* varasm.c (assemble_real): Use REAL_VALUE_TO_x and assemble_integer
[official-gcc.git] / gcc / config / 1750a / 1750a.h
blobbca9d356b9a520ec6900e676c570406e9c3be559
1 /* Definitions of target machine for GNU compiler.
2 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001 Free Software Foundation, Inc.
4 Contributed by O.M.Kellogg, DASA (oliver.kellogg@space.otn.dasa.de)
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 /* Names to predefine in the preprocessor for this target machine. */
26 /* See tm-sun3.h, tm-sun2.h, tm-isi68.h for different CPP_PREDEFINES. */
27 #define CPP_PREDEFINES ""
29 /* Print subsidiary information on the compiler version in use. */
30 #ifdef IEEE
31 #define TARGET_VERSION fprintf (stderr, " (1750A, IEEE syntax)");
32 #else
33 #define TARGET_VERSION fprintf (stderr, " (MIL-STD-1750A)");
34 #endif
36 /* Run-time compilation parameters selecting different hardware subsets. */
38 #define TARGET_SWITCHES \
39 { {"vaxc-alignment", 2, N_("Use VAX-C alignment")}, \
40 { "", TARGET_DEFAULT, NULL}}
42 /* Default target_flags if no switches specified. */
44 #ifndef TARGET_DEFAULT
45 #define TARGET_DEFAULT 1
46 #endif
48 /*****************************************************************************/
50 /* SPECIAL ADDITION FOR MIL-STD-1750A by O.M.Kellogg, 15-Apr-1993 */
51 /* See file aux-output.c for the actual data instances. */
52 struct datalabel_array {
53 char *name;
54 char value[14];
55 int size;
57 struct jumplabel_array {
58 int pc;
59 int num;
61 enum section { Init, Normal, Konst, Static };
62 #define DATALBL_ARRSIZ 256
63 #define JMPLBL_ARRSIZ 256
64 #ifndef __datalbl
65 extern struct datalabel_array datalbl[];
66 extern struct jumplabel_array jmplbl[];
67 extern int datalbl_ndx, jmplbl_ndx, label_pending, program_counter;
68 extern enum section current_section;
69 extern const char *const sectname[4];
70 #endif
71 /*--------------------------------------------------------------------*/
73 /* target machine storage layout */
75 /* Define this if most significant bit is lowest numbered
76 in instructions that operate on numbered bit-fields.
77 Though 1750 actually counts bits in big-endian fashion, the sign bit
78 is still the most significant bit, which is leftmost. Therefore leaving
79 this little-endian. Adjust short before assembler output when needed:
80 e.g. in QImode, a GCC bit n is a 1750 bit (15-n). */
81 #define BITS_BIG_ENDIAN 0
83 /* Define this if most significant byte of a word is the lowest numbered. */
84 /* For 1750 we can decide arbitrarily
85 since there are no machine instructions for them. */
86 #define BYTES_BIG_ENDIAN 0
88 /* Define this if most significant word of a multiword value is lowest
89 numbered.
90 True for 1750. */
91 #define WORDS_BIG_ENDIAN 1
93 /* number of bits in an addressable storage unit */
94 #define BITS_PER_UNIT 16
96 /* Width in bits of a "word", which is the contents of a machine register.
97 Note that this is not necessarily the width of data type `int';
98 if using 16-bit ints on a 68000, this would still be 32.
99 But on a machine with 16-bit registers, this would be 16. */
100 #define BITS_PER_WORD 16
102 /* Width of a word, in units (bytes). */
103 #define UNITS_PER_WORD 1
105 /* Width in bits of a pointer.
106 See also the macro `Pmode' defined below. */
107 #define POINTER_SIZE 16
109 #define PTRDIFF_TYPE "int"
111 /* Type to use for `size_t'. If undefined, uses `long unsigned int'. */
112 #define SIZE_TYPE "int"
114 /* 1750a preliminary. Ought to properly define the format in real.c. */
115 #define TARGET_FLOAT_FORMAT UNKNOWN_FLOAT_FORMAT
117 /* Allocation boundary (in *bits*) for storing pointers in memory. */
118 #define POINTER_BOUNDARY 16
120 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
121 /* 1750: should have had to make this 32 when BITS_PER_WORD is 32. */
122 #define PARM_BOUNDARY 16
124 /* Boundary (in *bits*) on which stack pointer should be aligned. */
125 #define STACK_BOUNDARY 16
127 /* Allocation boundary (in *bits*) for the code of a function. */
128 #define FUNCTION_BOUNDARY 16
130 /* Alignment of field after `int : 0' in a structure. */
131 #define EMPTY_FIELD_BOUNDARY 16
133 /* No data type wants to be aligned rounder than this. */
134 #define BIGGEST_ALIGNMENT 16
136 /* Define this to 1 if move instructions will actually fail to work
137 when given unaligned data. */
138 #define STRICT_ALIGNMENT 0
140 /* Define number of bits in most basic integer type.
141 (If undefined, default is BITS_PER_WORD).
142 #define INT_TYPE_SIZE 16 */
144 /* Define number of bits in short integer type.
145 (If undefined, default is half of BITS_PER_WORD). */
146 #define SHORT_TYPE_SIZE 16
148 /* Define number of bits in long integer type.
149 (If undefined, default is BITS_PER_WORD). */
150 #define LONG_TYPE_SIZE 32
152 /* Define number of bits in long long integer type.
153 (If undefined, default is twice BITS_PER_WORD). */
154 /* 1750 PRELIMINARY : no processor support for `long long', therefore
155 need to check out the long-long opencodings ! */
156 #define LONG_LONG_TYPE_SIZE 64
158 /* Define number of bits in char type.
159 (If undefined, default is one fourth of BITS_PER_WORD). */
160 #define CHAR_TYPE_SIZE 16
162 /* Define number of bits in float type.
163 (If undefined, default is BITS_PER_WORD). */
164 #define FLOAT_TYPE_SIZE 32
166 /* Define number of bits in double type.
167 (If undefined, default is twice BITS_PER_WORD). */
168 #define DOUBLE_TYPE_SIZE 48
170 /*****************************************************************************/
172 /* Standard register usage. */
174 /* Number of actual hardware registers.
175 The hardware registers are assigned numbers for the compiler
176 from 0 to just below FIRST_PSEUDO_REGISTER.
177 All registers that the compiler knows about must be given numbers,
178 even those that are not normally considered general registers. */
179 #define FIRST_PSEUDO_REGISTER 16
181 /* 1 for registers that have pervasive standard uses
182 and are not available for the register allocator.
183 R15 is the 1750A stack pointer. R14 is the frame pointer. */
185 #define FIXED_REGISTERS \
186 { 0, 0, 0, 0, 0, 0, 0, 0, \
187 0, 0, 0, 0, 0, 0, 1, 1 }
189 /* 1 for registers not available across function calls.
190 These must include the FIXED_REGISTERS and also any
191 registers that can be used without being saved.
192 The latter must include the registers where values are returned
193 and the register where structure-value addresses are passed.
194 Aside from that, you can include as many other registers as you like.
195 1750: return value in R0 foll. (depending on size of retval).
196 Should be possible to refine this (how many regs are actually used) */
198 #define CALL_USED_REGISTERS \
199 { 1, 1, 1, 1, 1, 1, 1, 1, \
200 1, 1, 1, 1, 1, 1, 1, 1 }
202 /* Order in which to allocate registers. Each register must be
203 listed once, even those in FIXED_REGISTERS. List frame pointer
204 late and fixed registers last. Note that, in general, we prefer
205 registers listed in CALL_USED_REGISTERS, keeping the others
206 available for storage of persistent values. */
208 /* #define REG_ALLOC_ORDER \
209 { 2, 0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }
212 /* Return number of consecutive hard regs needed starting at reg REGNO
213 to hold something of mode MODE.
214 This is ordinarily the length in words of a value of mode MODE
215 but can be less for certain modes in special long registers.
216 All 1750 registers are one word long. */
217 #define HARD_REGNO_NREGS(REGNO, MODE) \
218 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
220 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
221 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
223 /* Value is 1 if it is a good idea to tie two pseudo registers
224 when one has mode MODE1 and one has mode MODE2.
225 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
226 for any hard reg, then this must be 0 for correct output. */
227 #define MODES_TIEABLE_P(MODE1, MODE2) 1
229 /* Specify the registers used for certain standard purposes.
230 The values of these macros are register numbers. */
232 /* 1750A pc isn't overloaded on a register. */
233 /* #define PC_REGNUM */
235 /* Register to use for pushing function arguments. */
236 #define STACK_POINTER_REGNUM 15
238 /* Base register for access to local variables of the function. */
239 #define FRAME_POINTER_REGNUM 14
241 /* Value should be nonzero if functions must have frame pointers.
242 Zero means the frame pointer need not be set up (and parms
243 may be accessed via the stack pointer) in functions that seem suitable.
244 This is computed in `reload', in reload1.c. */
245 #define FRAME_POINTER_REQUIRED 0
247 /* Base register for access to arguments of the function. */
248 #define ARG_POINTER_REGNUM 14
250 /* Define this if successive args to a function occupy decreasing addresses
251 on the stack.
252 #define ARGS_GROW_DOWNWARD
255 /* Register in which static-chain is passed to a function. */
256 #define STATIC_CHAIN_REGNUM 13
258 /* Place in which caller passes the structure value address.
259 0 means push the value on the stack like an argument.
260 #define STRUCT_VALUE 0
263 /* Register in which address to store a structure value
264 arrives in the function.
265 #define STRUCT_VALUE_INCOMING 0
268 /* Register in which address to store a structure value
269 is passed to a function. */
270 #define STRUCT_VALUE_REGNUM 12
272 /* Define this to be 1 if all structure return values must be in memory. */
273 #define DEFAULT_PCC_STRUCT_RETURN 0
275 /*****************************************************************************/
277 /* Define the classes of registers for register constraints in the
278 machine description. Also define ranges of constants.
280 One of the classes must always be named ALL_REGS and include all hard regs.
281 If there is more than one class, another class must be named NO_REGS
282 and contain no registers.
284 The name GENERAL_REGS must be the name of a class (or an alias for
285 another name such as ALL_REGS). This is the class of registers
286 that is allowed by "g" or "r" in a register constraint.
287 Also, registers outside this class are allocated only when
288 instructions express preferences for them.
290 The classes must be numbered in nondecreasing order; that is,
291 a larger-numbered class must never be contained completely
292 in a smaller-numbered class.
294 For any two classes, it is very desirable that there be another
295 class that represents their union. */
297 /* 1750 note: The names (BASE_REGS/INDEX_REGS) are used in their *gcc sense*
298 (i.e. *opposite* to the MIL-STD-1750A defined meanings). This means that
299 R1..R15 are called "base" regs and R12..R15 are "index" regs.
300 Index reg mode (in the gcc sense) is not yet implemented (these are the
301 1750 "Base with Index Reg" instructions, LBX etc. See 1750.md)
303 Here's an example to drive this point home: in "LBX B12,R5"
304 B12 shall be called the "index" reg and R5 shall be the "base" reg.
305 This naming inversion is due to the GCC defined capabilities of
306 "Base" vs. "Index" regs. */
308 enum reg_class { NO_REGS, R2, R0_1, INDEX_REGS, BASE_REGS, ALL_REGS, LIM_REG_CLASSES };
310 #define N_REG_CLASSES (int) LIM_REG_CLASSES
312 /* Since GENERAL_REGS is the same class as ALL_REGS,
313 don't give it a different class number; just make it an alias. */
314 #define GENERAL_REGS ALL_REGS
316 /* Give names of register classes as strings for dump file. */
318 #define REG_CLASS_NAMES \
319 { "NO_REGS", "R2", "R0_1", "INDEX_REGS", "BASE_REGS", "ALL_REGS" }
321 /* Define which registers fit in which classes.
322 This is an initializer for a vector of HARD_REG_SET
323 of length N_REG_CLASSES.
324 1750 "index" (remember, in the *GCC* sense!) regs are R12 through R15.
325 The only 1750 register not usable as BASE_REG is R0. */
327 #define REG_CLASS_CONTENTS { {0}, {0x0004}, {0x0003}, {0xf000}, {0xfffe}, {0xffff} }
329 /* The same information, inverted:
330 Return the class number of the smallest class containing
331 reg number REGNO. This could be a conditional expression
332 or could index an array. */
333 #define REGNO_REG_CLASS(REGNO) ((REGNO) == 2 ? R2 : (REGNO) == 0 ? R0_1 : \
334 (REGNO) >= 12 ? INDEX_REGS : (REGNO) > 0 ? BASE_REGS : ALL_REGS)
336 /* The class value for index registers, and the one for base regs. */
338 #define BASE_REG_CLASS BASE_REGS
339 #define INDEX_REG_CLASS INDEX_REGS
341 /* Get reg_class from a letter such as appears in the machine description.
342 For the 1750, we have 'z' for R0_1, 't' for R2, 'b' for gcc Base regs
343 and 'x' for gcc Index regs. */
345 #define REG_CLASS_FROM_LETTER(C) ((C) == 't' ? R2 : \
346 (C) == 'z' ? R0_1 : \
347 (C) == 'b' ? BASE_REGS : \
348 (C) == 'x' ? INDEX_REGS : NO_REGS)
350 /* The letters I,J,K,.. to P in a register constraint string
351 can be used to stand for particular ranges of immediate operands.
352 This macro defines what the ranges are.
353 C is the letter, and VALUE is a constant value.
354 Return 1 if VALUE is in the range specified by C.
356 For the 1750A,
357 `I' is used for ISP mode instructions,
358 `J' is used for ISN mode instructions,
359 `K' is used for the STC instruction's constant range,
360 `L' is used for unsigned 8-bit address displacements in instructions
361 of addressing mode "Base Relative",
362 `M' is for IM mode instructions et al.,
363 `O' is a synonym for (const_int 0). */
365 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
366 ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 16 : \
367 (C) == 'J' ? (VALUE) < 0 && (VALUE) >= -16 : \
368 (C) == 'K' ? (VALUE) >= 0 && (VALUE) <= 15 : \
369 (C) == 'L' ? (VALUE) >= 0 && (VALUE) <= 0xFF : \
370 (C) == 'M' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
371 (C) == 'O' ? (VALUE) == 0 : 0)
373 /* Similar, but for floating constants, and defining letter 'G'.
374 Here VALUE is the CONST_DOUBLE rtx itself. */
375 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
376 ((C) == 'G' ? ((VALUE) == CONST0_RTX (HFmode) \
377 || (VALUE) == CONST0_RTX (TQFmode)) : 0)
379 /* Optional extra constraints for this machine.
381 For the 1750, `Q' means that this is a memory operand consisting
382 of the sum of an Index Register (in the GCC sense, i.e. R12..R15)
383 and a constant in the range 0..255. This constraint is used for
384 the Base Register with Offset address mode instructions (LB,STB,AB,..) */
386 #define EXTRA_CONSTRAINT(OP, C) \
387 ((C) == 'Q' && b_mode_operand (OP))
389 /* Given an rtx X being reloaded into a reg required to be
390 in class CLASS, return the class of reg to actually use.
391 In general this is just CLASS; but on some machines
392 in some cases it is preferable to use a more restrictive class. */
394 #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
396 /* Return the maximum number of consecutive registers
397 needed to represent mode MODE in a register of class CLASS.
398 On the 1750A, this is the size of MODE in words,
399 since class doesn't make any difference. */
400 #define CLASS_MAX_NREGS(CLASS,MODE) GET_MODE_SIZE(MODE)
402 /*****************************************************************************/
404 /* Stack layout; function entry, exit and calling. */
406 /* Define this if pushing a word on the stack
407 makes the stack pointer a smaller address. */
408 #define STACK_GROWS_DOWNWARD 1
410 /* Define this if the nominal address of the stack frame
411 is at the high-address end of the local variables;
412 goes at a more negative offset in the frame.
413 #define FRAME_GROWS_DOWNWARD
416 /* Offset within stack frame to start allocating local variables at.
417 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
418 first local allocated. Otherwise, it is the offset to the BEGINNING
419 of the first local allocated.
421 #define STARTING_FRAME_OFFSET 1
423 /* This is the default anyway:
424 #define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) FRAMEADDR
427 /* If we generate an insn to push BYTES bytes,
428 this says how many the stack pointer really advances by.
429 1750 note: what GCC calls a "byte" is really a 16-bit word,
430 because BITS_PER_UNIT is 16. */
432 #define PUSH_ROUNDING(BYTES) (BYTES)
434 /* Define this macro if functions should assume that stack space has
435 been allocated for arguments even when their values are passed in
436 registers.
437 Size, in bytes, of the area reserved for arguments passed in
438 registers for the function represented by FNDECL.
439 #define REG_PARM_STACK_SPACE(FNDECL) 14 */
441 /* Define this if it is the responsibility of the caller to allocate
442 the area reserved for arguments passed in registers.
443 #define OUTGOING_REG_PARM_STACK_SPACE */
445 /* Offset of first parameter from the argument pointer register value.
446 1750 note:
447 Parameters appear in reversed order on the frame (so when they are
448 popped, they come off in the normal left-to-right order.)
449 Computed as follows:
450 one word for the caller's (PC+1) (i.e. the return address)
451 plus total size of called function's "auto" variables
452 plus one word for the caller's frame pointer (i.e. the old FP) */
454 #define FIRST_PARM_OFFSET(FNDECL) \
455 (1 + get_frame_size() + 1)
457 /* Value is 1 if returning from a function call automatically
458 pops the arguments described by the number-of-args field in the call.
459 FUNDECL is the declaration node of the function (as a tree),
460 FUNTYPE is the data type of the function (as a tree),
461 or for a library call it is an identifier node for the subroutine name.
464 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
466 /* Define how to find the value returned by a function.
467 VALTYPE is the data type of the value (as a tree).
468 If the precise function being called is known, FUNC is its FUNCTION_DECL;
469 otherwise, FUNC is 0. */
471 #define FUNCTION_VALUE(VALTYPE, FUNC) \
472 gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
474 /* Define how to find the value returned by a library function
475 assuming the value has mode MODE. */
476 /* 1750 note: no libcalls yet */
478 #define LIBCALL_VALUE(MODE) printf("LIBCALL_VALUE called!\n"), \
479 gen_rtx_REG (MODE, 0)
481 /* 1 if N is a possible register number for a function value. */
483 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
485 /* 1 if the tree TYPE should be returned in memory instead of in regs.
486 #define RETURN_IN_MEMORY(TYPE) \
487 (int_size_in_bytes(TYPE) > 12)
490 /* Define this if PCC uses the nonreentrant convention for returning
491 structure and union values.
492 #define PCC_STATIC_STRUCT_RETURN */
494 /* 1 if N is a possible register number for function argument passing. */
496 #define FUNCTION_ARG_REGNO_P(N) ((N) < 12)
498 /*****************************************************************************/
500 /* Define a data type for recording info about an argument list
501 during the scan of that argument list. This data type should
502 hold all necessary information about the function itself
503 and about the args processed so far, enough to enable macros
504 such as FUNCTION_ARG to determine where the next arg should go.
506 For 1750A, this is a single integer, which is a number of words
507 of arguments scanned so far. */
509 #define CUMULATIVE_ARGS int
511 /* Initialize a variable CUM of type CUMULATIVE_ARGS
512 for a call to a function whose data type is FNTYPE.
513 For a library call, FNTYPE is 0.
515 For 1750A, the offset starts at 0. */
517 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) ((CUM) = 0)
519 /* Update the data in CUM to advance over an argument
520 of mode MODE and data type TYPE.
521 (TYPE is null for libcalls where that information may not be available.)
523 1750 note: "int_size_in_bytes()" returns a unit relative to
524 BITS_PER_UNIT, so in our case not bytes, but 16-bit words. */
526 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
527 ((CUM) += (MODE) == BLKmode ? int_size_in_bytes(TYPE) : GET_MODE_SIZE(MODE))
529 /* Define where to put the arguments to a function.
530 Value is zero to push the argument on the stack,
531 or a hard register in which to store the argument.
533 MODE is the argument's machine mode.
534 TYPE is the data type of the argument (as a tree).
535 This is null for libcalls where that information may
536 not be available.
537 CUM is a variable of type CUMULATIVE_ARGS which gives info about
538 the preceding args and about the function being called.
539 NAMED is nonzero if this argument is a named parameter
540 (otherwise it is an extra parameter matching an ellipsis). */
542 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) function_arg (CUM,MODE,TYPE,NAMED)
544 /* Define the following macro if function calls on the target machine
545 do not preserve any registers; in other words, if `CALL_USED_REGISTERS'
546 has 1 for all registers. This macro enables `-fcaller-saves' by
547 default. Eventually that option will be enabled by default on all
548 machines and both the option and this macro will be eliminated. */
550 #define DEFAULT_CALLER_SAVES
552 /************* 1750: PROFILER HANDLING NOT YET DONE !!!!!!! *************/
553 /* Output assembler code to FILE to increment profiler label # LABELNO
554 for profiling a function entry. */
556 #define FUNCTION_PROFILER(FILE, LABELNO) \
557 fprintf (FILE, "; got into FUNCTION_PROFILER with label # %d\n", (LABELNO))
559 /* Output assembler code to FILE to initialize this source file's
560 basic block profiling info, if that has not already been done. */
561 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
562 fprintf (FILE, "; got into FUNCTION_BLOCK_PROFILER with label # %d\n",LABELNO)
564 /* Output assembler code to FILE to increment the entry-count for
565 the BLOCKNO'th basic block in this source file. */
566 #define BLOCK_PROFILER(FILE, BLOCKNO) \
567 fprintf (FILE, "; got into BLOCK_PROFILER with block # %d\n",BLOCKNO)
569 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
570 the stack pointer does not matter. The value is tested only in
571 functions that have frame pointers.
572 No definition is equivalent to always zero. */
574 #define EXIT_IGNORE_STACK 0
576 /* If the memory address ADDR is relative to the frame pointer,
577 correct it to be relative to the stack pointer instead.
578 This is for when we don't use a frame pointer.
579 ADDR should be a variable name.
581 #define FIX_FRAME_POINTER_ADDRESS(ADDR,DEPTH)
584 /* Store in the variable DEPTH the initial difference between the
585 frame pointer reg contents and the stack pointer reg contents,
586 as of the start of the function body. This depends on the layout
587 of the fixed parts of the stack frame and on how registers are saved.
588 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) DEPTH = 0
591 #define ELIMINABLE_REGS { \
592 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
593 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM }, \
594 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM } }
596 #define CAN_ELIMINATE(FROM, TO) 1
598 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
599 OFFSET = (TO == STACK_POINTER_REGNUM) ? -1 : 0
602 /* Output assembler code for a block containing the constant parts
603 of a trampoline, leaving space for the variable parts. */
605 #define TRAMPOLINE_TEMPLATE(FILE) fprintf(FILE,"TRAMPOLINE_TEMPLATE called\n")
607 /* Length in units of the trampoline for entering a nested function. */
609 #define TRAMPOLINE_SIZE 2
611 /* Emit RTL insns to initialize the variable parts of a trampoline.
612 FNADDR is an RTX for the address of the function's pure code.
613 CXT is an RTX for the static chain value for the function. */
615 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) printf("INITIALIZE_TRAMPO called\n")
616 /* { \
617 emit_move_insn (gen_rtx_MEM (QImode, plus_constant (TRAMP, 1)), CXT); \
618 emit_move_insn (gen_rtx_MEM (QImode, plus_constant (TRAMP, 6)), FNADDR); \
619 } */
622 /*****************************************************************************/
624 /* Addressing modes, and classification of registers for them. */
626 /* 1750 doesn't have a lot of auto-incr./decr. - just for the stack ptr. */
628 /* #define HAVE_POST_INCREMENT 0 just for R15 (stack pointer) */
629 /* #define HAVE_POST_DECREMENT 0 */
630 /* #define HAVE_PRE_DECREMENT 0 just for R15 (stack pointer) */
631 /* #define HAVE_PRE_INCREMENT 0 */
633 /* Macros to check register numbers against specific register classes. */
635 /* These assume that REGNO is a hard or pseudo reg number.
636 They give nonzero only if REGNO is a hard reg of the suitable class
637 or a pseudo reg currently allocated to a suitable hard reg.
638 Since they use reg_renumber, they are safe only once reg_renumber
639 has been allocated, which happens in local-alloc.c.
640 1750 note: The words BASE and INDEX are used in their GCC senses:
641 The "Index Registers", R12 through R15, are used in the 1750
642 instructions LB,STB,AB,SBB,MB,DB,LBX,STBX,...
645 #define REGNO_OK_FOR_BASE_P(REGNO) \
646 (((REGNO) > 0 && (REGNO) <= 15) || \
647 (reg_renumber[REGNO] > 0 && reg_renumber[REGNO] <= 15))
648 #define REGNO_OK_FOR_INDEX_P(REGNO) \
649 (((REGNO) >= 12 && (REGNO) <= 15) || \
650 (reg_renumber[REGNO] >= 12 && reg_renumber[REGNO] <= 15))
652 /* Now macros that check whether X is a register and also,
653 strictly, whether it is in a specified class. */
655 /* 1 if X is an address register */
657 #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
659 /* Maximum number of registers that can appear in a valid memory address. */
660 #define MAX_REGS_PER_ADDRESS 1
662 /* Recognize any constant value that is a valid address. */
664 #define CONSTANT_ADDRESS_P(X) CONSTANT_P(X)
666 /* Nonzero if the constant value X is a legitimate general operand.
667 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
669 #define LEGITIMATE_CONSTANT_P(X) 1
671 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
672 and check its validity for a certain class.
673 We have two alternate definitions for each of them.
674 The usual definition accepts all pseudo regs; the other rejects
675 them unless they have been allocated suitable hard regs.
676 The symbol REG_OK_STRICT causes the latter definition to be used.
678 Most source files want to accept pseudo regs in the hope that
679 they will get allocated to the class that the insn wants them to be in.
680 Source files for reload pass need to be strict.
681 After reload, it makes no difference, since pseudo regs have
682 been eliminated by then. */
684 #ifdef REG_OK_STRICT
686 /* Nonzero if X is a hard reg that can be used as an index. */
687 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P(REGNO(X))
688 /* Nonzero if X is a hard reg that can be used as a base reg. */
689 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P(REGNO(X))
691 #else
693 /* Nonzero if X is a hard reg that can be used as an index
694 or if it is a pseudo reg. */
695 #define REG_OK_FOR_INDEX_P(X) (REGNO (X) >= 12)
696 /* Nonzero if X is a hard reg that can be used as a base reg
697 or if it is a pseudo reg. */
698 #define REG_OK_FOR_BASE_P(X) (REGNO (X) > 0)
700 #endif
703 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
704 that is a valid memory address for an instruction.
705 The MODE argument is the machine mode for the MEM expression
706 that wants to use this address.
707 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS.
709 1750 note: Currently we don't implement address expressions that use
710 GCC "Index"-class regs. To be expanded to handle the 1750 "Base with Index"
711 instructions (see also MAX_REGS_PER_ADDRESS and others). */
713 #define GO_IF_BASED_ADDRESS(X, ADDR) { \
714 if ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P(X))) \
715 goto ADDR; \
716 if (GET_CODE (X) == PLUS) \
717 { register rtx x0 = XEXP(X,0), x1 = XEXP(X,1); \
718 if ((REG_P(x0) && REG_OK_FOR_BASE_P(x0) && CONSTANT_ADDRESS_P(x1)) \
719 || (REG_P(x1) && REG_OK_FOR_BASE_P(x1) && CONSTANT_ADDRESS_P(x0))) \
720 goto ADDR; } }
722 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) { \
723 if (CONSTANT_ADDRESS_P(X)) goto ADDR; \
724 GO_IF_BASED_ADDRESS(X,ADDR) }
727 /* Try machine-dependent ways of modifying an illegitimate address
728 to be legitimate. If we find one, return the new, valid address.
729 This macro is used in only one place: `memory_address' in explow.c.
731 OLDX is the address as it was before break_out_memory_refs was called.
732 In some cases it is useful to look at this to decide what needs to be done.
734 MODE and WIN are passed so that this macro can use
735 GO_IF_LEGITIMATE_ADDRESS.
737 It is always safe for this macro to do nothing. It exists to recognize
738 opportunities to optimize the output. */
740 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)
742 /* Go to LABEL if ADDR (a legitimate address expression)
743 has an effect that depends on the machine mode it is used for.
744 On the 68000, only predecrement and postincrement address depend thus
745 (the amount of decrement or increment being the length of the operand). */
746 /* 1750: not used. */
748 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
750 /*****************************************************************************/
752 /* Specify the machine mode that this machine uses
753 for the index in the tablejump instruction. */
754 #define CASE_VECTOR_MODE QImode
756 /* Define as C expression which evaluates to nonzero if the tablejump
757 instruction expects the table to contain offsets from the address of the
758 table.
759 Do not define this if the table should contain absolute addresses. */
760 /* #define CASE_VECTOR_PC_RELATIVE 1 */
762 /* Specify the tree operation to be used to convert reals to integers. */
763 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
765 /* This is the kind of divide that is easiest to do in the general case. */
766 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
768 /* Define this as 1 if `char' should by default be signed; else as 0. */
769 #define DEFAULT_SIGNED_CHAR 1
771 /* Max number of bytes we can move from memory to memory
772 in one reasonably fast instruction. */
773 #define MOVE_MAX 65536
775 /* If a memory-to-memory move would take MOVE_RATIO or more simple
776 move-instruction pairs, we will do a movstr or libcall instead. */
777 #define MOVE_RATIO 4
779 /* Define this if zero-extension is slow (more than one real instruction). */
780 /* #define SLOW_ZERO_EXTEND */
782 /* Nonzero if access to memory by bytes is slow and undesirable. */
783 #define SLOW_BYTE_ACCESS 0
785 /* Define if shifts truncate the shift count
786 which implies one can omit a sign-extension or zero-extension
787 of a shift count. */
788 /* #define SHIFT_COUNT_TRUNCATED 1 */
790 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
791 is done just by pretending it is already truncated. */
792 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
794 /* We assume that the store-condition-codes instructions store 0 for false
795 and some other value for true. This is the value stored for true. */
797 #define STORE_FLAG_VALUE 1
799 /* When a prototype says `char' or `short', really pass an `int'.
800 1750: for now, `char' is 16 bits wide anyway. */
801 #define PROMOTE_PROTOTYPES 0
803 /* Specify the machine mode that pointers have.
804 After generation of rtl, the compiler makes no further distinction
805 between pointers and any other objects of this machine mode. */
806 #define Pmode QImode
808 /* A function address in a call instruction
809 is a 16-bit address (for indexing purposes) */
810 #define FUNCTION_MODE QImode
812 /* Compute the cost of computing a constant rtl expression RTX
813 whose rtx-code is CODE. The body of this macro is a portion
814 of a switch statement. If the code is computed here,
815 return it with a return statement. Otherwise, break from the switch. */
817 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
818 case CONST_INT: \
819 return (INTVAL(RTX) >= -16 && INTVAL(RTX) <= 16) ? 1 : 3; \
820 case CONST: \
821 case LABEL_REF: \
822 case SYMBOL_REF: \
823 return 3; \
824 case CONST_DOUBLE: \
825 return 4;
827 #define ADDRESS_COST(ADDRESS) (memop_valid (ADDRESS) ? 3 : 10)
829 #define REGISTER_MOVE_COST(MODE,FROM,TO) 2
831 #define MEMORY_MOVE_COST(M,C,I) 4
833 /* Tell final.c how to eliminate redundant test instructions. */
835 /* Here we define machine-dependent flags and fields in cc_status
836 (see `conditions.h'). */
837 /* MIL-STD-1750: none -- just has the garden variety C,P,Z,N flags. */
839 /* Store in cc_status the expressions
840 that the condition codes will describe
841 after execution of an instruction whose pattern is EXP.
842 Do not alter them if the instruction would not alter the cc's.
843 1750: See file out-1750a.c for notice_update_cc(). */
845 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP)
847 /**********************************************/
848 /* Produce debugging info in the DWARF format
849 #define DWARF_DEBUGGING_INFO
852 /*****************************************************************************/
854 /* Control the assembler format that we output. */
856 /* Output at beginning of assembler file. */
858 #define ASM_FILE_START(FILE) { \
859 char *p2, name[40]; \
860 const char *p; \
861 if ((p = strrchr(main_input_filename,'/')) != NULL ? 1 : \
862 (p = strrchr(main_input_filename,']')) != NULL) \
863 p++; \
864 else \
865 p = main_input_filename; \
866 strcpy(name,p); \
867 if ((p2 = strchr(name,'.'))) \
868 *p2 = '\0'; \
869 fprintf(FILE,"\tname %s\n",name); \
870 fprintf(FILE,"\tnolist\n\tinclude \"ms1750.inc\"\n\tlist\n\n"); \
871 fprintf(FILE,"\tglobal\t__main\n\n"); }
873 /* Output at end of assembler file.
874 For 1750, we copy the data labels accrued in datalbl[] from the Constants
875 section (Konst) to the Writable-Data section (Static). */
877 #define ASM_FILE_END(FILE) \
878 do { \
879 if (datalbl_ndx >= 0) { \
880 int i, cum_size=0; \
881 fprintf(FILE,"\n\tstatic\ninit_srel\n"); \
882 for (i = 0; i <= datalbl_ndx; i++) { \
883 if (datalbl[i].name == NULL) \
885 fprintf(stderr, "asm_file_end internal datalbl err\n"); \
886 exit (0); \
888 fprintf(FILE,"%s \tblock %d\n", \
889 datalbl[i].name,datalbl[i].size); \
890 cum_size += datalbl[i].size; \
892 fprintf(FILE,"\n\tinit\n"); \
893 fprintf(FILE,"\tlim\tr0,init_srel\n"); /* destin. */ \
894 fprintf(FILE,"\tlim\tr1,%d\n",cum_size); /* count */ \
895 fprintf(FILE,"\tlim\tr2,K%s\n",datalbl[0].name); /* source */ \
896 fprintf(FILE,"\tmov\tr0,r2\n"); \
897 fprintf(FILE,"\n\tnormal\n"); \
898 datalbl_ndx = -1; /* reset stuff */ \
899 for (i = 0; i < DATALBL_ARRSIZ; i++) \
900 datalbl[i].size = 0; \
902 fprintf(FILE,"\n\tend\n"); \
903 } while (0)
905 /* Output to assembler file text saying following lines
906 may contain character constants, extra white space, comments, etc. */
908 #define ASM_APP_ON "; ASM_APP_ON\n"
910 /* Output to assembler file text saying following lines
911 no longer contain unusual constructs. */
913 #define ASM_APP_OFF "; ASM_APP_OFF\n"
916 #define EXTRA_SECTIONS in_readonly_data
918 #define EXTRA_SECTION_FUNCTIONS \
919 extern void const_section PARAMS ((void)); \
920 void const_section() \
922 fprintf(asm_out_file,"\tkonst\n"); \
923 current_section = Konst; \
925 void check_section(sect) \
926 enum section sect; \
928 if (current_section != sect) { \
929 fprintf(asm_out_file,"\t%s\n",sectname[(int)sect]); \
930 current_section = sect; \
932 switch (sect) { \
933 case Init: \
934 case Normal: \
935 in_section = in_text; \
936 break; \
937 case Static: \
938 in_section = in_data; \
939 break; \
940 case Konst: \
941 in_section = in_readonly_data; \
942 break; \
947 /* Function that switches to the read-only data section (optional) */
948 #define READONLY_DATA_SECTION const_section
950 /* Output before program init section */
951 #define INIT_SECTION_ASM_OP "\n\tinit ; init_section\n"
953 /* Output before program text section */
954 #define TEXT_SECTION_ASM_OP "\n\tnormal ; text_section\n"
956 /* Output before writable data.
957 1750 Note: This is actually read-only data. The copying from read-only
958 to writable memory is done elsewhere (in ASM_FILE_END.)
960 #define DATA_SECTION_ASM_OP "\n\tkonst ; data_section\n"
962 /* How to refer to registers in assembler output.
963 This sequence is indexed by compiler's hard-register-number (see above). */
965 #define REGISTER_NAMES \
966 { "0", "1", "2", "3", "4", "5", "6", "7", \
967 "8", "9","10","11","12","13","14","15" }
969 /****************** Assembler output formatting **********************/
971 #define ASM_COMMENT_START ";"
973 #define ASM_OUTPUT_OPCODE(FILE,PTR) do { \
974 while (*(PTR) != '\0' && *(PTR) != ' ') { \
975 putc (*(PTR), FILE); \
976 (PTR)++; \
978 while (*(PTR) == ' ') \
979 (PTR)++; \
980 putc ('\t', FILE); \
981 program_counter += 2; \
982 } while (0)
984 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
985 fprintf(FILE,"%s\n",NAME)
987 /* This is how to output the definition of a user-level label named NAME,
988 such as the label on a static function or variable NAME. */
989 /* 1750 note: Labels are prefixed with a 'K'. This is because handling
990 has been changed for labels to be output in the "Constants" section
991 (named "Konst"), and special initialization code takes care of copying
992 the Const-section data into the writable data section (named "Static").
993 In the Static section we therefore have the true label names (i.e.
994 not prefixed with 'K'). */
996 #define ASM_OUTPUT_LABEL(FILE,NAME) \
997 do { if (NAME[0] == '.') { \
998 fprintf(stderr,"Oops! label %s can't begin with '.'\n",NAME); \
999 abort(); \
1001 else { \
1002 check_section(Konst); \
1003 fprintf(FILE,"K%s\n",NAME); \
1004 fflush(FILE); \
1005 datalbl[++datalbl_ndx].name = (char *)xstrdup (NAME);\
1006 datalbl[datalbl_ndx].size = 0; \
1007 label_pending = 1; \
1009 } while (0)
1012 /* This is how to output a command to make the user-level label named NAME
1013 defined for reference from other files. */
1015 #define ASM_GLOBALIZE_LABEL(FILE,NAME) do { \
1016 fprintf (FILE, "\tglobal %s\t; export\n", NAME); \
1017 } while (0)
1019 /* The prefix to add to user-visible assembler symbols. */
1021 #define USER_LABEL_PREFIX ""
1023 /* This is how to output an internal numbered label where
1024 PREFIX is the class of label and NUM is the number within the class. */
1026 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1027 do { \
1028 if (strcmp(PREFIX,"LC") == 0) { \
1029 label_pending = 1; \
1030 datalbl[++datalbl_ndx].name = (char *) xmalloc (9);\
1031 sprintf(datalbl[datalbl_ndx].name,"LC%d",NUM); \
1032 datalbl[datalbl_ndx].size = 0; \
1033 check_section(Konst); \
1034 fprintf(FILE,"K%s%d\n",PREFIX,NUM); \
1036 else if (find_jmplbl(NUM) < 0) { \
1037 jmplbl[++jmplbl_ndx].num = NUM; \
1038 jmplbl[jmplbl_ndx].pc = program_counter; \
1039 fprintf(FILE, "%s%d\n", PREFIX, NUM); \
1041 fflush(FILE); \
1042 } while (0)
1045 /* This is how to store into the string LABEL
1046 the symbol_ref name of an internal numbered label where
1047 PREFIX is the class of label and NUM is the number within the class.
1048 This is suitable for output with `assemble_name'. */
1050 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1051 sprintf (LABEL, "%s%d", PREFIX, NUM)
1053 /* Output at the end of a jump table.
1054 1750: To be uncommented when we can put jump tables in Konst.
1055 #define ASM_OUTPUT_CASE_END(FILE,NUM,INSN) \
1056 fprintf (FILE, "\tnormal\t; case_end\n")
1059 /* Currently, it is not possible to put jump tables in section Konst.
1060 This is because there is a one-to-one relation between sections Konst
1061 and Static (i.e., all Konst data are copied to Static, and the order
1062 of data is the same between the two sections.) However, jump tables are
1063 not copied to Static, which destroys the equivalence between Konst and
1064 Static. When a more intelligent Konst-to-Static copying mechanism is
1065 implemented (i.e. one that excludes the copying of jumptables), then
1066 ASM_OUTPUT_CASE_END shall be defined, and JUMP_LABELS_IN_TEXT_SECTION
1067 shall be undefined. */
1069 #define JUMP_TABLES_IN_TEXT_SECTION 1
1071 /* This is how to output an assembler line defining a string constant. */
1073 #define ASM_OUTPUT_ASCII(FILE, PTR, LEN) do { \
1074 int i; \
1075 if (label_pending) \
1076 label_pending = 0; \
1077 datalbl[datalbl_ndx].size += LEN; \
1078 for (i = 0; i < (int) LEN; i++) { \
1079 if ((i % 15) == 0) { \
1080 if (i != 0) \
1081 fprintf(FILE,"\n"); \
1082 fprintf(FILE,"\tdata\t"); \
1084 else \
1085 fprintf(FILE,","); \
1086 if (PTR[i] >= 32 && PTR[i] < 127) \
1087 fprintf(FILE,"'%c'",PTR[i]); \
1088 else \
1089 fprintf(FILE,"%d",PTR[i]); \
1091 fprintf(FILE,"\n"); \
1092 } while (0)
1094 /* This is how to output an insn to push a register on the stack.
1095 It need not be very fast code. */
1097 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1098 fprintf (FILE, "\tPSHM R%s,R%s\n", reg_names[REGNO], "FIXME: missing arg")
1100 /* This is how to output an insn to pop a register from the stack.
1101 It need not be very fast code. */
1103 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1104 fprintf (FILE, "\tPOPM R%s,R%s\n", reg_names[REGNO], "FIXME: missing arg")
1106 /* This is how to output an element of a case-vector that is absolute. */
1108 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1109 fprintf (FILE, "\tdata\tL%d ;addr_vec_elt\n", VALUE)
1111 /* This is how to output an element of a case-vector that is relative. */
1113 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1114 fprintf (FILE, "\tdata\tL%d-L%d ;addr_diff_elt\n", VALUE,REL)
1116 /* This is how to output an assembler line
1117 that says to advance the location counter
1118 to a multiple of 2**LOG bytes. */
1120 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1121 fprintf(FILE,"; in ASM_OUTPUT_ALIGN: pwr_of_2_bytcnt=%d\n",LOG)
1123 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1124 fprintf(FILE,"; in ASM_OUTPUT_SKIP: size=%d\n",SIZE)
1126 /* This says how to output an assembler line
1127 to define a global common symbol. */
1129 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) do { \
1130 check_section(Static); \
1131 fprintf (FILE, "\tcommon %s,%d\n", NAME, SIZE); \
1132 } while (0)
1134 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) do { \
1135 fprintf (FILE, "\tglobal %s\t; import\n", NAME); \
1136 } while (0)
1138 /* This says how to output an assembler line
1139 to define a local common symbol. */
1141 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) do { \
1142 check_section (Static); \
1143 fprintf(FILE,"%s \tblock %d\t; local common\n",NAME,SIZE); \
1144 } while (0)
1146 /* Store in OUTPUT a string (made with alloca) containing
1147 an assembler-name for a local static variable named NAME.
1148 LABELNO is an integer which is different for each call. */
1150 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1151 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1152 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1154 /* Print operand X (an rtx) in assembler syntax to file FILE.
1155 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1156 For `%' followed by punctuation, CODE is the punctuation and X is null.
1157 1750 note: there are three special CODE characters:
1158 'D', 'E': print a reference to a floating point constant (D=double,
1159 E=single precision) label name
1160 'F': print a label defining a floating-point constant value
1161 'J': print the absolute value of a negative INT_CONST
1162 (this is used in LISN/CISN/MISN/SISP and others)
1163 'Q': print a 1750 Base-Register-with-offset instruction's operands
1166 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
1167 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address(FILE,ADDR)
1169 /* Convert a REAL_VALUE_TYPE to the target 1750a float format. */
1170 #define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) \
1171 ((OUT) = real_value_to_target_single(IN))
1173 /* Convert a REAL_VALUE_TYPE to the target 1750a extended float format. */
1174 #define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) \
1175 real_value_to_target_double((IN), (OUT))