1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
38 #include "coretypes.h"
43 #include "hard-reg-set.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
49 #include "basic-block.h"
52 #include "diagnostic-core.h"
55 #include "tree-pass.h"
58 /* Optimize jump y; x: ... y: jumpif... x?
59 Don't know if it is worth bothering with. */
60 /* Optimize two cases of conditional jump to conditional jump?
61 This can never delete any instruction or make anything dead,
62 or even change what is live at any point.
63 So perhaps let combiner do it. */
65 static void init_label_info (rtx
);
66 static void mark_all_labels (rtx
);
67 static void mark_jump_label_1 (rtx
, rtx
, bool, bool);
68 static void mark_jump_label_asm (rtx
, rtx
);
69 static void redirect_exp_1 (rtx
*, rtx
, rtx
, rtx
);
70 static int invert_exp_1 (rtx
, rtx
);
71 static int returnjump_p_1 (rtx
*, void *);
73 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
75 rebuild_jump_labels_1 (rtx f
, bool count_forced
)
79 timevar_push (TV_REBUILD_JUMP
);
83 /* Keep track of labels used from static data; we don't track them
84 closely enough to delete them here, so make sure their reference
85 count doesn't drop to zero. */
88 for (insn
= forced_labels
; insn
; insn
= XEXP (insn
, 1))
89 if (LABEL_P (XEXP (insn
, 0)))
90 LABEL_NUSES (XEXP (insn
, 0))++;
91 timevar_pop (TV_REBUILD_JUMP
);
94 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
95 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
96 instructions and jumping insns that have labels as operands
99 rebuild_jump_labels (rtx f
)
101 rebuild_jump_labels_1 (f
, true);
104 /* This function is like rebuild_jump_labels, but doesn't run over
105 forced_labels. It can be used on insn chains that aren't the
106 main function chain. */
108 rebuild_jump_labels_chain (rtx chain
)
110 rebuild_jump_labels_1 (chain
, false);
113 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
114 non-fallthru insn. This is not generally true, as multiple barriers
115 may have crept in, or the BARRIER may be separated from the last
116 real insn by one or more NOTEs.
118 This simple pass moves barriers and removes duplicates so that the
122 cleanup_barriers (void)
124 rtx insn
, next
, prev
;
125 for (insn
= get_insns (); insn
; insn
= next
)
127 next
= NEXT_INSN (insn
);
128 if (BARRIER_P (insn
))
130 prev
= prev_nonnote_insn (insn
);
133 if (BARRIER_P (prev
))
135 else if (prev
!= PREV_INSN (insn
))
136 reorder_insns (insn
, insn
, prev
);
142 struct rtl_opt_pass pass_cleanup_barriers
=
146 "barriers", /* name */
147 OPTGROUP_NONE
, /* optinfo_flags */
149 cleanup_barriers
, /* execute */
152 0, /* static_pass_number */
154 0, /* properties_required */
155 0, /* properties_provided */
156 0, /* properties_destroyed */
157 0, /* todo_flags_start */
158 0 /* todo_flags_finish */
163 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
164 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
165 notes whose labels don't occur in the insn any more. */
168 init_label_info (rtx f
)
172 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
175 LABEL_NUSES (insn
) = (LABEL_PRESERVE_P (insn
) != 0);
177 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
178 sticky and not reset here; that way we won't lose association
179 with a label when e.g. the source for a target register
180 disappears out of reach for targets that may use jump-target
181 registers. Jump transformations are supposed to transform
182 any REG_LABEL_TARGET notes. The target label reference in a
183 branch may disappear from the branch (and from the
184 instruction before it) for other reasons, like register
191 for (note
= REG_NOTES (insn
); note
; note
= next
)
193 next
= XEXP (note
, 1);
194 if (REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
195 && ! reg_mentioned_p (XEXP (note
, 0), PATTERN (insn
)))
196 remove_note (insn
, note
);
202 /* A subroutine of mark_all_labels. Trivially propagate a simple label
203 load into a jump_insn that uses it. */
206 maybe_propagate_label_ref (rtx jump_insn
, rtx prev_nonjump_insn
)
208 rtx label_note
, pc
, pc_src
;
210 pc
= pc_set (jump_insn
);
211 pc_src
= pc
!= NULL
? SET_SRC (pc
) : NULL
;
212 label_note
= find_reg_note (prev_nonjump_insn
, REG_LABEL_OPERAND
, NULL
);
214 /* If the previous non-jump insn sets something to a label,
215 something that this jump insn uses, make that label the primary
216 target of this insn if we don't yet have any. That previous
217 insn must be a single_set and not refer to more than one label.
218 The jump insn must not refer to other labels as jump targets
219 and must be a plain (set (pc) ...), maybe in a parallel, and
220 may refer to the item being set only directly or as one of the
221 arms in an IF_THEN_ELSE. */
223 if (label_note
!= NULL
&& pc_src
!= NULL
)
225 rtx label_set
= single_set (prev_nonjump_insn
);
226 rtx label_dest
= label_set
!= NULL
? SET_DEST (label_set
) : NULL
;
228 if (label_set
!= NULL
229 /* The source must be the direct LABEL_REF, not a
230 PLUS, UNSPEC, IF_THEN_ELSE etc. */
231 && GET_CODE (SET_SRC (label_set
)) == LABEL_REF
232 && (rtx_equal_p (label_dest
, pc_src
)
233 || (GET_CODE (pc_src
) == IF_THEN_ELSE
234 && (rtx_equal_p (label_dest
, XEXP (pc_src
, 1))
235 || rtx_equal_p (label_dest
, XEXP (pc_src
, 2))))))
237 /* The CODE_LABEL referred to in the note must be the
238 CODE_LABEL in the LABEL_REF of the "set". We can
239 conveniently use it for the marker function, which
240 requires a LABEL_REF wrapping. */
241 gcc_assert (XEXP (label_note
, 0) == XEXP (SET_SRC (label_set
), 0));
243 mark_jump_label_1 (label_set
, jump_insn
, false, true);
245 gcc_assert (JUMP_LABEL (jump_insn
) == XEXP (label_note
, 0));
250 /* Mark the label each jump jumps to.
251 Combine consecutive labels, and count uses of labels. */
254 mark_all_labels (rtx f
)
258 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
263 /* In cfglayout mode, we don't bother with trivial next-insn
264 propagation of LABEL_REFs into JUMP_LABEL. This will be
265 handled by other optimizers using better algorithms. */
266 FOR_BB_INSNS (bb
, insn
)
268 gcc_assert (! INSN_DELETED_P (insn
));
269 if (NONDEBUG_INSN_P (insn
))
270 mark_jump_label (PATTERN (insn
), insn
, 0);
273 /* In cfglayout mode, there may be non-insns between the
274 basic blocks. If those non-insns represent tablejump data,
275 they contain label references that we must record. */
276 for (insn
= BB_HEADER (bb
); insn
; insn
= NEXT_INSN (insn
))
279 gcc_assert (JUMP_TABLE_DATA_P (insn
));
280 mark_jump_label (PATTERN (insn
), insn
, 0);
282 for (insn
= BB_FOOTER (bb
); insn
; insn
= NEXT_INSN (insn
))
285 gcc_assert (JUMP_TABLE_DATA_P (insn
));
286 mark_jump_label (PATTERN (insn
), insn
, 0);
292 rtx prev_nonjump_insn
= NULL
;
293 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
295 if (INSN_DELETED_P (insn
))
297 else if (LABEL_P (insn
))
298 prev_nonjump_insn
= NULL
;
299 else if (NONDEBUG_INSN_P (insn
))
301 mark_jump_label (PATTERN (insn
), insn
, 0);
304 if (JUMP_LABEL (insn
) == NULL
&& prev_nonjump_insn
!= NULL
)
305 maybe_propagate_label_ref (insn
, prev_nonjump_insn
);
308 prev_nonjump_insn
= insn
;
314 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
315 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
316 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
317 know whether it's source is floating point or integer comparison. Machine
318 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
319 to help this function avoid overhead in these cases. */
321 reversed_comparison_code_parts (enum rtx_code code
, const_rtx arg0
,
322 const_rtx arg1
, const_rtx insn
)
324 enum machine_mode mode
;
326 /* If this is not actually a comparison, we can't reverse it. */
327 if (GET_RTX_CLASS (code
) != RTX_COMPARE
328 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
)
331 mode
= GET_MODE (arg0
);
332 if (mode
== VOIDmode
)
333 mode
= GET_MODE (arg1
);
335 /* First see if machine description supplies us way to reverse the
336 comparison. Give it priority over everything else to allow
337 machine description to do tricks. */
338 if (GET_MODE_CLASS (mode
) == MODE_CC
339 && REVERSIBLE_CC_MODE (mode
))
341 #ifdef REVERSE_CONDITION
342 return REVERSE_CONDITION (code
, mode
);
344 return reverse_condition (code
);
348 /* Try a few special cases based on the comparison code. */
357 /* It is always safe to reverse EQ and NE, even for the floating
358 point. Similarly the unsigned comparisons are never used for
359 floating point so we can reverse them in the default way. */
360 return reverse_condition (code
);
365 /* In case we already see unordered comparison, we can be sure to
366 be dealing with floating point so we don't need any more tests. */
367 return reverse_condition_maybe_unordered (code
);
372 /* We don't have safe way to reverse these yet. */
378 if (GET_MODE_CLASS (mode
) == MODE_CC
|| CC0_P (arg0
))
381 /* Try to search for the comparison to determine the real mode.
382 This code is expensive, but with sane machine description it
383 will be never used, since REVERSIBLE_CC_MODE will return true
388 /* These CONST_CAST's are okay because prev_nonnote_insn just
389 returns its argument and we assign it to a const_rtx
391 for (prev
= prev_nonnote_insn (CONST_CAST_RTX(insn
));
392 prev
!= 0 && !LABEL_P (prev
);
393 prev
= prev_nonnote_insn (CONST_CAST_RTX(prev
)))
395 const_rtx set
= set_of (arg0
, prev
);
396 if (set
&& GET_CODE (set
) == SET
397 && rtx_equal_p (SET_DEST (set
), arg0
))
399 rtx src
= SET_SRC (set
);
401 if (GET_CODE (src
) == COMPARE
)
403 rtx comparison
= src
;
404 arg0
= XEXP (src
, 0);
405 mode
= GET_MODE (arg0
);
406 if (mode
== VOIDmode
)
407 mode
= GET_MODE (XEXP (comparison
, 1));
410 /* We can get past reg-reg moves. This may be useful for model
411 of i387 comparisons that first move flag registers around. */
418 /* If register is clobbered in some ununderstandable way,
425 /* Test for an integer condition, or a floating-point comparison
426 in which NaNs can be ignored. */
427 if (CONST_INT_P (arg0
)
428 || (GET_MODE (arg0
) != VOIDmode
429 && GET_MODE_CLASS (mode
) != MODE_CC
430 && !HONOR_NANS (mode
)))
431 return reverse_condition (code
);
436 /* A wrapper around the previous function to take COMPARISON as rtx
437 expression. This simplifies many callers. */
439 reversed_comparison_code (const_rtx comparison
, const_rtx insn
)
441 if (!COMPARISON_P (comparison
))
443 return reversed_comparison_code_parts (GET_CODE (comparison
),
444 XEXP (comparison
, 0),
445 XEXP (comparison
, 1), insn
);
448 /* Return comparison with reversed code of EXP.
449 Return NULL_RTX in case we fail to do the reversal. */
451 reversed_comparison (const_rtx exp
, enum machine_mode mode
)
453 enum rtx_code reversed_code
= reversed_comparison_code (exp
, NULL_RTX
);
454 if (reversed_code
== UNKNOWN
)
457 return simplify_gen_relational (reversed_code
, mode
, VOIDmode
,
458 XEXP (exp
, 0), XEXP (exp
, 1));
462 /* Given an rtx-code for a comparison, return the code for the negated
463 comparison. If no such code exists, return UNKNOWN.
465 WATCH OUT! reverse_condition is not safe to use on a jump that might
466 be acting on the results of an IEEE floating point comparison, because
467 of the special treatment of non-signaling nans in comparisons.
468 Use reversed_comparison_code instead. */
471 reverse_condition (enum rtx_code code
)
513 /* Similar, but we're allowed to generate unordered comparisons, which
514 makes it safe for IEEE floating-point. Of course, we have to recognize
515 that the target will support them too... */
518 reverse_condition_maybe_unordered (enum rtx_code code
)
556 /* Similar, but return the code when two operands of a comparison are swapped.
557 This IS safe for IEEE floating-point. */
560 swap_condition (enum rtx_code code
)
602 /* Given a comparison CODE, return the corresponding unsigned comparison.
603 If CODE is an equality comparison or already an unsigned comparison,
607 unsigned_condition (enum rtx_code code
)
633 /* Similarly, return the signed version of a comparison. */
636 signed_condition (enum rtx_code code
)
662 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
663 truth of CODE1 implies the truth of CODE2. */
666 comparison_dominates_p (enum rtx_code code1
, enum rtx_code code2
)
668 /* UNKNOWN comparison codes can happen as a result of trying to revert
670 They can't match anything, so we have to reject them here. */
671 if (code1
== UNKNOWN
|| code2
== UNKNOWN
)
680 if (code2
== UNLE
|| code2
== UNGE
)
685 if (code2
== LE
|| code2
== LEU
|| code2
== GE
|| code2
== GEU
691 if (code2
== UNLE
|| code2
== NE
)
696 if (code2
== LE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
701 if (code2
== UNGE
|| code2
== NE
)
706 if (code2
== GE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
712 if (code2
== ORDERED
)
717 if (code2
== NE
|| code2
== ORDERED
)
722 if (code2
== LEU
|| code2
== NE
)
727 if (code2
== GEU
|| code2
== NE
)
732 if (code2
== NE
|| code2
== UNEQ
|| code2
== UNLE
|| code2
== UNLT
733 || code2
== UNGE
|| code2
== UNGT
)
744 /* Return 1 if INSN is an unconditional jump and nothing else. */
747 simplejump_p (const_rtx insn
)
749 return (JUMP_P (insn
)
750 && GET_CODE (PATTERN (insn
)) == SET
751 && GET_CODE (SET_DEST (PATTERN (insn
))) == PC
752 && GET_CODE (SET_SRC (PATTERN (insn
))) == LABEL_REF
);
755 /* Return nonzero if INSN is a (possibly) conditional jump
758 Use of this function is deprecated, since we need to support combined
759 branch and compare insns. Use any_condjump_p instead whenever possible. */
762 condjump_p (const_rtx insn
)
764 const_rtx x
= PATTERN (insn
);
766 if (GET_CODE (x
) != SET
767 || GET_CODE (SET_DEST (x
)) != PC
)
771 if (GET_CODE (x
) == LABEL_REF
)
774 return (GET_CODE (x
) == IF_THEN_ELSE
775 && ((GET_CODE (XEXP (x
, 2)) == PC
776 && (GET_CODE (XEXP (x
, 1)) == LABEL_REF
777 || ANY_RETURN_P (XEXP (x
, 1))))
778 || (GET_CODE (XEXP (x
, 1)) == PC
779 && (GET_CODE (XEXP (x
, 2)) == LABEL_REF
780 || ANY_RETURN_P (XEXP (x
, 2))))));
783 /* Return nonzero if INSN is a (possibly) conditional jump inside a
786 Use this function is deprecated, since we need to support combined
787 branch and compare insns. Use any_condjump_p instead whenever possible. */
790 condjump_in_parallel_p (const_rtx insn
)
792 const_rtx x
= PATTERN (insn
);
794 if (GET_CODE (x
) != PARALLEL
)
797 x
= XVECEXP (x
, 0, 0);
799 if (GET_CODE (x
) != SET
)
801 if (GET_CODE (SET_DEST (x
)) != PC
)
803 if (GET_CODE (SET_SRC (x
)) == LABEL_REF
)
805 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
807 if (XEXP (SET_SRC (x
), 2) == pc_rtx
808 && (GET_CODE (XEXP (SET_SRC (x
), 1)) == LABEL_REF
809 || ANY_RETURN_P (XEXP (SET_SRC (x
), 1))))
811 if (XEXP (SET_SRC (x
), 1) == pc_rtx
812 && (GET_CODE (XEXP (SET_SRC (x
), 2)) == LABEL_REF
813 || ANY_RETURN_P (XEXP (SET_SRC (x
), 2))))
818 /* Return set of PC, otherwise NULL. */
821 pc_set (const_rtx insn
)
826 pat
= PATTERN (insn
);
828 /* The set is allowed to appear either as the insn pattern or
829 the first set in a PARALLEL. */
830 if (GET_CODE (pat
) == PARALLEL
)
831 pat
= XVECEXP (pat
, 0, 0);
832 if (GET_CODE (pat
) == SET
&& GET_CODE (SET_DEST (pat
)) == PC
)
838 /* Return true when insn is an unconditional direct jump,
839 possibly bundled inside a PARALLEL. */
842 any_uncondjump_p (const_rtx insn
)
844 const_rtx x
= pc_set (insn
);
847 if (GET_CODE (SET_SRC (x
)) != LABEL_REF
)
849 if (find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
854 /* Return true when insn is a conditional jump. This function works for
855 instructions containing PC sets in PARALLELs. The instruction may have
856 various other effects so before removing the jump you must verify
859 Note that unlike condjump_p it returns false for unconditional jumps. */
862 any_condjump_p (const_rtx insn
)
864 const_rtx x
= pc_set (insn
);
869 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
872 a
= GET_CODE (XEXP (SET_SRC (x
), 1));
873 b
= GET_CODE (XEXP (SET_SRC (x
), 2));
875 return ((b
== PC
&& (a
== LABEL_REF
|| a
== RETURN
|| a
== SIMPLE_RETURN
))
877 && (b
== LABEL_REF
|| b
== RETURN
|| b
== SIMPLE_RETURN
)));
880 /* Return the label of a conditional jump. */
883 condjump_label (const_rtx insn
)
885 rtx x
= pc_set (insn
);
890 if (GET_CODE (x
) == LABEL_REF
)
892 if (GET_CODE (x
) != IF_THEN_ELSE
)
894 if (XEXP (x
, 2) == pc_rtx
&& GET_CODE (XEXP (x
, 1)) == LABEL_REF
)
896 if (XEXP (x
, 1) == pc_rtx
&& GET_CODE (XEXP (x
, 2)) == LABEL_REF
)
901 /* Return true if INSN is a (possibly conditional) return insn. */
904 returnjump_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
911 switch (GET_CODE (x
))
919 return SET_IS_RETURN_P (x
);
926 /* Return TRUE if INSN is a return jump. */
929 returnjump_p (rtx insn
)
933 return for_each_rtx (&PATTERN (insn
), returnjump_p_1
, NULL
);
936 /* Return true if INSN is a (possibly conditional) return insn. */
939 eh_returnjump_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
941 return *loc
&& GET_CODE (*loc
) == EH_RETURN
;
945 eh_returnjump_p (rtx insn
)
949 return for_each_rtx (&PATTERN (insn
), eh_returnjump_p_1
, NULL
);
952 /* Return true if INSN is a jump that only transfers control and
956 onlyjump_p (const_rtx insn
)
963 set
= single_set (insn
);
966 if (GET_CODE (SET_DEST (set
)) != PC
)
968 if (side_effects_p (SET_SRC (set
)))
974 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
977 jump_to_label_p (rtx insn
)
979 return (JUMP_P (insn
)
980 && JUMP_LABEL (insn
) != NULL
&& !ANY_RETURN_P (JUMP_LABEL (insn
)));
985 /* Return nonzero if X is an RTX that only sets the condition codes
986 and has no side effects. */
989 only_sets_cc0_p (const_rtx x
)
997 return sets_cc0_p (x
) == 1 && ! side_effects_p (x
);
1000 /* Return 1 if X is an RTX that does nothing but set the condition codes
1001 and CLOBBER or USE registers.
1002 Return -1 if X does explicitly set the condition codes,
1003 but also does other things. */
1006 sets_cc0_p (const_rtx x
)
1014 if (GET_CODE (x
) == SET
&& SET_DEST (x
) == cc0_rtx
)
1016 if (GET_CODE (x
) == PARALLEL
)
1020 int other_things
= 0;
1021 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1023 if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
1024 && SET_DEST (XVECEXP (x
, 0, i
)) == cc0_rtx
)
1026 else if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
)
1029 return ! sets_cc0
? 0 : other_things
? -1 : 1;
1035 /* Find all CODE_LABELs referred to in X, and increment their use
1036 counts. If INSN is a JUMP_INSN and there is at least one
1037 CODE_LABEL referenced in INSN as a jump target, then store the last
1038 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1039 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1040 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1041 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1042 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1043 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1045 Note that two labels separated by a loop-beginning note
1046 must be kept distinct if we have not yet done loop-optimization,
1047 because the gap between them is where loop-optimize
1048 will want to move invariant code to. CROSS_JUMP tells us
1049 that loop-optimization is done with. */
1052 mark_jump_label (rtx x
, rtx insn
, int in_mem
)
1054 rtx asmop
= extract_asm_operands (x
);
1056 mark_jump_label_asm (asmop
, insn
);
1058 mark_jump_label_1 (x
, insn
, in_mem
!= 0,
1059 (insn
!= NULL
&& x
== PATTERN (insn
) && JUMP_P (insn
)));
1062 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1063 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1064 jump-target; when the JUMP_LABEL field of INSN should be set or a
1065 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1069 mark_jump_label_1 (rtx x
, rtx insn
, bool in_mem
, bool is_target
)
1071 RTX_CODE code
= GET_CODE (x
);
1088 gcc_assert (JUMP_LABEL (insn
) == NULL
|| JUMP_LABEL (insn
) == x
);
1089 JUMP_LABEL (insn
) = x
;
1098 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
1099 mark_jump_label (PATTERN (XVECEXP (x
, 0, i
)),
1100 XVECEXP (x
, 0, i
), 0);
1107 /* If this is a constant-pool reference, see if it is a label. */
1108 if (CONSTANT_POOL_ADDRESS_P (x
))
1109 mark_jump_label_1 (get_pool_constant (x
), insn
, in_mem
, is_target
);
1112 /* Handle operands in the condition of an if-then-else as for a
1117 mark_jump_label_1 (XEXP (x
, 0), insn
, in_mem
, false);
1118 mark_jump_label_1 (XEXP (x
, 1), insn
, in_mem
, true);
1119 mark_jump_label_1 (XEXP (x
, 2), insn
, in_mem
, true);
1124 rtx label
= XEXP (x
, 0);
1126 /* Ignore remaining references to unreachable labels that
1127 have been deleted. */
1129 && NOTE_KIND (label
) == NOTE_INSN_DELETED_LABEL
)
1132 gcc_assert (LABEL_P (label
));
1134 /* Ignore references to labels of containing functions. */
1135 if (LABEL_REF_NONLOCAL_P (x
))
1138 XEXP (x
, 0) = label
;
1139 if (! insn
|| ! INSN_DELETED_P (insn
))
1140 ++LABEL_NUSES (label
);
1145 /* Do not change a previous setting of JUMP_LABEL. If the
1146 JUMP_LABEL slot is occupied by a different label,
1147 create a note for this label. */
1148 && (JUMP_LABEL (insn
) == NULL
|| JUMP_LABEL (insn
) == label
))
1149 JUMP_LABEL (insn
) = label
;
1153 = is_target
? REG_LABEL_TARGET
: REG_LABEL_OPERAND
;
1155 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1156 for LABEL unless there already is one. All uses of
1157 a label, except for the primary target of a jump,
1158 must have such a note. */
1159 if (! find_reg_note (insn
, kind
, label
))
1160 add_reg_note (insn
, kind
, label
);
1166 /* Do walk the labels in a vector, but not the first operand of an
1167 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1170 if (! INSN_DELETED_P (insn
))
1172 int eltnum
= code
== ADDR_DIFF_VEC
? 1 : 0;
1174 for (i
= 0; i
< XVECLEN (x
, eltnum
); i
++)
1175 mark_jump_label_1 (XVECEXP (x
, eltnum
, i
), NULL_RTX
, in_mem
,
1184 fmt
= GET_RTX_FORMAT (code
);
1186 /* The primary target of a tablejump is the label of the ADDR_VEC,
1187 which is canonically mentioned *last* in the insn. To get it
1188 marked as JUMP_LABEL, we iterate over items in reverse order. */
1189 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1192 mark_jump_label_1 (XEXP (x
, i
), insn
, in_mem
, is_target
);
1193 else if (fmt
[i
] == 'E')
1197 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1198 mark_jump_label_1 (XVECEXP (x
, i
, j
), insn
, in_mem
,
1204 /* Worker function for mark_jump_label. Handle asm insns specially.
1205 In particular, output operands need not be considered so we can
1206 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1207 need to be considered targets. */
1210 mark_jump_label_asm (rtx asmop
, rtx insn
)
1214 for (i
= ASM_OPERANDS_INPUT_LENGTH (asmop
) - 1; i
>= 0; --i
)
1215 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop
, i
), insn
, false, false);
1217 for (i
= ASM_OPERANDS_LABEL_LENGTH (asmop
) - 1; i
>= 0; --i
)
1218 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop
, i
), insn
, false, true);
1221 /* Delete insn INSN from the chain of insns and update label ref counts
1222 and delete insns now unreachable.
1224 Returns the first insn after INSN that was not deleted.
1226 Usage of this instruction is deprecated. Use delete_insn instead and
1227 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1230 delete_related_insns (rtx insn
)
1232 int was_code_label
= (LABEL_P (insn
));
1234 rtx next
= NEXT_INSN (insn
), prev
= PREV_INSN (insn
);
1236 while (next
&& INSN_DELETED_P (next
))
1237 next
= NEXT_INSN (next
);
1239 /* This insn is already deleted => return first following nondeleted. */
1240 if (INSN_DELETED_P (insn
))
1245 /* If instruction is followed by a barrier,
1246 delete the barrier too. */
1248 if (next
!= 0 && BARRIER_P (next
))
1251 /* If this is a call, then we have to remove the var tracking note
1252 for the call arguments. */
1255 || (NONJUMP_INSN_P (insn
)
1256 && GET_CODE (PATTERN (insn
)) == SEQUENCE
1257 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))))
1261 for (p
= next
&& INSN_DELETED_P (next
) ? NEXT_INSN (next
) : next
;
1264 if (NOTE_KIND (p
) == NOTE_INSN_CALL_ARG_LOCATION
)
1271 /* If deleting a jump, decrement the count of the label,
1272 and delete the label if it is now unused. */
1274 if (jump_to_label_p (insn
))
1276 rtx lab
= JUMP_LABEL (insn
), lab_next
;
1278 if (LABEL_NUSES (lab
) == 0)
1279 /* This can delete NEXT or PREV,
1280 either directly if NEXT is JUMP_LABEL (INSN),
1281 or indirectly through more levels of jumps. */
1282 delete_related_insns (lab
);
1283 else if (tablejump_p (insn
, NULL
, &lab_next
))
1285 /* If we're deleting the tablejump, delete the dispatch table.
1286 We may not be able to kill the label immediately preceding
1287 just yet, as it might be referenced in code leading up to
1289 delete_related_insns (lab_next
);
1293 /* Likewise if we're deleting a dispatch table. */
1295 if (JUMP_TABLE_DATA_P (insn
))
1297 rtx pat
= PATTERN (insn
);
1298 int i
, diff_vec_p
= GET_CODE (pat
) == ADDR_DIFF_VEC
;
1299 int len
= XVECLEN (pat
, diff_vec_p
);
1301 for (i
= 0; i
< len
; i
++)
1302 if (LABEL_NUSES (XEXP (XVECEXP (pat
, diff_vec_p
, i
), 0)) == 0)
1303 delete_related_insns (XEXP (XVECEXP (pat
, diff_vec_p
, i
), 0));
1304 while (next
&& INSN_DELETED_P (next
))
1305 next
= NEXT_INSN (next
);
1309 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1310 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1312 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1313 if ((REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
1314 || REG_NOTE_KIND (note
) == REG_LABEL_TARGET
)
1315 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1316 && LABEL_P (XEXP (note
, 0)))
1317 if (LABEL_NUSES (XEXP (note
, 0)) == 0)
1318 delete_related_insns (XEXP (note
, 0));
1320 while (prev
&& (INSN_DELETED_P (prev
) || NOTE_P (prev
)))
1321 prev
= PREV_INSN (prev
);
1323 /* If INSN was a label and a dispatch table follows it,
1324 delete the dispatch table. The tablejump must have gone already.
1325 It isn't useful to fall through into a table. */
1328 && NEXT_INSN (insn
) != 0
1329 && JUMP_TABLE_DATA_P (NEXT_INSN (insn
)))
1330 next
= delete_related_insns (NEXT_INSN (insn
));
1332 /* If INSN was a label, delete insns following it if now unreachable. */
1334 if (was_code_label
&& prev
&& BARRIER_P (prev
))
1339 code
= GET_CODE (next
);
1341 next
= NEXT_INSN (next
);
1342 /* Keep going past other deleted labels to delete what follows. */
1343 else if (code
== CODE_LABEL
&& INSN_DELETED_P (next
))
1344 next
= NEXT_INSN (next
);
1345 else if (code
== BARRIER
|| INSN_P (next
))
1346 /* Note: if this deletes a jump, it can cause more
1347 deletion of unreachable code, after a different label.
1348 As long as the value from this recursive call is correct,
1349 this invocation functions correctly. */
1350 next
= delete_related_insns (next
);
1356 /* I feel a little doubtful about this loop,
1357 but I see no clean and sure alternative way
1358 to find the first insn after INSN that is not now deleted.
1359 I hope this works. */
1360 while (next
&& INSN_DELETED_P (next
))
1361 next
= NEXT_INSN (next
);
1365 /* Delete a range of insns from FROM to TO, inclusive.
1366 This is for the sake of peephole optimization, so assume
1367 that whatever these insns do will still be done by a new
1368 peephole insn that will replace them. */
1371 delete_for_peephole (rtx from
, rtx to
)
1377 rtx next
= NEXT_INSN (insn
);
1378 rtx prev
= PREV_INSN (insn
);
1382 INSN_DELETED_P (insn
) = 1;
1384 /* Patch this insn out of the chain. */
1385 /* We don't do this all at once, because we
1386 must preserve all NOTEs. */
1388 NEXT_INSN (prev
) = next
;
1391 PREV_INSN (next
) = prev
;
1399 /* Note that if TO is an unconditional jump
1400 we *do not* delete the BARRIER that follows,
1401 since the peephole that replaces this sequence
1402 is also an unconditional jump in that case. */
1405 /* A helper function for redirect_exp_1; examines its input X and returns
1406 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1408 redirect_target (rtx x
)
1412 if (!ANY_RETURN_P (x
))
1413 return gen_rtx_LABEL_REF (Pmode
, x
);
1417 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1418 NLABEL as a return. Accrue modifications into the change group. */
1421 redirect_exp_1 (rtx
*loc
, rtx olabel
, rtx nlabel
, rtx insn
)
1424 RTX_CODE code
= GET_CODE (x
);
1428 if ((code
== LABEL_REF
&& XEXP (x
, 0) == olabel
)
1431 x
= redirect_target (nlabel
);
1432 if (GET_CODE (x
) == LABEL_REF
&& loc
== &PATTERN (insn
))
1433 x
= gen_rtx_SET (VOIDmode
, pc_rtx
, x
);
1434 validate_change (insn
, loc
, x
, 1);
1438 if (code
== SET
&& SET_DEST (x
) == pc_rtx
1439 && ANY_RETURN_P (nlabel
)
1440 && GET_CODE (SET_SRC (x
)) == LABEL_REF
1441 && XEXP (SET_SRC (x
), 0) == olabel
)
1443 validate_change (insn
, loc
, nlabel
, 1);
1447 if (code
== IF_THEN_ELSE
)
1449 /* Skip the condition of an IF_THEN_ELSE. We only want to
1450 change jump destinations, not eventual label comparisons. */
1451 redirect_exp_1 (&XEXP (x
, 1), olabel
, nlabel
, insn
);
1452 redirect_exp_1 (&XEXP (x
, 2), olabel
, nlabel
, insn
);
1456 fmt
= GET_RTX_FORMAT (code
);
1457 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1460 redirect_exp_1 (&XEXP (x
, i
), olabel
, nlabel
, insn
);
1461 else if (fmt
[i
] == 'E')
1464 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1465 redirect_exp_1 (&XVECEXP (x
, i
, j
), olabel
, nlabel
, insn
);
1470 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1471 the modifications into the change group. Return false if we did
1472 not see how to do that. */
1475 redirect_jump_1 (rtx jump
, rtx nlabel
)
1477 int ochanges
= num_validated_changes ();
1480 gcc_assert (nlabel
!= NULL_RTX
);
1481 asmop
= extract_asm_operands (PATTERN (jump
));
1486 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop
) == 1);
1487 loc
= &ASM_OPERANDS_LABEL (asmop
, 0);
1489 else if (GET_CODE (PATTERN (jump
)) == PARALLEL
)
1490 loc
= &XVECEXP (PATTERN (jump
), 0, 0);
1492 loc
= &PATTERN (jump
);
1494 redirect_exp_1 (loc
, JUMP_LABEL (jump
), nlabel
, jump
);
1495 return num_validated_changes () > ochanges
;
1498 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1499 jump target label is unused as a result, it and the code following
1502 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1503 in that case we are to turn the jump into a (possibly conditional)
1506 The return value will be 1 if the change was made, 0 if it wasn't
1507 (this can only occur when trying to produce return insns). */
1510 redirect_jump (rtx jump
, rtx nlabel
, int delete_unused
)
1512 rtx olabel
= JUMP_LABEL (jump
);
1516 /* If there is no label, we are asked to redirect to the EXIT block.
1517 When before the epilogue is emitted, return/simple_return cannot be
1518 created so we return 0 immediately. After the epilogue is emitted,
1519 we always expect a label, either a non-null label, or a
1520 return/simple_return RTX. */
1522 if (!epilogue_completed
)
1527 if (nlabel
== olabel
)
1530 if (! redirect_jump_1 (jump
, nlabel
) || ! apply_change_group ())
1533 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 0);
1537 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1539 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1540 count has dropped to zero. */
1542 redirect_jump_2 (rtx jump
, rtx olabel
, rtx nlabel
, int delete_unused
,
1547 gcc_assert (JUMP_LABEL (jump
) == olabel
);
1549 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1550 moving FUNCTION_END note. Just sanity check that no user still worry
1552 gcc_assert (delete_unused
>= 0);
1553 JUMP_LABEL (jump
) = nlabel
;
1554 if (!ANY_RETURN_P (nlabel
))
1555 ++LABEL_NUSES (nlabel
);
1557 /* Update labels in any REG_EQUAL note. */
1558 if ((note
= find_reg_note (jump
, REG_EQUAL
, NULL_RTX
)) != NULL_RTX
)
1560 if (ANY_RETURN_P (nlabel
)
1561 || (invert
&& !invert_exp_1 (XEXP (note
, 0), jump
)))
1562 remove_note (jump
, note
);
1565 redirect_exp_1 (&XEXP (note
, 0), olabel
, nlabel
, jump
);
1566 confirm_change_group ();
1570 if (!ANY_RETURN_P (olabel
)
1571 && --LABEL_NUSES (olabel
) == 0 && delete_unused
> 0
1572 /* Undefined labels will remain outside the insn stream. */
1573 && INSN_UID (olabel
))
1574 delete_related_insns (olabel
);
1576 invert_br_probabilities (jump
);
1579 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1580 modifications into the change group. Return nonzero for success. */
1582 invert_exp_1 (rtx x
, rtx insn
)
1584 RTX_CODE code
= GET_CODE (x
);
1586 if (code
== IF_THEN_ELSE
)
1588 rtx comp
= XEXP (x
, 0);
1590 enum rtx_code reversed_code
;
1592 /* We can do this in two ways: The preferable way, which can only
1593 be done if this is not an integer comparison, is to reverse
1594 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1595 of the IF_THEN_ELSE. If we can't do either, fail. */
1597 reversed_code
= reversed_comparison_code (comp
, insn
);
1599 if (reversed_code
!= UNKNOWN
)
1601 validate_change (insn
, &XEXP (x
, 0),
1602 gen_rtx_fmt_ee (reversed_code
,
1603 GET_MODE (comp
), XEXP (comp
, 0),
1610 validate_change (insn
, &XEXP (x
, 1), XEXP (x
, 2), 1);
1611 validate_change (insn
, &XEXP (x
, 2), tem
, 1);
1618 /* Invert the condition of the jump JUMP, and make it jump to label
1619 NLABEL instead of where it jumps now. Accrue changes into the
1620 change group. Return false if we didn't see how to perform the
1621 inversion and redirection. */
1624 invert_jump_1 (rtx jump
, rtx nlabel
)
1626 rtx x
= pc_set (jump
);
1630 ochanges
= num_validated_changes ();
1633 ok
= invert_exp_1 (SET_SRC (x
), jump
);
1636 if (num_validated_changes () == ochanges
)
1639 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1640 in Pmode, so checking this is not merely an optimization. */
1641 return nlabel
== JUMP_LABEL (jump
) || redirect_jump_1 (jump
, nlabel
);
1644 /* Invert the condition of the jump JUMP, and make it jump to label
1645 NLABEL instead of where it jumps now. Return true if successful. */
1648 invert_jump (rtx jump
, rtx nlabel
, int delete_unused
)
1650 rtx olabel
= JUMP_LABEL (jump
);
1652 if (invert_jump_1 (jump
, nlabel
) && apply_change_group ())
1654 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 1);
1662 /* Like rtx_equal_p except that it considers two REGs as equal
1663 if they renumber to the same value and considers two commutative
1664 operations to be the same if the order of the operands has been
1668 rtx_renumbered_equal_p (const_rtx x
, const_rtx y
)
1671 const enum rtx_code code
= GET_CODE (x
);
1677 if ((code
== REG
|| (code
== SUBREG
&& REG_P (SUBREG_REG (x
))))
1678 && (REG_P (y
) || (GET_CODE (y
) == SUBREG
1679 && REG_P (SUBREG_REG (y
)))))
1681 int reg_x
= -1, reg_y
= -1;
1682 int byte_x
= 0, byte_y
= 0;
1683 struct subreg_info info
;
1685 if (GET_MODE (x
) != GET_MODE (y
))
1688 /* If we haven't done any renumbering, don't
1689 make any assumptions. */
1690 if (reg_renumber
== 0)
1691 return rtx_equal_p (x
, y
);
1695 reg_x
= REGNO (SUBREG_REG (x
));
1696 byte_x
= SUBREG_BYTE (x
);
1698 if (reg_renumber
[reg_x
] >= 0)
1700 subreg_get_info (reg_renumber
[reg_x
],
1701 GET_MODE (SUBREG_REG (x
)), byte_x
,
1702 GET_MODE (x
), &info
);
1703 if (!info
.representable_p
)
1705 reg_x
= info
.offset
;
1712 if (reg_renumber
[reg_x
] >= 0)
1713 reg_x
= reg_renumber
[reg_x
];
1716 if (GET_CODE (y
) == SUBREG
)
1718 reg_y
= REGNO (SUBREG_REG (y
));
1719 byte_y
= SUBREG_BYTE (y
);
1721 if (reg_renumber
[reg_y
] >= 0)
1723 subreg_get_info (reg_renumber
[reg_y
],
1724 GET_MODE (SUBREG_REG (y
)), byte_y
,
1725 GET_MODE (y
), &info
);
1726 if (!info
.representable_p
)
1728 reg_y
= info
.offset
;
1735 if (reg_renumber
[reg_y
] >= 0)
1736 reg_y
= reg_renumber
[reg_y
];
1739 return reg_x
>= 0 && reg_x
== reg_y
&& byte_x
== byte_y
;
1742 /* Now we have disposed of all the cases
1743 in which different rtx codes can match. */
1744 if (code
!= GET_CODE (y
))
1757 /* We can't assume nonlocal labels have their following insns yet. */
1758 if (LABEL_REF_NONLOCAL_P (x
) || LABEL_REF_NONLOCAL_P (y
))
1759 return XEXP (x
, 0) == XEXP (y
, 0);
1761 /* Two label-refs are equivalent if they point at labels
1762 in the same position in the instruction stream. */
1763 return (next_real_insn (XEXP (x
, 0))
1764 == next_real_insn (XEXP (y
, 0)));
1767 return XSTR (x
, 0) == XSTR (y
, 0);
1770 /* If we didn't match EQ equality above, they aren't the same. */
1777 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1779 if (GET_MODE (x
) != GET_MODE (y
))
1782 /* MEMs referring to different address space are not equivalent. */
1783 if (code
== MEM
&& MEM_ADDR_SPACE (x
) != MEM_ADDR_SPACE (y
))
1786 /* For commutative operations, the RTX match if the operand match in any
1787 order. Also handle the simple binary and unary cases without a loop. */
1788 if (targetm
.commutative_p (x
, UNKNOWN
))
1789 return ((rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1790 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)))
1791 || (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 1))
1792 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 0))));
1793 else if (NON_COMMUTATIVE_P (x
))
1794 return (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1795 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)));
1796 else if (UNARY_P (x
))
1797 return rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0));
1799 /* Compare the elements. If any pair of corresponding elements
1800 fail to match, return 0 for the whole things. */
1802 fmt
= GET_RTX_FORMAT (code
);
1803 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1809 if (XWINT (x
, i
) != XWINT (y
, i
))
1814 if (XINT (x
, i
) != XINT (y
, i
))
1816 if (((code
== ASM_OPERANDS
&& i
== 6)
1817 || (code
== ASM_INPUT
&& i
== 1)))
1824 if (XTREE (x
, i
) != XTREE (y
, i
))
1829 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1834 if (! rtx_renumbered_equal_p (XEXP (x
, i
), XEXP (y
, i
)))
1839 if (XEXP (x
, i
) != XEXP (y
, i
))
1846 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1848 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1849 if (!rtx_renumbered_equal_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)))
1860 /* If X is a hard register or equivalent to one or a subregister of one,
1861 return the hard register number. If X is a pseudo register that was not
1862 assigned a hard register, return the pseudo register number. Otherwise,
1863 return -1. Any rtx is valid for X. */
1866 true_regnum (const_rtx x
)
1870 if (REGNO (x
) >= FIRST_PSEUDO_REGISTER
1871 && (lra_in_progress
|| reg_renumber
[REGNO (x
)] >= 0))
1872 return reg_renumber
[REGNO (x
)];
1875 if (GET_CODE (x
) == SUBREG
)
1877 int base
= true_regnum (SUBREG_REG (x
));
1879 && base
< FIRST_PSEUDO_REGISTER
)
1881 struct subreg_info info
;
1883 subreg_get_info (lra_in_progress
1884 ? (unsigned) base
: REGNO (SUBREG_REG (x
)),
1885 GET_MODE (SUBREG_REG (x
)),
1886 SUBREG_BYTE (x
), GET_MODE (x
), &info
);
1888 if (info
.representable_p
)
1889 return base
+ info
.offset
;
1895 /* Return regno of the register REG and handle subregs too. */
1897 reg_or_subregno (const_rtx reg
)
1899 if (GET_CODE (reg
) == SUBREG
)
1900 reg
= SUBREG_REG (reg
);
1901 gcc_assert (REG_P (reg
));