set (out_insn
);
3688 if (reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_exp
)))
3693 out_pat
= PATTERN (out_insn
);
3694 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3696 for (j
= 0; j
< XVECLEN (out_pat
, 0); j
++)
3698 out_exp
= XVECEXP (out_pat
, 0, j
);
3700 if (GET_CODE (out_exp
) == CLOBBER
)
3703 gcc_assert (GET_CODE (out_exp
) == SET
);
3705 if (reg_mentioned_p (SET_DEST (out_exp
), SET_DEST (in_exp
)))
3715 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3716 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3717 or multiple set; IN_INSN should be single_set for truth, but for convenience
3718 of insn categorization may be any JUMP or CALL insn. */
3721 if_test_bypass_p (rtx out_insn
, rtx in_insn
)
3723 rtx out_set
, in_set
;
3725 in_set
= single_set (in_insn
);
3728 gcc_assert (JUMP_P (in_insn
) || CALL_P (in_insn
));
3732 if (GET_CODE (SET_SRC (in_set
)) != IF_THEN_ELSE
)
3734 in_set
= SET_SRC (in_set
);
3736 out_set
= single_set (out_insn
);
3739 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3740 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3748 out_pat
= PATTERN (out_insn
);
3749 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3751 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3753 rtx exp
= XVECEXP (out_pat
, 0, i
);
3755 if (GET_CODE (exp
) == CLOBBER
)
3758 gcc_assert (GET_CODE (exp
) == SET
);
3760 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3761 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3770 gate_handle_peephole2 (void)
3772 return (optimize
> 0 && flag_peephole2
);
3776 rest_of_handle_peephole2 (void)
3778 #ifdef HAVE_peephole2
3779 peephole2_optimize ();
3786 const pass_data pass_data_peephole2
=
3788 RTL_PASS
, /* type */
3789 "peephole2", /* name */
3790 OPTGROUP_NONE
, /* optinfo_flags */
3791 true, /* has_gate */
3792 true, /* has_execute */
3793 TV_PEEPHOLE2
, /* tv_id */
3794 0, /* properties_required */
3795 0, /* properties_provided */
3796 0, /* properties_destroyed */
3797 0, /* todo_flags_start */
3798 ( TODO_df_finish
| TODO_verify_rtl_sharing
| 0 ), /* todo_flags_finish */
3801 class pass_peephole2
: public rtl_opt_pass
3804 pass_peephole2(gcc::context
*ctxt
)
3805 : rtl_opt_pass(pass_data_peephole2
, ctxt
)
3808 /* opt_pass methods: */
3809 /* The epiphany backend creates a second instance of this pass, so we need
3811 opt_pass
* clone () { return new pass_peephole2 (ctxt_
); }
3812 bool gate () { return gate_handle_peephole2 (); }
3813 unsigned int execute () { return rest_of_handle_peephole2 (); }
3815 }; // class pass_peephole2
3820 make_pass_peephole2 (gcc::context
*ctxt
)
3822 return new pass_peephole2 (ctxt
);
3826 rest_of_handle_split_all_insns (void)
3834 const pass_data pass_data_split_all_insns
=
3836 RTL_PASS
, /* type */
3837 "split1", /* name */
3838 OPTGROUP_NONE
, /* optinfo_flags */
3839 false, /* has_gate */
3840 true, /* has_execute */
3841 TV_NONE
, /* tv_id */
3842 0, /* properties_required */
3843 0, /* properties_provided */
3844 0, /* properties_destroyed */
3845 0, /* todo_flags_start */
3846 0, /* todo_flags_finish */
3849 class pass_split_all_insns
: public rtl_opt_pass
3852 pass_split_all_insns(gcc::context
*ctxt
)
3853 : rtl_opt_pass(pass_data_split_all_insns
, ctxt
)
3856 /* opt_pass methods: */
3857 /* The epiphany backend creates a second instance of this pass, so
3858 we need a clone method. */
3859 opt_pass
* clone () { return new pass_split_all_insns (ctxt_
); }
3860 unsigned int execute () { return rest_of_handle_split_all_insns (); }
3862 }; // class pass_split_all_insns
3867 make_pass_split_all_insns (gcc::context
*ctxt
)
3869 return new pass_split_all_insns (ctxt
);
3873 rest_of_handle_split_after_reload (void)
3875 /* If optimizing, then go ahead and split insns now. */
3885 const pass_data pass_data_split_after_reload
=
3887 RTL_PASS
, /* type */
3888 "split2", /* name */
3889 OPTGROUP_NONE
, /* optinfo_flags */
3890 false, /* has_gate */
3891 true, /* has_execute */
3892 TV_NONE
, /* tv_id */
3893 0, /* properties_required */
3894 0, /* properties_provided */
3895 0, /* properties_destroyed */
3896 0, /* todo_flags_start */
3897 0, /* todo_flags_finish */
3900 class pass_split_after_reload
: public rtl_opt_pass
3903 pass_split_after_reload(gcc::context
*ctxt
)
3904 : rtl_opt_pass(pass_data_split_after_reload
, ctxt
)
3907 /* opt_pass methods: */
3908 unsigned int execute () { return rest_of_handle_split_after_reload (); }
3910 }; // class pass_split_after_reload
3915 make_pass_split_after_reload (gcc::context
*ctxt
)
3917 return new pass_split_after_reload (ctxt
);
3921 gate_handle_split_before_regstack (void)
3923 #if HAVE_ATTR_length && defined (STACK_REGS)
3924 /* If flow2 creates new instructions which need splitting
3925 and scheduling after reload is not done, they might not be
3926 split until final which doesn't allow splitting
3927 if HAVE_ATTR_length. */
3928 # ifdef INSN_SCHEDULING
3929 return (optimize
&& !flag_schedule_insns_after_reload
);
3939 rest_of_handle_split_before_regstack (void)
3947 const pass_data pass_data_split_before_regstack
=
3949 RTL_PASS
, /* type */
3950 "split3", /* name */
3951 OPTGROUP_NONE
, /* optinfo_flags */
3952 true, /* has_gate */
3953 true, /* has_execute */
3954 TV_NONE
, /* tv_id */
3955 0, /* properties_required */
3956 0, /* properties_provided */
3957 0, /* properties_destroyed */
3958 0, /* todo_flags_start */
3959 0, /* todo_flags_finish */
3962 class pass_split_before_regstack
: public rtl_opt_pass
3965 pass_split_before_regstack(gcc::context
*ctxt
)
3966 : rtl_opt_pass(pass_data_split_before_regstack
, ctxt
)
3969 /* opt_pass methods: */
3970 bool gate () { return gate_handle_split_before_regstack (); }
3971 unsigned int execute () {
3972 return rest_of_handle_split_before_regstack ();
3975 }; // class pass_split_before_regstack
3980 make_pass_split_before_regstack (gcc::context
*ctxt
)
3982 return new pass_split_before_regstack (ctxt
);
3986 gate_handle_split_before_sched2 (void)
3988 #ifdef INSN_SCHEDULING
3989 return optimize
> 0 && flag_schedule_insns_after_reload
;
3996 rest_of_handle_split_before_sched2 (void)
3998 #ifdef INSN_SCHEDULING
4006 const pass_data pass_data_split_before_sched2
=
4008 RTL_PASS
, /* type */
4009 "split4", /* name */
4010 OPTGROUP_NONE
, /* optinfo_flags */
4011 true, /* has_gate */
4012 true, /* has_execute */
4013 TV_NONE
, /* tv_id */
4014 0, /* properties_required */
4015 0, /* properties_provided */
4016 0, /* properties_destroyed */
4017 0, /* todo_flags_start */
4018 TODO_verify_flow
, /* todo_flags_finish */
4021 class pass_split_before_sched2
: public rtl_opt_pass
4024 pass_split_before_sched2(gcc::context
*ctxt
)
4025 : rtl_opt_pass(pass_data_split_before_sched2
, ctxt
)
4028 /* opt_pass methods: */
4029 bool gate () { return gate_handle_split_before_sched2 (); }
4030 unsigned int execute () { return rest_of_handle_split_before_sched2 (); }
4032 }; // class pass_split_before_sched2
4037 make_pass_split_before_sched2 (gcc::context
*ctxt
)
4039 return new pass_split_before_sched2 (ctxt
);
4042 /* The placement of the splitting that we do for shorten_branches
4043 depends on whether regstack is used by the target or not. */
4045 gate_do_final_split (void)
4047 #if HAVE_ATTR_length && !defined (STACK_REGS)
4056 const pass_data pass_data_split_for_shorten_branches
=
4058 RTL_PASS
, /* type */
4059 "split5", /* name */
4060 OPTGROUP_NONE
, /* optinfo_flags */
4061 true, /* has_gate */
4062 true, /* has_execute */
4063 TV_NONE
, /* tv_id */
4064 0, /* properties_required */
4065 0, /* properties_provided */
4066 0, /* properties_destroyed */
4067 0, /* todo_flags_start */
4068 TODO_verify_rtl_sharing
, /* todo_flags_finish */
4071 class pass_split_for_shorten_branches
: public rtl_opt_pass
4074 pass_split_for_shorten_branches(gcc::context
*ctxt
)
4075 : rtl_opt_pass(pass_data_split_for_shorten_branches
, ctxt
)
4078 /* opt_pass methods: */
4079 bool gate () { return gate_do_final_split (); }
4080 unsigned int execute () { return split_all_insns_noflow (); }
4082 }; // class pass_split_for_shorten_branches
4087 make_pass_split_for_shorten_branches (gcc::context
*ctxt
)
4089 return new pass_split_for_shorten_branches (ctxt
);