testsuite: simplify target requirements for various Power9 testcases.
[official-gcc.git] / gcc / explow.c
blob0fbc6d25b816457a3d13ed45d16b5dd0513cfacd
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "expmed.h"
31 #include "profile-count.h"
32 #include "optabs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "diagnostic-core.h"
36 #include "stor-layout.h"
37 #include "except.h"
38 #include "dojump.h"
39 #include "explow.h"
40 #include "expr.h"
41 #include "stringpool.h"
42 #include "common/common-target.h"
43 #include "output.h"
45 static rtx break_out_memory_refs (rtx);
48 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
50 HOST_WIDE_INT
51 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
53 /* Not scalar_int_mode because we also allow pointer bound modes. */
54 scalar_mode smode = as_a <scalar_mode> (mode);
55 int width = GET_MODE_PRECISION (smode);
57 /* You want to truncate to a _what_? */
58 gcc_assert (SCALAR_INT_MODE_P (mode));
60 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
61 if (smode == BImode)
62 return c & 1 ? STORE_FLAG_VALUE : 0;
64 /* Sign-extend for the requested mode. */
66 if (width < HOST_BITS_PER_WIDE_INT)
68 HOST_WIDE_INT sign = 1;
69 sign <<= width - 1;
70 c &= (sign << 1) - 1;
71 c ^= sign;
72 c -= sign;
75 return c;
78 /* Likewise for polynomial values, using the sign-extended representation
79 for each individual coefficient. */
81 poly_int64
82 trunc_int_for_mode (poly_int64 x, machine_mode mode)
84 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
85 x.coeffs[i] = trunc_int_for_mode (x.coeffs[i], mode);
86 return x;
89 /* Return an rtx for the sum of X and the integer C, given that X has
90 mode MODE. INPLACE is true if X can be modified inplace or false
91 if it must be treated as immutable. */
93 rtx
94 plus_constant (machine_mode mode, rtx x, poly_int64 c, bool inplace)
96 RTX_CODE code;
97 rtx y;
98 rtx tem;
99 int all_constant = 0;
101 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
103 if (known_eq (c, 0))
104 return x;
106 restart:
108 code = GET_CODE (x);
109 y = x;
111 switch (code)
113 CASE_CONST_SCALAR_INT:
114 return immed_wide_int_const (wi::add (rtx_mode_t (x, mode), c), mode);
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
122 rtx cst = get_pool_constant (XEXP (x, 0));
124 if (GET_CODE (cst) == CONST_VECTOR
125 && GET_MODE_INNER (GET_MODE (cst)) == mode)
127 cst = gen_lowpart (mode, cst);
128 gcc_assert (cst);
130 else if (GET_MODE (cst) == VOIDmode
131 && get_pool_mode (XEXP (x, 0)) != mode)
132 break;
133 if (GET_MODE (cst) == VOIDmode || GET_MODE (cst) == mode)
135 tem = plus_constant (mode, cst, c);
136 tem = force_const_mem (GET_MODE (x), tem);
137 /* Targets may disallow some constants in the constant pool, thus
138 force_const_mem may return NULL_RTX. */
139 if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
140 return tem;
143 break;
145 case CONST:
146 /* If adding to something entirely constant, set a flag
147 so that we can add a CONST around the result. */
148 if (inplace && shared_const_p (x))
149 inplace = false;
150 x = XEXP (x, 0);
151 all_constant = 1;
152 goto restart;
154 case SYMBOL_REF:
155 case LABEL_REF:
156 all_constant = 1;
157 break;
159 case PLUS:
160 /* The interesting case is adding the integer to a sum. Look
161 for constant term in the sum and combine with C. For an
162 integer constant term or a constant term that is not an
163 explicit integer, we combine or group them together anyway.
165 We may not immediately return from the recursive call here, lest
166 all_constant gets lost. */
168 if (CONSTANT_P (XEXP (x, 1)))
170 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
171 if (term == const0_rtx)
172 x = XEXP (x, 0);
173 else if (inplace)
174 XEXP (x, 1) = term;
175 else
176 x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
177 c = 0;
179 else if (rtx *const_loc = find_constant_term_loc (&y))
181 if (!inplace)
183 /* We need to be careful since X may be shared and we can't
184 modify it in place. */
185 x = copy_rtx (x);
186 const_loc = find_constant_term_loc (&x);
188 *const_loc = plus_constant (mode, *const_loc, c, true);
189 c = 0;
191 break;
193 default:
194 if (CONST_POLY_INT_P (x))
195 return immed_wide_int_const (const_poly_int_value (x) + c, mode);
196 break;
199 if (maybe_ne (c, 0))
200 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
202 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
203 return x;
204 else if (all_constant)
205 return gen_rtx_CONST (mode, x);
206 else
207 return x;
210 /* If X is a sum, return a new sum like X but lacking any constant terms.
211 Add all the removed constant terms into *CONSTPTR.
212 X itself is not altered. The result != X if and only if
213 it is not isomorphic to X. */
216 eliminate_constant_term (rtx x, rtx *constptr)
218 rtx x0, x1;
219 rtx tem;
221 if (GET_CODE (x) != PLUS)
222 return x;
224 /* First handle constants appearing at this level explicitly. */
225 if (CONST_INT_P (XEXP (x, 1))
226 && (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
227 XEXP (x, 1))) != 0
228 && CONST_INT_P (tem))
230 *constptr = tem;
231 return eliminate_constant_term (XEXP (x, 0), constptr);
234 tem = const0_rtx;
235 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
236 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
237 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
238 && (tem = simplify_binary_operation (PLUS, GET_MODE (x),
239 *constptr, tem)) != 0
240 && CONST_INT_P (tem))
242 *constptr = tem;
243 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
246 return x;
250 /* Return a copy of X in which all memory references
251 and all constants that involve symbol refs
252 have been replaced with new temporary registers.
253 Also emit code to load the memory locations and constants
254 into those registers.
256 If X contains no such constants or memory references,
257 X itself (not a copy) is returned.
259 If a constant is found in the address that is not a legitimate constant
260 in an insn, it is left alone in the hope that it might be valid in the
261 address.
263 X may contain no arithmetic except addition, subtraction and multiplication.
264 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
266 static rtx
267 break_out_memory_refs (rtx x)
269 if (MEM_P (x)
270 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
271 && GET_MODE (x) != VOIDmode))
272 x = force_reg (GET_MODE (x), x);
273 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
274 || GET_CODE (x) == MULT)
276 rtx op0 = break_out_memory_refs (XEXP (x, 0));
277 rtx op1 = break_out_memory_refs (XEXP (x, 1));
279 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
280 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
283 return x;
286 /* Given X, a memory address in address space AS' pointer mode, convert it to
287 an address in the address space's address mode, or vice versa (TO_MODE says
288 which way). We take advantage of the fact that pointers are not allowed to
289 overflow by commuting arithmetic operations over conversions so that address
290 arithmetic insns can be used. IN_CONST is true if this conversion is inside
291 a CONST. NO_EMIT is true if no insns should be emitted, and instead
292 it should return NULL if it can't be simplified without emitting insns. */
295 convert_memory_address_addr_space_1 (scalar_int_mode to_mode ATTRIBUTE_UNUSED,
296 rtx x, addr_space_t as ATTRIBUTE_UNUSED,
297 bool in_const ATTRIBUTE_UNUSED,
298 bool no_emit ATTRIBUTE_UNUSED)
300 #ifndef POINTERS_EXTEND_UNSIGNED
301 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
302 return x;
303 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
304 scalar_int_mode pointer_mode, address_mode, from_mode;
305 rtx temp;
306 enum rtx_code code;
308 /* If X already has the right mode, just return it. */
309 if (GET_MODE (x) == to_mode)
310 return x;
312 pointer_mode = targetm.addr_space.pointer_mode (as);
313 address_mode = targetm.addr_space.address_mode (as);
314 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
316 /* Here we handle some special cases. If none of them apply, fall through
317 to the default case. */
318 switch (GET_CODE (x))
320 CASE_CONST_SCALAR_INT:
321 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
322 code = TRUNCATE;
323 else if (POINTERS_EXTEND_UNSIGNED < 0)
324 break;
325 else if (POINTERS_EXTEND_UNSIGNED > 0)
326 code = ZERO_EXTEND;
327 else
328 code = SIGN_EXTEND;
329 temp = simplify_unary_operation (code, to_mode, x, from_mode);
330 if (temp)
331 return temp;
332 break;
334 case SUBREG:
335 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
336 && GET_MODE (SUBREG_REG (x)) == to_mode)
337 return SUBREG_REG (x);
338 break;
340 case LABEL_REF:
341 temp = gen_rtx_LABEL_REF (to_mode, label_ref_label (x));
342 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
343 return temp;
345 case SYMBOL_REF:
346 temp = shallow_copy_rtx (x);
347 PUT_MODE (temp, to_mode);
348 return temp;
350 case CONST:
351 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as,
352 true, no_emit);
353 return temp ? gen_rtx_CONST (to_mode, temp) : temp;
355 case PLUS:
356 case MULT:
357 /* For addition we can safely permute the conversion and addition
358 operation if one operand is a constant and converting the constant
359 does not change it or if one operand is a constant and we are
360 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
361 We can always safely permute them if we are making the address
362 narrower. Inside a CONST RTL, this is safe for both pointers
363 zero or sign extended as pointers cannot wrap. */
364 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
365 || (GET_CODE (x) == PLUS
366 && CONST_INT_P (XEXP (x, 1))
367 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
368 || XEXP (x, 1) == convert_memory_address_addr_space_1
369 (to_mode, XEXP (x, 1), as, in_const,
370 no_emit)
371 || POINTERS_EXTEND_UNSIGNED < 0)))
373 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0),
374 as, in_const, no_emit);
375 return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode,
376 temp, XEXP (x, 1))
377 : temp);
379 break;
381 default:
382 break;
385 if (no_emit)
386 return NULL_RTX;
388 return convert_modes (to_mode, from_mode,
389 x, POINTERS_EXTEND_UNSIGNED);
390 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
393 /* Given X, a memory address in address space AS' pointer mode, convert it to
394 an address in the address space's address mode, or vice versa (TO_MODE says
395 which way). We take advantage of the fact that pointers are not allowed to
396 overflow by commuting arithmetic operations over conversions so that address
397 arithmetic insns can be used. */
400 convert_memory_address_addr_space (scalar_int_mode to_mode, rtx x,
401 addr_space_t as)
403 return convert_memory_address_addr_space_1 (to_mode, x, as, false, false);
407 /* Return something equivalent to X but valid as a memory address for something
408 of mode MODE in the named address space AS. When X is not itself valid,
409 this works by copying X or subexpressions of it into registers. */
412 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
414 rtx oldx = x;
415 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
417 x = convert_memory_address_addr_space (address_mode, x, as);
419 /* By passing constant addresses through registers
420 we get a chance to cse them. */
421 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
422 x = force_reg (address_mode, x);
424 /* We get better cse by rejecting indirect addressing at this stage.
425 Let the combiner create indirect addresses where appropriate.
426 For now, generate the code so that the subexpressions useful to share
427 are visible. But not if cse won't be done! */
428 else
430 if (! cse_not_expected && !REG_P (x))
431 x = break_out_memory_refs (x);
433 /* At this point, any valid address is accepted. */
434 if (memory_address_addr_space_p (mode, x, as))
435 goto done;
437 /* If it was valid before but breaking out memory refs invalidated it,
438 use it the old way. */
439 if (memory_address_addr_space_p (mode, oldx, as))
441 x = oldx;
442 goto done;
445 /* Perform machine-dependent transformations on X
446 in certain cases. This is not necessary since the code
447 below can handle all possible cases, but machine-dependent
448 transformations can make better code. */
450 rtx orig_x = x;
451 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
452 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
453 goto done;
456 /* PLUS and MULT can appear in special ways
457 as the result of attempts to make an address usable for indexing.
458 Usually they are dealt with by calling force_operand, below.
459 But a sum containing constant terms is special
460 if removing them makes the sum a valid address:
461 then we generate that address in a register
462 and index off of it. We do this because it often makes
463 shorter code, and because the addresses thus generated
464 in registers often become common subexpressions. */
465 if (GET_CODE (x) == PLUS)
467 rtx constant_term = const0_rtx;
468 rtx y = eliminate_constant_term (x, &constant_term);
469 if (constant_term == const0_rtx
470 || ! memory_address_addr_space_p (mode, y, as))
471 x = force_operand (x, NULL_RTX);
472 else
474 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
475 if (! memory_address_addr_space_p (mode, y, as))
476 x = force_operand (x, NULL_RTX);
477 else
478 x = y;
482 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
483 x = force_operand (x, NULL_RTX);
485 /* If we have a register that's an invalid address,
486 it must be a hard reg of the wrong class. Copy it to a pseudo. */
487 else if (REG_P (x))
488 x = copy_to_reg (x);
490 /* Last resort: copy the value to a register, since
491 the register is a valid address. */
492 else
493 x = force_reg (address_mode, x);
496 done:
498 gcc_assert (memory_address_addr_space_p (mode, x, as));
499 /* If we didn't change the address, we are done. Otherwise, mark
500 a reg as a pointer if we have REG or REG + CONST_INT. */
501 if (oldx == x)
502 return x;
503 else if (REG_P (x))
504 mark_reg_pointer (x, BITS_PER_UNIT);
505 else if (GET_CODE (x) == PLUS
506 && REG_P (XEXP (x, 0))
507 && CONST_INT_P (XEXP (x, 1)))
508 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
510 /* OLDX may have been the address on a temporary. Update the address
511 to indicate that X is now used. */
512 update_temp_slot_address (oldx, x);
514 return x;
517 /* Convert a mem ref into one with a valid memory address.
518 Pass through anything else unchanged. */
521 validize_mem (rtx ref)
523 if (!MEM_P (ref))
524 return ref;
525 ref = use_anchored_address (ref);
526 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
527 MEM_ADDR_SPACE (ref)))
528 return ref;
530 /* Don't alter REF itself, since that is probably a stack slot. */
531 return replace_equiv_address (ref, XEXP (ref, 0));
534 /* If X is a memory reference to a member of an object block, try rewriting
535 it to use an anchor instead. Return the new memory reference on success
536 and the old one on failure. */
539 use_anchored_address (rtx x)
541 rtx base;
542 HOST_WIDE_INT offset;
543 machine_mode mode;
545 if (!flag_section_anchors)
546 return x;
548 if (!MEM_P (x))
549 return x;
551 /* Split the address into a base and offset. */
552 base = XEXP (x, 0);
553 offset = 0;
554 if (GET_CODE (base) == CONST
555 && GET_CODE (XEXP (base, 0)) == PLUS
556 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
558 offset += INTVAL (XEXP (XEXP (base, 0), 1));
559 base = XEXP (XEXP (base, 0), 0);
562 /* Check whether BASE is suitable for anchors. */
563 if (GET_CODE (base) != SYMBOL_REF
564 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
565 || SYMBOL_REF_ANCHOR_P (base)
566 || SYMBOL_REF_BLOCK (base) == NULL
567 || !targetm.use_anchors_for_symbol_p (base))
568 return x;
570 /* Decide where BASE is going to be. */
571 place_block_symbol (base);
573 /* Get the anchor we need to use. */
574 offset += SYMBOL_REF_BLOCK_OFFSET (base);
575 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
576 SYMBOL_REF_TLS_MODEL (base));
578 /* Work out the offset from the anchor. */
579 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
581 /* If we're going to run a CSE pass, force the anchor into a register.
582 We will then be able to reuse registers for several accesses, if the
583 target costs say that that's worthwhile. */
584 mode = GET_MODE (base);
585 if (!cse_not_expected)
586 base = force_reg (mode, base);
588 return replace_equiv_address (x, plus_constant (mode, base, offset));
591 /* Copy the value or contents of X to a new temp reg and return that reg. */
594 copy_to_reg (rtx x)
596 rtx temp = gen_reg_rtx (GET_MODE (x));
598 /* If not an operand, must be an address with PLUS and MULT so
599 do the computation. */
600 if (! general_operand (x, VOIDmode))
601 x = force_operand (x, temp);
603 if (x != temp)
604 emit_move_insn (temp, x);
606 return temp;
609 /* Like copy_to_reg but always give the new register mode Pmode
610 in case X is a constant. */
613 copy_addr_to_reg (rtx x)
615 return copy_to_mode_reg (Pmode, x);
618 /* Like copy_to_reg but always give the new register mode MODE
619 in case X is a constant. */
622 copy_to_mode_reg (machine_mode mode, rtx x)
624 rtx temp = gen_reg_rtx (mode);
626 /* If not an operand, must be an address with PLUS and MULT so
627 do the computation. */
628 if (! general_operand (x, VOIDmode))
629 x = force_operand (x, temp);
631 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
632 if (x != temp)
633 emit_move_insn (temp, x);
634 return temp;
637 /* Load X into a register if it is not already one.
638 Use mode MODE for the register.
639 X should be valid for mode MODE, but it may be a constant which
640 is valid for all integer modes; that's why caller must specify MODE.
642 The caller must not alter the value in the register we return,
643 since we mark it as a "constant" register. */
646 force_reg (machine_mode mode, rtx x)
648 rtx temp, set;
649 rtx_insn *insn;
651 if (REG_P (x))
652 return x;
654 if (general_operand (x, mode))
656 temp = gen_reg_rtx (mode);
657 insn = emit_move_insn (temp, x);
659 else
661 temp = force_operand (x, NULL_RTX);
662 if (REG_P (temp))
663 insn = get_last_insn ();
664 else
666 rtx temp2 = gen_reg_rtx (mode);
667 insn = emit_move_insn (temp2, temp);
668 temp = temp2;
672 /* Let optimizers know that TEMP's value never changes
673 and that X can be substituted for it. Don't get confused
674 if INSN set something else (such as a SUBREG of TEMP). */
675 if (CONSTANT_P (x)
676 && (set = single_set (insn)) != 0
677 && SET_DEST (set) == temp
678 && ! rtx_equal_p (x, SET_SRC (set)))
679 set_unique_reg_note (insn, REG_EQUAL, x);
681 /* Let optimizers know that TEMP is a pointer, and if so, the
682 known alignment of that pointer. */
684 unsigned align = 0;
685 if (GET_CODE (x) == SYMBOL_REF)
687 align = BITS_PER_UNIT;
688 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
689 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
691 else if (GET_CODE (x) == LABEL_REF)
692 align = BITS_PER_UNIT;
693 else if (GET_CODE (x) == CONST
694 && GET_CODE (XEXP (x, 0)) == PLUS
695 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
696 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
698 rtx s = XEXP (XEXP (x, 0), 0);
699 rtx c = XEXP (XEXP (x, 0), 1);
700 unsigned sa, ca;
702 sa = BITS_PER_UNIT;
703 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
704 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
706 if (INTVAL (c) == 0)
707 align = sa;
708 else
710 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
711 align = MIN (sa, ca);
715 if (align || (MEM_P (x) && MEM_POINTER (x)))
716 mark_reg_pointer (temp, align);
719 return temp;
722 /* If X is a memory ref, copy its contents to a new temp reg and return
723 that reg. Otherwise, return X. */
726 force_not_mem (rtx x)
728 rtx temp;
730 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
731 return x;
733 temp = gen_reg_rtx (GET_MODE (x));
735 if (MEM_POINTER (x))
736 REG_POINTER (temp) = 1;
738 emit_move_insn (temp, x);
739 return temp;
742 /* Copy X to TARGET (if it's nonzero and a reg)
743 or to a new temp reg and return that reg.
744 MODE is the mode to use for X in case it is a constant. */
747 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
749 rtx temp;
751 if (target && REG_P (target))
752 temp = target;
753 else
754 temp = gen_reg_rtx (mode);
756 emit_move_insn (temp, x);
757 return temp;
760 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
761 PUNSIGNEDP points to the signedness of the type and may be adjusted
762 to show what signedness to use on extension operations.
764 FOR_RETURN is nonzero if the caller is promoting the return value
765 of FNDECL, else it is for promoting args. */
767 machine_mode
768 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
769 const_tree funtype, int for_return)
771 /* Called without a type node for a libcall. */
772 if (type == NULL_TREE)
774 if (INTEGRAL_MODE_P (mode))
775 return targetm.calls.promote_function_mode (NULL_TREE, mode,
776 punsignedp, funtype,
777 for_return);
778 else
779 return mode;
782 switch (TREE_CODE (type))
784 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
785 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
786 case POINTER_TYPE: case REFERENCE_TYPE:
787 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
788 for_return);
790 default:
791 return mode;
794 /* Return the mode to use to store a scalar of TYPE and MODE.
795 PUNSIGNEDP points to the signedness of the type and may be adjusted
796 to show what signedness to use on extension operations. */
798 machine_mode
799 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
800 int *punsignedp ATTRIBUTE_UNUSED)
802 #ifdef PROMOTE_MODE
803 enum tree_code code;
804 int unsignedp;
805 scalar_mode smode;
806 #endif
808 /* For libcalls this is invoked without TYPE from the backends
809 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
810 case. */
811 if (type == NULL_TREE)
812 return mode;
814 /* FIXME: this is the same logic that was there until GCC 4.4, but we
815 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
816 is not defined. The affected targets are M32C, S390, SPARC. */
817 #ifdef PROMOTE_MODE
818 code = TREE_CODE (type);
819 unsignedp = *punsignedp;
821 switch (code)
823 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
824 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
825 /* Values of these types always have scalar mode. */
826 smode = as_a <scalar_mode> (mode);
827 PROMOTE_MODE (smode, unsignedp, type);
828 *punsignedp = unsignedp;
829 return smode;
831 #ifdef POINTERS_EXTEND_UNSIGNED
832 case REFERENCE_TYPE:
833 case POINTER_TYPE:
834 *punsignedp = POINTERS_EXTEND_UNSIGNED;
835 return targetm.addr_space.address_mode
836 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
837 #endif
839 default:
840 return mode;
842 #else
843 return mode;
844 #endif
848 /* Use one of promote_mode or promote_function_mode to find the promoted
849 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
850 of DECL after promotion. */
852 machine_mode
853 promote_decl_mode (const_tree decl, int *punsignedp)
855 tree type = TREE_TYPE (decl);
856 int unsignedp = TYPE_UNSIGNED (type);
857 machine_mode mode = DECL_MODE (decl);
858 machine_mode pmode;
860 if (TREE_CODE (decl) == RESULT_DECL && !DECL_BY_REFERENCE (decl))
861 pmode = promote_function_mode (type, mode, &unsignedp,
862 TREE_TYPE (current_function_decl), 1);
863 else if (TREE_CODE (decl) == RESULT_DECL || TREE_CODE (decl) == PARM_DECL)
864 pmode = promote_function_mode (type, mode, &unsignedp,
865 TREE_TYPE (current_function_decl), 2);
866 else
867 pmode = promote_mode (type, mode, &unsignedp);
869 if (punsignedp)
870 *punsignedp = unsignedp;
871 return pmode;
874 /* Return the promoted mode for name. If it is a named SSA_NAME, it
875 is the same as promote_decl_mode. Otherwise, it is the promoted
876 mode of a temp decl of same type as the SSA_NAME, if we had created
877 one. */
879 machine_mode
880 promote_ssa_mode (const_tree name, int *punsignedp)
882 gcc_assert (TREE_CODE (name) == SSA_NAME);
884 /* Partitions holding parms and results must be promoted as expected
885 by function.c. */
886 if (SSA_NAME_VAR (name)
887 && (TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL
888 || TREE_CODE (SSA_NAME_VAR (name)) == RESULT_DECL))
890 machine_mode mode = promote_decl_mode (SSA_NAME_VAR (name), punsignedp);
891 if (mode != BLKmode)
892 return mode;
895 tree type = TREE_TYPE (name);
896 int unsignedp = TYPE_UNSIGNED (type);
897 machine_mode pmode = promote_mode (type, TYPE_MODE (type), &unsignedp);
898 if (punsignedp)
899 *punsignedp = unsignedp;
901 return pmode;
906 /* Controls the behavior of {anti_,}adjust_stack. */
907 static bool suppress_reg_args_size;
909 /* A helper for adjust_stack and anti_adjust_stack. */
911 static void
912 adjust_stack_1 (rtx adjust, bool anti_p)
914 rtx temp;
915 rtx_insn *insn;
917 /* Hereafter anti_p means subtract_p. */
918 if (!STACK_GROWS_DOWNWARD)
919 anti_p = !anti_p;
921 temp = expand_binop (Pmode,
922 anti_p ? sub_optab : add_optab,
923 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
924 OPTAB_LIB_WIDEN);
926 if (temp != stack_pointer_rtx)
927 insn = emit_move_insn (stack_pointer_rtx, temp);
928 else
930 insn = get_last_insn ();
931 temp = single_set (insn);
932 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
935 if (!suppress_reg_args_size)
936 add_args_size_note (insn, stack_pointer_delta);
939 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
940 This pops when ADJUST is positive. ADJUST need not be constant. */
942 void
943 adjust_stack (rtx adjust)
945 if (adjust == const0_rtx)
946 return;
948 /* We expect all variable sized adjustments to be multiple of
949 PREFERRED_STACK_BOUNDARY. */
950 poly_int64 const_adjust;
951 if (poly_int_rtx_p (adjust, &const_adjust))
952 stack_pointer_delta -= const_adjust;
954 adjust_stack_1 (adjust, false);
957 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
958 This pushes when ADJUST is positive. ADJUST need not be constant. */
960 void
961 anti_adjust_stack (rtx adjust)
963 if (adjust == const0_rtx)
964 return;
966 /* We expect all variable sized adjustments to be multiple of
967 PREFERRED_STACK_BOUNDARY. */
968 poly_int64 const_adjust;
969 if (poly_int_rtx_p (adjust, &const_adjust))
970 stack_pointer_delta += const_adjust;
972 adjust_stack_1 (adjust, true);
975 /* Round the size of a block to be pushed up to the boundary required
976 by this machine. SIZE is the desired size, which need not be constant. */
978 static rtx
979 round_push (rtx size)
981 rtx align_rtx, alignm1_rtx;
983 if (!SUPPORTS_STACK_ALIGNMENT
984 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
986 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
988 if (align == 1)
989 return size;
991 if (CONST_INT_P (size))
993 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
995 if (INTVAL (size) != new_size)
996 size = GEN_INT (new_size);
997 return size;
1000 align_rtx = GEN_INT (align);
1001 alignm1_rtx = GEN_INT (align - 1);
1003 else
1005 /* If crtl->preferred_stack_boundary might still grow, use
1006 virtual_preferred_stack_boundary_rtx instead. This will be
1007 substituted by the right value in vregs pass and optimized
1008 during combine. */
1009 align_rtx = virtual_preferred_stack_boundary_rtx;
1010 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
1011 NULL_RTX);
1014 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1015 but we know it can't. So add ourselves and then do
1016 TRUNC_DIV_EXPR. */
1017 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
1018 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1019 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
1020 NULL_RTX, 1);
1021 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
1023 return size;
1026 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1027 to a previously-created save area. If no save area has been allocated,
1028 this function will allocate one. If a save area is specified, it
1029 must be of the proper mode. */
1031 void
1032 emit_stack_save (enum save_level save_level, rtx *psave)
1034 rtx sa = *psave;
1035 /* The default is that we use a move insn and save in a Pmode object. */
1036 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1037 machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1039 /* See if this machine has anything special to do for this kind of save. */
1040 switch (save_level)
1042 case SAVE_BLOCK:
1043 if (targetm.have_save_stack_block ())
1044 fcn = targetm.gen_save_stack_block;
1045 break;
1046 case SAVE_FUNCTION:
1047 if (targetm.have_save_stack_function ())
1048 fcn = targetm.gen_save_stack_function;
1049 break;
1050 case SAVE_NONLOCAL:
1051 if (targetm.have_save_stack_nonlocal ())
1052 fcn = targetm.gen_save_stack_nonlocal;
1053 break;
1054 default:
1055 break;
1058 /* If there is no save area and we have to allocate one, do so. Otherwise
1059 verify the save area is the proper mode. */
1061 if (sa == 0)
1063 if (mode != VOIDmode)
1065 if (save_level == SAVE_NONLOCAL)
1066 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1067 else
1068 *psave = sa = gen_reg_rtx (mode);
1072 do_pending_stack_adjust ();
1073 if (sa != 0)
1074 sa = validize_mem (sa);
1075 emit_insn (fcn (sa, stack_pointer_rtx));
1078 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1079 area made by emit_stack_save. If it is zero, we have nothing to do. */
1081 void
1082 emit_stack_restore (enum save_level save_level, rtx sa)
1084 /* The default is that we use a move insn. */
1085 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1087 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1088 STACK_POINTER and HARD_FRAME_POINTER.
1089 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1090 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1091 aligned variables, which is reflected in ix86_can_eliminate.
1092 We normally still have the realigned STACK_POINTER that we can use.
1093 But if there is a stack restore still present at reload, it can trigger
1094 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1095 FRAME_POINTER into a hard reg.
1096 To prevent this situation, we force need_drap if we emit a stack
1097 restore. */
1098 if (SUPPORTS_STACK_ALIGNMENT)
1099 crtl->need_drap = true;
1101 /* See if this machine has anything special to do for this kind of save. */
1102 switch (save_level)
1104 case SAVE_BLOCK:
1105 if (targetm.have_restore_stack_block ())
1106 fcn = targetm.gen_restore_stack_block;
1107 break;
1108 case SAVE_FUNCTION:
1109 if (targetm.have_restore_stack_function ())
1110 fcn = targetm.gen_restore_stack_function;
1111 break;
1112 case SAVE_NONLOCAL:
1113 if (targetm.have_restore_stack_nonlocal ())
1114 fcn = targetm.gen_restore_stack_nonlocal;
1115 break;
1116 default:
1117 break;
1120 if (sa != 0)
1122 sa = validize_mem (sa);
1123 /* These clobbers prevent the scheduler from moving
1124 references to variable arrays below the code
1125 that deletes (pops) the arrays. */
1126 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1127 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1130 discard_pending_stack_adjust ();
1132 emit_insn (fcn (stack_pointer_rtx, sa));
1135 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1136 function. This should be called whenever we allocate or deallocate
1137 dynamic stack space. */
1139 void
1140 update_nonlocal_goto_save_area (void)
1142 tree t_save;
1143 rtx r_save;
1145 /* The nonlocal_goto_save_area object is an array of N pointers. The
1146 first one is used for the frame pointer save; the rest are sized by
1147 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1148 of the stack save area slots. */
1149 t_save = build4 (ARRAY_REF,
1150 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1151 cfun->nonlocal_goto_save_area,
1152 integer_one_node, NULL_TREE, NULL_TREE);
1153 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1155 emit_stack_save (SAVE_NONLOCAL, &r_save);
1158 /* Record a new stack level for the current function. This should be called
1159 whenever we allocate or deallocate dynamic stack space. */
1161 void
1162 record_new_stack_level (void)
1164 /* Record the new stack level for nonlocal gotos. */
1165 if (cfun->nonlocal_goto_save_area)
1166 update_nonlocal_goto_save_area ();
1168 /* Record the new stack level for SJLJ exceptions. */
1169 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1170 update_sjlj_context ();
1173 /* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET. */
1176 align_dynamic_address (rtx target, unsigned required_align)
1178 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1179 but we know it can't. So add ourselves and then do
1180 TRUNC_DIV_EXPR. */
1181 target = expand_binop (Pmode, add_optab, target,
1182 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1183 Pmode),
1184 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1185 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1186 gen_int_mode (required_align / BITS_PER_UNIT,
1187 Pmode),
1188 NULL_RTX, 1);
1189 target = expand_mult (Pmode, target,
1190 gen_int_mode (required_align / BITS_PER_UNIT,
1191 Pmode),
1192 NULL_RTX, 1);
1194 return target;
1197 /* Return an rtx through *PSIZE, representing the size of an area of memory to
1198 be dynamically pushed on the stack.
1200 *PSIZE is an rtx representing the size of the area.
1202 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1203 parameter may be zero. If so, a proper value will be extracted
1204 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1206 REQUIRED_ALIGN is the alignment (in bits) required for the region
1207 of memory.
1209 If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for
1210 the additional size returned. */
1211 void
1212 get_dynamic_stack_size (rtx *psize, unsigned size_align,
1213 unsigned required_align,
1214 HOST_WIDE_INT *pstack_usage_size)
1216 rtx size = *psize;
1218 /* Ensure the size is in the proper mode. */
1219 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1220 size = convert_to_mode (Pmode, size, 1);
1222 if (CONST_INT_P (size))
1224 unsigned HOST_WIDE_INT lsb;
1226 lsb = INTVAL (size);
1227 lsb &= -lsb;
1229 /* Watch out for overflow truncating to "unsigned". */
1230 if (lsb > UINT_MAX / BITS_PER_UNIT)
1231 size_align = 1u << (HOST_BITS_PER_INT - 1);
1232 else
1233 size_align = (unsigned)lsb * BITS_PER_UNIT;
1235 else if (size_align < BITS_PER_UNIT)
1236 size_align = BITS_PER_UNIT;
1238 /* We can't attempt to minimize alignment necessary, because we don't
1239 know the final value of preferred_stack_boundary yet while executing
1240 this code. */
1241 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1242 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1244 /* We will need to ensure that the address we return is aligned to
1245 REQUIRED_ALIGN. At this point in the compilation, we don't always
1246 know the final value of the STACK_DYNAMIC_OFFSET used in function.c
1247 (it might depend on the size of the outgoing parameter lists, for
1248 example), so we must preventively align the value. We leave space
1249 in SIZE for the hole that might result from the alignment operation. */
1251 unsigned known_align = REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM);
1252 if (known_align == 0)
1253 known_align = BITS_PER_UNIT;
1254 if (required_align > known_align)
1256 unsigned extra = (required_align - known_align) / BITS_PER_UNIT;
1257 size = plus_constant (Pmode, size, extra);
1258 size = force_operand (size, NULL_RTX);
1259 if (size_align > known_align)
1260 size_align = known_align;
1262 if (flag_stack_usage_info && pstack_usage_size)
1263 *pstack_usage_size += extra;
1266 /* Round the size to a multiple of the required stack alignment.
1267 Since the stack is presumed to be rounded before this allocation,
1268 this will maintain the required alignment.
1270 If the stack grows downward, we could save an insn by subtracting
1271 SIZE from the stack pointer and then aligning the stack pointer.
1272 The problem with this is that the stack pointer may be unaligned
1273 between the execution of the subtraction and alignment insns and
1274 some machines do not allow this. Even on those that do, some
1275 signal handlers malfunction if a signal should occur between those
1276 insns. Since this is an extremely rare event, we have no reliable
1277 way of knowing which systems have this problem. So we avoid even
1278 momentarily mis-aligning the stack. */
1279 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1281 size = round_push (size);
1283 if (flag_stack_usage_info && pstack_usage_size)
1285 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1286 *pstack_usage_size =
1287 (*pstack_usage_size + align - 1) / align * align;
1291 *psize = size;
1294 /* Return the number of bytes to "protect" on the stack for -fstack-check.
1296 "protect" in the context of -fstack-check means how many bytes we need
1297 to always ensure are available on the stack; as a consequence, this is
1298 also how many bytes are first skipped when probing the stack.
1300 On some targets we want to reuse the -fstack-check prologue support
1301 to give a degree of protection against stack clashing style attacks.
1303 In that scenario we do not want to skip bytes before probing as that
1304 would render the stack clash protections useless.
1306 So we never use STACK_CHECK_PROTECT directly. Instead we indirectly
1307 use it through this helper, which allows to provide different values
1308 for -fstack-check and -fstack-clash-protection. */
1310 HOST_WIDE_INT
1311 get_stack_check_protect (void)
1313 if (flag_stack_clash_protection)
1314 return 0;
1316 return STACK_CHECK_PROTECT;
1319 /* Return an rtx representing the address of an area of memory dynamically
1320 pushed on the stack.
1322 Any required stack pointer alignment is preserved.
1324 SIZE is an rtx representing the size of the area.
1326 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1327 parameter may be zero. If so, a proper value will be extracted
1328 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1330 REQUIRED_ALIGN is the alignment (in bits) required for the region
1331 of memory.
1333 MAX_SIZE is an upper bound for SIZE, if SIZE is not constant, or -1 if
1334 no such upper bound is known.
1336 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1337 stack space allocated by the generated code cannot be added with itself
1338 in the course of the execution of the function. It is always safe to
1339 pass FALSE here and the following criterion is sufficient in order to
1340 pass TRUE: every path in the CFG that starts at the allocation point and
1341 loops to it executes the associated deallocation code. */
1344 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1345 unsigned required_align,
1346 HOST_WIDE_INT max_size,
1347 bool cannot_accumulate)
1349 HOST_WIDE_INT stack_usage_size = -1;
1350 rtx_code_label *final_label;
1351 rtx final_target, target;
1353 /* If we're asking for zero bytes, it doesn't matter what we point
1354 to since we can't dereference it. But return a reasonable
1355 address anyway. */
1356 if (size == const0_rtx)
1357 return virtual_stack_dynamic_rtx;
1359 /* Otherwise, show we're calling alloca or equivalent. */
1360 cfun->calls_alloca = 1;
1362 /* If stack usage info is requested, look into the size we are passed.
1363 We need to do so this early to avoid the obfuscation that may be
1364 introduced later by the various alignment operations. */
1365 if (flag_stack_usage_info)
1367 if (CONST_INT_P (size))
1368 stack_usage_size = INTVAL (size);
1369 else if (REG_P (size))
1371 /* Look into the last emitted insn and see if we can deduce
1372 something for the register. */
1373 rtx_insn *insn;
1374 rtx set, note;
1375 insn = get_last_insn ();
1376 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1378 if (CONST_INT_P (SET_SRC (set)))
1379 stack_usage_size = INTVAL (SET_SRC (set));
1380 else if ((note = find_reg_equal_equiv_note (insn))
1381 && CONST_INT_P (XEXP (note, 0)))
1382 stack_usage_size = INTVAL (XEXP (note, 0));
1386 /* If the size is not constant, try the maximum size. */
1387 if (stack_usage_size < 0)
1388 stack_usage_size = max_size;
1390 /* If the size is still not constant, we can't say anything. */
1391 if (stack_usage_size < 0)
1393 current_function_has_unbounded_dynamic_stack_size = 1;
1394 stack_usage_size = 0;
1398 get_dynamic_stack_size (&size, size_align, required_align, &stack_usage_size);
1400 target = gen_reg_rtx (Pmode);
1402 /* The size is supposed to be fully adjusted at this point so record it
1403 if stack usage info is requested. */
1404 if (flag_stack_usage_info)
1406 current_function_dynamic_stack_size += stack_usage_size;
1408 /* ??? This is gross but the only safe stance in the absence
1409 of stack usage oriented flow analysis. */
1410 if (!cannot_accumulate)
1411 current_function_has_unbounded_dynamic_stack_size = 1;
1414 do_pending_stack_adjust ();
1416 final_label = NULL;
1417 final_target = NULL_RTX;
1419 /* If we are splitting the stack, we need to ask the backend whether
1420 there is enough room on the current stack. If there isn't, or if
1421 the backend doesn't know how to tell is, then we need to call a
1422 function to allocate memory in some other way. This memory will
1423 be released when we release the current stack segment. The
1424 effect is that stack allocation becomes less efficient, but at
1425 least it doesn't cause a stack overflow. */
1426 if (flag_split_stack)
1428 rtx_code_label *available_label;
1429 rtx ask, space, func;
1431 available_label = NULL;
1433 if (targetm.have_split_stack_space_check ())
1435 available_label = gen_label_rtx ();
1437 /* This instruction will branch to AVAILABLE_LABEL if there
1438 are SIZE bytes available on the stack. */
1439 emit_insn (targetm.gen_split_stack_space_check
1440 (size, available_label));
1443 /* The __morestack_allocate_stack_space function will allocate
1444 memory using malloc. If the alignment of the memory returned
1445 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1446 make sure we allocate enough space. */
1447 if (MALLOC_ABI_ALIGNMENT >= required_align)
1448 ask = size;
1449 else
1450 ask = expand_binop (Pmode, add_optab, size,
1451 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1452 Pmode),
1453 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1455 func = init_one_libfunc ("__morestack_allocate_stack_space");
1457 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1458 ask, Pmode);
1460 if (available_label == NULL_RTX)
1461 return space;
1463 final_target = gen_reg_rtx (Pmode);
1465 emit_move_insn (final_target, space);
1467 final_label = gen_label_rtx ();
1468 emit_jump (final_label);
1470 emit_label (available_label);
1473 /* We ought to be called always on the toplevel and stack ought to be aligned
1474 properly. */
1475 gcc_assert (multiple_p (stack_pointer_delta,
1476 PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT));
1478 /* If needed, check that we have the required amount of stack. Take into
1479 account what has already been checked. */
1480 if (STACK_CHECK_MOVING_SP)
1482 else if (flag_stack_check == GENERIC_STACK_CHECK)
1483 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1484 size);
1485 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1486 probe_stack_range (get_stack_check_protect (), size);
1488 /* Don't let anti_adjust_stack emit notes. */
1489 suppress_reg_args_size = true;
1491 /* Perform the required allocation from the stack. Some systems do
1492 this differently than simply incrementing/decrementing from the
1493 stack pointer, such as acquiring the space by calling malloc(). */
1494 if (targetm.have_allocate_stack ())
1496 class expand_operand ops[2];
1497 /* We don't have to check against the predicate for operand 0 since
1498 TARGET is known to be a pseudo of the proper mode, which must
1499 be valid for the operand. */
1500 create_fixed_operand (&ops[0], target);
1501 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1502 expand_insn (targetm.code_for_allocate_stack, 2, ops);
1504 else
1506 poly_int64 saved_stack_pointer_delta;
1508 if (!STACK_GROWS_DOWNWARD)
1509 emit_move_insn (target, virtual_stack_dynamic_rtx);
1511 /* Check stack bounds if necessary. */
1512 if (crtl->limit_stack)
1514 rtx available;
1515 rtx_code_label *space_available = gen_label_rtx ();
1516 if (STACK_GROWS_DOWNWARD)
1517 available = expand_binop (Pmode, sub_optab,
1518 stack_pointer_rtx, stack_limit_rtx,
1519 NULL_RTX, 1, OPTAB_WIDEN);
1520 else
1521 available = expand_binop (Pmode, sub_optab,
1522 stack_limit_rtx, stack_pointer_rtx,
1523 NULL_RTX, 1, OPTAB_WIDEN);
1525 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1526 space_available);
1527 if (targetm.have_trap ())
1528 emit_insn (targetm.gen_trap ());
1529 else
1530 error ("stack limits not supported on this target");
1531 emit_barrier ();
1532 emit_label (space_available);
1535 saved_stack_pointer_delta = stack_pointer_delta;
1537 /* If stack checking or stack clash protection is requested,
1538 then probe the stack while allocating space from it. */
1539 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1540 anti_adjust_stack_and_probe (size, false);
1541 else if (flag_stack_clash_protection)
1542 anti_adjust_stack_and_probe_stack_clash (size);
1543 else
1544 anti_adjust_stack (size);
1546 /* Even if size is constant, don't modify stack_pointer_delta.
1547 The constant size alloca should preserve
1548 crtl->preferred_stack_boundary alignment. */
1549 stack_pointer_delta = saved_stack_pointer_delta;
1551 if (STACK_GROWS_DOWNWARD)
1552 emit_move_insn (target, virtual_stack_dynamic_rtx);
1555 suppress_reg_args_size = false;
1557 /* Finish up the split stack handling. */
1558 if (final_label != NULL_RTX)
1560 gcc_assert (flag_split_stack);
1561 emit_move_insn (final_target, target);
1562 emit_label (final_label);
1563 target = final_target;
1566 target = align_dynamic_address (target, required_align);
1568 /* Now that we've committed to a return value, mark its alignment. */
1569 mark_reg_pointer (target, required_align);
1571 /* Record the new stack level. */
1572 record_new_stack_level ();
1574 return target;
1577 /* Return an rtx representing the address of an area of memory already
1578 statically pushed onto the stack in the virtual stack vars area. (It is
1579 assumed that the area is allocated in the function prologue.)
1581 Any required stack pointer alignment is preserved.
1583 OFFSET is the offset of the area into the virtual stack vars area.
1585 REQUIRED_ALIGN is the alignment (in bits) required for the region
1586 of memory. */
1589 get_dynamic_stack_base (poly_int64 offset, unsigned required_align)
1591 rtx target;
1593 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1594 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1596 target = gen_reg_rtx (Pmode);
1597 emit_move_insn (target, virtual_stack_vars_rtx);
1598 target = expand_binop (Pmode, add_optab, target,
1599 gen_int_mode (offset, Pmode),
1600 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1601 target = align_dynamic_address (target, required_align);
1603 /* Now that we've committed to a return value, mark its alignment. */
1604 mark_reg_pointer (target, required_align);
1606 return target;
1609 /* A front end may want to override GCC's stack checking by providing a
1610 run-time routine to call to check the stack, so provide a mechanism for
1611 calling that routine. */
1613 static GTY(()) rtx stack_check_libfunc;
1615 void
1616 set_stack_check_libfunc (const char *libfunc_name)
1618 gcc_assert (stack_check_libfunc == NULL_RTX);
1619 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1620 tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
1621 get_identifier (libfunc_name), void_type_node);
1622 DECL_EXTERNAL (decl) = 1;
1623 SET_SYMBOL_REF_DECL (stack_check_libfunc, decl);
1626 /* Emit one stack probe at ADDRESS, an address within the stack. */
1628 void
1629 emit_stack_probe (rtx address)
1631 if (targetm.have_probe_stack_address ())
1633 class expand_operand ops[1];
1634 insn_code icode = targetm.code_for_probe_stack_address;
1635 create_address_operand (ops, address);
1636 maybe_legitimize_operands (icode, 0, 1, ops);
1637 expand_insn (icode, 1, ops);
1639 else
1641 rtx memref = gen_rtx_MEM (word_mode, address);
1643 MEM_VOLATILE_P (memref) = 1;
1644 memref = validize_mem (memref);
1646 /* See if we have an insn to probe the stack. */
1647 if (targetm.have_probe_stack ())
1648 emit_insn (targetm.gen_probe_stack (memref));
1649 else
1650 emit_move_insn (memref, const0_rtx);
1654 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1655 FIRST is a constant and size is a Pmode RTX. These are offsets from
1656 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1657 or subtract them from the stack pointer. */
1659 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1661 #if STACK_GROWS_DOWNWARD
1662 #define STACK_GROW_OP MINUS
1663 #define STACK_GROW_OPTAB sub_optab
1664 #define STACK_GROW_OFF(off) -(off)
1665 #else
1666 #define STACK_GROW_OP PLUS
1667 #define STACK_GROW_OPTAB add_optab
1668 #define STACK_GROW_OFF(off) (off)
1669 #endif
1671 void
1672 probe_stack_range (HOST_WIDE_INT first, rtx size)
1674 /* First ensure SIZE is Pmode. */
1675 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1676 size = convert_to_mode (Pmode, size, 1);
1678 /* Next see if we have a function to check the stack. */
1679 if (stack_check_libfunc)
1681 rtx addr = memory_address (Pmode,
1682 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1683 stack_pointer_rtx,
1684 plus_constant (Pmode,
1685 size, first)));
1686 emit_library_call (stack_check_libfunc, LCT_THROW, VOIDmode,
1687 addr, Pmode);
1690 /* Next see if we have an insn to check the stack. */
1691 else if (targetm.have_check_stack ())
1693 class expand_operand ops[1];
1694 rtx addr = memory_address (Pmode,
1695 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1696 stack_pointer_rtx,
1697 plus_constant (Pmode,
1698 size, first)));
1699 bool success;
1700 create_input_operand (&ops[0], addr, Pmode);
1701 success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops);
1702 gcc_assert (success);
1705 /* Otherwise we have to generate explicit probes. If we have a constant
1706 small number of them to generate, that's the easy case. */
1707 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1709 HOST_WIDE_INT isize = INTVAL (size), i;
1710 rtx addr;
1712 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1713 it exceeds SIZE. If only one probe is needed, this will not
1714 generate any code. Then probe at FIRST + SIZE. */
1715 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1717 addr = memory_address (Pmode,
1718 plus_constant (Pmode, stack_pointer_rtx,
1719 STACK_GROW_OFF (first + i)));
1720 emit_stack_probe (addr);
1723 addr = memory_address (Pmode,
1724 plus_constant (Pmode, stack_pointer_rtx,
1725 STACK_GROW_OFF (first + isize)));
1726 emit_stack_probe (addr);
1729 /* In the variable case, do the same as above, but in a loop. Note that we
1730 must be extra careful with variables wrapping around because we might be
1731 at the very top (or the very bottom) of the address space and we have to
1732 be able to handle this case properly; in particular, we use an equality
1733 test for the loop condition. */
1734 else
1736 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1737 rtx_code_label *loop_lab = gen_label_rtx ();
1738 rtx_code_label *end_lab = gen_label_rtx ();
1740 /* Step 1: round SIZE to the previous multiple of the interval. */
1742 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1743 rounded_size
1744 = simplify_gen_binary (AND, Pmode, size,
1745 gen_int_mode (-PROBE_INTERVAL, Pmode));
1746 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1749 /* Step 2: compute initial and final value of the loop counter. */
1751 /* TEST_ADDR = SP + FIRST. */
1752 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1753 stack_pointer_rtx,
1754 gen_int_mode (first, Pmode)),
1755 NULL_RTX);
1757 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1758 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1759 test_addr,
1760 rounded_size_op), NULL_RTX);
1763 /* Step 3: the loop
1765 while (TEST_ADDR != LAST_ADDR)
1767 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1768 probe at TEST_ADDR
1771 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1772 until it is equal to ROUNDED_SIZE. */
1774 emit_label (loop_lab);
1776 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1777 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1778 end_lab);
1780 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1781 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1782 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1783 1, OPTAB_WIDEN);
1785 gcc_assert (temp == test_addr);
1787 /* Probe at TEST_ADDR. */
1788 emit_stack_probe (test_addr);
1790 emit_jump (loop_lab);
1792 emit_label (end_lab);
1795 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1796 that SIZE is equal to ROUNDED_SIZE. */
1798 /* TEMP = SIZE - ROUNDED_SIZE. */
1799 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1800 if (temp != const0_rtx)
1802 rtx addr;
1804 if (CONST_INT_P (temp))
1806 /* Use [base + disp} addressing mode if supported. */
1807 HOST_WIDE_INT offset = INTVAL (temp);
1808 addr = memory_address (Pmode,
1809 plus_constant (Pmode, last_addr,
1810 STACK_GROW_OFF (offset)));
1812 else
1814 /* Manual CSE if the difference is not known at compile-time. */
1815 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1816 addr = memory_address (Pmode,
1817 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1818 last_addr, temp));
1821 emit_stack_probe (addr);
1825 /* Make sure nothing is scheduled before we are done. */
1826 emit_insn (gen_blockage ());
1829 /* Compute parameters for stack clash probing a dynamic stack
1830 allocation of SIZE bytes.
1832 We compute ROUNDED_SIZE, LAST_ADDR, RESIDUAL and PROBE_INTERVAL.
1834 Additionally we conditionally dump the type of probing that will
1835 be needed given the values computed. */
1837 void
1838 compute_stack_clash_protection_loop_data (rtx *rounded_size, rtx *last_addr,
1839 rtx *residual,
1840 HOST_WIDE_INT *probe_interval,
1841 rtx size)
1843 /* Round SIZE down to STACK_CLASH_PROTECTION_PROBE_INTERVAL */
1844 *probe_interval
1845 = 1 << param_stack_clash_protection_probe_interval;
1846 *rounded_size = simplify_gen_binary (AND, Pmode, size,
1847 GEN_INT (-*probe_interval));
1849 /* Compute the value of the stack pointer for the last iteration.
1850 It's just SP + ROUNDED_SIZE. */
1851 rtx rounded_size_op = force_operand (*rounded_size, NULL_RTX);
1852 *last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1853 stack_pointer_rtx,
1854 rounded_size_op),
1855 NULL_RTX);
1857 /* Compute any residuals not allocated by the loop above. Residuals
1858 are just the ROUNDED_SIZE - SIZE. */
1859 *residual = simplify_gen_binary (MINUS, Pmode, size, *rounded_size);
1861 /* Dump key information to make writing tests easy. */
1862 if (dump_file)
1864 if (*rounded_size == CONST0_RTX (Pmode))
1865 fprintf (dump_file,
1866 "Stack clash skipped dynamic allocation and probing loop.\n");
1867 else if (CONST_INT_P (*rounded_size)
1868 && INTVAL (*rounded_size) <= 4 * *probe_interval)
1869 fprintf (dump_file,
1870 "Stack clash dynamic allocation and probing inline.\n");
1871 else if (CONST_INT_P (*rounded_size))
1872 fprintf (dump_file,
1873 "Stack clash dynamic allocation and probing in "
1874 "rotated loop.\n");
1875 else
1876 fprintf (dump_file,
1877 "Stack clash dynamic allocation and probing in loop.\n");
1879 if (*residual != CONST0_RTX (Pmode))
1880 fprintf (dump_file,
1881 "Stack clash dynamic allocation and probing residuals.\n");
1882 else
1883 fprintf (dump_file,
1884 "Stack clash skipped dynamic allocation and "
1885 "probing residuals.\n");
1889 /* Emit the start of an allocate/probe loop for stack
1890 clash protection.
1892 LOOP_LAB and END_LAB are returned for use when we emit the
1893 end of the loop.
1895 LAST addr is the value for SP which stops the loop. */
1896 void
1897 emit_stack_clash_protection_probe_loop_start (rtx *loop_lab,
1898 rtx *end_lab,
1899 rtx last_addr,
1900 bool rotated)
1902 /* Essentially we want to emit any setup code, the top of loop
1903 label and the comparison at the top of the loop. */
1904 *loop_lab = gen_label_rtx ();
1905 *end_lab = gen_label_rtx ();
1907 emit_label (*loop_lab);
1908 if (!rotated)
1909 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1910 Pmode, 1, *end_lab);
1913 /* Emit the end of a stack clash probing loop.
1915 This consists of just the jump back to LOOP_LAB and
1916 emitting END_LOOP after the loop. */
1918 void
1919 emit_stack_clash_protection_probe_loop_end (rtx loop_lab, rtx end_loop,
1920 rtx last_addr, bool rotated)
1922 if (rotated)
1923 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, NE, NULL_RTX,
1924 Pmode, 1, loop_lab);
1925 else
1926 emit_jump (loop_lab);
1928 emit_label (end_loop);
1932 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1933 while probing it. This pushes when SIZE is positive. SIZE need not
1934 be constant.
1936 This is subtly different than anti_adjust_stack_and_probe to try and
1937 prevent stack-clash attacks
1939 1. It must assume no knowledge of the probing state, any allocation
1940 must probe.
1942 Consider the case of a 1 byte alloca in a loop. If the sum of the
1943 allocations is large, then this could be used to jump the guard if
1944 probes were not emitted.
1946 2. It never skips probes, whereas anti_adjust_stack_and_probe will
1947 skip the probe on the first PROBE_INTERVAL on the assumption it
1948 was already done in the prologue and in previous allocations.
1950 3. It only allocates and probes SIZE bytes, it does not need to
1951 allocate/probe beyond that because this probing style does not
1952 guarantee signal handling capability if the guard is hit. */
1954 void
1955 anti_adjust_stack_and_probe_stack_clash (rtx size)
1957 /* First ensure SIZE is Pmode. */
1958 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1959 size = convert_to_mode (Pmode, size, 1);
1961 /* We can get here with a constant size on some targets. */
1962 rtx rounded_size, last_addr, residual;
1963 HOST_WIDE_INT probe_interval, probe_range;
1964 bool target_probe_range_p = false;
1965 compute_stack_clash_protection_loop_data (&rounded_size, &last_addr,
1966 &residual, &probe_interval, size);
1968 /* Get the back-end specific probe ranges. */
1969 probe_range = targetm.stack_clash_protection_alloca_probe_range ();
1970 target_probe_range_p = probe_range != 0;
1971 gcc_assert (probe_range >= 0);
1973 /* If no back-end specific range defined, default to the top of the newly
1974 allocated range. */
1975 if (probe_range == 0)
1976 probe_range = probe_interval - GET_MODE_SIZE (word_mode);
1978 if (rounded_size != CONST0_RTX (Pmode))
1980 if (CONST_INT_P (rounded_size)
1981 && INTVAL (rounded_size) <= 4 * probe_interval)
1983 for (HOST_WIDE_INT i = 0;
1984 i < INTVAL (rounded_size);
1985 i += probe_interval)
1987 anti_adjust_stack (GEN_INT (probe_interval));
1988 /* The prologue does not probe residuals. Thus the offset
1989 here to probe just beyond what the prologue had already
1990 allocated. */
1991 emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
1992 probe_range));
1994 emit_insn (gen_blockage ());
1997 else
1999 rtx loop_lab, end_loop;
2000 bool rotate_loop = CONST_INT_P (rounded_size);
2001 emit_stack_clash_protection_probe_loop_start (&loop_lab, &end_loop,
2002 last_addr, rotate_loop);
2004 anti_adjust_stack (GEN_INT (probe_interval));
2006 /* The prologue does not probe residuals. Thus the offset here
2007 to probe just beyond what the prologue had already
2008 allocated. */
2009 emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
2010 probe_range));
2012 emit_stack_clash_protection_probe_loop_end (loop_lab, end_loop,
2013 last_addr, rotate_loop);
2014 emit_insn (gen_blockage ());
2018 if (residual != CONST0_RTX (Pmode))
2020 rtx label = NULL_RTX;
2021 /* RESIDUAL could be zero at runtime and in that case *sp could
2022 hold live data. Furthermore, we do not want to probe into the
2023 red zone.
2025 If TARGET_PROBE_RANGE_P then the target has promised it's safe to
2026 probe at offset 0. In which case we no longer have to check for
2027 RESIDUAL == 0. However we still need to probe at the right offset
2028 when RESIDUAL > PROBE_RANGE, in which case we probe at PROBE_RANGE.
2030 If !TARGET_PROBE_RANGE_P then go ahead and just guard the probe at *sp
2031 on RESIDUAL != 0 at runtime if RESIDUAL is not a compile time constant.
2033 anti_adjust_stack (residual);
2035 if (!CONST_INT_P (residual))
2037 label = gen_label_rtx ();
2038 rtx_code op = target_probe_range_p ? LT : EQ;
2039 rtx probe_cmp_value = target_probe_range_p
2040 ? gen_rtx_CONST_INT (GET_MODE (residual), probe_range)
2041 : CONST0_RTX (GET_MODE (residual));
2043 if (target_probe_range_p)
2044 emit_stack_probe (stack_pointer_rtx);
2046 emit_cmp_and_jump_insns (residual, probe_cmp_value,
2047 op, NULL_RTX, Pmode, 1, label);
2050 rtx x = NULL_RTX;
2052 /* If RESIDUAL isn't a constant and TARGET_PROBE_RANGE_P then we probe up
2053 by the ABI defined safe value. */
2054 if (!CONST_INT_P (residual) && target_probe_range_p)
2055 x = GEN_INT (probe_range);
2056 /* If RESIDUAL is a constant but smaller than the ABI defined safe value,
2057 we still want to probe up, but the safest amount if a word. */
2058 else if (target_probe_range_p)
2060 if (INTVAL (residual) <= probe_range)
2061 x = GEN_INT (GET_MODE_SIZE (word_mode));
2062 else
2063 x = GEN_INT (probe_range);
2065 else
2066 /* If nothing else, probe at the top of the new allocation. */
2067 x = plus_constant (Pmode, residual, -GET_MODE_SIZE (word_mode));
2069 emit_stack_probe (gen_rtx_PLUS (Pmode, stack_pointer_rtx, x));
2071 emit_insn (gen_blockage ());
2072 if (!CONST_INT_P (residual))
2073 emit_label (label);
2078 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
2079 while probing it. This pushes when SIZE is positive. SIZE need not
2080 be constant. If ADJUST_BACK is true, adjust back the stack pointer
2081 by plus SIZE at the end. */
2083 void
2084 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
2086 /* We skip the probe for the first interval + a small dope of 4 words and
2087 probe that many bytes past the specified size to maintain a protection
2088 area at the botton of the stack. */
2089 const int dope = 4 * UNITS_PER_WORD;
2091 /* First ensure SIZE is Pmode. */
2092 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
2093 size = convert_to_mode (Pmode, size, 1);
2095 /* If we have a constant small number of probes to generate, that's the
2096 easy case. */
2097 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
2099 HOST_WIDE_INT isize = INTVAL (size), i;
2100 bool first_probe = true;
2102 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
2103 values of N from 1 until it exceeds SIZE. If only one probe is
2104 needed, this will not generate any code. Then adjust and probe
2105 to PROBE_INTERVAL + SIZE. */
2106 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
2108 if (first_probe)
2110 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
2111 first_probe = false;
2113 else
2114 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
2115 emit_stack_probe (stack_pointer_rtx);
2118 if (first_probe)
2119 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
2120 else
2121 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
2122 emit_stack_probe (stack_pointer_rtx);
2125 /* In the variable case, do the same as above, but in a loop. Note that we
2126 must be extra careful with variables wrapping around because we might be
2127 at the very top (or the very bottom) of the address space and we have to
2128 be able to handle this case properly; in particular, we use an equality
2129 test for the loop condition. */
2130 else
2132 rtx rounded_size, rounded_size_op, last_addr, temp;
2133 rtx_code_label *loop_lab = gen_label_rtx ();
2134 rtx_code_label *end_lab = gen_label_rtx ();
2137 /* Step 1: round SIZE to the previous multiple of the interval. */
2139 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
2140 rounded_size
2141 = simplify_gen_binary (AND, Pmode, size,
2142 gen_int_mode (-PROBE_INTERVAL, Pmode));
2143 rounded_size_op = force_operand (rounded_size, NULL_RTX);
2146 /* Step 2: compute initial and final value of the loop counter. */
2148 /* SP = SP_0 + PROBE_INTERVAL. */
2149 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
2151 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
2152 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
2153 stack_pointer_rtx,
2154 rounded_size_op), NULL_RTX);
2157 /* Step 3: the loop
2159 while (SP != LAST_ADDR)
2161 SP = SP + PROBE_INTERVAL
2162 probe at SP
2165 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
2166 values of N from 1 until it is equal to ROUNDED_SIZE. */
2168 emit_label (loop_lab);
2170 /* Jump to END_LAB if SP == LAST_ADDR. */
2171 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
2172 Pmode, 1, end_lab);
2174 /* SP = SP + PROBE_INTERVAL and probe at SP. */
2175 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
2176 emit_stack_probe (stack_pointer_rtx);
2178 emit_jump (loop_lab);
2180 emit_label (end_lab);
2183 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
2184 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
2186 /* TEMP = SIZE - ROUNDED_SIZE. */
2187 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
2188 if (temp != const0_rtx)
2190 /* Manual CSE if the difference is not known at compile-time. */
2191 if (GET_CODE (temp) != CONST_INT)
2192 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
2193 anti_adjust_stack (temp);
2194 emit_stack_probe (stack_pointer_rtx);
2198 /* Adjust back and account for the additional first interval. */
2199 if (adjust_back)
2200 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
2201 else
2202 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
2205 /* Return an rtx representing the register or memory location
2206 in which a scalar value of data type VALTYPE
2207 was returned by a function call to function FUNC.
2208 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
2209 function is known, otherwise 0.
2210 OUTGOING is 1 if on a machine with register windows this function
2211 should return the register in which the function will put its result
2212 and 0 otherwise. */
2215 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
2216 int outgoing ATTRIBUTE_UNUSED)
2218 rtx val;
2220 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
2222 if (REG_P (val)
2223 && GET_MODE (val) == BLKmode)
2225 unsigned HOST_WIDE_INT bytes = arg_int_size_in_bytes (valtype);
2226 opt_scalar_int_mode tmpmode;
2228 /* int_size_in_bytes can return -1. We don't need a check here
2229 since the value of bytes will then be large enough that no
2230 mode will match anyway. */
2232 FOR_EACH_MODE_IN_CLASS (tmpmode, MODE_INT)
2234 /* Have we found a large enough mode? */
2235 if (GET_MODE_SIZE (tmpmode.require ()) >= bytes)
2236 break;
2239 PUT_MODE (val, tmpmode.require ());
2241 return val;
2244 /* Return an rtx representing the register or memory location
2245 in which a scalar value of mode MODE was returned by a library call. */
2248 hard_libcall_value (machine_mode mode, rtx fun)
2250 return targetm.calls.libcall_value (mode, fun);
2253 /* Look up the tree code for a given rtx code
2254 to provide the arithmetic operation for real_arithmetic.
2255 The function returns an int because the caller may not know
2256 what `enum tree_code' means. */
2259 rtx_to_tree_code (enum rtx_code code)
2261 enum tree_code tcode;
2263 switch (code)
2265 case PLUS:
2266 tcode = PLUS_EXPR;
2267 break;
2268 case MINUS:
2269 tcode = MINUS_EXPR;
2270 break;
2271 case MULT:
2272 tcode = MULT_EXPR;
2273 break;
2274 case DIV:
2275 tcode = RDIV_EXPR;
2276 break;
2277 case SMIN:
2278 tcode = MIN_EXPR;
2279 break;
2280 case SMAX:
2281 tcode = MAX_EXPR;
2282 break;
2283 default:
2284 tcode = LAST_AND_UNUSED_TREE_CODE;
2285 break;
2287 return ((int) tcode);
2290 #include "gt-explow.h"