[PATCH] [PR testsuite/67959]Minor cleanup for ssa-thread-13.c
[official-gcc.git] / gcc / stor-layout.c
blob938e54b7c930a177d7c15f5d01358c8e621761f1
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "alias.h"
26 #include "tree.h"
27 #include "fold-const.h"
28 #include "stor-layout.h"
29 #include "stringpool.h"
30 #include "varasm.h"
31 #include "print-tree.h"
32 #include "rtl.h"
33 #include "tm_p.h"
34 #include "flags.h"
35 #include "function.h"
36 #include "insn-config.h"
37 #include "expmed.h"
38 #include "dojump.h"
39 #include "explow.h"
40 #include "calls.h"
41 #include "emit-rtl.h"
42 #include "stmt.h"
43 #include "expr.h"
44 #include "diagnostic-core.h"
45 #include "target.h"
46 #include "langhooks.h"
47 #include "regs.h"
48 #include "params.h"
49 #include "cgraph.h"
50 #include "tree-inline.h"
51 #include "tree-dump.h"
52 #include "gimplify.h"
54 /* Data type for the expressions representing sizes of data types.
55 It is the first integer type laid out. */
56 tree sizetype_tab[(int) stk_type_kind_last];
58 /* If nonzero, this is an upper limit on alignment of structure fields.
59 The value is measured in bits. */
60 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
62 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
63 in the address spaces' address_mode, not pointer_mode. Set only by
64 internal_reference_types called only by a front end. */
65 static int reference_types_internal = 0;
67 static tree self_referential_size (tree);
68 static void finalize_record_size (record_layout_info);
69 static void finalize_type_size (tree);
70 static void place_union_field (record_layout_info, tree);
71 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
72 HOST_WIDE_INT, tree);
73 extern void debug_rli (record_layout_info);
75 /* Show that REFERENCE_TYPES are internal and should use address_mode.
76 Called only by front end. */
78 void
79 internal_reference_types (void)
81 reference_types_internal = 1;
84 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
85 to serve as the actual size-expression for a type or decl. */
87 tree
88 variable_size (tree size)
90 /* Obviously. */
91 if (TREE_CONSTANT (size))
92 return size;
94 /* If the size is self-referential, we can't make a SAVE_EXPR (see
95 save_expr for the rationale). But we can do something else. */
96 if (CONTAINS_PLACEHOLDER_P (size))
97 return self_referential_size (size);
99 /* If we are in the global binding level, we can't make a SAVE_EXPR
100 since it may end up being shared across functions, so it is up
101 to the front-end to deal with this case. */
102 if (lang_hooks.decls.global_bindings_p ())
103 return size;
105 return save_expr (size);
108 /* An array of functions used for self-referential size computation. */
109 static GTY(()) vec<tree, va_gc> *size_functions;
111 /* Return true if T is a self-referential component reference. */
113 static bool
114 self_referential_component_ref_p (tree t)
116 if (TREE_CODE (t) != COMPONENT_REF)
117 return false;
119 while (REFERENCE_CLASS_P (t))
120 t = TREE_OPERAND (t, 0);
122 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
125 /* Similar to copy_tree_r but do not copy component references involving
126 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
127 and substituted in substitute_in_expr. */
129 static tree
130 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
132 enum tree_code code = TREE_CODE (*tp);
134 /* Stop at types, decls, constants like copy_tree_r. */
135 if (TREE_CODE_CLASS (code) == tcc_type
136 || TREE_CODE_CLASS (code) == tcc_declaration
137 || TREE_CODE_CLASS (code) == tcc_constant)
139 *walk_subtrees = 0;
140 return NULL_TREE;
143 /* This is the pattern built in ada/make_aligning_type. */
144 else if (code == ADDR_EXPR
145 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
147 *walk_subtrees = 0;
148 return NULL_TREE;
151 /* Default case: the component reference. */
152 else if (self_referential_component_ref_p (*tp))
154 *walk_subtrees = 0;
155 return NULL_TREE;
158 /* We're not supposed to have them in self-referential size trees
159 because we wouldn't properly control when they are evaluated.
160 However, not creating superfluous SAVE_EXPRs requires accurate
161 tracking of readonly-ness all the way down to here, which we
162 cannot always guarantee in practice. So punt in this case. */
163 else if (code == SAVE_EXPR)
164 return error_mark_node;
166 else if (code == STATEMENT_LIST)
167 gcc_unreachable ();
169 return copy_tree_r (tp, walk_subtrees, data);
172 /* Given a SIZE expression that is self-referential, return an equivalent
173 expression to serve as the actual size expression for a type. */
175 static tree
176 self_referential_size (tree size)
178 static unsigned HOST_WIDE_INT fnno = 0;
179 vec<tree> self_refs = vNULL;
180 tree param_type_list = NULL, param_decl_list = NULL;
181 tree t, ref, return_type, fntype, fnname, fndecl;
182 unsigned int i;
183 char buf[128];
184 vec<tree, va_gc> *args = NULL;
186 /* Do not factor out simple operations. */
187 t = skip_simple_constant_arithmetic (size);
188 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
189 return size;
191 /* Collect the list of self-references in the expression. */
192 find_placeholder_in_expr (size, &self_refs);
193 gcc_assert (self_refs.length () > 0);
195 /* Obtain a private copy of the expression. */
196 t = size;
197 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
198 return size;
199 size = t;
201 /* Build the parameter and argument lists in parallel; also
202 substitute the former for the latter in the expression. */
203 vec_alloc (args, self_refs.length ());
204 FOR_EACH_VEC_ELT (self_refs, i, ref)
206 tree subst, param_name, param_type, param_decl;
208 if (DECL_P (ref))
210 /* We shouldn't have true variables here. */
211 gcc_assert (TREE_READONLY (ref));
212 subst = ref;
214 /* This is the pattern built in ada/make_aligning_type. */
215 else if (TREE_CODE (ref) == ADDR_EXPR)
216 subst = ref;
217 /* Default case: the component reference. */
218 else
219 subst = TREE_OPERAND (ref, 1);
221 sprintf (buf, "p%d", i);
222 param_name = get_identifier (buf);
223 param_type = TREE_TYPE (ref);
224 param_decl
225 = build_decl (input_location, PARM_DECL, param_name, param_type);
226 DECL_ARG_TYPE (param_decl) = param_type;
227 DECL_ARTIFICIAL (param_decl) = 1;
228 TREE_READONLY (param_decl) = 1;
230 size = substitute_in_expr (size, subst, param_decl);
232 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
233 param_decl_list = chainon (param_decl, param_decl_list);
234 args->quick_push (ref);
237 self_refs.release ();
239 /* Append 'void' to indicate that the number of parameters is fixed. */
240 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
242 /* The 3 lists have been created in reverse order. */
243 param_type_list = nreverse (param_type_list);
244 param_decl_list = nreverse (param_decl_list);
246 /* Build the function type. */
247 return_type = TREE_TYPE (size);
248 fntype = build_function_type (return_type, param_type_list);
250 /* Build the function declaration. */
251 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
252 fnname = get_file_function_name (buf);
253 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
254 for (t = param_decl_list; t; t = DECL_CHAIN (t))
255 DECL_CONTEXT (t) = fndecl;
256 DECL_ARGUMENTS (fndecl) = param_decl_list;
257 DECL_RESULT (fndecl)
258 = build_decl (input_location, RESULT_DECL, 0, return_type);
259 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
261 /* The function has been created by the compiler and we don't
262 want to emit debug info for it. */
263 DECL_ARTIFICIAL (fndecl) = 1;
264 DECL_IGNORED_P (fndecl) = 1;
266 /* It is supposed to be "const" and never throw. */
267 TREE_READONLY (fndecl) = 1;
268 TREE_NOTHROW (fndecl) = 1;
270 /* We want it to be inlined when this is deemed profitable, as
271 well as discarded if every call has been integrated. */
272 DECL_DECLARED_INLINE_P (fndecl) = 1;
274 /* It is made up of a unique return statement. */
275 DECL_INITIAL (fndecl) = make_node (BLOCK);
276 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
277 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
278 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
279 TREE_STATIC (fndecl) = 1;
281 /* Put it onto the list of size functions. */
282 vec_safe_push (size_functions, fndecl);
284 /* Replace the original expression with a call to the size function. */
285 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
288 /* Take, queue and compile all the size functions. It is essential that
289 the size functions be gimplified at the very end of the compilation
290 in order to guarantee transparent handling of self-referential sizes.
291 Otherwise the GENERIC inliner would not be able to inline them back
292 at each of their call sites, thus creating artificial non-constant
293 size expressions which would trigger nasty problems later on. */
295 void
296 finalize_size_functions (void)
298 unsigned int i;
299 tree fndecl;
301 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
303 allocate_struct_function (fndecl, false);
304 set_cfun (NULL);
305 dump_function (TDI_original, fndecl);
306 gimplify_function_tree (fndecl);
307 cgraph_node::finalize_function (fndecl, false);
310 vec_free (size_functions);
313 /* Return the machine mode to use for a nonscalar of SIZE bits. The
314 mode must be in class MCLASS, and have exactly that many value bits;
315 it may have padding as well. If LIMIT is nonzero, modes of wider
316 than MAX_FIXED_MODE_SIZE will not be used. */
318 machine_mode
319 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
321 machine_mode mode;
322 int i;
324 if (limit && size > MAX_FIXED_MODE_SIZE)
325 return BLKmode;
327 /* Get the first mode which has this size, in the specified class. */
328 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
329 mode = GET_MODE_WIDER_MODE (mode))
330 if (GET_MODE_PRECISION (mode) == size)
331 return mode;
333 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
334 for (i = 0; i < NUM_INT_N_ENTS; i ++)
335 if (int_n_data[i].bitsize == size
336 && int_n_enabled_p[i])
337 return int_n_data[i].m;
339 return BLKmode;
342 /* Similar, except passed a tree node. */
344 machine_mode
345 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
347 unsigned HOST_WIDE_INT uhwi;
348 unsigned int ui;
350 if (!tree_fits_uhwi_p (size))
351 return BLKmode;
352 uhwi = tree_to_uhwi (size);
353 ui = uhwi;
354 if (uhwi != ui)
355 return BLKmode;
356 return mode_for_size (ui, mclass, limit);
359 /* Similar, but never return BLKmode; return the narrowest mode that
360 contains at least the requested number of value bits. */
362 machine_mode
363 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
365 machine_mode mode = VOIDmode;
366 int i;
368 /* Get the first mode which has at least this size, in the
369 specified class. */
370 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
371 mode = GET_MODE_WIDER_MODE (mode))
372 if (GET_MODE_PRECISION (mode) >= size)
373 break;
375 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
376 for (i = 0; i < NUM_INT_N_ENTS; i ++)
377 if (int_n_data[i].bitsize >= size
378 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
379 && int_n_enabled_p[i])
380 mode = int_n_data[i].m;
382 if (mode == VOIDmode)
383 gcc_unreachable ();
385 return mode;
388 /* Find an integer mode of the exact same size, or BLKmode on failure. */
390 machine_mode
391 int_mode_for_mode (machine_mode mode)
393 switch (GET_MODE_CLASS (mode))
395 case MODE_INT:
396 case MODE_PARTIAL_INT:
397 break;
399 case MODE_COMPLEX_INT:
400 case MODE_COMPLEX_FLOAT:
401 case MODE_FLOAT:
402 case MODE_DECIMAL_FLOAT:
403 case MODE_VECTOR_INT:
404 case MODE_VECTOR_FLOAT:
405 case MODE_FRACT:
406 case MODE_ACCUM:
407 case MODE_UFRACT:
408 case MODE_UACCUM:
409 case MODE_VECTOR_FRACT:
410 case MODE_VECTOR_ACCUM:
411 case MODE_VECTOR_UFRACT:
412 case MODE_VECTOR_UACCUM:
413 case MODE_POINTER_BOUNDS:
414 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
415 break;
417 case MODE_RANDOM:
418 if (mode == BLKmode)
419 break;
421 /* ... fall through ... */
423 case MODE_CC:
424 default:
425 gcc_unreachable ();
428 return mode;
431 /* Find a mode that can be used for efficient bitwise operations on MODE.
432 Return BLKmode if no such mode exists. */
434 machine_mode
435 bitwise_mode_for_mode (machine_mode mode)
437 /* Quick exit if we already have a suitable mode. */
438 unsigned int bitsize = GET_MODE_BITSIZE (mode);
439 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
440 return mode;
442 /* Reuse the sanity checks from int_mode_for_mode. */
443 gcc_checking_assert ((int_mode_for_mode (mode), true));
445 /* Try to replace complex modes with complex modes. In general we
446 expect both components to be processed independently, so we only
447 care whether there is a register for the inner mode. */
448 if (COMPLEX_MODE_P (mode))
450 machine_mode trial = mode;
451 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
452 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
453 if (trial != BLKmode
454 && have_regs_of_mode[GET_MODE_INNER (trial)])
455 return trial;
458 /* Try to replace vector modes with vector modes. Also try using vector
459 modes if an integer mode would be too big. */
460 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
462 machine_mode trial = mode;
463 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
464 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
465 if (trial != BLKmode
466 && have_regs_of_mode[trial]
467 && targetm.vector_mode_supported_p (trial))
468 return trial;
471 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
472 return mode_for_size (bitsize, MODE_INT, true);
475 /* Find a type that can be used for efficient bitwise operations on MODE.
476 Return null if no such mode exists. */
478 tree
479 bitwise_type_for_mode (machine_mode mode)
481 mode = bitwise_mode_for_mode (mode);
482 if (mode == BLKmode)
483 return NULL_TREE;
485 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
486 tree inner_type = build_nonstandard_integer_type (inner_size, true);
488 if (VECTOR_MODE_P (mode))
489 return build_vector_type_for_mode (inner_type, mode);
491 if (COMPLEX_MODE_P (mode))
492 return build_complex_type (inner_type);
494 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
495 return inner_type;
498 /* Find a mode that is suitable for representing a vector with
499 NUNITS elements of mode INNERMODE. Returns BLKmode if there
500 is no suitable mode. */
502 machine_mode
503 mode_for_vector (machine_mode innermode, unsigned nunits)
505 machine_mode mode;
507 /* First, look for a supported vector type. */
508 if (SCALAR_FLOAT_MODE_P (innermode))
509 mode = MIN_MODE_VECTOR_FLOAT;
510 else if (SCALAR_FRACT_MODE_P (innermode))
511 mode = MIN_MODE_VECTOR_FRACT;
512 else if (SCALAR_UFRACT_MODE_P (innermode))
513 mode = MIN_MODE_VECTOR_UFRACT;
514 else if (SCALAR_ACCUM_MODE_P (innermode))
515 mode = MIN_MODE_VECTOR_ACCUM;
516 else if (SCALAR_UACCUM_MODE_P (innermode))
517 mode = MIN_MODE_VECTOR_UACCUM;
518 else
519 mode = MIN_MODE_VECTOR_INT;
521 /* Do not check vector_mode_supported_p here. We'll do that
522 later in vector_type_mode. */
523 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
524 if (GET_MODE_NUNITS (mode) == nunits
525 && GET_MODE_INNER (mode) == innermode)
526 break;
528 /* For integers, try mapping it to a same-sized scalar mode. */
529 if (mode == VOIDmode
530 && GET_MODE_CLASS (innermode) == MODE_INT)
531 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
532 MODE_INT, 0);
534 if (mode == VOIDmode
535 || (GET_MODE_CLASS (mode) == MODE_INT
536 && !have_regs_of_mode[mode]))
537 return BLKmode;
539 return mode;
542 /* Return the alignment of MODE. This will be bounded by 1 and
543 BIGGEST_ALIGNMENT. */
545 unsigned int
546 get_mode_alignment (machine_mode mode)
548 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
551 /* Return the natural mode of an array, given that it is SIZE bytes in
552 total and has elements of type ELEM_TYPE. */
554 static machine_mode
555 mode_for_array (tree elem_type, tree size)
557 tree elem_size;
558 unsigned HOST_WIDE_INT int_size, int_elem_size;
559 bool limit_p;
561 /* One-element arrays get the component type's mode. */
562 elem_size = TYPE_SIZE (elem_type);
563 if (simple_cst_equal (size, elem_size))
564 return TYPE_MODE (elem_type);
566 limit_p = true;
567 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
569 int_size = tree_to_uhwi (size);
570 int_elem_size = tree_to_uhwi (elem_size);
571 if (int_elem_size > 0
572 && int_size % int_elem_size == 0
573 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
574 int_size / int_elem_size))
575 limit_p = false;
577 return mode_for_size_tree (size, MODE_INT, limit_p);
580 /* Subroutine of layout_decl: Force alignment required for the data type.
581 But if the decl itself wants greater alignment, don't override that. */
583 static inline void
584 do_type_align (tree type, tree decl)
586 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
588 DECL_ALIGN (decl) = TYPE_ALIGN (type);
589 if (TREE_CODE (decl) == FIELD_DECL)
590 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
594 /* Set the size, mode and alignment of a ..._DECL node.
595 TYPE_DECL does need this for C++.
596 Note that LABEL_DECL and CONST_DECL nodes do not need this,
597 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
598 Don't call layout_decl for them.
600 KNOWN_ALIGN is the amount of alignment we can assume this
601 decl has with no special effort. It is relevant only for FIELD_DECLs
602 and depends on the previous fields.
603 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
604 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
605 the record will be aligned to suit. */
607 void
608 layout_decl (tree decl, unsigned int known_align)
610 tree type = TREE_TYPE (decl);
611 enum tree_code code = TREE_CODE (decl);
612 rtx rtl = NULL_RTX;
613 location_t loc = DECL_SOURCE_LOCATION (decl);
615 if (code == CONST_DECL)
616 return;
618 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
619 || code == TYPE_DECL ||code == FIELD_DECL);
621 rtl = DECL_RTL_IF_SET (decl);
623 if (type == error_mark_node)
624 type = void_type_node;
626 /* Usually the size and mode come from the data type without change,
627 however, the front-end may set the explicit width of the field, so its
628 size may not be the same as the size of its type. This happens with
629 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
630 also happens with other fields. For example, the C++ front-end creates
631 zero-sized fields corresponding to empty base classes, and depends on
632 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
633 size in bytes from the size in bits. If we have already set the mode,
634 don't set it again since we can be called twice for FIELD_DECLs. */
636 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
637 if (DECL_MODE (decl) == VOIDmode)
638 DECL_MODE (decl) = TYPE_MODE (type);
640 if (DECL_SIZE (decl) == 0)
642 DECL_SIZE (decl) = TYPE_SIZE (type);
643 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
645 else if (DECL_SIZE_UNIT (decl) == 0)
646 DECL_SIZE_UNIT (decl)
647 = fold_convert_loc (loc, sizetype,
648 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
649 bitsize_unit_node));
651 if (code != FIELD_DECL)
652 /* For non-fields, update the alignment from the type. */
653 do_type_align (type, decl);
654 else
655 /* For fields, it's a bit more complicated... */
657 bool old_user_align = DECL_USER_ALIGN (decl);
658 bool zero_bitfield = false;
659 bool packed_p = DECL_PACKED (decl);
660 unsigned int mfa;
662 if (DECL_BIT_FIELD (decl))
664 DECL_BIT_FIELD_TYPE (decl) = type;
666 /* A zero-length bit-field affects the alignment of the next
667 field. In essence such bit-fields are not influenced by
668 any packing due to #pragma pack or attribute packed. */
669 if (integer_zerop (DECL_SIZE (decl))
670 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
672 zero_bitfield = true;
673 packed_p = false;
674 if (PCC_BITFIELD_TYPE_MATTERS)
675 do_type_align (type, decl);
676 else
678 #ifdef EMPTY_FIELD_BOUNDARY
679 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
681 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
682 DECL_USER_ALIGN (decl) = 0;
684 #endif
688 /* See if we can use an ordinary integer mode for a bit-field.
689 Conditions are: a fixed size that is correct for another mode,
690 occupying a complete byte or bytes on proper boundary. */
691 if (TYPE_SIZE (type) != 0
692 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
693 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
695 machine_mode xmode
696 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
697 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
699 if (xmode != BLKmode
700 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
701 && (known_align == 0 || known_align >= xalign))
703 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
704 DECL_MODE (decl) = xmode;
705 DECL_BIT_FIELD (decl) = 0;
709 /* Turn off DECL_BIT_FIELD if we won't need it set. */
710 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
711 && known_align >= TYPE_ALIGN (type)
712 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
713 DECL_BIT_FIELD (decl) = 0;
715 else if (packed_p && DECL_USER_ALIGN (decl))
716 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
717 round up; we'll reduce it again below. We want packing to
718 supersede USER_ALIGN inherited from the type, but defer to
719 alignment explicitly specified on the field decl. */;
720 else
721 do_type_align (type, decl);
723 /* If the field is packed and not explicitly aligned, give it the
724 minimum alignment. Note that do_type_align may set
725 DECL_USER_ALIGN, so we need to check old_user_align instead. */
726 if (packed_p
727 && !old_user_align)
728 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
730 if (! packed_p && ! DECL_USER_ALIGN (decl))
732 /* Some targets (i.e. i386, VMS) limit struct field alignment
733 to a lower boundary than alignment of variables unless
734 it was overridden by attribute aligned. */
735 #ifdef BIGGEST_FIELD_ALIGNMENT
736 DECL_ALIGN (decl)
737 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
738 #endif
739 #ifdef ADJUST_FIELD_ALIGN
740 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
741 #endif
744 if (zero_bitfield)
745 mfa = initial_max_fld_align * BITS_PER_UNIT;
746 else
747 mfa = maximum_field_alignment;
748 /* Should this be controlled by DECL_USER_ALIGN, too? */
749 if (mfa != 0)
750 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
753 /* Evaluate nonconstant size only once, either now or as soon as safe. */
754 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
755 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
756 if (DECL_SIZE_UNIT (decl) != 0
757 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
758 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
760 /* If requested, warn about definitions of large data objects. */
761 if (warn_larger_than
762 && (code == VAR_DECL || code == PARM_DECL)
763 && ! DECL_EXTERNAL (decl))
765 tree size = DECL_SIZE_UNIT (decl);
767 if (size != 0 && TREE_CODE (size) == INTEGER_CST
768 && compare_tree_int (size, larger_than_size) > 0)
770 int size_as_int = TREE_INT_CST_LOW (size);
772 if (compare_tree_int (size, size_as_int) == 0)
773 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
774 else
775 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
776 decl, larger_than_size);
780 /* If the RTL was already set, update its mode and mem attributes. */
781 if (rtl)
783 PUT_MODE (rtl, DECL_MODE (decl));
784 SET_DECL_RTL (decl, 0);
785 if (MEM_P (rtl))
786 set_mem_attributes (rtl, decl, 1);
787 SET_DECL_RTL (decl, rtl);
791 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
792 a previous call to layout_decl and calls it again. */
794 void
795 relayout_decl (tree decl)
797 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
798 DECL_MODE (decl) = VOIDmode;
799 if (!DECL_USER_ALIGN (decl))
800 DECL_ALIGN (decl) = 0;
801 SET_DECL_RTL (decl, 0);
803 layout_decl (decl, 0);
806 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
807 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
808 is to be passed to all other layout functions for this record. It is the
809 responsibility of the caller to call `free' for the storage returned.
810 Note that garbage collection is not permitted until we finish laying
811 out the record. */
813 record_layout_info
814 start_record_layout (tree t)
816 record_layout_info rli = XNEW (struct record_layout_info_s);
818 rli->t = t;
820 /* If the type has a minimum specified alignment (via an attribute
821 declaration, for example) use it -- otherwise, start with a
822 one-byte alignment. */
823 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
824 rli->unpacked_align = rli->record_align;
825 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
827 #ifdef STRUCTURE_SIZE_BOUNDARY
828 /* Packed structures don't need to have minimum size. */
829 if (! TYPE_PACKED (t))
831 unsigned tmp;
833 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
834 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
835 if (maximum_field_alignment != 0)
836 tmp = MIN (tmp, maximum_field_alignment);
837 rli->record_align = MAX (rli->record_align, tmp);
839 #endif
841 rli->offset = size_zero_node;
842 rli->bitpos = bitsize_zero_node;
843 rli->prev_field = 0;
844 rli->pending_statics = 0;
845 rli->packed_maybe_necessary = 0;
846 rli->remaining_in_alignment = 0;
848 return rli;
851 /* Return the combined bit position for the byte offset OFFSET and the
852 bit position BITPOS.
854 These functions operate on byte and bit positions present in FIELD_DECLs
855 and assume that these expressions result in no (intermediate) overflow.
856 This assumption is necessary to fold the expressions as much as possible,
857 so as to avoid creating artificially variable-sized types in languages
858 supporting variable-sized types like Ada. */
860 tree
861 bit_from_pos (tree offset, tree bitpos)
863 if (TREE_CODE (offset) == PLUS_EXPR)
864 offset = size_binop (PLUS_EXPR,
865 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
866 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
867 else
868 offset = fold_convert (bitsizetype, offset);
869 return size_binop (PLUS_EXPR, bitpos,
870 size_binop (MULT_EXPR, offset, bitsize_unit_node));
873 /* Return the combined truncated byte position for the byte offset OFFSET and
874 the bit position BITPOS. */
876 tree
877 byte_from_pos (tree offset, tree bitpos)
879 tree bytepos;
880 if (TREE_CODE (bitpos) == MULT_EXPR
881 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
882 bytepos = TREE_OPERAND (bitpos, 0);
883 else
884 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
885 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
888 /* Split the bit position POS into a byte offset *POFFSET and a bit
889 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
891 void
892 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
893 tree pos)
895 tree toff_align = bitsize_int (off_align);
896 if (TREE_CODE (pos) == MULT_EXPR
897 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
899 *poffset = size_binop (MULT_EXPR,
900 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
901 size_int (off_align / BITS_PER_UNIT));
902 *pbitpos = bitsize_zero_node;
904 else
906 *poffset = size_binop (MULT_EXPR,
907 fold_convert (sizetype,
908 size_binop (FLOOR_DIV_EXPR, pos,
909 toff_align)),
910 size_int (off_align / BITS_PER_UNIT));
911 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
915 /* Given a pointer to bit and byte offsets and an offset alignment,
916 normalize the offsets so they are within the alignment. */
918 void
919 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
921 /* If the bit position is now larger than it should be, adjust it
922 downwards. */
923 if (compare_tree_int (*pbitpos, off_align) >= 0)
925 tree offset, bitpos;
926 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
927 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
928 *pbitpos = bitpos;
932 /* Print debugging information about the information in RLI. */
934 DEBUG_FUNCTION void
935 debug_rli (record_layout_info rli)
937 print_node_brief (stderr, "type", rli->t, 0);
938 print_node_brief (stderr, "\noffset", rli->offset, 0);
939 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
941 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
942 rli->record_align, rli->unpacked_align,
943 rli->offset_align);
945 /* The ms_struct code is the only that uses this. */
946 if (targetm.ms_bitfield_layout_p (rli->t))
947 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
949 if (rli->packed_maybe_necessary)
950 fprintf (stderr, "packed may be necessary\n");
952 if (!vec_safe_is_empty (rli->pending_statics))
954 fprintf (stderr, "pending statics:\n");
955 debug_vec_tree (rli->pending_statics);
959 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
960 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
962 void
963 normalize_rli (record_layout_info rli)
965 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
968 /* Returns the size in bytes allocated so far. */
970 tree
971 rli_size_unit_so_far (record_layout_info rli)
973 return byte_from_pos (rli->offset, rli->bitpos);
976 /* Returns the size in bits allocated so far. */
978 tree
979 rli_size_so_far (record_layout_info rli)
981 return bit_from_pos (rli->offset, rli->bitpos);
984 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
985 the next available location within the record is given by KNOWN_ALIGN.
986 Update the variable alignment fields in RLI, and return the alignment
987 to give the FIELD. */
989 unsigned int
990 update_alignment_for_field (record_layout_info rli, tree field,
991 unsigned int known_align)
993 /* The alignment required for FIELD. */
994 unsigned int desired_align;
995 /* The type of this field. */
996 tree type = TREE_TYPE (field);
997 /* True if the field was explicitly aligned by the user. */
998 bool user_align;
999 bool is_bitfield;
1001 /* Do not attempt to align an ERROR_MARK node */
1002 if (TREE_CODE (type) == ERROR_MARK)
1003 return 0;
1005 /* Lay out the field so we know what alignment it needs. */
1006 layout_decl (field, known_align);
1007 desired_align = DECL_ALIGN (field);
1008 user_align = DECL_USER_ALIGN (field);
1010 is_bitfield = (type != error_mark_node
1011 && DECL_BIT_FIELD_TYPE (field)
1012 && ! integer_zerop (TYPE_SIZE (type)));
1014 /* Record must have at least as much alignment as any field.
1015 Otherwise, the alignment of the field within the record is
1016 meaningless. */
1017 if (targetm.ms_bitfield_layout_p (rli->t))
1019 /* Here, the alignment of the underlying type of a bitfield can
1020 affect the alignment of a record; even a zero-sized field
1021 can do this. The alignment should be to the alignment of
1022 the type, except that for zero-size bitfields this only
1023 applies if there was an immediately prior, nonzero-size
1024 bitfield. (That's the way it is, experimentally.) */
1025 if ((!is_bitfield && !DECL_PACKED (field))
1026 || ((DECL_SIZE (field) == NULL_TREE
1027 || !integer_zerop (DECL_SIZE (field)))
1028 ? !DECL_PACKED (field)
1029 : (rli->prev_field
1030 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1031 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1033 unsigned int type_align = TYPE_ALIGN (type);
1034 type_align = MAX (type_align, desired_align);
1035 if (maximum_field_alignment != 0)
1036 type_align = MIN (type_align, maximum_field_alignment);
1037 rli->record_align = MAX (rli->record_align, type_align);
1038 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1041 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1043 /* Named bit-fields cause the entire structure to have the
1044 alignment implied by their type. Some targets also apply the same
1045 rules to unnamed bitfields. */
1046 if (DECL_NAME (field) != 0
1047 || targetm.align_anon_bitfield ())
1049 unsigned int type_align = TYPE_ALIGN (type);
1051 #ifdef ADJUST_FIELD_ALIGN
1052 if (! TYPE_USER_ALIGN (type))
1053 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1054 #endif
1056 /* Targets might chose to handle unnamed and hence possibly
1057 zero-width bitfield. Those are not influenced by #pragmas
1058 or packed attributes. */
1059 if (integer_zerop (DECL_SIZE (field)))
1061 if (initial_max_fld_align)
1062 type_align = MIN (type_align,
1063 initial_max_fld_align * BITS_PER_UNIT);
1065 else if (maximum_field_alignment != 0)
1066 type_align = MIN (type_align, maximum_field_alignment);
1067 else if (DECL_PACKED (field))
1068 type_align = MIN (type_align, BITS_PER_UNIT);
1070 /* The alignment of the record is increased to the maximum
1071 of the current alignment, the alignment indicated on the
1072 field (i.e., the alignment specified by an __aligned__
1073 attribute), and the alignment indicated by the type of
1074 the field. */
1075 rli->record_align = MAX (rli->record_align, desired_align);
1076 rli->record_align = MAX (rli->record_align, type_align);
1078 if (warn_packed)
1079 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1080 user_align |= TYPE_USER_ALIGN (type);
1083 else
1085 rli->record_align = MAX (rli->record_align, desired_align);
1086 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1089 TYPE_USER_ALIGN (rli->t) |= user_align;
1091 return desired_align;
1094 /* Called from place_field to handle unions. */
1096 static void
1097 place_union_field (record_layout_info rli, tree field)
1099 update_alignment_for_field (rli, field, /*known_align=*/0);
1101 DECL_FIELD_OFFSET (field) = size_zero_node;
1102 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1103 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1105 /* If this is an ERROR_MARK return *after* having set the
1106 field at the start of the union. This helps when parsing
1107 invalid fields. */
1108 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1109 return;
1111 /* We assume the union's size will be a multiple of a byte so we don't
1112 bother with BITPOS. */
1113 if (TREE_CODE (rli->t) == UNION_TYPE)
1114 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1115 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1116 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1117 DECL_SIZE_UNIT (field), rli->offset);
1120 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1121 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1122 units of alignment than the underlying TYPE. */
1123 static int
1124 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1125 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1127 /* Note that the calculation of OFFSET might overflow; we calculate it so
1128 that we still get the right result as long as ALIGN is a power of two. */
1129 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1131 offset = offset % align;
1132 return ((offset + size + align - 1) / align
1133 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1136 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1137 is a FIELD_DECL to be added after those fields already present in
1138 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1139 callers that desire that behavior must manually perform that step.) */
1141 void
1142 place_field (record_layout_info rli, tree field)
1144 /* The alignment required for FIELD. */
1145 unsigned int desired_align;
1146 /* The alignment FIELD would have if we just dropped it into the
1147 record as it presently stands. */
1148 unsigned int known_align;
1149 unsigned int actual_align;
1150 /* The type of this field. */
1151 tree type = TREE_TYPE (field);
1153 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1155 /* If FIELD is static, then treat it like a separate variable, not
1156 really like a structure field. If it is a FUNCTION_DECL, it's a
1157 method. In both cases, all we do is lay out the decl, and we do
1158 it *after* the record is laid out. */
1159 if (TREE_CODE (field) == VAR_DECL)
1161 vec_safe_push (rli->pending_statics, field);
1162 return;
1165 /* Enumerators and enum types which are local to this class need not
1166 be laid out. Likewise for initialized constant fields. */
1167 else if (TREE_CODE (field) != FIELD_DECL)
1168 return;
1170 /* Unions are laid out very differently than records, so split
1171 that code off to another function. */
1172 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1174 place_union_field (rli, field);
1175 return;
1178 else if (TREE_CODE (type) == ERROR_MARK)
1180 /* Place this field at the current allocation position, so we
1181 maintain monotonicity. */
1182 DECL_FIELD_OFFSET (field) = rli->offset;
1183 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1184 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1185 return;
1188 /* Work out the known alignment so far. Note that A & (-A) is the
1189 value of the least-significant bit in A that is one. */
1190 if (! integer_zerop (rli->bitpos))
1191 known_align = (tree_to_uhwi (rli->bitpos)
1192 & - tree_to_uhwi (rli->bitpos));
1193 else if (integer_zerop (rli->offset))
1194 known_align = 0;
1195 else if (tree_fits_uhwi_p (rli->offset))
1196 known_align = (BITS_PER_UNIT
1197 * (tree_to_uhwi (rli->offset)
1198 & - tree_to_uhwi (rli->offset)));
1199 else
1200 known_align = rli->offset_align;
1202 desired_align = update_alignment_for_field (rli, field, known_align);
1203 if (known_align == 0)
1204 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1206 if (warn_packed && DECL_PACKED (field))
1208 if (known_align >= TYPE_ALIGN (type))
1210 if (TYPE_ALIGN (type) > desired_align)
1212 if (STRICT_ALIGNMENT)
1213 warning (OPT_Wattributes, "packed attribute causes "
1214 "inefficient alignment for %q+D", field);
1215 /* Don't warn if DECL_PACKED was set by the type. */
1216 else if (!TYPE_PACKED (rli->t))
1217 warning (OPT_Wattributes, "packed attribute is "
1218 "unnecessary for %q+D", field);
1221 else
1222 rli->packed_maybe_necessary = 1;
1225 /* Does this field automatically have alignment it needs by virtue
1226 of the fields that precede it and the record's own alignment? */
1227 if (known_align < desired_align)
1229 /* No, we need to skip space before this field.
1230 Bump the cumulative size to multiple of field alignment. */
1232 if (!targetm.ms_bitfield_layout_p (rli->t)
1233 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1234 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1236 /* If the alignment is still within offset_align, just align
1237 the bit position. */
1238 if (desired_align < rli->offset_align)
1239 rli->bitpos = round_up (rli->bitpos, desired_align);
1240 else
1242 /* First adjust OFFSET by the partial bits, then align. */
1243 rli->offset
1244 = size_binop (PLUS_EXPR, rli->offset,
1245 fold_convert (sizetype,
1246 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1247 bitsize_unit_node)));
1248 rli->bitpos = bitsize_zero_node;
1250 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1253 if (! TREE_CONSTANT (rli->offset))
1254 rli->offset_align = desired_align;
1255 if (targetm.ms_bitfield_layout_p (rli->t))
1256 rli->prev_field = NULL;
1259 /* Handle compatibility with PCC. Note that if the record has any
1260 variable-sized fields, we need not worry about compatibility. */
1261 if (PCC_BITFIELD_TYPE_MATTERS
1262 && ! targetm.ms_bitfield_layout_p (rli->t)
1263 && TREE_CODE (field) == FIELD_DECL
1264 && type != error_mark_node
1265 && DECL_BIT_FIELD (field)
1266 && (! DECL_PACKED (field)
1267 /* Enter for these packed fields only to issue a warning. */
1268 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1269 && maximum_field_alignment == 0
1270 && ! integer_zerop (DECL_SIZE (field))
1271 && tree_fits_uhwi_p (DECL_SIZE (field))
1272 && tree_fits_uhwi_p (rli->offset)
1273 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1275 unsigned int type_align = TYPE_ALIGN (type);
1276 tree dsize = DECL_SIZE (field);
1277 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1278 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1279 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1281 #ifdef ADJUST_FIELD_ALIGN
1282 if (! TYPE_USER_ALIGN (type))
1283 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1284 #endif
1286 /* A bit field may not span more units of alignment of its type
1287 than its type itself. Advance to next boundary if necessary. */
1288 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1290 if (DECL_PACKED (field))
1292 if (warn_packed_bitfield_compat == 1)
1293 inform
1294 (input_location,
1295 "offset of packed bit-field %qD has changed in GCC 4.4",
1296 field);
1298 else
1299 rli->bitpos = round_up (rli->bitpos, type_align);
1302 if (! DECL_PACKED (field))
1303 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1306 #ifdef BITFIELD_NBYTES_LIMITED
1307 if (BITFIELD_NBYTES_LIMITED
1308 && ! targetm.ms_bitfield_layout_p (rli->t)
1309 && TREE_CODE (field) == FIELD_DECL
1310 && type != error_mark_node
1311 && DECL_BIT_FIELD_TYPE (field)
1312 && ! DECL_PACKED (field)
1313 && ! integer_zerop (DECL_SIZE (field))
1314 && tree_fits_uhwi_p (DECL_SIZE (field))
1315 && tree_fits_uhwi_p (rli->offset)
1316 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1318 unsigned int type_align = TYPE_ALIGN (type);
1319 tree dsize = DECL_SIZE (field);
1320 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1321 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1322 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1324 #ifdef ADJUST_FIELD_ALIGN
1325 if (! TYPE_USER_ALIGN (type))
1326 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1327 #endif
1329 if (maximum_field_alignment != 0)
1330 type_align = MIN (type_align, maximum_field_alignment);
1331 /* ??? This test is opposite the test in the containing if
1332 statement, so this code is unreachable currently. */
1333 else if (DECL_PACKED (field))
1334 type_align = MIN (type_align, BITS_PER_UNIT);
1336 /* A bit field may not span the unit of alignment of its type.
1337 Advance to next boundary if necessary. */
1338 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1339 rli->bitpos = round_up (rli->bitpos, type_align);
1341 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1343 #endif
1345 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1346 A subtlety:
1347 When a bit field is inserted into a packed record, the whole
1348 size of the underlying type is used by one or more same-size
1349 adjacent bitfields. (That is, if its long:3, 32 bits is
1350 used in the record, and any additional adjacent long bitfields are
1351 packed into the same chunk of 32 bits. However, if the size
1352 changes, a new field of that size is allocated.) In an unpacked
1353 record, this is the same as using alignment, but not equivalent
1354 when packing.
1356 Note: for compatibility, we use the type size, not the type alignment
1357 to determine alignment, since that matches the documentation */
1359 if (targetm.ms_bitfield_layout_p (rli->t))
1361 tree prev_saved = rli->prev_field;
1362 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1364 /* This is a bitfield if it exists. */
1365 if (rli->prev_field)
1367 /* If both are bitfields, nonzero, and the same size, this is
1368 the middle of a run. Zero declared size fields are special
1369 and handled as "end of run". (Note: it's nonzero declared
1370 size, but equal type sizes!) (Since we know that both
1371 the current and previous fields are bitfields by the
1372 time we check it, DECL_SIZE must be present for both.) */
1373 if (DECL_BIT_FIELD_TYPE (field)
1374 && !integer_zerop (DECL_SIZE (field))
1375 && !integer_zerop (DECL_SIZE (rli->prev_field))
1376 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1377 && tree_fits_uhwi_p (TYPE_SIZE (type))
1378 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1380 /* We're in the middle of a run of equal type size fields; make
1381 sure we realign if we run out of bits. (Not decl size,
1382 type size!) */
1383 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1385 if (rli->remaining_in_alignment < bitsize)
1387 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1389 /* out of bits; bump up to next 'word'. */
1390 rli->bitpos
1391 = size_binop (PLUS_EXPR, rli->bitpos,
1392 bitsize_int (rli->remaining_in_alignment));
1393 rli->prev_field = field;
1394 if (typesize < bitsize)
1395 rli->remaining_in_alignment = 0;
1396 else
1397 rli->remaining_in_alignment = typesize - bitsize;
1399 else
1400 rli->remaining_in_alignment -= bitsize;
1402 else
1404 /* End of a run: if leaving a run of bitfields of the same type
1405 size, we have to "use up" the rest of the bits of the type
1406 size.
1408 Compute the new position as the sum of the size for the prior
1409 type and where we first started working on that type.
1410 Note: since the beginning of the field was aligned then
1411 of course the end will be too. No round needed. */
1413 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1415 rli->bitpos
1416 = size_binop (PLUS_EXPR, rli->bitpos,
1417 bitsize_int (rli->remaining_in_alignment));
1419 else
1420 /* We "use up" size zero fields; the code below should behave
1421 as if the prior field was not a bitfield. */
1422 prev_saved = NULL;
1424 /* Cause a new bitfield to be captured, either this time (if
1425 currently a bitfield) or next time we see one. */
1426 if (!DECL_BIT_FIELD_TYPE (field)
1427 || integer_zerop (DECL_SIZE (field)))
1428 rli->prev_field = NULL;
1431 normalize_rli (rli);
1434 /* If we're starting a new run of same type size bitfields
1435 (or a run of non-bitfields), set up the "first of the run"
1436 fields.
1438 That is, if the current field is not a bitfield, or if there
1439 was a prior bitfield the type sizes differ, or if there wasn't
1440 a prior bitfield the size of the current field is nonzero.
1442 Note: we must be sure to test ONLY the type size if there was
1443 a prior bitfield and ONLY for the current field being zero if
1444 there wasn't. */
1446 if (!DECL_BIT_FIELD_TYPE (field)
1447 || (prev_saved != NULL
1448 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1449 : !integer_zerop (DECL_SIZE (field)) ))
1451 /* Never smaller than a byte for compatibility. */
1452 unsigned int type_align = BITS_PER_UNIT;
1454 /* (When not a bitfield), we could be seeing a flex array (with
1455 no DECL_SIZE). Since we won't be using remaining_in_alignment
1456 until we see a bitfield (and come by here again) we just skip
1457 calculating it. */
1458 if (DECL_SIZE (field) != NULL
1459 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1460 && tree_fits_uhwi_p (DECL_SIZE (field)))
1462 unsigned HOST_WIDE_INT bitsize
1463 = tree_to_uhwi (DECL_SIZE (field));
1464 unsigned HOST_WIDE_INT typesize
1465 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1467 if (typesize < bitsize)
1468 rli->remaining_in_alignment = 0;
1469 else
1470 rli->remaining_in_alignment = typesize - bitsize;
1473 /* Now align (conventionally) for the new type. */
1474 type_align = TYPE_ALIGN (TREE_TYPE (field));
1476 if (maximum_field_alignment != 0)
1477 type_align = MIN (type_align, maximum_field_alignment);
1479 rli->bitpos = round_up (rli->bitpos, type_align);
1481 /* If we really aligned, don't allow subsequent bitfields
1482 to undo that. */
1483 rli->prev_field = NULL;
1487 /* Offset so far becomes the position of this field after normalizing. */
1488 normalize_rli (rli);
1489 DECL_FIELD_OFFSET (field) = rli->offset;
1490 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1491 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1493 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1494 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1495 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1497 /* If this field ended up more aligned than we thought it would be (we
1498 approximate this by seeing if its position changed), lay out the field
1499 again; perhaps we can use an integral mode for it now. */
1500 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1501 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1502 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1503 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1504 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1505 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1506 actual_align = (BITS_PER_UNIT
1507 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1508 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1509 else
1510 actual_align = DECL_OFFSET_ALIGN (field);
1511 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1512 store / extract bit field operations will check the alignment of the
1513 record against the mode of bit fields. */
1515 if (known_align != actual_align)
1516 layout_decl (field, actual_align);
1518 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1519 rli->prev_field = field;
1521 /* Now add size of this field to the size of the record. If the size is
1522 not constant, treat the field as being a multiple of bytes and just
1523 adjust the offset, resetting the bit position. Otherwise, apportion the
1524 size amongst the bit position and offset. First handle the case of an
1525 unspecified size, which can happen when we have an invalid nested struct
1526 definition, such as struct j { struct j { int i; } }. The error message
1527 is printed in finish_struct. */
1528 if (DECL_SIZE (field) == 0)
1529 /* Do nothing. */;
1530 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1531 || TREE_OVERFLOW (DECL_SIZE (field)))
1533 rli->offset
1534 = size_binop (PLUS_EXPR, rli->offset,
1535 fold_convert (sizetype,
1536 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1537 bitsize_unit_node)));
1538 rli->offset
1539 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1540 rli->bitpos = bitsize_zero_node;
1541 rli->offset_align = MIN (rli->offset_align, desired_align);
1543 else if (targetm.ms_bitfield_layout_p (rli->t))
1545 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1547 /* If we ended a bitfield before the full length of the type then
1548 pad the struct out to the full length of the last type. */
1549 if ((DECL_CHAIN (field) == NULL
1550 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1551 && DECL_BIT_FIELD_TYPE (field)
1552 && !integer_zerop (DECL_SIZE (field)))
1553 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1554 bitsize_int (rli->remaining_in_alignment));
1556 normalize_rli (rli);
1558 else
1560 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1561 normalize_rli (rli);
1565 /* Assuming that all the fields have been laid out, this function uses
1566 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1567 indicated by RLI. */
1569 static void
1570 finalize_record_size (record_layout_info rli)
1572 tree unpadded_size, unpadded_size_unit;
1574 /* Now we want just byte and bit offsets, so set the offset alignment
1575 to be a byte and then normalize. */
1576 rli->offset_align = BITS_PER_UNIT;
1577 normalize_rli (rli);
1579 /* Determine the desired alignment. */
1580 #ifdef ROUND_TYPE_ALIGN
1581 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1582 rli->record_align);
1583 #else
1584 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1585 #endif
1587 /* Compute the size so far. Be sure to allow for extra bits in the
1588 size in bytes. We have guaranteed above that it will be no more
1589 than a single byte. */
1590 unpadded_size = rli_size_so_far (rli);
1591 unpadded_size_unit = rli_size_unit_so_far (rli);
1592 if (! integer_zerop (rli->bitpos))
1593 unpadded_size_unit
1594 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1596 /* Round the size up to be a multiple of the required alignment. */
1597 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1598 TYPE_SIZE_UNIT (rli->t)
1599 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1601 if (TREE_CONSTANT (unpadded_size)
1602 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1603 && input_location != BUILTINS_LOCATION)
1604 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1606 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1607 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1608 && TREE_CONSTANT (unpadded_size))
1610 tree unpacked_size;
1612 #ifdef ROUND_TYPE_ALIGN
1613 rli->unpacked_align
1614 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1615 #else
1616 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1617 #endif
1619 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1620 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1622 if (TYPE_NAME (rli->t))
1624 tree name;
1626 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1627 name = TYPE_NAME (rli->t);
1628 else
1629 name = DECL_NAME (TYPE_NAME (rli->t));
1631 if (STRICT_ALIGNMENT)
1632 warning (OPT_Wpacked, "packed attribute causes inefficient "
1633 "alignment for %qE", name);
1634 else
1635 warning (OPT_Wpacked,
1636 "packed attribute is unnecessary for %qE", name);
1638 else
1640 if (STRICT_ALIGNMENT)
1641 warning (OPT_Wpacked,
1642 "packed attribute causes inefficient alignment");
1643 else
1644 warning (OPT_Wpacked, "packed attribute is unnecessary");
1650 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1652 void
1653 compute_record_mode (tree type)
1655 tree field;
1656 machine_mode mode = VOIDmode;
1658 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1659 However, if possible, we use a mode that fits in a register
1660 instead, in order to allow for better optimization down the
1661 line. */
1662 SET_TYPE_MODE (type, BLKmode);
1664 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1665 return;
1667 /* A record which has any BLKmode members must itself be
1668 BLKmode; it can't go in a register. Unless the member is
1669 BLKmode only because it isn't aligned. */
1670 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1672 if (TREE_CODE (field) != FIELD_DECL)
1673 continue;
1675 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1676 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1677 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1678 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1679 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1680 || ! tree_fits_uhwi_p (bit_position (field))
1681 || DECL_SIZE (field) == 0
1682 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1683 return;
1685 /* If this field is the whole struct, remember its mode so
1686 that, say, we can put a double in a class into a DF
1687 register instead of forcing it to live in the stack. */
1688 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1689 mode = DECL_MODE (field);
1691 /* With some targets, it is sub-optimal to access an aligned
1692 BLKmode structure as a scalar. */
1693 if (targetm.member_type_forces_blk (field, mode))
1694 return;
1697 /* If we only have one real field; use its mode if that mode's size
1698 matches the type's size. This only applies to RECORD_TYPE. This
1699 does not apply to unions. */
1700 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1701 && tree_fits_uhwi_p (TYPE_SIZE (type))
1702 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1703 SET_TYPE_MODE (type, mode);
1704 else
1705 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1707 /* If structure's known alignment is less than what the scalar
1708 mode would need, and it matters, then stick with BLKmode. */
1709 if (TYPE_MODE (type) != BLKmode
1710 && STRICT_ALIGNMENT
1711 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1712 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1714 /* If this is the only reason this type is BLKmode, then
1715 don't force containing types to be BLKmode. */
1716 TYPE_NO_FORCE_BLK (type) = 1;
1717 SET_TYPE_MODE (type, BLKmode);
1721 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1722 out. */
1724 static void
1725 finalize_type_size (tree type)
1727 /* Normally, use the alignment corresponding to the mode chosen.
1728 However, where strict alignment is not required, avoid
1729 over-aligning structures, since most compilers do not do this
1730 alignment. */
1731 if (TYPE_MODE (type) != BLKmode
1732 && TYPE_MODE (type) != VOIDmode
1733 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1735 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1737 /* Don't override a larger alignment requirement coming from a user
1738 alignment of one of the fields. */
1739 if (mode_align >= TYPE_ALIGN (type))
1741 TYPE_ALIGN (type) = mode_align;
1742 TYPE_USER_ALIGN (type) = 0;
1746 /* Do machine-dependent extra alignment. */
1747 #ifdef ROUND_TYPE_ALIGN
1748 TYPE_ALIGN (type)
1749 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1750 #endif
1752 /* If we failed to find a simple way to calculate the unit size
1753 of the type, find it by division. */
1754 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1755 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1756 result will fit in sizetype. We will get more efficient code using
1757 sizetype, so we force a conversion. */
1758 TYPE_SIZE_UNIT (type)
1759 = fold_convert (sizetype,
1760 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1761 bitsize_unit_node));
1763 if (TYPE_SIZE (type) != 0)
1765 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1766 TYPE_SIZE_UNIT (type)
1767 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1770 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1771 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1772 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1773 if (TYPE_SIZE_UNIT (type) != 0
1774 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1775 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1777 /* Also layout any other variants of the type. */
1778 if (TYPE_NEXT_VARIANT (type)
1779 || type != TYPE_MAIN_VARIANT (type))
1781 tree variant;
1782 /* Record layout info of this variant. */
1783 tree size = TYPE_SIZE (type);
1784 tree size_unit = TYPE_SIZE_UNIT (type);
1785 unsigned int align = TYPE_ALIGN (type);
1786 unsigned int precision = TYPE_PRECISION (type);
1787 unsigned int user_align = TYPE_USER_ALIGN (type);
1788 machine_mode mode = TYPE_MODE (type);
1790 /* Copy it into all variants. */
1791 for (variant = TYPE_MAIN_VARIANT (type);
1792 variant != 0;
1793 variant = TYPE_NEXT_VARIANT (variant))
1795 TYPE_SIZE (variant) = size;
1796 TYPE_SIZE_UNIT (variant) = size_unit;
1797 unsigned valign = align;
1798 if (TYPE_USER_ALIGN (variant))
1799 valign = MAX (valign, TYPE_ALIGN (variant));
1800 else
1801 TYPE_USER_ALIGN (variant) = user_align;
1802 TYPE_ALIGN (variant) = valign;
1803 TYPE_PRECISION (variant) = precision;
1804 SET_TYPE_MODE (variant, mode);
1809 /* Return a new underlying object for a bitfield started with FIELD. */
1811 static tree
1812 start_bitfield_representative (tree field)
1814 tree repr = make_node (FIELD_DECL);
1815 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1816 /* Force the representative to begin at a BITS_PER_UNIT aligned
1817 boundary - C++ may use tail-padding of a base object to
1818 continue packing bits so the bitfield region does not start
1819 at bit zero (see g++.dg/abi/bitfield5.C for example).
1820 Unallocated bits may happen for other reasons as well,
1821 for example Ada which allows explicit bit-granular structure layout. */
1822 DECL_FIELD_BIT_OFFSET (repr)
1823 = size_binop (BIT_AND_EXPR,
1824 DECL_FIELD_BIT_OFFSET (field),
1825 bitsize_int (~(BITS_PER_UNIT - 1)));
1826 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1827 DECL_SIZE (repr) = DECL_SIZE (field);
1828 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1829 DECL_PACKED (repr) = DECL_PACKED (field);
1830 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1831 return repr;
1834 /* Finish up a bitfield group that was started by creating the underlying
1835 object REPR with the last field in the bitfield group FIELD. */
1837 static void
1838 finish_bitfield_representative (tree repr, tree field)
1840 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1841 machine_mode mode;
1842 tree nextf, size;
1844 size = size_diffop (DECL_FIELD_OFFSET (field),
1845 DECL_FIELD_OFFSET (repr));
1846 while (TREE_CODE (size) == COMPOUND_EXPR)
1847 size = TREE_OPERAND (size, 1);
1848 gcc_assert (tree_fits_uhwi_p (size));
1849 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1850 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1851 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1852 + tree_to_uhwi (DECL_SIZE (field)));
1854 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1855 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1857 /* Now nothing tells us how to pad out bitsize ... */
1858 nextf = DECL_CHAIN (field);
1859 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1860 nextf = DECL_CHAIN (nextf);
1861 if (nextf)
1863 tree maxsize;
1864 /* If there was an error, the field may be not laid out
1865 correctly. Don't bother to do anything. */
1866 if (TREE_TYPE (nextf) == error_mark_node)
1867 return;
1868 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1869 DECL_FIELD_OFFSET (repr));
1870 if (tree_fits_uhwi_p (maxsize))
1872 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1873 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1874 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1875 /* If the group ends within a bitfield nextf does not need to be
1876 aligned to BITS_PER_UNIT. Thus round up. */
1877 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1879 else
1880 maxbitsize = bitsize;
1882 else
1884 /* ??? If you consider that tail-padding of this struct might be
1885 re-used when deriving from it we cannot really do the following
1886 and thus need to set maxsize to bitsize? Also we cannot
1887 generally rely on maxsize to fold to an integer constant, so
1888 use bitsize as fallback for this case. */
1889 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1890 DECL_FIELD_OFFSET (repr));
1891 if (tree_fits_uhwi_p (maxsize))
1892 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1893 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1894 else
1895 maxbitsize = bitsize;
1898 /* Only if we don't artificially break up the representative in
1899 the middle of a large bitfield with different possibly
1900 overlapping representatives. And all representatives start
1901 at byte offset. */
1902 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1904 /* Find the smallest nice mode to use. */
1905 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1906 mode = GET_MODE_WIDER_MODE (mode))
1907 if (GET_MODE_BITSIZE (mode) >= bitsize)
1908 break;
1909 if (mode != VOIDmode
1910 && (GET_MODE_BITSIZE (mode) > maxbitsize
1911 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1912 mode = VOIDmode;
1914 if (mode == VOIDmode)
1916 /* We really want a BLKmode representative only as a last resort,
1917 considering the member b in
1918 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1919 Otherwise we simply want to split the representative up
1920 allowing for overlaps within the bitfield region as required for
1921 struct { int a : 7; int b : 7;
1922 int c : 10; int d; } __attribute__((packed));
1923 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1924 DECL_SIZE (repr) = bitsize_int (bitsize);
1925 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1926 DECL_MODE (repr) = BLKmode;
1927 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1928 bitsize / BITS_PER_UNIT);
1930 else
1932 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1933 DECL_SIZE (repr) = bitsize_int (modesize);
1934 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1935 DECL_MODE (repr) = mode;
1936 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1939 /* Remember whether the bitfield group is at the end of the
1940 structure or not. */
1941 DECL_CHAIN (repr) = nextf;
1944 /* Compute and set FIELD_DECLs for the underlying objects we should
1945 use for bitfield access for the structure T. */
1947 void
1948 finish_bitfield_layout (tree t)
1950 tree field, prev;
1951 tree repr = NULL_TREE;
1953 /* Unions would be special, for the ease of type-punning optimizations
1954 we could use the underlying type as hint for the representative
1955 if the bitfield would fit and the representative would not exceed
1956 the union in size. */
1957 if (TREE_CODE (t) != RECORD_TYPE)
1958 return;
1960 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
1961 field; field = DECL_CHAIN (field))
1963 if (TREE_CODE (field) != FIELD_DECL)
1964 continue;
1966 /* In the C++ memory model, consecutive bit fields in a structure are
1967 considered one memory location and updating a memory location
1968 may not store into adjacent memory locations. */
1969 if (!repr
1970 && DECL_BIT_FIELD_TYPE (field))
1972 /* Start new representative. */
1973 repr = start_bitfield_representative (field);
1975 else if (repr
1976 && ! DECL_BIT_FIELD_TYPE (field))
1978 /* Finish off new representative. */
1979 finish_bitfield_representative (repr, prev);
1980 repr = NULL_TREE;
1982 else if (DECL_BIT_FIELD_TYPE (field))
1984 gcc_assert (repr != NULL_TREE);
1986 /* Zero-size bitfields finish off a representative and
1987 do not have a representative themselves. This is
1988 required by the C++ memory model. */
1989 if (integer_zerop (DECL_SIZE (field)))
1991 finish_bitfield_representative (repr, prev);
1992 repr = NULL_TREE;
1995 /* We assume that either DECL_FIELD_OFFSET of the representative
1996 and each bitfield member is a constant or they are equal.
1997 This is because we need to be able to compute the bit-offset
1998 of each field relative to the representative in get_bit_range
1999 during RTL expansion.
2000 If these constraints are not met, simply force a new
2001 representative to be generated. That will at most
2002 generate worse code but still maintain correctness with
2003 respect to the C++ memory model. */
2004 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2005 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2006 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2007 DECL_FIELD_OFFSET (field), 0)))
2009 finish_bitfield_representative (repr, prev);
2010 repr = start_bitfield_representative (field);
2013 else
2014 continue;
2016 if (repr)
2017 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2019 prev = field;
2022 if (repr)
2023 finish_bitfield_representative (repr, prev);
2026 /* Do all of the work required to layout the type indicated by RLI,
2027 once the fields have been laid out. This function will call `free'
2028 for RLI, unless FREE_P is false. Passing a value other than false
2029 for FREE_P is bad practice; this option only exists to support the
2030 G++ 3.2 ABI. */
2032 void
2033 finish_record_layout (record_layout_info rli, int free_p)
2035 tree variant;
2037 /* Compute the final size. */
2038 finalize_record_size (rli);
2040 /* Compute the TYPE_MODE for the record. */
2041 compute_record_mode (rli->t);
2043 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2044 finalize_type_size (rli->t);
2046 /* Compute bitfield representatives. */
2047 finish_bitfield_layout (rli->t);
2049 /* Propagate TYPE_PACKED to variants. With C++ templates,
2050 handle_packed_attribute is too early to do this. */
2051 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2052 variant = TYPE_NEXT_VARIANT (variant))
2053 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2055 /* Lay out any static members. This is done now because their type
2056 may use the record's type. */
2057 while (!vec_safe_is_empty (rli->pending_statics))
2058 layout_decl (rli->pending_statics->pop (), 0);
2060 /* Clean up. */
2061 if (free_p)
2063 vec_free (rli->pending_statics);
2064 free (rli);
2069 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2070 NAME, its fields are chained in reverse on FIELDS.
2072 If ALIGN_TYPE is non-null, it is given the same alignment as
2073 ALIGN_TYPE. */
2075 void
2076 finish_builtin_struct (tree type, const char *name, tree fields,
2077 tree align_type)
2079 tree tail, next;
2081 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2083 DECL_FIELD_CONTEXT (fields) = type;
2084 next = DECL_CHAIN (fields);
2085 DECL_CHAIN (fields) = tail;
2087 TYPE_FIELDS (type) = tail;
2089 if (align_type)
2091 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2092 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2095 layout_type (type);
2096 #if 0 /* not yet, should get fixed properly later */
2097 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2098 #else
2099 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2100 TYPE_DECL, get_identifier (name), type);
2101 #endif
2102 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2103 layout_decl (TYPE_NAME (type), 0);
2106 /* Calculate the mode, size, and alignment for TYPE.
2107 For an array type, calculate the element separation as well.
2108 Record TYPE on the chain of permanent or temporary types
2109 so that dbxout will find out about it.
2111 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2112 layout_type does nothing on such a type.
2114 If the type is incomplete, its TYPE_SIZE remains zero. */
2116 void
2117 layout_type (tree type)
2119 gcc_assert (type);
2121 if (type == error_mark_node)
2122 return;
2124 /* We don't want finalize_type_size to copy an alignment attribute to
2125 variants that don't have it. */
2126 type = TYPE_MAIN_VARIANT (type);
2128 /* Do nothing if type has been laid out before. */
2129 if (TYPE_SIZE (type))
2130 return;
2132 switch (TREE_CODE (type))
2134 case LANG_TYPE:
2135 /* This kind of type is the responsibility
2136 of the language-specific code. */
2137 gcc_unreachable ();
2139 case BOOLEAN_TYPE:
2140 case INTEGER_TYPE:
2141 case ENUMERAL_TYPE:
2142 SET_TYPE_MODE (type,
2143 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2144 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2145 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2146 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2147 break;
2149 case REAL_TYPE:
2150 SET_TYPE_MODE (type,
2151 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2152 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2153 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2154 break;
2156 case FIXED_POINT_TYPE:
2157 /* TYPE_MODE (type) has been set already. */
2158 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2159 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2160 break;
2162 case COMPLEX_TYPE:
2163 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2164 SET_TYPE_MODE (type,
2165 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2166 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2167 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2168 0));
2169 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2170 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2171 break;
2173 case VECTOR_TYPE:
2175 int nunits = TYPE_VECTOR_SUBPARTS (type);
2176 tree innertype = TREE_TYPE (type);
2178 gcc_assert (!(nunits & (nunits - 1)));
2180 /* Find an appropriate mode for the vector type. */
2181 if (TYPE_MODE (type) == VOIDmode)
2182 SET_TYPE_MODE (type,
2183 mode_for_vector (TYPE_MODE (innertype), nunits));
2185 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2186 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2187 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2188 TYPE_SIZE_UNIT (innertype),
2189 size_int (nunits));
2190 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2191 bitsize_int (nunits));
2193 /* For vector types, we do not default to the mode's alignment.
2194 Instead, query a target hook, defaulting to natural alignment.
2195 This prevents ABI changes depending on whether or not native
2196 vector modes are supported. */
2197 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2199 /* However, if the underlying mode requires a bigger alignment than
2200 what the target hook provides, we cannot use the mode. For now,
2201 simply reject that case. */
2202 gcc_assert (TYPE_ALIGN (type)
2203 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2204 break;
2207 case VOID_TYPE:
2208 /* This is an incomplete type and so doesn't have a size. */
2209 TYPE_ALIGN (type) = 1;
2210 TYPE_USER_ALIGN (type) = 0;
2211 SET_TYPE_MODE (type, VOIDmode);
2212 break;
2214 case POINTER_BOUNDS_TYPE:
2215 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2216 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2217 break;
2219 case OFFSET_TYPE:
2220 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2221 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2222 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2223 integral, which may be an __intN. */
2224 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2225 TYPE_PRECISION (type) = POINTER_SIZE;
2226 break;
2228 case FUNCTION_TYPE:
2229 case METHOD_TYPE:
2230 /* It's hard to see what the mode and size of a function ought to
2231 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2232 make it consistent with that. */
2233 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2234 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2235 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2236 break;
2238 case POINTER_TYPE:
2239 case REFERENCE_TYPE:
2241 machine_mode mode = TYPE_MODE (type);
2242 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2244 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2245 mode = targetm.addr_space.address_mode (as);
2248 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2249 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2250 TYPE_UNSIGNED (type) = 1;
2251 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2253 break;
2255 case ARRAY_TYPE:
2257 tree index = TYPE_DOMAIN (type);
2258 tree element = TREE_TYPE (type);
2260 build_pointer_type (element);
2262 /* We need to know both bounds in order to compute the size. */
2263 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2264 && TYPE_SIZE (element))
2266 tree ub = TYPE_MAX_VALUE (index);
2267 tree lb = TYPE_MIN_VALUE (index);
2268 tree element_size = TYPE_SIZE (element);
2269 tree length;
2271 /* Make sure that an array of zero-sized element is zero-sized
2272 regardless of its extent. */
2273 if (integer_zerop (element_size))
2274 length = size_zero_node;
2276 /* The computation should happen in the original signedness so
2277 that (possible) negative values are handled appropriately
2278 when determining overflow. */
2279 else
2281 /* ??? When it is obvious that the range is signed
2282 represent it using ssizetype. */
2283 if (TREE_CODE (lb) == INTEGER_CST
2284 && TREE_CODE (ub) == INTEGER_CST
2285 && TYPE_UNSIGNED (TREE_TYPE (lb))
2286 && tree_int_cst_lt (ub, lb))
2288 lb = wide_int_to_tree (ssizetype,
2289 offset_int::from (lb, SIGNED));
2290 ub = wide_int_to_tree (ssizetype,
2291 offset_int::from (ub, SIGNED));
2293 length
2294 = fold_convert (sizetype,
2295 size_binop (PLUS_EXPR,
2296 build_int_cst (TREE_TYPE (lb), 1),
2297 size_binop (MINUS_EXPR, ub, lb)));
2300 /* ??? We have no way to distinguish a null-sized array from an
2301 array spanning the whole sizetype range, so we arbitrarily
2302 decide that [0, -1] is the only valid representation. */
2303 if (integer_zerop (length)
2304 && TREE_OVERFLOW (length)
2305 && integer_zerop (lb))
2306 length = size_zero_node;
2308 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2309 fold_convert (bitsizetype,
2310 length));
2312 /* If we know the size of the element, calculate the total size
2313 directly, rather than do some division thing below. This
2314 optimization helps Fortran assumed-size arrays (where the
2315 size of the array is determined at runtime) substantially. */
2316 if (TYPE_SIZE_UNIT (element))
2317 TYPE_SIZE_UNIT (type)
2318 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2321 /* Now round the alignment and size,
2322 using machine-dependent criteria if any. */
2324 unsigned align = TYPE_ALIGN (element);
2325 if (TYPE_USER_ALIGN (type))
2326 align = MAX (align, TYPE_ALIGN (type));
2327 else
2328 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2329 #ifdef ROUND_TYPE_ALIGN
2330 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2331 #else
2332 align = MAX (align, BITS_PER_UNIT);
2333 #endif
2334 TYPE_ALIGN (type) = align;
2335 SET_TYPE_MODE (type, BLKmode);
2336 if (TYPE_SIZE (type) != 0
2337 && ! targetm.member_type_forces_blk (type, VOIDmode)
2338 /* BLKmode elements force BLKmode aggregate;
2339 else extract/store fields may lose. */
2340 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2341 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2343 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2344 TYPE_SIZE (type)));
2345 if (TYPE_MODE (type) != BLKmode
2346 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2347 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2349 TYPE_NO_FORCE_BLK (type) = 1;
2350 SET_TYPE_MODE (type, BLKmode);
2353 /* When the element size is constant, check that it is at least as
2354 large as the element alignment. */
2355 if (TYPE_SIZE_UNIT (element)
2356 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2357 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2358 TYPE_ALIGN_UNIT. */
2359 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2360 && !integer_zerop (TYPE_SIZE_UNIT (element))
2361 && compare_tree_int (TYPE_SIZE_UNIT (element),
2362 TYPE_ALIGN_UNIT (element)) < 0)
2363 error ("alignment of array elements is greater than element size");
2364 break;
2367 case RECORD_TYPE:
2368 case UNION_TYPE:
2369 case QUAL_UNION_TYPE:
2371 tree field;
2372 record_layout_info rli;
2374 /* Initialize the layout information. */
2375 rli = start_record_layout (type);
2377 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2378 in the reverse order in building the COND_EXPR that denotes
2379 its size. We reverse them again later. */
2380 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2381 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2383 /* Place all the fields. */
2384 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2385 place_field (rli, field);
2387 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2388 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2390 /* Finish laying out the record. */
2391 finish_record_layout (rli, /*free_p=*/true);
2393 break;
2395 default:
2396 gcc_unreachable ();
2399 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2400 records and unions, finish_record_layout already called this
2401 function. */
2402 if (!RECORD_OR_UNION_TYPE_P (type))
2403 finalize_type_size (type);
2405 /* We should never see alias sets on incomplete aggregates. And we
2406 should not call layout_type on not incomplete aggregates. */
2407 if (AGGREGATE_TYPE_P (type))
2408 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2411 /* Return the least alignment required for type TYPE. */
2413 unsigned int
2414 min_align_of_type (tree type)
2416 unsigned int align = TYPE_ALIGN (type);
2417 if (!TYPE_USER_ALIGN (type))
2419 align = MIN (align, BIGGEST_ALIGNMENT);
2420 #ifdef BIGGEST_FIELD_ALIGNMENT
2421 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2422 #endif
2423 unsigned int field_align = align;
2424 #ifdef ADJUST_FIELD_ALIGN
2425 tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, type);
2426 field_align = ADJUST_FIELD_ALIGN (field, field_align);
2427 ggc_free (field);
2428 #endif
2429 align = MIN (align, field_align);
2431 return align / BITS_PER_UNIT;
2434 /* Vector types need to re-check the target flags each time we report
2435 the machine mode. We need to do this because attribute target can
2436 change the result of vector_mode_supported_p and have_regs_of_mode
2437 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2438 change on a per-function basis. */
2439 /* ??? Possibly a better solution is to run through all the types
2440 referenced by a function and re-compute the TYPE_MODE once, rather
2441 than make the TYPE_MODE macro call a function. */
2443 machine_mode
2444 vector_type_mode (const_tree t)
2446 machine_mode mode;
2448 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2450 mode = t->type_common.mode;
2451 if (VECTOR_MODE_P (mode)
2452 && (!targetm.vector_mode_supported_p (mode)
2453 || !have_regs_of_mode[mode]))
2455 machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2457 /* For integers, try mapping it to a same-sized scalar mode. */
2458 if (GET_MODE_CLASS (innermode) == MODE_INT)
2460 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2461 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2463 if (mode != VOIDmode && have_regs_of_mode[mode])
2464 return mode;
2467 return BLKmode;
2470 return mode;
2473 /* Create and return a type for signed integers of PRECISION bits. */
2475 tree
2476 make_signed_type (int precision)
2478 tree type = make_node (INTEGER_TYPE);
2480 TYPE_PRECISION (type) = precision;
2482 fixup_signed_type (type);
2483 return type;
2486 /* Create and return a type for unsigned integers of PRECISION bits. */
2488 tree
2489 make_unsigned_type (int precision)
2491 tree type = make_node (INTEGER_TYPE);
2493 TYPE_PRECISION (type) = precision;
2495 fixup_unsigned_type (type);
2496 return type;
2499 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2500 and SATP. */
2502 tree
2503 make_fract_type (int precision, int unsignedp, int satp)
2505 tree type = make_node (FIXED_POINT_TYPE);
2507 TYPE_PRECISION (type) = precision;
2509 if (satp)
2510 TYPE_SATURATING (type) = 1;
2512 /* Lay out the type: set its alignment, size, etc. */
2513 if (unsignedp)
2515 TYPE_UNSIGNED (type) = 1;
2516 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2518 else
2519 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2520 layout_type (type);
2522 return type;
2525 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2526 and SATP. */
2528 tree
2529 make_accum_type (int precision, int unsignedp, int satp)
2531 tree type = make_node (FIXED_POINT_TYPE);
2533 TYPE_PRECISION (type) = precision;
2535 if (satp)
2536 TYPE_SATURATING (type) = 1;
2538 /* Lay out the type: set its alignment, size, etc. */
2539 if (unsignedp)
2541 TYPE_UNSIGNED (type) = 1;
2542 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2544 else
2545 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2546 layout_type (type);
2548 return type;
2551 /* Initialize sizetypes so layout_type can use them. */
2553 void
2554 initialize_sizetypes (void)
2556 int precision, bprecision;
2558 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2559 if (strcmp (SIZETYPE, "unsigned int") == 0)
2560 precision = INT_TYPE_SIZE;
2561 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2562 precision = LONG_TYPE_SIZE;
2563 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2564 precision = LONG_LONG_TYPE_SIZE;
2565 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2566 precision = SHORT_TYPE_SIZE;
2567 else
2569 int i;
2571 precision = -1;
2572 for (i = 0; i < NUM_INT_N_ENTS; i++)
2573 if (int_n_enabled_p[i])
2575 char name[50];
2576 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2578 if (strcmp (name, SIZETYPE) == 0)
2580 precision = int_n_data[i].bitsize;
2583 if (precision == -1)
2584 gcc_unreachable ();
2587 bprecision
2588 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2589 bprecision
2590 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2591 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2592 bprecision = HOST_BITS_PER_DOUBLE_INT;
2594 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2595 sizetype = make_node (INTEGER_TYPE);
2596 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2597 TYPE_PRECISION (sizetype) = precision;
2598 TYPE_UNSIGNED (sizetype) = 1;
2599 bitsizetype = make_node (INTEGER_TYPE);
2600 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2601 TYPE_PRECISION (bitsizetype) = bprecision;
2602 TYPE_UNSIGNED (bitsizetype) = 1;
2604 /* Now layout both types manually. */
2605 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2606 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2607 TYPE_SIZE (sizetype) = bitsize_int (precision);
2608 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2609 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2611 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2612 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2613 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2614 TYPE_SIZE_UNIT (bitsizetype)
2615 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2616 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2618 /* Create the signed variants of *sizetype. */
2619 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2620 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2621 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2622 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2625 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2626 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2627 for TYPE, based on the PRECISION and whether or not the TYPE
2628 IS_UNSIGNED. PRECISION need not correspond to a width supported
2629 natively by the hardware; for example, on a machine with 8-bit,
2630 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2631 61. */
2633 void
2634 set_min_and_max_values_for_integral_type (tree type,
2635 int precision,
2636 signop sgn)
2638 /* For bitfields with zero width we end up creating integer types
2639 with zero precision. Don't assign any minimum/maximum values
2640 to those types, they don't have any valid value. */
2641 if (precision < 1)
2642 return;
2644 TYPE_MIN_VALUE (type)
2645 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2646 TYPE_MAX_VALUE (type)
2647 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2650 /* Set the extreme values of TYPE based on its precision in bits,
2651 then lay it out. Used when make_signed_type won't do
2652 because the tree code is not INTEGER_TYPE.
2653 E.g. for Pascal, when the -fsigned-char option is given. */
2655 void
2656 fixup_signed_type (tree type)
2658 int precision = TYPE_PRECISION (type);
2660 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2662 /* Lay out the type: set its alignment, size, etc. */
2663 layout_type (type);
2666 /* Set the extreme values of TYPE based on its precision in bits,
2667 then lay it out. This is used both in `make_unsigned_type'
2668 and for enumeral types. */
2670 void
2671 fixup_unsigned_type (tree type)
2673 int precision = TYPE_PRECISION (type);
2675 TYPE_UNSIGNED (type) = 1;
2677 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2679 /* Lay out the type: set its alignment, size, etc. */
2680 layout_type (type);
2683 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2684 starting at BITPOS.
2686 BITREGION_START is the bit position of the first bit in this
2687 sequence of bit fields. BITREGION_END is the last bit in this
2688 sequence. If these two fields are non-zero, we should restrict the
2689 memory access to that range. Otherwise, we are allowed to touch
2690 any adjacent non bit-fields.
2692 ALIGN is the alignment of the underlying object in bits.
2693 VOLATILEP says whether the bitfield is volatile. */
2695 bit_field_mode_iterator
2696 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2697 HOST_WIDE_INT bitregion_start,
2698 HOST_WIDE_INT bitregion_end,
2699 unsigned int align, bool volatilep)
2700 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2701 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2702 m_bitregion_end (bitregion_end), m_align (align),
2703 m_volatilep (volatilep), m_count (0)
2705 if (!m_bitregion_end)
2707 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2708 the bitfield is mapped and won't trap, provided that ALIGN isn't
2709 too large. The cap is the biggest required alignment for data,
2710 or at least the word size. And force one such chunk at least. */
2711 unsigned HOST_WIDE_INT units
2712 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2713 if (bitsize <= 0)
2714 bitsize = 1;
2715 m_bitregion_end = bitpos + bitsize + units - 1;
2716 m_bitregion_end -= m_bitregion_end % units + 1;
2720 /* Calls to this function return successively larger modes that can be used
2721 to represent the bitfield. Return true if another bitfield mode is
2722 available, storing it in *OUT_MODE if so. */
2724 bool
2725 bit_field_mode_iterator::next_mode (machine_mode *out_mode)
2727 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2729 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2731 /* Skip modes that don't have full precision. */
2732 if (unit != GET_MODE_PRECISION (m_mode))
2733 continue;
2735 /* Stop if the mode is too wide to handle efficiently. */
2736 if (unit > MAX_FIXED_MODE_SIZE)
2737 break;
2739 /* Don't deliver more than one multiword mode; the smallest one
2740 should be used. */
2741 if (m_count > 0 && unit > BITS_PER_WORD)
2742 break;
2744 /* Skip modes that are too small. */
2745 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2746 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2747 if (subend > unit)
2748 continue;
2750 /* Stop if the mode goes outside the bitregion. */
2751 HOST_WIDE_INT start = m_bitpos - substart;
2752 if (m_bitregion_start && start < m_bitregion_start)
2753 break;
2754 HOST_WIDE_INT end = start + unit;
2755 if (end > m_bitregion_end + 1)
2756 break;
2758 /* Stop if the mode requires too much alignment. */
2759 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2760 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2761 break;
2763 *out_mode = m_mode;
2764 m_mode = GET_MODE_WIDER_MODE (m_mode);
2765 m_count++;
2766 return true;
2768 return false;
2771 /* Return true if smaller modes are generally preferred for this kind
2772 of bitfield. */
2774 bool
2775 bit_field_mode_iterator::prefer_smaller_modes ()
2777 return (m_volatilep
2778 ? targetm.narrow_volatile_bitfield ()
2779 : !SLOW_BYTE_ACCESS);
2782 /* Find the best machine mode to use when referencing a bit field of length
2783 BITSIZE bits starting at BITPOS.
2785 BITREGION_START is the bit position of the first bit in this
2786 sequence of bit fields. BITREGION_END is the last bit in this
2787 sequence. If these two fields are non-zero, we should restrict the
2788 memory access to that range. Otherwise, we are allowed to touch
2789 any adjacent non bit-fields.
2791 The underlying object is known to be aligned to a boundary of ALIGN bits.
2792 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2793 larger than LARGEST_MODE (usually SImode).
2795 If no mode meets all these conditions, we return VOIDmode.
2797 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2798 smallest mode meeting these conditions.
2800 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2801 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2802 all the conditions.
2804 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2805 decide which of the above modes should be used. */
2807 machine_mode
2808 get_best_mode (int bitsize, int bitpos,
2809 unsigned HOST_WIDE_INT bitregion_start,
2810 unsigned HOST_WIDE_INT bitregion_end,
2811 unsigned int align,
2812 machine_mode largest_mode, bool volatilep)
2814 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2815 bitregion_end, align, volatilep);
2816 machine_mode widest_mode = VOIDmode;
2817 machine_mode mode;
2818 while (iter.next_mode (&mode)
2819 /* ??? For historical reasons, reject modes that would normally
2820 receive greater alignment, even if unaligned accesses are
2821 acceptable. This has both advantages and disadvantages.
2822 Removing this check means that something like:
2824 struct s { unsigned int x; unsigned int y; };
2825 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2827 can be implemented using a single load and compare on
2828 64-bit machines that have no alignment restrictions.
2829 For example, on powerpc64-linux-gnu, we would generate:
2831 ld 3,0(3)
2832 cntlzd 3,3
2833 srdi 3,3,6
2836 rather than:
2838 lwz 9,0(3)
2839 cmpwi 7,9,0
2840 bne 7,.L3
2841 lwz 3,4(3)
2842 cntlzw 3,3
2843 srwi 3,3,5
2844 extsw 3,3
2846 .p2align 4,,15
2847 .L3:
2848 li 3,0
2851 However, accessing more than one field can make life harder
2852 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2853 has a series of unsigned short copies followed by a series of
2854 unsigned short comparisons. With this check, both the copies
2855 and comparisons remain 16-bit accesses and FRE is able
2856 to eliminate the latter. Without the check, the comparisons
2857 can be done using 2 64-bit operations, which FRE isn't able
2858 to handle in the same way.
2860 Either way, it would probably be worth disabling this check
2861 during expand. One particular example where removing the
2862 check would help is the get_best_mode call in store_bit_field.
2863 If we are given a memory bitregion of 128 bits that is aligned
2864 to a 64-bit boundary, and the bitfield we want to modify is
2865 in the second half of the bitregion, this check causes
2866 store_bitfield to turn the memory into a 64-bit reference
2867 to the _first_ half of the region. We later use
2868 adjust_bitfield_address to get a reference to the correct half,
2869 but doing so looks to adjust_bitfield_address as though we are
2870 moving past the end of the original object, so it drops the
2871 associated MEM_EXPR and MEM_OFFSET. Removing the check
2872 causes store_bit_field to keep a 128-bit memory reference,
2873 so that the final bitfield reference still has a MEM_EXPR
2874 and MEM_OFFSET. */
2875 && GET_MODE_ALIGNMENT (mode) <= align
2876 && (largest_mode == VOIDmode
2877 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2879 widest_mode = mode;
2880 if (iter.prefer_smaller_modes ())
2881 break;
2883 return widest_mode;
2886 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2887 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2889 void
2890 get_mode_bounds (machine_mode mode, int sign,
2891 machine_mode target_mode,
2892 rtx *mmin, rtx *mmax)
2894 unsigned size = GET_MODE_PRECISION (mode);
2895 unsigned HOST_WIDE_INT min_val, max_val;
2897 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2899 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2900 if (mode == BImode)
2902 if (STORE_FLAG_VALUE < 0)
2904 min_val = STORE_FLAG_VALUE;
2905 max_val = 0;
2907 else
2909 min_val = 0;
2910 max_val = STORE_FLAG_VALUE;
2913 else if (sign)
2915 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2916 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2918 else
2920 min_val = 0;
2921 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2924 *mmin = gen_int_mode (min_val, target_mode);
2925 *mmax = gen_int_mode (max_val, target_mode);
2928 #include "gt-stor-layout.h"