1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Ch6
; use Exp_Ch6
;
34 with Exp_Ch7
; use Exp_Ch7
;
35 with Exp_Tss
; use Exp_Tss
;
36 with Exp_Util
; use Exp_Util
;
37 with Fname
; use Fname
;
38 with Fname
.UF
; use Fname
.UF
;
40 with Namet
; use Namet
;
41 with Nmake
; use Nmake
;
42 with Nlists
; use Nlists
;
43 with Output
; use Output
;
44 with Sem_Aux
; use Sem_Aux
;
45 with Sem_Ch8
; use Sem_Ch8
;
46 with Sem_Ch10
; use Sem_Ch10
;
47 with Sem_Ch12
; use Sem_Ch12
;
48 with Sem_Prag
; use Sem_Prag
;
49 with Sem_Util
; use Sem_Util
;
50 with Sinfo
; use Sinfo
;
51 with Sinput
; use Sinput
;
52 with Snames
; use Snames
;
53 with Stand
; use Stand
;
54 with Uname
; use Uname
;
55 with Tbuild
; use Tbuild
;
57 package body Inline
is
59 Check_Inlining_Restrictions
: constant Boolean := True;
60 -- In the following cases the frontend rejects inlining because they
61 -- are not handled well by the backend. This variable facilitates
62 -- disabling these restrictions to evaluate future versions of the
63 -- GCC backend in which some of the restrictions may be supported.
65 -- - subprograms that have:
66 -- - nested subprograms
68 -- - package declarations
69 -- - task or protected object declarations
70 -- - some of the following statements:
72 -- - asynchronous-select
73 -- - conditional-entry-call
79 Inlined_Calls
: Elist_Id
;
80 -- List of frontend inlined calls
82 Backend_Calls
: Elist_Id
;
83 -- List of inline calls passed to the backend
85 Backend_Inlined_Subps
: Elist_Id
;
86 -- List of subprograms inlined by the backend
88 Backend_Not_Inlined_Subps
: Elist_Id
;
89 -- List of subprograms that cannot be inlined by the backend
95 -- Inlined functions are actually placed in line by the backend if the
96 -- corresponding bodies are available (i.e. compiled). Whenever we find
97 -- a call to an inlined subprogram, we add the name of the enclosing
98 -- compilation unit to a worklist. After all compilation, and after
99 -- expansion of generic bodies, we traverse the list of pending bodies
100 -- and compile them as well.
102 package Inlined_Bodies
is new Table
.Table
(
103 Table_Component_Type
=> Entity_Id
,
104 Table_Index_Type
=> Int
,
105 Table_Low_Bound
=> 0,
106 Table_Initial
=> Alloc
.Inlined_Bodies_Initial
,
107 Table_Increment
=> Alloc
.Inlined_Bodies_Increment
,
108 Table_Name
=> "Inlined_Bodies");
110 -----------------------
111 -- Inline Processing --
112 -----------------------
114 -- For each call to an inlined subprogram, we make entries in a table
115 -- that stores caller and callee, and indicates the call direction from
116 -- one to the other. We also record the compilation unit that contains
117 -- the callee. After analyzing the bodies of all such compilation units,
118 -- we compute the transitive closure of inlined subprograms called from
119 -- the main compilation unit and make it available to the code generator
120 -- in no particular order, thus allowing cycles in the call graph.
122 Last_Inlined
: Entity_Id
:= Empty
;
124 -- For each entry in the table we keep a list of successors in topological
125 -- order, i.e. callers of the current subprogram.
127 type Subp_Index
is new Nat
;
128 No_Subp
: constant Subp_Index
:= 0;
130 -- The subprogram entities are hashed into the Inlined table
132 Num_Hash_Headers
: constant := 512;
134 Hash_Headers
: array (Subp_Index
range 0 .. Num_Hash_Headers
- 1)
137 type Succ_Index
is new Nat
;
138 No_Succ
: constant Succ_Index
:= 0;
140 type Succ_Info
is record
145 -- The following table stores list elements for the successor lists. These
146 -- lists cannot be chained directly through entries in the Inlined table,
147 -- because a given subprogram can appear in several such lists.
149 package Successors
is new Table
.Table
(
150 Table_Component_Type
=> Succ_Info
,
151 Table_Index_Type
=> Succ_Index
,
152 Table_Low_Bound
=> 1,
153 Table_Initial
=> Alloc
.Successors_Initial
,
154 Table_Increment
=> Alloc
.Successors_Increment
,
155 Table_Name
=> "Successors");
157 type Subp_Info
is record
158 Name
: Entity_Id
:= Empty
;
159 Next
: Subp_Index
:= No_Subp
;
160 First_Succ
: Succ_Index
:= No_Succ
;
161 Main_Call
: Boolean := False;
162 Processed
: Boolean := False;
165 package Inlined
is new Table
.Table
(
166 Table_Component_Type
=> Subp_Info
,
167 Table_Index_Type
=> Subp_Index
,
168 Table_Low_Bound
=> 1,
169 Table_Initial
=> Alloc
.Inlined_Initial
,
170 Table_Increment
=> Alloc
.Inlined_Increment
,
171 Table_Name
=> "Inlined");
173 -----------------------
174 -- Local Subprograms --
175 -----------------------
177 procedure Add_Call
(Called
: Entity_Id
; Caller
: Entity_Id
:= Empty
);
178 -- Make two entries in Inlined table, for an inlined subprogram being
179 -- called, and for the inlined subprogram that contains the call. If
180 -- the call is in the main compilation unit, Caller is Empty.
182 procedure Add_Inlined_Subprogram
(E
: Entity_Id
);
183 -- Add subprogram E to the list of inlined subprogram for the unit
185 function Add_Subp
(E
: Entity_Id
) return Subp_Index
;
186 -- Make entry in Inlined table for subprogram E, or return table index
187 -- that already holds E.
189 function Get_Code_Unit_Entity
(E
: Entity_Id
) return Entity_Id
;
190 pragma Inline
(Get_Code_Unit_Entity
);
191 -- Return the entity node for the unit containing E. Always return the spec
194 function Has_Initialized_Type
(E
: Entity_Id
) return Boolean;
195 -- If a candidate for inlining contains type declarations for types with
196 -- nontrivial initialization procedures, they are not worth inlining.
198 function Has_Single_Return
(N
: Node_Id
) return Boolean;
199 -- In general we cannot inline functions that return unconstrained type.
200 -- However, we can handle such functions if all return statements return a
201 -- local variable that is the only declaration in the body of the function.
202 -- In that case the call can be replaced by that local variable as is done
203 -- for other inlined calls.
205 function In_Main_Unit_Or_Subunit
(E
: Entity_Id
) return Boolean;
206 -- Return True if E is in the main unit or its spec or in a subunit
208 function Is_Nested
(E
: Entity_Id
) return Boolean;
209 -- If the function is nested inside some other function, it will always
210 -- be compiled if that function is, so don't add it to the inline list.
211 -- We cannot compile a nested function outside the scope of the containing
212 -- function anyway. This is also the case if the function is defined in a
213 -- task body or within an entry (for example, an initialization procedure).
215 procedure Remove_Aspects_And_Pragmas
(Body_Decl
: Node_Id
);
216 -- Remove all aspects and/or pragmas that have no meaning in inlined body
217 -- Body_Decl. The analysis of these items is performed on the non-inlined
218 -- body. The items currently removed are:
231 ------------------------------
232 -- Deferred Cleanup Actions --
233 ------------------------------
235 -- The cleanup actions for scopes that contain instantiations is delayed
236 -- until after expansion of those instantiations, because they may contain
237 -- finalizable objects or tasks that affect the cleanup code. A scope
238 -- that contains instantiations only needs to be finalized once, even
239 -- if it contains more than one instance. We keep a list of scopes
240 -- that must still be finalized, and call cleanup_actions after all
241 -- the instantiations have been completed.
245 procedure Add_Scope_To_Clean
(Inst
: Entity_Id
);
246 -- Build set of scopes on which cleanup actions must be performed
248 procedure Cleanup_Scopes
;
249 -- Complete cleanup actions on scopes that need it
255 procedure Add_Call
(Called
: Entity_Id
; Caller
: Entity_Id
:= Empty
) is
256 P1
: constant Subp_Index
:= Add_Subp
(Called
);
261 if Present
(Caller
) then
262 P2
:= Add_Subp
(Caller
);
264 -- Add P1 to the list of successors of P2, if not already there.
265 -- Note that P2 may contain more than one call to P1, and only
266 -- one needs to be recorded.
268 J
:= Inlined
.Table
(P2
).First_Succ
;
269 while J
/= No_Succ
loop
270 if Successors
.Table
(J
).Subp
= P1
then
274 J
:= Successors
.Table
(J
).Next
;
277 -- On exit, make a successor entry for P1
279 Successors
.Increment_Last
;
280 Successors
.Table
(Successors
.Last
).Subp
:= P1
;
281 Successors
.Table
(Successors
.Last
).Next
:=
282 Inlined
.Table
(P2
).First_Succ
;
283 Inlined
.Table
(P2
).First_Succ
:= Successors
.Last
;
285 Inlined
.Table
(P1
).Main_Call
:= True;
289 ----------------------
290 -- Add_Inlined_Body --
291 ----------------------
293 procedure Add_Inlined_Body
(E
: Entity_Id
; N
: Node_Id
) is
295 type Inline_Level_Type
is (Dont_Inline
, Inline_Call
, Inline_Package
);
296 -- Level of inlining for the call: Dont_Inline means no inlining,
297 -- Inline_Call means that only the call is considered for inlining,
298 -- Inline_Package means that the call is considered for inlining and
299 -- its package compiled and scanned for more inlining opportunities.
301 function Must_Inline
return Inline_Level_Type
;
302 -- Inlining is only done if the call statement N is in the main unit,
303 -- or within the body of another inlined subprogram.
309 function Must_Inline
return Inline_Level_Type
is
314 -- Check if call is in main unit
316 Scop
:= Current_Scope
;
318 -- Do not try to inline if scope is standard. This could happen, for
319 -- example, for a call to Add_Global_Declaration, and it causes
320 -- trouble to try to inline at this level.
322 if Scop
= Standard_Standard
then
326 -- Otherwise lookup scope stack to outer scope
328 while Scope
(Scop
) /= Standard_Standard
329 and then not Is_Child_Unit
(Scop
)
331 Scop
:= Scope
(Scop
);
334 Comp
:= Parent
(Scop
);
335 while Nkind
(Comp
) /= N_Compilation_Unit
loop
336 Comp
:= Parent
(Comp
);
339 -- If the call is in the main unit, inline the call and compile the
340 -- package of the subprogram to find more calls to be inlined.
342 if Comp
= Cunit
(Main_Unit
)
343 or else Comp
= Library_Unit
(Cunit
(Main_Unit
))
346 return Inline_Package
;
349 -- The call is not in the main unit. See if it is in some subprogram
350 -- that can be inlined outside its unit. If so, inline the call and,
351 -- if the inlining level is set to 1, stop there; otherwise also
352 -- compile the package as above.
354 Scop
:= Current_Scope
;
355 while Scope
(Scop
) /= Standard_Standard
356 and then not Is_Child_Unit
(Scop
)
358 if Is_Overloadable
(Scop
)
359 and then Is_Inlined
(Scop
)
360 and then not Is_Nested
(Scop
)
364 if Inline_Level
= 1 then
367 return Inline_Package
;
371 Scop
:= Scope
(Scop
);
377 Level
: Inline_Level_Type
;
379 -- Start of processing for Add_Inlined_Body
382 Append_New_Elmt
(N
, To
=> Backend_Calls
);
384 -- Skip subprograms that cannot be inlined outside their unit
386 if Is_Abstract_Subprogram
(E
)
387 or else Convention
(E
) = Convention_Protected
388 or else Is_Nested
(E
)
393 -- Find out whether the call must be inlined. Unless the result is
394 -- Dont_Inline, Must_Inline also creates an edge for the call in the
395 -- callgraph; however, it will not be activated until after Is_Called
396 -- is set on the subprogram.
398 Level
:= Must_Inline
;
400 if Level
= Dont_Inline
then
404 -- If the call was generated by the compiler and is to a subprogram in
405 -- a run-time unit, we need to suppress debugging information for it,
406 -- so that the code that is eventually inlined will not affect the
407 -- debugging of the program. We do not do it if the call comes from
408 -- source because, even if the call is inlined, the user may expect it
409 -- to be present in the debugging information.
411 if not Comes_From_Source
(N
)
412 and then In_Extended_Main_Source_Unit
(N
)
414 Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(E
)))
416 Set_Needs_Debug_Info
(E
, False);
419 -- If the subprogram is an expression function, then there is no need to
420 -- load any package body since the body of the function is in the spec.
422 if Is_Expression_Function
(E
) then
427 -- Find unit containing E, and add to list of inlined bodies if needed.
428 -- If the body is already present, no need to load any other unit. This
429 -- is the case for an initialization procedure, which appears in the
430 -- package declaration that contains the type. It is also the case if
431 -- the body has already been analyzed. Finally, if the unit enclosing
432 -- E is an instance, the instance body will be analyzed in any case,
433 -- and there is no need to add the enclosing unit (whose body might not
436 -- Library-level functions must be handled specially, because there is
437 -- no enclosing package to retrieve. In this case, it is the body of
438 -- the function that will have to be loaded.
441 Pack
: constant Entity_Id
:= Get_Code_Unit_Entity
(E
);
446 Inlined_Bodies
.Increment_Last
;
447 Inlined_Bodies
.Table
(Inlined_Bodies
.Last
) := E
;
449 elsif Ekind
(Pack
) = E_Package
then
452 if Is_Generic_Instance
(Pack
) then
455 -- Do not inline the package if the subprogram is an init proc
456 -- or other internally generated subprogram, because in that
457 -- case the subprogram body appears in the same unit that
458 -- declares the type, and that body is visible to the back end.
459 -- Do not inline it either if it is in the main unit.
460 -- Extend the -gnatn2 processing to -gnatn1 for Inline_Always
461 -- calls if the back-end takes care of inlining the call.
462 -- Note that Level in Inline_Package | Inline_Call here.
464 elsif ((Level
= Inline_Call
465 and then Has_Pragma_Inline_Always
(E
)
466 and then Back_End_Inlining
)
467 or else Level
= Inline_Package
)
468 and then not Is_Inlined
(Pack
)
469 and then not Is_Internal
(E
)
470 and then not In_Main_Unit_Or_Subunit
(Pack
)
472 Set_Is_Inlined
(Pack
);
473 Inlined_Bodies
.Increment_Last
;
474 Inlined_Bodies
.Table
(Inlined_Bodies
.Last
) := Pack
;
478 -- Ensure that Analyze_Inlined_Bodies will be invoked after
479 -- completing the analysis of the current unit.
481 Inline_Processing_Required
:= True;
483 end Add_Inlined_Body
;
485 ----------------------------
486 -- Add_Inlined_Subprogram --
487 ----------------------------
489 procedure Add_Inlined_Subprogram
(E
: Entity_Id
) is
490 Decl
: constant Node_Id
:= Parent
(Declaration_Node
(E
));
491 Pack
: constant Entity_Id
:= Get_Code_Unit_Entity
(E
);
493 procedure Register_Backend_Inlined_Subprogram
(Subp
: Entity_Id
);
494 -- Append Subp to the list of subprograms inlined by the backend
496 procedure Register_Backend_Not_Inlined_Subprogram
(Subp
: Entity_Id
);
497 -- Append Subp to the list of subprograms that cannot be inlined by
500 -----------------------------------------
501 -- Register_Backend_Inlined_Subprogram --
502 -----------------------------------------
504 procedure Register_Backend_Inlined_Subprogram
(Subp
: Entity_Id
) is
506 Append_New_Elmt
(Subp
, To
=> Backend_Inlined_Subps
);
507 end Register_Backend_Inlined_Subprogram
;
509 ---------------------------------------------
510 -- Register_Backend_Not_Inlined_Subprogram --
511 ---------------------------------------------
513 procedure Register_Backend_Not_Inlined_Subprogram
(Subp
: Entity_Id
) is
515 Append_New_Elmt
(Subp
, To
=> Backend_Not_Inlined_Subps
);
516 end Register_Backend_Not_Inlined_Subprogram
;
518 -- Start of processing for Add_Inlined_Subprogram
521 -- If the subprogram is to be inlined, and if its unit is known to be
522 -- inlined or is an instance whose body will be analyzed anyway or the
523 -- subprogram was generated as a body by the compiler (for example an
524 -- initialization procedure) or its declaration was provided along with
525 -- the body (for example an expression function), and if it is declared
526 -- at the library level not in the main unit, and if it can be inlined
527 -- by the back-end, then insert it in the list of inlined subprograms.
530 and then (Is_Inlined
(Pack
)
531 or else Is_Generic_Instance
(Pack
)
532 or else Nkind
(Decl
) = N_Subprogram_Body
533 or else Present
(Corresponding_Body
(Decl
)))
534 and then not In_Main_Unit_Or_Subunit
(E
)
535 and then not Is_Nested
(E
)
536 and then not Has_Initialized_Type
(E
)
538 Register_Backend_Inlined_Subprogram
(E
);
540 if No
(Last_Inlined
) then
541 Set_First_Inlined_Subprogram
(Cunit
(Main_Unit
), E
);
543 Set_Next_Inlined_Subprogram
(Last_Inlined
, E
);
549 Register_Backend_Not_Inlined_Subprogram
(E
);
551 end Add_Inlined_Subprogram
;
553 ------------------------
554 -- Add_Scope_To_Clean --
555 ------------------------
557 procedure Add_Scope_To_Clean
(Inst
: Entity_Id
) is
558 Scop
: constant Entity_Id
:= Enclosing_Dynamic_Scope
(Inst
);
562 -- If the instance appears in a library-level package declaration,
563 -- all finalization is global, and nothing needs doing here.
565 if Scop
= Standard_Standard
then
569 -- If the instance is within a generic unit, no finalization code
570 -- can be generated. Note that at this point all bodies have been
571 -- analyzed, and the scope stack itself is not present, and the flag
572 -- Inside_A_Generic is not set.
579 while Present
(S
) and then S
/= Standard_Standard
loop
580 if Is_Generic_Unit
(S
) then
588 Elmt
:= First_Elmt
(To_Clean
);
589 while Present
(Elmt
) loop
590 if Node
(Elmt
) = Scop
then
594 Elmt
:= Next_Elmt
(Elmt
);
597 Append_Elmt
(Scop
, To_Clean
);
598 end Add_Scope_To_Clean
;
604 function Add_Subp
(E
: Entity_Id
) return Subp_Index
is
605 Index
: Subp_Index
:= Subp_Index
(E
) mod Num_Hash_Headers
;
609 -- Initialize entry in Inlined table
611 procedure New_Entry
is
613 Inlined
.Increment_Last
;
614 Inlined
.Table
(Inlined
.Last
).Name
:= E
;
615 Inlined
.Table
(Inlined
.Last
).Next
:= No_Subp
;
616 Inlined
.Table
(Inlined
.Last
).First_Succ
:= No_Succ
;
617 Inlined
.Table
(Inlined
.Last
).Main_Call
:= False;
618 Inlined
.Table
(Inlined
.Last
).Processed
:= False;
621 -- Start of processing for Add_Subp
624 if Hash_Headers
(Index
) = No_Subp
then
626 Hash_Headers
(Index
) := Inlined
.Last
;
630 J
:= Hash_Headers
(Index
);
631 while J
/= No_Subp
loop
632 if Inlined
.Table
(J
).Name
= E
then
636 J
:= Inlined
.Table
(J
).Next
;
640 -- On exit, subprogram was not found. Enter in table. Index is
641 -- the current last entry on the hash chain.
644 Inlined
.Table
(Index
).Next
:= Inlined
.Last
;
649 ----------------------------
650 -- Analyze_Inlined_Bodies --
651 ----------------------------
653 procedure Analyze_Inlined_Bodies
is
660 type Pending_Index
is new Nat
;
662 package Pending_Inlined
is new Table
.Table
(
663 Table_Component_Type
=> Subp_Index
,
664 Table_Index_Type
=> Pending_Index
,
665 Table_Low_Bound
=> 1,
666 Table_Initial
=> Alloc
.Inlined_Initial
,
667 Table_Increment
=> Alloc
.Inlined_Increment
,
668 Table_Name
=> "Pending_Inlined");
669 -- The workpile used to compute the transitive closure
671 function Is_Ancestor_Of_Main
673 Nam
: Node_Id
) return Boolean;
674 -- Determine whether the unit whose body is loaded is an ancestor of
675 -- the main unit, and has a with_clause on it. The body is not
676 -- analyzed yet, so the check is purely lexical: the name of the with
677 -- clause is a selected component, and names of ancestors must match.
679 -------------------------
680 -- Is_Ancestor_Of_Main --
681 -------------------------
683 function Is_Ancestor_Of_Main
685 Nam
: Node_Id
) return Boolean
690 if Nkind
(Nam
) /= N_Selected_Component
then
694 if Chars
(Selector_Name
(Nam
)) /=
695 Chars
(Cunit_Entity
(Main_Unit
))
700 Pref
:= Prefix
(Nam
);
701 if Nkind
(Pref
) = N_Identifier
then
703 -- Par is an ancestor of Par.Child.
705 return Chars
(Pref
) = Chars
(U_Name
);
707 elsif Nkind
(Pref
) = N_Selected_Component
708 and then Chars
(Selector_Name
(Pref
)) = Chars
(U_Name
)
710 -- Par.Child is an ancestor of Par.Child.Grand.
712 return True; -- should check that ancestor match
715 -- A is an ancestor of A.B.C if it is an ancestor of A.B
717 return Is_Ancestor_Of_Main
(U_Name
, Pref
);
720 end Is_Ancestor_Of_Main
;
722 -- Start of processing for Analyze_Inlined_Bodies
725 if Serious_Errors_Detected
= 0 then
726 Push_Scope
(Standard_Standard
);
729 while J
<= Inlined_Bodies
.Last
730 and then Serious_Errors_Detected
= 0
732 Pack
:= Inlined_Bodies
.Table
(J
);
734 and then Scope
(Pack
) /= Standard_Standard
735 and then not Is_Child_Unit
(Pack
)
737 Pack
:= Scope
(Pack
);
740 Comp_Unit
:= Parent
(Pack
);
741 while Present
(Comp_Unit
)
742 and then Nkind
(Comp_Unit
) /= N_Compilation_Unit
744 Comp_Unit
:= Parent
(Comp_Unit
);
747 -- Load the body, unless it is the main unit, or is an instance
748 -- whose body has already been analyzed.
750 if Present
(Comp_Unit
)
751 and then Comp_Unit
/= Cunit
(Main_Unit
)
752 and then Body_Required
(Comp_Unit
)
753 and then (Nkind
(Unit
(Comp_Unit
)) /= N_Package_Declaration
754 or else No
(Corresponding_Body
(Unit
(Comp_Unit
))))
757 Bname
: constant Unit_Name_Type
:=
758 Get_Body_Name
(Get_Unit_Name
(Unit
(Comp_Unit
)));
763 if not Is_Loaded
(Bname
) then
764 Style_Check
:= False;
765 Load_Needed_Body
(Comp_Unit
, OK
, Do_Analyze
=> False);
769 -- Warn that a body was not available for inlining
772 Error_Msg_Unit_1
:= Bname
;
774 ("one or more inlined subprograms accessed in $!??",
777 Get_File_Name
(Bname
, Subunit
=> False);
778 Error_Msg_N
("\but file{ was not found!??", Comp_Unit
);
781 -- If the package to be inlined is an ancestor unit of
782 -- the main unit, and it has a semantic dependence on
783 -- it, the inlining cannot take place to prevent an
784 -- elaboration circularity. The desired body is not
785 -- analyzed yet, to prevent the completion of Taft
786 -- amendment types that would lead to elaboration
787 -- circularities in gigi.
790 U_Id
: constant Entity_Id
:=
791 Defining_Entity
(Unit
(Comp_Unit
));
792 Body_Unit
: constant Node_Id
:=
793 Library_Unit
(Comp_Unit
);
797 Item
:= First
(Context_Items
(Body_Unit
));
798 while Present
(Item
) loop
799 if Nkind
(Item
) = N_With_Clause
801 Is_Ancestor_Of_Main
(U_Id
, Name
(Item
))
803 Set_Is_Inlined
(U_Id
, False);
810 -- If no suspicious with_clauses, analyze the body.
812 if Is_Inlined
(U_Id
) then
813 Semantics
(Body_Unit
);
823 if J
> Inlined_Bodies
.Last
then
825 -- The analysis of required bodies may have produced additional
826 -- generic instantiations. To obtain further inlining, we need
827 -- to perform another round of generic body instantiations.
831 -- Symmetrically, the instantiation of required generic bodies
832 -- may have caused additional bodies to be inlined. To obtain
833 -- further inlining, we keep looping over the inlined bodies.
837 -- The list of inlined subprograms is an overestimate, because it
838 -- includes inlined functions called from functions that are compiled
839 -- as part of an inlined package, but are not themselves called. An
840 -- accurate computation of just those subprograms that are needed
841 -- requires that we perform a transitive closure over the call graph,
842 -- starting from calls in the main compilation unit.
844 for Index
in Inlined
.First
.. Inlined
.Last
loop
845 if not Is_Called
(Inlined
.Table
(Index
).Name
) then
847 -- This means that Add_Inlined_Body added the subprogram to the
848 -- table but wasn't able to handle its code unit. Do nothing.
850 Inlined
.Table
(Index
).Processed
:= True;
852 elsif Inlined
.Table
(Index
).Main_Call
then
853 Pending_Inlined
.Increment_Last
;
854 Pending_Inlined
.Table
(Pending_Inlined
.Last
) := Index
;
855 Inlined
.Table
(Index
).Processed
:= True;
858 Set_Is_Called
(Inlined
.Table
(Index
).Name
, False);
862 -- Iterate over the workpile until it is emptied, propagating the
863 -- Is_Called flag to the successors of the processed subprogram.
865 while Pending_Inlined
.Last
>= Pending_Inlined
.First
loop
866 Subp
:= Pending_Inlined
.Table
(Pending_Inlined
.Last
);
867 Pending_Inlined
.Decrement_Last
;
869 S
:= Inlined
.Table
(Subp
).First_Succ
;
871 while S
/= No_Succ
loop
872 Subp
:= Successors
.Table
(S
).Subp
;
874 if not Inlined
.Table
(Subp
).Processed
then
875 Set_Is_Called
(Inlined
.Table
(Subp
).Name
);
876 Pending_Inlined
.Increment_Last
;
877 Pending_Inlined
.Table
(Pending_Inlined
.Last
) := Subp
;
878 Inlined
.Table
(Subp
).Processed
:= True;
881 S
:= Successors
.Table
(S
).Next
;
885 -- Finally add the called subprograms to the list of inlined
886 -- subprograms for the unit.
888 for Index
in Inlined
.First
.. Inlined
.Last
loop
889 if Is_Called
(Inlined
.Table
(Index
).Name
) then
890 Add_Inlined_Subprogram
(Inlined
.Table
(Index
).Name
);
896 end Analyze_Inlined_Bodies
;
898 --------------------------
899 -- Build_Body_To_Inline --
900 --------------------------
902 procedure Build_Body_To_Inline
(N
: Node_Id
; Spec_Id
: Entity_Id
) is
903 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Spec_Id
);
904 Analysis_Status
: constant Boolean := Full_Analysis
;
905 Original_Body
: Node_Id
;
906 Body_To_Analyze
: Node_Id
;
907 Max_Size
: constant := 10;
909 function Has_Pending_Instantiation
return Boolean;
910 -- If some enclosing body contains instantiations that appear before
911 -- the corresponding generic body, the enclosing body has a freeze node
912 -- so that it can be elaborated after the generic itself. This might
913 -- conflict with subsequent inlinings, so that it is unsafe to try to
914 -- inline in such a case.
916 function Has_Single_Return_In_GNATprove_Mode
return Boolean;
917 -- This function is called only in GNATprove mode, and it returns
918 -- True if the subprogram has no return statement or a single return
919 -- statement as last statement. It returns False for subprogram with
920 -- a single return as last statement inside one or more blocks, as
921 -- inlining would generate gotos in that case as well (although the
922 -- goto is useless in that case).
924 function Uses_Secondary_Stack
(Bod
: Node_Id
) return Boolean;
925 -- If the body of the subprogram includes a call that returns an
926 -- unconstrained type, the secondary stack is involved, and it
927 -- is not worth inlining.
929 -------------------------------
930 -- Has_Pending_Instantiation --
931 -------------------------------
933 function Has_Pending_Instantiation
return Boolean is
938 while Present
(S
) loop
939 if Is_Compilation_Unit
(S
)
940 or else Is_Child_Unit
(S
)
944 elsif Ekind
(S
) = E_Package
945 and then Has_Forward_Instantiation
(S
)
954 end Has_Pending_Instantiation
;
956 -----------------------------------------
957 -- Has_Single_Return_In_GNATprove_Mode --
958 -----------------------------------------
960 function Has_Single_Return_In_GNATprove_Mode
return Boolean is
961 Body_To_Inline
: constant Node_Id
:= N
;
962 Last_Statement
: Node_Id
:= Empty
;
964 function Check_Return
(N
: Node_Id
) return Traverse_Result
;
965 -- Returns OK on node N if this is not a return statement different
966 -- from the last statement in the subprogram.
972 function Check_Return
(N
: Node_Id
) return Traverse_Result
is
975 when N_Extended_Return_Statement
976 | N_Simple_Return_Statement
978 if N
= Last_Statement
then
984 -- Skip locally declared subprogram bodies inside the body to
985 -- inline, as the return statements inside those do not count.
987 when N_Subprogram_Body
=>
988 if N
= Body_To_Inline
then
999 function Check_All_Returns
is new Traverse_Func
(Check_Return
);
1001 -- Start of processing for Has_Single_Return_In_GNATprove_Mode
1004 -- Retrieve the last statement
1006 Last_Statement
:= Last
(Statements
(Handled_Statement_Sequence
(N
)));
1008 -- Check that the last statement is the only possible return
1009 -- statement in the subprogram.
1011 return Check_All_Returns
(N
) = OK
;
1012 end Has_Single_Return_In_GNATprove_Mode
;
1014 --------------------------
1015 -- Uses_Secondary_Stack --
1016 --------------------------
1018 function Uses_Secondary_Stack
(Bod
: Node_Id
) return Boolean is
1019 function Check_Call
(N
: Node_Id
) return Traverse_Result
;
1020 -- Look for function calls that return an unconstrained type
1026 function Check_Call
(N
: Node_Id
) return Traverse_Result
is
1028 if Nkind
(N
) = N_Function_Call
1029 and then Is_Entity_Name
(Name
(N
))
1030 and then Is_Composite_Type
(Etype
(Entity
(Name
(N
))))
1031 and then not Is_Constrained
(Etype
(Entity
(Name
(N
))))
1034 ("cannot inline & (call returns unconstrained type)?",
1042 function Check_Calls
is new Traverse_Func
(Check_Call
);
1045 return Check_Calls
(Bod
) = Abandon
;
1046 end Uses_Secondary_Stack
;
1048 -- Start of processing for Build_Body_To_Inline
1051 -- Return immediately if done already
1053 if Nkind
(Decl
) = N_Subprogram_Declaration
1054 and then Present
(Body_To_Inline
(Decl
))
1058 -- Subprograms that have return statements in the middle of the body are
1059 -- inlined with gotos. GNATprove does not currently support gotos, so
1060 -- we prevent such inlining.
1062 elsif GNATprove_Mode
1063 and then not Has_Single_Return_In_GNATprove_Mode
1065 Cannot_Inline
("cannot inline & (multiple returns)?", N
, Spec_Id
);
1068 -- Functions that return unconstrained composite types require
1069 -- secondary stack handling, and cannot currently be inlined, unless
1070 -- all return statements return a local variable that is the first
1071 -- local declaration in the body.
1073 elsif Ekind
(Spec_Id
) = E_Function
1074 and then not Is_Scalar_Type
(Etype
(Spec_Id
))
1075 and then not Is_Access_Type
(Etype
(Spec_Id
))
1076 and then not Is_Constrained
(Etype
(Spec_Id
))
1078 if not Has_Single_Return
(N
) then
1080 ("cannot inline & (unconstrained return type)?", N
, Spec_Id
);
1084 -- Ditto for functions that return controlled types, where controlled
1085 -- actions interfere in complex ways with inlining.
1087 elsif Ekind
(Spec_Id
) = E_Function
1088 and then Needs_Finalization
(Etype
(Spec_Id
))
1091 ("cannot inline & (controlled return type)?", N
, Spec_Id
);
1095 if Present
(Declarations
(N
))
1096 and then Has_Excluded_Declaration
(Spec_Id
, Declarations
(N
))
1101 if Present
(Handled_Statement_Sequence
(N
)) then
1102 if Present
(Exception_Handlers
(Handled_Statement_Sequence
(N
))) then
1104 ("cannot inline& (exception handler)?",
1105 First
(Exception_Handlers
(Handled_Statement_Sequence
(N
))),
1109 elsif Has_Excluded_Statement
1110 (Spec_Id
, Statements
(Handled_Statement_Sequence
(N
)))
1116 -- We do not inline a subprogram that is too large, unless it is marked
1117 -- Inline_Always or we are in GNATprove mode. This pragma does not
1118 -- suppress the other checks on inlining (forbidden declarations,
1121 if not (Has_Pragma_Inline_Always
(Spec_Id
) or else GNATprove_Mode
)
1122 and then List_Length
1123 (Statements
(Handled_Statement_Sequence
(N
))) > Max_Size
1125 Cannot_Inline
("cannot inline& (body too large)?", N
, Spec_Id
);
1129 if Has_Pending_Instantiation
then
1131 ("cannot inline& (forward instance within enclosing body)?",
1136 -- Within an instance, the body to inline must be treated as a nested
1137 -- generic, so that the proper global references are preserved.
1139 -- Note that we do not do this at the library level, because it is not
1140 -- needed, and furthermore this causes trouble if front end inlining
1141 -- is activated (-gnatN).
1143 if In_Instance
and then Scope
(Current_Scope
) /= Standard_Standard
then
1144 Save_Env
(Scope
(Current_Scope
), Scope
(Current_Scope
));
1145 Original_Body
:= Copy_Generic_Node
(N
, Empty
, True);
1147 Original_Body
:= Copy_Separate_Tree
(N
);
1150 -- We need to capture references to the formals in order to substitute
1151 -- the actuals at the point of inlining, i.e. instantiation. To treat
1152 -- the formals as globals to the body to inline, we nest it within a
1153 -- dummy parameterless subprogram, declared within the real one. To
1154 -- avoid generating an internal name (which is never public, and which
1155 -- affects serial numbers of other generated names), we use an internal
1156 -- symbol that cannot conflict with user declarations.
1158 Set_Parameter_Specifications
(Specification
(Original_Body
), No_List
);
1159 Set_Defining_Unit_Name
1160 (Specification
(Original_Body
),
1161 Make_Defining_Identifier
(Sloc
(N
), Name_uParent
));
1162 Set_Corresponding_Spec
(Original_Body
, Empty
);
1164 -- Remove all aspects/pragmas that have no meaning in an inlined body
1166 Remove_Aspects_And_Pragmas
(Original_Body
);
1168 Body_To_Analyze
:= Copy_Generic_Node
(Original_Body
, Empty
, False);
1170 -- Set return type of function, which is also global and does not need
1173 if Ekind
(Spec_Id
) = E_Function
then
1174 Set_Result_Definition
1175 (Specification
(Body_To_Analyze
),
1176 New_Occurrence_Of
(Etype
(Spec_Id
), Sloc
(N
)));
1179 if No
(Declarations
(N
)) then
1180 Set_Declarations
(N
, New_List
(Body_To_Analyze
));
1182 Append
(Body_To_Analyze
, Declarations
(N
));
1185 -- The body to inline is pre-analyzed. In GNATprove mode we must disable
1186 -- full analysis as well so that light expansion does not take place
1187 -- either, and name resolution is unaffected.
1189 Expander_Mode_Save_And_Set
(False);
1190 Full_Analysis
:= False;
1192 Analyze
(Body_To_Analyze
);
1193 Push_Scope
(Defining_Entity
(Body_To_Analyze
));
1194 Save_Global_References
(Original_Body
);
1196 Remove
(Body_To_Analyze
);
1198 Expander_Mode_Restore
;
1199 Full_Analysis
:= Analysis_Status
;
1201 -- Restore environment if previously saved
1203 if In_Instance
and then Scope
(Current_Scope
) /= Standard_Standard
then
1207 -- If secondary stack is used, there is no point in inlining. We have
1208 -- already issued the warning in this case, so nothing to do.
1210 if Uses_Secondary_Stack
(Body_To_Analyze
) then
1214 Set_Body_To_Inline
(Decl
, Original_Body
);
1215 Set_Ekind
(Defining_Entity
(Original_Body
), Ekind
(Spec_Id
));
1216 Set_Is_Inlined
(Spec_Id
);
1217 end Build_Body_To_Inline
;
1219 -------------------------------------------
1220 -- Call_Can_Be_Inlined_In_GNATprove_Mode --
1221 -------------------------------------------
1223 function Call_Can_Be_Inlined_In_GNATprove_Mode
1225 Subp
: Entity_Id
) return Boolean
1231 F
:= First_Formal
(Subp
);
1232 A
:= First_Actual
(N
);
1233 while Present
(F
) loop
1234 if Ekind
(F
) /= E_Out_Parameter
1235 and then not Same_Type
(Etype
(F
), Etype
(A
))
1237 (Is_By_Reference_Type
(Etype
(A
))
1238 or else Is_Limited_Type
(Etype
(A
)))
1248 end Call_Can_Be_Inlined_In_GNATprove_Mode
;
1250 --------------------------------------
1251 -- Can_Be_Inlined_In_GNATprove_Mode --
1252 --------------------------------------
1254 function Can_Be_Inlined_In_GNATprove_Mode
1255 (Spec_Id
: Entity_Id
;
1256 Body_Id
: Entity_Id
) return Boolean
1258 function Has_Formal_With_Discriminant_Dependent_Fields
1259 (Id
: Entity_Id
) return Boolean;
1260 -- Returns true if the subprogram has at least one formal parameter of
1261 -- an unconstrained record type with per-object constraints on component
1264 function Has_Some_Contract
(Id
: Entity_Id
) return Boolean;
1265 -- Returns True if subprogram Id has any contract (Pre, Post, Global,
1268 function Is_Unit_Subprogram
(Id
: Entity_Id
) return Boolean;
1269 -- Returns True if subprogram Id defines a compilation unit
1270 -- Shouldn't this be in Sem_Aux???
1272 function In_Package_Visible_Spec
(Id
: Node_Id
) return Boolean;
1273 -- Returns True if subprogram Id is defined in the visible part of a
1274 -- package specification.
1276 ---------------------------------------------------
1277 -- Has_Formal_With_Discriminant_Dependent_Fields --
1278 ---------------------------------------------------
1280 function Has_Formal_With_Discriminant_Dependent_Fields
1281 (Id
: Entity_Id
) return Boolean is
1283 function Has_Discriminant_Dependent_Component
1284 (Typ
: Entity_Id
) return Boolean;
1285 -- Determine whether unconstrained record type Typ has at least
1286 -- one component that depends on a discriminant.
1288 ------------------------------------------
1289 -- Has_Discriminant_Dependent_Component --
1290 ------------------------------------------
1292 function Has_Discriminant_Dependent_Component
1293 (Typ
: Entity_Id
) return Boolean
1298 -- Inspect all components of the record type looking for one
1299 -- that depends on a discriminant.
1301 Comp
:= First_Component
(Typ
);
1302 while Present
(Comp
) loop
1303 if Has_Discriminant_Dependent_Constraint
(Comp
) then
1307 Next_Component
(Comp
);
1311 end Has_Discriminant_Dependent_Component
;
1315 Subp_Id
: constant Entity_Id
:= Ultimate_Alias
(Id
);
1317 Formal_Typ
: Entity_Id
;
1319 -- Start of processing for
1320 -- Has_Formal_With_Discriminant_Dependent_Fields
1323 -- Inspect all parameters of the subprogram looking for a formal
1324 -- of an unconstrained record type with at least one discriminant
1325 -- dependent component.
1327 Formal
:= First_Formal
(Subp_Id
);
1328 while Present
(Formal
) loop
1329 Formal_Typ
:= Etype
(Formal
);
1331 if Is_Record_Type
(Formal_Typ
)
1332 and then not Is_Constrained
(Formal_Typ
)
1333 and then Has_Discriminant_Dependent_Component
(Formal_Typ
)
1338 Next_Formal
(Formal
);
1342 end Has_Formal_With_Discriminant_Dependent_Fields
;
1344 -----------------------
1345 -- Has_Some_Contract --
1346 -----------------------
1348 function Has_Some_Contract
(Id
: Entity_Id
) return Boolean is
1352 -- A call to an expression function may precede the actual body which
1353 -- is inserted at the end of the enclosing declarations. Ensure that
1354 -- the related entity is decorated before inspecting the contract.
1356 if Is_Subprogram_Or_Generic_Subprogram
(Id
) then
1357 Items
:= Contract
(Id
);
1359 return Present
(Items
)
1360 and then (Present
(Pre_Post_Conditions
(Items
)) or else
1361 Present
(Contract_Test_Cases
(Items
)) or else
1362 Present
(Classifications
(Items
)));
1366 end Has_Some_Contract
;
1368 -----------------------------
1369 -- In_Package_Visible_Spec --
1370 -----------------------------
1372 function In_Package_Visible_Spec
(Id
: Node_Id
) return Boolean is
1373 Decl
: Node_Id
:= Parent
(Parent
(Id
));
1377 if Nkind
(Parent
(Id
)) = N_Defining_Program_Unit_Name
then
1378 Decl
:= Parent
(Decl
);
1383 return Nkind
(P
) = N_Package_Specification
1384 and then List_Containing
(Decl
) = Visible_Declarations
(P
);
1385 end In_Package_Visible_Spec
;
1387 ------------------------
1388 -- Is_Unit_Subprogram --
1389 ------------------------
1391 function Is_Unit_Subprogram
(Id
: Entity_Id
) return Boolean is
1392 Decl
: Node_Id
:= Parent
(Parent
(Id
));
1394 if Nkind
(Parent
(Id
)) = N_Defining_Program_Unit_Name
then
1395 Decl
:= Parent
(Decl
);
1398 return Nkind
(Parent
(Decl
)) = N_Compilation_Unit
;
1399 end Is_Unit_Subprogram
;
1401 -- Local declarations
1404 -- Procedure or function entity for the subprogram
1406 -- Start of processing for Can_Be_Inlined_In_GNATprove_Mode
1409 pragma Assert
(Present
(Spec_Id
) or else Present
(Body_Id
));
1411 if Present
(Spec_Id
) then
1417 -- Only local subprograms without contracts are inlined in GNATprove
1418 -- mode, as these are the subprograms which a user is not interested in
1419 -- analyzing in isolation, but rather in the context of their call. This
1420 -- is a convenient convention, that could be changed for an explicit
1421 -- pragma/aspect one day.
1423 -- In a number of special cases, inlining is not desirable or not
1424 -- possible, see below.
1426 -- Do not inline unit-level subprograms
1428 if Is_Unit_Subprogram
(Id
) then
1431 -- Do not inline subprograms declared in the visible part of a package
1433 elsif In_Package_Visible_Spec
(Id
) then
1436 -- Do not inline subprograms marked No_Return, possibly used for
1437 -- signaling errors, which GNATprove handles specially.
1439 elsif No_Return
(Id
) then
1442 -- Do not inline subprograms that have a contract on the spec or the
1443 -- body. Use the contract(s) instead in GNATprove.
1445 elsif (Present
(Spec_Id
) and then Has_Some_Contract
(Spec_Id
))
1447 (Present
(Body_Id
) and then Has_Some_Contract
(Body_Id
))
1451 -- Do not inline expression functions, which are directly inlined at the
1454 elsif (Present
(Spec_Id
) and then Is_Expression_Function
(Spec_Id
))
1456 (Present
(Body_Id
) and then Is_Expression_Function
(Body_Id
))
1460 -- Do not inline generic subprogram instances. The visibility rules of
1461 -- generic instances plays badly with inlining.
1463 elsif Is_Generic_Instance
(Spec_Id
) then
1466 -- Only inline subprograms whose spec is marked SPARK_Mode On. For
1467 -- the subprogram body, a similar check is performed after the body
1468 -- is analyzed, as this is where a pragma SPARK_Mode might be inserted.
1470 elsif Present
(Spec_Id
)
1472 (No
(SPARK_Pragma
(Spec_Id
))
1474 Get_SPARK_Mode_From_Annotation
(SPARK_Pragma
(Spec_Id
)) /= On
)
1478 -- Subprograms in generic instances are currently not inlined, to avoid
1479 -- problems with inlining of standard library subprograms.
1481 elsif Instantiation_Location
(Sloc
(Id
)) /= No_Location
then
1484 -- Do not inline predicate functions (treated specially by GNATprove)
1486 elsif Is_Predicate_Function
(Id
) then
1489 -- Do not inline subprograms with a parameter of an unconstrained
1490 -- record type if it has discrimiant dependent fields. Indeed, with
1491 -- such parameters, the frontend cannot always ensure type compliance
1492 -- in record component accesses (in particular with records containing
1495 elsif Has_Formal_With_Discriminant_Dependent_Fields
(Id
) then
1498 -- Otherwise, this is a subprogram declared inside the private part of a
1499 -- package, or inside a package body, or locally in a subprogram, and it
1500 -- does not have any contract. Inline it.
1505 end Can_Be_Inlined_In_GNATprove_Mode
;
1511 procedure Cannot_Inline
1515 Is_Serious
: Boolean := False)
1518 -- In GNATprove mode, inlining is the technical means by which the
1519 -- higher-level goal of contextual analysis is reached, so issue
1520 -- messages about failure to apply contextual analysis to a
1521 -- subprogram, rather than failure to inline it.
1524 and then Msg
(Msg
'First .. Msg
'First + 12) = "cannot inline"
1527 Len1
: constant Positive :=
1528 String (String'("cannot inline"))'Length;
1529 Len2 : constant Positive :=
1530 String (String'("info: no contextual analysis of"))'Length;
1532 New_Msg
: String (1 .. Msg
'Length + Len2
- Len1
);
1535 New_Msg
(1 .. Len2
) := "info: no contextual analysis of";
1536 New_Msg
(Len2
+ 1 .. Msg
'Length + Len2
- Len1
) :=
1537 Msg
(Msg
'First + Len1
.. Msg
'Last);
1538 Cannot_Inline
(New_Msg
, N
, Subp
, Is_Serious
);
1543 pragma Assert
(Msg
(Msg
'Last) = '?');
1545 -- Legacy front end inlining model
1547 if not Back_End_Inlining
then
1549 -- Do not emit warning if this is a predefined unit which is not
1550 -- the main unit. With validity checks enabled, some predefined
1551 -- subprograms may contain nested subprograms and become ineligible
1554 if Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(Subp
)))
1555 and then not In_Extended_Main_Source_Unit
(Subp
)
1559 -- In GNATprove mode, issue a warning, and indicate that the
1560 -- subprogram is not always inlined by setting flag Is_Inlined_Always
1563 elsif GNATprove_Mode
then
1564 Set_Is_Inlined_Always
(Subp
, False);
1565 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1567 elsif Has_Pragma_Inline_Always
(Subp
) then
1569 -- Remove last character (question mark) to make this into an
1570 -- error, because the Inline_Always pragma cannot be obeyed.
1572 Error_Msg_NE
(Msg
(Msg
'First .. Msg
'Last - 1), N
, Subp
);
1574 elsif Ineffective_Inline_Warnings
then
1575 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1578 -- New semantics relying on back end inlining
1580 elsif Is_Serious
then
1582 -- Remove last character (question mark) to make this into an error.
1584 Error_Msg_NE
(Msg
(Msg
'First .. Msg
'Last - 1), N
, Subp
);
1586 -- In GNATprove mode, issue a warning, and indicate that the subprogram
1587 -- is not always inlined by setting flag Is_Inlined_Always to False.
1589 elsif GNATprove_Mode
then
1590 Set_Is_Inlined_Always
(Subp
, False);
1591 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1595 -- Do not emit warning if this is a predefined unit which is not
1596 -- the main unit. This behavior is currently provided for backward
1597 -- compatibility but it will be removed when we enforce the
1598 -- strictness of the new rules.
1600 if Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(Subp
)))
1601 and then not In_Extended_Main_Source_Unit
(Subp
)
1605 elsif Has_Pragma_Inline_Always
(Subp
) then
1607 -- Emit a warning if this is a call to a runtime subprogram
1608 -- which is located inside a generic. Previously this call
1609 -- was silently skipped.
1611 if Is_Generic_Instance
(Subp
) then
1613 Gen_P
: constant Entity_Id
:= Generic_Parent
(Parent
(Subp
));
1615 if Is_Predefined_File_Name
1616 (Unit_File_Name
(Get_Source_Unit
(Gen_P
)))
1618 Set_Is_Inlined
(Subp
, False);
1619 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1625 -- Remove last character (question mark) to make this into an
1626 -- error, because the Inline_Always pragma cannot be obeyed.
1628 Error_Msg_NE
(Msg
(Msg
'First .. Msg
'Last - 1), N
, Subp
);
1631 Set_Is_Inlined
(Subp
, False);
1633 if Ineffective_Inline_Warnings
then
1634 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1640 --------------------------------------------
1641 -- Check_And_Split_Unconstrained_Function --
1642 --------------------------------------------
1644 procedure Check_And_Split_Unconstrained_Function
1646 Spec_Id
: Entity_Id
;
1647 Body_Id
: Entity_Id
)
1649 procedure Build_Body_To_Inline
(N
: Node_Id
; Spec_Id
: Entity_Id
);
1650 -- Use generic machinery to build an unexpanded body for the subprogram.
1651 -- This body is subsequently used for inline expansions at call sites.
1653 function Can_Split_Unconstrained_Function
(N
: Node_Id
) return Boolean;
1654 -- Return true if we generate code for the function body N, the function
1655 -- body N has no local declarations and its unique statement is a single
1656 -- extended return statement with a handled statements sequence.
1658 procedure Generate_Subprogram_Body
1660 Body_To_Inline
: out Node_Id
);
1661 -- Generate a parameterless duplicate of subprogram body N. Occurrences
1662 -- of pragmas referencing the formals are removed since they have no
1663 -- meaning when the body is inlined and the formals are rewritten (the
1664 -- analysis of the non-inlined body will handle these pragmas properly).
1665 -- A new internal name is associated with Body_To_Inline.
1667 procedure Split_Unconstrained_Function
1669 Spec_Id
: Entity_Id
);
1670 -- N is an inlined function body that returns an unconstrained type and
1671 -- has a single extended return statement. Split N in two subprograms:
1672 -- a procedure P' and a function F'. The formals of P' duplicate the
1673 -- formals of N plus an extra formal which is used return a value;
1674 -- its body is composed by the declarations and list of statements
1675 -- of the extended return statement of N.
1677 --------------------------
1678 -- Build_Body_To_Inline --
1679 --------------------------
1681 procedure Build_Body_To_Inline
(N
: Node_Id
; Spec_Id
: Entity_Id
) is
1682 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Spec_Id
);
1683 Original_Body
: Node_Id
;
1684 Body_To_Analyze
: Node_Id
;
1687 pragma Assert
(Current_Scope
= Spec_Id
);
1689 -- Within an instance, the body to inline must be treated as a nested
1690 -- generic, so that the proper global references are preserved. We
1691 -- do not do this at the library level, because it is not needed, and
1692 -- furthermore this causes trouble if front end inlining is activated
1696 and then Scope
(Current_Scope
) /= Standard_Standard
1698 Save_Env
(Scope
(Current_Scope
), Scope
(Current_Scope
));
1701 -- We need to capture references to the formals in order
1702 -- to substitute the actuals at the point of inlining, i.e.
1703 -- instantiation. To treat the formals as globals to the body to
1704 -- inline, we nest it within a dummy parameterless subprogram,
1705 -- declared within the real one.
1707 Generate_Subprogram_Body
(N
, Original_Body
);
1708 Body_To_Analyze
:= Copy_Generic_Node
(Original_Body
, Empty
, False);
1710 -- Set return type of function, which is also global and does not
1711 -- need to be resolved.
1713 if Ekind
(Spec_Id
) = E_Function
then
1714 Set_Result_Definition
(Specification
(Body_To_Analyze
),
1715 New_Occurrence_Of
(Etype
(Spec_Id
), Sloc
(N
)));
1718 if No
(Declarations
(N
)) then
1719 Set_Declarations
(N
, New_List
(Body_To_Analyze
));
1721 Append_To
(Declarations
(N
), Body_To_Analyze
);
1724 Preanalyze
(Body_To_Analyze
);
1726 Push_Scope
(Defining_Entity
(Body_To_Analyze
));
1727 Save_Global_References
(Original_Body
);
1729 Remove
(Body_To_Analyze
);
1731 -- Restore environment if previously saved
1734 and then Scope
(Current_Scope
) /= Standard_Standard
1739 pragma Assert
(No
(Body_To_Inline
(Decl
)));
1740 Set_Body_To_Inline
(Decl
, Original_Body
);
1741 Set_Ekind
(Defining_Entity
(Original_Body
), Ekind
(Spec_Id
));
1742 end Build_Body_To_Inline
;
1744 --------------------------------------
1745 -- Can_Split_Unconstrained_Function --
1746 --------------------------------------
1748 function Can_Split_Unconstrained_Function
(N
: Node_Id
) return Boolean
1750 Ret_Node
: constant Node_Id
:=
1751 First
(Statements
(Handled_Statement_Sequence
(N
)));
1755 -- No user defined declarations allowed in the function except inside
1756 -- the unique return statement; implicit labels are the only allowed
1759 if not Is_Empty_List
(Declarations
(N
)) then
1760 D
:= First
(Declarations
(N
));
1761 while Present
(D
) loop
1762 if Nkind
(D
) /= N_Implicit_Label_Declaration
then
1770 -- We only split the inlined function when we are generating the code
1771 -- of its body; otherwise we leave duplicated split subprograms in
1772 -- the tree which (if referenced) generate wrong references at link
1775 return In_Extended_Main_Code_Unit
(N
)
1776 and then Present
(Ret_Node
)
1777 and then Nkind
(Ret_Node
) = N_Extended_Return_Statement
1778 and then No
(Next
(Ret_Node
))
1779 and then Present
(Handled_Statement_Sequence
(Ret_Node
));
1780 end Can_Split_Unconstrained_Function
;
1782 -----------------------------
1783 -- Generate_Body_To_Inline --
1784 -----------------------------
1786 procedure Generate_Subprogram_Body
1788 Body_To_Inline
: out Node_Id
)
1791 -- Within an instance, the body to inline must be treated as a nested
1792 -- generic, so that the proper global references are preserved.
1794 -- Note that we do not do this at the library level, because it
1795 -- is not needed, and furthermore this causes trouble if front
1796 -- end inlining is activated (-gnatN).
1799 and then Scope
(Current_Scope
) /= Standard_Standard
1801 Body_To_Inline
:= Copy_Generic_Node
(N
, Empty
, True);
1803 Body_To_Inline
:= Copy_Separate_Tree
(N
);
1806 -- Remove all aspects/pragmas that have no meaning in an inlined body
1808 Remove_Aspects_And_Pragmas
(Body_To_Inline
);
1810 -- We need to capture references to the formals in order
1811 -- to substitute the actuals at the point of inlining, i.e.
1812 -- instantiation. To treat the formals as globals to the body to
1813 -- inline, we nest it within a dummy parameterless subprogram,
1814 -- declared within the real one.
1816 Set_Parameter_Specifications
1817 (Specification
(Body_To_Inline
), No_List
);
1819 -- A new internal name is associated with Body_To_Inline to avoid
1820 -- conflicts when the non-inlined body N is analyzed.
1822 Set_Defining_Unit_Name
(Specification
(Body_To_Inline
),
1823 Make_Defining_Identifier
(Sloc
(N
), New_Internal_Name
('P')));
1824 Set_Corresponding_Spec
(Body_To_Inline
, Empty
);
1825 end Generate_Subprogram_Body
;
1827 ----------------------------------
1828 -- Split_Unconstrained_Function --
1829 ----------------------------------
1831 procedure Split_Unconstrained_Function
1833 Spec_Id
: Entity_Id
)
1835 Loc
: constant Source_Ptr
:= Sloc
(N
);
1836 Ret_Node
: constant Node_Id
:=
1837 First
(Statements
(Handled_Statement_Sequence
(N
)));
1838 Ret_Obj
: constant Node_Id
:=
1839 First
(Return_Object_Declarations
(Ret_Node
));
1841 procedure Build_Procedure
1842 (Proc_Id
: out Entity_Id
;
1843 Decl_List
: out List_Id
);
1844 -- Build a procedure containing the statements found in the extended
1845 -- return statement of the unconstrained function body N.
1847 ---------------------
1848 -- Build_Procedure --
1849 ---------------------
1851 procedure Build_Procedure
1852 (Proc_Id
: out Entity_Id
;
1853 Decl_List
: out List_Id
)
1856 Formal_List
: constant List_Id
:= New_List
;
1857 Proc_Spec
: Node_Id
;
1858 Proc_Body
: Node_Id
;
1859 Subp_Name
: constant Name_Id
:= New_Internal_Name
('F');
1860 Body_Decl_List
: List_Id
:= No_List
;
1861 Param_Type
: Node_Id
;
1864 if Nkind
(Object_Definition
(Ret_Obj
)) = N_Identifier
then
1866 New_Copy
(Object_Definition
(Ret_Obj
));
1869 New_Copy
(Subtype_Mark
(Object_Definition
(Ret_Obj
)));
1872 Append_To
(Formal_List
,
1873 Make_Parameter_Specification
(Loc
,
1874 Defining_Identifier
=>
1875 Make_Defining_Identifier
(Loc
,
1876 Chars
=> Chars
(Defining_Identifier
(Ret_Obj
))),
1877 In_Present
=> False,
1878 Out_Present
=> True,
1879 Null_Exclusion_Present
=> False,
1880 Parameter_Type
=> Param_Type
));
1882 Formal
:= First_Formal
(Spec_Id
);
1884 -- Note that we copy the parameter type rather than creating
1885 -- a reference to it, because it may be a class-wide entity
1886 -- that will not be retrieved by name.
1888 while Present
(Formal
) loop
1889 Append_To
(Formal_List
,
1890 Make_Parameter_Specification
(Loc
,
1891 Defining_Identifier
=>
1892 Make_Defining_Identifier
(Sloc
(Formal
),
1893 Chars
=> Chars
(Formal
)),
1894 In_Present
=> In_Present
(Parent
(Formal
)),
1895 Out_Present
=> Out_Present
(Parent
(Formal
)),
1896 Null_Exclusion_Present
=>
1897 Null_Exclusion_Present
(Parent
(Formal
)),
1899 New_Copy_Tree
(Parameter_Type
(Parent
(Formal
))),
1901 Copy_Separate_Tree
(Expression
(Parent
(Formal
)))));
1903 Next_Formal
(Formal
);
1906 Proc_Id
:= Make_Defining_Identifier
(Loc
, Chars
=> Subp_Name
);
1909 Make_Procedure_Specification
(Loc
,
1910 Defining_Unit_Name
=> Proc_Id
,
1911 Parameter_Specifications
=> Formal_List
);
1913 Decl_List
:= New_List
;
1915 Append_To
(Decl_List
,
1916 Make_Subprogram_Declaration
(Loc
, Proc_Spec
));
1918 -- Can_Convert_Unconstrained_Function checked that the function
1919 -- has no local declarations except implicit label declarations.
1920 -- Copy these declarations to the built procedure.
1922 if Present
(Declarations
(N
)) then
1923 Body_Decl_List
:= New_List
;
1930 D
:= First
(Declarations
(N
));
1931 while Present
(D
) loop
1932 pragma Assert
(Nkind
(D
) = N_Implicit_Label_Declaration
);
1935 Make_Implicit_Label_Declaration
(Loc
,
1936 Make_Defining_Identifier
(Loc
,
1937 Chars
=> Chars
(Defining_Identifier
(D
))),
1938 Label_Construct
=> Empty
);
1939 Append_To
(Body_Decl_List
, New_D
);
1946 pragma Assert
(Present
(Handled_Statement_Sequence
(Ret_Node
)));
1949 Make_Subprogram_Body
(Loc
,
1950 Specification
=> Copy_Separate_Tree
(Proc_Spec
),
1951 Declarations
=> Body_Decl_List
,
1952 Handled_Statement_Sequence
=>
1953 Copy_Separate_Tree
(Handled_Statement_Sequence
(Ret_Node
)));
1955 Set_Defining_Unit_Name
(Specification
(Proc_Body
),
1956 Make_Defining_Identifier
(Loc
, Subp_Name
));
1958 Append_To
(Decl_List
, Proc_Body
);
1959 end Build_Procedure
;
1963 New_Obj
: constant Node_Id
:= Copy_Separate_Tree
(Ret_Obj
);
1965 Proc_Id
: Entity_Id
;
1966 Proc_Call
: Node_Id
;
1968 -- Start of processing for Split_Unconstrained_Function
1971 -- Build the associated procedure, analyze it and insert it before
1972 -- the function body N.
1975 Scope
: constant Entity_Id
:= Current_Scope
;
1976 Decl_List
: List_Id
;
1979 Build_Procedure
(Proc_Id
, Decl_List
);
1980 Insert_Actions
(N
, Decl_List
);
1984 -- Build the call to the generated procedure
1987 Actual_List
: constant List_Id
:= New_List
;
1991 Append_To
(Actual_List
,
1992 New_Occurrence_Of
(Defining_Identifier
(New_Obj
), Loc
));
1994 Formal
:= First_Formal
(Spec_Id
);
1995 while Present
(Formal
) loop
1996 Append_To
(Actual_List
, New_Occurrence_Of
(Formal
, Loc
));
1998 -- Avoid spurious warning on unreferenced formals
2000 Set_Referenced
(Formal
);
2001 Next_Formal
(Formal
);
2005 Make_Procedure_Call_Statement
(Loc
,
2006 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
2007 Parameter_Associations
=> Actual_List
);
2015 -- main_1__F1b (New_Obj, ...);
2020 Make_Block_Statement
(Loc
,
2021 Declarations
=> New_List
(New_Obj
),
2022 Handled_Statement_Sequence
=>
2023 Make_Handled_Sequence_Of_Statements
(Loc
,
2024 Statements
=> New_List
(
2028 Make_Simple_Return_Statement
(Loc
,
2031 (Defining_Identifier
(New_Obj
), Loc
)))));
2033 Rewrite
(Ret_Node
, Blk_Stmt
);
2034 end Split_Unconstrained_Function
;
2038 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Spec_Id
);
2040 -- Start of processing for Check_And_Split_Unconstrained_Function
2043 pragma Assert
(Back_End_Inlining
2044 and then Ekind
(Spec_Id
) = E_Function
2045 and then Returns_Unconstrained_Type
(Spec_Id
)
2046 and then Comes_From_Source
(Body_Id
)
2047 and then (Has_Pragma_Inline_Always
(Spec_Id
)
2048 or else Optimization_Level
> 0));
2050 -- This routine must not be used in GNATprove mode since GNATprove
2051 -- relies on frontend inlining
2053 pragma Assert
(not GNATprove_Mode
);
2055 -- No need to split the function if we cannot generate the code
2057 if Serious_Errors_Detected
/= 0 then
2061 -- No action needed in stubs since the attribute Body_To_Inline
2064 if Nkind
(Decl
) = N_Subprogram_Body_Stub
then
2067 -- Cannot build the body to inline if the attribute is already set.
2068 -- This attribute may have been set if this is a subprogram renaming
2069 -- declarations (see Freeze.Build_Renamed_Body).
2071 elsif Present
(Body_To_Inline
(Decl
)) then
2074 -- Check excluded declarations
2076 elsif Present
(Declarations
(N
))
2077 and then Has_Excluded_Declaration
(Spec_Id
, Declarations
(N
))
2081 -- Check excluded statements. There is no need to protect us against
2082 -- exception handlers since they are supported by the GCC backend.
2084 elsif Present
(Handled_Statement_Sequence
(N
))
2085 and then Has_Excluded_Statement
2086 (Spec_Id
, Statements
(Handled_Statement_Sequence
(N
)))
2091 -- Build the body to inline only if really needed
2093 if Can_Split_Unconstrained_Function
(N
) then
2094 Split_Unconstrained_Function
(N
, Spec_Id
);
2095 Build_Body_To_Inline
(N
, Spec_Id
);
2096 Set_Is_Inlined
(Spec_Id
);
2098 end Check_And_Split_Unconstrained_Function
;
2100 -------------------------------------
2101 -- Check_Package_Body_For_Inlining --
2102 -------------------------------------
2104 procedure Check_Package_Body_For_Inlining
(N
: Node_Id
; P
: Entity_Id
) is
2105 Bname
: Unit_Name_Type
;
2110 -- Legacy implementation (relying on frontend inlining)
2112 if not Back_End_Inlining
2113 and then Is_Compilation_Unit
(P
)
2114 and then not Is_Generic_Instance
(P
)
2116 Bname
:= Get_Body_Name
(Get_Unit_Name
(Unit
(N
)));
2118 E
:= First_Entity
(P
);
2119 while Present
(E
) loop
2120 if Has_Pragma_Inline_Always
(E
)
2121 or else (Has_Pragma_Inline
(E
) and Front_End_Inlining
)
2123 if not Is_Loaded
(Bname
) then
2124 Load_Needed_Body
(N
, OK
);
2128 -- Check we are not trying to inline a parent whose body
2129 -- depends on a child, when we are compiling the body of
2130 -- the child. Otherwise we have a potential elaboration
2131 -- circularity with inlined subprograms and with
2132 -- Taft-Amendment types.
2135 Comp
: Node_Id
; -- Body just compiled
2136 Child_Spec
: Entity_Id
; -- Spec of main unit
2137 Ent
: Entity_Id
; -- For iteration
2138 With_Clause
: Node_Id
; -- Context of body.
2141 if Nkind
(Unit
(Cunit
(Main_Unit
))) = N_Package_Body
2142 and then Present
(Body_Entity
(P
))
2146 ((Unit
(Library_Unit
(Cunit
(Main_Unit
)))));
2149 Parent
(Unit_Declaration_Node
(Body_Entity
(P
)));
2151 -- Check whether the context of the body just
2152 -- compiled includes a child of itself, and that
2153 -- child is the spec of the main compilation.
2155 With_Clause
:= First
(Context_Items
(Comp
));
2156 while Present
(With_Clause
) loop
2157 if Nkind
(With_Clause
) = N_With_Clause
2159 Scope
(Entity
(Name
(With_Clause
))) = P
2161 Entity
(Name
(With_Clause
)) = Child_Spec
2163 Error_Msg_Node_2
:= Child_Spec
;
2165 ("body of & depends on child unit&??",
2168 ("\subprograms in body cannot be inlined??",
2171 -- Disable further inlining from this unit,
2172 -- and keep Taft-amendment types incomplete.
2174 Ent
:= First_Entity
(P
);
2175 while Present
(Ent
) loop
2177 and then Has_Completion_In_Body
(Ent
)
2179 Set_Full_View
(Ent
, Empty
);
2181 elsif Is_Subprogram
(Ent
) then
2182 Set_Is_Inlined
(Ent
, False);
2196 elsif Ineffective_Inline_Warnings
then
2197 Error_Msg_Unit_1
:= Bname
;
2199 ("unable to inline subprograms defined in $??", P
);
2200 Error_Msg_N
("\body not found??", P
);
2211 end Check_Package_Body_For_Inlining
;
2213 --------------------
2214 -- Cleanup_Scopes --
2215 --------------------
2217 procedure Cleanup_Scopes
is
2223 Elmt
:= First_Elmt
(To_Clean
);
2224 while Present
(Elmt
) loop
2225 Scop
:= Node
(Elmt
);
2227 if Ekind
(Scop
) = E_Entry
then
2228 Scop
:= Protected_Body_Subprogram
(Scop
);
2230 elsif Is_Subprogram
(Scop
)
2231 and then Is_Protected_Type
(Scope
(Scop
))
2232 and then Present
(Protected_Body_Subprogram
(Scop
))
2234 -- If a protected operation contains an instance, its cleanup
2235 -- operations have been delayed, and the subprogram has been
2236 -- rewritten in the expansion of the enclosing protected body. It
2237 -- is the corresponding subprogram that may require the cleanup
2238 -- operations, so propagate the information that triggers cleanup
2242 (Protected_Body_Subprogram
(Scop
),
2243 Uses_Sec_Stack
(Scop
));
2245 Scop
:= Protected_Body_Subprogram
(Scop
);
2248 if Ekind
(Scop
) = E_Block
then
2249 Decl
:= Parent
(Block_Node
(Scop
));
2252 Decl
:= Unit_Declaration_Node
(Scop
);
2254 if Nkind_In
(Decl
, N_Subprogram_Declaration
,
2255 N_Task_Type_Declaration
,
2256 N_Subprogram_Body_Stub
)
2258 Decl
:= Unit_Declaration_Node
(Corresponding_Body
(Decl
));
2263 Expand_Cleanup_Actions
(Decl
);
2266 Elmt
:= Next_Elmt
(Elmt
);
2270 -------------------------
2271 -- Expand_Inlined_Call --
2272 -------------------------
2274 procedure Expand_Inlined_Call
2277 Orig_Subp
: Entity_Id
)
2279 Loc
: constant Source_Ptr
:= Sloc
(N
);
2280 Is_Predef
: constant Boolean :=
2281 Is_Predefined_File_Name
2282 (Unit_File_Name
(Get_Source_Unit
(Subp
)));
2283 Orig_Bod
: constant Node_Id
:=
2284 Body_To_Inline
(Unit_Declaration_Node
(Subp
));
2288 Decls
: constant List_Id
:= New_List
;
2289 Exit_Lab
: Entity_Id
:= Empty
;
2296 Ret_Type
: Entity_Id
;
2299 -- The target of the call. If context is an assignment statement then
2300 -- this is the left-hand side of the assignment, else it is a temporary
2301 -- to which the return value is assigned prior to rewriting the call.
2304 -- A separate target used when the return type is unconstrained
2307 Temp_Typ
: Entity_Id
;
2309 Return_Object
: Entity_Id
:= Empty
;
2310 -- Entity in declaration in an extended_return_statement
2313 Is_Unc_Decl
: Boolean;
2314 -- If the type returned by the function is unconstrained and the call
2315 -- can be inlined, special processing is required.
2317 procedure Declare_Postconditions_Result
;
2318 -- When generating C code, declare _Result, which may be used in the
2319 -- inlined _Postconditions procedure to verify the return value.
2321 procedure Make_Exit_Label
;
2322 -- Build declaration for exit label to be used in Return statements,
2323 -- sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
2324 -- declaration). Does nothing if Exit_Lab already set.
2326 function Process_Formals
(N
: Node_Id
) return Traverse_Result
;
2327 -- Replace occurrence of a formal with the corresponding actual, or the
2328 -- thunk generated for it. Replace a return statement with an assignment
2329 -- to the target of the call, with appropriate conversions if needed.
2331 function Process_Sloc
(Nod
: Node_Id
) return Traverse_Result
;
2332 -- If the call being expanded is that of an internal subprogram, set the
2333 -- sloc of the generated block to that of the call itself, so that the
2334 -- expansion is skipped by the "next" command in gdb. Same processing
2335 -- for a subprogram in a predefined file, e.g. Ada.Tags. If
2336 -- Debug_Generated_Code is true, suppress this change to simplify our
2337 -- own development. Same in GNATprove mode, to ensure that warnings and
2338 -- diagnostics point to the proper location.
2340 procedure Reset_Dispatching_Calls
(N
: Node_Id
);
2341 -- In subtree N search for occurrences of dispatching calls that use the
2342 -- Ada 2005 Object.Operation notation and the object is a formal of the
2343 -- inlined subprogram. Reset the entity associated with Operation in all
2344 -- the found occurrences.
2346 procedure Rewrite_Function_Call
(N
: Node_Id
; Blk
: Node_Id
);
2347 -- If the function body is a single expression, replace call with
2348 -- expression, else insert block appropriately.
2350 procedure Rewrite_Procedure_Call
(N
: Node_Id
; Blk
: Node_Id
);
2351 -- If procedure body has no local variables, inline body without
2352 -- creating block, otherwise rewrite call with block.
2354 function Formal_Is_Used_Once
(Formal
: Entity_Id
) return Boolean;
2355 -- Determine whether a formal parameter is used only once in Orig_Bod
2357 -----------------------------------
2358 -- Declare_Postconditions_Result --
2359 -----------------------------------
2361 procedure Declare_Postconditions_Result
is
2362 Enclosing_Subp
: constant Entity_Id
:= Scope
(Subp
);
2367 and then Is_Subprogram
(Enclosing_Subp
)
2368 and then Present
(Postconditions_Proc
(Enclosing_Subp
)));
2370 if Ekind
(Enclosing_Subp
) = E_Function
then
2371 if Nkind
(First
(Parameter_Associations
(N
))) in
2372 N_Numeric_Or_String_Literal
2374 Append_To
(Declarations
(Blk
),
2375 Make_Object_Declaration
(Loc
,
2376 Defining_Identifier
=>
2377 Make_Defining_Identifier
(Loc
, Name_uResult
),
2378 Constant_Present
=> True,
2379 Object_Definition
=>
2380 New_Occurrence_Of
(Etype
(Enclosing_Subp
), Loc
),
2382 New_Copy_Tree
(First
(Parameter_Associations
(N
)))));
2384 Append_To
(Declarations
(Blk
),
2385 Make_Object_Renaming_Declaration
(Loc
,
2386 Defining_Identifier
=>
2387 Make_Defining_Identifier
(Loc
, Name_uResult
),
2389 New_Occurrence_Of
(Etype
(Enclosing_Subp
), Loc
),
2391 New_Copy_Tree
(First
(Parameter_Associations
(N
)))));
2394 end Declare_Postconditions_Result
;
2396 ---------------------
2397 -- Make_Exit_Label --
2398 ---------------------
2400 procedure Make_Exit_Label
is
2401 Lab_Ent
: Entity_Id
;
2403 if No
(Exit_Lab
) then
2404 Lab_Ent
:= Make_Temporary
(Loc
, 'L');
2405 Lab_Id
:= New_Occurrence_Of
(Lab_Ent
, Loc
);
2406 Exit_Lab
:= Make_Label
(Loc
, Lab_Id
);
2408 Make_Implicit_Label_Declaration
(Loc
,
2409 Defining_Identifier
=> Lab_Ent
,
2410 Label_Construct
=> Exit_Lab
);
2412 end Make_Exit_Label
;
2414 ---------------------
2415 -- Process_Formals --
2416 ---------------------
2418 function Process_Formals
(N
: Node_Id
) return Traverse_Result
is
2424 if Is_Entity_Name
(N
) and then Present
(Entity
(N
)) then
2427 if Is_Formal
(E
) and then Scope
(E
) = Subp
then
2428 A
:= Renamed_Object
(E
);
2430 -- Rewrite the occurrence of the formal into an occurrence of
2431 -- the actual. Also establish visibility on the proper view of
2432 -- the actual's subtype for the body's context (if the actual's
2433 -- subtype is private at the call point but its full view is
2434 -- visible to the body, then the inlined tree here must be
2435 -- analyzed with the full view).
2437 if Is_Entity_Name
(A
) then
2438 Rewrite
(N
, New_Occurrence_Of
(Entity
(A
), Sloc
(N
)));
2439 Check_Private_View
(N
);
2441 elsif Nkind
(A
) = N_Defining_Identifier
then
2442 Rewrite
(N
, New_Occurrence_Of
(A
, Sloc
(N
)));
2443 Check_Private_View
(N
);
2448 Rewrite
(N
, New_Copy
(A
));
2454 elsif Is_Entity_Name
(N
)
2455 and then Present
(Return_Object
)
2456 and then Chars
(N
) = Chars
(Return_Object
)
2458 -- Occurrence within an extended return statement. The return
2459 -- object is local to the body been inlined, and thus the generic
2460 -- copy is not analyzed yet, so we match by name, and replace it
2461 -- with target of call.
2463 if Nkind
(Targ
) = N_Defining_Identifier
then
2464 Rewrite
(N
, New_Occurrence_Of
(Targ
, Loc
));
2466 Rewrite
(N
, New_Copy_Tree
(Targ
));
2471 elsif Nkind
(N
) = N_Simple_Return_Statement
then
2472 if No
(Expression
(N
)) then
2473 Num_Ret
:= Num_Ret
+ 1;
2476 Make_Goto_Statement
(Loc
, Name
=> New_Copy
(Lab_Id
)));
2479 if Nkind
(Parent
(N
)) = N_Handled_Sequence_Of_Statements
2480 and then Nkind
(Parent
(Parent
(N
))) = N_Subprogram_Body
2482 -- Function body is a single expression. No need for
2488 Num_Ret
:= Num_Ret
+ 1;
2492 -- Because of the presence of private types, the views of the
2493 -- expression and the context may be different, so place an
2494 -- unchecked conversion to the context type to avoid spurious
2495 -- errors, e.g. when the expression is a numeric literal and
2496 -- the context is private. If the expression is an aggregate,
2497 -- use a qualified expression, because an aggregate is not a
2498 -- legal argument of a conversion. Ditto for numeric literals
2499 -- and attributes that yield a universal type, because those
2500 -- must be resolved to a specific type.
2502 if Nkind_In
(Expression
(N
), N_Aggregate
, N_Null
)
2503 or else Yields_Universal_Type
(Expression
(N
))
2506 Make_Qualified_Expression
(Sloc
(N
),
2507 Subtype_Mark
=> New_Occurrence_Of
(Ret_Type
, Sloc
(N
)),
2508 Expression
=> Relocate_Node
(Expression
(N
)));
2511 Unchecked_Convert_To
2512 (Ret_Type
, Relocate_Node
(Expression
(N
)));
2515 if Nkind
(Targ
) = N_Defining_Identifier
then
2517 Make_Assignment_Statement
(Loc
,
2518 Name
=> New_Occurrence_Of
(Targ
, Loc
),
2519 Expression
=> Ret
));
2522 Make_Assignment_Statement
(Loc
,
2523 Name
=> New_Copy
(Targ
),
2524 Expression
=> Ret
));
2527 Set_Assignment_OK
(Name
(N
));
2529 if Present
(Exit_Lab
) then
2531 Make_Goto_Statement
(Loc
, Name
=> New_Copy
(Lab_Id
)));
2537 -- An extended return becomes a block whose first statement is the
2538 -- assignment of the initial expression of the return object to the
2539 -- target of the call itself.
2541 elsif Nkind
(N
) = N_Extended_Return_Statement
then
2543 Return_Decl
: constant Entity_Id
:=
2544 First
(Return_Object_Declarations
(N
));
2548 Return_Object
:= Defining_Identifier
(Return_Decl
);
2550 if Present
(Expression
(Return_Decl
)) then
2551 if Nkind
(Targ
) = N_Defining_Identifier
then
2553 Make_Assignment_Statement
(Loc
,
2554 Name
=> New_Occurrence_Of
(Targ
, Loc
),
2555 Expression
=> Expression
(Return_Decl
));
2558 Make_Assignment_Statement
(Loc
,
2559 Name
=> New_Copy
(Targ
),
2560 Expression
=> Expression
(Return_Decl
));
2563 Set_Assignment_OK
(Name
(Assign
));
2565 if No
(Handled_Statement_Sequence
(N
)) then
2566 Set_Handled_Statement_Sequence
(N
,
2567 Make_Handled_Sequence_Of_Statements
(Loc
,
2568 Statements
=> New_List
));
2572 Statements
(Handled_Statement_Sequence
(N
)));
2576 Make_Block_Statement
(Loc
,
2577 Handled_Statement_Sequence
=>
2578 Handled_Statement_Sequence
(N
)));
2583 -- Remove pragma Unreferenced since it may refer to formals that
2584 -- are not visible in the inlined body, and in any case we will
2585 -- not be posting warnings on the inlined body so it is unneeded.
2587 elsif Nkind
(N
) = N_Pragma
2588 and then Pragma_Name
(N
) = Name_Unreferenced
2590 Rewrite
(N
, Make_Null_Statement
(Sloc
(N
)));
2596 end Process_Formals
;
2598 procedure Replace_Formals
is new Traverse_Proc
(Process_Formals
);
2604 function Process_Sloc
(Nod
: Node_Id
) return Traverse_Result
is
2606 if not Debug_Generated_Code
then
2607 Set_Sloc
(Nod
, Sloc
(N
));
2608 Set_Comes_From_Source
(Nod
, False);
2614 procedure Reset_Slocs
is new Traverse_Proc
(Process_Sloc
);
2616 ------------------------------
2617 -- Reset_Dispatching_Calls --
2618 ------------------------------
2620 procedure Reset_Dispatching_Calls
(N
: Node_Id
) is
2622 function Do_Reset
(N
: Node_Id
) return Traverse_Result
;
2623 -- Comment required ???
2629 function Do_Reset
(N
: Node_Id
) return Traverse_Result
is
2631 if Nkind
(N
) = N_Procedure_Call_Statement
2632 and then Nkind
(Name
(N
)) = N_Selected_Component
2633 and then Nkind
(Prefix
(Name
(N
))) = N_Identifier
2634 and then Is_Formal
(Entity
(Prefix
(Name
(N
))))
2635 and then Is_Dispatching_Operation
2636 (Entity
(Selector_Name
(Name
(N
))))
2638 Set_Entity
(Selector_Name
(Name
(N
)), Empty
);
2644 function Do_Reset_Calls
is new Traverse_Func
(Do_Reset
);
2648 Dummy
: constant Traverse_Result
:= Do_Reset_Calls
(N
);
2649 pragma Unreferenced
(Dummy
);
2651 -- Start of processing for Reset_Dispatching_Calls
2655 end Reset_Dispatching_Calls
;
2657 ---------------------------
2658 -- Rewrite_Function_Call --
2659 ---------------------------
2661 procedure Rewrite_Function_Call
(N
: Node_Id
; Blk
: Node_Id
) is
2662 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(Blk
);
2663 Fst
: constant Node_Id
:= First
(Statements
(HSS
));
2666 -- Optimize simple case: function body is a single return statement,
2667 -- which has been expanded into an assignment.
2669 if Is_Empty_List
(Declarations
(Blk
))
2670 and then Nkind
(Fst
) = N_Assignment_Statement
2671 and then No
(Next
(Fst
))
2673 -- The function call may have been rewritten as the temporary
2674 -- that holds the result of the call, in which case remove the
2675 -- now useless declaration.
2677 if Nkind
(N
) = N_Identifier
2678 and then Nkind
(Parent
(Entity
(N
))) = N_Object_Declaration
2680 Rewrite
(Parent
(Entity
(N
)), Make_Null_Statement
(Loc
));
2683 Rewrite
(N
, Expression
(Fst
));
2685 elsif Nkind
(N
) = N_Identifier
2686 and then Nkind
(Parent
(Entity
(N
))) = N_Object_Declaration
2688 -- The block assigns the result of the call to the temporary
2690 Insert_After
(Parent
(Entity
(N
)), Blk
);
2692 -- If the context is an assignment, and the left-hand side is free of
2693 -- side-effects, the replacement is also safe.
2694 -- Can this be generalized further???
2696 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
2698 (Is_Entity_Name
(Name
(Parent
(N
)))
2700 (Nkind
(Name
(Parent
(N
))) = N_Explicit_Dereference
2701 and then Is_Entity_Name
(Prefix
(Name
(Parent
(N
)))))
2704 (Nkind
(Name
(Parent
(N
))) = N_Selected_Component
2705 and then Is_Entity_Name
(Prefix
(Name
(Parent
(N
))))))
2707 -- Replace assignment with the block
2710 Original_Assignment
: constant Node_Id
:= Parent
(N
);
2713 -- Preserve the original assignment node to keep the complete
2714 -- assignment subtree consistent enough for Analyze_Assignment
2715 -- to proceed (specifically, the original Lhs node must still
2716 -- have an assignment statement as its parent).
2718 -- We cannot rely on Original_Node to go back from the block
2719 -- node to the assignment node, because the assignment might
2720 -- already be a rewrite substitution.
2722 Discard_Node
(Relocate_Node
(Original_Assignment
));
2723 Rewrite
(Original_Assignment
, Blk
);
2726 elsif Nkind
(Parent
(N
)) = N_Object_Declaration
then
2728 -- A call to a function which returns an unconstrained type
2729 -- found in the expression initializing an object-declaration is
2730 -- expanded into a procedure call which must be added after the
2731 -- object declaration.
2733 if Is_Unc_Decl
and Back_End_Inlining
then
2734 Insert_Action_After
(Parent
(N
), Blk
);
2736 Set_Expression
(Parent
(N
), Empty
);
2737 Insert_After
(Parent
(N
), Blk
);
2740 elsif Is_Unc
and then not Back_End_Inlining
then
2741 Insert_Before
(Parent
(N
), Blk
);
2743 end Rewrite_Function_Call
;
2745 ----------------------------
2746 -- Rewrite_Procedure_Call --
2747 ----------------------------
2749 procedure Rewrite_Procedure_Call
(N
: Node_Id
; Blk
: Node_Id
) is
2750 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(Blk
);
2753 -- If there is a transient scope for N, this will be the scope of the
2754 -- actions for N, and the statements in Blk need to be within this
2755 -- scope. For example, they need to have visibility on the constant
2756 -- declarations created for the formals.
2758 -- If N needs no transient scope, and if there are no declarations in
2759 -- the inlined body, we can do a little optimization and insert the
2760 -- statements for the body directly after N, and rewrite N to a
2761 -- null statement, instead of rewriting N into a full-blown block
2764 if not Scope_Is_Transient
2765 and then Is_Empty_List
(Declarations
(Blk
))
2767 Insert_List_After
(N
, Statements
(HSS
));
2768 Rewrite
(N
, Make_Null_Statement
(Loc
));
2772 end Rewrite_Procedure_Call
;
2774 -------------------------
2775 -- Formal_Is_Used_Once --
2776 -------------------------
2778 function Formal_Is_Used_Once
(Formal
: Entity_Id
) return Boolean is
2779 Use_Counter
: Int
:= 0;
2781 function Count_Uses
(N
: Node_Id
) return Traverse_Result
;
2782 -- Traverse the tree and count the uses of the formal parameter.
2783 -- In this case, for optimization purposes, we do not need to
2784 -- continue the traversal once more than one use is encountered.
2790 function Count_Uses
(N
: Node_Id
) return Traverse_Result
is
2792 -- The original node is an identifier
2794 if Nkind
(N
) = N_Identifier
2795 and then Present
(Entity
(N
))
2797 -- Original node's entity points to the one in the copied body
2799 and then Nkind
(Entity
(N
)) = N_Identifier
2800 and then Present
(Entity
(Entity
(N
)))
2802 -- The entity of the copied node is the formal parameter
2804 and then Entity
(Entity
(N
)) = Formal
2806 Use_Counter
:= Use_Counter
+ 1;
2808 if Use_Counter
> 1 then
2810 -- Denote more than one use and abandon the traversal
2821 procedure Count_Formal_Uses
is new Traverse_Proc
(Count_Uses
);
2823 -- Start of processing for Formal_Is_Used_Once
2826 Count_Formal_Uses
(Orig_Bod
);
2827 return Use_Counter
= 1;
2828 end Formal_Is_Used_Once
;
2830 -- Start of processing for Expand_Inlined_Call
2833 -- Initializations for old/new semantics
2835 if not Back_End_Inlining
then
2836 Is_Unc
:= Is_Array_Type
(Etype
(Subp
))
2837 and then not Is_Constrained
(Etype
(Subp
));
2838 Is_Unc_Decl
:= False;
2840 Is_Unc
:= Returns_Unconstrained_Type
(Subp
)
2841 and then Optimization_Level
> 0;
2842 Is_Unc_Decl
:= Nkind
(Parent
(N
)) = N_Object_Declaration
2846 -- Check for an illegal attempt to inline a recursive procedure. If the
2847 -- subprogram has parameters this is detected when trying to supply a
2848 -- binding for parameters that already have one. For parameterless
2849 -- subprograms this must be done explicitly.
2851 if In_Open_Scopes
(Subp
) then
2853 ("cannot inline call to recursive subprogram?", N
, Subp
);
2854 Set_Is_Inlined
(Subp
, False);
2857 -- Skip inlining if this is not a true inlining since the attribute
2858 -- Body_To_Inline is also set for renamings (see sinfo.ads). For a
2859 -- true inlining, Orig_Bod has code rather than being an entity.
2861 elsif Nkind
(Orig_Bod
) in N_Entity
then
2864 -- Skip inlining if the function returns an unconstrained type using
2865 -- an extended return statement since this part of the new inlining
2866 -- model which is not yet supported by the current implementation. ???
2870 Nkind
(First
(Statements
(Handled_Statement_Sequence
(Orig_Bod
)))) =
2871 N_Extended_Return_Statement
2872 and then not Back_End_Inlining
2877 if Nkind
(Orig_Bod
) = N_Defining_Identifier
2878 or else Nkind
(Orig_Bod
) = N_Defining_Operator_Symbol
2880 -- Subprogram is renaming_as_body. Calls occurring after the renaming
2881 -- can be replaced with calls to the renamed entity directly, because
2882 -- the subprograms are subtype conformant. If the renamed subprogram
2883 -- is an inherited operation, we must redo the expansion because
2884 -- implicit conversions may be needed. Similarly, if the renamed
2885 -- entity is inlined, expand the call for further optimizations.
2887 Set_Name
(N
, New_Occurrence_Of
(Orig_Bod
, Loc
));
2889 if Present
(Alias
(Orig_Bod
)) or else Is_Inlined
(Orig_Bod
) then
2896 -- Register the call in the list of inlined calls
2898 Append_New_Elmt
(N
, To
=> Inlined_Calls
);
2900 -- Use generic machinery to copy body of inlined subprogram, as if it
2901 -- were an instantiation, resetting source locations appropriately, so
2902 -- that nested inlined calls appear in the main unit.
2904 Save_Env
(Subp
, Empty
);
2905 Set_Copied_Sloc_For_Inlined_Body
(N
, Defining_Entity
(Orig_Bod
));
2909 if not Back_End_Inlining
then
2914 Bod
:= Copy_Generic_Node
(Orig_Bod
, Empty
, Instantiating
=> True);
2916 Make_Block_Statement
(Loc
,
2917 Declarations
=> Declarations
(Bod
),
2918 Handled_Statement_Sequence
=>
2919 Handled_Statement_Sequence
(Bod
));
2921 if No
(Declarations
(Bod
)) then
2922 Set_Declarations
(Blk
, New_List
);
2925 -- When generating C code, declare _Result, which may be used to
2926 -- verify the return value.
2928 if Modify_Tree_For_C
2929 and then Nkind
(N
) = N_Procedure_Call_Statement
2930 and then Chars
(Name
(N
)) = Name_uPostconditions
2932 Declare_Postconditions_Result
;
2935 -- For the unconstrained case, capture the name of the local
2936 -- variable that holds the result. This must be the first
2937 -- declaration in the block, because its bounds cannot depend
2938 -- on local variables. Otherwise there is no way to declare the
2939 -- result outside of the block. Needless to say, in general the
2940 -- bounds will depend on the actuals in the call.
2942 -- If the context is an assignment statement, as is the case
2943 -- for the expansion of an extended return, the left-hand side
2944 -- provides bounds even if the return type is unconstrained.
2948 First_Decl
: Node_Id
;
2951 First_Decl
:= First
(Declarations
(Blk
));
2953 if Nkind
(First_Decl
) /= N_Object_Declaration
then
2957 if Nkind
(Parent
(N
)) /= N_Assignment_Statement
then
2958 Targ1
:= Defining_Identifier
(First_Decl
);
2960 Targ1
:= Name
(Parent
(N
));
2977 Copy_Generic_Node
(Orig_Bod
, Empty
, Instantiating
=> True);
2979 Make_Block_Statement
(Loc
,
2980 Declarations
=> Declarations
(Bod
),
2981 Handled_Statement_Sequence
=>
2982 Handled_Statement_Sequence
(Bod
));
2984 -- Inline a call to a function that returns an unconstrained type.
2985 -- The semantic analyzer checked that frontend-inlined functions
2986 -- returning unconstrained types have no declarations and have
2987 -- a single extended return statement. As part of its processing
2988 -- the function was split in two subprograms: a procedure P and
2989 -- a function F that has a block with a call to procedure P (see
2990 -- Split_Unconstrained_Function).
2996 (Statements
(Handled_Statement_Sequence
(Orig_Bod
)))) =
3000 Blk_Stmt
: constant Node_Id
:=
3001 First
(Statements
(Handled_Statement_Sequence
(Orig_Bod
)));
3002 First_Stmt
: constant Node_Id
:=
3003 First
(Statements
(Handled_Statement_Sequence
(Blk_Stmt
)));
3004 Second_Stmt
: constant Node_Id
:= Next
(First_Stmt
);
3008 (Nkind
(First_Stmt
) = N_Procedure_Call_Statement
3009 and then Nkind
(Second_Stmt
) = N_Simple_Return_Statement
3010 and then No
(Next
(Second_Stmt
)));
3015 (Statements
(Handled_Statement_Sequence
(Orig_Bod
))),
3016 Empty
, Instantiating
=> True);
3019 -- Capture the name of the local variable that holds the
3020 -- result. This must be the first declaration in the block,
3021 -- because its bounds cannot depend on local variables.
3022 -- Otherwise there is no way to declare the result outside
3023 -- of the block. Needless to say, in general the bounds will
3024 -- depend on the actuals in the call.
3026 if Nkind
(Parent
(N
)) /= N_Assignment_Statement
then
3027 Targ1
:= Defining_Identifier
(First
(Declarations
(Blk
)));
3029 -- If the context is an assignment statement, as is the case
3030 -- for the expansion of an extended return, the left-hand
3031 -- side provides bounds even if the return type is
3035 Targ1
:= Name
(Parent
(N
));
3040 if No
(Declarations
(Bod
)) then
3041 Set_Declarations
(Blk
, New_List
);
3046 -- If this is a derived function, establish the proper return type
3048 if Present
(Orig_Subp
) and then Orig_Subp
/= Subp
then
3049 Ret_Type
:= Etype
(Orig_Subp
);
3051 Ret_Type
:= Etype
(Subp
);
3054 -- Create temporaries for the actuals that are expressions, or that are
3055 -- scalars and require copying to preserve semantics.
3057 F
:= First_Formal
(Subp
);
3058 A
:= First_Actual
(N
);
3059 while Present
(F
) loop
3060 if Present
(Renamed_Object
(F
)) then
3062 -- If expander is active, it is an error to try to inline a
3063 -- recursive program. In GNATprove mode, just indicate that the
3064 -- inlining will not happen, and mark the subprogram as not always
3067 if GNATprove_Mode
then
3069 ("cannot inline call to recursive subprogram?", N
, Subp
);
3070 Set_Is_Inlined_Always
(Subp
, False);
3073 ("cannot inline call to recursive subprogram", N
);
3079 -- Reset Last_Assignment for any parameters of mode out or in out, to
3080 -- prevent spurious warnings about overwriting for assignments to the
3081 -- formal in the inlined code.
3083 if Is_Entity_Name
(A
) and then Ekind
(F
) /= E_In_Parameter
then
3084 Set_Last_Assignment
(Entity
(A
), Empty
);
3087 -- If the argument may be a controlling argument in a call within
3088 -- the inlined body, we must preserve its classwide nature to insure
3089 -- that dynamic dispatching take place subsequently. If the formal
3090 -- has a constraint it must be preserved to retain the semantics of
3093 if Is_Class_Wide_Type
(Etype
(F
))
3094 or else (Is_Access_Type
(Etype
(F
))
3095 and then Is_Class_Wide_Type
(Designated_Type
(Etype
(F
))))
3097 Temp_Typ
:= Etype
(F
);
3099 elsif Base_Type
(Etype
(F
)) = Base_Type
(Etype
(A
))
3100 and then Etype
(F
) /= Base_Type
(Etype
(F
))
3101 and then Is_Constrained
(Etype
(F
))
3103 Temp_Typ
:= Etype
(F
);
3106 Temp_Typ
:= Etype
(A
);
3109 -- If the actual is a simple name or a literal, no need to
3110 -- create a temporary, object can be used directly.
3112 -- If the actual is a literal and the formal has its address taken,
3113 -- we cannot pass the literal itself as an argument, so its value
3114 -- must be captured in a temporary. Skip this optimization in
3115 -- GNATprove mode, to make sure any check on a type conversion
3118 if (Is_Entity_Name
(A
)
3120 (not Is_Scalar_Type
(Etype
(A
))
3121 or else Ekind
(Entity
(A
)) = E_Enumeration_Literal
)
3122 and then not GNATprove_Mode
)
3124 -- When the actual is an identifier and the corresponding formal is
3125 -- used only once in the original body, the formal can be substituted
3126 -- directly with the actual parameter. Skip this optimization in
3127 -- GNATprove mode, to make sure any check on a type conversion
3131 (Nkind
(A
) = N_Identifier
3132 and then Formal_Is_Used_Once
(F
)
3133 and then not GNATprove_Mode
)
3136 (Nkind_In
(A
, N_Real_Literal
,
3138 N_Character_Literal
)
3139 and then not Address_Taken
(F
))
3141 if Etype
(F
) /= Etype
(A
) then
3143 (F
, Unchecked_Convert_To
(Etype
(F
), Relocate_Node
(A
)));
3145 Set_Renamed_Object
(F
, A
);
3149 Temp
:= Make_Temporary
(Loc
, 'C');
3151 -- If the actual for an in/in-out parameter is a view conversion,
3152 -- make it into an unchecked conversion, given that an untagged
3153 -- type conversion is not a proper object for a renaming.
3155 -- In-out conversions that involve real conversions have already
3156 -- been transformed in Expand_Actuals.
3158 if Nkind
(A
) = N_Type_Conversion
3159 and then Ekind
(F
) /= E_In_Parameter
3162 Make_Unchecked_Type_Conversion
(Loc
,
3163 Subtype_Mark
=> New_Occurrence_Of
(Etype
(F
), Loc
),
3164 Expression
=> Relocate_Node
(Expression
(A
)));
3166 -- In GNATprove mode, keep the most precise type of the actual for
3167 -- the temporary variable, when the formal type is unconstrained.
3168 -- Otherwise, the AST may contain unexpected assignment statements
3169 -- to a temporary variable of unconstrained type renaming a local
3170 -- variable of constrained type, which is not expected by
3173 elsif Etype
(F
) /= Etype
(A
)
3174 and then (not GNATprove_Mode
or else Is_Constrained
(Etype
(F
)))
3176 New_A
:= Unchecked_Convert_To
(Etype
(F
), Relocate_Node
(A
));
3177 Temp_Typ
:= Etype
(F
);
3180 New_A
:= Relocate_Node
(A
);
3183 Set_Sloc
(New_A
, Sloc
(N
));
3185 -- If the actual has a by-reference type, it cannot be copied,
3186 -- so its value is captured in a renaming declaration. Otherwise
3187 -- declare a local constant initialized with the actual.
3189 -- We also use a renaming declaration for expressions of an array
3190 -- type that is not bit-packed, both for efficiency reasons and to
3191 -- respect the semantics of the call: in most cases the original
3192 -- call will pass the parameter by reference, and thus the inlined
3193 -- code will have the same semantics.
3195 -- Finally, we need a renaming declaration in the case of limited
3196 -- types for which initialization cannot be by copy either.
3198 if Ekind
(F
) = E_In_Parameter
3199 and then not Is_By_Reference_Type
(Etype
(A
))
3200 and then not Is_Limited_Type
(Etype
(A
))
3202 (not Is_Array_Type
(Etype
(A
))
3203 or else not Is_Object_Reference
(A
)
3204 or else Is_Bit_Packed_Array
(Etype
(A
)))
3207 Make_Object_Declaration
(Loc
,
3208 Defining_Identifier
=> Temp
,
3209 Constant_Present
=> True,
3210 Object_Definition
=> New_Occurrence_Of
(Temp_Typ
, Loc
),
3211 Expression
=> New_A
);
3214 -- In GNATprove mode, make an explicit copy of input
3215 -- parameters when formal and actual types differ, to make
3216 -- sure any check on the type conversion will be issued.
3217 -- The legality of the copy is ensured by calling first
3218 -- Call_Can_Be_Inlined_In_GNATprove_Mode.
3221 and then Ekind
(F
) /= E_Out_Parameter
3222 and then not Same_Type
(Etype
(F
), Etype
(A
))
3224 pragma Assert
(not (Is_By_Reference_Type
(Etype
(A
))));
3225 pragma Assert
(not (Is_Limited_Type
(Etype
(A
))));
3228 Make_Object_Declaration
(Loc
,
3229 Defining_Identifier
=> Make_Temporary
(Loc
, 'C'),
3230 Constant_Present
=> True,
3231 Object_Definition
=> New_Occurrence_Of
(Temp_Typ
, Loc
),
3232 Expression
=> New_Copy_Tree
(New_A
)));
3236 Make_Object_Renaming_Declaration
(Loc
,
3237 Defining_Identifier
=> Temp
,
3238 Subtype_Mark
=> New_Occurrence_Of
(Temp_Typ
, Loc
),
3242 Append
(Decl
, Decls
);
3243 Set_Renamed_Object
(F
, Temp
);
3250 -- Establish target of function call. If context is not assignment or
3251 -- declaration, create a temporary as a target. The declaration for the
3252 -- temporary may be subsequently optimized away if the body is a single
3253 -- expression, or if the left-hand side of the assignment is simple
3254 -- enough, i.e. an entity or an explicit dereference of one.
3256 if Ekind
(Subp
) = E_Function
then
3257 if Nkind
(Parent
(N
)) = N_Assignment_Statement
3258 and then Is_Entity_Name
(Name
(Parent
(N
)))
3260 Targ
:= Name
(Parent
(N
));
3262 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
3263 and then Nkind
(Name
(Parent
(N
))) = N_Explicit_Dereference
3264 and then Is_Entity_Name
(Prefix
(Name
(Parent
(N
))))
3266 Targ
:= Name
(Parent
(N
));
3268 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
3269 and then Nkind
(Name
(Parent
(N
))) = N_Selected_Component
3270 and then Is_Entity_Name
(Prefix
(Name
(Parent
(N
))))
3272 Targ
:= New_Copy_Tree
(Name
(Parent
(N
)));
3274 elsif Nkind
(Parent
(N
)) = N_Object_Declaration
3275 and then Is_Limited_Type
(Etype
(Subp
))
3277 Targ
:= Defining_Identifier
(Parent
(N
));
3279 -- New semantics: In an object declaration avoid an extra copy
3280 -- of the result of a call to an inlined function that returns
3281 -- an unconstrained type
3283 elsif Back_End_Inlining
3284 and then Nkind
(Parent
(N
)) = N_Object_Declaration
3287 Targ
:= Defining_Identifier
(Parent
(N
));
3290 -- Replace call with temporary and create its declaration
3292 Temp
:= Make_Temporary
(Loc
, 'C');
3293 Set_Is_Internal
(Temp
);
3295 -- For the unconstrained case, the generated temporary has the
3296 -- same constrained declaration as the result variable. It may
3297 -- eventually be possible to remove that temporary and use the
3298 -- result variable directly.
3300 if Is_Unc
and then Nkind
(Parent
(N
)) /= N_Assignment_Statement
3303 Make_Object_Declaration
(Loc
,
3304 Defining_Identifier
=> Temp
,
3305 Object_Definition
=>
3306 New_Copy_Tree
(Object_Definition
(Parent
(Targ1
))));
3308 Replace_Formals
(Decl
);
3312 Make_Object_Declaration
(Loc
,
3313 Defining_Identifier
=> Temp
,
3314 Object_Definition
=> New_Occurrence_Of
(Ret_Type
, Loc
));
3316 Set_Etype
(Temp
, Ret_Type
);
3319 Set_No_Initialization
(Decl
);
3320 Append
(Decl
, Decls
);
3321 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
3326 Insert_Actions
(N
, Decls
);
3330 -- Special management for inlining a call to a function that returns
3331 -- an unconstrained type and initializes an object declaration: we
3332 -- avoid generating undesired extra calls and goto statements.
3335 -- function Func (...) return ...
3338 -- Result : String (1 .. 4);
3340 -- Proc (Result, ...);
3345 -- Result : String := Func (...);
3347 -- Replace this object declaration by:
3349 -- Result : String (1 .. 4);
3350 -- Proc (Result, ...);
3352 Remove_Homonym
(Targ
);
3355 Make_Object_Declaration
3357 Defining_Identifier
=> Targ
,
3358 Object_Definition
=>
3359 New_Copy_Tree
(Object_Definition
(Parent
(Targ1
))));
3360 Replace_Formals
(Decl
);
3361 Rewrite
(Parent
(N
), Decl
);
3362 Analyze
(Parent
(N
));
3364 -- Avoid spurious warnings since we know that this declaration is
3365 -- referenced by the procedure call.
3367 Set_Never_Set_In_Source
(Targ
, False);
3369 -- Remove the local declaration of the extended return stmt from the
3372 Remove
(Parent
(Targ1
));
3374 -- Update the reference to the result (since we have rewriten the
3375 -- object declaration)
3378 Blk_Call_Stmt
: Node_Id
;
3381 -- Capture the call to the procedure
3384 First
(Statements
(Handled_Statement_Sequence
(Blk
)));
3386 (Nkind
(Blk_Call_Stmt
) = N_Procedure_Call_Statement
);
3388 Remove
(First
(Parameter_Associations
(Blk_Call_Stmt
)));
3389 Prepend_To
(Parameter_Associations
(Blk_Call_Stmt
),
3390 New_Occurrence_Of
(Targ
, Loc
));
3393 -- Remove the return statement
3396 (Nkind
(Last
(Statements
(Handled_Statement_Sequence
(Blk
)))) =
3397 N_Simple_Return_Statement
);
3399 Remove
(Last
(Statements
(Handled_Statement_Sequence
(Blk
))));
3402 -- Traverse the tree and replace formals with actuals or their thunks.
3403 -- Attach block to tree before analysis and rewriting.
3405 Replace_Formals
(Blk
);
3406 Set_Parent
(Blk
, N
);
3408 if GNATprove_Mode
then
3411 elsif not Comes_From_Source
(Subp
) or else Is_Predef
then
3417 -- No action needed since return statement has been already removed
3421 elsif Present
(Exit_Lab
) then
3423 -- If there's a single return statement at the end of the subprogram,
3424 -- the corresponding goto statement and the corresponding label are
3429 Nkind
(Last
(Statements
(Handled_Statement_Sequence
(Blk
)))) =
3432 Remove
(Last
(Statements
(Handled_Statement_Sequence
(Blk
))));
3434 Append
(Lab_Decl
, (Declarations
(Blk
)));
3435 Append
(Exit_Lab
, Statements
(Handled_Statement_Sequence
(Blk
)));
3439 -- Analyze Blk with In_Inlined_Body set, to avoid spurious errors
3440 -- on conflicting private views that Gigi would ignore. If this is a
3441 -- predefined unit, analyze with checks off, as is done in the non-
3442 -- inlined run-time units.
3445 I_Flag
: constant Boolean := In_Inlined_Body
;
3448 In_Inlined_Body
:= True;
3452 Style
: constant Boolean := Style_Check
;
3455 Style_Check
:= False;
3457 -- Search for dispatching calls that use the Object.Operation
3458 -- notation using an Object that is a parameter of the inlined
3459 -- function. We reset the decoration of Operation to force
3460 -- the reanalysis of the inlined dispatching call because
3461 -- the actual object has been inlined.
3463 Reset_Dispatching_Calls
(Blk
);
3465 Analyze
(Blk
, Suppress
=> All_Checks
);
3466 Style_Check
:= Style
;
3473 In_Inlined_Body
:= I_Flag
;
3476 if Ekind
(Subp
) = E_Procedure
then
3477 Rewrite_Procedure_Call
(N
, Blk
);
3480 Rewrite_Function_Call
(N
, Blk
);
3485 -- For the unconstrained case, the replacement of the call has been
3486 -- made prior to the complete analysis of the generated declarations.
3487 -- Propagate the proper type now.
3490 if Nkind
(N
) = N_Identifier
then
3491 Set_Etype
(N
, Etype
(Entity
(N
)));
3493 Set_Etype
(N
, Etype
(Targ1
));
3500 -- Cleanup mapping between formals and actuals for other expansions
3502 F
:= First_Formal
(Subp
);
3503 while Present
(F
) loop
3504 Set_Renamed_Object
(F
, Empty
);
3507 end Expand_Inlined_Call
;
3509 --------------------------
3510 -- Get_Code_Unit_Entity --
3511 --------------------------
3513 function Get_Code_Unit_Entity
(E
: Entity_Id
) return Entity_Id
is
3514 Unit
: Entity_Id
:= Cunit_Entity
(Get_Code_Unit
(E
));
3517 if Ekind
(Unit
) = E_Package_Body
then
3518 Unit
:= Spec_Entity
(Unit
);
3522 end Get_Code_Unit_Entity
;
3524 ------------------------------
3525 -- Has_Excluded_Declaration --
3526 ------------------------------
3528 function Has_Excluded_Declaration
3530 Decls
: List_Id
) return Boolean
3534 function Is_Unchecked_Conversion
(D
: Node_Id
) return Boolean;
3535 -- Nested subprograms make a given body ineligible for inlining, but
3536 -- we make an exception for instantiations of unchecked conversion.
3537 -- The body has not been analyzed yet, so check the name, and verify
3538 -- that the visible entity with that name is the predefined unit.
3540 -----------------------------
3541 -- Is_Unchecked_Conversion --
3542 -----------------------------
3544 function Is_Unchecked_Conversion
(D
: Node_Id
) return Boolean is
3545 Id
: constant Node_Id
:= Name
(D
);
3549 if Nkind
(Id
) = N_Identifier
3550 and then Chars
(Id
) = Name_Unchecked_Conversion
3552 Conv
:= Current_Entity
(Id
);
3554 elsif Nkind_In
(Id
, N_Selected_Component
, N_Expanded_Name
)
3555 and then Chars
(Selector_Name
(Id
)) = Name_Unchecked_Conversion
3557 Conv
:= Current_Entity
(Selector_Name
(Id
));
3562 return Present
(Conv
)
3563 and then Is_Predefined_File_Name
3564 (Unit_File_Name
(Get_Source_Unit
(Conv
)))
3565 and then Is_Intrinsic_Subprogram
(Conv
);
3566 end Is_Unchecked_Conversion
;
3568 -- Start of processing for Has_Excluded_Declaration
3571 -- No action needed if the check is not needed
3573 if not Check_Inlining_Restrictions
then
3578 while Present
(D
) loop
3580 -- First declarations universally excluded
3582 if Nkind
(D
) = N_Package_Declaration
then
3584 ("cannot inline & (nested package declaration)?", D
, Subp
);
3587 elsif Nkind
(D
) = N_Package_Instantiation
then
3589 ("cannot inline & (nested package instantiation)?", D
, Subp
);
3593 -- Then declarations excluded only for front end inlining
3595 if Back_End_Inlining
then
3598 elsif Nkind
(D
) = N_Task_Type_Declaration
3599 or else Nkind
(D
) = N_Single_Task_Declaration
3602 ("cannot inline & (nested task type declaration)?", D
, Subp
);
3605 elsif Nkind
(D
) = N_Protected_Type_Declaration
3606 or else Nkind
(D
) = N_Single_Protected_Declaration
3609 ("cannot inline & (nested protected type declaration)?",
3613 elsif Nkind
(D
) = N_Subprogram_Body
then
3615 ("cannot inline & (nested subprogram)?", D
, Subp
);
3618 elsif Nkind
(D
) = N_Function_Instantiation
3619 and then not Is_Unchecked_Conversion
(D
)
3622 ("cannot inline & (nested function instantiation)?", D
, Subp
);
3625 elsif Nkind
(D
) = N_Procedure_Instantiation
then
3627 ("cannot inline & (nested procedure instantiation)?", D
, Subp
);
3630 -- Subtype declarations with predicates will generate predicate
3631 -- functions, i.e. nested subprogram bodies, so inlining is not
3634 elsif Nkind
(D
) = N_Subtype_Declaration
3635 and then Present
(Aspect_Specifications
(D
))
3642 A
:= First
(Aspect_Specifications
(D
));
3643 while Present
(A
) loop
3644 A_Id
:= Get_Aspect_Id
(Chars
(Identifier
(A
)));
3646 if A_Id
= Aspect_Predicate
3647 or else A_Id
= Aspect_Static_Predicate
3648 or else A_Id
= Aspect_Dynamic_Predicate
3651 ("cannot inline & (subtype declaration with "
3652 & "predicate)?", D
, Subp
);
3665 end Has_Excluded_Declaration
;
3667 ----------------------------
3668 -- Has_Excluded_Statement --
3669 ----------------------------
3671 function Has_Excluded_Statement
3673 Stats
: List_Id
) return Boolean
3679 -- No action needed if the check is not needed
3681 if not Check_Inlining_Restrictions
then
3686 while Present
(S
) loop
3687 if Nkind_In
(S
, N_Abort_Statement
,
3688 N_Asynchronous_Select
,
3689 N_Conditional_Entry_Call
,
3690 N_Delay_Relative_Statement
,
3691 N_Delay_Until_Statement
,
3696 ("cannot inline & (non-allowed statement)?", S
, Subp
);
3699 elsif Nkind
(S
) = N_Block_Statement
then
3700 if Present
(Declarations
(S
))
3701 and then Has_Excluded_Declaration
(Subp
, Declarations
(S
))
3705 elsif Present
(Handled_Statement_Sequence
(S
)) then
3706 if not Back_End_Inlining
3709 (Exception_Handlers
(Handled_Statement_Sequence
(S
)))
3712 ("cannot inline& (exception handler)?",
3713 First
(Exception_Handlers
3714 (Handled_Statement_Sequence
(S
))),
3718 elsif Has_Excluded_Statement
3719 (Subp
, Statements
(Handled_Statement_Sequence
(S
)))
3725 elsif Nkind
(S
) = N_Case_Statement
then
3726 E
:= First
(Alternatives
(S
));
3727 while Present
(E
) loop
3728 if Has_Excluded_Statement
(Subp
, Statements
(E
)) then
3735 elsif Nkind
(S
) = N_If_Statement
then
3736 if Has_Excluded_Statement
(Subp
, Then_Statements
(S
)) then
3740 if Present
(Elsif_Parts
(S
)) then
3741 E
:= First
(Elsif_Parts
(S
));
3742 while Present
(E
) loop
3743 if Has_Excluded_Statement
(Subp
, Then_Statements
(E
)) then
3751 if Present
(Else_Statements
(S
))
3752 and then Has_Excluded_Statement
(Subp
, Else_Statements
(S
))
3757 elsif Nkind
(S
) = N_Loop_Statement
3758 and then Has_Excluded_Statement
(Subp
, Statements
(S
))
3762 elsif Nkind
(S
) = N_Extended_Return_Statement
then
3763 if Present
(Handled_Statement_Sequence
(S
))
3765 Has_Excluded_Statement
3766 (Subp
, Statements
(Handled_Statement_Sequence
(S
)))
3770 elsif not Back_End_Inlining
3771 and then Present
(Handled_Statement_Sequence
(S
))
3773 Present
(Exception_Handlers
3774 (Handled_Statement_Sequence
(S
)))
3777 ("cannot inline& (exception handler)?",
3778 First
(Exception_Handlers
(Handled_Statement_Sequence
(S
))),
3788 end Has_Excluded_Statement
;
3790 --------------------------
3791 -- Has_Initialized_Type --
3792 --------------------------
3794 function Has_Initialized_Type
(E
: Entity_Id
) return Boolean is
3795 E_Body
: constant Node_Id
:= Subprogram_Body
(E
);
3799 if No
(E_Body
) then -- imported subprogram
3803 Decl
:= First
(Declarations
(E_Body
));
3804 while Present
(Decl
) loop
3805 if Nkind
(Decl
) = N_Full_Type_Declaration
3806 and then Present
(Init_Proc
(Defining_Identifier
(Decl
)))
3816 end Has_Initialized_Type
;
3818 -----------------------
3819 -- Has_Single_Return --
3820 -----------------------
3822 function Has_Single_Return
(N
: Node_Id
) return Boolean is
3823 Return_Statement
: Node_Id
:= Empty
;
3825 function Check_Return
(N
: Node_Id
) return Traverse_Result
;
3831 function Check_Return
(N
: Node_Id
) return Traverse_Result
is
3833 if Nkind
(N
) = N_Simple_Return_Statement
then
3834 if Present
(Expression
(N
))
3835 and then Is_Entity_Name
(Expression
(N
))
3837 if No
(Return_Statement
) then
3838 Return_Statement
:= N
;
3841 elsif Chars
(Expression
(N
)) =
3842 Chars
(Expression
(Return_Statement
))
3850 -- A return statement within an extended return is a noop
3853 elsif No
(Expression
(N
))
3855 Nkind
(Parent
(Parent
(N
))) = N_Extended_Return_Statement
3860 -- Expression has wrong form
3865 -- We can only inline a build-in-place function if it has a single
3868 elsif Nkind
(N
) = N_Extended_Return_Statement
then
3869 if No
(Return_Statement
) then
3870 Return_Statement
:= N
;
3882 function Check_All_Returns
is new Traverse_Func
(Check_Return
);
3884 -- Start of processing for Has_Single_Return
3887 if Check_All_Returns
(N
) /= OK
then
3890 elsif Nkind
(Return_Statement
) = N_Extended_Return_Statement
then
3894 return Present
(Declarations
(N
))
3895 and then Present
(First
(Declarations
(N
)))
3896 and then Chars
(Expression
(Return_Statement
)) =
3897 Chars
(Defining_Identifier
(First
(Declarations
(N
))));
3899 end Has_Single_Return
;
3901 -----------------------------
3902 -- In_Main_Unit_Or_Subunit --
3903 -----------------------------
3905 function In_Main_Unit_Or_Subunit
(E
: Entity_Id
) return Boolean is
3906 Comp
: Node_Id
:= Cunit
(Get_Code_Unit
(E
));
3909 -- Check whether the subprogram or package to inline is within the main
3910 -- unit or its spec or within a subunit. In either case there are no
3911 -- additional bodies to process. If the subprogram appears in a parent
3912 -- of the current unit, the check on whether inlining is possible is
3913 -- done in Analyze_Inlined_Bodies.
3915 while Nkind
(Unit
(Comp
)) = N_Subunit
loop
3916 Comp
:= Library_Unit
(Comp
);
3919 return Comp
= Cunit
(Main_Unit
)
3920 or else Comp
= Library_Unit
(Cunit
(Main_Unit
));
3921 end In_Main_Unit_Or_Subunit
;
3927 procedure Initialize
is
3929 Pending_Descriptor
.Init
;
3930 Pending_Instantiations
.Init
;
3931 Inlined_Bodies
.Init
;
3935 for J
in Hash_Headers
'Range loop
3936 Hash_Headers
(J
) := No_Subp
;
3939 Inlined_Calls
:= No_Elist
;
3940 Backend_Calls
:= No_Elist
;
3941 Backend_Inlined_Subps
:= No_Elist
;
3942 Backend_Not_Inlined_Subps
:= No_Elist
;
3945 ------------------------
3946 -- Instantiate_Bodies --
3947 ------------------------
3949 -- Generic bodies contain all the non-local references, so an
3950 -- instantiation does not need any more context than Standard
3951 -- itself, even if the instantiation appears in an inner scope.
3952 -- Generic associations have verified that the contract model is
3953 -- satisfied, so that any error that may occur in the analysis of
3954 -- the body is an internal error.
3956 procedure Instantiate_Bodies
is
3958 Info
: Pending_Body_Info
;
3961 if Serious_Errors_Detected
= 0 then
3962 Expander_Active
:= (Operating_Mode
= Opt
.Generate_Code
);
3963 Push_Scope
(Standard_Standard
);
3964 To_Clean
:= New_Elmt_List
;
3966 if Is_Generic_Unit
(Cunit_Entity
(Main_Unit
)) then
3970 -- A body instantiation may generate additional instantiations, so
3971 -- the following loop must scan to the end of a possibly expanding
3972 -- set (that's why we can't simply use a FOR loop here).
3975 while J
<= Pending_Instantiations
.Last
3976 and then Serious_Errors_Detected
= 0
3978 Info
:= Pending_Instantiations
.Table
(J
);
3980 -- If the instantiation node is absent, it has been removed
3981 -- as part of unreachable code.
3983 if No
(Info
.Inst_Node
) then
3986 elsif Nkind
(Info
.Act_Decl
) = N_Package_Declaration
then
3987 Instantiate_Package_Body
(Info
);
3988 Add_Scope_To_Clean
(Defining_Entity
(Info
.Act_Decl
));
3991 Instantiate_Subprogram_Body
(Info
);
3997 -- Reset the table of instantiations. Additional instantiations
3998 -- may be added through inlining, when additional bodies are
4001 Pending_Instantiations
.Init
;
4003 -- We can now complete the cleanup actions of scopes that contain
4004 -- pending instantiations (skipped for generic units, since we
4005 -- never need any cleanups in generic units).
4008 and then not Is_Generic_Unit
(Main_Unit_Entity
)
4011 elsif Is_Generic_Unit
(Cunit_Entity
(Main_Unit
)) then
4017 end Instantiate_Bodies
;
4023 function Is_Nested
(E
: Entity_Id
) return Boolean is
4028 while Scop
/= Standard_Standard
loop
4029 if Ekind
(Scop
) in Subprogram_Kind
then
4032 elsif Ekind
(Scop
) = E_Task_Type
4033 or else Ekind
(Scop
) = E_Entry
4034 or else Ekind
(Scop
) = E_Entry_Family
4039 Scop
:= Scope
(Scop
);
4045 ------------------------
4046 -- List_Inlining_Info --
4047 ------------------------
4049 procedure List_Inlining_Info
is
4055 if not Debug_Flag_Dot_J
then
4059 -- Generate listing of calls inlined by the frontend
4061 if Present
(Inlined_Calls
) then
4063 Elmt
:= First_Elmt
(Inlined_Calls
);
4064 while Present
(Elmt
) loop
4067 if In_Extended_Main_Code_Unit
(Nod
) then
4071 Write_Str
("List of calls inlined by the frontend");
4078 Write_Location
(Sloc
(Nod
));
4087 -- Generate listing of calls passed to the backend
4089 if Present
(Backend_Calls
) then
4092 Elmt
:= First_Elmt
(Backend_Calls
);
4093 while Present
(Elmt
) loop
4096 if In_Extended_Main_Code_Unit
(Nod
) then
4100 Write_Str
("List of inlined calls passed to the backend");
4107 Write_Location
(Sloc
(Nod
));
4115 -- Generate listing of subprograms passed to the backend
4117 if Present
(Backend_Inlined_Subps
) and then Back_End_Inlining
then
4120 Elmt
:= First_Elmt
(Backend_Inlined_Subps
);
4121 while Present
(Elmt
) loop
4128 ("List of inlined subprograms passed to the backend");
4135 Write_Name
(Chars
(Nod
));
4137 Write_Location
(Sloc
(Nod
));
4145 -- Generate listing of subprograms that cannot be inlined by the backend
4147 if Present
(Backend_Not_Inlined_Subps
) and then Back_End_Inlining
then
4150 Elmt
:= First_Elmt
(Backend_Not_Inlined_Subps
);
4151 while Present
(Elmt
) loop
4158 ("List of subprograms that cannot be inlined by the backend");
4165 Write_Name
(Chars
(Nod
));
4167 Write_Location
(Sloc
(Nod
));
4174 end List_Inlining_Info
;
4182 Pending_Instantiations
.Locked
:= True;
4183 Inlined_Bodies
.Locked
:= True;
4184 Successors
.Locked
:= True;
4185 Inlined
.Locked
:= True;
4186 Pending_Instantiations
.Release
;
4187 Inlined_Bodies
.Release
;
4192 --------------------------------
4193 -- Remove_Aspects_And_Pragmas --
4194 --------------------------------
4196 procedure Remove_Aspects_And_Pragmas
(Body_Decl
: Node_Id
) is
4197 procedure Remove_Items
(List
: List_Id
);
4198 -- Remove all useless aspects/pragmas from a particular list
4204 procedure Remove_Items
(List
: List_Id
) is
4207 Next_Item
: Node_Id
;
4210 -- Traverse the list looking for an aspect specification or a pragma
4212 Item
:= First
(List
);
4213 while Present
(Item
) loop
4214 Next_Item
:= Next
(Item
);
4216 if Nkind
(Item
) = N_Aspect_Specification
then
4217 Item_Id
:= Identifier
(Item
);
4218 elsif Nkind
(Item
) = N_Pragma
then
4219 Item_Id
:= Pragma_Identifier
(Item
);
4224 if Present
(Item_Id
)
4225 and then Nam_In
(Chars
(Item_Id
), Name_Contract_Cases
,
4230 Name_Refined_Global
,
4231 Name_Refined_Depends
,
4245 -- Start of processing for Remove_Aspects_And_Pragmas
4248 Remove_Items
(Aspect_Specifications
(Body_Decl
));
4249 Remove_Items
(Declarations
(Body_Decl
));
4251 -- Pragmas Unmodified, Unreferenced, and Unused may additionally appear
4252 -- in the body of the subprogram.
4254 Remove_Items
(Statements
(Handled_Statement_Sequence
(Body_Decl
)));
4255 end Remove_Aspects_And_Pragmas
;
4257 --------------------------
4258 -- Remove_Dead_Instance --
4259 --------------------------
4261 procedure Remove_Dead_Instance
(N
: Node_Id
) is
4266 while J
<= Pending_Instantiations
.Last
loop
4267 if Pending_Instantiations
.Table
(J
).Inst_Node
= N
then
4268 Pending_Instantiations
.Table
(J
).Inst_Node
:= Empty
;
4274 end Remove_Dead_Instance
;