re PR fortran/48291 ([OOP] internal compiler error, new_symbol(): Symbol name too...
[official-gcc.git] / gcc / sel-sched-ir.c
blob61f3ffba40d3d9ccf77b78ca81020da0aea3efe3
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "timevar.h"
38 #include "tree-pass.h"
39 #include "sched-int.h"
40 #include "ggc.h"
41 #include "tree.h"
42 #include "vec.h"
43 #include "langhooks.h"
44 #include "rtlhooks-def.h"
45 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
47 #ifdef INSN_SCHEDULING
48 #include "sel-sched-ir.h"
49 /* We don't have to use it except for sel_print_insn. */
50 #include "sel-sched-dump.h"
52 /* A vector holding bb info for whole scheduling pass. */
53 VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
55 /* A vector holding bb info. */
56 VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
58 /* A pool for allocating all lists. */
59 alloc_pool sched_lists_pool;
61 /* This contains information about successors for compute_av_set. */
62 struct succs_info current_succs;
64 /* Data structure to describe interaction with the generic scheduler utils. */
65 static struct common_sched_info_def sel_common_sched_info;
67 /* The loop nest being pipelined. */
68 struct loop *current_loop_nest;
70 /* LOOP_NESTS is a vector containing the corresponding loop nest for
71 each region. */
72 static VEC(loop_p, heap) *loop_nests = NULL;
74 /* Saves blocks already in loop regions, indexed by bb->index. */
75 static sbitmap bbs_in_loop_rgns = NULL;
77 /* CFG hooks that are saved before changing create_basic_block hook. */
78 static struct cfg_hooks orig_cfg_hooks;
81 /* Array containing reverse topological index of function basic blocks,
82 indexed by BB->INDEX. */
83 static int *rev_top_order_index = NULL;
85 /* Length of the above array. */
86 static int rev_top_order_index_len = -1;
88 /* A regset pool structure. */
89 static struct
91 /* The stack to which regsets are returned. */
92 regset *v;
94 /* Its pointer. */
95 int n;
97 /* Its size. */
98 int s;
100 /* In VV we save all generated regsets so that, when destructing the
101 pool, we can compare it with V and check that every regset was returned
102 back to pool. */
103 regset *vv;
105 /* The pointer of VV stack. */
106 int nn;
108 /* Its size. */
109 int ss;
111 /* The difference between allocated and returned regsets. */
112 int diff;
113 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
115 /* This represents the nop pool. */
116 static struct
118 /* The vector which holds previously emitted nops. */
119 insn_t *v;
121 /* Its pointer. */
122 int n;
124 /* Its size. */
125 int s;
126 } nop_pool = { NULL, 0, 0 };
128 /* The pool for basic block notes. */
129 static rtx_vec_t bb_note_pool;
131 /* A NOP pattern used to emit placeholder insns. */
132 rtx nop_pattern = NULL_RTX;
133 /* A special instruction that resides in EXIT_BLOCK.
134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
135 rtx exit_insn = NULL_RTX;
137 /* TRUE if while scheduling current region, which is loop, its preheader
138 was removed. */
139 bool preheader_removed = false;
142 /* Forward static declarations. */
143 static void fence_clear (fence_t);
145 static void deps_init_id (idata_t, insn_t, bool);
146 static void init_id_from_df (idata_t, insn_t, bool);
147 static expr_t set_insn_init (expr_t, vinsn_t, int);
149 static void cfg_preds (basic_block, insn_t **, int *);
150 static void prepare_insn_expr (insn_t, int);
151 static void free_history_vect (VEC (expr_history_def, heap) **);
153 static void move_bb_info (basic_block, basic_block);
154 static void remove_empty_bb (basic_block, bool);
155 static void sel_merge_blocks (basic_block, basic_block);
156 static void sel_remove_loop_preheader (void);
157 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
159 static bool insn_is_the_only_one_in_bb_p (insn_t);
160 static void create_initial_data_sets (basic_block);
162 static void free_av_set (basic_block);
163 static void invalidate_av_set (basic_block);
164 static void extend_insn_data (void);
165 static void sel_init_new_insn (insn_t, int);
166 static void finish_insns (void);
168 /* Various list functions. */
170 /* Copy an instruction list L. */
171 ilist_t
172 ilist_copy (ilist_t l)
174 ilist_t head = NULL, *tailp = &head;
176 while (l)
178 ilist_add (tailp, ILIST_INSN (l));
179 tailp = &ILIST_NEXT (*tailp);
180 l = ILIST_NEXT (l);
183 return head;
186 /* Invert an instruction list L. */
187 ilist_t
188 ilist_invert (ilist_t l)
190 ilist_t res = NULL;
192 while (l)
194 ilist_add (&res, ILIST_INSN (l));
195 l = ILIST_NEXT (l);
198 return res;
201 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
202 void
203 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
205 bnd_t bnd;
207 _list_add (lp);
208 bnd = BLIST_BND (*lp);
210 BND_TO (bnd) = to;
211 BND_PTR (bnd) = ptr;
212 BND_AV (bnd) = NULL;
213 BND_AV1 (bnd) = NULL;
214 BND_DC (bnd) = dc;
217 /* Remove the list note pointed to by LP. */
218 void
219 blist_remove (blist_t *lp)
221 bnd_t b = BLIST_BND (*lp);
223 av_set_clear (&BND_AV (b));
224 av_set_clear (&BND_AV1 (b));
225 ilist_clear (&BND_PTR (b));
227 _list_remove (lp);
230 /* Init a fence tail L. */
231 void
232 flist_tail_init (flist_tail_t l)
234 FLIST_TAIL_HEAD (l) = NULL;
235 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
238 /* Try to find fence corresponding to INSN in L. */
239 fence_t
240 flist_lookup (flist_t l, insn_t insn)
242 while (l)
244 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
245 return FLIST_FENCE (l);
247 l = FLIST_NEXT (l);
250 return NULL;
253 /* Init the fields of F before running fill_insns. */
254 static void
255 init_fence_for_scheduling (fence_t f)
257 FENCE_BNDS (f) = NULL;
258 FENCE_PROCESSED_P (f) = false;
259 FENCE_SCHEDULED_P (f) = false;
262 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
263 static void
264 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
265 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
266 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
267 int cycle, int cycle_issued_insns, int issue_more,
268 bool starts_cycle_p, bool after_stall_p)
270 fence_t f;
272 _list_add (lp);
273 f = FLIST_FENCE (*lp);
275 FENCE_INSN (f) = insn;
277 gcc_assert (state != NULL);
278 FENCE_STATE (f) = state;
280 FENCE_CYCLE (f) = cycle;
281 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
282 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
283 FENCE_AFTER_STALL_P (f) = after_stall_p;
285 gcc_assert (dc != NULL);
286 FENCE_DC (f) = dc;
288 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
289 FENCE_TC (f) = tc;
291 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
292 FENCE_ISSUE_MORE (f) = issue_more;
293 FENCE_EXECUTING_INSNS (f) = executing_insns;
294 FENCE_READY_TICKS (f) = ready_ticks;
295 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
296 FENCE_SCHED_NEXT (f) = sched_next;
298 init_fence_for_scheduling (f);
301 /* Remove the head node of the list pointed to by LP. */
302 static void
303 flist_remove (flist_t *lp)
305 if (FENCE_INSN (FLIST_FENCE (*lp)))
306 fence_clear (FLIST_FENCE (*lp));
307 _list_remove (lp);
310 /* Clear the fence list pointed to by LP. */
311 void
312 flist_clear (flist_t *lp)
314 while (*lp)
315 flist_remove (lp);
318 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
319 void
320 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
322 def_t d;
324 _list_add (dl);
325 d = DEF_LIST_DEF (*dl);
327 d->orig_insn = original_insn;
328 d->crosses_call = crosses_call;
332 /* Functions to work with target contexts. */
334 /* Bulk target context. It is convenient for debugging purposes to ensure
335 that there are no uninitialized (null) target contexts. */
336 static tc_t bulk_tc = (tc_t) 1;
338 /* Target hooks wrappers. In the future we can provide some default
339 implementations for them. */
341 /* Allocate a store for the target context. */
342 static tc_t
343 alloc_target_context (void)
345 return (targetm.sched.alloc_sched_context
346 ? targetm.sched.alloc_sched_context () : bulk_tc);
349 /* Init target context TC.
350 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
351 Overwise, copy current backend context to TC. */
352 static void
353 init_target_context (tc_t tc, bool clean_p)
355 if (targetm.sched.init_sched_context)
356 targetm.sched.init_sched_context (tc, clean_p);
359 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
360 int init_target_context (). */
361 tc_t
362 create_target_context (bool clean_p)
364 tc_t tc = alloc_target_context ();
366 init_target_context (tc, clean_p);
367 return tc;
370 /* Copy TC to the current backend context. */
371 void
372 set_target_context (tc_t tc)
374 if (targetm.sched.set_sched_context)
375 targetm.sched.set_sched_context (tc);
378 /* TC is about to be destroyed. Free any internal data. */
379 static void
380 clear_target_context (tc_t tc)
382 if (targetm.sched.clear_sched_context)
383 targetm.sched.clear_sched_context (tc);
386 /* Clear and free it. */
387 static void
388 delete_target_context (tc_t tc)
390 clear_target_context (tc);
392 if (targetm.sched.free_sched_context)
393 targetm.sched.free_sched_context (tc);
396 /* Make a copy of FROM in TO.
397 NB: May be this should be a hook. */
398 static void
399 copy_target_context (tc_t to, tc_t from)
401 tc_t tmp = create_target_context (false);
403 set_target_context (from);
404 init_target_context (to, false);
406 set_target_context (tmp);
407 delete_target_context (tmp);
410 /* Create a copy of TC. */
411 static tc_t
412 create_copy_of_target_context (tc_t tc)
414 tc_t copy = alloc_target_context ();
416 copy_target_context (copy, tc);
418 return copy;
421 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
422 is the same as in init_target_context (). */
423 void
424 reset_target_context (tc_t tc, bool clean_p)
426 clear_target_context (tc);
427 init_target_context (tc, clean_p);
430 /* Functions to work with dependence contexts.
431 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
432 context. It accumulates information about processed insns to decide if
433 current insn is dependent on the processed ones. */
435 /* Make a copy of FROM in TO. */
436 static void
437 copy_deps_context (deps_t to, deps_t from)
439 init_deps (to, false);
440 deps_join (to, from);
443 /* Allocate store for dep context. */
444 static deps_t
445 alloc_deps_context (void)
447 return XNEW (struct deps_desc);
450 /* Allocate and initialize dep context. */
451 static deps_t
452 create_deps_context (void)
454 deps_t dc = alloc_deps_context ();
456 init_deps (dc, false);
457 return dc;
460 /* Create a copy of FROM. */
461 static deps_t
462 create_copy_of_deps_context (deps_t from)
464 deps_t to = alloc_deps_context ();
466 copy_deps_context (to, from);
467 return to;
470 /* Clean up internal data of DC. */
471 static void
472 clear_deps_context (deps_t dc)
474 free_deps (dc);
477 /* Clear and free DC. */
478 static void
479 delete_deps_context (deps_t dc)
481 clear_deps_context (dc);
482 free (dc);
485 /* Clear and init DC. */
486 static void
487 reset_deps_context (deps_t dc)
489 clear_deps_context (dc);
490 init_deps (dc, false);
493 /* This structure describes the dependence analysis hooks for advancing
494 dependence context. */
495 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
497 NULL,
499 NULL, /* start_insn */
500 NULL, /* finish_insn */
501 NULL, /* start_lhs */
502 NULL, /* finish_lhs */
503 NULL, /* start_rhs */
504 NULL, /* finish_rhs */
505 haifa_note_reg_set,
506 haifa_note_reg_clobber,
507 haifa_note_reg_use,
508 NULL, /* note_mem_dep */
509 NULL, /* note_dep */
511 0, 0, 0
514 /* Process INSN and add its impact on DC. */
515 void
516 advance_deps_context (deps_t dc, insn_t insn)
518 sched_deps_info = &advance_deps_context_sched_deps_info;
519 deps_analyze_insn (dc, insn);
523 /* Functions to work with DFA states. */
525 /* Allocate store for a DFA state. */
526 static state_t
527 state_alloc (void)
529 return xmalloc (dfa_state_size);
532 /* Allocate and initialize DFA state. */
533 static state_t
534 state_create (void)
536 state_t state = state_alloc ();
538 state_reset (state);
539 advance_state (state);
540 return state;
543 /* Free DFA state. */
544 static void
545 state_free (state_t state)
547 free (state);
550 /* Make a copy of FROM in TO. */
551 static void
552 state_copy (state_t to, state_t from)
554 memcpy (to, from, dfa_state_size);
557 /* Create a copy of FROM. */
558 static state_t
559 state_create_copy (state_t from)
561 state_t to = state_alloc ();
563 state_copy (to, from);
564 return to;
568 /* Functions to work with fences. */
570 /* Clear the fence. */
571 static void
572 fence_clear (fence_t f)
574 state_t s = FENCE_STATE (f);
575 deps_t dc = FENCE_DC (f);
576 void *tc = FENCE_TC (f);
578 ilist_clear (&FENCE_BNDS (f));
580 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
581 || (s == NULL && dc == NULL && tc == NULL));
583 if (s != NULL)
584 free (s);
586 if (dc != NULL)
587 delete_deps_context (dc);
589 if (tc != NULL)
590 delete_target_context (tc);
591 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
592 free (FENCE_READY_TICKS (f));
593 FENCE_READY_TICKS (f) = NULL;
596 /* Init a list of fences with successors of OLD_FENCE. */
597 void
598 init_fences (insn_t old_fence)
600 insn_t succ;
601 succ_iterator si;
602 bool first = true;
603 int ready_ticks_size = get_max_uid () + 1;
605 FOR_EACH_SUCC_1 (succ, si, old_fence,
606 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
609 if (first)
610 first = false;
611 else
612 gcc_assert (flag_sel_sched_pipelining_outer_loops);
614 flist_add (&fences, succ,
615 state_create (),
616 create_deps_context () /* dc */,
617 create_target_context (true) /* tc */,
618 NULL_RTX /* last_scheduled_insn */,
619 NULL, /* executing_insns */
620 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
621 ready_ticks_size,
622 NULL_RTX /* sched_next */,
623 1 /* cycle */, 0 /* cycle_issued_insns */,
624 issue_rate, /* issue_more */
625 1 /* starts_cycle_p */, 0 /* after_stall_p */);
629 /* Merges two fences (filling fields of fence F with resulting values) by
630 following rules: 1) state, target context and last scheduled insn are
631 propagated from fallthrough edge if it is available;
632 2) deps context and cycle is propagated from more probable edge;
633 3) all other fields are set to corresponding constant values.
635 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
636 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
637 and AFTER_STALL_P are the corresponding fields of the second fence. */
638 static void
639 merge_fences (fence_t f, insn_t insn,
640 state_t state, deps_t dc, void *tc,
641 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
642 int *ready_ticks, int ready_ticks_size,
643 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
645 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
647 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
648 && !sched_next && !FENCE_SCHED_NEXT (f));
650 /* Check if we can decide which path fences came.
651 If we can't (or don't want to) - reset all. */
652 if (last_scheduled_insn == NULL
653 || last_scheduled_insn_old == NULL
654 /* This is a case when INSN is reachable on several paths from
655 one insn (this can happen when pipelining of outer loops is on and
656 there are two edges: one going around of inner loop and the other -
657 right through it; in such case just reset everything). */
658 || last_scheduled_insn == last_scheduled_insn_old)
660 state_reset (FENCE_STATE (f));
661 state_free (state);
663 reset_deps_context (FENCE_DC (f));
664 delete_deps_context (dc);
666 reset_target_context (FENCE_TC (f), true);
667 delete_target_context (tc);
669 if (cycle > FENCE_CYCLE (f))
670 FENCE_CYCLE (f) = cycle;
672 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
673 FENCE_ISSUE_MORE (f) = issue_rate;
674 VEC_free (rtx, gc, executing_insns);
675 free (ready_ticks);
676 if (FENCE_EXECUTING_INSNS (f))
677 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
678 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
679 if (FENCE_READY_TICKS (f))
680 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
682 else
684 edge edge_old = NULL, edge_new = NULL;
685 edge candidate;
686 succ_iterator si;
687 insn_t succ;
689 /* Find fallthrough edge. */
690 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
691 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
693 if (!candidate
694 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
695 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
697 /* No fallthrough edge leading to basic block of INSN. */
698 state_reset (FENCE_STATE (f));
699 state_free (state);
701 reset_target_context (FENCE_TC (f), true);
702 delete_target_context (tc);
704 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
705 FENCE_ISSUE_MORE (f) = issue_rate;
707 else
708 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
710 /* Would be weird if same insn is successor of several fallthrough
711 edges. */
712 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
713 != BLOCK_FOR_INSN (last_scheduled_insn_old));
715 state_free (FENCE_STATE (f));
716 FENCE_STATE (f) = state;
718 delete_target_context (FENCE_TC (f));
719 FENCE_TC (f) = tc;
721 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
722 FENCE_ISSUE_MORE (f) = issue_more;
724 else
726 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
727 state_free (state);
728 delete_target_context (tc);
730 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
731 != BLOCK_FOR_INSN (last_scheduled_insn));
734 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
735 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
736 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
738 if (succ == insn)
740 /* No same successor allowed from several edges. */
741 gcc_assert (!edge_old);
742 edge_old = si.e1;
745 /* Find edge of second predecessor (last_scheduled_insn->insn). */
746 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
747 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
749 if (succ == insn)
751 /* No same successor allowed from several edges. */
752 gcc_assert (!edge_new);
753 edge_new = si.e1;
757 /* Check if we can choose most probable predecessor. */
758 if (edge_old == NULL || edge_new == NULL)
760 reset_deps_context (FENCE_DC (f));
761 delete_deps_context (dc);
762 VEC_free (rtx, gc, executing_insns);
763 free (ready_ticks);
765 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
766 if (FENCE_EXECUTING_INSNS (f))
767 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
768 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
769 if (FENCE_READY_TICKS (f))
770 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
772 else
773 if (edge_new->probability > edge_old->probability)
775 delete_deps_context (FENCE_DC (f));
776 FENCE_DC (f) = dc;
777 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
778 FENCE_EXECUTING_INSNS (f) = executing_insns;
779 free (FENCE_READY_TICKS (f));
780 FENCE_READY_TICKS (f) = ready_ticks;
781 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
782 FENCE_CYCLE (f) = cycle;
784 else
786 /* Leave DC and CYCLE untouched. */
787 delete_deps_context (dc);
788 VEC_free (rtx, gc, executing_insns);
789 free (ready_ticks);
793 /* Fill remaining invariant fields. */
794 if (after_stall_p)
795 FENCE_AFTER_STALL_P (f) = 1;
797 FENCE_ISSUED_INSNS (f) = 0;
798 FENCE_STARTS_CYCLE_P (f) = 1;
799 FENCE_SCHED_NEXT (f) = NULL;
802 /* Add a new fence to NEW_FENCES list, initializing it from all
803 other parameters. */
804 static void
805 add_to_fences (flist_tail_t new_fences, insn_t insn,
806 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
807 VEC(rtx, gc) *executing_insns, int *ready_ticks,
808 int ready_ticks_size, rtx sched_next, int cycle,
809 int cycle_issued_insns, int issue_rate,
810 bool starts_cycle_p, bool after_stall_p)
812 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
814 if (! f)
816 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
817 last_scheduled_insn, executing_insns, ready_ticks,
818 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
819 issue_rate, starts_cycle_p, after_stall_p);
821 FLIST_TAIL_TAILP (new_fences)
822 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
824 else
826 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
827 executing_insns, ready_ticks, ready_ticks_size,
828 sched_next, cycle, issue_rate, after_stall_p);
832 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
833 void
834 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
836 fence_t f, old;
837 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
839 old = FLIST_FENCE (old_fences);
840 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
841 FENCE_INSN (FLIST_FENCE (old_fences)));
842 if (f)
844 merge_fences (f, old->insn, old->state, old->dc, old->tc,
845 old->last_scheduled_insn, old->executing_insns,
846 old->ready_ticks, old->ready_ticks_size,
847 old->sched_next, old->cycle, old->issue_more,
848 old->after_stall_p);
850 else
852 _list_add (tailp);
853 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
854 *FLIST_FENCE (*tailp) = *old;
855 init_fence_for_scheduling (FLIST_FENCE (*tailp));
857 FENCE_INSN (old) = NULL;
860 /* Add a new fence to NEW_FENCES list and initialize most of its data
861 as a clean one. */
862 void
863 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
865 int ready_ticks_size = get_max_uid () + 1;
867 add_to_fences (new_fences,
868 succ, state_create (), create_deps_context (),
869 create_target_context (true),
870 NULL_RTX, NULL,
871 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
872 NULL_RTX, FENCE_CYCLE (fence) + 1,
873 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
876 /* Add a new fence to NEW_FENCES list and initialize all of its data
877 from FENCE and SUCC. */
878 void
879 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
881 int * new_ready_ticks
882 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
884 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
885 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
886 add_to_fences (new_fences,
887 succ, state_create_copy (FENCE_STATE (fence)),
888 create_copy_of_deps_context (FENCE_DC (fence)),
889 create_copy_of_target_context (FENCE_TC (fence)),
890 FENCE_LAST_SCHEDULED_INSN (fence),
891 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
892 new_ready_ticks,
893 FENCE_READY_TICKS_SIZE (fence),
894 FENCE_SCHED_NEXT (fence),
895 FENCE_CYCLE (fence),
896 FENCE_ISSUED_INSNS (fence),
897 FENCE_ISSUE_MORE (fence),
898 FENCE_STARTS_CYCLE_P (fence),
899 FENCE_AFTER_STALL_P (fence));
903 /* Functions to work with regset and nop pools. */
905 /* Returns the new regset from pool. It might have some of the bits set
906 from the previous usage. */
907 regset
908 get_regset_from_pool (void)
910 regset rs;
912 if (regset_pool.n != 0)
913 rs = regset_pool.v[--regset_pool.n];
914 else
915 /* We need to create the regset. */
917 rs = ALLOC_REG_SET (&reg_obstack);
919 if (regset_pool.nn == regset_pool.ss)
920 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
921 (regset_pool.ss = 2 * regset_pool.ss + 1));
922 regset_pool.vv[regset_pool.nn++] = rs;
925 regset_pool.diff++;
927 return rs;
930 /* Same as above, but returns the empty regset. */
931 regset
932 get_clear_regset_from_pool (void)
934 regset rs = get_regset_from_pool ();
936 CLEAR_REG_SET (rs);
937 return rs;
940 /* Return regset RS to the pool for future use. */
941 void
942 return_regset_to_pool (regset rs)
944 gcc_assert (rs);
945 regset_pool.diff--;
947 if (regset_pool.n == regset_pool.s)
948 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
949 (regset_pool.s = 2 * regset_pool.s + 1));
950 regset_pool.v[regset_pool.n++] = rs;
953 #ifdef ENABLE_CHECKING
954 /* This is used as a qsort callback for sorting regset pool stacks.
955 X and XX are addresses of two regsets. They are never equal. */
956 static int
957 cmp_v_in_regset_pool (const void *x, const void *xx)
959 return *((const regset *) x) - *((const regset *) xx);
961 #endif
963 /* Free the regset pool possibly checking for memory leaks. */
964 void
965 free_regset_pool (void)
967 #ifdef ENABLE_CHECKING
969 regset *v = regset_pool.v;
970 int i = 0;
971 int n = regset_pool.n;
973 regset *vv = regset_pool.vv;
974 int ii = 0;
975 int nn = regset_pool.nn;
977 int diff = 0;
979 gcc_assert (n <= nn);
981 /* Sort both vectors so it will be possible to compare them. */
982 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
983 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
985 while (ii < nn)
987 if (v[i] == vv[ii])
988 i++;
989 else
990 /* VV[II] was lost. */
991 diff++;
993 ii++;
996 gcc_assert (diff == regset_pool.diff);
998 #endif
1000 /* If not true - we have a memory leak. */
1001 gcc_assert (regset_pool.diff == 0);
1003 while (regset_pool.n)
1005 --regset_pool.n;
1006 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1009 free (regset_pool.v);
1010 regset_pool.v = NULL;
1011 regset_pool.s = 0;
1013 free (regset_pool.vv);
1014 regset_pool.vv = NULL;
1015 regset_pool.nn = 0;
1016 regset_pool.ss = 0;
1018 regset_pool.diff = 0;
1022 /* Functions to work with nop pools. NOP insns are used as temporary
1023 placeholders of the insns being scheduled to allow correct update of
1024 the data sets. When update is finished, NOPs are deleted. */
1026 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1027 nops sel-sched generates. */
1028 static vinsn_t nop_vinsn = NULL;
1030 /* Emit a nop before INSN, taking it from pool. */
1031 insn_t
1032 get_nop_from_pool (insn_t insn)
1034 insn_t nop;
1035 bool old_p = nop_pool.n != 0;
1036 int flags;
1038 if (old_p)
1039 nop = nop_pool.v[--nop_pool.n];
1040 else
1041 nop = nop_pattern;
1043 nop = emit_insn_before (nop, insn);
1045 if (old_p)
1046 flags = INSN_INIT_TODO_SSID;
1047 else
1048 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1050 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1051 sel_init_new_insn (nop, flags);
1053 return nop;
1056 /* Remove NOP from the instruction stream and return it to the pool. */
1057 void
1058 return_nop_to_pool (insn_t nop, bool full_tidying)
1060 gcc_assert (INSN_IN_STREAM_P (nop));
1061 sel_remove_insn (nop, false, full_tidying);
1063 if (nop_pool.n == nop_pool.s)
1064 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1065 (nop_pool.s = 2 * nop_pool.s + 1));
1066 nop_pool.v[nop_pool.n++] = nop;
1069 /* Free the nop pool. */
1070 void
1071 free_nop_pool (void)
1073 nop_pool.n = 0;
1074 nop_pool.s = 0;
1075 free (nop_pool.v);
1076 nop_pool.v = NULL;
1080 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1081 The callback is given two rtxes XX and YY and writes the new rtxes
1082 to NX and NY in case some needs to be skipped. */
1083 static int
1084 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1086 const_rtx x = *xx;
1087 const_rtx y = *yy;
1089 if (GET_CODE (x) == UNSPEC
1090 && (targetm.sched.skip_rtx_p == NULL
1091 || targetm.sched.skip_rtx_p (x)))
1093 *nx = XVECEXP (x, 0, 0);
1094 *ny = CONST_CAST_RTX (y);
1095 return 1;
1098 if (GET_CODE (y) == UNSPEC
1099 && (targetm.sched.skip_rtx_p == NULL
1100 || targetm.sched.skip_rtx_p (y)))
1102 *nx = CONST_CAST_RTX (x);
1103 *ny = XVECEXP (y, 0, 0);
1104 return 1;
1107 return 0;
1110 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1111 to support ia64 speculation. When changes are needed, new rtx X and new mode
1112 NMODE are written, and the callback returns true. */
1113 static int
1114 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1115 rtx *nx, enum machine_mode* nmode)
1117 if (GET_CODE (x) == UNSPEC
1118 && targetm.sched.skip_rtx_p
1119 && targetm.sched.skip_rtx_p (x))
1121 *nx = XVECEXP (x, 0 ,0);
1122 *nmode = VOIDmode;
1123 return 1;
1126 return 0;
1129 /* Returns LHS and RHS are ok to be scheduled separately. */
1130 static bool
1131 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1133 if (lhs == NULL || rhs == NULL)
1134 return false;
1136 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1137 to use reg, if const can be used. Moreover, scheduling const as rhs may
1138 lead to mode mismatch cause consts don't have modes but they could be
1139 merged from branches where the same const used in different modes. */
1140 if (CONSTANT_P (rhs))
1141 return false;
1143 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1144 if (COMPARISON_P (rhs))
1145 return false;
1147 /* Do not allow single REG to be an rhs. */
1148 if (REG_P (rhs))
1149 return false;
1151 /* See comment at find_used_regs_1 (*1) for explanation of this
1152 restriction. */
1153 /* FIXME: remove this later. */
1154 if (MEM_P (lhs))
1155 return false;
1157 /* This will filter all tricky things like ZERO_EXTRACT etc.
1158 For now we don't handle it. */
1159 if (!REG_P (lhs) && !MEM_P (lhs))
1160 return false;
1162 return true;
1165 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1166 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1167 used e.g. for insns from recovery blocks. */
1168 static void
1169 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1171 hash_rtx_callback_function hrcf;
1172 int insn_class;
1174 VINSN_INSN_RTX (vi) = insn;
1175 VINSN_COUNT (vi) = 0;
1176 vi->cost = -1;
1178 if (INSN_NOP_P (insn))
1179 return;
1181 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1182 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1183 else
1184 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1186 /* Hash vinsn depending on whether it is separable or not. */
1187 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1188 if (VINSN_SEPARABLE_P (vi))
1190 rtx rhs = VINSN_RHS (vi);
1192 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1193 NULL, NULL, false, hrcf);
1194 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1195 VOIDmode, NULL, NULL,
1196 false, hrcf);
1198 else
1200 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1201 NULL, NULL, false, hrcf);
1202 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1205 insn_class = haifa_classify_insn (insn);
1206 if (insn_class >= 2
1207 && (!targetm.sched.get_insn_spec_ds
1208 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1209 == 0)))
1210 VINSN_MAY_TRAP_P (vi) = true;
1211 else
1212 VINSN_MAY_TRAP_P (vi) = false;
1215 /* Indicate that VI has become the part of an rtx object. */
1216 void
1217 vinsn_attach (vinsn_t vi)
1219 /* Assert that VI is not pending for deletion. */
1220 gcc_assert (VINSN_INSN_RTX (vi));
1222 VINSN_COUNT (vi)++;
1225 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1226 VINSN_TYPE (VI). */
1227 static vinsn_t
1228 vinsn_create (insn_t insn, bool force_unique_p)
1230 vinsn_t vi = XCNEW (struct vinsn_def);
1232 vinsn_init (vi, insn, force_unique_p);
1233 return vi;
1236 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1237 the copy. */
1238 vinsn_t
1239 vinsn_copy (vinsn_t vi, bool reattach_p)
1241 rtx copy;
1242 bool unique = VINSN_UNIQUE_P (vi);
1243 vinsn_t new_vi;
1245 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1246 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1247 if (reattach_p)
1249 vinsn_detach (vi);
1250 vinsn_attach (new_vi);
1253 return new_vi;
1256 /* Delete the VI vinsn and free its data. */
1257 static void
1258 vinsn_delete (vinsn_t vi)
1260 gcc_assert (VINSN_COUNT (vi) == 0);
1262 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1264 return_regset_to_pool (VINSN_REG_SETS (vi));
1265 return_regset_to_pool (VINSN_REG_USES (vi));
1266 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1269 free (vi);
1272 /* Indicate that VI is no longer a part of some rtx object.
1273 Remove VI if it is no longer needed. */
1274 void
1275 vinsn_detach (vinsn_t vi)
1277 gcc_assert (VINSN_COUNT (vi) > 0);
1279 if (--VINSN_COUNT (vi) == 0)
1280 vinsn_delete (vi);
1283 /* Returns TRUE if VI is a branch. */
1284 bool
1285 vinsn_cond_branch_p (vinsn_t vi)
1287 insn_t insn;
1289 if (!VINSN_UNIQUE_P (vi))
1290 return false;
1292 insn = VINSN_INSN_RTX (vi);
1293 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1294 return false;
1296 return control_flow_insn_p (insn);
1299 /* Return latency of INSN. */
1300 static int
1301 sel_insn_rtx_cost (rtx insn)
1303 int cost;
1305 /* A USE insn, or something else we don't need to
1306 understand. We can't pass these directly to
1307 result_ready_cost or insn_default_latency because it will
1308 trigger a fatal error for unrecognizable insns. */
1309 if (recog_memoized (insn) < 0)
1310 cost = 0;
1311 else
1313 cost = insn_default_latency (insn);
1315 if (cost < 0)
1316 cost = 0;
1319 return cost;
1322 /* Return the cost of the VI.
1323 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1325 sel_vinsn_cost (vinsn_t vi)
1327 int cost = vi->cost;
1329 if (cost < 0)
1331 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1332 vi->cost = cost;
1335 return cost;
1339 /* Functions for insn emitting. */
1341 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1342 EXPR and SEQNO. */
1343 insn_t
1344 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1346 insn_t new_insn;
1348 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1350 new_insn = emit_insn_after (pattern, after);
1351 set_insn_init (expr, NULL, seqno);
1352 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1354 return new_insn;
1357 /* Force newly generated vinsns to be unique. */
1358 static bool init_insn_force_unique_p = false;
1360 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1361 initialize its data from EXPR and SEQNO. */
1362 insn_t
1363 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1364 insn_t after)
1366 insn_t insn;
1368 gcc_assert (!init_insn_force_unique_p);
1370 init_insn_force_unique_p = true;
1371 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1372 CANT_MOVE (insn) = 1;
1373 init_insn_force_unique_p = false;
1375 return insn;
1378 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1379 take it as a new vinsn instead of EXPR's vinsn.
1380 We simplify insns later, after scheduling region in
1381 simplify_changed_insns. */
1382 insn_t
1383 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1384 insn_t after)
1386 expr_t emit_expr;
1387 insn_t insn;
1388 int flags;
1390 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1391 seqno);
1392 insn = EXPR_INSN_RTX (emit_expr);
1393 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1395 flags = INSN_INIT_TODO_SSID;
1396 if (INSN_LUID (insn) == 0)
1397 flags |= INSN_INIT_TODO_LUID;
1398 sel_init_new_insn (insn, flags);
1400 return insn;
1403 /* Move insn from EXPR after AFTER. */
1404 insn_t
1405 sel_move_insn (expr_t expr, int seqno, insn_t after)
1407 insn_t insn = EXPR_INSN_RTX (expr);
1408 basic_block bb = BLOCK_FOR_INSN (after);
1409 insn_t next = NEXT_INSN (after);
1411 /* Assert that in move_op we disconnected this insn properly. */
1412 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1413 PREV_INSN (insn) = after;
1414 NEXT_INSN (insn) = next;
1416 NEXT_INSN (after) = insn;
1417 PREV_INSN (next) = insn;
1419 /* Update links from insn to bb and vice versa. */
1420 df_insn_change_bb (insn, bb);
1421 if (BB_END (bb) == after)
1422 BB_END (bb) = insn;
1424 prepare_insn_expr (insn, seqno);
1425 return insn;
1429 /* Functions to work with right-hand sides. */
1431 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1432 VECT and return true when found. Use NEW_VINSN for comparison only when
1433 COMPARE_VINSNS is true. Write to INDP the index on which
1434 the search has stopped, such that inserting the new element at INDP will
1435 retain VECT's sort order. */
1436 static bool
1437 find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1438 unsigned uid, vinsn_t new_vinsn,
1439 bool compare_vinsns, int *indp)
1441 expr_history_def *arr;
1442 int i, j, len = VEC_length (expr_history_def, vect);
1444 if (len == 0)
1446 *indp = 0;
1447 return false;
1450 arr = VEC_address (expr_history_def, vect);
1451 i = 0, j = len - 1;
1453 while (i <= j)
1455 unsigned auid = arr[i].uid;
1456 vinsn_t avinsn = arr[i].new_expr_vinsn;
1458 if (auid == uid
1459 /* When undoing transformation on a bookkeeping copy, the new vinsn
1460 may not be exactly equal to the one that is saved in the vector.
1461 This is because the insn whose copy we're checking was possibly
1462 substituted itself. */
1463 && (! compare_vinsns
1464 || vinsn_equal_p (avinsn, new_vinsn)))
1466 *indp = i;
1467 return true;
1469 else if (auid > uid)
1470 break;
1471 i++;
1474 *indp = i;
1475 return false;
1478 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1479 the position found or -1, if no such value is in vector.
1480 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1482 find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
1483 vinsn_t new_vinsn, bool originators_p)
1485 int ind;
1487 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1488 false, &ind))
1489 return ind;
1491 if (INSN_ORIGINATORS (insn) && originators_p)
1493 unsigned uid;
1494 bitmap_iterator bi;
1496 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1497 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1498 return ind;
1501 return -1;
1504 /* Insert new element in a sorted history vector pointed to by PVECT,
1505 if it is not there already. The element is searched using
1506 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1507 the history of a transformation. */
1508 void
1509 insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1510 unsigned uid, enum local_trans_type type,
1511 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1512 ds_t spec_ds)
1514 VEC(expr_history_def, heap) *vect = *pvect;
1515 expr_history_def temp;
1516 bool res;
1517 int ind;
1519 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1521 if (res)
1523 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1525 /* It is possible that speculation types of expressions that were
1526 propagated through different paths will be different here. In this
1527 case, merge the status to get the correct check later. */
1528 if (phist->spec_ds != spec_ds)
1529 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1530 return;
1533 temp.uid = uid;
1534 temp.old_expr_vinsn = old_expr_vinsn;
1535 temp.new_expr_vinsn = new_expr_vinsn;
1536 temp.spec_ds = spec_ds;
1537 temp.type = type;
1539 vinsn_attach (old_expr_vinsn);
1540 vinsn_attach (new_expr_vinsn);
1541 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1542 *pvect = vect;
1545 /* Free history vector PVECT. */
1546 static void
1547 free_history_vect (VEC (expr_history_def, heap) **pvect)
1549 unsigned i;
1550 expr_history_def *phist;
1552 if (! *pvect)
1553 return;
1555 for (i = 0;
1556 VEC_iterate (expr_history_def, *pvect, i, phist);
1557 i++)
1559 vinsn_detach (phist->old_expr_vinsn);
1560 vinsn_detach (phist->new_expr_vinsn);
1563 VEC_free (expr_history_def, heap, *pvect);
1564 *pvect = NULL;
1567 /* Merge vector FROM to PVECT. */
1568 static void
1569 merge_history_vect (VEC (expr_history_def, heap) **pvect,
1570 VEC (expr_history_def, heap) *from)
1572 expr_history_def *phist;
1573 int i;
1575 /* We keep this vector sorted. */
1576 for (i = 0; VEC_iterate (expr_history_def, from, i, phist); i++)
1577 insert_in_history_vect (pvect, phist->uid, phist->type,
1578 phist->old_expr_vinsn, phist->new_expr_vinsn,
1579 phist->spec_ds);
1582 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1583 bool
1584 vinsn_equal_p (vinsn_t x, vinsn_t y)
1586 rtx_equal_p_callback_function repcf;
1588 if (x == y)
1589 return true;
1591 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1592 return false;
1594 if (VINSN_HASH (x) != VINSN_HASH (y))
1595 return false;
1597 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1598 if (VINSN_SEPARABLE_P (x))
1600 /* Compare RHSes of VINSNs. */
1601 gcc_assert (VINSN_RHS (x));
1602 gcc_assert (VINSN_RHS (y));
1604 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1607 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1611 /* Functions for working with expressions. */
1613 /* Initialize EXPR. */
1614 static void
1615 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1616 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1617 ds_t spec_to_check_ds, int orig_sched_cycle,
1618 VEC(expr_history_def, heap) *history, signed char target_available,
1619 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1620 bool cant_move)
1622 vinsn_attach (vi);
1624 EXPR_VINSN (expr) = vi;
1625 EXPR_SPEC (expr) = spec;
1626 EXPR_USEFULNESS (expr) = use;
1627 EXPR_PRIORITY (expr) = priority;
1628 EXPR_PRIORITY_ADJ (expr) = 0;
1629 EXPR_SCHED_TIMES (expr) = sched_times;
1630 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1631 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1632 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1633 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1635 if (history)
1636 EXPR_HISTORY_OF_CHANGES (expr) = history;
1637 else
1638 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1640 EXPR_TARGET_AVAILABLE (expr) = target_available;
1641 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1642 EXPR_WAS_RENAMED (expr) = was_renamed;
1643 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1644 EXPR_CANT_MOVE (expr) = cant_move;
1647 /* Make a copy of the expr FROM into the expr TO. */
1648 void
1649 copy_expr (expr_t to, expr_t from)
1651 VEC(expr_history_def, heap) *temp = NULL;
1653 if (EXPR_HISTORY_OF_CHANGES (from))
1655 unsigned i;
1656 expr_history_def *phist;
1658 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
1659 for (i = 0;
1660 VEC_iterate (expr_history_def, temp, i, phist);
1661 i++)
1663 vinsn_attach (phist->old_expr_vinsn);
1664 vinsn_attach (phist->new_expr_vinsn);
1668 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1669 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1670 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1671 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1672 EXPR_ORIG_SCHED_CYCLE (from), temp,
1673 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1674 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1675 EXPR_CANT_MOVE (from));
1678 /* Same, but the final expr will not ever be in av sets, so don't copy
1679 "uninteresting" data such as bitmap cache. */
1680 void
1681 copy_expr_onside (expr_t to, expr_t from)
1683 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1684 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1685 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1686 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1687 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1688 EXPR_CANT_MOVE (from));
1691 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1692 initializing new insns. */
1693 static void
1694 prepare_insn_expr (insn_t insn, int seqno)
1696 expr_t expr = INSN_EXPR (insn);
1697 ds_t ds;
1699 INSN_SEQNO (insn) = seqno;
1700 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1701 EXPR_SPEC (expr) = 0;
1702 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1703 EXPR_WAS_SUBSTITUTED (expr) = 0;
1704 EXPR_WAS_RENAMED (expr) = 0;
1705 EXPR_TARGET_AVAILABLE (expr) = 1;
1706 INSN_LIVE_VALID_P (insn) = false;
1708 /* ??? If this expression is speculative, make its dependence
1709 as weak as possible. We can filter this expression later
1710 in process_spec_exprs, because we do not distinguish
1711 between the status we got during compute_av_set and the
1712 existing status. To be fixed. */
1713 ds = EXPR_SPEC_DONE_DS (expr);
1714 if (ds)
1715 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1717 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1720 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1721 is non-null when expressions are merged from different successors at
1722 a split point. */
1723 static void
1724 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1726 if (EXPR_TARGET_AVAILABLE (to) < 0
1727 || EXPR_TARGET_AVAILABLE (from) < 0)
1728 EXPR_TARGET_AVAILABLE (to) = -1;
1729 else
1731 /* We try to detect the case when one of the expressions
1732 can only be reached through another one. In this case,
1733 we can do better. */
1734 if (split_point == NULL)
1736 int toind, fromind;
1738 toind = EXPR_ORIG_BB_INDEX (to);
1739 fromind = EXPR_ORIG_BB_INDEX (from);
1741 if (toind && toind == fromind)
1742 /* Do nothing -- everything is done in
1743 merge_with_other_exprs. */
1745 else
1746 EXPR_TARGET_AVAILABLE (to) = -1;
1748 else
1749 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1753 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1754 is non-null when expressions are merged from different successors at
1755 a split point. */
1756 static void
1757 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1759 ds_t old_to_ds, old_from_ds;
1761 old_to_ds = EXPR_SPEC_DONE_DS (to);
1762 old_from_ds = EXPR_SPEC_DONE_DS (from);
1764 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1765 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1766 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1768 /* When merging e.g. control & data speculative exprs, or a control
1769 speculative with a control&data speculative one, we really have
1770 to change vinsn too. Also, when speculative status is changed,
1771 we also need to record this as a transformation in expr's history. */
1772 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1774 old_to_ds = ds_get_speculation_types (old_to_ds);
1775 old_from_ds = ds_get_speculation_types (old_from_ds);
1777 if (old_to_ds != old_from_ds)
1779 ds_t record_ds;
1781 /* When both expressions are speculative, we need to change
1782 the vinsn first. */
1783 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1785 int res;
1787 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1788 gcc_assert (res >= 0);
1791 if (split_point != NULL)
1793 /* Record the change with proper status. */
1794 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1795 record_ds &= ~(old_to_ds & SPECULATIVE);
1796 record_ds &= ~(old_from_ds & SPECULATIVE);
1798 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1799 INSN_UID (split_point), TRANS_SPECULATION,
1800 EXPR_VINSN (from), EXPR_VINSN (to),
1801 record_ds);
1808 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1809 this is done along different paths. */
1810 void
1811 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1813 /* For now, we just set the spec of resulting expr to be minimum of the specs
1814 of merged exprs. */
1815 if (EXPR_SPEC (to) > EXPR_SPEC (from))
1816 EXPR_SPEC (to) = EXPR_SPEC (from);
1818 if (split_point)
1819 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1820 else
1821 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1822 EXPR_USEFULNESS (from));
1824 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1825 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1827 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1828 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1830 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1831 EXPR_ORIG_BB_INDEX (to) = 0;
1833 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1834 EXPR_ORIG_SCHED_CYCLE (from));
1836 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1837 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1838 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1840 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1841 EXPR_HISTORY_OF_CHANGES (from));
1842 update_target_availability (to, from, split_point);
1843 update_speculative_bits (to, from, split_point);
1846 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1847 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1848 are merged from different successors at a split point. */
1849 void
1850 merge_expr (expr_t to, expr_t from, insn_t split_point)
1852 vinsn_t to_vi = EXPR_VINSN (to);
1853 vinsn_t from_vi = EXPR_VINSN (from);
1855 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1857 /* Make sure that speculative pattern is propagated into exprs that
1858 have non-speculative one. This will provide us with consistent
1859 speculative bits and speculative patterns inside expr. */
1860 if (EXPR_SPEC_DONE_DS (to) == 0
1861 && EXPR_SPEC_DONE_DS (from) != 0)
1862 change_vinsn_in_expr (to, EXPR_VINSN (from));
1864 merge_expr_data (to, from, split_point);
1865 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1868 /* Clear the information of this EXPR. */
1869 void
1870 clear_expr (expr_t expr)
1873 vinsn_detach (EXPR_VINSN (expr));
1874 EXPR_VINSN (expr) = NULL;
1876 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1879 /* For a given LV_SET, mark EXPR having unavailable target register. */
1880 static void
1881 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1883 if (EXPR_SEPARABLE_P (expr))
1885 if (REG_P (EXPR_LHS (expr))
1886 && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1888 /* If it's an insn like r1 = use (r1, ...), and it exists in
1889 different forms in each of the av_sets being merged, we can't say
1890 whether original destination register is available or not.
1891 However, this still works if destination register is not used
1892 in the original expression: if the branch at which LV_SET we're
1893 looking here is not actually 'other branch' in sense that same
1894 expression is available through it (but it can't be determined
1895 at computation stage because of transformations on one of the
1896 branches), it still won't affect the availability.
1897 Liveness of a register somewhere on a code motion path means
1898 it's either read somewhere on a codemotion path, live on
1899 'other' branch, live at the point immediately following
1900 the original operation, or is read by the original operation.
1901 The latter case is filtered out in the condition below.
1902 It still doesn't cover the case when register is defined and used
1903 somewhere within the code motion path, and in this case we could
1904 miss a unifying code motion along both branches using a renamed
1905 register, but it won't affect a code correctness since upon
1906 an actual code motion a bookkeeping code would be generated. */
1907 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1908 REGNO (EXPR_LHS (expr))))
1909 EXPR_TARGET_AVAILABLE (expr) = -1;
1910 else
1911 EXPR_TARGET_AVAILABLE (expr) = false;
1914 else
1916 unsigned regno;
1917 reg_set_iterator rsi;
1919 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1920 0, regno, rsi)
1921 if (bitmap_bit_p (lv_set, regno))
1923 EXPR_TARGET_AVAILABLE (expr) = false;
1924 break;
1927 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1928 0, regno, rsi)
1929 if (bitmap_bit_p (lv_set, regno))
1931 EXPR_TARGET_AVAILABLE (expr) = false;
1932 break;
1937 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1938 or dependence status have changed, 2 when also the target register
1939 became unavailable, 0 if nothing had to be changed. */
1941 speculate_expr (expr_t expr, ds_t ds)
1943 int res;
1944 rtx orig_insn_rtx;
1945 rtx spec_pat;
1946 ds_t target_ds, current_ds;
1948 /* Obtain the status we need to put on EXPR. */
1949 target_ds = (ds & SPECULATIVE);
1950 current_ds = EXPR_SPEC_DONE_DS (expr);
1951 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1953 orig_insn_rtx = EXPR_INSN_RTX (expr);
1955 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1957 switch (res)
1959 case 0:
1960 EXPR_SPEC_DONE_DS (expr) = ds;
1961 return current_ds != ds ? 1 : 0;
1963 case 1:
1965 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1966 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1968 change_vinsn_in_expr (expr, spec_vinsn);
1969 EXPR_SPEC_DONE_DS (expr) = ds;
1970 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1972 /* Do not allow clobbering the address register of speculative
1973 insns. */
1974 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1975 expr_dest_regno (expr)))
1977 EXPR_TARGET_AVAILABLE (expr) = false;
1978 return 2;
1981 return 1;
1984 case -1:
1985 return -1;
1987 default:
1988 gcc_unreachable ();
1989 return -1;
1993 /* Return a destination register, if any, of EXPR. */
1995 expr_dest_reg (expr_t expr)
1997 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
1999 if (dest != NULL_RTX && REG_P (dest))
2000 return dest;
2002 return NULL_RTX;
2005 /* Returns the REGNO of the R's destination. */
2006 unsigned
2007 expr_dest_regno (expr_t expr)
2009 rtx dest = expr_dest_reg (expr);
2011 gcc_assert (dest != NULL_RTX);
2012 return REGNO (dest);
2015 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2016 AV_SET having unavailable target register. */
2017 void
2018 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2020 expr_t expr;
2021 av_set_iterator avi;
2023 FOR_EACH_EXPR (expr, avi, join_set)
2024 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2025 set_unavailable_target_for_expr (expr, lv_set);
2029 /* Av set functions. */
2031 /* Add a new element to av set SETP.
2032 Return the element added. */
2033 static av_set_t
2034 av_set_add_element (av_set_t *setp)
2036 /* Insert at the beginning of the list. */
2037 _list_add (setp);
2038 return *setp;
2041 /* Add EXPR to SETP. */
2042 void
2043 av_set_add (av_set_t *setp, expr_t expr)
2045 av_set_t elem;
2047 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2048 elem = av_set_add_element (setp);
2049 copy_expr (_AV_SET_EXPR (elem), expr);
2052 /* Same, but do not copy EXPR. */
2053 static void
2054 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2056 av_set_t elem;
2058 elem = av_set_add_element (setp);
2059 *_AV_SET_EXPR (elem) = *expr;
2062 /* Remove expr pointed to by IP from the av_set. */
2063 void
2064 av_set_iter_remove (av_set_iterator *ip)
2066 clear_expr (_AV_SET_EXPR (*ip->lp));
2067 _list_iter_remove (ip);
2070 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2071 sense of vinsn_equal_p function. Return NULL if no such expr is
2072 in SET was found. */
2073 expr_t
2074 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2076 expr_t expr;
2077 av_set_iterator i;
2079 FOR_EACH_EXPR (expr, i, set)
2080 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2081 return expr;
2082 return NULL;
2085 /* Same, but also remove the EXPR found. */
2086 static expr_t
2087 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2089 expr_t expr;
2090 av_set_iterator i;
2092 FOR_EACH_EXPR_1 (expr, i, setp)
2093 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2095 _list_iter_remove_nofree (&i);
2096 return expr;
2098 return NULL;
2101 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2102 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2103 Returns NULL if no such expr is in SET was found. */
2104 static expr_t
2105 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2107 expr_t cur_expr;
2108 av_set_iterator i;
2110 FOR_EACH_EXPR (cur_expr, i, set)
2112 if (cur_expr == expr)
2113 continue;
2114 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2115 return cur_expr;
2118 return NULL;
2121 /* If other expression is already in AVP, remove one of them. */
2122 expr_t
2123 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2125 expr_t expr2;
2127 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2128 if (expr2 != NULL)
2130 /* Reset target availability on merge, since taking it only from one
2131 of the exprs would be controversial for different code. */
2132 EXPR_TARGET_AVAILABLE (expr2) = -1;
2133 EXPR_USEFULNESS (expr2) = 0;
2135 merge_expr (expr2, expr, NULL);
2137 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2138 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2140 av_set_iter_remove (ip);
2141 return expr2;
2144 return expr;
2147 /* Return true if there is an expr that correlates to VI in SET. */
2148 bool
2149 av_set_is_in_p (av_set_t set, vinsn_t vi)
2151 return av_set_lookup (set, vi) != NULL;
2154 /* Return a copy of SET. */
2155 av_set_t
2156 av_set_copy (av_set_t set)
2158 expr_t expr;
2159 av_set_iterator i;
2160 av_set_t res = NULL;
2162 FOR_EACH_EXPR (expr, i, set)
2163 av_set_add (&res, expr);
2165 return res;
2168 /* Join two av sets that do not have common elements by attaching second set
2169 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2170 _AV_SET_NEXT of first set's last element). */
2171 static void
2172 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2174 gcc_assert (*to_tailp == NULL);
2175 *to_tailp = *fromp;
2176 *fromp = NULL;
2179 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2180 pointed to by FROMP afterwards. */
2181 void
2182 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2184 expr_t expr1;
2185 av_set_iterator i;
2187 /* Delete from TOP all exprs, that present in FROMP. */
2188 FOR_EACH_EXPR_1 (expr1, i, top)
2190 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2192 if (expr2)
2194 merge_expr (expr2, expr1, insn);
2195 av_set_iter_remove (&i);
2199 join_distinct_sets (i.lp, fromp);
2202 /* Same as above, but also update availability of target register in
2203 TOP judging by TO_LV_SET and FROM_LV_SET. */
2204 void
2205 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2206 regset from_lv_set, insn_t insn)
2208 expr_t expr1;
2209 av_set_iterator i;
2210 av_set_t *to_tailp, in_both_set = NULL;
2212 /* Delete from TOP all expres, that present in FROMP. */
2213 FOR_EACH_EXPR_1 (expr1, i, top)
2215 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2217 if (expr2)
2219 /* It may be that the expressions have different destination
2220 registers, in which case we need to check liveness here. */
2221 if (EXPR_SEPARABLE_P (expr1))
2223 int regno1 = (REG_P (EXPR_LHS (expr1))
2224 ? (int) expr_dest_regno (expr1) : -1);
2225 int regno2 = (REG_P (EXPR_LHS (expr2))
2226 ? (int) expr_dest_regno (expr2) : -1);
2228 /* ??? We don't have a way to check restrictions for
2229 *other* register on the current path, we did it only
2230 for the current target register. Give up. */
2231 if (regno1 != regno2)
2232 EXPR_TARGET_AVAILABLE (expr2) = -1;
2234 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2235 EXPR_TARGET_AVAILABLE (expr2) = -1;
2237 merge_expr (expr2, expr1, insn);
2238 av_set_add_nocopy (&in_both_set, expr2);
2239 av_set_iter_remove (&i);
2241 else
2242 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2243 FROM_LV_SET. */
2244 set_unavailable_target_for_expr (expr1, from_lv_set);
2246 to_tailp = i.lp;
2248 /* These expressions are not present in TOP. Check liveness
2249 restrictions on TO_LV_SET. */
2250 FOR_EACH_EXPR (expr1, i, *fromp)
2251 set_unavailable_target_for_expr (expr1, to_lv_set);
2253 join_distinct_sets (i.lp, &in_both_set);
2254 join_distinct_sets (to_tailp, fromp);
2257 /* Clear av_set pointed to by SETP. */
2258 void
2259 av_set_clear (av_set_t *setp)
2261 expr_t expr;
2262 av_set_iterator i;
2264 FOR_EACH_EXPR_1 (expr, i, setp)
2265 av_set_iter_remove (&i);
2267 gcc_assert (*setp == NULL);
2270 /* Leave only one non-speculative element in the SETP. */
2271 void
2272 av_set_leave_one_nonspec (av_set_t *setp)
2274 expr_t expr;
2275 av_set_iterator i;
2276 bool has_one_nonspec = false;
2278 /* Keep all speculative exprs, and leave one non-speculative
2279 (the first one). */
2280 FOR_EACH_EXPR_1 (expr, i, setp)
2282 if (!EXPR_SPEC_DONE_DS (expr))
2284 if (has_one_nonspec)
2285 av_set_iter_remove (&i);
2286 else
2287 has_one_nonspec = true;
2292 /* Return the N'th element of the SET. */
2293 expr_t
2294 av_set_element (av_set_t set, int n)
2296 expr_t expr;
2297 av_set_iterator i;
2299 FOR_EACH_EXPR (expr, i, set)
2300 if (n-- == 0)
2301 return expr;
2303 gcc_unreachable ();
2304 return NULL;
2307 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2308 void
2309 av_set_substract_cond_branches (av_set_t *avp)
2311 av_set_iterator i;
2312 expr_t expr;
2314 FOR_EACH_EXPR_1 (expr, i, avp)
2315 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2316 av_set_iter_remove (&i);
2319 /* Multiplies usefulness attribute of each member of av-set *AVP by
2320 value PROB / ALL_PROB. */
2321 void
2322 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2324 av_set_iterator i;
2325 expr_t expr;
2327 FOR_EACH_EXPR (expr, i, av)
2328 EXPR_USEFULNESS (expr) = (all_prob
2329 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2330 : 0);
2333 /* Leave in AVP only those expressions, which are present in AV,
2334 and return it, merging history expressions. */
2335 void
2336 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2338 av_set_iterator i;
2339 expr_t expr, expr2;
2341 FOR_EACH_EXPR_1 (expr, i, avp)
2342 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2343 av_set_iter_remove (&i);
2344 else
2345 /* When updating av sets in bookkeeping blocks, we can add more insns
2346 there which will be transformed but the upper av sets will not
2347 reflect those transformations. We then fail to undo those
2348 when searching for such insns. So merge the history saved
2349 in the av set of the block we are processing. */
2350 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2351 EXPR_HISTORY_OF_CHANGES (expr2));
2356 /* Dependence hooks to initialize insn data. */
2358 /* This is used in hooks callable from dependence analysis when initializing
2359 instruction's data. */
2360 static struct
2362 /* Where the dependence was found (lhs/rhs). */
2363 deps_where_t where;
2365 /* The actual data object to initialize. */
2366 idata_t id;
2368 /* True when the insn should not be made clonable. */
2369 bool force_unique_p;
2371 /* True when insn should be treated as of type USE, i.e. never renamed. */
2372 bool force_use_p;
2373 } deps_init_id_data;
2376 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2377 clonable. */
2378 static void
2379 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2381 int type;
2383 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2384 That clonable insns which can be separated into lhs and rhs have type SET.
2385 Other clonable insns have type USE. */
2386 type = GET_CODE (insn);
2388 /* Only regular insns could be cloned. */
2389 if (type == INSN && !force_unique_p)
2390 type = SET;
2391 else if (type == JUMP_INSN && simplejump_p (insn))
2392 type = PC;
2393 else if (type == DEBUG_INSN)
2394 type = !force_unique_p ? USE : INSN;
2396 IDATA_TYPE (id) = type;
2397 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2398 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2399 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2402 /* Start initializing insn data. */
2403 static void
2404 deps_init_id_start_insn (insn_t insn)
2406 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2408 setup_id_for_insn (deps_init_id_data.id, insn,
2409 deps_init_id_data.force_unique_p);
2410 deps_init_id_data.where = DEPS_IN_INSN;
2413 /* Start initializing lhs data. */
2414 static void
2415 deps_init_id_start_lhs (rtx lhs)
2417 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2418 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2420 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2422 IDATA_LHS (deps_init_id_data.id) = lhs;
2423 deps_init_id_data.where = DEPS_IN_LHS;
2427 /* Finish initializing lhs data. */
2428 static void
2429 deps_init_id_finish_lhs (void)
2431 deps_init_id_data.where = DEPS_IN_INSN;
2434 /* Note a set of REGNO. */
2435 static void
2436 deps_init_id_note_reg_set (int regno)
2438 haifa_note_reg_set (regno);
2440 if (deps_init_id_data.where == DEPS_IN_RHS)
2441 deps_init_id_data.force_use_p = true;
2443 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2444 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2446 #ifdef STACK_REGS
2447 /* Make instructions that set stack registers to be ineligible for
2448 renaming to avoid issues with find_used_regs. */
2449 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2450 deps_init_id_data.force_use_p = true;
2451 #endif
2454 /* Note a clobber of REGNO. */
2455 static void
2456 deps_init_id_note_reg_clobber (int regno)
2458 haifa_note_reg_clobber (regno);
2460 if (deps_init_id_data.where == DEPS_IN_RHS)
2461 deps_init_id_data.force_use_p = true;
2463 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2464 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2467 /* Note a use of REGNO. */
2468 static void
2469 deps_init_id_note_reg_use (int regno)
2471 haifa_note_reg_use (regno);
2473 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2474 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2477 /* Start initializing rhs data. */
2478 static void
2479 deps_init_id_start_rhs (rtx rhs)
2481 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2483 /* And there was no sel_deps_reset_to_insn (). */
2484 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2486 IDATA_RHS (deps_init_id_data.id) = rhs;
2487 deps_init_id_data.where = DEPS_IN_RHS;
2491 /* Finish initializing rhs data. */
2492 static void
2493 deps_init_id_finish_rhs (void)
2495 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2496 || deps_init_id_data.where == DEPS_IN_INSN);
2497 deps_init_id_data.where = DEPS_IN_INSN;
2500 /* Finish initializing insn data. */
2501 static void
2502 deps_init_id_finish_insn (void)
2504 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2506 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2508 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2509 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2511 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2512 || deps_init_id_data.force_use_p)
2514 /* This should be a USE, as we don't want to schedule its RHS
2515 separately. However, we still want to have them recorded
2516 for the purposes of substitution. That's why we don't
2517 simply call downgrade_to_use () here. */
2518 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2519 gcc_assert (!lhs == !rhs);
2521 IDATA_TYPE (deps_init_id_data.id) = USE;
2525 deps_init_id_data.where = DEPS_IN_NOWHERE;
2528 /* This is dependence info used for initializing insn's data. */
2529 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2531 /* This initializes most of the static part of the above structure. */
2532 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2534 NULL,
2536 deps_init_id_start_insn,
2537 deps_init_id_finish_insn,
2538 deps_init_id_start_lhs,
2539 deps_init_id_finish_lhs,
2540 deps_init_id_start_rhs,
2541 deps_init_id_finish_rhs,
2542 deps_init_id_note_reg_set,
2543 deps_init_id_note_reg_clobber,
2544 deps_init_id_note_reg_use,
2545 NULL, /* note_mem_dep */
2546 NULL, /* note_dep */
2548 0, /* use_cselib */
2549 0, /* use_deps_list */
2550 0 /* generate_spec_deps */
2553 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2554 we don't actually need information about lhs and rhs. */
2555 static void
2556 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2558 rtx pat = PATTERN (insn);
2560 if (NONJUMP_INSN_P (insn)
2561 && GET_CODE (pat) == SET
2562 && !force_unique_p)
2564 IDATA_RHS (id) = SET_SRC (pat);
2565 IDATA_LHS (id) = SET_DEST (pat);
2567 else
2568 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2571 /* Possibly downgrade INSN to USE. */
2572 static void
2573 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2575 bool must_be_use = false;
2576 unsigned uid = INSN_UID (insn);
2577 df_ref *rec;
2578 rtx lhs = IDATA_LHS (id);
2579 rtx rhs = IDATA_RHS (id);
2581 /* We downgrade only SETs. */
2582 if (IDATA_TYPE (id) != SET)
2583 return;
2585 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2587 IDATA_TYPE (id) = USE;
2588 return;
2591 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2593 df_ref def = *rec;
2595 if (DF_REF_INSN (def)
2596 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2597 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2599 must_be_use = true;
2600 break;
2603 #ifdef STACK_REGS
2604 /* Make instructions that set stack registers to be ineligible for
2605 renaming to avoid issues with find_used_regs. */
2606 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2608 must_be_use = true;
2609 break;
2611 #endif
2614 if (must_be_use)
2615 IDATA_TYPE (id) = USE;
2618 /* Setup register sets describing INSN in ID. */
2619 static void
2620 setup_id_reg_sets (idata_t id, insn_t insn)
2622 unsigned uid = INSN_UID (insn);
2623 df_ref *rec;
2624 regset tmp = get_clear_regset_from_pool ();
2626 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2628 df_ref def = *rec;
2629 unsigned int regno = DF_REF_REGNO (def);
2631 /* Post modifies are treated like clobbers by sched-deps.c. */
2632 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2633 | DF_REF_PRE_POST_MODIFY)))
2634 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2635 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2637 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2639 #ifdef STACK_REGS
2640 /* For stack registers, treat writes to them as writes
2641 to the first one to be consistent with sched-deps.c. */
2642 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2643 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2644 #endif
2646 /* Mark special refs that generate read/write def pair. */
2647 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2648 || regno == STACK_POINTER_REGNUM)
2649 bitmap_set_bit (tmp, regno);
2652 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2654 df_ref use = *rec;
2655 unsigned int regno = DF_REF_REGNO (use);
2657 /* When these refs are met for the first time, skip them, as
2658 these uses are just counterparts of some defs. */
2659 if (bitmap_bit_p (tmp, regno))
2660 bitmap_clear_bit (tmp, regno);
2661 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2663 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2665 #ifdef STACK_REGS
2666 /* For stack registers, treat reads from them as reads from
2667 the first one to be consistent with sched-deps.c. */
2668 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2669 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2670 #endif
2674 return_regset_to_pool (tmp);
2677 /* Initialize instruction data for INSN in ID using DF's data. */
2678 static void
2679 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2681 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2683 setup_id_for_insn (id, insn, force_unique_p);
2684 setup_id_lhs_rhs (id, insn, force_unique_p);
2686 if (INSN_NOP_P (insn))
2687 return;
2689 maybe_downgrade_id_to_use (id, insn);
2690 setup_id_reg_sets (id, insn);
2693 /* Initialize instruction data for INSN in ID. */
2694 static void
2695 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2697 struct deps_desc _dc, *dc = &_dc;
2699 deps_init_id_data.where = DEPS_IN_NOWHERE;
2700 deps_init_id_data.id = id;
2701 deps_init_id_data.force_unique_p = force_unique_p;
2702 deps_init_id_data.force_use_p = false;
2704 init_deps (dc, false);
2706 memcpy (&deps_init_id_sched_deps_info,
2707 &const_deps_init_id_sched_deps_info,
2708 sizeof (deps_init_id_sched_deps_info));
2710 if (spec_info != NULL)
2711 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2713 sched_deps_info = &deps_init_id_sched_deps_info;
2715 deps_analyze_insn (dc, insn);
2717 free_deps (dc);
2719 deps_init_id_data.id = NULL;
2724 /* Implement hooks for collecting fundamental insn properties like if insn is
2725 an ASM or is within a SCHED_GROUP. */
2727 /* True when a "one-time init" data for INSN was already inited. */
2728 static bool
2729 first_time_insn_init (insn_t insn)
2731 return INSN_LIVE (insn) == NULL;
2734 /* Hash an entry in a transformed_insns hashtable. */
2735 static hashval_t
2736 hash_transformed_insns (const void *p)
2738 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2741 /* Compare the entries in a transformed_insns hashtable. */
2742 static int
2743 eq_transformed_insns (const void *p, const void *q)
2745 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2746 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2748 if (INSN_UID (i1) == INSN_UID (i2))
2749 return 1;
2750 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2753 /* Free an entry in a transformed_insns hashtable. */
2754 static void
2755 free_transformed_insns (void *p)
2757 struct transformed_insns *pti = (struct transformed_insns *) p;
2759 vinsn_detach (pti->vinsn_old);
2760 vinsn_detach (pti->vinsn_new);
2761 free (pti);
2764 /* Init the s_i_d data for INSN which should be inited just once, when
2765 we first see the insn. */
2766 static void
2767 init_first_time_insn_data (insn_t insn)
2769 /* This should not be set if this is the first time we init data for
2770 insn. */
2771 gcc_assert (first_time_insn_init (insn));
2773 /* These are needed for nops too. */
2774 INSN_LIVE (insn) = get_regset_from_pool ();
2775 INSN_LIVE_VALID_P (insn) = false;
2777 if (!INSN_NOP_P (insn))
2779 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2780 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2781 INSN_TRANSFORMED_INSNS (insn)
2782 = htab_create (16, hash_transformed_insns,
2783 eq_transformed_insns, free_transformed_insns);
2784 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2788 /* Free almost all above data for INSN that is scheduled already.
2789 Used for extra-large basic blocks. */
2790 void
2791 free_data_for_scheduled_insn (insn_t insn)
2793 gcc_assert (! first_time_insn_init (insn));
2795 if (! INSN_ANALYZED_DEPS (insn))
2796 return;
2798 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2799 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2800 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2802 /* This is allocated only for bookkeeping insns. */
2803 if (INSN_ORIGINATORS (insn))
2804 BITMAP_FREE (INSN_ORIGINATORS (insn));
2805 free_deps (&INSN_DEPS_CONTEXT (insn));
2807 INSN_ANALYZED_DEPS (insn) = NULL;
2809 /* Clear the readonly flag so we would ICE when trying to recalculate
2810 the deps context (as we believe that it should not happen). */
2811 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2814 /* Free the same data as above for INSN. */
2815 static void
2816 free_first_time_insn_data (insn_t insn)
2818 gcc_assert (! first_time_insn_init (insn));
2820 free_data_for_scheduled_insn (insn);
2821 return_regset_to_pool (INSN_LIVE (insn));
2822 INSN_LIVE (insn) = NULL;
2823 INSN_LIVE_VALID_P (insn) = false;
2826 /* Initialize region-scope data structures for basic blocks. */
2827 static void
2828 init_global_and_expr_for_bb (basic_block bb)
2830 if (sel_bb_empty_p (bb))
2831 return;
2833 invalidate_av_set (bb);
2836 /* Data for global dependency analysis (to initialize CANT_MOVE and
2837 SCHED_GROUP_P). */
2838 static struct
2840 /* Previous insn. */
2841 insn_t prev_insn;
2842 } init_global_data;
2844 /* Determine if INSN is in the sched_group, is an asm or should not be
2845 cloned. After that initialize its expr. */
2846 static void
2847 init_global_and_expr_for_insn (insn_t insn)
2849 if (LABEL_P (insn))
2850 return;
2852 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2854 init_global_data.prev_insn = NULL_RTX;
2855 return;
2858 gcc_assert (INSN_P (insn));
2860 if (SCHED_GROUP_P (insn))
2861 /* Setup a sched_group. */
2863 insn_t prev_insn = init_global_data.prev_insn;
2865 if (prev_insn)
2866 INSN_SCHED_NEXT (prev_insn) = insn;
2868 init_global_data.prev_insn = insn;
2870 else
2871 init_global_data.prev_insn = NULL_RTX;
2873 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2874 || asm_noperands (PATTERN (insn)) >= 0)
2875 /* Mark INSN as an asm. */
2876 INSN_ASM_P (insn) = true;
2879 bool force_unique_p;
2880 ds_t spec_done_ds;
2882 /* Certain instructions cannot be cloned, and frame related insns and
2883 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2884 their block. */
2885 if (prologue_epilogue_contains (insn))
2887 if (RTX_FRAME_RELATED_P (insn))
2888 CANT_MOVE (insn) = 1;
2889 else
2891 rtx note;
2892 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2893 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2894 && ((enum insn_note) INTVAL (XEXP (note, 0))
2895 == NOTE_INSN_EPILOGUE_BEG))
2897 CANT_MOVE (insn) = 1;
2898 break;
2901 force_unique_p = true;
2903 else
2904 if (CANT_MOVE (insn)
2905 || INSN_ASM_P (insn)
2906 || SCHED_GROUP_P (insn)
2907 /* Exception handling insns are always unique. */
2908 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2909 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2910 || control_flow_insn_p (insn))
2911 force_unique_p = true;
2912 else
2913 force_unique_p = false;
2915 if (targetm.sched.get_insn_spec_ds)
2917 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2918 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2920 else
2921 spec_done_ds = 0;
2923 /* Initialize INSN's expr. */
2924 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2925 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
2926 spec_done_ds, 0, 0, NULL, true, false, false, false,
2927 CANT_MOVE (insn));
2930 init_first_time_insn_data (insn);
2933 /* Scan the region and initialize instruction data for basic blocks BBS. */
2934 void
2935 sel_init_global_and_expr (bb_vec_t bbs)
2937 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
2938 const struct sched_scan_info_def ssi =
2940 NULL, /* extend_bb */
2941 init_global_and_expr_for_bb, /* init_bb */
2942 extend_insn_data, /* extend_insn */
2943 init_global_and_expr_for_insn /* init_insn */
2946 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2949 /* Finalize region-scope data structures for basic blocks. */
2950 static void
2951 finish_global_and_expr_for_bb (basic_block bb)
2953 av_set_clear (&BB_AV_SET (bb));
2954 BB_AV_LEVEL (bb) = 0;
2957 /* Finalize INSN's data. */
2958 static void
2959 finish_global_and_expr_insn (insn_t insn)
2961 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
2962 return;
2964 gcc_assert (INSN_P (insn));
2966 if (INSN_LUID (insn) > 0)
2968 free_first_time_insn_data (insn);
2969 INSN_WS_LEVEL (insn) = 0;
2970 CANT_MOVE (insn) = 0;
2972 /* We can no longer assert this, as vinsns of this insn could be
2973 easily live in other insn's caches. This should be changed to
2974 a counter-like approach among all vinsns. */
2975 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
2976 clear_expr (INSN_EXPR (insn));
2980 /* Finalize per instruction data for the whole region. */
2981 void
2982 sel_finish_global_and_expr (void)
2985 bb_vec_t bbs;
2986 int i;
2988 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
2990 for (i = 0; i < current_nr_blocks; i++)
2991 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
2993 /* Clear AV_SETs and INSN_EXPRs. */
2995 const struct sched_scan_info_def ssi =
2997 NULL, /* extend_bb */
2998 finish_global_and_expr_for_bb, /* init_bb */
2999 NULL, /* extend_insn */
3000 finish_global_and_expr_insn /* init_insn */
3003 sched_scan (&ssi, bbs, NULL, NULL, NULL);
3006 VEC_free (basic_block, heap, bbs);
3009 finish_insns ();
3013 /* In the below hooks, we merely calculate whether or not a dependence
3014 exists, and in what part of insn. However, we will need more data
3015 when we'll start caching dependence requests. */
3017 /* Container to hold information for dependency analysis. */
3018 static struct
3020 deps_t dc;
3022 /* A variable to track which part of rtx we are scanning in
3023 sched-deps.c: sched_analyze_insn (). */
3024 deps_where_t where;
3026 /* Current producer. */
3027 insn_t pro;
3029 /* Current consumer. */
3030 vinsn_t con;
3032 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3033 X is from { INSN, LHS, RHS }. */
3034 ds_t has_dep_p[DEPS_IN_NOWHERE];
3035 } has_dependence_data;
3037 /* Start analyzing dependencies of INSN. */
3038 static void
3039 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3041 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3043 has_dependence_data.where = DEPS_IN_INSN;
3046 /* Finish analyzing dependencies of an insn. */
3047 static void
3048 has_dependence_finish_insn (void)
3050 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3052 has_dependence_data.where = DEPS_IN_NOWHERE;
3055 /* Start analyzing dependencies of LHS. */
3056 static void
3057 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3059 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3061 if (VINSN_LHS (has_dependence_data.con) != NULL)
3062 has_dependence_data.where = DEPS_IN_LHS;
3065 /* Finish analyzing dependencies of an lhs. */
3066 static void
3067 has_dependence_finish_lhs (void)
3069 has_dependence_data.where = DEPS_IN_INSN;
3072 /* Start analyzing dependencies of RHS. */
3073 static void
3074 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3076 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3078 if (VINSN_RHS (has_dependence_data.con) != NULL)
3079 has_dependence_data.where = DEPS_IN_RHS;
3082 /* Start analyzing dependencies of an rhs. */
3083 static void
3084 has_dependence_finish_rhs (void)
3086 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3087 || has_dependence_data.where == DEPS_IN_INSN);
3089 has_dependence_data.where = DEPS_IN_INSN;
3092 /* Note a set of REGNO. */
3093 static void
3094 has_dependence_note_reg_set (int regno)
3096 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3098 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3099 VINSN_INSN_RTX
3100 (has_dependence_data.con)))
3102 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3104 if (reg_last->sets != NULL
3105 || reg_last->clobbers != NULL)
3106 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3108 if (reg_last->uses)
3109 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3113 /* Note a clobber of REGNO. */
3114 static void
3115 has_dependence_note_reg_clobber (int regno)
3117 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3119 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3120 VINSN_INSN_RTX
3121 (has_dependence_data.con)))
3123 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3125 if (reg_last->sets)
3126 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3128 if (reg_last->uses)
3129 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3133 /* Note a use of REGNO. */
3134 static void
3135 has_dependence_note_reg_use (int regno)
3137 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3139 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3140 VINSN_INSN_RTX
3141 (has_dependence_data.con)))
3143 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3145 if (reg_last->sets)
3146 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3148 if (reg_last->clobbers)
3149 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3151 /* Handle BE_IN_SPEC. */
3152 if (reg_last->uses)
3154 ds_t pro_spec_checked_ds;
3156 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3157 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3159 if (pro_spec_checked_ds != 0)
3160 /* Merge BE_IN_SPEC bits into *DSP. */
3161 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3162 NULL_RTX, NULL_RTX);
3167 /* Note a memory dependence. */
3168 static void
3169 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3170 rtx pending_mem ATTRIBUTE_UNUSED,
3171 insn_t pending_insn ATTRIBUTE_UNUSED,
3172 ds_t ds ATTRIBUTE_UNUSED)
3174 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3175 VINSN_INSN_RTX (has_dependence_data.con)))
3177 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3179 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3183 /* Note a dependence. */
3184 static void
3185 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3186 ds_t ds ATTRIBUTE_UNUSED)
3188 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3189 VINSN_INSN_RTX (has_dependence_data.con)))
3191 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3193 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3197 /* Mark the insn as having a hard dependence that prevents speculation. */
3198 void
3199 sel_mark_hard_insn (rtx insn)
3201 int i;
3203 /* Only work when we're in has_dependence_p mode.
3204 ??? This is a hack, this should actually be a hook. */
3205 if (!has_dependence_data.dc || !has_dependence_data.pro)
3206 return;
3208 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3209 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3211 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3212 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3215 /* This structure holds the hooks for the dependency analysis used when
3216 actually processing dependencies in the scheduler. */
3217 static struct sched_deps_info_def has_dependence_sched_deps_info;
3219 /* This initializes most of the fields of the above structure. */
3220 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3222 NULL,
3224 has_dependence_start_insn,
3225 has_dependence_finish_insn,
3226 has_dependence_start_lhs,
3227 has_dependence_finish_lhs,
3228 has_dependence_start_rhs,
3229 has_dependence_finish_rhs,
3230 has_dependence_note_reg_set,
3231 has_dependence_note_reg_clobber,
3232 has_dependence_note_reg_use,
3233 has_dependence_note_mem_dep,
3234 has_dependence_note_dep,
3236 0, /* use_cselib */
3237 0, /* use_deps_list */
3238 0 /* generate_spec_deps */
3241 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3242 static void
3243 setup_has_dependence_sched_deps_info (void)
3245 memcpy (&has_dependence_sched_deps_info,
3246 &const_has_dependence_sched_deps_info,
3247 sizeof (has_dependence_sched_deps_info));
3249 if (spec_info != NULL)
3250 has_dependence_sched_deps_info.generate_spec_deps = 1;
3252 sched_deps_info = &has_dependence_sched_deps_info;
3255 /* Remove all dependences found and recorded in has_dependence_data array. */
3256 void
3257 sel_clear_has_dependence (void)
3259 int i;
3261 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3262 has_dependence_data.has_dep_p[i] = 0;
3265 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3266 to the dependence information array in HAS_DEP_PP. */
3267 ds_t
3268 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3270 int i;
3271 ds_t ds;
3272 struct deps_desc *dc;
3274 if (INSN_SIMPLEJUMP_P (pred))
3275 /* Unconditional jump is just a transfer of control flow.
3276 Ignore it. */
3277 return false;
3279 dc = &INSN_DEPS_CONTEXT (pred);
3281 /* We init this field lazily. */
3282 if (dc->reg_last == NULL)
3283 init_deps_reg_last (dc);
3285 if (!dc->readonly)
3287 has_dependence_data.pro = NULL;
3288 /* Initialize empty dep context with information about PRED. */
3289 advance_deps_context (dc, pred);
3290 dc->readonly = 1;
3293 has_dependence_data.where = DEPS_IN_NOWHERE;
3294 has_dependence_data.pro = pred;
3295 has_dependence_data.con = EXPR_VINSN (expr);
3296 has_dependence_data.dc = dc;
3298 sel_clear_has_dependence ();
3300 /* Now catch all dependencies that would be generated between PRED and
3301 INSN. */
3302 setup_has_dependence_sched_deps_info ();
3303 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3304 has_dependence_data.dc = NULL;
3306 /* When a barrier was found, set DEPS_IN_INSN bits. */
3307 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3308 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3309 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3310 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3312 /* Do not allow stores to memory to move through checks. Currently
3313 we don't move this to sched-deps.c as the check doesn't have
3314 obvious places to which this dependence can be attached.
3315 FIMXE: this should go to a hook. */
3316 if (EXPR_LHS (expr)
3317 && MEM_P (EXPR_LHS (expr))
3318 && sel_insn_is_speculation_check (pred))
3319 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3321 *has_dep_pp = has_dependence_data.has_dep_p;
3322 ds = 0;
3323 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3324 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3325 NULL_RTX, NULL_RTX);
3327 return ds;
3331 /* Dependence hooks implementation that checks dependence latency constraints
3332 on the insns being scheduled. The entry point for these routines is
3333 tick_check_p predicate. */
3335 static struct
3337 /* An expr we are currently checking. */
3338 expr_t expr;
3340 /* A minimal cycle for its scheduling. */
3341 int cycle;
3343 /* Whether we have seen a true dependence while checking. */
3344 bool seen_true_dep_p;
3345 } tick_check_data;
3347 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3348 on PRO with status DS and weight DW. */
3349 static void
3350 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3352 expr_t con_expr = tick_check_data.expr;
3353 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3355 if (con_insn != pro_insn)
3357 enum reg_note dt;
3358 int tick;
3360 if (/* PROducer was removed from above due to pipelining. */
3361 !INSN_IN_STREAM_P (pro_insn)
3362 /* Or PROducer was originally on the next iteration regarding the
3363 CONsumer. */
3364 || (INSN_SCHED_TIMES (pro_insn)
3365 - EXPR_SCHED_TIMES (con_expr)) > 1)
3366 /* Don't count this dependence. */
3367 return;
3369 dt = ds_to_dt (ds);
3370 if (dt == REG_DEP_TRUE)
3371 tick_check_data.seen_true_dep_p = true;
3373 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3376 dep_def _dep, *dep = &_dep;
3378 init_dep (dep, pro_insn, con_insn, dt);
3380 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3383 /* When there are several kinds of dependencies between pro and con,
3384 only REG_DEP_TRUE should be taken into account. */
3385 if (tick > tick_check_data.cycle
3386 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3387 tick_check_data.cycle = tick;
3391 /* An implementation of note_dep hook. */
3392 static void
3393 tick_check_note_dep (insn_t pro, ds_t ds)
3395 tick_check_dep_with_dw (pro, ds, 0);
3398 /* An implementation of note_mem_dep hook. */
3399 static void
3400 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3402 dw_t dw;
3404 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3405 ? estimate_dep_weak (mem1, mem2)
3406 : 0);
3408 tick_check_dep_with_dw (pro, ds, dw);
3411 /* This structure contains hooks for dependence analysis used when determining
3412 whether an insn is ready for scheduling. */
3413 static struct sched_deps_info_def tick_check_sched_deps_info =
3415 NULL,
3417 NULL,
3418 NULL,
3419 NULL,
3420 NULL,
3421 NULL,
3422 NULL,
3423 haifa_note_reg_set,
3424 haifa_note_reg_clobber,
3425 haifa_note_reg_use,
3426 tick_check_note_mem_dep,
3427 tick_check_note_dep,
3429 0, 0, 0
3432 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3433 scheduled. Return 0 if all data from producers in DC is ready. */
3435 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3437 int cycles_left;
3438 /* Initialize variables. */
3439 tick_check_data.expr = expr;
3440 tick_check_data.cycle = 0;
3441 tick_check_data.seen_true_dep_p = false;
3442 sched_deps_info = &tick_check_sched_deps_info;
3444 gcc_assert (!dc->readonly);
3445 dc->readonly = 1;
3446 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3447 dc->readonly = 0;
3449 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3451 return cycles_left >= 0 ? cycles_left : 0;
3455 /* Functions to work with insns. */
3457 /* Returns true if LHS of INSN is the same as DEST of an insn
3458 being moved. */
3459 bool
3460 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3462 rtx lhs = INSN_LHS (insn);
3464 if (lhs == NULL || dest == NULL)
3465 return false;
3467 return rtx_equal_p (lhs, dest);
3470 /* Return s_i_d entry of INSN. Callable from debugger. */
3471 sel_insn_data_def
3472 insn_sid (insn_t insn)
3474 return *SID (insn);
3477 /* True when INSN is a speculative check. We can tell this by looking
3478 at the data structures of the selective scheduler, not by examining
3479 the pattern. */
3480 bool
3481 sel_insn_is_speculation_check (rtx insn)
3483 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3486 /* Extracts machine mode MODE and destination location DST_LOC
3487 for given INSN. */
3488 void
3489 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3491 rtx pat = PATTERN (insn);
3493 gcc_assert (dst_loc);
3494 gcc_assert (GET_CODE (pat) == SET);
3496 *dst_loc = SET_DEST (pat);
3498 gcc_assert (*dst_loc);
3499 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3501 if (mode)
3502 *mode = GET_MODE (*dst_loc);
3505 /* Returns true when moving through JUMP will result in bookkeeping
3506 creation. */
3507 bool
3508 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3510 insn_t succ;
3511 succ_iterator si;
3513 FOR_EACH_SUCC (succ, si, jump)
3514 if (sel_num_cfg_preds_gt_1 (succ))
3515 return true;
3517 return false;
3520 /* Return 'true' if INSN is the only one in its basic block. */
3521 static bool
3522 insn_is_the_only_one_in_bb_p (insn_t insn)
3524 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3527 #ifdef ENABLE_CHECKING
3528 /* Check that the region we're scheduling still has at most one
3529 backedge. */
3530 static void
3531 verify_backedges (void)
3533 if (pipelining_p)
3535 int i, n = 0;
3536 edge e;
3537 edge_iterator ei;
3539 for (i = 0; i < current_nr_blocks; i++)
3540 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3541 if (in_current_region_p (e->dest)
3542 && BLOCK_TO_BB (e->dest->index) < i)
3543 n++;
3545 gcc_assert (n <= 1);
3548 #endif
3551 /* Functions to work with control flow. */
3553 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3554 are sorted in topological order (it might have been invalidated by
3555 redirecting an edge). */
3556 static void
3557 sel_recompute_toporder (void)
3559 int i, n, rgn;
3560 int *postorder, n_blocks;
3562 postorder = XALLOCAVEC (int, n_basic_blocks);
3563 n_blocks = post_order_compute (postorder, false, false);
3565 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3566 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3567 if (CONTAINING_RGN (postorder[i]) == rgn)
3569 BLOCK_TO_BB (postorder[i]) = n;
3570 BB_TO_BLOCK (n) = postorder[i];
3571 n++;
3574 /* Assert that we updated info for all blocks. We may miss some blocks if
3575 this function is called when redirecting an edge made a block
3576 unreachable, but that block is not deleted yet. */
3577 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3580 /* Tidy the possibly empty block BB. */
3581 static bool
3582 maybe_tidy_empty_bb (basic_block bb)
3584 basic_block succ_bb, pred_bb;
3585 VEC (basic_block, heap) *dom_bbs;
3586 edge e;
3587 edge_iterator ei;
3588 bool rescan_p;
3590 /* Keep empty bb only if this block immediately precedes EXIT and
3591 has incoming non-fallthrough edge, or it has no predecessors or
3592 successors. Otherwise remove it. */
3593 if (!sel_bb_empty_p (bb)
3594 || (single_succ_p (bb)
3595 && single_succ (bb) == EXIT_BLOCK_PTR
3596 && (!single_pred_p (bb)
3597 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3598 || EDGE_COUNT (bb->preds) == 0
3599 || EDGE_COUNT (bb->succs) == 0)
3600 return false;
3602 /* Do not attempt to redirect complex edges. */
3603 FOR_EACH_EDGE (e, ei, bb->preds)
3604 if (e->flags & EDGE_COMPLEX)
3605 return false;
3607 free_data_sets (bb);
3609 /* Do not delete BB if it has more than one successor.
3610 That can occur when we moving a jump. */
3611 if (!single_succ_p (bb))
3613 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3614 sel_merge_blocks (bb->prev_bb, bb);
3615 return true;
3618 succ_bb = single_succ (bb);
3619 rescan_p = true;
3620 pred_bb = NULL;
3621 dom_bbs = NULL;
3623 /* Redirect all non-fallthru edges to the next bb. */
3624 while (rescan_p)
3626 rescan_p = false;
3628 FOR_EACH_EDGE (e, ei, bb->preds)
3630 pred_bb = e->src;
3632 if (!(e->flags & EDGE_FALLTHRU))
3634 /* We can not invalidate computed topological order by moving
3635 the edge destination block (E->SUCC) along a fallthru edge.
3637 We will update dominators here only when we'll get
3638 an unreachable block when redirecting, otherwise
3639 sel_redirect_edge_and_branch will take care of it. */
3640 if (e->dest != bb
3641 && single_pred_p (e->dest))
3642 VEC_safe_push (basic_block, heap, dom_bbs, e->dest);
3643 sel_redirect_edge_and_branch (e, succ_bb);
3644 rescan_p = true;
3645 break;
3647 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3648 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3649 still have to adjust it. */
3650 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3652 /* If possible, try to remove the unneeded conditional jump. */
3653 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3654 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3656 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3657 tidy_fallthru_edge (e);
3659 else
3660 sel_redirect_edge_and_branch (e, succ_bb);
3661 rescan_p = true;
3662 break;
3667 if (can_merge_blocks_p (bb->prev_bb, bb))
3668 sel_merge_blocks (bb->prev_bb, bb);
3669 else
3671 /* This is a block without fallthru predecessor. Just delete it. */
3672 gcc_assert (pred_bb != NULL);
3674 if (in_current_region_p (pred_bb))
3675 move_bb_info (pred_bb, bb);
3676 remove_empty_bb (bb, true);
3679 if (!VEC_empty (basic_block, dom_bbs))
3681 VEC_safe_push (basic_block, heap, dom_bbs, succ_bb);
3682 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3683 VEC_free (basic_block, heap, dom_bbs);
3686 return true;
3689 /* Tidy the control flow after we have removed original insn from
3690 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3691 is true, also try to optimize control flow on non-empty blocks. */
3692 bool
3693 tidy_control_flow (basic_block xbb, bool full_tidying)
3695 bool changed = true;
3696 insn_t first, last;
3698 /* First check whether XBB is empty. */
3699 changed = maybe_tidy_empty_bb (xbb);
3700 if (changed || !full_tidying)
3701 return changed;
3703 /* Check if there is a unnecessary jump after insn left. */
3704 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3705 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3706 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3708 if (sel_remove_insn (BB_END (xbb), false, false))
3709 return true;
3710 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3713 first = sel_bb_head (xbb);
3714 last = sel_bb_end (xbb);
3715 if (MAY_HAVE_DEBUG_INSNS)
3717 if (first != last && DEBUG_INSN_P (first))
3719 first = NEXT_INSN (first);
3720 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3722 if (first != last && DEBUG_INSN_P (last))
3724 last = PREV_INSN (last);
3725 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3727 /* Check if there is an unnecessary jump in previous basic block leading
3728 to next basic block left after removing INSN from stream.
3729 If it is so, remove that jump and redirect edge to current
3730 basic block (where there was INSN before deletion). This way
3731 when NOP will be deleted several instructions later with its
3732 basic block we will not get a jump to next instruction, which
3733 can be harmful. */
3734 if (first == last
3735 && !sel_bb_empty_p (xbb)
3736 && INSN_NOP_P (last)
3737 /* Flow goes fallthru from current block to the next. */
3738 && EDGE_COUNT (xbb->succs) == 1
3739 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3740 /* When successor is an EXIT block, it may not be the next block. */
3741 && single_succ (xbb) != EXIT_BLOCK_PTR
3742 /* And unconditional jump in previous basic block leads to
3743 next basic block of XBB and this jump can be safely removed. */
3744 && in_current_region_p (xbb->prev_bb)
3745 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3746 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3747 /* Also this jump is not at the scheduling boundary. */
3748 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3750 bool recompute_toporder_p;
3751 /* Clear data structures of jump - jump itself will be removed
3752 by sel_redirect_edge_and_branch. */
3753 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3754 recompute_toporder_p
3755 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3757 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3759 /* It can turn out that after removing unused jump, basic block
3760 that contained that jump, becomes empty too. In such case
3761 remove it too. */
3762 if (sel_bb_empty_p (xbb->prev_bb))
3763 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3764 if (recompute_toporder_p)
3765 sel_recompute_toporder ();
3768 #ifdef ENABLE_CHECKING
3769 verify_backedges ();
3770 verify_dominators (CDI_DOMINATORS);
3771 #endif
3773 return changed;
3776 /* Purge meaningless empty blocks in the middle of a region. */
3777 void
3778 purge_empty_blocks (void)
3780 int i;
3782 /* Do not attempt to delete the first basic block in the region. */
3783 for (i = 1; i < current_nr_blocks; )
3785 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3787 if (maybe_tidy_empty_bb (b))
3788 continue;
3790 i++;
3794 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3795 do not delete insn's data, because it will be later re-emitted.
3796 Return true if we have removed some blocks afterwards. */
3797 bool
3798 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3800 basic_block bb = BLOCK_FOR_INSN (insn);
3802 gcc_assert (INSN_IN_STREAM_P (insn));
3804 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3806 expr_t expr;
3807 av_set_iterator i;
3809 /* When we remove a debug insn that is head of a BB, it remains
3810 in the AV_SET of the block, but it shouldn't. */
3811 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3812 if (EXPR_INSN_RTX (expr) == insn)
3814 av_set_iter_remove (&i);
3815 break;
3819 if (only_disconnect)
3821 insn_t prev = PREV_INSN (insn);
3822 insn_t next = NEXT_INSN (insn);
3823 basic_block bb = BLOCK_FOR_INSN (insn);
3825 NEXT_INSN (prev) = next;
3826 PREV_INSN (next) = prev;
3828 if (BB_HEAD (bb) == insn)
3830 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3831 BB_HEAD (bb) = prev;
3833 if (BB_END (bb) == insn)
3834 BB_END (bb) = prev;
3836 else
3838 remove_insn (insn);
3839 clear_expr (INSN_EXPR (insn));
3842 /* It is necessary to null this fields before calling add_insn (). */
3843 PREV_INSN (insn) = NULL_RTX;
3844 NEXT_INSN (insn) = NULL_RTX;
3846 return tidy_control_flow (bb, full_tidying);
3849 /* Estimate number of the insns in BB. */
3850 static int
3851 sel_estimate_number_of_insns (basic_block bb)
3853 int res = 0;
3854 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3856 for (; insn != next_tail; insn = NEXT_INSN (insn))
3857 if (NONDEBUG_INSN_P (insn))
3858 res++;
3860 return res;
3863 /* We don't need separate luids for notes or labels. */
3864 static int
3865 sel_luid_for_non_insn (rtx x)
3867 gcc_assert (NOTE_P (x) || LABEL_P (x));
3869 return -1;
3872 /* Return seqno of the only predecessor of INSN. */
3873 static int
3874 get_seqno_of_a_pred (insn_t insn)
3876 int seqno;
3878 gcc_assert (INSN_SIMPLEJUMP_P (insn));
3880 if (!sel_bb_head_p (insn))
3881 seqno = INSN_SEQNO (PREV_INSN (insn));
3882 else
3884 basic_block bb = BLOCK_FOR_INSN (insn);
3886 if (single_pred_p (bb)
3887 && !in_current_region_p (single_pred (bb)))
3889 /* We can have preds outside a region when splitting edges
3890 for pipelining of an outer loop. Use succ instead.
3891 There should be only one of them. */
3892 insn_t succ = NULL;
3893 succ_iterator si;
3894 bool first = true;
3896 gcc_assert (flag_sel_sched_pipelining_outer_loops
3897 && current_loop_nest);
3898 FOR_EACH_SUCC_1 (succ, si, insn,
3899 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3901 gcc_assert (first);
3902 first = false;
3905 gcc_assert (succ != NULL);
3906 seqno = INSN_SEQNO (succ);
3908 else
3910 insn_t *preds;
3911 int n;
3913 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3914 gcc_assert (n == 1);
3916 seqno = INSN_SEQNO (preds[0]);
3918 free (preds);
3922 return seqno;
3925 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
3926 with positive seqno exist. */
3928 get_seqno_by_preds (rtx insn)
3930 basic_block bb = BLOCK_FOR_INSN (insn);
3931 rtx tmp = insn, head = BB_HEAD (bb);
3932 insn_t *preds;
3933 int n, i, seqno;
3935 while (tmp != head)
3936 if (INSN_P (tmp))
3937 return INSN_SEQNO (tmp);
3938 else
3939 tmp = PREV_INSN (tmp);
3941 cfg_preds (bb, &preds, &n);
3942 for (i = 0, seqno = -1; i < n; i++)
3943 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3945 return seqno;
3950 /* Extend pass-scope data structures for basic blocks. */
3951 void
3952 sel_extend_global_bb_info (void)
3954 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
3955 last_basic_block);
3958 /* Extend region-scope data structures for basic blocks. */
3959 static void
3960 extend_region_bb_info (void)
3962 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
3963 last_basic_block);
3966 /* Extend all data structures to fit for all basic blocks. */
3967 static void
3968 extend_bb_info (void)
3970 sel_extend_global_bb_info ();
3971 extend_region_bb_info ();
3974 /* Finalize pass-scope data structures for basic blocks. */
3975 void
3976 sel_finish_global_bb_info (void)
3978 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
3981 /* Finalize region-scope data structures for basic blocks. */
3982 static void
3983 finish_region_bb_info (void)
3985 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
3989 /* Data for each insn in current region. */
3990 VEC (sel_insn_data_def, heap) *s_i_d = NULL;
3992 /* A vector for the insns we've emitted. */
3993 static insn_vec_t new_insns = NULL;
3995 /* Extend data structures for insns from current region. */
3996 static void
3997 extend_insn_data (void)
3999 int reserve;
4001 sched_extend_target ();
4002 sched_deps_init (false);
4004 /* Extend data structures for insns from current region. */
4005 reserve = (sched_max_luid + 1
4006 - VEC_length (sel_insn_data_def, s_i_d));
4007 if (reserve > 0
4008 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
4010 int size;
4012 if (sched_max_luid / 2 > 1024)
4013 size = sched_max_luid + 1024;
4014 else
4015 size = 3 * sched_max_luid / 2;
4018 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
4022 /* Finalize data structures for insns from current region. */
4023 static void
4024 finish_insns (void)
4026 unsigned i;
4028 /* Clear here all dependence contexts that may have left from insns that were
4029 removed during the scheduling. */
4030 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
4032 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
4034 if (sid_entry->live)
4035 return_regset_to_pool (sid_entry->live);
4036 if (sid_entry->analyzed_deps)
4038 BITMAP_FREE (sid_entry->analyzed_deps);
4039 BITMAP_FREE (sid_entry->found_deps);
4040 htab_delete (sid_entry->transformed_insns);
4041 free_deps (&sid_entry->deps_context);
4043 if (EXPR_VINSN (&sid_entry->expr))
4045 clear_expr (&sid_entry->expr);
4047 /* Also, clear CANT_MOVE bit here, because we really don't want it
4048 to be passed to the next region. */
4049 CANT_MOVE_BY_LUID (i) = 0;
4053 VEC_free (sel_insn_data_def, heap, s_i_d);
4056 /* A proxy to pass initialization data to init_insn (). */
4057 static sel_insn_data_def _insn_init_ssid;
4058 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4060 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4061 static bool insn_init_create_new_vinsn_p;
4063 /* Set all necessary data for initialization of the new insn[s]. */
4064 static expr_t
4065 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4067 expr_t x = &insn_init_ssid->expr;
4069 copy_expr_onside (x, expr);
4070 if (vi != NULL)
4072 insn_init_create_new_vinsn_p = false;
4073 change_vinsn_in_expr (x, vi);
4075 else
4076 insn_init_create_new_vinsn_p = true;
4078 insn_init_ssid->seqno = seqno;
4079 return x;
4082 /* Init data for INSN. */
4083 static void
4084 init_insn_data (insn_t insn)
4086 expr_t expr;
4087 sel_insn_data_t ssid = insn_init_ssid;
4089 /* The fields mentioned below are special and hence are not being
4090 propagated to the new insns. */
4091 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4092 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4093 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4095 expr = INSN_EXPR (insn);
4096 copy_expr (expr, &ssid->expr);
4097 prepare_insn_expr (insn, ssid->seqno);
4099 if (insn_init_create_new_vinsn_p)
4100 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4102 if (first_time_insn_init (insn))
4103 init_first_time_insn_data (insn);
4106 /* This is used to initialize spurious jumps generated by
4107 sel_redirect_edge (). */
4108 static void
4109 init_simplejump_data (insn_t insn)
4111 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4112 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
4113 false, true);
4114 INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
4115 init_first_time_insn_data (insn);
4118 /* Perform deferred initialization of insns. This is used to process
4119 a new jump that may be created by redirect_edge. */
4120 void
4121 sel_init_new_insn (insn_t insn, int flags)
4123 /* We create data structures for bb when the first insn is emitted in it. */
4124 if (INSN_P (insn)
4125 && INSN_IN_STREAM_P (insn)
4126 && insn_is_the_only_one_in_bb_p (insn))
4128 extend_bb_info ();
4129 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4132 if (flags & INSN_INIT_TODO_LUID)
4133 sched_init_luids (NULL, NULL, NULL, insn);
4135 if (flags & INSN_INIT_TODO_SSID)
4137 extend_insn_data ();
4138 init_insn_data (insn);
4139 clear_expr (&insn_init_ssid->expr);
4142 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4144 extend_insn_data ();
4145 init_simplejump_data (insn);
4148 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4149 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4153 /* Functions to init/finish work with lv sets. */
4155 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4156 static void
4157 init_lv_set (basic_block bb)
4159 gcc_assert (!BB_LV_SET_VALID_P (bb));
4161 BB_LV_SET (bb) = get_regset_from_pool ();
4162 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4163 BB_LV_SET_VALID_P (bb) = true;
4166 /* Copy liveness information to BB from FROM_BB. */
4167 static void
4168 copy_lv_set_from (basic_block bb, basic_block from_bb)
4170 gcc_assert (!BB_LV_SET_VALID_P (bb));
4172 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4173 BB_LV_SET_VALID_P (bb) = true;
4176 /* Initialize lv set of all bb headers. */
4177 void
4178 init_lv_sets (void)
4180 basic_block bb;
4182 /* Initialize of LV sets. */
4183 FOR_EACH_BB (bb)
4184 init_lv_set (bb);
4186 /* Don't forget EXIT_BLOCK. */
4187 init_lv_set (EXIT_BLOCK_PTR);
4190 /* Release lv set of HEAD. */
4191 static void
4192 free_lv_set (basic_block bb)
4194 gcc_assert (BB_LV_SET (bb) != NULL);
4196 return_regset_to_pool (BB_LV_SET (bb));
4197 BB_LV_SET (bb) = NULL;
4198 BB_LV_SET_VALID_P (bb) = false;
4201 /* Finalize lv sets of all bb headers. */
4202 void
4203 free_lv_sets (void)
4205 basic_block bb;
4207 /* Don't forget EXIT_BLOCK. */
4208 free_lv_set (EXIT_BLOCK_PTR);
4210 /* Free LV sets. */
4211 FOR_EACH_BB (bb)
4212 if (BB_LV_SET (bb))
4213 free_lv_set (bb);
4216 /* Initialize an invalid AV_SET for BB.
4217 This set will be updated next time compute_av () process BB. */
4218 static void
4219 invalidate_av_set (basic_block bb)
4221 gcc_assert (BB_AV_LEVEL (bb) <= 0
4222 && BB_AV_SET (bb) == NULL);
4224 BB_AV_LEVEL (bb) = -1;
4227 /* Create initial data sets for BB (they will be invalid). */
4228 static void
4229 create_initial_data_sets (basic_block bb)
4231 if (BB_LV_SET (bb))
4232 BB_LV_SET_VALID_P (bb) = false;
4233 else
4234 BB_LV_SET (bb) = get_regset_from_pool ();
4235 invalidate_av_set (bb);
4238 /* Free av set of BB. */
4239 static void
4240 free_av_set (basic_block bb)
4242 av_set_clear (&BB_AV_SET (bb));
4243 BB_AV_LEVEL (bb) = 0;
4246 /* Free data sets of BB. */
4247 void
4248 free_data_sets (basic_block bb)
4250 free_lv_set (bb);
4251 free_av_set (bb);
4254 /* Exchange lv sets of TO and FROM. */
4255 static void
4256 exchange_lv_sets (basic_block to, basic_block from)
4259 regset to_lv_set = BB_LV_SET (to);
4261 BB_LV_SET (to) = BB_LV_SET (from);
4262 BB_LV_SET (from) = to_lv_set;
4266 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4268 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4269 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4274 /* Exchange av sets of TO and FROM. */
4275 static void
4276 exchange_av_sets (basic_block to, basic_block from)
4279 av_set_t to_av_set = BB_AV_SET (to);
4281 BB_AV_SET (to) = BB_AV_SET (from);
4282 BB_AV_SET (from) = to_av_set;
4286 int to_av_level = BB_AV_LEVEL (to);
4288 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4289 BB_AV_LEVEL (from) = to_av_level;
4293 /* Exchange data sets of TO and FROM. */
4294 void
4295 exchange_data_sets (basic_block to, basic_block from)
4297 exchange_lv_sets (to, from);
4298 exchange_av_sets (to, from);
4301 /* Copy data sets of FROM to TO. */
4302 void
4303 copy_data_sets (basic_block to, basic_block from)
4305 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4306 gcc_assert (BB_AV_SET (to) == NULL);
4308 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4309 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4311 if (BB_AV_SET_VALID_P (from))
4313 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4315 if (BB_LV_SET_VALID_P (from))
4317 gcc_assert (BB_LV_SET (to) != NULL);
4318 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4322 /* Return an av set for INSN, if any. */
4323 av_set_t
4324 get_av_set (insn_t insn)
4326 av_set_t av_set;
4328 gcc_assert (AV_SET_VALID_P (insn));
4330 if (sel_bb_head_p (insn))
4331 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4332 else
4333 av_set = NULL;
4335 return av_set;
4338 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4340 get_av_level (insn_t insn)
4342 int av_level;
4344 gcc_assert (INSN_P (insn));
4346 if (sel_bb_head_p (insn))
4347 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4348 else
4349 av_level = INSN_WS_LEVEL (insn);
4351 return av_level;
4356 /* Variables to work with control-flow graph. */
4358 /* The basic block that already has been processed by the sched_data_update (),
4359 but hasn't been in sel_add_bb () yet. */
4360 static VEC (basic_block, heap) *last_added_blocks = NULL;
4362 /* A pool for allocating successor infos. */
4363 static struct
4365 /* A stack for saving succs_info structures. */
4366 struct succs_info *stack;
4368 /* Its size. */
4369 int size;
4371 /* Top of the stack. */
4372 int top;
4374 /* Maximal value of the top. */
4375 int max_top;
4376 } succs_info_pool;
4378 /* Functions to work with control-flow graph. */
4380 /* Return basic block note of BB. */
4381 insn_t
4382 sel_bb_head (basic_block bb)
4384 insn_t head;
4386 if (bb == EXIT_BLOCK_PTR)
4388 gcc_assert (exit_insn != NULL_RTX);
4389 head = exit_insn;
4391 else
4393 insn_t note;
4395 note = bb_note (bb);
4396 head = next_nonnote_insn (note);
4398 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4399 head = NULL_RTX;
4402 return head;
4405 /* Return true if INSN is a basic block header. */
4406 bool
4407 sel_bb_head_p (insn_t insn)
4409 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4412 /* Return last insn of BB. */
4413 insn_t
4414 sel_bb_end (basic_block bb)
4416 if (sel_bb_empty_p (bb))
4417 return NULL_RTX;
4419 gcc_assert (bb != EXIT_BLOCK_PTR);
4421 return BB_END (bb);
4424 /* Return true if INSN is the last insn in its basic block. */
4425 bool
4426 sel_bb_end_p (insn_t insn)
4428 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4431 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4432 bool
4433 sel_bb_empty_p (basic_block bb)
4435 return sel_bb_head (bb) == NULL;
4438 /* True when BB belongs to the current scheduling region. */
4439 bool
4440 in_current_region_p (basic_block bb)
4442 if (bb->index < NUM_FIXED_BLOCKS)
4443 return false;
4445 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4448 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4449 basic_block
4450 fallthru_bb_of_jump (rtx jump)
4452 if (!JUMP_P (jump))
4453 return NULL;
4455 if (!any_condjump_p (jump))
4456 return NULL;
4458 /* A basic block that ends with a conditional jump may still have one successor
4459 (and be followed by a barrier), we are not interested. */
4460 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4461 return NULL;
4463 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4466 /* Remove all notes from BB. */
4467 static void
4468 init_bb (basic_block bb)
4470 remove_notes (bb_note (bb), BB_END (bb));
4471 BB_NOTE_LIST (bb) = note_list;
4474 void
4475 sel_init_bbs (bb_vec_t bbs, basic_block bb)
4477 const struct sched_scan_info_def ssi =
4479 extend_bb_info, /* extend_bb */
4480 init_bb, /* init_bb */
4481 NULL, /* extend_insn */
4482 NULL /* init_insn */
4485 sched_scan (&ssi, bbs, bb, new_insns, NULL);
4488 /* Restore notes for the whole region. */
4489 static void
4490 sel_restore_notes (void)
4492 int bb;
4493 insn_t insn;
4495 for (bb = 0; bb < current_nr_blocks; bb++)
4497 basic_block first, last;
4499 first = EBB_FIRST_BB (bb);
4500 last = EBB_LAST_BB (bb)->next_bb;
4504 note_list = BB_NOTE_LIST (first);
4505 restore_other_notes (NULL, first);
4506 BB_NOTE_LIST (first) = NULL_RTX;
4508 FOR_BB_INSNS (first, insn)
4509 if (NONDEBUG_INSN_P (insn))
4510 reemit_notes (insn);
4512 first = first->next_bb;
4514 while (first != last);
4518 /* Free per-bb data structures. */
4519 void
4520 sel_finish_bbs (void)
4522 sel_restore_notes ();
4524 /* Remove current loop preheader from this loop. */
4525 if (current_loop_nest)
4526 sel_remove_loop_preheader ();
4528 finish_region_bb_info ();
4531 /* Return true if INSN has a single successor of type FLAGS. */
4532 bool
4533 sel_insn_has_single_succ_p (insn_t insn, int flags)
4535 insn_t succ;
4536 succ_iterator si;
4537 bool first_p = true;
4539 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4541 if (first_p)
4542 first_p = false;
4543 else
4544 return false;
4547 return true;
4550 /* Allocate successor's info. */
4551 static struct succs_info *
4552 alloc_succs_info (void)
4554 if (succs_info_pool.top == succs_info_pool.max_top)
4556 int i;
4558 if (++succs_info_pool.max_top >= succs_info_pool.size)
4559 gcc_unreachable ();
4561 i = ++succs_info_pool.top;
4562 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4563 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4564 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4566 else
4567 succs_info_pool.top++;
4569 return &succs_info_pool.stack[succs_info_pool.top];
4572 /* Free successor's info. */
4573 void
4574 free_succs_info (struct succs_info * sinfo)
4576 gcc_assert (succs_info_pool.top >= 0
4577 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4578 succs_info_pool.top--;
4580 /* Clear stale info. */
4581 VEC_block_remove (rtx, sinfo->succs_ok,
4582 0, VEC_length (rtx, sinfo->succs_ok));
4583 VEC_block_remove (rtx, sinfo->succs_other,
4584 0, VEC_length (rtx, sinfo->succs_other));
4585 VEC_block_remove (int, sinfo->probs_ok,
4586 0, VEC_length (int, sinfo->probs_ok));
4587 sinfo->all_prob = 0;
4588 sinfo->succs_ok_n = 0;
4589 sinfo->all_succs_n = 0;
4592 /* Compute successor info for INSN. FLAGS are the flags passed
4593 to the FOR_EACH_SUCC_1 iterator. */
4594 struct succs_info *
4595 compute_succs_info (insn_t insn, short flags)
4597 succ_iterator si;
4598 insn_t succ;
4599 struct succs_info *sinfo = alloc_succs_info ();
4601 /* Traverse *all* successors and decide what to do with each. */
4602 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4604 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4605 perform code motion through inner loops. */
4606 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4608 if (current_flags & flags)
4610 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4611 VEC_safe_push (int, heap, sinfo->probs_ok,
4612 /* FIXME: Improve calculation when skipping
4613 inner loop to exits. */
4614 (si.bb_end
4615 ? si.e1->probability
4616 : REG_BR_PROB_BASE));
4617 sinfo->succs_ok_n++;
4619 else
4620 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4622 /* Compute all_prob. */
4623 if (!si.bb_end)
4624 sinfo->all_prob = REG_BR_PROB_BASE;
4625 else
4626 sinfo->all_prob += si.e1->probability;
4628 sinfo->all_succs_n++;
4631 return sinfo;
4634 /* Return the predecessors of BB in PREDS and their number in N.
4635 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4636 static void
4637 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4639 edge e;
4640 edge_iterator ei;
4642 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4644 FOR_EACH_EDGE (e, ei, bb->preds)
4646 basic_block pred_bb = e->src;
4647 insn_t bb_end = BB_END (pred_bb);
4649 if (!in_current_region_p (pred_bb))
4651 gcc_assert (flag_sel_sched_pipelining_outer_loops
4652 && current_loop_nest);
4653 continue;
4656 if (sel_bb_empty_p (pred_bb))
4657 cfg_preds_1 (pred_bb, preds, n, size);
4658 else
4660 if (*n == *size)
4661 *preds = XRESIZEVEC (insn_t, *preds,
4662 (*size = 2 * *size + 1));
4663 (*preds)[(*n)++] = bb_end;
4667 gcc_assert (*n != 0
4668 || (flag_sel_sched_pipelining_outer_loops
4669 && current_loop_nest));
4672 /* Find all predecessors of BB and record them in PREDS and their number
4673 in N. Empty blocks are skipped, and only normal (forward in-region)
4674 edges are processed. */
4675 static void
4676 cfg_preds (basic_block bb, insn_t **preds, int *n)
4678 int size = 0;
4680 *preds = NULL;
4681 *n = 0;
4682 cfg_preds_1 (bb, preds, n, &size);
4685 /* Returns true if we are moving INSN through join point. */
4686 bool
4687 sel_num_cfg_preds_gt_1 (insn_t insn)
4689 basic_block bb;
4691 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4692 return false;
4694 bb = BLOCK_FOR_INSN (insn);
4696 while (1)
4698 if (EDGE_COUNT (bb->preds) > 1)
4699 return true;
4701 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4702 bb = EDGE_PRED (bb, 0)->src;
4704 if (!sel_bb_empty_p (bb))
4705 break;
4708 return false;
4711 /* Returns true when BB should be the end of an ebb. Adapted from the
4712 code in sched-ebb.c. */
4713 bool
4714 bb_ends_ebb_p (basic_block bb)
4716 basic_block next_bb = bb_next_bb (bb);
4717 edge e;
4719 if (next_bb == EXIT_BLOCK_PTR
4720 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4721 || (LABEL_P (BB_HEAD (next_bb))
4722 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4723 Work around that. */
4724 && !single_pred_p (next_bb)))
4725 return true;
4727 if (!in_current_region_p (next_bb))
4728 return true;
4730 e = find_fallthru_edge (bb->succs);
4731 if (e)
4733 gcc_assert (e->dest == next_bb);
4735 return false;
4738 return true;
4741 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4742 successor of INSN. */
4743 bool
4744 in_same_ebb_p (insn_t insn, insn_t succ)
4746 basic_block ptr = BLOCK_FOR_INSN (insn);
4748 for(;;)
4750 if (ptr == BLOCK_FOR_INSN (succ))
4751 return true;
4753 if (bb_ends_ebb_p (ptr))
4754 return false;
4756 ptr = bb_next_bb (ptr);
4759 gcc_unreachable ();
4760 return false;
4763 /* Recomputes the reverse topological order for the function and
4764 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4765 modified appropriately. */
4766 static void
4767 recompute_rev_top_order (void)
4769 int *postorder;
4770 int n_blocks, i;
4772 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4774 rev_top_order_index_len = last_basic_block;
4775 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4776 rev_top_order_index_len);
4779 postorder = XNEWVEC (int, n_basic_blocks);
4781 n_blocks = post_order_compute (postorder, true, false);
4782 gcc_assert (n_basic_blocks == n_blocks);
4784 /* Build reverse function: for each basic block with BB->INDEX == K
4785 rev_top_order_index[K] is it's reverse topological sort number. */
4786 for (i = 0; i < n_blocks; i++)
4788 gcc_assert (postorder[i] < rev_top_order_index_len);
4789 rev_top_order_index[postorder[i]] = i;
4792 free (postorder);
4795 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4796 void
4797 clear_outdated_rtx_info (basic_block bb)
4799 rtx insn;
4801 FOR_BB_INSNS (bb, insn)
4802 if (INSN_P (insn))
4804 SCHED_GROUP_P (insn) = 0;
4805 INSN_AFTER_STALL_P (insn) = 0;
4806 INSN_SCHED_TIMES (insn) = 0;
4807 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4809 /* We cannot use the changed caches, as previously we could ignore
4810 the LHS dependence due to enabled renaming and transform
4811 the expression, and currently we'll be unable to do this. */
4812 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4816 /* Add BB_NOTE to the pool of available basic block notes. */
4817 static void
4818 return_bb_to_pool (basic_block bb)
4820 rtx note = bb_note (bb);
4822 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4823 && bb->aux == NULL);
4825 /* It turns out that current cfg infrastructure does not support
4826 reuse of basic blocks. Don't bother for now. */
4827 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4830 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4831 static rtx
4832 get_bb_note_from_pool (void)
4834 if (VEC_empty (rtx, bb_note_pool))
4835 return NULL_RTX;
4836 else
4838 rtx note = VEC_pop (rtx, bb_note_pool);
4840 PREV_INSN (note) = NULL_RTX;
4841 NEXT_INSN (note) = NULL_RTX;
4843 return note;
4847 /* Free bb_note_pool. */
4848 void
4849 free_bb_note_pool (void)
4851 VEC_free (rtx, heap, bb_note_pool);
4854 /* Setup scheduler pool and successor structure. */
4855 void
4856 alloc_sched_pools (void)
4858 int succs_size;
4860 succs_size = MAX_WS + 1;
4861 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4862 succs_info_pool.size = succs_size;
4863 succs_info_pool.top = -1;
4864 succs_info_pool.max_top = -1;
4866 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
4867 sizeof (struct _list_node), 500);
4870 /* Free the pools. */
4871 void
4872 free_sched_pools (void)
4874 int i;
4876 free_alloc_pool (sched_lists_pool);
4877 gcc_assert (succs_info_pool.top == -1);
4878 for (i = 0; i < succs_info_pool.max_top; i++)
4880 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4881 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4882 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
4884 free (succs_info_pool.stack);
4888 /* Returns a position in RGN where BB can be inserted retaining
4889 topological order. */
4890 static int
4891 find_place_to_insert_bb (basic_block bb, int rgn)
4893 bool has_preds_outside_rgn = false;
4894 edge e;
4895 edge_iterator ei;
4897 /* Find whether we have preds outside the region. */
4898 FOR_EACH_EDGE (e, ei, bb->preds)
4899 if (!in_current_region_p (e->src))
4901 has_preds_outside_rgn = true;
4902 break;
4905 /* Recompute the top order -- needed when we have > 1 pred
4906 and in case we don't have preds outside. */
4907 if (flag_sel_sched_pipelining_outer_loops
4908 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4910 int i, bbi = bb->index, cur_bbi;
4912 recompute_rev_top_order ();
4913 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4915 cur_bbi = BB_TO_BLOCK (i);
4916 if (rev_top_order_index[bbi]
4917 < rev_top_order_index[cur_bbi])
4918 break;
4921 /* We skipped the right block, so we increase i. We accomodate
4922 it for increasing by step later, so we decrease i. */
4923 return (i + 1) - 1;
4925 else if (has_preds_outside_rgn)
4927 /* This is the case when we generate an extra empty block
4928 to serve as region head during pipelining. */
4929 e = EDGE_SUCC (bb, 0);
4930 gcc_assert (EDGE_COUNT (bb->succs) == 1
4931 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
4932 && (BLOCK_TO_BB (e->dest->index) == 0));
4933 return -1;
4936 /* We don't have preds outside the region. We should have
4937 the only pred, because the multiple preds case comes from
4938 the pipelining of outer loops, and that is handled above.
4939 Just take the bbi of this single pred. */
4940 if (EDGE_COUNT (bb->succs) > 0)
4942 int pred_bbi;
4944 gcc_assert (EDGE_COUNT (bb->preds) == 1);
4946 pred_bbi = EDGE_PRED (bb, 0)->src->index;
4947 return BLOCK_TO_BB (pred_bbi);
4949 else
4950 /* BB has no successors. It is safe to put it in the end. */
4951 return current_nr_blocks - 1;
4954 /* Deletes an empty basic block freeing its data. */
4955 static void
4956 delete_and_free_basic_block (basic_block bb)
4958 gcc_assert (sel_bb_empty_p (bb));
4960 if (BB_LV_SET (bb))
4961 free_lv_set (bb);
4963 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4965 /* Can't assert av_set properties because we use sel_aremove_bb
4966 when removing loop preheader from the region. At the point of
4967 removing the preheader we already have deallocated sel_region_bb_info. */
4968 gcc_assert (BB_LV_SET (bb) == NULL
4969 && !BB_LV_SET_VALID_P (bb)
4970 && BB_AV_LEVEL (bb) == 0
4971 && BB_AV_SET (bb) == NULL);
4973 delete_basic_block (bb);
4976 /* Add BB to the current region and update the region data. */
4977 static void
4978 add_block_to_current_region (basic_block bb)
4980 int i, pos, bbi = -2, rgn;
4982 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4983 bbi = find_place_to_insert_bb (bb, rgn);
4984 bbi += 1;
4985 pos = RGN_BLOCKS (rgn) + bbi;
4987 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4988 && ebb_head[bbi] == pos);
4990 /* Make a place for the new block. */
4991 extend_regions ();
4993 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4994 BLOCK_TO_BB (rgn_bb_table[i])++;
4996 memmove (rgn_bb_table + pos + 1,
4997 rgn_bb_table + pos,
4998 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5000 /* Initialize data for BB. */
5001 rgn_bb_table[pos] = bb->index;
5002 BLOCK_TO_BB (bb->index) = bbi;
5003 CONTAINING_RGN (bb->index) = rgn;
5005 RGN_NR_BLOCKS (rgn)++;
5007 for (i = rgn + 1; i <= nr_regions; i++)
5008 RGN_BLOCKS (i)++;
5011 /* Remove BB from the current region and update the region data. */
5012 static void
5013 remove_bb_from_region (basic_block bb)
5015 int i, pos, bbi = -2, rgn;
5017 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5018 bbi = BLOCK_TO_BB (bb->index);
5019 pos = RGN_BLOCKS (rgn) + bbi;
5021 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5022 && ebb_head[bbi] == pos);
5024 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5025 BLOCK_TO_BB (rgn_bb_table[i])--;
5027 memmove (rgn_bb_table + pos,
5028 rgn_bb_table + pos + 1,
5029 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5031 RGN_NR_BLOCKS (rgn)--;
5032 for (i = rgn + 1; i <= nr_regions; i++)
5033 RGN_BLOCKS (i)--;
5036 /* Add BB to the current region and update all data. If BB is NULL, add all
5037 blocks from last_added_blocks vector. */
5038 static void
5039 sel_add_bb (basic_block bb)
5041 /* Extend luids so that new notes will receive zero luids. */
5042 sched_init_luids (NULL, NULL, NULL, NULL);
5043 sched_init_bbs ();
5044 sel_init_bbs (last_added_blocks, NULL);
5046 /* When bb is passed explicitly, the vector should contain
5047 the only element that equals to bb; otherwise, the vector
5048 should not be NULL. */
5049 gcc_assert (last_added_blocks != NULL);
5051 if (bb != NULL)
5053 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5054 && VEC_index (basic_block,
5055 last_added_blocks, 0) == bb);
5056 add_block_to_current_region (bb);
5058 /* We associate creating/deleting data sets with the first insn
5059 appearing / disappearing in the bb. */
5060 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5061 create_initial_data_sets (bb);
5063 VEC_free (basic_block, heap, last_added_blocks);
5065 else
5066 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5068 int i;
5069 basic_block temp_bb = NULL;
5071 for (i = 0;
5072 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5074 add_block_to_current_region (bb);
5075 temp_bb = bb;
5078 /* We need to fetch at least one bb so we know the region
5079 to update. */
5080 gcc_assert (temp_bb != NULL);
5081 bb = temp_bb;
5083 VEC_free (basic_block, heap, last_added_blocks);
5086 rgn_setup_region (CONTAINING_RGN (bb->index));
5089 /* Remove BB from the current region and update all data.
5090 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5091 static void
5092 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5094 unsigned idx = bb->index;
5096 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5098 remove_bb_from_region (bb);
5099 return_bb_to_pool (bb);
5100 bitmap_clear_bit (blocks_to_reschedule, idx);
5102 if (remove_from_cfg_p)
5104 basic_block succ = single_succ (bb);
5105 delete_and_free_basic_block (bb);
5106 set_immediate_dominator (CDI_DOMINATORS, succ,
5107 recompute_dominator (CDI_DOMINATORS, succ));
5110 rgn_setup_region (CONTAINING_RGN (idx));
5113 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5114 static void
5115 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5117 gcc_assert (in_current_region_p (merge_bb));
5119 concat_note_lists (BB_NOTE_LIST (empty_bb),
5120 &BB_NOTE_LIST (merge_bb));
5121 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5125 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5126 region, but keep it in CFG. */
5127 static void
5128 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5130 /* The block should contain just a note or a label.
5131 We try to check whether it is unused below. */
5132 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5133 || LABEL_P (BB_HEAD (empty_bb)));
5135 /* If basic block has predecessors or successors, redirect them. */
5136 if (remove_from_cfg_p
5137 && (EDGE_COUNT (empty_bb->preds) > 0
5138 || EDGE_COUNT (empty_bb->succs) > 0))
5140 basic_block pred;
5141 basic_block succ;
5143 /* We need to init PRED and SUCC before redirecting edges. */
5144 if (EDGE_COUNT (empty_bb->preds) > 0)
5146 edge e;
5148 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5150 e = EDGE_PRED (empty_bb, 0);
5151 gcc_assert (e->src == empty_bb->prev_bb
5152 && (e->flags & EDGE_FALLTHRU));
5154 pred = empty_bb->prev_bb;
5156 else
5157 pred = NULL;
5159 if (EDGE_COUNT (empty_bb->succs) > 0)
5161 /* We do not check fallthruness here as above, because
5162 after removing a jump the edge may actually be not fallthru. */
5163 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5164 succ = EDGE_SUCC (empty_bb, 0)->dest;
5166 else
5167 succ = NULL;
5169 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5171 edge e = EDGE_PRED (empty_bb, 0);
5173 if (e->flags & EDGE_FALLTHRU)
5174 redirect_edge_succ_nodup (e, succ);
5175 else
5176 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5179 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5181 edge e = EDGE_SUCC (empty_bb, 0);
5183 if (find_edge (pred, e->dest) == NULL)
5184 redirect_edge_pred (e, pred);
5188 /* Finish removing. */
5189 sel_remove_bb (empty_bb, remove_from_cfg_p);
5192 /* An implementation of create_basic_block hook, which additionally updates
5193 per-bb data structures. */
5194 static basic_block
5195 sel_create_basic_block (void *headp, void *endp, basic_block after)
5197 basic_block new_bb;
5198 insn_t new_bb_note;
5200 gcc_assert (flag_sel_sched_pipelining_outer_loops
5201 || last_added_blocks == NULL);
5203 new_bb_note = get_bb_note_from_pool ();
5205 if (new_bb_note == NULL_RTX)
5206 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5207 else
5209 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5210 new_bb_note, after);
5211 new_bb->aux = NULL;
5214 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5216 return new_bb;
5219 /* Implement sched_init_only_bb (). */
5220 static void
5221 sel_init_only_bb (basic_block bb, basic_block after)
5223 gcc_assert (after == NULL);
5225 extend_regions ();
5226 rgn_make_new_region_out_of_new_block (bb);
5229 /* Update the latch when we've splitted or merged it from FROM block to TO.
5230 This should be checked for all outer loops, too. */
5231 static void
5232 change_loops_latches (basic_block from, basic_block to)
5234 gcc_assert (from != to);
5236 if (current_loop_nest)
5238 struct loop *loop;
5240 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5241 if (considered_for_pipelining_p (loop) && loop->latch == from)
5243 gcc_assert (loop == current_loop_nest);
5244 loop->latch = to;
5245 gcc_assert (loop_latch_edge (loop));
5250 /* Splits BB on two basic blocks, adding it to the region and extending
5251 per-bb data structures. Returns the newly created bb. */
5252 static basic_block
5253 sel_split_block (basic_block bb, rtx after)
5255 basic_block new_bb;
5256 insn_t insn;
5258 new_bb = sched_split_block_1 (bb, after);
5259 sel_add_bb (new_bb);
5261 /* This should be called after sel_add_bb, because this uses
5262 CONTAINING_RGN for the new block, which is not yet initialized.
5263 FIXME: this function may be a no-op now. */
5264 change_loops_latches (bb, new_bb);
5266 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5267 FOR_BB_INSNS (new_bb, insn)
5268 if (INSN_P (insn))
5269 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5271 if (sel_bb_empty_p (bb))
5273 gcc_assert (!sel_bb_empty_p (new_bb));
5275 /* NEW_BB has data sets that need to be updated and BB holds
5276 data sets that should be removed. Exchange these data sets
5277 so that we won't lose BB's valid data sets. */
5278 exchange_data_sets (new_bb, bb);
5279 free_data_sets (bb);
5282 if (!sel_bb_empty_p (new_bb)
5283 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5284 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5286 return new_bb;
5289 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5290 Otherwise returns NULL. */
5291 static rtx
5292 check_for_new_jump (basic_block bb, int prev_max_uid)
5294 rtx end;
5296 end = sel_bb_end (bb);
5297 if (end && INSN_UID (end) >= prev_max_uid)
5298 return end;
5299 return NULL;
5302 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5303 New means having UID at least equal to PREV_MAX_UID. */
5304 static rtx
5305 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5307 rtx jump;
5309 /* Return immediately if no new insns were emitted. */
5310 if (get_max_uid () == prev_max_uid)
5311 return NULL;
5313 /* Now check both blocks for new jumps. It will ever be only one. */
5314 if ((jump = check_for_new_jump (from, prev_max_uid)))
5315 return jump;
5317 if (jump_bb != NULL
5318 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5319 return jump;
5320 return NULL;
5323 /* Splits E and adds the newly created basic block to the current region.
5324 Returns this basic block. */
5325 basic_block
5326 sel_split_edge (edge e)
5328 basic_block new_bb, src, other_bb = NULL;
5329 int prev_max_uid;
5330 rtx jump;
5332 src = e->src;
5333 prev_max_uid = get_max_uid ();
5334 new_bb = split_edge (e);
5336 if (flag_sel_sched_pipelining_outer_loops
5337 && current_loop_nest)
5339 int i;
5340 basic_block bb;
5342 /* Some of the basic blocks might not have been added to the loop.
5343 Add them here, until this is fixed in force_fallthru. */
5344 for (i = 0;
5345 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5346 if (!bb->loop_father)
5348 add_bb_to_loop (bb, e->dest->loop_father);
5350 gcc_assert (!other_bb && (new_bb->index != bb->index));
5351 other_bb = bb;
5355 /* Add all last_added_blocks to the region. */
5356 sel_add_bb (NULL);
5358 jump = find_new_jump (src, new_bb, prev_max_uid);
5359 if (jump)
5360 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5362 /* Put the correct lv set on this block. */
5363 if (other_bb && !sel_bb_empty_p (other_bb))
5364 compute_live (sel_bb_head (other_bb));
5366 return new_bb;
5369 /* Implement sched_create_empty_bb (). */
5370 static basic_block
5371 sel_create_empty_bb (basic_block after)
5373 basic_block new_bb;
5375 new_bb = sched_create_empty_bb_1 (after);
5377 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5378 later. */
5379 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5380 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5382 VEC_free (basic_block, heap, last_added_blocks);
5383 return new_bb;
5386 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5387 will be splitted to insert a check. */
5388 basic_block
5389 sel_create_recovery_block (insn_t orig_insn)
5391 basic_block first_bb, second_bb, recovery_block;
5392 basic_block before_recovery = NULL;
5393 rtx jump;
5395 first_bb = BLOCK_FOR_INSN (orig_insn);
5396 if (sel_bb_end_p (orig_insn))
5398 /* Avoid introducing an empty block while splitting. */
5399 gcc_assert (single_succ_p (first_bb));
5400 second_bb = single_succ (first_bb);
5402 else
5403 second_bb = sched_split_block (first_bb, orig_insn);
5405 recovery_block = sched_create_recovery_block (&before_recovery);
5406 if (before_recovery)
5407 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5409 gcc_assert (sel_bb_empty_p (recovery_block));
5410 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5411 if (current_loops != NULL)
5412 add_bb_to_loop (recovery_block, first_bb->loop_father);
5414 sel_add_bb (recovery_block);
5416 jump = BB_END (recovery_block);
5417 gcc_assert (sel_bb_head (recovery_block) == jump);
5418 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5420 return recovery_block;
5423 /* Merge basic block B into basic block A. */
5424 static void
5425 sel_merge_blocks (basic_block a, basic_block b)
5427 gcc_assert (sel_bb_empty_p (b)
5428 && EDGE_COUNT (b->preds) == 1
5429 && EDGE_PRED (b, 0)->src == b->prev_bb);
5431 move_bb_info (b->prev_bb, b);
5432 remove_empty_bb (b, false);
5433 merge_blocks (a, b);
5434 change_loops_latches (b, a);
5437 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5438 data structures for possibly created bb and insns. Returns the newly
5439 added bb or NULL, when a bb was not needed. */
5440 void
5441 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5443 basic_block jump_bb, src, orig_dest = e->dest;
5444 int prev_max_uid;
5445 rtx jump;
5447 /* This function is now used only for bookkeeping code creation, where
5448 we'll never get the single pred of orig_dest block and thus will not
5449 hit unreachable blocks when updating dominator info. */
5450 gcc_assert (!sel_bb_empty_p (e->src)
5451 && !single_pred_p (orig_dest));
5452 src = e->src;
5453 prev_max_uid = get_max_uid ();
5454 jump_bb = redirect_edge_and_branch_force (e, to);
5456 if (jump_bb != NULL)
5457 sel_add_bb (jump_bb);
5459 /* This function could not be used to spoil the loop structure by now,
5460 thus we don't care to update anything. But check it to be sure. */
5461 if (current_loop_nest
5462 && pipelining_p)
5463 gcc_assert (loop_latch_edge (current_loop_nest));
5465 jump = find_new_jump (src, jump_bb, prev_max_uid);
5466 if (jump)
5467 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5468 set_immediate_dominator (CDI_DOMINATORS, to,
5469 recompute_dominator (CDI_DOMINATORS, to));
5470 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5471 recompute_dominator (CDI_DOMINATORS, orig_dest));
5474 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5475 redirected edge are in reverse topological order. */
5476 bool
5477 sel_redirect_edge_and_branch (edge e, basic_block to)
5479 bool latch_edge_p;
5480 basic_block src, orig_dest = e->dest;
5481 int prev_max_uid;
5482 rtx jump;
5483 edge redirected;
5484 bool recompute_toporder_p = false;
5485 bool maybe_unreachable = single_pred_p (orig_dest);
5487 latch_edge_p = (pipelining_p
5488 && current_loop_nest
5489 && e == loop_latch_edge (current_loop_nest));
5491 src = e->src;
5492 prev_max_uid = get_max_uid ();
5494 redirected = redirect_edge_and_branch (e, to);
5496 gcc_assert (redirected && last_added_blocks == NULL);
5498 /* When we've redirected a latch edge, update the header. */
5499 if (latch_edge_p)
5501 current_loop_nest->header = to;
5502 gcc_assert (loop_latch_edge (current_loop_nest));
5505 /* In rare situations, the topological relation between the blocks connected
5506 by the redirected edge can change (see PR42245 for an example). Update
5507 block_to_bb/bb_to_block. */
5508 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5509 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5510 recompute_toporder_p = true;
5512 jump = find_new_jump (src, NULL, prev_max_uid);
5513 if (jump)
5514 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5516 /* Only update dominator info when we don't have unreachable blocks.
5517 Otherwise we'll update in maybe_tidy_empty_bb. */
5518 if (!maybe_unreachable)
5520 set_immediate_dominator (CDI_DOMINATORS, to,
5521 recompute_dominator (CDI_DOMINATORS, to));
5522 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5523 recompute_dominator (CDI_DOMINATORS, orig_dest));
5525 return recompute_toporder_p;
5528 /* This variable holds the cfg hooks used by the selective scheduler. */
5529 static struct cfg_hooks sel_cfg_hooks;
5531 /* Register sel-sched cfg hooks. */
5532 void
5533 sel_register_cfg_hooks (void)
5535 sched_split_block = sel_split_block;
5537 orig_cfg_hooks = get_cfg_hooks ();
5538 sel_cfg_hooks = orig_cfg_hooks;
5540 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5542 set_cfg_hooks (sel_cfg_hooks);
5544 sched_init_only_bb = sel_init_only_bb;
5545 sched_split_block = sel_split_block;
5546 sched_create_empty_bb = sel_create_empty_bb;
5549 /* Unregister sel-sched cfg hooks. */
5550 void
5551 sel_unregister_cfg_hooks (void)
5553 sched_create_empty_bb = NULL;
5554 sched_split_block = NULL;
5555 sched_init_only_bb = NULL;
5557 set_cfg_hooks (orig_cfg_hooks);
5561 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5562 LABEL is where this jump should be directed. */
5564 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5566 rtx insn_rtx;
5568 gcc_assert (!INSN_P (pattern));
5570 start_sequence ();
5572 if (label == NULL_RTX)
5573 insn_rtx = emit_insn (pattern);
5574 else if (DEBUG_INSN_P (label))
5575 insn_rtx = emit_debug_insn (pattern);
5576 else
5578 insn_rtx = emit_jump_insn (pattern);
5579 JUMP_LABEL (insn_rtx) = label;
5580 ++LABEL_NUSES (label);
5583 end_sequence ();
5585 sched_init_luids (NULL, NULL, NULL, NULL);
5586 sched_extend_target ();
5587 sched_deps_init (false);
5589 /* Initialize INSN_CODE now. */
5590 recog_memoized (insn_rtx);
5591 return insn_rtx;
5594 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5595 must not be clonable. */
5596 vinsn_t
5597 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5599 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5601 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5602 return vinsn_create (insn_rtx, force_unique_p);
5605 /* Create a copy of INSN_RTX. */
5607 create_copy_of_insn_rtx (rtx insn_rtx)
5609 rtx res;
5611 if (DEBUG_INSN_P (insn_rtx))
5612 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5613 insn_rtx);
5615 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5617 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5618 NULL_RTX);
5619 return res;
5622 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5623 void
5624 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5626 vinsn_detach (EXPR_VINSN (expr));
5628 EXPR_VINSN (expr) = new_vinsn;
5629 vinsn_attach (new_vinsn);
5632 /* Helpers for global init. */
5633 /* This structure is used to be able to call existing bundling mechanism
5634 and calculate insn priorities. */
5635 static struct haifa_sched_info sched_sel_haifa_sched_info =
5637 NULL, /* init_ready_list */
5638 NULL, /* can_schedule_ready_p */
5639 NULL, /* schedule_more_p */
5640 NULL, /* new_ready */
5641 NULL, /* rgn_rank */
5642 sel_print_insn, /* rgn_print_insn */
5643 contributes_to_priority,
5644 NULL, /* insn_finishes_block_p */
5646 NULL, NULL,
5647 NULL, NULL,
5648 0, 0,
5650 NULL, /* add_remove_insn */
5651 NULL, /* begin_schedule_ready */
5652 NULL, /* advance_target_bb */
5653 SEL_SCHED | NEW_BBS
5656 /* Setup special insns used in the scheduler. */
5657 void
5658 setup_nop_and_exit_insns (void)
5660 gcc_assert (nop_pattern == NULL_RTX
5661 && exit_insn == NULL_RTX);
5663 nop_pattern = constm1_rtx;
5665 start_sequence ();
5666 emit_insn (nop_pattern);
5667 exit_insn = get_insns ();
5668 end_sequence ();
5669 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5672 /* Free special insns used in the scheduler. */
5673 void
5674 free_nop_and_exit_insns (void)
5676 exit_insn = NULL_RTX;
5677 nop_pattern = NULL_RTX;
5680 /* Setup a special vinsn used in new insns initialization. */
5681 void
5682 setup_nop_vinsn (void)
5684 nop_vinsn = vinsn_create (exit_insn, false);
5685 vinsn_attach (nop_vinsn);
5688 /* Free a special vinsn used in new insns initialization. */
5689 void
5690 free_nop_vinsn (void)
5692 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5693 vinsn_detach (nop_vinsn);
5694 nop_vinsn = NULL;
5697 /* Call a set_sched_flags hook. */
5698 void
5699 sel_set_sched_flags (void)
5701 /* ??? This means that set_sched_flags were called, and we decided to
5702 support speculation. However, set_sched_flags also modifies flags
5703 on current_sched_info, doing this only at global init. And we
5704 sometimes change c_s_i later. So put the correct flags again. */
5705 if (spec_info && targetm.sched.set_sched_flags)
5706 targetm.sched.set_sched_flags (spec_info);
5709 /* Setup pointers to global sched info structures. */
5710 void
5711 sel_setup_sched_infos (void)
5713 rgn_setup_common_sched_info ();
5715 memcpy (&sel_common_sched_info, common_sched_info,
5716 sizeof (sel_common_sched_info));
5718 sel_common_sched_info.fix_recovery_cfg = NULL;
5719 sel_common_sched_info.add_block = NULL;
5720 sel_common_sched_info.estimate_number_of_insns
5721 = sel_estimate_number_of_insns;
5722 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5723 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5725 common_sched_info = &sel_common_sched_info;
5727 current_sched_info = &sched_sel_haifa_sched_info;
5728 current_sched_info->sched_max_insns_priority =
5729 get_rgn_sched_max_insns_priority ();
5731 sel_set_sched_flags ();
5735 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5736 *BB_ORD_INDEX after that is increased. */
5737 static void
5738 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5740 RGN_NR_BLOCKS (rgn) += 1;
5741 RGN_DONT_CALC_DEPS (rgn) = 0;
5742 RGN_HAS_REAL_EBB (rgn) = 0;
5743 CONTAINING_RGN (bb->index) = rgn;
5744 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5745 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5746 (*bb_ord_index)++;
5748 /* FIXME: it is true only when not scheduling ebbs. */
5749 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5752 /* Functions to support pipelining of outer loops. */
5754 /* Creates a new empty region and returns it's number. */
5755 static int
5756 sel_create_new_region (void)
5758 int new_rgn_number = nr_regions;
5760 RGN_NR_BLOCKS (new_rgn_number) = 0;
5762 /* FIXME: This will work only when EBBs are not created. */
5763 if (new_rgn_number != 0)
5764 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5765 RGN_NR_BLOCKS (new_rgn_number - 1);
5766 else
5767 RGN_BLOCKS (new_rgn_number) = 0;
5769 /* Set the blocks of the next region so the other functions may
5770 calculate the number of blocks in the region. */
5771 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5772 RGN_NR_BLOCKS (new_rgn_number);
5774 nr_regions++;
5776 return new_rgn_number;
5779 /* If X has a smaller topological sort number than Y, returns -1;
5780 if greater, returns 1. */
5781 static int
5782 bb_top_order_comparator (const void *x, const void *y)
5784 basic_block bb1 = *(const basic_block *) x;
5785 basic_block bb2 = *(const basic_block *) y;
5787 gcc_assert (bb1 == bb2
5788 || rev_top_order_index[bb1->index]
5789 != rev_top_order_index[bb2->index]);
5791 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5792 bbs with greater number should go earlier. */
5793 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5794 return -1;
5795 else
5796 return 1;
5799 /* Create a region for LOOP and return its number. If we don't want
5800 to pipeline LOOP, return -1. */
5801 static int
5802 make_region_from_loop (struct loop *loop)
5804 unsigned int i;
5805 int new_rgn_number = -1;
5806 struct loop *inner;
5808 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5809 int bb_ord_index = 0;
5810 basic_block *loop_blocks;
5811 basic_block preheader_block;
5813 if (loop->num_nodes
5814 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5815 return -1;
5817 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5818 for (inner = loop->inner; inner; inner = inner->inner)
5819 if (flow_bb_inside_loop_p (inner, loop->latch))
5820 return -1;
5822 loop->ninsns = num_loop_insns (loop);
5823 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5824 return -1;
5826 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5828 for (i = 0; i < loop->num_nodes; i++)
5829 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5831 free (loop_blocks);
5832 return -1;
5835 preheader_block = loop_preheader_edge (loop)->src;
5836 gcc_assert (preheader_block);
5837 gcc_assert (loop_blocks[0] == loop->header);
5839 new_rgn_number = sel_create_new_region ();
5841 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5842 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5844 for (i = 0; i < loop->num_nodes; i++)
5846 /* Add only those blocks that haven't been scheduled in the inner loop.
5847 The exception is the basic blocks with bookkeeping code - they should
5848 be added to the region (and they actually don't belong to the loop
5849 body, but to the region containing that loop body). */
5851 gcc_assert (new_rgn_number >= 0);
5853 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5855 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
5856 new_rgn_number);
5857 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5861 free (loop_blocks);
5862 MARK_LOOP_FOR_PIPELINING (loop);
5864 return new_rgn_number;
5867 /* Create a new region from preheader blocks LOOP_BLOCKS. */
5868 void
5869 make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
5871 unsigned int i;
5872 int new_rgn_number = -1;
5873 basic_block bb;
5875 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5876 int bb_ord_index = 0;
5878 new_rgn_number = sel_create_new_region ();
5880 FOR_EACH_VEC_ELT (basic_block, *loop_blocks, i, bb)
5882 gcc_assert (new_rgn_number >= 0);
5884 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
5887 VEC_free (basic_block, heap, *loop_blocks);
5888 gcc_assert (*loop_blocks == NULL);
5892 /* Create region(s) from loop nest LOOP, such that inner loops will be
5893 pipelined before outer loops. Returns true when a region for LOOP
5894 is created. */
5895 static bool
5896 make_regions_from_loop_nest (struct loop *loop)
5898 struct loop *cur_loop;
5899 int rgn_number;
5901 /* Traverse all inner nodes of the loop. */
5902 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5903 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
5904 return false;
5906 /* At this moment all regular inner loops should have been pipelined.
5907 Try to create a region from this loop. */
5908 rgn_number = make_region_from_loop (loop);
5910 if (rgn_number < 0)
5911 return false;
5913 VEC_safe_push (loop_p, heap, loop_nests, loop);
5914 return true;
5917 /* Initalize data structures needed. */
5918 void
5919 sel_init_pipelining (void)
5921 /* Collect loop information to be used in outer loops pipelining. */
5922 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
5923 | LOOPS_HAVE_FALLTHRU_PREHEADERS
5924 | LOOPS_HAVE_RECORDED_EXITS
5925 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
5926 current_loop_nest = NULL;
5928 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
5929 sbitmap_zero (bbs_in_loop_rgns);
5931 recompute_rev_top_order ();
5934 /* Returns a struct loop for region RGN. */
5935 loop_p
5936 get_loop_nest_for_rgn (unsigned int rgn)
5938 /* Regions created with extend_rgns don't have corresponding loop nests,
5939 because they don't represent loops. */
5940 if (rgn < VEC_length (loop_p, loop_nests))
5941 return VEC_index (loop_p, loop_nests, rgn);
5942 else
5943 return NULL;
5946 /* True when LOOP was included into pipelining regions. */
5947 bool
5948 considered_for_pipelining_p (struct loop *loop)
5950 if (loop_depth (loop) == 0)
5951 return false;
5953 /* Now, the loop could be too large or irreducible. Check whether its
5954 region is in LOOP_NESTS.
5955 We determine the region number of LOOP as the region number of its
5956 latch. We can't use header here, because this header could be
5957 just removed preheader and it will give us the wrong region number.
5958 Latch can't be used because it could be in the inner loop too. */
5959 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
5961 int rgn = CONTAINING_RGN (loop->latch->index);
5963 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
5964 return true;
5967 return false;
5970 /* Makes regions from the rest of the blocks, after loops are chosen
5971 for pipelining. */
5972 static void
5973 make_regions_from_the_rest (void)
5975 int cur_rgn_blocks;
5976 int *loop_hdr;
5977 int i;
5979 basic_block bb;
5980 edge e;
5981 edge_iterator ei;
5982 int *degree;
5984 /* Index in rgn_bb_table where to start allocating new regions. */
5985 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
5987 /* Make regions from all the rest basic blocks - those that don't belong to
5988 any loop or belong to irreducible loops. Prepare the data structures
5989 for extend_rgns. */
5991 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
5992 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
5993 loop. */
5994 loop_hdr = XNEWVEC (int, last_basic_block);
5995 degree = XCNEWVEC (int, last_basic_block);
5998 /* For each basic block that belongs to some loop assign the number
5999 of innermost loop it belongs to. */
6000 for (i = 0; i < last_basic_block; i++)
6001 loop_hdr[i] = -1;
6003 FOR_EACH_BB (bb)
6005 if (bb->loop_father && !bb->loop_father->num == 0
6006 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6007 loop_hdr[bb->index] = bb->loop_father->num;
6010 /* For each basic block degree is calculated as the number of incoming
6011 edges, that are going out of bbs that are not yet scheduled.
6012 The basic blocks that are scheduled have degree value of zero. */
6013 FOR_EACH_BB (bb)
6015 degree[bb->index] = 0;
6017 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
6019 FOR_EACH_EDGE (e, ei, bb->preds)
6020 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
6021 degree[bb->index]++;
6023 else
6024 degree[bb->index] = -1;
6027 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6029 /* Any block that did not end up in a region is placed into a region
6030 by itself. */
6031 FOR_EACH_BB (bb)
6032 if (degree[bb->index] >= 0)
6034 rgn_bb_table[cur_rgn_blocks] = bb->index;
6035 RGN_NR_BLOCKS (nr_regions) = 1;
6036 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6037 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6038 RGN_HAS_REAL_EBB (nr_regions) = 0;
6039 CONTAINING_RGN (bb->index) = nr_regions++;
6040 BLOCK_TO_BB (bb->index) = 0;
6043 free (degree);
6044 free (loop_hdr);
6047 /* Free data structures used in pipelining of loops. */
6048 void sel_finish_pipelining (void)
6050 loop_iterator li;
6051 struct loop *loop;
6053 /* Release aux fields so we don't free them later by mistake. */
6054 FOR_EACH_LOOP (li, loop, 0)
6055 loop->aux = NULL;
6057 loop_optimizer_finalize ();
6059 VEC_free (loop_p, heap, loop_nests);
6061 free (rev_top_order_index);
6062 rev_top_order_index = NULL;
6065 /* This function replaces the find_rgns when
6066 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6067 void
6068 sel_find_rgns (void)
6070 sel_init_pipelining ();
6071 extend_regions ();
6073 if (current_loops)
6075 loop_p loop;
6076 loop_iterator li;
6078 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6079 ? LI_FROM_INNERMOST
6080 : LI_ONLY_INNERMOST))
6081 make_regions_from_loop_nest (loop);
6084 /* Make regions from all the rest basic blocks and schedule them.
6085 These blocks include blocks that don't belong to any loop or belong
6086 to irreducible loops. */
6087 make_regions_from_the_rest ();
6089 /* We don't need bbs_in_loop_rgns anymore. */
6090 sbitmap_free (bbs_in_loop_rgns);
6091 bbs_in_loop_rgns = NULL;
6094 /* Adds the preheader blocks from previous loop to current region taking
6095 it from LOOP_PREHEADER_BLOCKS (current_loop_nest).
6096 This function is only used with -fsel-sched-pipelining-outer-loops. */
6097 void
6098 sel_add_loop_preheaders (void)
6100 int i;
6101 basic_block bb;
6102 VEC(basic_block, heap) *preheader_blocks
6103 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6105 for (i = 0;
6106 VEC_iterate (basic_block, preheader_blocks, i, bb);
6107 i++)
6109 VEC_safe_push (basic_block, heap, last_added_blocks, bb);
6110 sel_add_bb (bb);
6113 VEC_free (basic_block, heap, preheader_blocks);
6116 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6117 Please note that the function should also work when pipelining_p is
6118 false, because it is used when deciding whether we should or should
6119 not reschedule pipelined code. */
6120 bool
6121 sel_is_loop_preheader_p (basic_block bb)
6123 if (current_loop_nest)
6125 struct loop *outer;
6127 if (preheader_removed)
6128 return false;
6130 /* Preheader is the first block in the region. */
6131 if (BLOCK_TO_BB (bb->index) == 0)
6132 return true;
6134 /* We used to find a preheader with the topological information.
6135 Check that the above code is equivalent to what we did before. */
6137 if (in_current_region_p (current_loop_nest->header))
6138 gcc_assert (!(BLOCK_TO_BB (bb->index)
6139 < BLOCK_TO_BB (current_loop_nest->header->index)));
6141 /* Support the situation when the latch block of outer loop
6142 could be from here. */
6143 for (outer = loop_outer (current_loop_nest);
6144 outer;
6145 outer = loop_outer (outer))
6146 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6147 gcc_unreachable ();
6150 return false;
6153 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6154 can be removed, making the corresponding edge fallthrough (assuming that
6155 all basic blocks between JUMP_BB and DEST_BB are empty). */
6156 static bool
6157 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6159 if (!onlyjump_p (BB_END (jump_bb))
6160 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6161 return false;
6163 /* Several outgoing edges, abnormal edge or destination of jump is
6164 not DEST_BB. */
6165 if (EDGE_COUNT (jump_bb->succs) != 1
6166 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6167 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6168 return false;
6170 /* If not anything of the upper. */
6171 return true;
6174 /* Removes the loop preheader from the current region and saves it in
6175 PREHEADER_BLOCKS of the father loop, so they will be added later to
6176 region that represents an outer loop. */
6177 static void
6178 sel_remove_loop_preheader (void)
6180 int i, old_len;
6181 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6182 basic_block bb;
6183 bool all_empty_p = true;
6184 VEC(basic_block, heap) *preheader_blocks
6185 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6187 gcc_assert (current_loop_nest);
6188 old_len = VEC_length (basic_block, preheader_blocks);
6190 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6191 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6193 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6195 /* If the basic block belongs to region, but doesn't belong to
6196 corresponding loop, then it should be a preheader. */
6197 if (sel_is_loop_preheader_p (bb))
6199 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6200 if (BB_END (bb) != bb_note (bb))
6201 all_empty_p = false;
6205 /* Remove these blocks only after iterating over the whole region. */
6206 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6207 i >= old_len;
6208 i--)
6210 bb = VEC_index (basic_block, preheader_blocks, i);
6211 sel_remove_bb (bb, false);
6214 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6216 if (!all_empty_p)
6217 /* Immediately create new region from preheader. */
6218 make_region_from_loop_preheader (&preheader_blocks);
6219 else
6221 /* If all preheader blocks are empty - dont create new empty region.
6222 Instead, remove them completely. */
6223 FOR_EACH_VEC_ELT (basic_block, preheader_blocks, i, bb)
6225 edge e;
6226 edge_iterator ei;
6227 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6229 /* Redirect all incoming edges to next basic block. */
6230 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6232 if (! (e->flags & EDGE_FALLTHRU))
6233 redirect_edge_and_branch (e, bb->next_bb);
6234 else
6235 redirect_edge_succ (e, bb->next_bb);
6237 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6238 delete_and_free_basic_block (bb);
6240 /* Check if after deleting preheader there is a nonconditional
6241 jump in PREV_BB that leads to the next basic block NEXT_BB.
6242 If it is so - delete this jump and clear data sets of its
6243 basic block if it becomes empty. */
6244 if (next_bb->prev_bb == prev_bb
6245 && prev_bb != ENTRY_BLOCK_PTR
6246 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6248 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6249 if (BB_END (prev_bb) == bb_note (prev_bb))
6250 free_data_sets (prev_bb);
6253 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6254 recompute_dominator (CDI_DOMINATORS,
6255 next_bb));
6258 VEC_free (basic_block, heap, preheader_blocks);
6260 else
6261 /* Store preheader within the father's loop structure. */
6262 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6263 preheader_blocks);
6265 #endif