PR c++/79377
[official-gcc.git] / gcc / ada / a-ngcefu.adb
blobb241f2718a0c98caf18a7183955ef84296fb11b7
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- ADA.NUMERICS.GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 with Ada.Numerics.Generic_Elementary_Functions;
34 package body Ada.Numerics.Generic_Complex_Elementary_Functions is
36 package Elementary_Functions is new
37 Ada.Numerics.Generic_Elementary_Functions (Real'Base);
38 use Elementary_Functions;
40 PI : constant := 3.14159_26535_89793_23846_26433_83279_50288_41971;
41 PI_2 : constant := PI / 2.0;
42 Sqrt_Two : constant := 1.41421_35623_73095_04880_16887_24209_69807_85696;
43 Log_Two : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755;
45 subtype T is Real'Base;
47 Epsilon : constant T := 2.0 ** (1 - T'Model_Mantissa);
48 Square_Root_Epsilon : constant T := Sqrt_Two ** (1 - T'Model_Mantissa);
49 Inv_Square_Root_Epsilon : constant T := Sqrt_Two ** (T'Model_Mantissa - 1);
50 Root_Root_Epsilon : constant T := Sqrt_Two **
51 ((1 - T'Model_Mantissa) / 2);
52 Log_Inverse_Epsilon_2 : constant T := T (T'Model_Mantissa - 1) / 2.0;
54 Complex_Zero : constant Complex := (0.0, 0.0);
55 Complex_One : constant Complex := (1.0, 0.0);
56 Complex_I : constant Complex := (0.0, 1.0);
57 Half_Pi : constant Complex := (PI_2, 0.0);
59 --------
60 -- ** --
61 --------
63 function "**" (Left : Complex; Right : Complex) return Complex is
64 begin
65 if Re (Right) = 0.0
66 and then Im (Right) = 0.0
67 and then Re (Left) = 0.0
68 and then Im (Left) = 0.0
69 then
70 raise Argument_Error;
72 elsif Re (Left) = 0.0
73 and then Im (Left) = 0.0
74 and then Re (Right) < 0.0
75 then
76 raise Constraint_Error;
78 elsif Re (Left) = 0.0 and then Im (Left) = 0.0 then
79 return Left;
81 elsif Right = (0.0, 0.0) then
82 return Complex_One;
84 elsif Re (Right) = 0.0 and then Im (Right) = 0.0 then
85 return 1.0 + Right;
87 elsif Re (Right) = 1.0 and then Im (Right) = 0.0 then
88 return Left;
90 else
91 return Exp (Right * Log (Left));
92 end if;
93 end "**";
95 function "**" (Left : Real'Base; Right : Complex) return Complex is
96 begin
97 if Re (Right) = 0.0 and then Im (Right) = 0.0 and then Left = 0.0 then
98 raise Argument_Error;
100 elsif Left = 0.0 and then Re (Right) < 0.0 then
101 raise Constraint_Error;
103 elsif Left = 0.0 then
104 return Compose_From_Cartesian (Left, 0.0);
106 elsif Re (Right) = 0.0 and then Im (Right) = 0.0 then
107 return Complex_One;
109 elsif Re (Right) = 1.0 and then Im (Right) = 0.0 then
110 return Compose_From_Cartesian (Left, 0.0);
112 else
113 return Exp (Log (Left) * Right);
114 end if;
115 end "**";
117 function "**" (Left : Complex; Right : Real'Base) return Complex is
118 begin
119 if Right = 0.0
120 and then Re (Left) = 0.0
121 and then Im (Left) = 0.0
122 then
123 raise Argument_Error;
125 elsif Re (Left) = 0.0
126 and then Im (Left) = 0.0
127 and then Right < 0.0
128 then
129 raise Constraint_Error;
131 elsif Re (Left) = 0.0 and then Im (Left) = 0.0 then
132 return Left;
134 elsif Right = 0.0 then
135 return Complex_One;
137 elsif Right = 1.0 then
138 return Left;
140 else
141 return Exp (Right * Log (Left));
142 end if;
143 end "**";
145 ------------
146 -- Arccos --
147 ------------
149 function Arccos (X : Complex) return Complex is
150 Result : Complex;
152 begin
153 if X = Complex_One then
154 return Complex_Zero;
156 elsif abs Re (X) < Square_Root_Epsilon and then
157 abs Im (X) < Square_Root_Epsilon
158 then
159 return Half_Pi - X;
161 elsif abs Re (X) > Inv_Square_Root_Epsilon or else
162 abs Im (X) > Inv_Square_Root_Epsilon
163 then
164 return -2.0 * Complex_I * Log (Sqrt ((1.0 + X) / 2.0) +
165 Complex_I * Sqrt ((1.0 - X) / 2.0));
166 end if;
168 Result := -Complex_I * Log (X + Complex_I * Sqrt (1.0 - X * X));
170 if Im (X) = 0.0
171 and then abs Re (X) <= 1.00
172 then
173 Set_Im (Result, Im (X));
174 end if;
176 return Result;
177 end Arccos;
179 -------------
180 -- Arccosh --
181 -------------
183 function Arccosh (X : Complex) return Complex is
184 Result : Complex;
186 begin
187 if X = Complex_One then
188 return Complex_Zero;
190 elsif abs Re (X) < Square_Root_Epsilon and then
191 abs Im (X) < Square_Root_Epsilon
192 then
193 Result := Compose_From_Cartesian (-Im (X), -PI_2 + Re (X));
195 elsif abs Re (X) > Inv_Square_Root_Epsilon or else
196 abs Im (X) > Inv_Square_Root_Epsilon
197 then
198 Result := Log_Two + Log (X);
200 else
201 Result := 2.0 * Log (Sqrt ((1.0 + X) / 2.0) +
202 Sqrt ((X - 1.0) / 2.0));
203 end if;
205 if Re (Result) <= 0.0 then
206 Result := -Result;
207 end if;
209 return Result;
210 end Arccosh;
212 ------------
213 -- Arccot --
214 ------------
216 function Arccot (X : Complex) return Complex is
217 Xt : Complex;
219 begin
220 if abs Re (X) < Square_Root_Epsilon and then
221 abs Im (X) < Square_Root_Epsilon
222 then
223 return Half_Pi - X;
225 elsif abs Re (X) > 1.0 / Epsilon or else
226 abs Im (X) > 1.0 / Epsilon
227 then
228 Xt := Complex_One / X;
230 if Re (X) < 0.0 then
231 Set_Re (Xt, PI - Re (Xt));
232 return Xt;
233 else
234 return Xt;
235 end if;
236 end if;
238 Xt := Complex_I * Log ((X - Complex_I) / (X + Complex_I)) / 2.0;
240 if Re (Xt) < 0.0 then
241 Xt := PI + Xt;
242 end if;
244 return Xt;
245 end Arccot;
247 --------------
248 -- Arccoth --
249 --------------
251 function Arccoth (X : Complex) return Complex is
252 R : Complex;
254 begin
255 if X = (0.0, 0.0) then
256 return Compose_From_Cartesian (0.0, PI_2);
258 elsif abs Re (X) < Square_Root_Epsilon
259 and then abs Im (X) < Square_Root_Epsilon
260 then
261 return PI_2 * Complex_I + X;
263 elsif abs Re (X) > 1.0 / Epsilon or else
264 abs Im (X) > 1.0 / Epsilon
265 then
266 if Im (X) > 0.0 then
267 return (0.0, 0.0);
268 else
269 return PI * Complex_I;
270 end if;
272 elsif Im (X) = 0.0 and then Re (X) = 1.0 then
273 raise Constraint_Error;
275 elsif Im (X) = 0.0 and then Re (X) = -1.0 then
276 raise Constraint_Error;
277 end if;
279 begin
280 R := Log ((1.0 + X) / (X - 1.0)) / 2.0;
282 exception
283 when Constraint_Error =>
284 R := (Log (1.0 + X) - Log (X - 1.0)) / 2.0;
285 end;
287 if Im (R) < 0.0 then
288 Set_Im (R, PI + Im (R));
289 end if;
291 if Re (X) = 0.0 then
292 Set_Re (R, Re (X));
293 end if;
295 return R;
296 end Arccoth;
298 ------------
299 -- Arcsin --
300 ------------
302 function Arcsin (X : Complex) return Complex is
303 Result : Complex;
305 begin
306 -- For very small argument, sin (x) = x
308 if abs Re (X) < Square_Root_Epsilon and then
309 abs Im (X) < Square_Root_Epsilon
310 then
311 return X;
313 elsif abs Re (X) > Inv_Square_Root_Epsilon or else
314 abs Im (X) > Inv_Square_Root_Epsilon
315 then
316 Result := -Complex_I * (Log (Complex_I * X) + Log (2.0 * Complex_I));
318 if Im (Result) > PI_2 then
319 Set_Im (Result, PI - Im (X));
321 elsif Im (Result) < -PI_2 then
322 Set_Im (Result, -(PI + Im (X)));
323 end if;
325 return Result;
326 end if;
328 Result := -Complex_I * Log (Complex_I * X + Sqrt (1.0 - X * X));
330 if Re (X) = 0.0 then
331 Set_Re (Result, Re (X));
333 elsif Im (X) = 0.0
334 and then abs Re (X) <= 1.00
335 then
336 Set_Im (Result, Im (X));
337 end if;
339 return Result;
340 end Arcsin;
342 -------------
343 -- Arcsinh --
344 -------------
346 function Arcsinh (X : Complex) return Complex is
347 Result : Complex;
349 begin
350 if abs Re (X) < Square_Root_Epsilon and then
351 abs Im (X) < Square_Root_Epsilon
352 then
353 return X;
355 elsif abs Re (X) > Inv_Square_Root_Epsilon or else
356 abs Im (X) > Inv_Square_Root_Epsilon
357 then
358 Result := Log_Two + Log (X); -- may have wrong sign
360 if (Re (X) < 0.0 and then Re (Result) > 0.0)
361 or else (Re (X) > 0.0 and then Re (Result) < 0.0)
362 then
363 Set_Re (Result, -Re (Result));
364 end if;
366 return Result;
367 end if;
369 Result := Log (X + Sqrt (1.0 + X * X));
371 if Re (X) = 0.0 then
372 Set_Re (Result, Re (X));
373 elsif Im (X) = 0.0 then
374 Set_Im (Result, Im (X));
375 end if;
377 return Result;
378 end Arcsinh;
380 ------------
381 -- Arctan --
382 ------------
384 function Arctan (X : Complex) return Complex is
385 begin
386 if abs Re (X) < Square_Root_Epsilon and then
387 abs Im (X) < Square_Root_Epsilon
388 then
389 return X;
391 else
392 return -Complex_I * (Log (1.0 + Complex_I * X)
393 - Log (1.0 - Complex_I * X)) / 2.0;
394 end if;
395 end Arctan;
397 -------------
398 -- Arctanh --
399 -------------
401 function Arctanh (X : Complex) return Complex is
402 begin
403 if abs Re (X) < Square_Root_Epsilon and then
404 abs Im (X) < Square_Root_Epsilon
405 then
406 return X;
407 else
408 return (Log (1.0 + X) - Log (1.0 - X)) / 2.0;
409 end if;
410 end Arctanh;
412 ---------
413 -- Cos --
414 ---------
416 function Cos (X : Complex) return Complex is
417 begin
418 return
419 Compose_From_Cartesian
420 (Cos (Re (X)) * Cosh (Im (X)),
421 -(Sin (Re (X)) * Sinh (Im (X))));
422 end Cos;
424 ----------
425 -- Cosh --
426 ----------
428 function Cosh (X : Complex) return Complex is
429 begin
430 return
431 Compose_From_Cartesian
432 (Cosh (Re (X)) * Cos (Im (X)),
433 Sinh (Re (X)) * Sin (Im (X)));
434 end Cosh;
436 ---------
437 -- Cot --
438 ---------
440 function Cot (X : Complex) return Complex is
441 begin
442 if abs Re (X) < Square_Root_Epsilon and then
443 abs Im (X) < Square_Root_Epsilon
444 then
445 return Complex_One / X;
447 elsif Im (X) > Log_Inverse_Epsilon_2 then
448 return -Complex_I;
450 elsif Im (X) < -Log_Inverse_Epsilon_2 then
451 return Complex_I;
452 end if;
454 return Cos (X) / Sin (X);
455 end Cot;
457 ----------
458 -- Coth --
459 ----------
461 function Coth (X : Complex) return Complex is
462 begin
463 if abs Re (X) < Square_Root_Epsilon and then
464 abs Im (X) < Square_Root_Epsilon
465 then
466 return Complex_One / X;
468 elsif Re (X) > Log_Inverse_Epsilon_2 then
469 return Complex_One;
471 elsif Re (X) < -Log_Inverse_Epsilon_2 then
472 return -Complex_One;
474 else
475 return Cosh (X) / Sinh (X);
476 end if;
477 end Coth;
479 ---------
480 -- Exp --
481 ---------
483 function Exp (X : Complex) return Complex is
484 EXP_RE_X : constant Real'Base := Exp (Re (X));
486 begin
487 return Compose_From_Cartesian (EXP_RE_X * Cos (Im (X)),
488 EXP_RE_X * Sin (Im (X)));
489 end Exp;
491 function Exp (X : Imaginary) return Complex is
492 ImX : constant Real'Base := Im (X);
494 begin
495 return Compose_From_Cartesian (Cos (ImX), Sin (ImX));
496 end Exp;
498 ---------
499 -- Log --
500 ---------
502 function Log (X : Complex) return Complex is
503 ReX : Real'Base;
504 ImX : Real'Base;
505 Z : Complex;
507 begin
508 if Re (X) = 0.0 and then Im (X) = 0.0 then
509 raise Constraint_Error;
511 elsif abs (1.0 - Re (X)) < Root_Root_Epsilon
512 and then abs Im (X) < Root_Root_Epsilon
513 then
514 Z := X;
515 Set_Re (Z, Re (Z) - 1.0);
517 return (1.0 - (1.0 / 2.0 -
518 (1.0 / 3.0 - (1.0 / 4.0) * Z) * Z) * Z) * Z;
519 end if;
521 begin
522 ReX := Log (Modulus (X));
524 exception
525 when Constraint_Error =>
526 ReX := Log (Modulus (X / 2.0)) - Log_Two;
527 end;
529 ImX := Arctan (Im (X), Re (X));
531 if ImX > PI then
532 ImX := ImX - 2.0 * PI;
533 end if;
535 return Compose_From_Cartesian (ReX, ImX);
536 end Log;
538 ---------
539 -- Sin --
540 ---------
542 function Sin (X : Complex) return Complex is
543 begin
544 if abs Re (X) < Square_Root_Epsilon
545 and then
546 abs Im (X) < Square_Root_Epsilon
547 then
548 return X;
549 end if;
551 return
552 Compose_From_Cartesian
553 (Sin (Re (X)) * Cosh (Im (X)),
554 Cos (Re (X)) * Sinh (Im (X)));
555 end Sin;
557 ----------
558 -- Sinh --
559 ----------
561 function Sinh (X : Complex) return Complex is
562 begin
563 if abs Re (X) < Square_Root_Epsilon and then
564 abs Im (X) < Square_Root_Epsilon
565 then
566 return X;
568 else
569 return Compose_From_Cartesian (Sinh (Re (X)) * Cos (Im (X)),
570 Cosh (Re (X)) * Sin (Im (X)));
571 end if;
572 end Sinh;
574 ----------
575 -- Sqrt --
576 ----------
578 function Sqrt (X : Complex) return Complex is
579 ReX : constant Real'Base := Re (X);
580 ImX : constant Real'Base := Im (X);
581 XR : constant Real'Base := abs Re (X);
582 YR : constant Real'Base := abs Im (X);
583 R : Real'Base;
584 R_X : Real'Base;
585 R_Y : Real'Base;
587 begin
588 -- Deal with pure real case, see (RM G.1.2(39))
590 if ImX = 0.0 then
591 if ReX > 0.0 then
592 return
593 Compose_From_Cartesian
594 (Sqrt (ReX), 0.0);
596 elsif ReX = 0.0 then
597 return X;
599 else
600 return
601 Compose_From_Cartesian
602 (0.0, Real'Copy_Sign (Sqrt (-ReX), ImX));
603 end if;
605 elsif ReX = 0.0 then
606 R_X := Sqrt (YR / 2.0);
608 if ImX > 0.0 then
609 return Compose_From_Cartesian (R_X, R_X);
610 else
611 return Compose_From_Cartesian (R_X, -R_X);
612 end if;
614 else
615 R := Sqrt (XR ** 2 + YR ** 2);
617 -- If the square of the modulus overflows, try rescaling the
618 -- real and imaginary parts. We cannot depend on an exception
619 -- being raised on all targets.
621 if R > Real'Base'Last then
622 raise Constraint_Error;
623 end if;
625 -- We are solving the system
627 -- XR = R_X ** 2 - Y_R ** 2 (1)
628 -- YR = 2.0 * R_X * R_Y (2)
630 -- The symmetric solution involves square roots for both R_X and
631 -- R_Y, but it is more accurate to use the square root with the
632 -- larger argument for either R_X or R_Y, and equation (2) for the
633 -- other.
635 if ReX < 0.0 then
636 R_Y := Sqrt (0.5 * (R - ReX));
637 R_X := YR / (2.0 * R_Y);
639 else
640 R_X := Sqrt (0.5 * (R + ReX));
641 R_Y := YR / (2.0 * R_X);
642 end if;
643 end if;
645 if Im (X) < 0.0 then -- halve angle, Sqrt of magnitude
646 R_Y := -R_Y;
647 end if;
648 return Compose_From_Cartesian (R_X, R_Y);
650 exception
651 when Constraint_Error =>
653 -- Rescale and try again
655 R := Modulus (Compose_From_Cartesian (Re (X / 4.0), Im (X / 4.0)));
656 R_X := 2.0 * Sqrt (0.5 * R + 0.5 * Re (X / 4.0));
657 R_Y := 2.0 * Sqrt (0.5 * R - 0.5 * Re (X / 4.0));
659 if Im (X) < 0.0 then -- halve angle, Sqrt of magnitude
660 R_Y := -R_Y;
661 end if;
663 return Compose_From_Cartesian (R_X, R_Y);
664 end Sqrt;
666 ---------
667 -- Tan --
668 ---------
670 function Tan (X : Complex) return Complex is
671 begin
672 if abs Re (X) < Square_Root_Epsilon and then
673 abs Im (X) < Square_Root_Epsilon
674 then
675 return X;
677 elsif Im (X) > Log_Inverse_Epsilon_2 then
678 return Complex_I;
680 elsif Im (X) < -Log_Inverse_Epsilon_2 then
681 return -Complex_I;
683 else
684 return Sin (X) / Cos (X);
685 end if;
686 end Tan;
688 ----------
689 -- Tanh --
690 ----------
692 function Tanh (X : Complex) return Complex is
693 begin
694 if abs Re (X) < Square_Root_Epsilon and then
695 abs Im (X) < Square_Root_Epsilon
696 then
697 return X;
699 elsif Re (X) > Log_Inverse_Epsilon_2 then
700 return Complex_One;
702 elsif Re (X) < -Log_Inverse_Epsilon_2 then
703 return -Complex_One;
705 else
706 return Sinh (X) / Cosh (X);
707 end if;
708 end Tanh;
710 end Ada.Numerics.Generic_Complex_Elementary_Functions;