1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
36 #include "coretypes.h"
38 #include "diagnostic-core.h"
42 #include "basic-block.h"
47 #include "stringpool.h"
50 #include "hard-reg-set.h"
52 #include "insn-config.h"
56 #include "langhooks.h"
61 struct target_rtl default_target_rtl
;
63 struct target_rtl
*this_target_rtl
= &default_target_rtl
;
66 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
68 /* Commonly used modes. */
70 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
71 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
72 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
73 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
75 /* Datastructures maintained for currently processed function in RTL form. */
77 struct rtl_data x_rtl
;
79 /* Indexed by pseudo register number, gives the rtx for that pseudo.
80 Allocated in parallel with regno_pointer_align.
81 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
82 with length attribute nested in top level structures. */
86 /* This is *not* reset after each function. It gives each CODE_LABEL
87 in the entire compilation a unique label number. */
89 static GTY(()) int label_num
= 1;
91 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
92 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
93 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
94 is set only for MODE_INT and MODE_VECTOR_INT modes. */
96 rtx const_tiny_rtx
[4][(int) MAX_MACHINE_MODE
];
100 REAL_VALUE_TYPE dconst0
;
101 REAL_VALUE_TYPE dconst1
;
102 REAL_VALUE_TYPE dconst2
;
103 REAL_VALUE_TYPE dconstm1
;
104 REAL_VALUE_TYPE dconsthalf
;
106 /* Record fixed-point constant 0 and 1. */
107 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
108 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
110 /* We make one copy of (const_int C) where C is in
111 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
112 to save space during the compilation and simplify comparisons of
115 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
117 /* Standard pieces of rtx, to be substituted directly into things. */
120 rtx simple_return_rtx
;
123 /* A hash table storing CONST_INTs whose absolute value is greater
124 than MAX_SAVED_CONST_INT. */
126 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
127 htab_t const_int_htab
;
129 /* A hash table storing register attribute structures. */
130 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
131 htab_t reg_attrs_htab
;
133 /* A hash table storing all CONST_DOUBLEs. */
134 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
135 htab_t const_double_htab
;
137 /* A hash table storing all CONST_FIXEDs. */
138 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
139 htab_t const_fixed_htab
;
141 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
142 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
143 #define first_label_num (crtl->emit.x_first_label_num)
145 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
146 static void set_used_decls (tree
);
147 static void mark_label_nuses (rtx
);
148 static hashval_t
const_int_htab_hash (const void *);
149 static int const_int_htab_eq (const void *, const void *);
150 static hashval_t
const_double_htab_hash (const void *);
151 static int const_double_htab_eq (const void *, const void *);
152 static rtx
lookup_const_double (rtx
);
153 static hashval_t
const_fixed_htab_hash (const void *);
154 static int const_fixed_htab_eq (const void *, const void *);
155 static rtx
lookup_const_fixed (rtx
);
156 static hashval_t
reg_attrs_htab_hash (const void *);
157 static int reg_attrs_htab_eq (const void *, const void *);
158 static reg_attrs
*get_reg_attrs (tree
, int);
159 static rtx
gen_const_vector (enum machine_mode
, int);
160 static void copy_rtx_if_shared_1 (rtx
*orig
);
162 /* Probability of the conditional branch currently proceeded by try_split.
163 Set to -1 otherwise. */
164 int split_branch_probability
= -1;
166 /* Returns a hash code for X (which is a really a CONST_INT). */
169 const_int_htab_hash (const void *x
)
171 return (hashval_t
) INTVAL ((const_rtx
) x
);
174 /* Returns nonzero if the value represented by X (which is really a
175 CONST_INT) is the same as that given by Y (which is really a
179 const_int_htab_eq (const void *x
, const void *y
)
181 return (INTVAL ((const_rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
184 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
186 const_double_htab_hash (const void *x
)
188 const_rtx
const value
= (const_rtx
) x
;
191 if (GET_MODE (value
) == VOIDmode
)
192 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
195 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
196 /* MODE is used in the comparison, so it should be in the hash. */
197 h
^= GET_MODE (value
);
202 /* Returns nonzero if the value represented by X (really a ...)
203 is the same as that represented by Y (really a ...) */
205 const_double_htab_eq (const void *x
, const void *y
)
207 const_rtx
const a
= (const_rtx
)x
, b
= (const_rtx
)y
;
209 if (GET_MODE (a
) != GET_MODE (b
))
211 if (GET_MODE (a
) == VOIDmode
)
212 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
213 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
215 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
216 CONST_DOUBLE_REAL_VALUE (b
));
219 /* Returns a hash code for X (which is really a CONST_FIXED). */
222 const_fixed_htab_hash (const void *x
)
224 const_rtx
const value
= (const_rtx
) x
;
227 h
= fixed_hash (CONST_FIXED_VALUE (value
));
228 /* MODE is used in the comparison, so it should be in the hash. */
229 h
^= GET_MODE (value
);
233 /* Returns nonzero if the value represented by X (really a ...)
234 is the same as that represented by Y (really a ...). */
237 const_fixed_htab_eq (const void *x
, const void *y
)
239 const_rtx
const a
= (const_rtx
) x
, b
= (const_rtx
) y
;
241 if (GET_MODE (a
) != GET_MODE (b
))
243 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
246 /* Return true if the given memory attributes are equal. */
249 mem_attrs_eq_p (const struct mem_attrs
*p
, const struct mem_attrs
*q
)
251 return (p
->alias
== q
->alias
252 && p
->offset_known_p
== q
->offset_known_p
253 && (!p
->offset_known_p
|| p
->offset
== q
->offset
)
254 && p
->size_known_p
== q
->size_known_p
255 && (!p
->size_known_p
|| p
->size
== q
->size
)
256 && p
->align
== q
->align
257 && p
->addrspace
== q
->addrspace
258 && (p
->expr
== q
->expr
259 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
260 && operand_equal_p (p
->expr
, q
->expr
, 0))));
263 /* Set MEM's memory attributes so that they are the same as ATTRS. */
266 set_mem_attrs (rtx mem
, mem_attrs
*attrs
)
268 /* If everything is the default, we can just clear the attributes. */
269 if (mem_attrs_eq_p (attrs
, mode_mem_attrs
[(int) GET_MODE (mem
)]))
276 || !mem_attrs_eq_p (attrs
, MEM_ATTRS (mem
)))
278 MEM_ATTRS (mem
) = ggc_alloc_mem_attrs ();
279 memcpy (MEM_ATTRS (mem
), attrs
, sizeof (mem_attrs
));
283 /* Returns a hash code for X (which is a really a reg_attrs *). */
286 reg_attrs_htab_hash (const void *x
)
288 const reg_attrs
*const p
= (const reg_attrs
*) x
;
290 return ((p
->offset
* 1000) ^ (intptr_t) p
->decl
);
293 /* Returns nonzero if the value represented by X (which is really a
294 reg_attrs *) is the same as that given by Y (which is also really a
298 reg_attrs_htab_eq (const void *x
, const void *y
)
300 const reg_attrs
*const p
= (const reg_attrs
*) x
;
301 const reg_attrs
*const q
= (const reg_attrs
*) y
;
303 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
305 /* Allocate a new reg_attrs structure and insert it into the hash table if
306 one identical to it is not already in the table. We are doing this for
310 get_reg_attrs (tree decl
, int offset
)
315 /* If everything is the default, we can just return zero. */
316 if (decl
== 0 && offset
== 0)
320 attrs
.offset
= offset
;
322 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
325 *slot
= ggc_alloc_reg_attrs ();
326 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
329 return (reg_attrs
*) *slot
;
334 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
335 and to block register equivalences to be seen across this insn. */
340 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
341 MEM_VOLATILE_P (x
) = true;
347 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
348 don't attempt to share with the various global pieces of rtl (such as
349 frame_pointer_rtx). */
352 gen_raw_REG (enum machine_mode mode
, int regno
)
354 rtx x
= gen_rtx_raw_REG (mode
, regno
);
355 ORIGINAL_REGNO (x
) = regno
;
359 /* There are some RTL codes that require special attention; the generation
360 functions do the raw handling. If you add to this list, modify
361 special_rtx in gengenrtl.c as well. */
364 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
368 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
369 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
371 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
372 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
373 return const_true_rtx
;
376 /* Look up the CONST_INT in the hash table. */
377 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
378 (hashval_t
) arg
, INSERT
);
380 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
386 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
388 return GEN_INT (trunc_int_for_mode (c
, mode
));
391 /* CONST_DOUBLEs might be created from pairs of integers, or from
392 REAL_VALUE_TYPEs. Also, their length is known only at run time,
393 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
395 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
396 hash table. If so, return its counterpart; otherwise add it
397 to the hash table and return it. */
399 lookup_const_double (rtx real
)
401 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
408 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
409 VALUE in mode MODE. */
411 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
413 rtx real
= rtx_alloc (CONST_DOUBLE
);
414 PUT_MODE (real
, mode
);
418 return lookup_const_double (real
);
421 /* Determine whether FIXED, a CONST_FIXED, already exists in the
422 hash table. If so, return its counterpart; otherwise add it
423 to the hash table and return it. */
426 lookup_const_fixed (rtx fixed
)
428 void **slot
= htab_find_slot (const_fixed_htab
, fixed
, INSERT
);
435 /* Return a CONST_FIXED rtx for a fixed-point value specified by
436 VALUE in mode MODE. */
439 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, enum machine_mode mode
)
441 rtx fixed
= rtx_alloc (CONST_FIXED
);
442 PUT_MODE (fixed
, mode
);
446 return lookup_const_fixed (fixed
);
449 /* Constructs double_int from rtx CST. */
452 rtx_to_double_int (const_rtx cst
)
456 if (CONST_INT_P (cst
))
457 r
= double_int::from_shwi (INTVAL (cst
));
458 else if (CONST_DOUBLE_AS_INT_P (cst
))
460 r
.low
= CONST_DOUBLE_LOW (cst
);
461 r
.high
= CONST_DOUBLE_HIGH (cst
);
470 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
474 immed_double_int_const (double_int i
, enum machine_mode mode
)
476 return immed_double_const (i
.low
, i
.high
, mode
);
479 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
480 of ints: I0 is the low-order word and I1 is the high-order word.
481 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
482 implied upper bits are copies of the high bit of i1. The value
483 itself is neither signed nor unsigned. Do not use this routine for
484 non-integer modes; convert to REAL_VALUE_TYPE and use
485 CONST_DOUBLE_FROM_REAL_VALUE. */
488 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
493 /* There are the following cases (note that there are no modes with
494 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
496 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
498 2) If the value of the integer fits into HOST_WIDE_INT anyway
499 (i.e., i1 consists only from copies of the sign bit, and sign
500 of i0 and i1 are the same), then we return a CONST_INT for i0.
501 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
502 if (mode
!= VOIDmode
)
504 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
505 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
506 /* We can get a 0 for an error mark. */
507 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
508 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
510 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
511 return gen_int_mode (i0
, mode
);
514 /* If this integer fits in one word, return a CONST_INT. */
515 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
518 /* We use VOIDmode for integers. */
519 value
= rtx_alloc (CONST_DOUBLE
);
520 PUT_MODE (value
, VOIDmode
);
522 CONST_DOUBLE_LOW (value
) = i0
;
523 CONST_DOUBLE_HIGH (value
) = i1
;
525 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
526 XWINT (value
, i
) = 0;
528 return lookup_const_double (value
);
532 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
534 /* In case the MD file explicitly references the frame pointer, have
535 all such references point to the same frame pointer. This is
536 used during frame pointer elimination to distinguish the explicit
537 references to these registers from pseudos that happened to be
540 If we have eliminated the frame pointer or arg pointer, we will
541 be using it as a normal register, for example as a spill
542 register. In such cases, we might be accessing it in a mode that
543 is not Pmode and therefore cannot use the pre-allocated rtx.
545 Also don't do this when we are making new REGs in reload, since
546 we don't want to get confused with the real pointers. */
548 if (mode
== Pmode
&& !reload_in_progress
&& !lra_in_progress
)
550 if (regno
== FRAME_POINTER_REGNUM
551 && (!reload_completed
|| frame_pointer_needed
))
552 return frame_pointer_rtx
;
553 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
554 if (regno
== HARD_FRAME_POINTER_REGNUM
555 && (!reload_completed
|| frame_pointer_needed
))
556 return hard_frame_pointer_rtx
;
558 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
559 if (regno
== ARG_POINTER_REGNUM
)
560 return arg_pointer_rtx
;
562 #ifdef RETURN_ADDRESS_POINTER_REGNUM
563 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
564 return return_address_pointer_rtx
;
566 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
567 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
568 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
569 return pic_offset_table_rtx
;
570 if (regno
== STACK_POINTER_REGNUM
)
571 return stack_pointer_rtx
;
575 /* If the per-function register table has been set up, try to re-use
576 an existing entry in that table to avoid useless generation of RTL.
578 This code is disabled for now until we can fix the various backends
579 which depend on having non-shared hard registers in some cases. Long
580 term we want to re-enable this code as it can significantly cut down
581 on the amount of useless RTL that gets generated.
583 We'll also need to fix some code that runs after reload that wants to
584 set ORIGINAL_REGNO. */
589 && regno
< FIRST_PSEUDO_REGISTER
590 && reg_raw_mode
[regno
] == mode
)
591 return regno_reg_rtx
[regno
];
594 return gen_raw_REG (mode
, regno
);
598 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
600 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
602 /* This field is not cleared by the mere allocation of the rtx, so
609 /* Generate a memory referring to non-trapping constant memory. */
612 gen_const_mem (enum machine_mode mode
, rtx addr
)
614 rtx mem
= gen_rtx_MEM (mode
, addr
);
615 MEM_READONLY_P (mem
) = 1;
616 MEM_NOTRAP_P (mem
) = 1;
620 /* Generate a MEM referring to fixed portions of the frame, e.g., register
624 gen_frame_mem (enum machine_mode mode
, rtx addr
)
626 rtx mem
= gen_rtx_MEM (mode
, addr
);
627 MEM_NOTRAP_P (mem
) = 1;
628 set_mem_alias_set (mem
, get_frame_alias_set ());
632 /* Generate a MEM referring to a temporary use of the stack, not part
633 of the fixed stack frame. For example, something which is pushed
634 by a target splitter. */
636 gen_tmp_stack_mem (enum machine_mode mode
, rtx addr
)
638 rtx mem
= gen_rtx_MEM (mode
, addr
);
639 MEM_NOTRAP_P (mem
) = 1;
640 if (!cfun
->calls_alloca
)
641 set_mem_alias_set (mem
, get_frame_alias_set ());
645 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
646 this construct would be valid, and false otherwise. */
649 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
650 const_rtx reg
, unsigned int offset
)
652 unsigned int isize
= GET_MODE_SIZE (imode
);
653 unsigned int osize
= GET_MODE_SIZE (omode
);
655 /* All subregs must be aligned. */
656 if (offset
% osize
!= 0)
659 /* The subreg offset cannot be outside the inner object. */
663 /* ??? This should not be here. Temporarily continue to allow word_mode
664 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
665 Generally, backends are doing something sketchy but it'll take time to
667 if (omode
== word_mode
)
669 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
670 is the culprit here, and not the backends. */
671 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
673 /* Allow component subregs of complex and vector. Though given the below
674 extraction rules, it's not always clear what that means. */
675 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
676 && GET_MODE_INNER (imode
) == omode
)
678 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
679 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
680 represent this. It's questionable if this ought to be represented at
681 all -- why can't this all be hidden in post-reload splitters that make
682 arbitrarily mode changes to the registers themselves. */
683 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
685 /* Subregs involving floating point modes are not allowed to
686 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
687 (subreg:SI (reg:DF) 0) isn't. */
688 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
690 if (! (isize
== osize
691 /* LRA can use subreg to store a floating point value in
692 an integer mode. Although the floating point and the
693 integer modes need the same number of hard registers,
694 the size of floating point mode can be less than the
695 integer mode. LRA also uses subregs for a register
696 should be used in different mode in on insn. */
701 /* Paradoxical subregs must have offset zero. */
705 /* This is a normal subreg. Verify that the offset is representable. */
707 /* For hard registers, we already have most of these rules collected in
708 subreg_offset_representable_p. */
709 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
711 unsigned int regno
= REGNO (reg
);
713 #ifdef CANNOT_CHANGE_MODE_CLASS
714 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
715 && GET_MODE_INNER (imode
) == omode
)
717 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
721 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
724 /* For pseudo registers, we want most of the same checks. Namely:
725 If the register no larger than a word, the subreg must be lowpart.
726 If the register is larger than a word, the subreg must be the lowpart
727 of a subword. A subreg does *not* perform arbitrary bit extraction.
728 Given that we've already checked mode/offset alignment, we only have
729 to check subword subregs here. */
730 if (osize
< UNITS_PER_WORD
731 && ! (lra_in_progress
&& (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))))
733 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
734 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
735 if (offset
% UNITS_PER_WORD
!= low_off
)
742 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
744 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
745 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
748 /* Generate a SUBREG representing the least-significant part of REG if MODE
749 is smaller than mode of REG, otherwise paradoxical SUBREG. */
752 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
754 enum machine_mode inmode
;
756 inmode
= GET_MODE (reg
);
757 if (inmode
== VOIDmode
)
759 return gen_rtx_SUBREG (mode
, reg
,
760 subreg_lowpart_offset (mode
, inmode
));
764 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
767 gen_rtvec (int n
, ...)
775 /* Don't allocate an empty rtvec... */
782 rt_val
= rtvec_alloc (n
);
784 for (i
= 0; i
< n
; i
++)
785 rt_val
->elem
[i
] = va_arg (p
, rtx
);
792 gen_rtvec_v (int n
, rtx
*argp
)
797 /* Don't allocate an empty rtvec... */
801 rt_val
= rtvec_alloc (n
);
803 for (i
= 0; i
< n
; i
++)
804 rt_val
->elem
[i
] = *argp
++;
809 /* Return the number of bytes between the start of an OUTER_MODE
810 in-memory value and the start of an INNER_MODE in-memory value,
811 given that the former is a lowpart of the latter. It may be a
812 paradoxical lowpart, in which case the offset will be negative
813 on big-endian targets. */
816 byte_lowpart_offset (enum machine_mode outer_mode
,
817 enum machine_mode inner_mode
)
819 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
820 return subreg_lowpart_offset (outer_mode
, inner_mode
);
822 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
825 /* Generate a REG rtx for a new pseudo register of mode MODE.
826 This pseudo is assigned the next sequential register number. */
829 gen_reg_rtx (enum machine_mode mode
)
832 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
834 gcc_assert (can_create_pseudo_p ());
836 /* If a virtual register with bigger mode alignment is generated,
837 increase stack alignment estimation because it might be spilled
839 if (SUPPORTS_STACK_ALIGNMENT
840 && crtl
->stack_alignment_estimated
< align
841 && !crtl
->stack_realign_processed
)
843 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
844 if (crtl
->stack_alignment_estimated
< min_align
)
845 crtl
->stack_alignment_estimated
= min_align
;
848 if (generating_concat_p
849 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
850 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
852 /* For complex modes, don't make a single pseudo.
853 Instead, make a CONCAT of two pseudos.
854 This allows noncontiguous allocation of the real and imaginary parts,
855 which makes much better code. Besides, allocating DCmode
856 pseudos overstrains reload on some machines like the 386. */
857 rtx realpart
, imagpart
;
858 enum machine_mode partmode
= GET_MODE_INNER (mode
);
860 realpart
= gen_reg_rtx (partmode
);
861 imagpart
= gen_reg_rtx (partmode
);
862 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
865 /* Do not call gen_reg_rtx with uninitialized crtl. */
866 gcc_assert (crtl
->emit
.regno_pointer_align_length
);
868 /* Make sure regno_pointer_align, and regno_reg_rtx are large
869 enough to have an element for this pseudo reg number. */
871 if (reg_rtx_no
== crtl
->emit
.regno_pointer_align_length
)
873 int old_size
= crtl
->emit
.regno_pointer_align_length
;
877 tmp
= XRESIZEVEC (char, crtl
->emit
.regno_pointer_align
, old_size
* 2);
878 memset (tmp
+ old_size
, 0, old_size
);
879 crtl
->emit
.regno_pointer_align
= (unsigned char *) tmp
;
881 new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, old_size
* 2);
882 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
883 regno_reg_rtx
= new1
;
885 crtl
->emit
.regno_pointer_align_length
= old_size
* 2;
888 val
= gen_raw_REG (mode
, reg_rtx_no
);
889 regno_reg_rtx
[reg_rtx_no
++] = val
;
893 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
896 reg_is_parm_p (rtx reg
)
900 gcc_assert (REG_P (reg
));
901 decl
= REG_EXPR (reg
);
902 return (decl
&& TREE_CODE (decl
) == PARM_DECL
);
905 /* Update NEW with the same attributes as REG, but with OFFSET added
906 to the REG_OFFSET. */
909 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
911 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
912 REG_OFFSET (reg
) + offset
);
915 /* Generate a register with same attributes as REG, but with OFFSET
916 added to the REG_OFFSET. */
919 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
,
922 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
924 update_reg_offset (new_rtx
, reg
, offset
);
928 /* Generate a new pseudo-register with the same attributes as REG, but
929 with OFFSET added to the REG_OFFSET. */
932 gen_reg_rtx_offset (rtx reg
, enum machine_mode mode
, int offset
)
934 rtx new_rtx
= gen_reg_rtx (mode
);
936 update_reg_offset (new_rtx
, reg
, offset
);
940 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
941 new register is a (possibly paradoxical) lowpart of the old one. */
944 adjust_reg_mode (rtx reg
, enum machine_mode mode
)
946 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
947 PUT_MODE (reg
, mode
);
950 /* Copy REG's attributes from X, if X has any attributes. If REG and X
951 have different modes, REG is a (possibly paradoxical) lowpart of X. */
954 set_reg_attrs_from_value (rtx reg
, rtx x
)
957 bool can_be_reg_pointer
= true;
959 /* Don't call mark_reg_pointer for incompatible pointer sign
961 while (GET_CODE (x
) == SIGN_EXTEND
962 || GET_CODE (x
) == ZERO_EXTEND
963 || GET_CODE (x
) == TRUNCATE
964 || (GET_CODE (x
) == SUBREG
&& subreg_lowpart_p (x
)))
966 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
967 if ((GET_CODE (x
) == SIGN_EXTEND
&& POINTERS_EXTEND_UNSIGNED
)
968 || (GET_CODE (x
) != SIGN_EXTEND
&& ! POINTERS_EXTEND_UNSIGNED
))
969 can_be_reg_pointer
= false;
974 /* Hard registers can be reused for multiple purposes within the same
975 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
977 if (HARD_REGISTER_P (reg
))
980 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
983 if (MEM_OFFSET_KNOWN_P (x
))
984 REG_ATTRS (reg
) = get_reg_attrs (MEM_EXPR (x
),
985 MEM_OFFSET (x
) + offset
);
986 if (can_be_reg_pointer
&& MEM_POINTER (x
))
987 mark_reg_pointer (reg
, 0);
992 update_reg_offset (reg
, x
, offset
);
993 if (can_be_reg_pointer
&& REG_POINTER (x
))
994 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
998 /* Generate a REG rtx for a new pseudo register, copying the mode
999 and attributes from X. */
1002 gen_reg_rtx_and_attrs (rtx x
)
1004 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1005 set_reg_attrs_from_value (reg
, x
);
1009 /* Set the register attributes for registers contained in PARM_RTX.
1010 Use needed values from memory attributes of MEM. */
1013 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1015 if (REG_P (parm_rtx
))
1016 set_reg_attrs_from_value (parm_rtx
, mem
);
1017 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1019 /* Check for a NULL entry in the first slot, used to indicate that the
1020 parameter goes both on the stack and in registers. */
1021 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1022 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1024 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1025 if (REG_P (XEXP (x
, 0)))
1026 REG_ATTRS (XEXP (x
, 0))
1027 = get_reg_attrs (MEM_EXPR (mem
),
1028 INTVAL (XEXP (x
, 1)));
1033 /* Set the REG_ATTRS for registers in value X, given that X represents
1037 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1039 if (GET_CODE (x
) == SUBREG
)
1041 gcc_assert (subreg_lowpart_p (x
));
1046 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1048 if (GET_CODE (x
) == CONCAT
)
1050 if (REG_P (XEXP (x
, 0)))
1051 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1052 if (REG_P (XEXP (x
, 1)))
1053 REG_ATTRS (XEXP (x
, 1))
1054 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1056 if (GET_CODE (x
) == PARALLEL
)
1060 /* Check for a NULL entry, used to indicate that the parameter goes
1061 both on the stack and in registers. */
1062 if (XEXP (XVECEXP (x
, 0, 0), 0))
1067 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1069 rtx y
= XVECEXP (x
, 0, i
);
1070 if (REG_P (XEXP (y
, 0)))
1071 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1076 /* Assign the RTX X to declaration T. */
1079 set_decl_rtl (tree t
, rtx x
)
1081 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1083 set_reg_attrs_for_decl_rtl (t
, x
);
1086 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1087 if the ABI requires the parameter to be passed by reference. */
1090 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1092 DECL_INCOMING_RTL (t
) = x
;
1093 if (x
&& !by_reference_p
)
1094 set_reg_attrs_for_decl_rtl (t
, x
);
1097 /* Identify REG (which may be a CONCAT) as a user register. */
1100 mark_user_reg (rtx reg
)
1102 if (GET_CODE (reg
) == CONCAT
)
1104 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1105 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1109 gcc_assert (REG_P (reg
));
1110 REG_USERVAR_P (reg
) = 1;
1114 /* Identify REG as a probable pointer register and show its alignment
1115 as ALIGN, if nonzero. */
1118 mark_reg_pointer (rtx reg
, int align
)
1120 if (! REG_POINTER (reg
))
1122 REG_POINTER (reg
) = 1;
1125 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1127 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1128 /* We can no-longer be sure just how aligned this pointer is. */
1129 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1132 /* Return 1 plus largest pseudo reg number used in the current function. */
1140 /* Return 1 + the largest label number used so far in the current function. */
1143 max_label_num (void)
1148 /* Return first label number used in this function (if any were used). */
1151 get_first_label_num (void)
1153 return first_label_num
;
1156 /* If the rtx for label was created during the expansion of a nested
1157 function, then first_label_num won't include this label number.
1158 Fix this now so that array indices work later. */
1161 maybe_set_first_label_num (rtx x
)
1163 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1164 first_label_num
= CODE_LABEL_NUMBER (x
);
1167 /* Return a value representing some low-order bits of X, where the number
1168 of low-order bits is given by MODE. Note that no conversion is done
1169 between floating-point and fixed-point values, rather, the bit
1170 representation is returned.
1172 This function handles the cases in common between gen_lowpart, below,
1173 and two variants in cse.c and combine.c. These are the cases that can
1174 be safely handled at all points in the compilation.
1176 If this is not a case we can handle, return 0. */
1179 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1181 int msize
= GET_MODE_SIZE (mode
);
1184 enum machine_mode innermode
;
1186 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1187 so we have to make one up. Yuk. */
1188 innermode
= GET_MODE (x
);
1190 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1191 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1192 else if (innermode
== VOIDmode
)
1193 innermode
= mode_for_size (HOST_BITS_PER_DOUBLE_INT
, MODE_INT
, 0);
1195 xsize
= GET_MODE_SIZE (innermode
);
1197 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1199 if (innermode
== mode
)
1202 /* MODE must occupy no more words than the mode of X. */
1203 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1204 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1207 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1208 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1211 offset
= subreg_lowpart_offset (mode
, innermode
);
1213 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1214 && (GET_MODE_CLASS (mode
) == MODE_INT
1215 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1217 /* If we are getting the low-order part of something that has been
1218 sign- or zero-extended, we can either just use the object being
1219 extended or make a narrower extension. If we want an even smaller
1220 piece than the size of the object being extended, call ourselves
1223 This case is used mostly by combine and cse. */
1225 if (GET_MODE (XEXP (x
, 0)) == mode
)
1227 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1228 return gen_lowpart_common (mode
, XEXP (x
, 0));
1229 else if (msize
< xsize
)
1230 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1232 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1233 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1234 || CONST_DOUBLE_AS_FLOAT_P (x
) || CONST_SCALAR_INT_P (x
))
1235 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1237 /* Otherwise, we can't do this. */
1242 gen_highpart (enum machine_mode mode
, rtx x
)
1244 unsigned int msize
= GET_MODE_SIZE (mode
);
1247 /* This case loses if X is a subreg. To catch bugs early,
1248 complain if an invalid MODE is used even in other cases. */
1249 gcc_assert (msize
<= UNITS_PER_WORD
1250 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1252 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1253 subreg_highpart_offset (mode
, GET_MODE (x
)));
1254 gcc_assert (result
);
1256 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1257 the target if we have a MEM. gen_highpart must return a valid operand,
1258 emitting code if necessary to do so. */
1261 result
= validize_mem (result
);
1262 gcc_assert (result
);
1268 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1269 be VOIDmode constant. */
1271 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1273 if (GET_MODE (exp
) != VOIDmode
)
1275 gcc_assert (GET_MODE (exp
) == innermode
);
1276 return gen_highpart (outermode
, exp
);
1278 return simplify_gen_subreg (outermode
, exp
, innermode
,
1279 subreg_highpart_offset (outermode
, innermode
));
1282 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1285 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1287 unsigned int offset
= 0;
1288 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1292 if (WORDS_BIG_ENDIAN
)
1293 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1294 if (BYTES_BIG_ENDIAN
)
1295 offset
+= difference
% UNITS_PER_WORD
;
1301 /* Return offset in bytes to get OUTERMODE high part
1302 of the value in mode INNERMODE stored in memory in target format. */
1304 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1306 unsigned int offset
= 0;
1307 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1309 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1313 if (! WORDS_BIG_ENDIAN
)
1314 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1315 if (! BYTES_BIG_ENDIAN
)
1316 offset
+= difference
% UNITS_PER_WORD
;
1322 /* Return 1 iff X, assumed to be a SUBREG,
1323 refers to the least significant part of its containing reg.
1324 If X is not a SUBREG, always return 1 (it is its own low part!). */
1327 subreg_lowpart_p (const_rtx x
)
1329 if (GET_CODE (x
) != SUBREG
)
1331 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1334 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1335 == SUBREG_BYTE (x
));
1338 /* Return true if X is a paradoxical subreg, false otherwise. */
1340 paradoxical_subreg_p (const_rtx x
)
1342 if (GET_CODE (x
) != SUBREG
)
1344 return (GET_MODE_PRECISION (GET_MODE (x
))
1345 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
))));
1348 /* Return subword OFFSET of operand OP.
1349 The word number, OFFSET, is interpreted as the word number starting
1350 at the low-order address. OFFSET 0 is the low-order word if not
1351 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1353 If we cannot extract the required word, we return zero. Otherwise,
1354 an rtx corresponding to the requested word will be returned.
1356 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1357 reload has completed, a valid address will always be returned. After
1358 reload, if a valid address cannot be returned, we return zero.
1360 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1361 it is the responsibility of the caller.
1363 MODE is the mode of OP in case it is a CONST_INT.
1365 ??? This is still rather broken for some cases. The problem for the
1366 moment is that all callers of this thing provide no 'goal mode' to
1367 tell us to work with. This exists because all callers were written
1368 in a word based SUBREG world.
1369 Now use of this function can be deprecated by simplify_subreg in most
1374 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1376 if (mode
== VOIDmode
)
1377 mode
= GET_MODE (op
);
1379 gcc_assert (mode
!= VOIDmode
);
1381 /* If OP is narrower than a word, fail. */
1383 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1386 /* If we want a word outside OP, return zero. */
1388 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1391 /* Form a new MEM at the requested address. */
1394 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1396 if (! validate_address
)
1399 else if (reload_completed
)
1401 if (! strict_memory_address_addr_space_p (word_mode
,
1403 MEM_ADDR_SPACE (op
)))
1407 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1410 /* Rest can be handled by simplify_subreg. */
1411 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1414 /* Similar to `operand_subword', but never return 0. If we can't
1415 extract the required subword, put OP into a register and try again.
1416 The second attempt must succeed. We always validate the address in
1419 MODE is the mode of OP, in case it is CONST_INT. */
1422 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1424 rtx result
= operand_subword (op
, offset
, 1, mode
);
1429 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1431 /* If this is a register which can not be accessed by words, copy it
1432 to a pseudo register. */
1434 op
= copy_to_reg (op
);
1436 op
= force_reg (mode
, op
);
1439 result
= operand_subword (op
, offset
, 1, mode
);
1440 gcc_assert (result
);
1445 /* Returns 1 if both MEM_EXPR can be considered equal
1449 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1454 if (! expr1
|| ! expr2
)
1457 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1460 return operand_equal_p (expr1
, expr2
, 0);
1463 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1464 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1468 get_mem_align_offset (rtx mem
, unsigned int align
)
1471 unsigned HOST_WIDE_INT offset
;
1473 /* This function can't use
1474 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1475 || (MAX (MEM_ALIGN (mem),
1476 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1480 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1482 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1483 for <variable>. get_inner_reference doesn't handle it and
1484 even if it did, the alignment in that case needs to be determined
1485 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1486 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1487 isn't sufficiently aligned, the object it is in might be. */
1488 gcc_assert (MEM_P (mem
));
1489 expr
= MEM_EXPR (mem
);
1490 if (expr
== NULL_TREE
|| !MEM_OFFSET_KNOWN_P (mem
))
1493 offset
= MEM_OFFSET (mem
);
1496 if (DECL_ALIGN (expr
) < align
)
1499 else if (INDIRECT_REF_P (expr
))
1501 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1504 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1508 tree inner
= TREE_OPERAND (expr
, 0);
1509 tree field
= TREE_OPERAND (expr
, 1);
1510 tree byte_offset
= component_ref_field_offset (expr
);
1511 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1514 || !tree_fits_uhwi_p (byte_offset
)
1515 || !tree_fits_uhwi_p (bit_offset
))
1518 offset
+= tree_to_uhwi (byte_offset
);
1519 offset
+= tree_to_uhwi (bit_offset
) / BITS_PER_UNIT
;
1521 if (inner
== NULL_TREE
)
1523 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1524 < (unsigned int) align
)
1528 else if (DECL_P (inner
))
1530 if (DECL_ALIGN (inner
) < align
)
1534 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1542 return offset
& ((align
/ BITS_PER_UNIT
) - 1);
1545 /* Given REF (a MEM) and T, either the type of X or the expression
1546 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1547 if we are making a new object of this type. BITPOS is nonzero if
1548 there is an offset outstanding on T that will be applied later. */
1551 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1552 HOST_WIDE_INT bitpos
)
1554 HOST_WIDE_INT apply_bitpos
= 0;
1556 struct mem_attrs attrs
, *defattrs
, *refattrs
;
1559 /* It can happen that type_for_mode was given a mode for which there
1560 is no language-level type. In which case it returns NULL, which
1565 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1566 if (type
== error_mark_node
)
1569 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1570 wrong answer, as it assumes that DECL_RTL already has the right alias
1571 info. Callers should not set DECL_RTL until after the call to
1572 set_mem_attributes. */
1573 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1575 memset (&attrs
, 0, sizeof (attrs
));
1577 /* Get the alias set from the expression or type (perhaps using a
1578 front-end routine) and use it. */
1579 attrs
.alias
= get_alias_set (t
);
1581 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1582 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1584 /* Default values from pre-existing memory attributes if present. */
1585 refattrs
= MEM_ATTRS (ref
);
1588 /* ??? Can this ever happen? Calling this routine on a MEM that
1589 already carries memory attributes should probably be invalid. */
1590 attrs
.expr
= refattrs
->expr
;
1591 attrs
.offset_known_p
= refattrs
->offset_known_p
;
1592 attrs
.offset
= refattrs
->offset
;
1593 attrs
.size_known_p
= refattrs
->size_known_p
;
1594 attrs
.size
= refattrs
->size
;
1595 attrs
.align
= refattrs
->align
;
1598 /* Otherwise, default values from the mode of the MEM reference. */
1601 defattrs
= mode_mem_attrs
[(int) GET_MODE (ref
)];
1602 gcc_assert (!defattrs
->expr
);
1603 gcc_assert (!defattrs
->offset_known_p
);
1605 /* Respect mode size. */
1606 attrs
.size_known_p
= defattrs
->size_known_p
;
1607 attrs
.size
= defattrs
->size
;
1608 /* ??? Is this really necessary? We probably should always get
1609 the size from the type below. */
1611 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1612 if T is an object, always compute the object alignment below. */
1614 attrs
.align
= defattrs
->align
;
1616 attrs
.align
= BITS_PER_UNIT
;
1617 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1618 e.g. if the type carries an alignment attribute. Should we be
1619 able to simply always use TYPE_ALIGN? */
1622 /* We can set the alignment from the type if we are making an object,
1623 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1624 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
|| TYPE_ALIGN_OK (type
))
1625 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1627 /* If the size is known, we can set that. */
1628 tree new_size
= TYPE_SIZE_UNIT (type
);
1630 /* The address-space is that of the type. */
1631 as
= TYPE_ADDR_SPACE (type
);
1633 /* If T is not a type, we may be able to deduce some more information about
1639 if (TREE_THIS_VOLATILE (t
))
1640 MEM_VOLATILE_P (ref
) = 1;
1642 /* Now remove any conversions: they don't change what the underlying
1643 object is. Likewise for SAVE_EXPR. */
1644 while (CONVERT_EXPR_P (t
)
1645 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1646 || TREE_CODE (t
) == SAVE_EXPR
)
1647 t
= TREE_OPERAND (t
, 0);
1649 /* Note whether this expression can trap. */
1650 MEM_NOTRAP_P (ref
) = !tree_could_trap_p (t
);
1652 base
= get_base_address (t
);
1656 && TREE_READONLY (base
)
1657 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
))
1658 && !TREE_THIS_VOLATILE (base
))
1659 MEM_READONLY_P (ref
) = 1;
1661 /* Mark static const strings readonly as well. */
1662 if (TREE_CODE (base
) == STRING_CST
1663 && TREE_READONLY (base
)
1664 && TREE_STATIC (base
))
1665 MEM_READONLY_P (ref
) = 1;
1667 /* Address-space information is on the base object. */
1668 if (TREE_CODE (base
) == MEM_REF
1669 || TREE_CODE (base
) == TARGET_MEM_REF
)
1670 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base
,
1673 as
= TYPE_ADDR_SPACE (TREE_TYPE (base
));
1676 /* If this expression uses it's parent's alias set, mark it such
1677 that we won't change it. */
1678 if (component_uses_parent_alias_set_from (t
) != NULL_TREE
)
1679 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1681 /* If this is a decl, set the attributes of the MEM from it. */
1685 attrs
.offset_known_p
= true;
1687 apply_bitpos
= bitpos
;
1688 new_size
= DECL_SIZE_UNIT (t
);
1691 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1692 else if (CONSTANT_CLASS_P (t
))
1695 /* If this is a field reference, record it. */
1696 else if (TREE_CODE (t
) == COMPONENT_REF
)
1699 attrs
.offset_known_p
= true;
1701 apply_bitpos
= bitpos
;
1702 if (DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1703 new_size
= DECL_SIZE_UNIT (TREE_OPERAND (t
, 1));
1706 /* If this is an array reference, look for an outer field reference. */
1707 else if (TREE_CODE (t
) == ARRAY_REF
)
1709 tree off_tree
= size_zero_node
;
1710 /* We can't modify t, because we use it at the end of the
1716 tree index
= TREE_OPERAND (t2
, 1);
1717 tree low_bound
= array_ref_low_bound (t2
);
1718 tree unit_size
= array_ref_element_size (t2
);
1720 /* We assume all arrays have sizes that are a multiple of a byte.
1721 First subtract the lower bound, if any, in the type of the
1722 index, then convert to sizetype and multiply by the size of
1723 the array element. */
1724 if (! integer_zerop (low_bound
))
1725 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1728 off_tree
= size_binop (PLUS_EXPR
,
1729 size_binop (MULT_EXPR
,
1730 fold_convert (sizetype
,
1734 t2
= TREE_OPERAND (t2
, 0);
1736 while (TREE_CODE (t2
) == ARRAY_REF
);
1739 || TREE_CODE (t2
) == COMPONENT_REF
)
1742 attrs
.offset_known_p
= false;
1743 if (tree_fits_uhwi_p (off_tree
))
1745 attrs
.offset_known_p
= true;
1746 attrs
.offset
= tree_to_uhwi (off_tree
);
1747 apply_bitpos
= bitpos
;
1750 /* Else do not record a MEM_EXPR. */
1753 /* If this is an indirect reference, record it. */
1754 else if (TREE_CODE (t
) == MEM_REF
1755 || TREE_CODE (t
) == TARGET_MEM_REF
)
1758 attrs
.offset_known_p
= true;
1760 apply_bitpos
= bitpos
;
1763 /* Compute the alignment. */
1764 unsigned int obj_align
;
1765 unsigned HOST_WIDE_INT obj_bitpos
;
1766 get_object_alignment_1 (t
, &obj_align
, &obj_bitpos
);
1767 obj_bitpos
= (obj_bitpos
- bitpos
) & (obj_align
- 1);
1768 if (obj_bitpos
!= 0)
1769 obj_align
= (obj_bitpos
& -obj_bitpos
);
1770 attrs
.align
= MAX (attrs
.align
, obj_align
);
1773 if (tree_fits_uhwi_p (new_size
))
1775 attrs
.size_known_p
= true;
1776 attrs
.size
= tree_to_uhwi (new_size
);
1779 /* If we modified OFFSET based on T, then subtract the outstanding
1780 bit position offset. Similarly, increase the size of the accessed
1781 object to contain the negative offset. */
1784 gcc_assert (attrs
.offset_known_p
);
1785 attrs
.offset
-= apply_bitpos
/ BITS_PER_UNIT
;
1786 if (attrs
.size_known_p
)
1787 attrs
.size
+= apply_bitpos
/ BITS_PER_UNIT
;
1790 /* Now set the attributes we computed above. */
1791 attrs
.addrspace
= as
;
1792 set_mem_attrs (ref
, &attrs
);
1796 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1798 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1801 /* Set the alias set of MEM to SET. */
1804 set_mem_alias_set (rtx mem
, alias_set_type set
)
1806 struct mem_attrs attrs
;
1808 /* If the new and old alias sets don't conflict, something is wrong. */
1809 gcc_checking_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1810 attrs
= *get_mem_attrs (mem
);
1812 set_mem_attrs (mem
, &attrs
);
1815 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1818 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
1820 struct mem_attrs attrs
;
1822 attrs
= *get_mem_attrs (mem
);
1823 attrs
.addrspace
= addrspace
;
1824 set_mem_attrs (mem
, &attrs
);
1827 /* Set the alignment of MEM to ALIGN bits. */
1830 set_mem_align (rtx mem
, unsigned int align
)
1832 struct mem_attrs attrs
;
1834 attrs
= *get_mem_attrs (mem
);
1835 attrs
.align
= align
;
1836 set_mem_attrs (mem
, &attrs
);
1839 /* Set the expr for MEM to EXPR. */
1842 set_mem_expr (rtx mem
, tree expr
)
1844 struct mem_attrs attrs
;
1846 attrs
= *get_mem_attrs (mem
);
1848 set_mem_attrs (mem
, &attrs
);
1851 /* Set the offset of MEM to OFFSET. */
1854 set_mem_offset (rtx mem
, HOST_WIDE_INT offset
)
1856 struct mem_attrs attrs
;
1858 attrs
= *get_mem_attrs (mem
);
1859 attrs
.offset_known_p
= true;
1860 attrs
.offset
= offset
;
1861 set_mem_attrs (mem
, &attrs
);
1864 /* Clear the offset of MEM. */
1867 clear_mem_offset (rtx mem
)
1869 struct mem_attrs attrs
;
1871 attrs
= *get_mem_attrs (mem
);
1872 attrs
.offset_known_p
= false;
1873 set_mem_attrs (mem
, &attrs
);
1876 /* Set the size of MEM to SIZE. */
1879 set_mem_size (rtx mem
, HOST_WIDE_INT size
)
1881 struct mem_attrs attrs
;
1883 attrs
= *get_mem_attrs (mem
);
1884 attrs
.size_known_p
= true;
1886 set_mem_attrs (mem
, &attrs
);
1889 /* Clear the size of MEM. */
1892 clear_mem_size (rtx mem
)
1894 struct mem_attrs attrs
;
1896 attrs
= *get_mem_attrs (mem
);
1897 attrs
.size_known_p
= false;
1898 set_mem_attrs (mem
, &attrs
);
1901 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1902 and its address changed to ADDR. (VOIDmode means don't change the mode.
1903 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1904 returned memory location is required to be valid. The memory
1905 attributes are not changed. */
1908 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1913 gcc_assert (MEM_P (memref
));
1914 as
= MEM_ADDR_SPACE (memref
);
1915 if (mode
== VOIDmode
)
1916 mode
= GET_MODE (memref
);
1918 addr
= XEXP (memref
, 0);
1919 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1920 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
1923 /* Don't validate address for LRA. LRA can make the address valid
1924 by itself in most efficient way. */
1925 if (validate
&& !lra_in_progress
)
1927 if (reload_in_progress
|| reload_completed
)
1928 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
1930 addr
= memory_address_addr_space (mode
, addr
, as
);
1933 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1936 new_rtx
= gen_rtx_MEM (mode
, addr
);
1937 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1941 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1942 way we are changing MEMREF, so we only preserve the alias set. */
1945 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
1947 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1);
1948 enum machine_mode mmode
= GET_MODE (new_rtx
);
1949 struct mem_attrs attrs
, *defattrs
;
1951 attrs
= *get_mem_attrs (memref
);
1952 defattrs
= mode_mem_attrs
[(int) mmode
];
1953 attrs
.expr
= NULL_TREE
;
1954 attrs
.offset_known_p
= false;
1955 attrs
.size_known_p
= defattrs
->size_known_p
;
1956 attrs
.size
= defattrs
->size
;
1957 attrs
.align
= defattrs
->align
;
1959 /* If there are no changes, just return the original memory reference. */
1960 if (new_rtx
== memref
)
1962 if (mem_attrs_eq_p (get_mem_attrs (memref
), &attrs
))
1965 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
1966 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1969 set_mem_attrs (new_rtx
, &attrs
);
1973 /* Return a memory reference like MEMREF, but with its mode changed
1974 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1975 nonzero, the memory address is forced to be valid.
1976 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
1977 and the caller is responsible for adjusting MEMREF base register.
1978 If ADJUST_OBJECT is zero, the underlying object associated with the
1979 memory reference is left unchanged and the caller is responsible for
1980 dealing with it. Otherwise, if the new memory reference is outside
1981 the underlying object, even partially, then the object is dropped.
1982 SIZE, if nonzero, is the size of an access in cases where MODE
1983 has no inherent size. */
1986 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
1987 int validate
, int adjust_address
, int adjust_object
,
1990 rtx addr
= XEXP (memref
, 0);
1992 enum machine_mode address_mode
;
1994 struct mem_attrs attrs
= *get_mem_attrs (memref
), *defattrs
;
1995 unsigned HOST_WIDE_INT max_align
;
1996 #ifdef POINTERS_EXTEND_UNSIGNED
1997 enum machine_mode pointer_mode
1998 = targetm
.addr_space
.pointer_mode (attrs
.addrspace
);
2001 /* VOIDmode means no mode change for change_address_1. */
2002 if (mode
== VOIDmode
)
2003 mode
= GET_MODE (memref
);
2005 /* Take the size of non-BLKmode accesses from the mode. */
2006 defattrs
= mode_mem_attrs
[(int) mode
];
2007 if (defattrs
->size_known_p
)
2008 size
= defattrs
->size
;
2010 /* If there are no changes, just return the original memory reference. */
2011 if (mode
== GET_MODE (memref
) && !offset
2012 && (size
== 0 || (attrs
.size_known_p
&& attrs
.size
== size
))
2013 && (!validate
|| memory_address_addr_space_p (mode
, addr
,
2017 /* ??? Prefer to create garbage instead of creating shared rtl.
2018 This may happen even if offset is nonzero -- consider
2019 (plus (plus reg reg) const_int) -- so do this always. */
2020 addr
= copy_rtx (addr
);
2022 /* Convert a possibly large offset to a signed value within the
2023 range of the target address space. */
2024 address_mode
= get_address_mode (memref
);
2025 pbits
= GET_MODE_BITSIZE (address_mode
);
2026 if (HOST_BITS_PER_WIDE_INT
> pbits
)
2028 int shift
= HOST_BITS_PER_WIDE_INT
- pbits
;
2029 offset
= (((HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) offset
<< shift
))
2035 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2036 object, we can merge it into the LO_SUM. */
2037 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2039 && (unsigned HOST_WIDE_INT
) offset
2040 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2041 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2042 plus_constant (address_mode
,
2043 XEXP (addr
, 1), offset
));
2044 #ifdef POINTERS_EXTEND_UNSIGNED
2045 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2046 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2047 the fact that pointers are not allowed to overflow. */
2048 else if (POINTERS_EXTEND_UNSIGNED
> 0
2049 && GET_CODE (addr
) == ZERO_EXTEND
2050 && GET_MODE (XEXP (addr
, 0)) == pointer_mode
2051 && trunc_int_for_mode (offset
, pointer_mode
) == offset
)
2052 addr
= gen_rtx_ZERO_EXTEND (address_mode
,
2053 plus_constant (pointer_mode
,
2054 XEXP (addr
, 0), offset
));
2057 addr
= plus_constant (address_mode
, addr
, offset
);
2060 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
);
2062 /* If the address is a REG, change_address_1 rightfully returns memref,
2063 but this would destroy memref's MEM_ATTRS. */
2064 if (new_rtx
== memref
&& offset
!= 0)
2065 new_rtx
= copy_rtx (new_rtx
);
2067 /* Conservatively drop the object if we don't know where we start from. */
2068 if (adjust_object
&& (!attrs
.offset_known_p
|| !attrs
.size_known_p
))
2070 attrs
.expr
= NULL_TREE
;
2074 /* Compute the new values of the memory attributes due to this adjustment.
2075 We add the offsets and update the alignment. */
2076 if (attrs
.offset_known_p
)
2078 attrs
.offset
+= offset
;
2080 /* Drop the object if the new left end is not within its bounds. */
2081 if (adjust_object
&& attrs
.offset
< 0)
2083 attrs
.expr
= NULL_TREE
;
2088 /* Compute the new alignment by taking the MIN of the alignment and the
2089 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2093 max_align
= (offset
& -offset
) * BITS_PER_UNIT
;
2094 attrs
.align
= MIN (attrs
.align
, max_align
);
2099 /* Drop the object if the new right end is not within its bounds. */
2100 if (adjust_object
&& (offset
+ size
) > attrs
.size
)
2102 attrs
.expr
= NULL_TREE
;
2105 attrs
.size_known_p
= true;
2108 else if (attrs
.size_known_p
)
2110 gcc_assert (!adjust_object
);
2111 attrs
.size
-= offset
;
2112 /* ??? The store_by_pieces machinery generates negative sizes,
2113 so don't assert for that here. */
2116 set_mem_attrs (new_rtx
, &attrs
);
2121 /* Return a memory reference like MEMREF, but with its mode changed
2122 to MODE and its address changed to ADDR, which is assumed to be
2123 MEMREF offset by OFFSET bytes. If VALIDATE is
2124 nonzero, the memory address is forced to be valid. */
2127 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
2128 HOST_WIDE_INT offset
, int validate
)
2130 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
2131 return adjust_address_1 (memref
, mode
, offset
, validate
, 0, 0, 0);
2134 /* Return a memory reference like MEMREF, but whose address is changed by
2135 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2136 known to be in OFFSET (possibly 1). */
2139 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2141 rtx new_rtx
, addr
= XEXP (memref
, 0);
2142 enum machine_mode address_mode
;
2143 struct mem_attrs attrs
, *defattrs
;
2145 attrs
= *get_mem_attrs (memref
);
2146 address_mode
= get_address_mode (memref
);
2147 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2149 /* At this point we don't know _why_ the address is invalid. It
2150 could have secondary memory references, multiplies or anything.
2152 However, if we did go and rearrange things, we can wind up not
2153 being able to recognize the magic around pic_offset_table_rtx.
2154 This stuff is fragile, and is yet another example of why it is
2155 bad to expose PIC machinery too early. */
2156 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
,
2158 && GET_CODE (addr
) == PLUS
2159 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2161 addr
= force_reg (GET_MODE (addr
), addr
);
2162 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2165 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2166 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1);
2168 /* If there are no changes, just return the original memory reference. */
2169 if (new_rtx
== memref
)
2172 /* Update the alignment to reflect the offset. Reset the offset, which
2174 defattrs
= mode_mem_attrs
[(int) GET_MODE (new_rtx
)];
2175 attrs
.offset_known_p
= false;
2176 attrs
.size_known_p
= defattrs
->size_known_p
;
2177 attrs
.size
= defattrs
->size
;
2178 attrs
.align
= MIN (attrs
.align
, pow2
* BITS_PER_UNIT
);
2179 set_mem_attrs (new_rtx
, &attrs
);
2183 /* Return a memory reference like MEMREF, but with its address changed to
2184 ADDR. The caller is asserting that the actual piece of memory pointed
2185 to is the same, just the form of the address is being changed, such as
2186 by putting something into a register. */
2189 replace_equiv_address (rtx memref
, rtx addr
)
2191 /* change_address_1 copies the memory attribute structure without change
2192 and that's exactly what we want here. */
2193 update_temp_slot_address (XEXP (memref
, 0), addr
);
2194 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2197 /* Likewise, but the reference is not required to be valid. */
2200 replace_equiv_address_nv (rtx memref
, rtx addr
)
2202 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2205 /* Return a memory reference like MEMREF, but with its mode widened to
2206 MODE and offset by OFFSET. This would be used by targets that e.g.
2207 cannot issue QImode memory operations and have to use SImode memory
2208 operations plus masking logic. */
2211 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
2213 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1, 0, 0);
2214 struct mem_attrs attrs
;
2215 unsigned int size
= GET_MODE_SIZE (mode
);
2217 /* If there are no changes, just return the original memory reference. */
2218 if (new_rtx
== memref
)
2221 attrs
= *get_mem_attrs (new_rtx
);
2223 /* If we don't know what offset we were at within the expression, then
2224 we can't know if we've overstepped the bounds. */
2225 if (! attrs
.offset_known_p
)
2226 attrs
.expr
= NULL_TREE
;
2230 if (TREE_CODE (attrs
.expr
) == COMPONENT_REF
)
2232 tree field
= TREE_OPERAND (attrs
.expr
, 1);
2233 tree offset
= component_ref_field_offset (attrs
.expr
);
2235 if (! DECL_SIZE_UNIT (field
))
2237 attrs
.expr
= NULL_TREE
;
2241 /* Is the field at least as large as the access? If so, ok,
2242 otherwise strip back to the containing structure. */
2243 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2244 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2245 && attrs
.offset
>= 0)
2248 if (! tree_fits_uhwi_p (offset
))
2250 attrs
.expr
= NULL_TREE
;
2254 attrs
.expr
= TREE_OPERAND (attrs
.expr
, 0);
2255 attrs
.offset
+= tree_to_uhwi (offset
);
2256 attrs
.offset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
2259 /* Similarly for the decl. */
2260 else if (DECL_P (attrs
.expr
)
2261 && DECL_SIZE_UNIT (attrs
.expr
)
2262 && TREE_CODE (DECL_SIZE_UNIT (attrs
.expr
)) == INTEGER_CST
2263 && compare_tree_int (DECL_SIZE_UNIT (attrs
.expr
), size
) >= 0
2264 && (! attrs
.offset_known_p
|| attrs
.offset
>= 0))
2268 /* The widened memory access overflows the expression, which means
2269 that it could alias another expression. Zap it. */
2270 attrs
.expr
= NULL_TREE
;
2276 attrs
.offset_known_p
= false;
2278 /* The widened memory may alias other stuff, so zap the alias set. */
2279 /* ??? Maybe use get_alias_set on any remaining expression. */
2281 attrs
.size_known_p
= true;
2283 set_mem_attrs (new_rtx
, &attrs
);
2287 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2288 static GTY(()) tree spill_slot_decl
;
2291 get_spill_slot_decl (bool force_build_p
)
2293 tree d
= spill_slot_decl
;
2295 struct mem_attrs attrs
;
2297 if (d
|| !force_build_p
)
2300 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2301 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2302 DECL_ARTIFICIAL (d
) = 1;
2303 DECL_IGNORED_P (d
) = 1;
2305 spill_slot_decl
= d
;
2307 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2308 MEM_NOTRAP_P (rd
) = 1;
2309 attrs
= *mode_mem_attrs
[(int) BLKmode
];
2310 attrs
.alias
= new_alias_set ();
2312 set_mem_attrs (rd
, &attrs
);
2313 SET_DECL_RTL (d
, rd
);
2318 /* Given MEM, a result from assign_stack_local, fill in the memory
2319 attributes as appropriate for a register allocator spill slot.
2320 These slots are not aliasable by other memory. We arrange for
2321 them all to use a single MEM_EXPR, so that the aliasing code can
2322 work properly in the case of shared spill slots. */
2325 set_mem_attrs_for_spill (rtx mem
)
2327 struct mem_attrs attrs
;
2330 attrs
= *get_mem_attrs (mem
);
2331 attrs
.expr
= get_spill_slot_decl (true);
2332 attrs
.alias
= MEM_ALIAS_SET (DECL_RTL (attrs
.expr
));
2333 attrs
.addrspace
= ADDR_SPACE_GENERIC
;
2335 /* We expect the incoming memory to be of the form:
2336 (mem:MODE (plus (reg sfp) (const_int offset)))
2337 with perhaps the plus missing for offset = 0. */
2338 addr
= XEXP (mem
, 0);
2339 attrs
.offset_known_p
= true;
2341 if (GET_CODE (addr
) == PLUS
2342 && CONST_INT_P (XEXP (addr
, 1)))
2343 attrs
.offset
= INTVAL (XEXP (addr
, 1));
2345 set_mem_attrs (mem
, &attrs
);
2346 MEM_NOTRAP_P (mem
) = 1;
2349 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2352 gen_label_rtx (void)
2354 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2355 NULL
, label_num
++, NULL
);
2358 /* For procedure integration. */
2360 /* Install new pointers to the first and last insns in the chain.
2361 Also, set cur_insn_uid to one higher than the last in use.
2362 Used for an inline-procedure after copying the insn chain. */
2365 set_new_first_and_last_insn (rtx first
, rtx last
)
2369 set_first_insn (first
);
2370 set_last_insn (last
);
2373 if (MIN_NONDEBUG_INSN_UID
|| MAY_HAVE_DEBUG_INSNS
)
2375 int debug_count
= 0;
2377 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
- 1;
2378 cur_debug_insn_uid
= 0;
2380 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2381 if (INSN_UID (insn
) < MIN_NONDEBUG_INSN_UID
)
2382 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2385 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2386 if (DEBUG_INSN_P (insn
))
2391 cur_debug_insn_uid
= MIN_NONDEBUG_INSN_UID
+ debug_count
;
2393 cur_debug_insn_uid
++;
2396 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2397 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2402 /* Go through all the RTL insn bodies and copy any invalid shared
2403 structure. This routine should only be called once. */
2406 unshare_all_rtl_1 (rtx insn
)
2408 /* Unshare just about everything else. */
2409 unshare_all_rtl_in_chain (insn
);
2411 /* Make sure the addresses of stack slots found outside the insn chain
2412 (such as, in DECL_RTL of a variable) are not shared
2413 with the insn chain.
2415 This special care is necessary when the stack slot MEM does not
2416 actually appear in the insn chain. If it does appear, its address
2417 is unshared from all else at that point. */
2418 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2421 /* Go through all the RTL insn bodies and copy any invalid shared
2422 structure, again. This is a fairly expensive thing to do so it
2423 should be done sparingly. */
2426 unshare_all_rtl_again (rtx insn
)
2431 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2434 reset_used_flags (PATTERN (p
));
2435 reset_used_flags (REG_NOTES (p
));
2437 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2440 /* Make sure that virtual stack slots are not shared. */
2441 set_used_decls (DECL_INITIAL (cfun
->decl
));
2443 /* Make sure that virtual parameters are not shared. */
2444 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2445 set_used_flags (DECL_RTL (decl
));
2447 reset_used_flags (stack_slot_list
);
2449 unshare_all_rtl_1 (insn
);
2453 unshare_all_rtl (void)
2455 unshare_all_rtl_1 (get_insns ());
2460 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2461 Recursively does the same for subexpressions. */
2464 verify_rtx_sharing (rtx orig
, rtx insn
)
2469 const char *format_ptr
;
2474 code
= GET_CODE (x
);
2476 /* These types may be freely shared. */
2492 /* SCRATCH must be shared because they represent distinct values. */
2495 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2496 clobbers or clobbers of hard registers that originated as pseudos.
2497 This is needed to allow safe register renaming. */
2498 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2499 && ORIGINAL_REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 0)))
2504 if (shared_const_p (orig
))
2509 /* A MEM is allowed to be shared if its address is constant. */
2510 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2511 || reload_completed
|| reload_in_progress
)
2520 /* This rtx may not be shared. If it has already been seen,
2521 replace it with a copy of itself. */
2522 #ifdef ENABLE_CHECKING
2523 if (RTX_FLAG (x
, used
))
2525 error ("invalid rtl sharing found in the insn");
2527 error ("shared rtx");
2529 internal_error ("internal consistency failure");
2532 gcc_assert (!RTX_FLAG (x
, used
));
2534 RTX_FLAG (x
, used
) = 1;
2536 /* Now scan the subexpressions recursively. */
2538 format_ptr
= GET_RTX_FORMAT (code
);
2540 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2542 switch (*format_ptr
++)
2545 verify_rtx_sharing (XEXP (x
, i
), insn
);
2549 if (XVEC (x
, i
) != NULL
)
2552 int len
= XVECLEN (x
, i
);
2554 for (j
= 0; j
< len
; j
++)
2556 /* We allow sharing of ASM_OPERANDS inside single
2558 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2559 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2561 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2563 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2572 /* Reset used-flags for INSN. */
2575 reset_insn_used_flags (rtx insn
)
2577 gcc_assert (INSN_P (insn
));
2578 reset_used_flags (PATTERN (insn
));
2579 reset_used_flags (REG_NOTES (insn
));
2581 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn
));
2584 /* Go through all the RTL insn bodies and clear all the USED bits. */
2587 reset_all_used_flags (void)
2591 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2594 rtx pat
= PATTERN (p
);
2595 if (GET_CODE (pat
) != SEQUENCE
)
2596 reset_insn_used_flags (p
);
2599 gcc_assert (REG_NOTES (p
) == NULL
);
2600 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2601 reset_insn_used_flags (XVECEXP (pat
, 0, i
));
2606 /* Verify sharing in INSN. */
2609 verify_insn_sharing (rtx insn
)
2611 gcc_assert (INSN_P (insn
));
2612 reset_used_flags (PATTERN (insn
));
2613 reset_used_flags (REG_NOTES (insn
));
2615 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn
));
2618 /* Go through all the RTL insn bodies and check that there is no unexpected
2619 sharing in between the subexpressions. */
2622 verify_rtl_sharing (void)
2626 timevar_push (TV_VERIFY_RTL_SHARING
);
2628 reset_all_used_flags ();
2630 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2633 rtx pat
= PATTERN (p
);
2634 if (GET_CODE (pat
) != SEQUENCE
)
2635 verify_insn_sharing (p
);
2637 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2638 verify_insn_sharing (XVECEXP (pat
, 0, i
));
2641 reset_all_used_flags ();
2643 timevar_pop (TV_VERIFY_RTL_SHARING
);
2646 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2647 Assumes the mark bits are cleared at entry. */
2650 unshare_all_rtl_in_chain (rtx insn
)
2652 for (; insn
; insn
= NEXT_INSN (insn
))
2655 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2656 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2658 CALL_INSN_FUNCTION_USAGE (insn
)
2659 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn
));
2663 /* Go through all virtual stack slots of a function and mark them as
2664 shared. We never replace the DECL_RTLs themselves with a copy,
2665 but expressions mentioned into a DECL_RTL cannot be shared with
2666 expressions in the instruction stream.
2668 Note that reload may convert pseudo registers into memories in-place.
2669 Pseudo registers are always shared, but MEMs never are. Thus if we
2670 reset the used flags on MEMs in the instruction stream, we must set
2671 them again on MEMs that appear in DECL_RTLs. */
2674 set_used_decls (tree blk
)
2679 for (t
= BLOCK_VARS (blk
); t
; t
= DECL_CHAIN (t
))
2680 if (DECL_RTL_SET_P (t
))
2681 set_used_flags (DECL_RTL (t
));
2683 /* Now process sub-blocks. */
2684 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2688 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2689 Recursively does the same for subexpressions. Uses
2690 copy_rtx_if_shared_1 to reduce stack space. */
2693 copy_rtx_if_shared (rtx orig
)
2695 copy_rtx_if_shared_1 (&orig
);
2699 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2700 use. Recursively does the same for subexpressions. */
2703 copy_rtx_if_shared_1 (rtx
*orig1
)
2709 const char *format_ptr
;
2713 /* Repeat is used to turn tail-recursion into iteration. */
2720 code
= GET_CODE (x
);
2722 /* These types may be freely shared. */
2738 /* SCRATCH must be shared because they represent distinct values. */
2741 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2742 clobbers or clobbers of hard registers that originated as pseudos.
2743 This is needed to allow safe register renaming. */
2744 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2745 && ORIGINAL_REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 0)))
2750 if (shared_const_p (x
))
2760 /* The chain of insns is not being copied. */
2767 /* This rtx may not be shared. If it has already been seen,
2768 replace it with a copy of itself. */
2770 if (RTX_FLAG (x
, used
))
2772 x
= shallow_copy_rtx (x
);
2775 RTX_FLAG (x
, used
) = 1;
2777 /* Now scan the subexpressions recursively.
2778 We can store any replaced subexpressions directly into X
2779 since we know X is not shared! Any vectors in X
2780 must be copied if X was copied. */
2782 format_ptr
= GET_RTX_FORMAT (code
);
2783 length
= GET_RTX_LENGTH (code
);
2786 for (i
= 0; i
< length
; i
++)
2788 switch (*format_ptr
++)
2792 copy_rtx_if_shared_1 (last_ptr
);
2793 last_ptr
= &XEXP (x
, i
);
2797 if (XVEC (x
, i
) != NULL
)
2800 int len
= XVECLEN (x
, i
);
2802 /* Copy the vector iff I copied the rtx and the length
2804 if (copied
&& len
> 0)
2805 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2807 /* Call recursively on all inside the vector. */
2808 for (j
= 0; j
< len
; j
++)
2811 copy_rtx_if_shared_1 (last_ptr
);
2812 last_ptr
= &XVECEXP (x
, i
, j
);
2827 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2830 mark_used_flags (rtx x
, int flag
)
2834 const char *format_ptr
;
2837 /* Repeat is used to turn tail-recursion into iteration. */
2842 code
= GET_CODE (x
);
2844 /* These types may be freely shared so we needn't do any resetting
2868 /* The chain of insns is not being copied. */
2875 RTX_FLAG (x
, used
) = flag
;
2877 format_ptr
= GET_RTX_FORMAT (code
);
2878 length
= GET_RTX_LENGTH (code
);
2880 for (i
= 0; i
< length
; i
++)
2882 switch (*format_ptr
++)
2890 mark_used_flags (XEXP (x
, i
), flag
);
2894 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2895 mark_used_flags (XVECEXP (x
, i
, j
), flag
);
2901 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2902 to look for shared sub-parts. */
2905 reset_used_flags (rtx x
)
2907 mark_used_flags (x
, 0);
2910 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2911 to look for shared sub-parts. */
2914 set_used_flags (rtx x
)
2916 mark_used_flags (x
, 1);
2919 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2920 Return X or the rtx for the pseudo reg the value of X was copied into.
2921 OTHER must be valid as a SET_DEST. */
2924 make_safe_from (rtx x
, rtx other
)
2927 switch (GET_CODE (other
))
2930 other
= SUBREG_REG (other
);
2932 case STRICT_LOW_PART
:
2935 other
= XEXP (other
, 0);
2944 && GET_CODE (x
) != SUBREG
)
2946 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2947 || reg_mentioned_p (other
, x
))))
2949 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2950 emit_move_insn (temp
, x
);
2956 /* Emission of insns (adding them to the doubly-linked list). */
2958 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2961 get_last_insn_anywhere (void)
2963 struct sequence_stack
*stack
;
2964 if (get_last_insn ())
2965 return get_last_insn ();
2966 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2967 if (stack
->last
!= 0)
2972 /* Return the first nonnote insn emitted in current sequence or current
2973 function. This routine looks inside SEQUENCEs. */
2976 get_first_nonnote_insn (void)
2978 rtx insn
= get_insns ();
2983 for (insn
= next_insn (insn
);
2984 insn
&& NOTE_P (insn
);
2985 insn
= next_insn (insn
))
2989 if (NONJUMP_INSN_P (insn
)
2990 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2991 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2998 /* Return the last nonnote insn emitted in current sequence or current
2999 function. This routine looks inside SEQUENCEs. */
3002 get_last_nonnote_insn (void)
3004 rtx insn
= get_last_insn ();
3009 for (insn
= previous_insn (insn
);
3010 insn
&& NOTE_P (insn
);
3011 insn
= previous_insn (insn
))
3015 if (NONJUMP_INSN_P (insn
)
3016 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3017 insn
= XVECEXP (PATTERN (insn
), 0,
3018 XVECLEN (PATTERN (insn
), 0) - 1);
3025 /* Return the number of actual (non-debug) insns emitted in this
3029 get_max_insn_count (void)
3031 int n
= cur_insn_uid
;
3033 /* The table size must be stable across -g, to avoid codegen
3034 differences due to debug insns, and not be affected by
3035 -fmin-insn-uid, to avoid excessive table size and to simplify
3036 debugging of -fcompare-debug failures. */
3037 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3038 n
-= cur_debug_insn_uid
;
3040 n
-= MIN_NONDEBUG_INSN_UID
;
3046 /* Return the next insn. If it is a SEQUENCE, return the first insn
3050 next_insn (rtx insn
)
3054 insn
= NEXT_INSN (insn
);
3055 if (insn
&& NONJUMP_INSN_P (insn
)
3056 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3057 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3063 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3067 previous_insn (rtx insn
)
3071 insn
= PREV_INSN (insn
);
3072 if (insn
&& NONJUMP_INSN_P (insn
)
3073 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3074 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
3080 /* Return the next insn after INSN that is not a NOTE. This routine does not
3081 look inside SEQUENCEs. */
3084 next_nonnote_insn (rtx insn
)
3088 insn
= NEXT_INSN (insn
);
3089 if (insn
== 0 || !NOTE_P (insn
))
3096 /* Return the next insn after INSN that is not a NOTE, but stop the
3097 search before we enter another basic block. This routine does not
3098 look inside SEQUENCEs. */
3101 next_nonnote_insn_bb (rtx insn
)
3105 insn
= NEXT_INSN (insn
);
3106 if (insn
== 0 || !NOTE_P (insn
))
3108 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3115 /* Return the previous insn before INSN that is not a NOTE. This routine does
3116 not look inside SEQUENCEs. */
3119 prev_nonnote_insn (rtx insn
)
3123 insn
= PREV_INSN (insn
);
3124 if (insn
== 0 || !NOTE_P (insn
))
3131 /* Return the previous insn before INSN that is not a NOTE, but stop
3132 the search before we enter another basic block. This routine does
3133 not look inside SEQUENCEs. */
3136 prev_nonnote_insn_bb (rtx insn
)
3140 insn
= PREV_INSN (insn
);
3141 if (insn
== 0 || !NOTE_P (insn
))
3143 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3150 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3151 routine does not look inside SEQUENCEs. */
3154 next_nondebug_insn (rtx insn
)
3158 insn
= NEXT_INSN (insn
);
3159 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3166 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3167 This routine does not look inside SEQUENCEs. */
3170 prev_nondebug_insn (rtx insn
)
3174 insn
= PREV_INSN (insn
);
3175 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3182 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3183 This routine does not look inside SEQUENCEs. */
3186 next_nonnote_nondebug_insn (rtx insn
)
3190 insn
= NEXT_INSN (insn
);
3191 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3198 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3199 This routine does not look inside SEQUENCEs. */
3202 prev_nonnote_nondebug_insn (rtx insn
)
3206 insn
= PREV_INSN (insn
);
3207 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3214 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3215 or 0, if there is none. This routine does not look inside
3219 next_real_insn (rtx insn
)
3223 insn
= NEXT_INSN (insn
);
3224 if (insn
== 0 || INSN_P (insn
))
3231 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3232 or 0, if there is none. This routine does not look inside
3236 prev_real_insn (rtx insn
)
3240 insn
= PREV_INSN (insn
);
3241 if (insn
== 0 || INSN_P (insn
))
3248 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3249 This routine does not look inside SEQUENCEs. */
3252 last_call_insn (void)
3256 for (insn
= get_last_insn ();
3257 insn
&& !CALL_P (insn
);
3258 insn
= PREV_INSN (insn
))
3264 /* Find the next insn after INSN that really does something. This routine
3265 does not look inside SEQUENCEs. After reload this also skips over
3266 standalone USE and CLOBBER insn. */
3269 active_insn_p (const_rtx insn
)
3271 return (CALL_P (insn
) || JUMP_P (insn
)
3272 || JUMP_TABLE_DATA_P (insn
) /* FIXME */
3273 || (NONJUMP_INSN_P (insn
)
3274 && (! reload_completed
3275 || (GET_CODE (PATTERN (insn
)) != USE
3276 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3280 next_active_insn (rtx insn
)
3284 insn
= NEXT_INSN (insn
);
3285 if (insn
== 0 || active_insn_p (insn
))
3292 /* Find the last insn before INSN that really does something. This routine
3293 does not look inside SEQUENCEs. After reload this also skips over
3294 standalone USE and CLOBBER insn. */
3297 prev_active_insn (rtx insn
)
3301 insn
= PREV_INSN (insn
);
3302 if (insn
== 0 || active_insn_p (insn
))
3310 /* Return the next insn that uses CC0 after INSN, which is assumed to
3311 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3312 applied to the result of this function should yield INSN).
3314 Normally, this is simply the next insn. However, if a REG_CC_USER note
3315 is present, it contains the insn that uses CC0.
3317 Return 0 if we can't find the insn. */
3320 next_cc0_user (rtx insn
)
3322 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3325 return XEXP (note
, 0);
3327 insn
= next_nonnote_insn (insn
);
3328 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3329 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3331 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3337 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3338 note, it is the previous insn. */
3341 prev_cc0_setter (rtx insn
)
3343 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3346 return XEXP (note
, 0);
3348 insn
= prev_nonnote_insn (insn
);
3349 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3356 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3359 find_auto_inc (rtx
*xp
, void *data
)
3362 rtx reg
= (rtx
) data
;
3364 if (GET_RTX_CLASS (GET_CODE (x
)) != RTX_AUTOINC
)
3367 switch (GET_CODE (x
))
3375 if (rtx_equal_p (reg
, XEXP (x
, 0)))
3386 /* Increment the label uses for all labels present in rtx. */
3389 mark_label_nuses (rtx x
)
3395 code
= GET_CODE (x
);
3396 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3397 LABEL_NUSES (XEXP (x
, 0))++;
3399 fmt
= GET_RTX_FORMAT (code
);
3400 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3403 mark_label_nuses (XEXP (x
, i
));
3404 else if (fmt
[i
] == 'E')
3405 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3406 mark_label_nuses (XVECEXP (x
, i
, j
));
3411 /* Try splitting insns that can be split for better scheduling.
3412 PAT is the pattern which might split.
3413 TRIAL is the insn providing PAT.
3414 LAST is nonzero if we should return the last insn of the sequence produced.
3416 If this routine succeeds in splitting, it returns the first or last
3417 replacement insn depending on the value of LAST. Otherwise, it
3418 returns TRIAL. If the insn to be returned can be split, it will be. */
3421 try_split (rtx pat
, rtx trial
, int last
)
3423 rtx before
= PREV_INSN (trial
);
3424 rtx after
= NEXT_INSN (trial
);
3425 int has_barrier
= 0;
3428 rtx insn_last
, insn
;
3431 /* We're not good at redistributing frame information. */
3432 if (RTX_FRAME_RELATED_P (trial
))
3435 if (any_condjump_p (trial
)
3436 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3437 split_branch_probability
= XINT (note
, 0);
3438 probability
= split_branch_probability
;
3440 seq
= split_insns (pat
, trial
);
3442 split_branch_probability
= -1;
3444 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3445 We may need to handle this specially. */
3446 if (after
&& BARRIER_P (after
))
3449 after
= NEXT_INSN (after
);
3455 /* Avoid infinite loop if any insn of the result matches
3456 the original pattern. */
3460 if (INSN_P (insn_last
)
3461 && rtx_equal_p (PATTERN (insn_last
), pat
))
3463 if (!NEXT_INSN (insn_last
))
3465 insn_last
= NEXT_INSN (insn_last
);
3468 /* We will be adding the new sequence to the function. The splitters
3469 may have introduced invalid RTL sharing, so unshare the sequence now. */
3470 unshare_all_rtl_in_chain (seq
);
3473 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3477 mark_jump_label (PATTERN (insn
), insn
, 0);
3479 if (probability
!= -1
3480 && any_condjump_p (insn
)
3481 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3483 /* We can preserve the REG_BR_PROB notes only if exactly
3484 one jump is created, otherwise the machine description
3485 is responsible for this step using
3486 split_branch_probability variable. */
3487 gcc_assert (njumps
== 1);
3488 add_int_reg_note (insn
, REG_BR_PROB
, probability
);
3493 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3494 in SEQ and copy any additional information across. */
3497 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3502 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3503 target may have explicitly specified. */
3504 p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3507 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3509 /* If the old call was a sibling call, the new one must
3511 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3513 /* If the new call is the last instruction in the sequence,
3514 it will effectively replace the old call in-situ. Otherwise
3515 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3516 so that it comes immediately after the new call. */
3517 if (NEXT_INSN (insn
))
3518 for (next
= NEXT_INSN (trial
);
3519 next
&& NOTE_P (next
);
3520 next
= NEXT_INSN (next
))
3521 if (NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
3524 add_insn_after (next
, insn
, NULL
);
3530 /* Copy notes, particularly those related to the CFG. */
3531 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3533 switch (REG_NOTE_KIND (note
))
3536 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3542 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3545 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3549 case REG_NON_LOCAL_GOTO
:
3550 case REG_CROSSING_JUMP
:
3551 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3554 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3560 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3562 rtx reg
= XEXP (note
, 0);
3563 if (!FIND_REG_INC_NOTE (insn
, reg
)
3564 && for_each_rtx (&PATTERN (insn
), find_auto_inc
, reg
) > 0)
3565 add_reg_note (insn
, REG_INC
, reg
);
3571 fixup_args_size_notes (NULL_RTX
, insn_last
, INTVAL (XEXP (note
, 0)));
3579 /* If there are LABELS inside the split insns increment the
3580 usage count so we don't delete the label. */
3584 while (insn
!= NULL_RTX
)
3586 /* JUMP_P insns have already been "marked" above. */
3587 if (NONJUMP_INSN_P (insn
))
3588 mark_label_nuses (PATTERN (insn
));
3590 insn
= PREV_INSN (insn
);
3594 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATION (trial
));
3596 delete_insn (trial
);
3598 emit_barrier_after (tem
);
3600 /* Recursively call try_split for each new insn created; by the
3601 time control returns here that insn will be fully split, so
3602 set LAST and continue from the insn after the one returned.
3603 We can't use next_active_insn here since AFTER may be a note.
3604 Ignore deleted insns, which can be occur if not optimizing. */
3605 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3606 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3607 tem
= try_split (PATTERN (tem
), tem
, 1);
3609 /* Return either the first or the last insn, depending on which was
3612 ? (after
? PREV_INSN (after
) : get_last_insn ())
3613 : NEXT_INSN (before
);
3616 /* Make and return an INSN rtx, initializing all its slots.
3617 Store PATTERN in the pattern slots. */
3620 make_insn_raw (rtx pattern
)
3624 insn
= rtx_alloc (INSN
);
3626 INSN_UID (insn
) = cur_insn_uid
++;
3627 PATTERN (insn
) = pattern
;
3628 INSN_CODE (insn
) = -1;
3629 REG_NOTES (insn
) = NULL
;
3630 INSN_LOCATION (insn
) = curr_insn_location ();
3631 BLOCK_FOR_INSN (insn
) = NULL
;
3633 #ifdef ENABLE_RTL_CHECKING
3636 && (returnjump_p (insn
)
3637 || (GET_CODE (insn
) == SET
3638 && SET_DEST (insn
) == pc_rtx
)))
3640 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3648 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3651 make_debug_insn_raw (rtx pattern
)
3655 insn
= rtx_alloc (DEBUG_INSN
);
3656 INSN_UID (insn
) = cur_debug_insn_uid
++;
3657 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3658 INSN_UID (insn
) = cur_insn_uid
++;
3660 PATTERN (insn
) = pattern
;
3661 INSN_CODE (insn
) = -1;
3662 REG_NOTES (insn
) = NULL
;
3663 INSN_LOCATION (insn
) = curr_insn_location ();
3664 BLOCK_FOR_INSN (insn
) = NULL
;
3669 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3672 make_jump_insn_raw (rtx pattern
)
3676 insn
= rtx_alloc (JUMP_INSN
);
3677 INSN_UID (insn
) = cur_insn_uid
++;
3679 PATTERN (insn
) = pattern
;
3680 INSN_CODE (insn
) = -1;
3681 REG_NOTES (insn
) = NULL
;
3682 JUMP_LABEL (insn
) = NULL
;
3683 INSN_LOCATION (insn
) = curr_insn_location ();
3684 BLOCK_FOR_INSN (insn
) = NULL
;
3689 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3692 make_call_insn_raw (rtx pattern
)
3696 insn
= rtx_alloc (CALL_INSN
);
3697 INSN_UID (insn
) = cur_insn_uid
++;
3699 PATTERN (insn
) = pattern
;
3700 INSN_CODE (insn
) = -1;
3701 REG_NOTES (insn
) = NULL
;
3702 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3703 INSN_LOCATION (insn
) = curr_insn_location ();
3704 BLOCK_FOR_INSN (insn
) = NULL
;
3709 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3712 make_note_raw (enum insn_note subtype
)
3714 /* Some notes are never created this way at all. These notes are
3715 only created by patching out insns. */
3716 gcc_assert (subtype
!= NOTE_INSN_DELETED_LABEL
3717 && subtype
!= NOTE_INSN_DELETED_DEBUG_LABEL
);
3719 rtx note
= rtx_alloc (NOTE
);
3720 INSN_UID (note
) = cur_insn_uid
++;
3721 NOTE_KIND (note
) = subtype
;
3722 BLOCK_FOR_INSN (note
) = NULL
;
3723 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
3727 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3728 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3729 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3732 link_insn_into_chain (rtx insn
, rtx prev
, rtx next
)
3734 PREV_INSN (insn
) = prev
;
3735 NEXT_INSN (insn
) = next
;
3738 NEXT_INSN (prev
) = insn
;
3739 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3741 rtx sequence
= PATTERN (prev
);
3742 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3747 PREV_INSN (next
) = insn
;
3748 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3749 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3752 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3754 rtx sequence
= PATTERN (insn
);
3755 PREV_INSN (XVECEXP (sequence
, 0, 0)) = prev
;
3756 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3760 /* Add INSN to the end of the doubly-linked list.
3761 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3766 rtx prev
= get_last_insn ();
3767 link_insn_into_chain (insn
, prev
, NULL
);
3768 if (NULL
== get_insns ())
3769 set_first_insn (insn
);
3770 set_last_insn (insn
);
3773 /* Add INSN into the doubly-linked list after insn AFTER. */
3776 add_insn_after_nobb (rtx insn
, rtx after
)
3778 rtx next
= NEXT_INSN (after
);
3780 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3782 link_insn_into_chain (insn
, after
, next
);
3786 if (get_last_insn () == after
)
3787 set_last_insn (insn
);
3790 struct sequence_stack
*stack
= seq_stack
;
3791 /* Scan all pending sequences too. */
3792 for (; stack
; stack
= stack
->next
)
3793 if (after
== stack
->last
)
3802 /* Add INSN into the doubly-linked list before insn BEFORE. */
3805 add_insn_before_nobb (rtx insn
, rtx before
)
3807 rtx prev
= PREV_INSN (before
);
3809 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3811 link_insn_into_chain (insn
, prev
, before
);
3815 if (get_insns () == before
)
3816 set_first_insn (insn
);
3819 struct sequence_stack
*stack
= seq_stack
;
3820 /* Scan all pending sequences too. */
3821 for (; stack
; stack
= stack
->next
)
3822 if (before
== stack
->first
)
3824 stack
->first
= insn
;
3833 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
3834 If BB is NULL, an attempt is made to infer the bb from before.
3836 This and the next function should be the only functions called
3837 to insert an insn once delay slots have been filled since only
3838 they know how to update a SEQUENCE. */
3841 add_insn_after (rtx insn
, rtx after
, basic_block bb
)
3843 add_insn_after_nobb (insn
, after
);
3844 if (!BARRIER_P (after
)
3845 && !BARRIER_P (insn
)
3846 && (bb
= BLOCK_FOR_INSN (after
)))
3848 set_block_for_insn (insn
, bb
);
3850 df_insn_rescan (insn
);
3851 /* Should not happen as first in the BB is always
3852 either NOTE or LABEL. */
3853 if (BB_END (bb
) == after
3854 /* Avoid clobbering of structure when creating new BB. */
3855 && !BARRIER_P (insn
)
3856 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
3861 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
3862 If BB is NULL, an attempt is made to infer the bb from before.
3864 This and the previous function should be the only functions called
3865 to insert an insn once delay slots have been filled since only
3866 they know how to update a SEQUENCE. */
3869 add_insn_before (rtx insn
, rtx before
, basic_block bb
)
3871 add_insn_before_nobb (insn
, before
);
3874 && !BARRIER_P (before
)
3875 && !BARRIER_P (insn
))
3876 bb
= BLOCK_FOR_INSN (before
);
3880 set_block_for_insn (insn
, bb
);
3882 df_insn_rescan (insn
);
3883 /* Should not happen as first in the BB is always either NOTE or
3885 gcc_assert (BB_HEAD (bb
) != insn
3886 /* Avoid clobbering of structure when creating new BB. */
3888 || NOTE_INSN_BASIC_BLOCK_P (insn
));
3892 /* Replace insn with an deleted instruction note. */
3895 set_insn_deleted (rtx insn
)
3898 df_insn_delete (insn
);
3899 PUT_CODE (insn
, NOTE
);
3900 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
3904 /* Unlink INSN from the insn chain.
3906 This function knows how to handle sequences.
3908 This function does not invalidate data flow information associated with
3909 INSN (i.e. does not call df_insn_delete). That makes this function
3910 usable for only disconnecting an insn from the chain, and re-emit it
3913 To later insert INSN elsewhere in the insn chain via add_insn and
3914 similar functions, PREV_INSN and NEXT_INSN must be nullified by
3915 the caller. Nullifying them here breaks many insn chain walks.
3917 To really delete an insn and related DF information, use delete_insn. */
3920 remove_insn (rtx insn
)
3922 rtx next
= NEXT_INSN (insn
);
3923 rtx prev
= PREV_INSN (insn
);
3928 NEXT_INSN (prev
) = next
;
3929 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3931 rtx sequence
= PATTERN (prev
);
3932 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3935 else if (get_insns () == insn
)
3938 PREV_INSN (next
) = NULL
;
3939 set_first_insn (next
);
3943 struct sequence_stack
*stack
= seq_stack
;
3944 /* Scan all pending sequences too. */
3945 for (; stack
; stack
= stack
->next
)
3946 if (insn
== stack
->first
)
3948 stack
->first
= next
;
3957 PREV_INSN (next
) = prev
;
3958 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3959 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3961 else if (get_last_insn () == insn
)
3962 set_last_insn (prev
);
3965 struct sequence_stack
*stack
= seq_stack
;
3966 /* Scan all pending sequences too. */
3967 for (; stack
; stack
= stack
->next
)
3968 if (insn
== stack
->last
)
3977 /* Fix up basic block boundaries, if necessary. */
3978 if (!BARRIER_P (insn
)
3979 && (bb
= BLOCK_FOR_INSN (insn
)))
3981 if (BB_HEAD (bb
) == insn
)
3983 /* Never ever delete the basic block note without deleting whole
3985 gcc_assert (!NOTE_P (insn
));
3986 BB_HEAD (bb
) = next
;
3988 if (BB_END (bb
) == insn
)
3993 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3996 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
3998 gcc_assert (call_insn
&& CALL_P (call_insn
));
4000 /* Put the register usage information on the CALL. If there is already
4001 some usage information, put ours at the end. */
4002 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
4006 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
4007 link
= XEXP (link
, 1))
4010 XEXP (link
, 1) = call_fusage
;
4013 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
4016 /* Delete all insns made since FROM.
4017 FROM becomes the new last instruction. */
4020 delete_insns_since (rtx from
)
4025 NEXT_INSN (from
) = 0;
4026 set_last_insn (from
);
4029 /* This function is deprecated, please use sequences instead.
4031 Move a consecutive bunch of insns to a different place in the chain.
4032 The insns to be moved are those between FROM and TO.
4033 They are moved to a new position after the insn AFTER.
4034 AFTER must not be FROM or TO or any insn in between.
4036 This function does not know about SEQUENCEs and hence should not be
4037 called after delay-slot filling has been done. */
4040 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
4042 #ifdef ENABLE_CHECKING
4044 for (x
= from
; x
!= to
; x
= NEXT_INSN (x
))
4045 gcc_assert (after
!= x
);
4046 gcc_assert (after
!= to
);
4049 /* Splice this bunch out of where it is now. */
4050 if (PREV_INSN (from
))
4051 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
4053 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
4054 if (get_last_insn () == to
)
4055 set_last_insn (PREV_INSN (from
));
4056 if (get_insns () == from
)
4057 set_first_insn (NEXT_INSN (to
));
4059 /* Make the new neighbors point to it and it to them. */
4060 if (NEXT_INSN (after
))
4061 PREV_INSN (NEXT_INSN (after
)) = to
;
4063 NEXT_INSN (to
) = NEXT_INSN (after
);
4064 PREV_INSN (from
) = after
;
4065 NEXT_INSN (after
) = from
;
4066 if (after
== get_last_insn ())
4070 /* Same as function above, but take care to update BB boundaries. */
4072 reorder_insns (rtx from
, rtx to
, rtx after
)
4074 rtx prev
= PREV_INSN (from
);
4075 basic_block bb
, bb2
;
4077 reorder_insns_nobb (from
, to
, after
);
4079 if (!BARRIER_P (after
)
4080 && (bb
= BLOCK_FOR_INSN (after
)))
4083 df_set_bb_dirty (bb
);
4085 if (!BARRIER_P (from
)
4086 && (bb2
= BLOCK_FOR_INSN (from
)))
4088 if (BB_END (bb2
) == to
)
4089 BB_END (bb2
) = prev
;
4090 df_set_bb_dirty (bb2
);
4093 if (BB_END (bb
) == after
)
4096 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
4098 df_insn_change_bb (x
, bb
);
4103 /* Emit insn(s) of given code and pattern
4104 at a specified place within the doubly-linked list.
4106 All of the emit_foo global entry points accept an object
4107 X which is either an insn list or a PATTERN of a single
4110 There are thus a few canonical ways to generate code and
4111 emit it at a specific place in the instruction stream. For
4112 example, consider the instruction named SPOT and the fact that
4113 we would like to emit some instructions before SPOT. We might
4117 ... emit the new instructions ...
4118 insns_head = get_insns ();
4121 emit_insn_before (insns_head, SPOT);
4123 It used to be common to generate SEQUENCE rtl instead, but that
4124 is a relic of the past which no longer occurs. The reason is that
4125 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4126 generated would almost certainly die right after it was created. */
4129 emit_pattern_before_noloc (rtx x
, rtx before
, rtx last
, basic_block bb
,
4130 rtx (*make_raw
) (rtx
))
4134 gcc_assert (before
);
4139 switch (GET_CODE (x
))
4151 rtx next
= NEXT_INSN (insn
);
4152 add_insn_before (insn
, before
, bb
);
4158 #ifdef ENABLE_RTL_CHECKING
4165 last
= (*make_raw
) (x
);
4166 add_insn_before (last
, before
, bb
);
4173 /* Make X be output before the instruction BEFORE. */
4176 emit_insn_before_noloc (rtx x
, rtx before
, basic_block bb
)
4178 return emit_pattern_before_noloc (x
, before
, before
, bb
, make_insn_raw
);
4181 /* Make an instruction with body X and code JUMP_INSN
4182 and output it before the instruction BEFORE. */
4185 emit_jump_insn_before_noloc (rtx x
, rtx before
)
4187 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4188 make_jump_insn_raw
);
4191 /* Make an instruction with body X and code CALL_INSN
4192 and output it before the instruction BEFORE. */
4195 emit_call_insn_before_noloc (rtx x
, rtx before
)
4197 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4198 make_call_insn_raw
);
4201 /* Make an instruction with body X and code DEBUG_INSN
4202 and output it before the instruction BEFORE. */
4205 emit_debug_insn_before_noloc (rtx x
, rtx before
)
4207 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4208 make_debug_insn_raw
);
4211 /* Make an insn of code BARRIER
4212 and output it before the insn BEFORE. */
4215 emit_barrier_before (rtx before
)
4217 rtx insn
= rtx_alloc (BARRIER
);
4219 INSN_UID (insn
) = cur_insn_uid
++;
4221 add_insn_before (insn
, before
, NULL
);
4225 /* Emit the label LABEL before the insn BEFORE. */
4228 emit_label_before (rtx label
, rtx before
)
4230 gcc_checking_assert (INSN_UID (label
) == 0);
4231 INSN_UID (label
) = cur_insn_uid
++;
4232 add_insn_before (label
, before
, NULL
);
4236 /* Helper for emit_insn_after, handles lists of instructions
4240 emit_insn_after_1 (rtx first
, rtx after
, basic_block bb
)
4244 if (!bb
&& !BARRIER_P (after
))
4245 bb
= BLOCK_FOR_INSN (after
);
4249 df_set_bb_dirty (bb
);
4250 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4251 if (!BARRIER_P (last
))
4253 set_block_for_insn (last
, bb
);
4254 df_insn_rescan (last
);
4256 if (!BARRIER_P (last
))
4258 set_block_for_insn (last
, bb
);
4259 df_insn_rescan (last
);
4261 if (BB_END (bb
) == after
)
4265 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4268 after_after
= NEXT_INSN (after
);
4270 NEXT_INSN (after
) = first
;
4271 PREV_INSN (first
) = after
;
4272 NEXT_INSN (last
) = after_after
;
4274 PREV_INSN (after_after
) = last
;
4276 if (after
== get_last_insn ())
4277 set_last_insn (last
);
4283 emit_pattern_after_noloc (rtx x
, rtx after
, basic_block bb
,
4284 rtx (*make_raw
)(rtx
))
4293 switch (GET_CODE (x
))
4302 last
= emit_insn_after_1 (x
, after
, bb
);
4305 #ifdef ENABLE_RTL_CHECKING
4312 last
= (*make_raw
) (x
);
4313 add_insn_after (last
, after
, bb
);
4320 /* Make X be output after the insn AFTER and set the BB of insn. If
4321 BB is NULL, an attempt is made to infer the BB from AFTER. */
4324 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4326 return emit_pattern_after_noloc (x
, after
, bb
, make_insn_raw
);
4330 /* Make an insn of code JUMP_INSN with body X
4331 and output it after the insn AFTER. */
4334 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4336 return emit_pattern_after_noloc (x
, after
, NULL
, make_jump_insn_raw
);
4339 /* Make an instruction with body X and code CALL_INSN
4340 and output it after the instruction AFTER. */
4343 emit_call_insn_after_noloc (rtx x
, rtx after
)
4345 return emit_pattern_after_noloc (x
, after
, NULL
, make_call_insn_raw
);
4348 /* Make an instruction with body X and code CALL_INSN
4349 and output it after the instruction AFTER. */
4352 emit_debug_insn_after_noloc (rtx x
, rtx after
)
4354 return emit_pattern_after_noloc (x
, after
, NULL
, make_debug_insn_raw
);
4357 /* Make an insn of code BARRIER
4358 and output it after the insn AFTER. */
4361 emit_barrier_after (rtx after
)
4363 rtx insn
= rtx_alloc (BARRIER
);
4365 INSN_UID (insn
) = cur_insn_uid
++;
4367 add_insn_after (insn
, after
, NULL
);
4371 /* Emit the label LABEL after the insn AFTER. */
4374 emit_label_after (rtx label
, rtx after
)
4376 gcc_checking_assert (INSN_UID (label
) == 0);
4377 INSN_UID (label
) = cur_insn_uid
++;
4378 add_insn_after (label
, after
, NULL
);
4382 /* Notes require a bit of special handling: Some notes need to have their
4383 BLOCK_FOR_INSN set, others should never have it set, and some should
4384 have it set or clear depending on the context. */
4386 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4387 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4388 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4391 note_outside_basic_block_p (enum insn_note subtype
, bool on_bb_boundary_p
)
4395 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4396 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
4399 /* Notes for var tracking and EH region markers can appear between or
4400 inside basic blocks. If the caller is emitting on the basic block
4401 boundary, do not set BLOCK_FOR_INSN on the new note. */
4402 case NOTE_INSN_VAR_LOCATION
:
4403 case NOTE_INSN_CALL_ARG_LOCATION
:
4404 case NOTE_INSN_EH_REGION_BEG
:
4405 case NOTE_INSN_EH_REGION_END
:
4406 return on_bb_boundary_p
;
4408 /* Otherwise, BLOCK_FOR_INSN must be set. */
4414 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4417 emit_note_after (enum insn_note subtype
, rtx after
)
4419 rtx note
= make_note_raw (subtype
);
4420 basic_block bb
= BARRIER_P (after
) ? NULL
: BLOCK_FOR_INSN (after
);
4421 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_END (bb
) == after
);
4423 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4424 add_insn_after_nobb (note
, after
);
4426 add_insn_after (note
, after
, bb
);
4430 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4433 emit_note_before (enum insn_note subtype
, rtx before
)
4435 rtx note
= make_note_raw (subtype
);
4436 basic_block bb
= BARRIER_P (before
) ? NULL
: BLOCK_FOR_INSN (before
);
4437 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_HEAD (bb
) == before
);
4439 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4440 add_insn_before_nobb (note
, before
);
4442 add_insn_before (note
, before
, bb
);
4446 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4447 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4450 emit_pattern_after_setloc (rtx pattern
, rtx after
, int loc
,
4451 rtx (*make_raw
) (rtx
))
4453 rtx last
= emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4455 if (pattern
== NULL_RTX
|| !loc
)
4458 after
= NEXT_INSN (after
);
4461 if (active_insn_p (after
) && !INSN_LOCATION (after
))
4462 INSN_LOCATION (after
) = loc
;
4465 after
= NEXT_INSN (after
);
4470 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4471 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4475 emit_pattern_after (rtx pattern
, rtx after
, bool skip_debug_insns
,
4476 rtx (*make_raw
) (rtx
))
4480 if (skip_debug_insns
)
4481 while (DEBUG_INSN_P (prev
))
4482 prev
= PREV_INSN (prev
);
4485 return emit_pattern_after_setloc (pattern
, after
, INSN_LOCATION (prev
),
4488 return emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4491 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4493 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4495 return emit_pattern_after_setloc (pattern
, after
, loc
, make_insn_raw
);
4498 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4500 emit_insn_after (rtx pattern
, rtx after
)
4502 return emit_pattern_after (pattern
, after
, true, make_insn_raw
);
4505 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4507 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4509 return emit_pattern_after_setloc (pattern
, after
, loc
, make_jump_insn_raw
);
4512 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4514 emit_jump_insn_after (rtx pattern
, rtx after
)
4516 return emit_pattern_after (pattern
, after
, true, make_jump_insn_raw
);
4519 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4521 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4523 return emit_pattern_after_setloc (pattern
, after
, loc
, make_call_insn_raw
);
4526 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4528 emit_call_insn_after (rtx pattern
, rtx after
)
4530 return emit_pattern_after (pattern
, after
, true, make_call_insn_raw
);
4533 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4535 emit_debug_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4537 return emit_pattern_after_setloc (pattern
, after
, loc
, make_debug_insn_raw
);
4540 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4542 emit_debug_insn_after (rtx pattern
, rtx after
)
4544 return emit_pattern_after (pattern
, after
, false, make_debug_insn_raw
);
4547 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4548 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4549 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4553 emit_pattern_before_setloc (rtx pattern
, rtx before
, int loc
, bool insnp
,
4554 rtx (*make_raw
) (rtx
))
4556 rtx first
= PREV_INSN (before
);
4557 rtx last
= emit_pattern_before_noloc (pattern
, before
,
4558 insnp
? before
: NULL_RTX
,
4561 if (pattern
== NULL_RTX
|| !loc
)
4565 first
= get_insns ();
4567 first
= NEXT_INSN (first
);
4570 if (active_insn_p (first
) && !INSN_LOCATION (first
))
4571 INSN_LOCATION (first
) = loc
;
4574 first
= NEXT_INSN (first
);
4579 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4580 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4581 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4582 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4585 emit_pattern_before (rtx pattern
, rtx before
, bool skip_debug_insns
,
4586 bool insnp
, rtx (*make_raw
) (rtx
))
4590 if (skip_debug_insns
)
4591 while (DEBUG_INSN_P (next
))
4592 next
= PREV_INSN (next
);
4595 return emit_pattern_before_setloc (pattern
, before
, INSN_LOCATION (next
),
4598 return emit_pattern_before_noloc (pattern
, before
,
4599 insnp
? before
: NULL_RTX
,
4603 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4605 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4607 return emit_pattern_before_setloc (pattern
, before
, loc
, true,
4611 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4613 emit_insn_before (rtx pattern
, rtx before
)
4615 return emit_pattern_before (pattern
, before
, true, true, make_insn_raw
);
4618 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4620 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4622 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4623 make_jump_insn_raw
);
4626 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4628 emit_jump_insn_before (rtx pattern
, rtx before
)
4630 return emit_pattern_before (pattern
, before
, true, false,
4631 make_jump_insn_raw
);
4634 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4636 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4638 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4639 make_call_insn_raw
);
4642 /* Like emit_call_insn_before_noloc,
4643 but set insn_location according to BEFORE. */
4645 emit_call_insn_before (rtx pattern
, rtx before
)
4647 return emit_pattern_before (pattern
, before
, true, false,
4648 make_call_insn_raw
);
4651 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4653 emit_debug_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4655 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4656 make_debug_insn_raw
);
4659 /* Like emit_debug_insn_before_noloc,
4660 but set insn_location according to BEFORE. */
4662 emit_debug_insn_before (rtx pattern
, rtx before
)
4664 return emit_pattern_before (pattern
, before
, false, false,
4665 make_debug_insn_raw
);
4668 /* Take X and emit it at the end of the doubly-linked
4671 Returns the last insn emitted. */
4676 rtx last
= get_last_insn ();
4682 switch (GET_CODE (x
))
4694 rtx next
= NEXT_INSN (insn
);
4701 #ifdef ENABLE_RTL_CHECKING
4702 case JUMP_TABLE_DATA
:
4709 last
= make_insn_raw (x
);
4717 /* Make an insn of code DEBUG_INSN with pattern X
4718 and add it to the end of the doubly-linked list. */
4721 emit_debug_insn (rtx x
)
4723 rtx last
= get_last_insn ();
4729 switch (GET_CODE (x
))
4741 rtx next
= NEXT_INSN (insn
);
4748 #ifdef ENABLE_RTL_CHECKING
4749 case JUMP_TABLE_DATA
:
4756 last
= make_debug_insn_raw (x
);
4764 /* Make an insn of code JUMP_INSN with pattern X
4765 and add it to the end of the doubly-linked list. */
4768 emit_jump_insn (rtx x
)
4770 rtx last
= NULL_RTX
, insn
;
4772 switch (GET_CODE (x
))
4784 rtx next
= NEXT_INSN (insn
);
4791 #ifdef ENABLE_RTL_CHECKING
4792 case JUMP_TABLE_DATA
:
4799 last
= make_jump_insn_raw (x
);
4807 /* Make an insn of code CALL_INSN with pattern X
4808 and add it to the end of the doubly-linked list. */
4811 emit_call_insn (rtx x
)
4815 switch (GET_CODE (x
))
4824 insn
= emit_insn (x
);
4827 #ifdef ENABLE_RTL_CHECKING
4829 case JUMP_TABLE_DATA
:
4835 insn
= make_call_insn_raw (x
);
4843 /* Add the label LABEL to the end of the doubly-linked list. */
4846 emit_label (rtx label
)
4848 gcc_checking_assert (INSN_UID (label
) == 0);
4849 INSN_UID (label
) = cur_insn_uid
++;
4854 /* Make an insn of code JUMP_TABLE_DATA
4855 and add it to the end of the doubly-linked list. */
4858 emit_jump_table_data (rtx table
)
4860 rtx jump_table_data
= rtx_alloc (JUMP_TABLE_DATA
);
4861 INSN_UID (jump_table_data
) = cur_insn_uid
++;
4862 PATTERN (jump_table_data
) = table
;
4863 BLOCK_FOR_INSN (jump_table_data
) = NULL
;
4864 add_insn (jump_table_data
);
4865 return jump_table_data
;
4868 /* Make an insn of code BARRIER
4869 and add it to the end of the doubly-linked list. */
4874 rtx barrier
= rtx_alloc (BARRIER
);
4875 INSN_UID (barrier
) = cur_insn_uid
++;
4880 /* Emit a copy of note ORIG. */
4883 emit_note_copy (rtx orig
)
4885 enum insn_note kind
= (enum insn_note
) NOTE_KIND (orig
);
4886 rtx note
= make_note_raw (kind
);
4887 NOTE_DATA (note
) = NOTE_DATA (orig
);
4892 /* Make an insn of code NOTE or type NOTE_NO
4893 and add it to the end of the doubly-linked list. */
4896 emit_note (enum insn_note kind
)
4898 rtx note
= make_note_raw (kind
);
4903 /* Emit a clobber of lvalue X. */
4906 emit_clobber (rtx x
)
4908 /* CONCATs should not appear in the insn stream. */
4909 if (GET_CODE (x
) == CONCAT
)
4911 emit_clobber (XEXP (x
, 0));
4912 return emit_clobber (XEXP (x
, 1));
4914 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
4917 /* Return a sequence of insns to clobber lvalue X. */
4931 /* Emit a use of rvalue X. */
4936 /* CONCATs should not appear in the insn stream. */
4937 if (GET_CODE (x
) == CONCAT
)
4939 emit_use (XEXP (x
, 0));
4940 return emit_use (XEXP (x
, 1));
4942 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
4945 /* Return a sequence of insns to use rvalue X. */
4959 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4960 note of this type already exists, remove it first. */
4963 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
4965 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4971 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4972 has multiple sets (some callers assume single_set
4973 means the insn only has one set, when in fact it
4974 means the insn only has one * useful * set). */
4975 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
4981 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4982 It serves no useful purpose and breaks eliminate_regs. */
4983 if (GET_CODE (datum
) == ASM_OPERANDS
)
4988 XEXP (note
, 0) = datum
;
4989 df_notes_rescan (insn
);
4997 XEXP (note
, 0) = datum
;
5003 add_reg_note (insn
, kind
, datum
);
5009 df_notes_rescan (insn
);
5015 return REG_NOTES (insn
);
5018 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5020 set_dst_reg_note (rtx insn
, enum reg_note kind
, rtx datum
, rtx dst
)
5022 rtx set
= single_set (insn
);
5024 if (set
&& SET_DEST (set
) == dst
)
5025 return set_unique_reg_note (insn
, kind
, datum
);
5029 /* Return an indication of which type of insn should have X as a body.
5030 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5032 static enum rtx_code
5033 classify_insn (rtx x
)
5037 if (GET_CODE (x
) == CALL
)
5039 if (ANY_RETURN_P (x
))
5041 if (GET_CODE (x
) == SET
)
5043 if (SET_DEST (x
) == pc_rtx
)
5045 else if (GET_CODE (SET_SRC (x
)) == CALL
)
5050 if (GET_CODE (x
) == PARALLEL
)
5053 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
5054 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
5056 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5057 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
5059 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5060 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
5066 /* Emit the rtl pattern X as an appropriate kind of insn.
5067 If X is a label, it is simply added into the insn chain. */
5072 enum rtx_code code
= classify_insn (x
);
5077 return emit_label (x
);
5079 return emit_insn (x
);
5082 rtx insn
= emit_jump_insn (x
);
5083 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
5084 return emit_barrier ();
5088 return emit_call_insn (x
);
5090 return emit_debug_insn (x
);
5096 /* Space for free sequence stack entries. */
5097 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
5099 /* Begin emitting insns to a sequence. If this sequence will contain
5100 something that might cause the compiler to pop arguments to function
5101 calls (because those pops have previously been deferred; see
5102 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5103 before calling this function. That will ensure that the deferred
5104 pops are not accidentally emitted in the middle of this sequence. */
5107 start_sequence (void)
5109 struct sequence_stack
*tem
;
5111 if (free_sequence_stack
!= NULL
)
5113 tem
= free_sequence_stack
;
5114 free_sequence_stack
= tem
->next
;
5117 tem
= ggc_alloc_sequence_stack ();
5119 tem
->next
= seq_stack
;
5120 tem
->first
= get_insns ();
5121 tem
->last
= get_last_insn ();
5129 /* Set up the insn chain starting with FIRST as the current sequence,
5130 saving the previously current one. See the documentation for
5131 start_sequence for more information about how to use this function. */
5134 push_to_sequence (rtx first
)
5140 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
))
5143 set_first_insn (first
);
5144 set_last_insn (last
);
5147 /* Like push_to_sequence, but take the last insn as an argument to avoid
5148 looping through the list. */
5151 push_to_sequence2 (rtx first
, rtx last
)
5155 set_first_insn (first
);
5156 set_last_insn (last
);
5159 /* Set up the outer-level insn chain
5160 as the current sequence, saving the previously current one. */
5163 push_topmost_sequence (void)
5165 struct sequence_stack
*stack
, *top
= NULL
;
5169 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5172 set_first_insn (top
->first
);
5173 set_last_insn (top
->last
);
5176 /* After emitting to the outer-level insn chain, update the outer-level
5177 insn chain, and restore the previous saved state. */
5180 pop_topmost_sequence (void)
5182 struct sequence_stack
*stack
, *top
= NULL
;
5184 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5187 top
->first
= get_insns ();
5188 top
->last
= get_last_insn ();
5193 /* After emitting to a sequence, restore previous saved state.
5195 To get the contents of the sequence just made, you must call
5196 `get_insns' *before* calling here.
5198 If the compiler might have deferred popping arguments while
5199 generating this sequence, and this sequence will not be immediately
5200 inserted into the instruction stream, use do_pending_stack_adjust
5201 before calling get_insns. That will ensure that the deferred
5202 pops are inserted into this sequence, and not into some random
5203 location in the instruction stream. See INHIBIT_DEFER_POP for more
5204 information about deferred popping of arguments. */
5209 struct sequence_stack
*tem
= seq_stack
;
5211 set_first_insn (tem
->first
);
5212 set_last_insn (tem
->last
);
5213 seq_stack
= tem
->next
;
5215 memset (tem
, 0, sizeof (*tem
));
5216 tem
->next
= free_sequence_stack
;
5217 free_sequence_stack
= tem
;
5220 /* Return 1 if currently emitting into a sequence. */
5223 in_sequence_p (void)
5225 return seq_stack
!= 0;
5228 /* Put the various virtual registers into REGNO_REG_RTX. */
5231 init_virtual_regs (void)
5233 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5234 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5235 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5236 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5237 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5238 regno_reg_rtx
[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
]
5239 = virtual_preferred_stack_boundary_rtx
;
5243 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5244 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5245 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5246 static int copy_insn_n_scratches
;
5248 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5249 copied an ASM_OPERANDS.
5250 In that case, it is the original input-operand vector. */
5251 static rtvec orig_asm_operands_vector
;
5253 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5254 copied an ASM_OPERANDS.
5255 In that case, it is the copied input-operand vector. */
5256 static rtvec copy_asm_operands_vector
;
5258 /* Likewise for the constraints vector. */
5259 static rtvec orig_asm_constraints_vector
;
5260 static rtvec copy_asm_constraints_vector
;
5262 /* Recursively create a new copy of an rtx for copy_insn.
5263 This function differs from copy_rtx in that it handles SCRATCHes and
5264 ASM_OPERANDs properly.
5265 Normally, this function is not used directly; use copy_insn as front end.
5266 However, you could first copy an insn pattern with copy_insn and then use
5267 this function afterwards to properly copy any REG_NOTEs containing
5271 copy_insn_1 (rtx orig
)
5276 const char *format_ptr
;
5281 code
= GET_CODE (orig
);
5296 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5297 clobbers or clobbers of hard registers that originated as pseudos.
5298 This is needed to allow safe register renaming. */
5299 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
5300 && ORIGINAL_REGNO (XEXP (orig
, 0)) == REGNO (XEXP (orig
, 0)))
5305 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5306 if (copy_insn_scratch_in
[i
] == orig
)
5307 return copy_insn_scratch_out
[i
];
5311 if (shared_const_p (orig
))
5315 /* A MEM with a constant address is not sharable. The problem is that
5316 the constant address may need to be reloaded. If the mem is shared,
5317 then reloading one copy of this mem will cause all copies to appear
5318 to have been reloaded. */
5324 /* Copy the various flags, fields, and other information. We assume
5325 that all fields need copying, and then clear the fields that should
5326 not be copied. That is the sensible default behavior, and forces
5327 us to explicitly document why we are *not* copying a flag. */
5328 copy
= shallow_copy_rtx (orig
);
5330 /* We do not copy the USED flag, which is used as a mark bit during
5331 walks over the RTL. */
5332 RTX_FLAG (copy
, used
) = 0;
5334 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5337 RTX_FLAG (copy
, jump
) = 0;
5338 RTX_FLAG (copy
, call
) = 0;
5339 RTX_FLAG (copy
, frame_related
) = 0;
5342 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5344 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5345 switch (*format_ptr
++)
5348 if (XEXP (orig
, i
) != NULL
)
5349 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5354 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5355 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5356 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5357 XVEC (copy
, i
) = copy_asm_operands_vector
;
5358 else if (XVEC (orig
, i
) != NULL
)
5360 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5361 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5362 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5373 /* These are left unchanged. */
5380 if (code
== SCRATCH
)
5382 i
= copy_insn_n_scratches
++;
5383 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5384 copy_insn_scratch_in
[i
] = orig
;
5385 copy_insn_scratch_out
[i
] = copy
;
5387 else if (code
== ASM_OPERANDS
)
5389 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5390 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5391 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5392 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5398 /* Create a new copy of an rtx.
5399 This function differs from copy_rtx in that it handles SCRATCHes and
5400 ASM_OPERANDs properly.
5401 INSN doesn't really have to be a full INSN; it could be just the
5404 copy_insn (rtx insn
)
5406 copy_insn_n_scratches
= 0;
5407 orig_asm_operands_vector
= 0;
5408 orig_asm_constraints_vector
= 0;
5409 copy_asm_operands_vector
= 0;
5410 copy_asm_constraints_vector
= 0;
5411 return copy_insn_1 (insn
);
5414 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5415 on that assumption that INSN itself remains in its original place. */
5418 copy_delay_slot_insn (rtx insn
)
5420 /* Copy INSN with its rtx_code, all its notes, location etc. */
5421 insn
= copy_rtx (insn
);
5422 INSN_UID (insn
) = cur_insn_uid
++;
5426 /* Initialize data structures and variables in this file
5427 before generating rtl for each function. */
5432 set_first_insn (NULL
);
5433 set_last_insn (NULL
);
5434 if (MIN_NONDEBUG_INSN_UID
)
5435 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
;
5438 cur_debug_insn_uid
= 1;
5439 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5440 first_label_num
= label_num
;
5443 /* Init the tables that describe all the pseudo regs. */
5445 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5447 crtl
->emit
.regno_pointer_align
5448 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5450 regno_reg_rtx
= ggc_alloc_vec_rtx (crtl
->emit
.regno_pointer_align_length
);
5452 /* Put copies of all the hard registers into regno_reg_rtx. */
5453 memcpy (regno_reg_rtx
,
5454 initial_regno_reg_rtx
,
5455 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5457 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5458 init_virtual_regs ();
5460 /* Indicate that the virtual registers and stack locations are
5462 REG_POINTER (stack_pointer_rtx
) = 1;
5463 REG_POINTER (frame_pointer_rtx
) = 1;
5464 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5465 REG_POINTER (arg_pointer_rtx
) = 1;
5467 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5468 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5469 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5470 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5471 REG_POINTER (virtual_cfa_rtx
) = 1;
5473 #ifdef STACK_BOUNDARY
5474 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5475 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5476 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5477 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5479 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5480 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5481 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5482 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5483 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5486 #ifdef INIT_EXPANDERS
5491 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5494 gen_const_vector (enum machine_mode mode
, int constant
)
5499 enum machine_mode inner
;
5501 units
= GET_MODE_NUNITS (mode
);
5502 inner
= GET_MODE_INNER (mode
);
5504 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5506 v
= rtvec_alloc (units
);
5508 /* We need to call this function after we set the scalar const_tiny_rtx
5510 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5512 for (i
= 0; i
< units
; ++i
)
5513 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5515 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5519 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5520 all elements are zero, and the one vector when all elements are one. */
5522 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5524 enum machine_mode inner
= GET_MODE_INNER (mode
);
5525 int nunits
= GET_MODE_NUNITS (mode
);
5529 /* Check to see if all of the elements have the same value. */
5530 x
= RTVEC_ELT (v
, nunits
- 1);
5531 for (i
= nunits
- 2; i
>= 0; i
--)
5532 if (RTVEC_ELT (v
, i
) != x
)
5535 /* If the values are all the same, check to see if we can use one of the
5536 standard constant vectors. */
5539 if (x
== CONST0_RTX (inner
))
5540 return CONST0_RTX (mode
);
5541 else if (x
== CONST1_RTX (inner
))
5542 return CONST1_RTX (mode
);
5543 else if (x
== CONSTM1_RTX (inner
))
5544 return CONSTM1_RTX (mode
);
5547 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5550 /* Initialise global register information required by all functions. */
5553 init_emit_regs (void)
5556 enum machine_mode mode
;
5559 /* Reset register attributes */
5560 htab_empty (reg_attrs_htab
);
5562 /* We need reg_raw_mode, so initialize the modes now. */
5563 init_reg_modes_target ();
5565 /* Assign register numbers to the globally defined register rtx. */
5566 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5567 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5568 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5569 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5570 virtual_incoming_args_rtx
=
5571 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5572 virtual_stack_vars_rtx
=
5573 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5574 virtual_stack_dynamic_rtx
=
5575 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5576 virtual_outgoing_args_rtx
=
5577 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5578 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5579 virtual_preferred_stack_boundary_rtx
=
5580 gen_raw_REG (Pmode
, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
);
5582 /* Initialize RTL for commonly used hard registers. These are
5583 copied into regno_reg_rtx as we begin to compile each function. */
5584 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5585 initial_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5587 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5588 return_address_pointer_rtx
5589 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5592 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5593 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5595 pic_offset_table_rtx
= NULL_RTX
;
5597 for (i
= 0; i
< (int) MAX_MACHINE_MODE
; i
++)
5599 mode
= (enum machine_mode
) i
;
5600 attrs
= ggc_alloc_cleared_mem_attrs ();
5601 attrs
->align
= BITS_PER_UNIT
;
5602 attrs
->addrspace
= ADDR_SPACE_GENERIC
;
5603 if (mode
!= BLKmode
)
5605 attrs
->size_known_p
= true;
5606 attrs
->size
= GET_MODE_SIZE (mode
);
5607 if (STRICT_ALIGNMENT
)
5608 attrs
->align
= GET_MODE_ALIGNMENT (mode
);
5610 mode_mem_attrs
[i
] = attrs
;
5614 /* Create some permanent unique rtl objects shared between all functions. */
5617 init_emit_once (void)
5620 enum machine_mode mode
;
5621 enum machine_mode double_mode
;
5623 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5625 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5626 const_int_htab_eq
, NULL
);
5628 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5629 const_double_htab_eq
, NULL
);
5631 const_fixed_htab
= htab_create_ggc (37, const_fixed_htab_hash
,
5632 const_fixed_htab_eq
, NULL
);
5634 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5635 reg_attrs_htab_eq
, NULL
);
5637 /* Compute the word and byte modes. */
5639 byte_mode
= VOIDmode
;
5640 word_mode
= VOIDmode
;
5641 double_mode
= VOIDmode
;
5643 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5645 mode
= GET_MODE_WIDER_MODE (mode
))
5647 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5648 && byte_mode
== VOIDmode
)
5651 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5652 && word_mode
== VOIDmode
)
5656 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5658 mode
= GET_MODE_WIDER_MODE (mode
))
5660 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5661 && double_mode
== VOIDmode
)
5665 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5667 #ifdef INIT_EXPANDERS
5668 /* This is to initialize {init|mark|free}_machine_status before the first
5669 call to push_function_context_to. This is needed by the Chill front
5670 end which calls push_function_context_to before the first call to
5671 init_function_start. */
5675 /* Create the unique rtx's for certain rtx codes and operand values. */
5677 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5678 tries to use these variables. */
5679 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5680 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5681 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5683 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5684 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5685 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5687 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5689 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5690 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5691 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5696 dconsthalf
= dconst1
;
5697 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5699 for (i
= 0; i
< 3; i
++)
5701 const REAL_VALUE_TYPE
*const r
=
5702 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5704 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5706 mode
= GET_MODE_WIDER_MODE (mode
))
5707 const_tiny_rtx
[i
][(int) mode
] =
5708 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5710 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5712 mode
= GET_MODE_WIDER_MODE (mode
))
5713 const_tiny_rtx
[i
][(int) mode
] =
5714 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5716 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5718 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5720 mode
= GET_MODE_WIDER_MODE (mode
))
5721 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5723 for (mode
= MIN_MODE_PARTIAL_INT
;
5724 mode
<= MAX_MODE_PARTIAL_INT
;
5725 mode
= (enum machine_mode
)((int)(mode
) + 1))
5726 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5729 const_tiny_rtx
[3][(int) VOIDmode
] = constm1_rtx
;
5731 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5733 mode
= GET_MODE_WIDER_MODE (mode
))
5734 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5736 for (mode
= MIN_MODE_PARTIAL_INT
;
5737 mode
<= MAX_MODE_PARTIAL_INT
;
5738 mode
= (enum machine_mode
)((int)(mode
) + 1))
5739 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5741 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5743 mode
= GET_MODE_WIDER_MODE (mode
))
5745 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5746 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5749 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
5751 mode
= GET_MODE_WIDER_MODE (mode
))
5753 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5754 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5757 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5759 mode
= GET_MODE_WIDER_MODE (mode
))
5761 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5762 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5763 const_tiny_rtx
[3][(int) mode
] = gen_const_vector (mode
, 3);
5766 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5768 mode
= GET_MODE_WIDER_MODE (mode
))
5770 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5771 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5774 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
5776 mode
= GET_MODE_WIDER_MODE (mode
))
5778 FCONST0 (mode
).data
.high
= 0;
5779 FCONST0 (mode
).data
.low
= 0;
5780 FCONST0 (mode
).mode
= mode
;
5781 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5782 FCONST0 (mode
), mode
);
5785 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
5787 mode
= GET_MODE_WIDER_MODE (mode
))
5789 FCONST0 (mode
).data
.high
= 0;
5790 FCONST0 (mode
).data
.low
= 0;
5791 FCONST0 (mode
).mode
= mode
;
5792 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5793 FCONST0 (mode
), mode
);
5796 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
5798 mode
= GET_MODE_WIDER_MODE (mode
))
5800 FCONST0 (mode
).data
.high
= 0;
5801 FCONST0 (mode
).data
.low
= 0;
5802 FCONST0 (mode
).mode
= mode
;
5803 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5804 FCONST0 (mode
), mode
);
5806 /* We store the value 1. */
5807 FCONST1 (mode
).data
.high
= 0;
5808 FCONST1 (mode
).data
.low
= 0;
5809 FCONST1 (mode
).mode
= mode
;
5811 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5812 HOST_BITS_PER_DOUBLE_INT
,
5813 SIGNED_FIXED_POINT_MODE_P (mode
));
5814 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5815 FCONST1 (mode
), mode
);
5818 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
5820 mode
= GET_MODE_WIDER_MODE (mode
))
5822 FCONST0 (mode
).data
.high
= 0;
5823 FCONST0 (mode
).data
.low
= 0;
5824 FCONST0 (mode
).mode
= mode
;
5825 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5826 FCONST0 (mode
), mode
);
5828 /* We store the value 1. */
5829 FCONST1 (mode
).data
.high
= 0;
5830 FCONST1 (mode
).data
.low
= 0;
5831 FCONST1 (mode
).mode
= mode
;
5833 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5834 HOST_BITS_PER_DOUBLE_INT
,
5835 SIGNED_FIXED_POINT_MODE_P (mode
));
5836 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5837 FCONST1 (mode
), mode
);
5840 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
5842 mode
= GET_MODE_WIDER_MODE (mode
))
5844 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5847 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
5849 mode
= GET_MODE_WIDER_MODE (mode
))
5851 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5854 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
5856 mode
= GET_MODE_WIDER_MODE (mode
))
5858 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5859 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5862 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
5864 mode
= GET_MODE_WIDER_MODE (mode
))
5866 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5867 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5870 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5871 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5872 const_tiny_rtx
[0][i
] = const0_rtx
;
5874 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5875 if (STORE_FLAG_VALUE
== 1)
5876 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5878 pc_rtx
= gen_rtx_fmt_ (PC
, VOIDmode
);
5879 ret_rtx
= gen_rtx_fmt_ (RETURN
, VOIDmode
);
5880 simple_return_rtx
= gen_rtx_fmt_ (SIMPLE_RETURN
, VOIDmode
);
5881 cc0_rtx
= gen_rtx_fmt_ (CC0
, VOIDmode
);
5884 /* Produce exact duplicate of insn INSN after AFTER.
5885 Care updating of libcall regions if present. */
5888 emit_copy_of_insn_after (rtx insn
, rtx after
)
5892 switch (GET_CODE (insn
))
5895 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5899 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5903 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
5907 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5908 if (CALL_INSN_FUNCTION_USAGE (insn
))
5909 CALL_INSN_FUNCTION_USAGE (new_rtx
)
5910 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5911 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
5912 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
5913 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
5914 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
5915 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
5922 /* Update LABEL_NUSES. */
5923 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
5925 INSN_LOCATION (new_rtx
) = INSN_LOCATION (insn
);
5927 /* If the old insn is frame related, then so is the new one. This is
5928 primarily needed for IA-64 unwind info which marks epilogue insns,
5929 which may be duplicated by the basic block reordering code. */
5930 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
5932 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5933 will make them. REG_LABEL_TARGETs are created there too, but are
5934 supposed to be sticky, so we copy them. */
5935 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5936 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
5938 if (GET_CODE (link
) == EXPR_LIST
)
5939 add_reg_note (new_rtx
, REG_NOTE_KIND (link
),
5940 copy_insn_1 (XEXP (link
, 0)));
5942 add_shallow_copy_of_reg_note (new_rtx
, link
);
5945 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
5949 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
5951 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
5953 if (hard_reg_clobbers
[mode
][regno
])
5954 return hard_reg_clobbers
[mode
][regno
];
5956 return (hard_reg_clobbers
[mode
][regno
] =
5957 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
5960 location_t prologue_location
;
5961 location_t epilogue_location
;
5963 /* Hold current location information and last location information, so the
5964 datastructures are built lazily only when some instructions in given
5965 place are needed. */
5966 static location_t curr_location
;
5968 /* Allocate insn location datastructure. */
5970 insn_locations_init (void)
5972 prologue_location
= epilogue_location
= 0;
5973 curr_location
= UNKNOWN_LOCATION
;
5976 /* At the end of emit stage, clear current location. */
5978 insn_locations_finalize (void)
5980 epilogue_location
= curr_location
;
5981 curr_location
= UNKNOWN_LOCATION
;
5984 /* Set current location. */
5986 set_curr_insn_location (location_t location
)
5988 curr_location
= location
;
5991 /* Get current location. */
5993 curr_insn_location (void)
5995 return curr_location
;
5998 /* Return lexical scope block insn belongs to. */
6000 insn_scope (const_rtx insn
)
6002 return LOCATION_BLOCK (INSN_LOCATION (insn
));
6005 /* Return line number of the statement that produced this insn. */
6007 insn_line (const_rtx insn
)
6009 return LOCATION_LINE (INSN_LOCATION (insn
));
6012 /* Return source file of the statement that produced this insn. */
6014 insn_file (const_rtx insn
)
6016 return LOCATION_FILE (INSN_LOCATION (insn
));
6019 /* Return true if memory model MODEL requires a pre-operation (release-style)
6020 barrier or a post-operation (acquire-style) barrier. While not universal,
6021 this function matches behavior of several targets. */
6024 need_atomic_barrier_p (enum memmodel model
, bool pre
)
6026 switch (model
& MEMMODEL_MASK
)
6028 case MEMMODEL_RELAXED
:
6029 case MEMMODEL_CONSUME
:
6031 case MEMMODEL_RELEASE
:
6033 case MEMMODEL_ACQUIRE
:
6035 case MEMMODEL_ACQ_REL
:
6036 case MEMMODEL_SEQ_CST
:
6043 #include "gt-emit-rtl.h"