testsuite: simplify target requirements for various Power9 testcases.
[official-gcc.git] / gcc / tree-vectorizer.h
blobb56073c4ee329e2fa21c764d306dd67b8327b2eb
1 /* Vectorizer
2 Copyright (C) 2003-2020 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 typedef class _stmt_vec_info *stmt_vec_info;
26 #include "tree-data-ref.h"
27 #include "tree-hash-traits.h"
28 #include "target.h"
31 /* Used for naming of new temporaries. */
32 enum vect_var_kind {
33 vect_simple_var,
34 vect_pointer_var,
35 vect_scalar_var,
36 vect_mask_var
39 /* Defines type of operation. */
40 enum operation_type {
41 unary_op = 1,
42 binary_op,
43 ternary_op
46 /* Define type of available alignment support. */
47 enum dr_alignment_support {
48 dr_unaligned_unsupported,
49 dr_unaligned_supported,
50 dr_explicit_realign,
51 dr_explicit_realign_optimized,
52 dr_aligned
55 /* Define type of def-use cross-iteration cycle. */
56 enum vect_def_type {
57 vect_uninitialized_def = 0,
58 vect_constant_def = 1,
59 vect_external_def,
60 vect_internal_def,
61 vect_induction_def,
62 vect_reduction_def,
63 vect_double_reduction_def,
64 vect_nested_cycle,
65 vect_unknown_def_type
68 /* Define type of reduction. */
69 enum vect_reduction_type {
70 TREE_CODE_REDUCTION,
71 COND_REDUCTION,
72 INTEGER_INDUC_COND_REDUCTION,
73 CONST_COND_REDUCTION,
75 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
76 to implement:
78 for (int i = 0; i < VF; ++i)
79 res = cond[i] ? val[i] : res; */
80 EXTRACT_LAST_REDUCTION,
82 /* Use a folding reduction within the loop to implement:
84 for (int i = 0; i < VF; ++i)
85 res = res OP val[i];
87 (with no reassocation). */
88 FOLD_LEFT_REDUCTION
91 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
92 || ((D) == vect_double_reduction_def) \
93 || ((D) == vect_nested_cycle))
95 /* Structure to encapsulate information about a group of like
96 instructions to be presented to the target cost model. */
97 struct stmt_info_for_cost {
98 int count;
99 enum vect_cost_for_stmt kind;
100 enum vect_cost_model_location where;
101 stmt_vec_info stmt_info;
102 tree vectype;
103 int misalign;
106 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
108 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
109 known alignment for that base. */
110 typedef hash_map<tree_operand_hash,
111 innermost_loop_behavior *> vec_base_alignments;
113 /************************************************************************
115 ************************************************************************/
116 typedef struct _slp_tree *slp_tree;
118 /* A computation tree of an SLP instance. Each node corresponds to a group of
119 stmts to be packed in a SIMD stmt. */
120 struct _slp_tree {
121 _slp_tree ();
122 ~_slp_tree ();
124 /* Nodes that contain def-stmts of this node statements operands. */
125 vec<slp_tree> children;
127 /* A group of scalar stmts to be vectorized together. */
128 vec<stmt_vec_info> stmts;
129 /* A group of scalar operands to be vectorized together. */
130 vec<tree> ops;
131 /* The representative that should be used for analysis and
132 code generation. */
133 stmt_vec_info representative;
135 /* Load permutation relative to the stores, NULL if there is no
136 permutation. */
137 vec<unsigned> load_permutation;
138 /* Lane permutation of the operands scalar lanes encoded as pairs
139 of { operand number, lane number }. The number of elements
140 denotes the number of output lanes. */
141 vec<std::pair<unsigned, unsigned> > lane_permutation;
143 tree vectype;
144 /* Vectorized stmt/s. */
145 vec<gimple *> vec_stmts;
146 vec<tree> vec_defs;
147 /* Number of vector stmts that are created to replace the group of scalar
148 stmts. It is calculated during the transformation phase as the number of
149 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
150 divided by vector size. */
151 unsigned int vec_stmts_size;
153 /* Reference count in the SLP graph. */
154 unsigned int refcnt;
155 /* The maximum number of vector elements for the subtree rooted
156 at this node. */
157 poly_uint64 max_nunits;
158 /* The DEF type of this node. */
159 enum vect_def_type def_type;
160 /* The number of scalar lanes produced by this node. */
161 unsigned int lanes;
162 /* The operation of this node. */
163 enum tree_code code;
165 int vertex;
169 /* SLP instance is a sequence of stmts in a loop that can be packed into
170 SIMD stmts. */
171 typedef class _slp_instance {
172 public:
173 /* The root of SLP tree. */
174 slp_tree root;
176 /* For vector constructors, the constructor stmt that the SLP tree is built
177 from, NULL otherwise. */
178 stmt_vec_info root_stmt;
180 /* The unrolling factor required to vectorized this SLP instance. */
181 poly_uint64 unrolling_factor;
183 /* The group of nodes that contain loads of this SLP instance. */
184 vec<slp_tree> loads;
186 /* The SLP node containing the reduction PHIs. */
187 slp_tree reduc_phis;
189 /* Vector cost of this entry to the SLP graph. */
190 stmt_vector_for_cost cost_vec;
192 /* If this instance is the main entry of a subgraph the set of
193 entries into the same subgraph, including itself. */
194 vec<_slp_instance *> subgraph_entries;
196 dump_user_location_t location () const;
197 } *slp_instance;
200 /* Access Functions. */
201 #define SLP_INSTANCE_TREE(S) (S)->root
202 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
203 #define SLP_INSTANCE_LOADS(S) (S)->loads
204 #define SLP_INSTANCE_ROOT_STMT(S) (S)->root_stmt
206 #define SLP_TREE_CHILDREN(S) (S)->children
207 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
208 #define SLP_TREE_SCALAR_OPS(S) (S)->ops
209 #define SLP_TREE_REF_COUNT(S) (S)->refcnt
210 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
211 #define SLP_TREE_VEC_DEFS(S) (S)->vec_defs
212 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
213 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
214 #define SLP_TREE_LANE_PERMUTATION(S) (S)->lane_permutation
215 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
216 #define SLP_TREE_VECTYPE(S) (S)->vectype
217 #define SLP_TREE_REPRESENTATIVE(S) (S)->representative
218 #define SLP_TREE_LANES(S) (S)->lanes
219 #define SLP_TREE_CODE(S) (S)->code
221 /* Key for map that records association between
222 scalar conditions and corresponding loop mask, and
223 is populated by vect_record_loop_mask. */
225 struct scalar_cond_masked_key
227 scalar_cond_masked_key (tree t, unsigned ncopies_)
228 : ncopies (ncopies_)
230 get_cond_ops_from_tree (t);
233 void get_cond_ops_from_tree (tree);
235 unsigned ncopies;
236 tree_code code;
237 tree op0;
238 tree op1;
241 template<>
242 struct default_hash_traits<scalar_cond_masked_key>
244 typedef scalar_cond_masked_key compare_type;
245 typedef scalar_cond_masked_key value_type;
247 static inline hashval_t
248 hash (value_type v)
250 inchash::hash h;
251 h.add_int (v.code);
252 inchash::add_expr (v.op0, h, 0);
253 inchash::add_expr (v.op1, h, 0);
254 h.add_int (v.ncopies);
255 return h.end ();
258 static inline bool
259 equal (value_type existing, value_type candidate)
261 return (existing.ncopies == candidate.ncopies
262 && existing.code == candidate.code
263 && operand_equal_p (existing.op0, candidate.op0, 0)
264 && operand_equal_p (existing.op1, candidate.op1, 0));
267 static const bool empty_zero_p = true;
269 static inline void
270 mark_empty (value_type &v)
272 v.ncopies = 0;
275 static inline bool
276 is_empty (value_type v)
278 return v.ncopies == 0;
281 static inline void mark_deleted (value_type &) {}
283 static inline bool is_deleted (const value_type &)
285 return false;
288 static inline void remove (value_type &) {}
291 typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
293 /* Describes two objects whose addresses must be unequal for the vectorized
294 loop to be valid. */
295 typedef std::pair<tree, tree> vec_object_pair;
297 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
298 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
299 class vec_lower_bound {
300 public:
301 vec_lower_bound () {}
302 vec_lower_bound (tree e, bool u, poly_uint64 m)
303 : expr (e), unsigned_p (u), min_value (m) {}
305 tree expr;
306 bool unsigned_p;
307 poly_uint64 min_value;
310 /* Vectorizer state shared between different analyses like vector sizes
311 of the same CFG region. */
312 class vec_info_shared {
313 public:
314 vec_info_shared();
315 ~vec_info_shared();
317 void save_datarefs();
318 void check_datarefs();
320 /* All data references. Freed by free_data_refs, so not an auto_vec. */
321 vec<data_reference_p> datarefs;
322 vec<data_reference> datarefs_copy;
324 /* The loop nest in which the data dependences are computed. */
325 auto_vec<loop_p> loop_nest;
327 /* All data dependences. Freed by free_dependence_relations, so not
328 an auto_vec. */
329 vec<ddr_p> ddrs;
332 /* Vectorizer state common between loop and basic-block vectorization. */
333 class vec_info {
334 public:
335 typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
336 enum vec_kind { bb, loop };
338 vec_info (vec_kind, void *, vec_info_shared *);
339 ~vec_info ();
341 stmt_vec_info add_stmt (gimple *);
342 stmt_vec_info lookup_stmt (gimple *);
343 stmt_vec_info lookup_def (tree);
344 stmt_vec_info lookup_single_use (tree);
345 class dr_vec_info *lookup_dr (data_reference *);
346 void move_dr (stmt_vec_info, stmt_vec_info);
347 void remove_stmt (stmt_vec_info);
348 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
349 void insert_on_entry (stmt_vec_info, gimple *);
350 void insert_seq_on_entry (stmt_vec_info, gimple_seq);
352 /* The type of vectorization. */
353 vec_kind kind;
355 /* Shared vectorizer state. */
356 vec_info_shared *shared;
358 /* The mapping of GIMPLE UID to stmt_vec_info. */
359 vec<stmt_vec_info> stmt_vec_infos;
360 /* Whether the above mapping is complete. */
361 bool stmt_vec_info_ro;
363 /* The SLP graph. */
364 auto_vec<slp_instance> slp_instances;
366 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
367 known alignment for that base. */
368 vec_base_alignments base_alignments;
370 /* All interleaving chains of stores, represented by the first
371 stmt in the chain. */
372 auto_vec<stmt_vec_info> grouped_stores;
374 /* Cost data used by the target cost model. */
375 void *target_cost_data;
377 /* The set of vector modes used in the vectorized region. */
378 mode_set used_vector_modes;
380 /* The argument we should pass to related_vector_mode when looking up
381 the vector mode for a scalar mode, or VOIDmode if we haven't yet
382 made any decisions about which vector modes to use. */
383 machine_mode vector_mode;
385 private:
386 stmt_vec_info new_stmt_vec_info (gimple *stmt);
387 void set_vinfo_for_stmt (gimple *, stmt_vec_info);
388 void free_stmt_vec_infos ();
389 void free_stmt_vec_info (stmt_vec_info);
392 class _loop_vec_info;
393 class _bb_vec_info;
395 template<>
396 template<>
397 inline bool
398 is_a_helper <_loop_vec_info *>::test (vec_info *i)
400 return i->kind == vec_info::loop;
403 template<>
404 template<>
405 inline bool
406 is_a_helper <_bb_vec_info *>::test (vec_info *i)
408 return i->kind == vec_info::bb;
411 /* In general, we can divide the vector statements in a vectorized loop
412 into related groups ("rgroups") and say that for each rgroup there is
413 some nS such that the rgroup operates on nS values from one scalar
414 iteration followed by nS values from the next. That is, if VF is the
415 vectorization factor of the loop, the rgroup operates on a sequence:
417 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
419 where (i,j) represents a scalar value with index j in a scalar
420 iteration with index i.
422 [ We use the term "rgroup" to emphasise that this grouping isn't
423 necessarily the same as the grouping of statements used elsewhere.
424 For example, if we implement a group of scalar loads using gather
425 loads, we'll use a separate gather load for each scalar load, and
426 thus each gather load will belong to its own rgroup. ]
428 In general this sequence will occupy nV vectors concatenated
429 together. If these vectors have nL lanes each, the total number
430 of scalar values N is given by:
432 N = nS * VF = nV * nL
434 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
435 are compile-time constants but VF and nL can be variable (if the target
436 supports variable-length vectors).
438 In classical vectorization, each iteration of the vector loop would
439 handle exactly VF iterations of the original scalar loop. However,
440 in vector loops that are able to operate on partial vectors, a
441 particular iteration of the vector loop might handle fewer than VF
442 iterations of the scalar loop. The vector lanes that correspond to
443 iterations of the scalar loop are said to be "active" and the other
444 lanes are said to be "inactive".
446 In such vector loops, many rgroups need to be controlled to ensure
447 that they have no effect for the inactive lanes. Conceptually, each
448 such rgroup needs a sequence of booleans in the same order as above,
449 but with each (i,j) replaced by a boolean that indicates whether
450 iteration i is active. This sequence occupies nV vector controls
451 that again have nL lanes each. Thus the control sequence as a whole
452 consists of VF independent booleans that are each repeated nS times.
454 Taking mask-based approach as a partially-populated vectors example.
455 We make the simplifying assumption that if a sequence of nV masks is
456 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
457 VIEW_CONVERTing it. This holds for all current targets that support
458 fully-masked loops. For example, suppose the scalar loop is:
460 float *f;
461 double *d;
462 for (int i = 0; i < n; ++i)
464 f[i * 2 + 0] += 1.0f;
465 f[i * 2 + 1] += 2.0f;
466 d[i] += 3.0;
469 and suppose that vectors have 256 bits. The vectorized f accesses
470 will belong to one rgroup and the vectorized d access to another:
472 f rgroup: nS = 2, nV = 1, nL = 8
473 d rgroup: nS = 1, nV = 1, nL = 4
474 VF = 4
476 [ In this simple example the rgroups do correspond to the normal
477 SLP grouping scheme. ]
479 If only the first three lanes are active, the masks we need are:
481 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
482 d rgroup: 1 | 1 | 1 | 0
484 Here we can use a mask calculated for f's rgroup for d's, but not
485 vice versa.
487 Thus for each value of nV, it is enough to provide nV masks, with the
488 mask being calculated based on the highest nL (or, equivalently, based
489 on the highest nS) required by any rgroup with that nV. We therefore
490 represent the entire collection of masks as a two-level table, with the
491 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
492 the second being indexed by the mask index 0 <= i < nV. */
494 /* The controls (like masks or lengths) needed by rgroups with nV vectors,
495 according to the description above. */
496 struct rgroup_controls {
497 /* The largest nS for all rgroups that use these controls. */
498 unsigned int max_nscalars_per_iter;
500 /* For the largest nS recorded above, the loop controls divide each scalar
501 into FACTOR equal-sized pieces. This is useful if we need to split
502 element-based accesses into byte-based accesses. */
503 unsigned int factor;
505 /* This is a vector type with MAX_NSCALARS_PER_ITER * VF / nV elements.
506 For mask-based controls, it is the type of the masks in CONTROLS.
507 For length-based controls, it can be any vector type that has the
508 specified number of elements; the type of the elements doesn't matter. */
509 tree type;
511 /* A vector of nV controls, in iteration order. */
512 vec<tree> controls;
515 typedef auto_vec<rgroup_controls> vec_loop_masks;
517 typedef auto_vec<rgroup_controls> vec_loop_lens;
519 typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
521 /*-----------------------------------------------------------------*/
522 /* Info on vectorized loops. */
523 /*-----------------------------------------------------------------*/
524 typedef class _loop_vec_info : public vec_info {
525 public:
526 _loop_vec_info (class loop *, vec_info_shared *);
527 ~_loop_vec_info ();
529 /* The loop to which this info struct refers to. */
530 class loop *loop;
532 /* The loop basic blocks. */
533 basic_block *bbs;
535 /* Number of latch executions. */
536 tree num_itersm1;
537 /* Number of iterations. */
538 tree num_iters;
539 /* Number of iterations of the original loop. */
540 tree num_iters_unchanged;
541 /* Condition under which this loop is analyzed and versioned. */
542 tree num_iters_assumptions;
544 /* Threshold of number of iterations below which vectorization will not be
545 performed. It is calculated from MIN_PROFITABLE_ITERS and
546 param_min_vect_loop_bound. */
547 unsigned int th;
549 /* When applying loop versioning, the vector form should only be used
550 if the number of scalar iterations is >= this value, on top of all
551 the other requirements. Ignored when loop versioning is not being
552 used. */
553 poly_uint64 versioning_threshold;
555 /* Unrolling factor */
556 poly_uint64 vectorization_factor;
558 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
559 if there is no particular limit. */
560 unsigned HOST_WIDE_INT max_vectorization_factor;
562 /* The masks that a fully-masked loop should use to avoid operating
563 on inactive scalars. */
564 vec_loop_masks masks;
566 /* The lengths that a loop with length should use to avoid operating
567 on inactive scalars. */
568 vec_loop_lens lens;
570 /* Set of scalar conditions that have loop mask applied. */
571 scalar_cond_masked_set_type scalar_cond_masked_set;
573 /* If we are using a loop mask to align memory addresses, this variable
574 contains the number of vector elements that we should skip in the
575 first iteration of the vector loop (i.e. the number of leading
576 elements that should be false in the first mask). */
577 tree mask_skip_niters;
579 /* The type that the loop control IV should be converted to before
580 testing which of the VF scalars are active and inactive.
581 Only meaningful if LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
582 tree rgroup_compare_type;
584 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
585 the loop should not be vectorized, if constant non-zero, simd_if_cond
586 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
587 should be versioned on that condition, using scalar loop if the condition
588 is false and vectorized loop otherwise. */
589 tree simd_if_cond;
591 /* The type that the vector loop control IV should have when
592 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
593 tree rgroup_iv_type;
595 /* Unknown DRs according to which loop was peeled. */
596 class dr_vec_info *unaligned_dr;
598 /* peeling_for_alignment indicates whether peeling for alignment will take
599 place, and what the peeling factor should be:
600 peeling_for_alignment = X means:
601 If X=0: Peeling for alignment will not be applied.
602 If X>0: Peel first X iterations.
603 If X=-1: Generate a runtime test to calculate the number of iterations
604 to be peeled, using the dataref recorded in the field
605 unaligned_dr. */
606 int peeling_for_alignment;
608 /* The mask used to check the alignment of pointers or arrays. */
609 int ptr_mask;
611 /* Data Dependence Relations defining address ranges that are candidates
612 for a run-time aliasing check. */
613 auto_vec<ddr_p> may_alias_ddrs;
615 /* Data Dependence Relations defining address ranges together with segment
616 lengths from which the run-time aliasing check is built. */
617 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
619 /* Check that the addresses of each pair of objects is unequal. */
620 auto_vec<vec_object_pair> check_unequal_addrs;
622 /* List of values that are required to be nonzero. This is used to check
623 whether things like "x[i * n] += 1;" are safe and eventually gets added
624 to the checks for lower bounds below. */
625 auto_vec<tree> check_nonzero;
627 /* List of values that need to be checked for a minimum value. */
628 auto_vec<vec_lower_bound> lower_bounds;
630 /* Statements in the loop that have data references that are candidates for a
631 runtime (loop versioning) misalignment check. */
632 auto_vec<stmt_vec_info> may_misalign_stmts;
634 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
635 auto_vec<stmt_vec_info> reductions;
637 /* All reduction chains in the loop, represented by the first
638 stmt in the chain. */
639 auto_vec<stmt_vec_info> reduction_chains;
641 /* Cost vector for a single scalar iteration. */
642 auto_vec<stmt_info_for_cost> scalar_cost_vec;
644 /* Map of IV base/step expressions to inserted name in the preheader. */
645 hash_map<tree_operand_hash, tree> *ivexpr_map;
647 /* Map of OpenMP "omp simd array" scan variables to corresponding
648 rhs of the store of the initializer. */
649 hash_map<tree, tree> *scan_map;
651 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
652 applied to the loop, i.e., no unrolling is needed, this is 1. */
653 poly_uint64 slp_unrolling_factor;
655 /* Cost of a single scalar iteration. */
656 int single_scalar_iteration_cost;
658 /* The cost of the vector prologue and epilogue, including peeled
659 iterations and set-up code. */
660 int vec_outside_cost;
662 /* The cost of the vector loop body. */
663 int vec_inside_cost;
665 /* Is the loop vectorizable? */
666 bool vectorizable;
668 /* Records whether we still have the option of vectorizing this loop
669 using partially-populated vectors; in other words, whether it is
670 still possible for one iteration of the vector loop to handle
671 fewer than VF scalars. */
672 bool can_use_partial_vectors_p;
674 /* True if we've decided to use partially-populated vectors, so that
675 the vector loop can handle fewer than VF scalars. */
676 bool using_partial_vectors_p;
678 /* True if we've decided to use partially-populated vectors for the
679 epilogue of loop. */
680 bool epil_using_partial_vectors_p;
682 /* When we have grouped data accesses with gaps, we may introduce invalid
683 memory accesses. We peel the last iteration of the loop to prevent
684 this. */
685 bool peeling_for_gaps;
687 /* When the number of iterations is not a multiple of the vector size
688 we need to peel off iterations at the end to form an epilogue loop. */
689 bool peeling_for_niter;
691 /* True if there are no loop carried data dependencies in the loop.
692 If loop->safelen <= 1, then this is always true, either the loop
693 didn't have any loop carried data dependencies, or the loop is being
694 vectorized guarded with some runtime alias checks, or couldn't
695 be vectorized at all, but then this field shouldn't be used.
696 For loop->safelen >= 2, the user has asserted that there are no
697 backward dependencies, but there still could be loop carried forward
698 dependencies in such loops. This flag will be false if normal
699 vectorizer data dependency analysis would fail or require versioning
700 for alias, but because of loop->safelen >= 2 it has been vectorized
701 even without versioning for alias. E.g. in:
702 #pragma omp simd
703 for (int i = 0; i < m; i++)
704 a[i] = a[i + k] * c;
705 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
706 DTRT even for k > 0 && k < m, but without safelen we would not
707 vectorize this, so this field would be false. */
708 bool no_data_dependencies;
710 /* Mark loops having masked stores. */
711 bool has_mask_store;
713 /* Queued scaling factor for the scalar loop. */
714 profile_probability scalar_loop_scaling;
716 /* If if-conversion versioned this loop before conversion, this is the
717 loop version without if-conversion. */
718 class loop *scalar_loop;
720 /* For loops being epilogues of already vectorized loops
721 this points to the original vectorized loop. Otherwise NULL. */
722 _loop_vec_info *orig_loop_info;
724 /* Used to store loop_vec_infos of epilogues of this loop during
725 analysis. */
726 vec<_loop_vec_info *> epilogue_vinfos;
728 } *loop_vec_info;
730 /* Access Functions. */
731 #define LOOP_VINFO_LOOP(L) (L)->loop
732 #define LOOP_VINFO_BBS(L) (L)->bbs
733 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
734 #define LOOP_VINFO_NITERS(L) (L)->num_iters
735 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
736 prologue peeling retain total unchanged scalar loop iterations for
737 cost model. */
738 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
739 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
740 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
741 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
742 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
743 #define LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P(L) (L)->can_use_partial_vectors_p
744 #define LOOP_VINFO_USING_PARTIAL_VECTORS_P(L) (L)->using_partial_vectors_p
745 #define LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P(L) \
746 (L)->epil_using_partial_vectors_p
747 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
748 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
749 #define LOOP_VINFO_MASKS(L) (L)->masks
750 #define LOOP_VINFO_LENS(L) (L)->lens
751 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
752 #define LOOP_VINFO_RGROUP_COMPARE_TYPE(L) (L)->rgroup_compare_type
753 #define LOOP_VINFO_RGROUP_IV_TYPE(L) (L)->rgroup_iv_type
754 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
755 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
756 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
757 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
758 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
759 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
760 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
761 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
762 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
763 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
764 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
765 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
766 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
767 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
768 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
769 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
770 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
771 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
772 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
773 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
774 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
775 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
776 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
777 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
778 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
779 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
780 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
781 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
782 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
784 #define LOOP_VINFO_FULLY_MASKED_P(L) \
785 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
786 && !LOOP_VINFO_MASKS (L).is_empty ())
788 #define LOOP_VINFO_FULLY_WITH_LENGTH_P(L) \
789 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
790 && !LOOP_VINFO_LENS (L).is_empty ())
792 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
793 ((L)->may_misalign_stmts.length () > 0)
794 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
795 ((L)->comp_alias_ddrs.length () > 0 \
796 || (L)->check_unequal_addrs.length () > 0 \
797 || (L)->lower_bounds.length () > 0)
798 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
799 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
800 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
801 (LOOP_VINFO_SIMD_IF_COND (L))
802 #define LOOP_REQUIRES_VERSIONING(L) \
803 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
804 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
805 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
806 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
808 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
809 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
811 #define LOOP_VINFO_EPILOGUE_P(L) \
812 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
814 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
815 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
817 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
818 value signifies success, and a NULL value signifies failure, supporting
819 propagating an opt_problem * describing the failure back up the call
820 stack. */
821 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
823 static inline loop_vec_info
824 loop_vec_info_for_loop (class loop *loop)
826 return (loop_vec_info) loop->aux;
829 typedef class _bb_vec_info : public vec_info
831 public:
832 _bb_vec_info (vec<basic_block> bbs, vec_info_shared *);
833 ~_bb_vec_info ();
835 /* The region we are operating on. bbs[0] is the entry, excluding
836 its PHI nodes. In the future we might want to track an explicit
837 entry edge to cover bbs[0] PHI nodes and have a region entry
838 insert location. */
839 vec<basic_block> bbs;
840 } *bb_vec_info;
842 #define BB_VINFO_BB(B) (B)->bb
843 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
844 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
845 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
846 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
848 static inline bb_vec_info
849 vec_info_for_bb (basic_block bb)
851 return (bb_vec_info) bb->aux;
854 /*-----------------------------------------------------------------*/
855 /* Info on vectorized defs. */
856 /*-----------------------------------------------------------------*/
857 enum stmt_vec_info_type {
858 undef_vec_info_type = 0,
859 load_vec_info_type,
860 store_vec_info_type,
861 shift_vec_info_type,
862 op_vec_info_type,
863 call_vec_info_type,
864 call_simd_clone_vec_info_type,
865 assignment_vec_info_type,
866 condition_vec_info_type,
867 comparison_vec_info_type,
868 reduc_vec_info_type,
869 induc_vec_info_type,
870 type_promotion_vec_info_type,
871 type_demotion_vec_info_type,
872 type_conversion_vec_info_type,
873 cycle_phi_info_type,
874 lc_phi_info_type,
875 loop_exit_ctrl_vec_info_type
878 /* Indicates whether/how a variable is used in the scope of loop/basic
879 block. */
880 enum vect_relevant {
881 vect_unused_in_scope = 0,
883 /* The def is only used outside the loop. */
884 vect_used_only_live,
885 /* The def is in the inner loop, and the use is in the outer loop, and the
886 use is a reduction stmt. */
887 vect_used_in_outer_by_reduction,
888 /* The def is in the inner loop, and the use is in the outer loop (and is
889 not part of reduction). */
890 vect_used_in_outer,
892 /* defs that feed computations that end up (only) in a reduction. These
893 defs may be used by non-reduction stmts, but eventually, any
894 computations/values that are affected by these defs are used to compute
895 a reduction (i.e. don't get stored to memory, for example). We use this
896 to identify computations that we can change the order in which they are
897 computed. */
898 vect_used_by_reduction,
900 vect_used_in_scope
903 /* The type of vectorization that can be applied to the stmt: regular loop-based
904 vectorization; pure SLP - the stmt is a part of SLP instances and does not
905 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
906 a part of SLP instance and also must be loop-based vectorized, since it has
907 uses outside SLP sequences.
909 In the loop context the meanings of pure and hybrid SLP are slightly
910 different. By saying that pure SLP is applied to the loop, we mean that we
911 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
912 vectorized without doing any conceptual unrolling, cause we don't pack
913 together stmts from different iterations, only within a single iteration.
914 Loop hybrid SLP means that we exploit both intra-iteration and
915 inter-iteration parallelism (e.g., number of elements in the vector is 4
916 and the slp-group-size is 2, in which case we don't have enough parallelism
917 within an iteration, so we obtain the rest of the parallelism from subsequent
918 iterations by unrolling the loop by 2). */
919 enum slp_vect_type {
920 loop_vect = 0,
921 pure_slp,
922 hybrid
925 /* Says whether a statement is a load, a store of a vectorized statement
926 result, or a store of an invariant value. */
927 enum vec_load_store_type {
928 VLS_LOAD,
929 VLS_STORE,
930 VLS_STORE_INVARIANT
933 /* Describes how we're going to vectorize an individual load or store,
934 or a group of loads or stores. */
935 enum vect_memory_access_type {
936 /* An access to an invariant address. This is used only for loads. */
937 VMAT_INVARIANT,
939 /* A simple contiguous access. */
940 VMAT_CONTIGUOUS,
942 /* A contiguous access that goes down in memory rather than up,
943 with no additional permutation. This is used only for stores
944 of invariants. */
945 VMAT_CONTIGUOUS_DOWN,
947 /* A simple contiguous access in which the elements need to be permuted
948 after loading or before storing. Only used for loop vectorization;
949 SLP uses separate permutes. */
950 VMAT_CONTIGUOUS_PERMUTE,
952 /* A simple contiguous access in which the elements need to be reversed
953 after loading or before storing. */
954 VMAT_CONTIGUOUS_REVERSE,
956 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
957 VMAT_LOAD_STORE_LANES,
959 /* An access in which each scalar element is loaded or stored
960 individually. */
961 VMAT_ELEMENTWISE,
963 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
964 SLP accesses. Each unrolled iteration uses a contiguous load
965 or store for the whole group, but the groups from separate iterations
966 are combined in the same way as for VMAT_ELEMENTWISE. */
967 VMAT_STRIDED_SLP,
969 /* The access uses gather loads or scatter stores. */
970 VMAT_GATHER_SCATTER
973 class dr_vec_info {
974 public:
975 /* The data reference itself. */
976 data_reference *dr;
977 /* The statement that contains the data reference. */
978 stmt_vec_info stmt;
979 /* The misalignment in bytes of the reference, or -1 if not known. */
980 int misalignment;
981 /* The byte alignment that we'd ideally like the reference to have,
982 and the value that misalignment is measured against. */
983 poly_uint64 target_alignment;
984 /* If true the alignment of base_decl needs to be increased. */
985 bool base_misaligned;
986 tree base_decl;
988 /* Stores current vectorized loop's offset. To be added to the DR's
989 offset to calculate current offset of data reference. */
990 tree offset;
993 typedef struct data_reference *dr_p;
995 class _stmt_vec_info {
996 public:
998 enum stmt_vec_info_type type;
1000 /* Indicates whether this stmts is part of a computation whose result is
1001 used outside the loop. */
1002 bool live;
1004 /* Stmt is part of some pattern (computation idiom) */
1005 bool in_pattern_p;
1007 /* True if the statement was created during pattern recognition as
1008 part of the replacement for RELATED_STMT. This implies that the
1009 statement isn't part of any basic block, although for convenience
1010 its gimple_bb is the same as for RELATED_STMT. */
1011 bool pattern_stmt_p;
1013 /* Is this statement vectorizable or should it be skipped in (partial)
1014 vectorization. */
1015 bool vectorizable;
1017 /* The stmt to which this info struct refers to. */
1018 gimple *stmt;
1020 /* The vector type to be used for the LHS of this statement. */
1021 tree vectype;
1023 /* The vectorized stmts. */
1024 vec<gimple *> vec_stmts;
1026 /* The following is relevant only for stmts that contain a non-scalar
1027 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
1028 at most one such data-ref. */
1030 dr_vec_info dr_aux;
1032 /* Information about the data-ref relative to this loop
1033 nest (the loop that is being considered for vectorization). */
1034 innermost_loop_behavior dr_wrt_vec_loop;
1036 /* For loop PHI nodes, the base and evolution part of it. This makes sure
1037 this information is still available in vect_update_ivs_after_vectorizer
1038 where we may not be able to re-analyze the PHI nodes evolution as
1039 peeling for the prologue loop can make it unanalyzable. The evolution
1040 part is still correct after peeling, but the base may have changed from
1041 the version here. */
1042 tree loop_phi_evolution_base_unchanged;
1043 tree loop_phi_evolution_part;
1045 /* Used for various bookkeeping purposes, generally holding a pointer to
1046 some other stmt S that is in some way "related" to this stmt.
1047 Current use of this field is:
1048 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
1049 true): S is the "pattern stmt" that represents (and replaces) the
1050 sequence of stmts that constitutes the pattern. Similarly, the
1051 related_stmt of the "pattern stmt" points back to this stmt (which is
1052 the last stmt in the original sequence of stmts that constitutes the
1053 pattern). */
1054 stmt_vec_info related_stmt;
1056 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
1057 The sequence is attached to the original statement rather than the
1058 pattern statement. */
1059 gimple_seq pattern_def_seq;
1061 /* Selected SIMD clone's function info. First vector element
1062 is SIMD clone's function decl, followed by a pair of trees (base + step)
1063 for linear arguments (pair of NULLs for other arguments). */
1064 vec<tree> simd_clone_info;
1066 /* Classify the def of this stmt. */
1067 enum vect_def_type def_type;
1069 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1070 enum slp_vect_type slp_type;
1072 /* Interleaving and reduction chains info. */
1073 /* First element in the group. */
1074 stmt_vec_info first_element;
1075 /* Pointer to the next element in the group. */
1076 stmt_vec_info next_element;
1077 /* The size of the group. */
1078 unsigned int size;
1079 /* For stores, number of stores from this group seen. We vectorize the last
1080 one. */
1081 unsigned int store_count;
1082 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1083 is 1. */
1084 unsigned int gap;
1086 /* The minimum negative dependence distance this stmt participates in
1087 or zero if none. */
1088 unsigned int min_neg_dist;
1090 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1091 of the loop induction variable and computation of array indexes. relevant
1092 indicates whether the stmt needs to be vectorized. */
1093 enum vect_relevant relevant;
1095 /* For loads if this is a gather, for stores if this is a scatter. */
1096 bool gather_scatter_p;
1098 /* True if this is an access with loop-invariant stride. */
1099 bool strided_p;
1101 /* For both loads and stores. */
1102 unsigned simd_lane_access_p : 3;
1104 /* Classifies how the load or store is going to be implemented
1105 for loop vectorization. */
1106 vect_memory_access_type memory_access_type;
1108 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1109 tree induc_cond_initial_val;
1111 /* If not NULL the value to be added to compute final reduction value. */
1112 tree reduc_epilogue_adjustment;
1114 /* On a reduction PHI the reduction type as detected by
1115 vect_is_simple_reduction and vectorizable_reduction. */
1116 enum vect_reduction_type reduc_type;
1118 /* The original reduction code, to be used in the epilogue. */
1119 enum tree_code reduc_code;
1120 /* An internal function we should use in the epilogue. */
1121 internal_fn reduc_fn;
1123 /* On a stmt participating in the reduction the index of the operand
1124 on the reduction SSA cycle. */
1125 int reduc_idx;
1127 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1128 On the def returned by vect_force_simple_reduction the
1129 corresponding PHI. */
1130 stmt_vec_info reduc_def;
1132 /* The vector input type relevant for reduction vectorization. */
1133 tree reduc_vectype_in;
1135 /* The vector type for performing the actual reduction. */
1136 tree reduc_vectype;
1138 /* Whether we force a single cycle PHI during reduction vectorization. */
1139 bool force_single_cycle;
1141 /* Whether on this stmt reduction meta is recorded. */
1142 bool is_reduc_info;
1144 /* If nonzero, the lhs of the statement could be truncated to this
1145 many bits without affecting any users of the result. */
1146 unsigned int min_output_precision;
1148 /* If nonzero, all non-boolean input operands have the same precision,
1149 and they could each be truncated to this many bits without changing
1150 the result. */
1151 unsigned int min_input_precision;
1153 /* If OPERATION_BITS is nonzero, the statement could be performed on
1154 an integer with the sign and number of bits given by OPERATION_SIGN
1155 and OPERATION_BITS without changing the result. */
1156 unsigned int operation_precision;
1157 signop operation_sign;
1159 /* If the statement produces a boolean result, this value describes
1160 how we should choose the associated vector type. The possible
1161 values are:
1163 - an integer precision N if we should use the vector mask type
1164 associated with N-bit integers. This is only used if all relevant
1165 input booleans also want the vector mask type for N-bit integers,
1166 or if we can convert them into that form by pattern-matching.
1168 - ~0U if we considered choosing a vector mask type but decided
1169 to treat the boolean as a normal integer type instead.
1171 - 0 otherwise. This means either that the operation isn't one that
1172 could have a vector mask type (and so should have a normal vector
1173 type instead) or that we simply haven't made a choice either way. */
1174 unsigned int mask_precision;
1176 /* True if this is only suitable for SLP vectorization. */
1177 bool slp_vect_only_p;
1180 /* Information about a gather/scatter call. */
1181 struct gather_scatter_info {
1182 /* The internal function to use for the gather/scatter operation,
1183 or IFN_LAST if a built-in function should be used instead. */
1184 internal_fn ifn;
1186 /* The FUNCTION_DECL for the built-in gather/scatter function,
1187 or null if an internal function should be used instead. */
1188 tree decl;
1190 /* The loop-invariant base value. */
1191 tree base;
1193 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1194 tree offset;
1196 /* Each offset element should be multiplied by this amount before
1197 being added to the base. */
1198 int scale;
1200 /* The definition type for the vectorized offset. */
1201 enum vect_def_type offset_dt;
1203 /* The type of the vectorized offset. */
1204 tree offset_vectype;
1206 /* The type of the scalar elements after loading or before storing. */
1207 tree element_type;
1209 /* The type of the scalar elements being loaded or stored. */
1210 tree memory_type;
1213 /* Access Functions. */
1214 #define STMT_VINFO_TYPE(S) (S)->type
1215 #define STMT_VINFO_STMT(S) (S)->stmt
1216 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1217 #define STMT_VINFO_LIVE_P(S) (S)->live
1218 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1219 #define STMT_VINFO_VEC_STMTS(S) (S)->vec_stmts
1220 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1221 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1222 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1223 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1224 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1225 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1226 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1227 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1228 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1229 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1231 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1232 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1233 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1234 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1235 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1236 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1237 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1238 (S)->dr_wrt_vec_loop.base_misalignment
1239 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1240 (S)->dr_wrt_vec_loop.offset_alignment
1241 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1242 (S)->dr_wrt_vec_loop.step_alignment
1244 #define STMT_VINFO_DR_INFO(S) \
1245 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1247 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1248 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1249 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1250 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1251 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1252 #define STMT_VINFO_GROUPED_ACCESS(S) \
1253 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1254 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1255 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1256 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1257 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1258 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1259 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1260 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1261 #define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1262 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1263 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1265 #define DR_GROUP_FIRST_ELEMENT(S) \
1266 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1267 #define DR_GROUP_NEXT_ELEMENT(S) \
1268 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1269 #define DR_GROUP_SIZE(S) \
1270 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1271 #define DR_GROUP_STORE_COUNT(S) \
1272 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1273 #define DR_GROUP_GAP(S) \
1274 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1276 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1277 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1278 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1279 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1280 #define REDUC_GROUP_SIZE(S) \
1281 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1283 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1285 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1286 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1287 #define STMT_SLP_TYPE(S) (S)->slp_type
1289 #define VECT_MAX_COST 1000
1291 /* The maximum number of intermediate steps required in multi-step type
1292 conversion. */
1293 #define MAX_INTERM_CVT_STEPS 3
1295 #define MAX_VECTORIZATION_FACTOR INT_MAX
1297 /* Nonzero if TYPE represents a (scalar) boolean type or type
1298 in the middle-end compatible with it (unsigned precision 1 integral
1299 types). Used to determine which types should be vectorized as
1300 VECTOR_BOOLEAN_TYPE_P. */
1302 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1303 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1304 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1305 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1306 && TYPE_PRECISION (TYPE) == 1 \
1307 && TYPE_UNSIGNED (TYPE)))
1309 static inline bool
1310 nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1312 return (loop->inner
1313 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1316 /* Return true if STMT_INFO should produce a vector mask type rather than
1317 a normal nonmask type. */
1319 static inline bool
1320 vect_use_mask_type_p (stmt_vec_info stmt_info)
1322 return stmt_info->mask_precision && stmt_info->mask_precision != ~0U;
1325 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1326 pattern. */
1328 static inline bool
1329 is_pattern_stmt_p (stmt_vec_info stmt_info)
1331 return stmt_info->pattern_stmt_p;
1334 /* If STMT_INFO is a pattern statement, return the statement that it
1335 replaces, otherwise return STMT_INFO itself. */
1337 inline stmt_vec_info
1338 vect_orig_stmt (stmt_vec_info stmt_info)
1340 if (is_pattern_stmt_p (stmt_info))
1341 return STMT_VINFO_RELATED_STMT (stmt_info);
1342 return stmt_info;
1345 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1347 static inline stmt_vec_info
1348 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1350 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1351 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1352 return stmt1_info;
1353 else
1354 return stmt2_info;
1357 /* If STMT_INFO has been replaced by a pattern statement, return the
1358 replacement statement, otherwise return STMT_INFO itself. */
1360 inline stmt_vec_info
1361 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1363 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1364 return STMT_VINFO_RELATED_STMT (stmt_info);
1365 return stmt_info;
1368 /* Return true if BB is a loop header. */
1370 static inline bool
1371 is_loop_header_bb_p (basic_block bb)
1373 if (bb == (bb->loop_father)->header)
1374 return true;
1375 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1376 return false;
1379 /* Return pow2 (X). */
1381 static inline int
1382 vect_pow2 (int x)
1384 int i, res = 1;
1386 for (i = 0; i < x; i++)
1387 res *= 2;
1389 return res;
1392 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1394 static inline int
1395 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1396 tree vectype, int misalign)
1398 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1399 vectype, misalign);
1402 /* Get cost by calling cost target builtin. */
1404 static inline
1405 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1407 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1410 /* Alias targetm.vectorize.init_cost. */
1412 static inline void *
1413 init_cost (class loop *loop_info)
1415 return targetm.vectorize.init_cost (loop_info);
1418 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1419 stmt_vec_info, tree, int, unsigned,
1420 enum vect_cost_model_location);
1422 /* Alias targetm.vectorize.add_stmt_cost. */
1424 static inline unsigned
1425 add_stmt_cost (vec_info *vinfo, void *data, int count,
1426 enum vect_cost_for_stmt kind,
1427 stmt_vec_info stmt_info, tree vectype, int misalign,
1428 enum vect_cost_model_location where)
1430 unsigned cost = targetm.vectorize.add_stmt_cost (vinfo, data, count, kind,
1431 stmt_info, vectype,
1432 misalign, where);
1433 if (dump_file && (dump_flags & TDF_DETAILS))
1434 dump_stmt_cost (dump_file, data, count, kind, stmt_info, vectype, misalign,
1435 cost, where);
1436 return cost;
1439 /* Alias targetm.vectorize.finish_cost. */
1441 static inline void
1442 finish_cost (void *data, unsigned *prologue_cost,
1443 unsigned *body_cost, unsigned *epilogue_cost)
1445 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1448 /* Alias targetm.vectorize.destroy_cost_data. */
1450 static inline void
1451 destroy_cost_data (void *data)
1453 targetm.vectorize.destroy_cost_data (data);
1456 inline void
1457 add_stmt_costs (vec_info *vinfo, void *data, stmt_vector_for_cost *cost_vec)
1459 stmt_info_for_cost *cost;
1460 unsigned i;
1461 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1462 add_stmt_cost (vinfo, data, cost->count, cost->kind, cost->stmt_info,
1463 cost->vectype, cost->misalign, cost->where);
1466 /*-----------------------------------------------------------------*/
1467 /* Info on data references alignment. */
1468 /*-----------------------------------------------------------------*/
1469 #define DR_MISALIGNMENT_UNKNOWN (-1)
1470 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1472 inline void
1473 set_dr_misalignment (dr_vec_info *dr_info, int val)
1475 dr_info->misalignment = val;
1478 inline int
1479 dr_misalignment (dr_vec_info *dr_info)
1481 int misalign = dr_info->misalignment;
1482 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1483 return misalign;
1486 /* Reflects actual alignment of first access in the vectorized loop,
1487 taking into account peeling/versioning if applied. */
1488 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1489 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1491 /* Only defined once DR_MISALIGNMENT is defined. */
1492 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1494 /* Return true if data access DR_INFO is aligned to its target alignment
1495 (which may be less than a full vector). */
1497 static inline bool
1498 aligned_access_p (dr_vec_info *dr_info)
1500 return (DR_MISALIGNMENT (dr_info) == 0);
1503 /* Return TRUE if the alignment of the data access is known, and FALSE
1504 otherwise. */
1506 static inline bool
1507 known_alignment_for_access_p (dr_vec_info *dr_info)
1509 return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
1512 /* Return the minimum alignment in bytes that the vectorized version
1513 of DR_INFO is guaranteed to have. */
1515 static inline unsigned int
1516 vect_known_alignment_in_bytes (dr_vec_info *dr_info)
1518 if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
1519 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1520 if (DR_MISALIGNMENT (dr_info) == 0)
1521 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1522 return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
1525 /* Return the behavior of DR_INFO with respect to the vectorization context
1526 (which for outer loop vectorization might not be the behavior recorded
1527 in DR_INFO itself). */
1529 static inline innermost_loop_behavior *
1530 vect_dr_behavior (vec_info *vinfo, dr_vec_info *dr_info)
1532 stmt_vec_info stmt_info = dr_info->stmt;
1533 loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo);
1534 if (loop_vinfo == NULL
1535 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1536 return &DR_INNERMOST (dr_info->dr);
1537 else
1538 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1541 /* Return the offset calculated by adding the offset of this DR_INFO to the
1542 corresponding data_reference's offset. If CHECK_OUTER then use
1543 vect_dr_behavior to select the appropriate data_reference to use. */
1545 inline tree
1546 get_dr_vinfo_offset (vec_info *vinfo,
1547 dr_vec_info *dr_info, bool check_outer = false)
1549 innermost_loop_behavior *base;
1550 if (check_outer)
1551 base = vect_dr_behavior (vinfo, dr_info);
1552 else
1553 base = &dr_info->dr->innermost;
1555 tree offset = base->offset;
1557 if (!dr_info->offset)
1558 return offset;
1560 offset = fold_convert (sizetype, offset);
1561 return fold_build2 (PLUS_EXPR, TREE_TYPE (dr_info->offset), offset,
1562 dr_info->offset);
1566 /* Return true if the vect cost model is unlimited. */
1567 static inline bool
1568 unlimited_cost_model (loop_p loop)
1570 if (loop != NULL && loop->force_vectorize
1571 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1572 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1573 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1576 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1577 if the first iteration should use a partial mask in order to achieve
1578 alignment. */
1580 static inline bool
1581 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1583 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1584 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1587 /* Return the number of vectors of type VECTYPE that are needed to get
1588 NUNITS elements. NUNITS should be based on the vectorization factor,
1589 so it is always a known multiple of the number of elements in VECTYPE. */
1591 static inline unsigned int
1592 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1594 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1597 /* Return the number of copies needed for loop vectorization when
1598 a statement operates on vectors of type VECTYPE. This is the
1599 vectorization factor divided by the number of elements in
1600 VECTYPE and is always known at compile time. */
1602 static inline unsigned int
1603 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1605 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1608 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1609 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
1611 static inline void
1612 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
1614 /* All unit counts have the form vec_info::vector_size * X for some
1615 rational X, so two unit sizes must have a common multiple.
1616 Everything is a multiple of the initial value of 1. */
1617 *max_nunits = force_common_multiple (*max_nunits, nunits);
1620 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1621 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1622 if we haven't yet recorded any vector types. */
1624 static inline void
1625 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1627 vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
1630 /* Return the vectorization factor that should be used for costing
1631 purposes while vectorizing the loop described by LOOP_VINFO.
1632 Pick a reasonable estimate if the vectorization factor isn't
1633 known at compile time. */
1635 static inline unsigned int
1636 vect_vf_for_cost (loop_vec_info loop_vinfo)
1638 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1641 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1642 Pick a reasonable estimate if the exact number isn't known at
1643 compile time. */
1645 static inline unsigned int
1646 vect_nunits_for_cost (tree vec_type)
1648 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1651 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1653 static inline unsigned HOST_WIDE_INT
1654 vect_max_vf (loop_vec_info loop_vinfo)
1656 unsigned HOST_WIDE_INT vf;
1657 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1658 return vf;
1659 return MAX_VECTORIZATION_FACTOR;
1662 /* Return the size of the value accessed by unvectorized data reference
1663 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1664 for the associated gimple statement, since that guarantees that DR_INFO
1665 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1666 here includes things like V1SI, which can be vectorized in the same way
1667 as a plain SI.) */
1669 inline unsigned int
1670 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1672 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1675 /* Return true if LOOP_VINFO requires a runtime check for whether the
1676 vector loop is profitable. */
1678 inline bool
1679 vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
1681 unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
1682 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1683 && th >= vect_vf_for_cost (loop_vinfo));
1686 /* Source location + hotness information. */
1687 extern dump_user_location_t vect_location;
1689 /* A macro for calling:
1690 dump_begin_scope (MSG, vect_location);
1691 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1692 and then calling
1693 dump_end_scope ();
1694 once the object goes out of scope, thus capturing the nesting of
1695 the scopes.
1697 These scopes affect dump messages within them: dump messages at the
1698 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
1699 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
1701 #define DUMP_VECT_SCOPE(MSG) \
1702 AUTO_DUMP_SCOPE (MSG, vect_location)
1704 /* A sentinel class for ensuring that the "vect_location" global gets
1705 reset at the end of a scope.
1707 The "vect_location" global is used during dumping and contains a
1708 location_t, which could contain references to a tree block via the
1709 ad-hoc data. This data is used for tracking inlining information,
1710 but it's not a GC root; it's simply assumed that such locations never
1711 get accessed if the blocks are optimized away.
1713 Hence we need to ensure that such locations are purged at the end
1714 of any operations using them (e.g. via this class). */
1716 class auto_purge_vect_location
1718 public:
1719 ~auto_purge_vect_location ();
1722 /*-----------------------------------------------------------------*/
1723 /* Function prototypes. */
1724 /*-----------------------------------------------------------------*/
1726 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1727 in tree-vect-loop-manip.c. */
1728 extern void vect_set_loop_condition (class loop *, loop_vec_info,
1729 tree, tree, tree, bool);
1730 extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge);
1731 class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *,
1732 class loop *, edge);
1733 class loop *vect_loop_versioning (loop_vec_info, gimple *);
1734 extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
1735 tree *, tree *, tree *, int, bool, bool,
1736 tree *);
1737 extern void vect_prepare_for_masked_peels (loop_vec_info);
1738 extern dump_user_location_t find_loop_location (class loop *);
1739 extern bool vect_can_advance_ivs_p (loop_vec_info);
1740 extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
1742 /* In tree-vect-stmts.c. */
1743 extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
1744 poly_uint64 = 0);
1745 extern tree get_vectype_for_scalar_type (vec_info *, tree, unsigned int = 0);
1746 extern tree get_vectype_for_scalar_type (vec_info *, tree, slp_tree);
1747 extern tree get_mask_type_for_scalar_type (vec_info *, tree, unsigned int = 0);
1748 extern tree get_same_sized_vectype (tree, tree);
1749 extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
1750 extern bool vect_get_loop_mask_type (loop_vec_info);
1751 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1752 stmt_vec_info * = NULL, gimple ** = NULL);
1753 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1754 tree *, stmt_vec_info * = NULL,
1755 gimple ** = NULL);
1756 extern bool vect_is_simple_use (vec_info *, stmt_vec_info, slp_tree,
1757 unsigned, tree *, slp_tree *,
1758 enum vect_def_type *,
1759 tree *, stmt_vec_info * = NULL);
1760 extern bool vect_maybe_update_slp_op_vectype (slp_tree, tree);
1761 extern bool supportable_widening_operation (vec_info *,
1762 enum tree_code, stmt_vec_info,
1763 tree, tree, enum tree_code *,
1764 enum tree_code *, int *,
1765 vec<tree> *);
1766 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1767 enum tree_code *, int *,
1768 vec<tree> *);
1770 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1771 enum vect_cost_for_stmt, stmt_vec_info,
1772 tree, int, enum vect_cost_model_location);
1774 /* Overload of record_stmt_cost with VECTYPE derived from STMT_INFO. */
1776 static inline unsigned
1777 record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
1778 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
1779 int misalign, enum vect_cost_model_location where)
1781 return record_stmt_cost (body_cost_vec, count, kind, stmt_info,
1782 STMT_VINFO_VECTYPE (stmt_info), misalign, where);
1785 extern void vect_finish_replace_stmt (vec_info *, stmt_vec_info, gimple *);
1786 extern void vect_finish_stmt_generation (vec_info *, stmt_vec_info, gimple *,
1787 gimple_stmt_iterator *);
1788 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
1789 extern tree vect_get_store_rhs (stmt_vec_info);
1790 void vect_get_vec_defs_for_operand (vec_info *vinfo, stmt_vec_info, unsigned,
1791 tree op, vec<tree> *, tree = NULL);
1792 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
1793 tree, vec<tree> *,
1794 tree = NULL, vec<tree> * = NULL,
1795 tree = NULL, vec<tree> * = NULL,
1796 tree = NULL, vec<tree> * = NULL);
1797 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
1798 tree, vec<tree> *, tree,
1799 tree = NULL, vec<tree> * = NULL, tree = NULL,
1800 tree = NULL, vec<tree> * = NULL, tree = NULL,
1801 tree = NULL, vec<tree> * = NULL, tree = NULL);
1802 extern tree vect_init_vector (vec_info *, stmt_vec_info, tree, tree,
1803 gimple_stmt_iterator *);
1804 extern tree vect_get_slp_vect_def (slp_tree, unsigned);
1805 extern bool vect_transform_stmt (vec_info *, stmt_vec_info,
1806 gimple_stmt_iterator *,
1807 slp_tree, slp_instance);
1808 extern void vect_remove_stores (vec_info *, stmt_vec_info);
1809 extern bool vect_nop_conversion_p (stmt_vec_info);
1810 extern opt_result vect_analyze_stmt (vec_info *, stmt_vec_info, bool *,
1811 slp_tree,
1812 slp_instance, stmt_vector_for_cost *);
1813 extern void vect_get_load_cost (vec_info *, stmt_vec_info, int, bool,
1814 unsigned int *, unsigned int *,
1815 stmt_vector_for_cost *,
1816 stmt_vector_for_cost *, bool);
1817 extern void vect_get_store_cost (vec_info *, stmt_vec_info, int,
1818 unsigned int *, stmt_vector_for_cost *);
1819 extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
1820 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1821 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1822 extern void optimize_mask_stores (class loop*);
1823 extern gcall *vect_gen_while (tree, tree, tree);
1824 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1825 extern opt_result vect_get_vector_types_for_stmt (vec_info *,
1826 stmt_vec_info, tree *,
1827 tree *, unsigned int = 0);
1828 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info, unsigned int = 0);
1830 /* In tree-vect-data-refs.c. */
1831 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
1832 extern enum dr_alignment_support vect_supportable_dr_alignment
1833 (vec_info *, dr_vec_info *, bool);
1834 extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
1835 HOST_WIDE_INT *);
1836 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1837 extern bool vect_slp_analyze_instance_dependence (vec_info *, slp_instance);
1838 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
1839 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
1840 extern bool vect_slp_analyze_instance_alignment (vec_info *, slp_instance);
1841 extern opt_result vect_analyze_data_ref_accesses (vec_info *, vec<int> *);
1842 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
1843 extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
1844 tree, int, internal_fn *, tree *);
1845 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1846 gather_scatter_info *);
1847 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
1848 vec<data_reference_p> *,
1849 vec<int> *, int);
1850 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
1851 extern void vect_record_base_alignments (vec_info *);
1852 extern tree vect_create_data_ref_ptr (vec_info *,
1853 stmt_vec_info, tree, class loop *, tree,
1854 tree *, gimple_stmt_iterator *,
1855 gimple **, bool,
1856 tree = NULL_TREE, tree = NULL_TREE);
1857 extern tree bump_vector_ptr (vec_info *, tree, gimple *, gimple_stmt_iterator *,
1858 stmt_vec_info, tree);
1859 extern void vect_copy_ref_info (tree, tree);
1860 extern tree vect_create_destination_var (tree, tree);
1861 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1862 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1863 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1864 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1865 extern void vect_permute_store_chain (vec_info *,
1866 vec<tree> ,unsigned int, stmt_vec_info,
1867 gimple_stmt_iterator *, vec<tree> *);
1868 extern tree vect_setup_realignment (vec_info *,
1869 stmt_vec_info, gimple_stmt_iterator *,
1870 tree *, enum dr_alignment_support, tree,
1871 class loop **);
1872 extern void vect_transform_grouped_load (vec_info *, stmt_vec_info, vec<tree>,
1873 int, gimple_stmt_iterator *);
1874 extern void vect_record_grouped_load_vectors (vec_info *,
1875 stmt_vec_info, vec<tree>);
1876 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1877 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1878 const char * = NULL);
1879 extern tree vect_create_addr_base_for_vector_ref (vec_info *,
1880 stmt_vec_info, gimple_seq *,
1881 tree, tree = NULL_TREE);
1883 /* In tree-vect-loop.c. */
1884 extern widest_int vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo);
1885 bool vect_rgroup_iv_might_wrap_p (loop_vec_info, rgroup_controls *);
1886 /* Used in tree-vect-loop-manip.c */
1887 extern opt_result vect_determine_partial_vectors_and_peeling (loop_vec_info,
1888 bool);
1889 /* Used in gimple-loop-interchange.c and tree-parloops.c. */
1890 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1891 enum tree_code);
1892 extern bool needs_fold_left_reduction_p (tree, tree_code);
1893 /* Drive for loop analysis stage. */
1894 extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
1895 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1896 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1897 tree *, bool);
1898 extern tree vect_halve_mask_nunits (tree, machine_mode);
1899 extern tree vect_double_mask_nunits (tree, machine_mode);
1900 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1901 unsigned int, tree, tree);
1902 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1903 unsigned int, tree, unsigned int);
1904 extern void vect_record_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
1905 tree, unsigned int);
1906 extern tree vect_get_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
1907 unsigned int);
1908 extern gimple_seq vect_gen_len (tree, tree, tree, tree);
1909 extern stmt_vec_info info_for_reduction (vec_info *, stmt_vec_info);
1911 /* Drive for loop transformation stage. */
1912 extern class loop *vect_transform_loop (loop_vec_info, gimple *);
1913 extern opt_loop_vec_info vect_analyze_loop_form (class loop *,
1914 vec_info_shared *);
1915 extern bool vectorizable_live_operation (vec_info *,
1916 stmt_vec_info, gimple_stmt_iterator *,
1917 slp_tree, slp_instance, int,
1918 bool, stmt_vector_for_cost *);
1919 extern bool vectorizable_reduction (loop_vec_info, stmt_vec_info,
1920 slp_tree, slp_instance,
1921 stmt_vector_for_cost *);
1922 extern bool vectorizable_induction (loop_vec_info, stmt_vec_info,
1923 gimple **, slp_tree,
1924 stmt_vector_for_cost *);
1925 extern bool vect_transform_reduction (loop_vec_info, stmt_vec_info,
1926 gimple_stmt_iterator *,
1927 gimple **, slp_tree);
1928 extern bool vect_transform_cycle_phi (loop_vec_info, stmt_vec_info,
1929 gimple **,
1930 slp_tree, slp_instance);
1931 extern bool vectorizable_lc_phi (loop_vec_info, stmt_vec_info,
1932 gimple **, slp_tree);
1933 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1934 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1935 stmt_vector_for_cost *,
1936 stmt_vector_for_cost *,
1937 stmt_vector_for_cost *);
1938 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1940 /* In tree-vect-slp.c. */
1941 extern void vect_free_slp_instance (slp_instance);
1942 extern bool vect_transform_slp_perm_load (vec_info *, slp_tree, vec<tree>,
1943 gimple_stmt_iterator *, poly_uint64,
1944 bool, unsigned *);
1945 extern bool vect_slp_analyze_operations (vec_info *);
1946 extern void vect_schedule_slp (vec_info *, vec<slp_instance>);
1947 extern opt_result vect_analyze_slp (vec_info *, unsigned);
1948 extern bool vect_make_slp_decision (loop_vec_info);
1949 extern void vect_detect_hybrid_slp (loop_vec_info);
1950 extern void vect_optimize_slp (vec_info *);
1951 extern void vect_get_slp_defs (slp_tree, vec<tree> *);
1952 extern void vect_get_slp_defs (vec_info *, slp_tree, vec<vec<tree> > *,
1953 unsigned n = -1U);
1954 extern bool vect_slp_bb (basic_block);
1955 extern bool vect_slp_function (function *);
1956 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
1957 extern stmt_vec_info vect_find_first_scalar_stmt_in_slp (slp_tree);
1958 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
1959 extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int, tree,
1960 unsigned int * = NULL,
1961 tree * = NULL, tree * = NULL);
1962 extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
1963 vec<tree>, unsigned int, vec<tree> &);
1964 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
1965 extern bool vect_update_shared_vectype (stmt_vec_info, tree);
1967 /* In tree-vect-patterns.c. */
1968 /* Pattern recognition functions.
1969 Additional pattern recognition functions can (and will) be added
1970 in the future. */
1971 void vect_pattern_recog (vec_info *);
1973 /* In tree-vectorizer.c. */
1974 unsigned vectorize_loops (void);
1975 void vect_free_loop_info_assumptions (class loop *);
1976 gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
1977 bool vect_stmt_dominates_stmt_p (gimple *, gimple *);
1979 #endif /* GCC_TREE_VECTORIZER_H */