2017-09-26 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / fold-const.c
blobfa9d1bb20ff503231f77eb85ccbd548594d14c3f
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "target.h"
48 #include "rtl.h"
49 #include "tree.h"
50 #include "gimple.h"
51 #include "predict.h"
52 #include "memmodel.h"
53 #include "tm_p.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
56 #include "cgraph.h"
57 #include "diagnostic-core.h"
58 #include "flags.h"
59 #include "alias.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
63 #include "calls.h"
64 #include "tree-iterator.h"
65 #include "expr.h"
66 #include "intl.h"
67 #include "langhooks.h"
68 #include "tree-eh.h"
69 #include "gimplify.h"
70 #include "tree-dfa.h"
71 #include "builtins.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
74 #include "params.h"
75 #include "tree-into-ssa.h"
76 #include "md5.h"
77 #include "case-cfn-macros.h"
78 #include "stringpool.h"
79 #include "tree-vrp.h"
80 #include "tree-ssanames.h"
81 #include "selftest.h"
82 #include "stringpool.h"
83 #include "attribs.h"
85 /* Nonzero if we are folding constants inside an initializer; zero
86 otherwise. */
87 int folding_initializer = 0;
89 /* The following constants represent a bit based encoding of GCC's
90 comparison operators. This encoding simplifies transformations
91 on relational comparison operators, such as AND and OR. */
92 enum comparison_code {
93 COMPCODE_FALSE = 0,
94 COMPCODE_LT = 1,
95 COMPCODE_EQ = 2,
96 COMPCODE_LE = 3,
97 COMPCODE_GT = 4,
98 COMPCODE_LTGT = 5,
99 COMPCODE_GE = 6,
100 COMPCODE_ORD = 7,
101 COMPCODE_UNORD = 8,
102 COMPCODE_UNLT = 9,
103 COMPCODE_UNEQ = 10,
104 COMPCODE_UNLE = 11,
105 COMPCODE_UNGT = 12,
106 COMPCODE_NE = 13,
107 COMPCODE_UNGE = 14,
108 COMPCODE_TRUE = 15
111 static bool negate_expr_p (tree);
112 static tree negate_expr (tree);
113 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
114 static enum comparison_code comparison_to_compcode (enum tree_code);
115 static enum tree_code compcode_to_comparison (enum comparison_code);
116 static int twoval_comparison_p (tree, tree *, tree *, int *);
117 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
118 static tree optimize_bit_field_compare (location_t, enum tree_code,
119 tree, tree, tree);
120 static int simple_operand_p (const_tree);
121 static bool simple_operand_p_2 (tree);
122 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
123 static tree range_predecessor (tree);
124 static tree range_successor (tree);
125 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
126 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
127 static tree unextend (tree, int, int, tree);
128 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
129 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
130 static tree fold_binary_op_with_conditional_arg (location_t,
131 enum tree_code, tree,
132 tree, tree,
133 tree, tree, int);
134 static tree fold_negate_const (tree, tree);
135 static tree fold_not_const (const_tree, tree);
136 static tree fold_relational_const (enum tree_code, tree, tree, tree);
137 static tree fold_convert_const (enum tree_code, tree, tree);
138 static tree fold_view_convert_expr (tree, tree);
139 static tree fold_negate_expr (location_t, tree);
142 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
143 Otherwise, return LOC. */
145 static location_t
146 expr_location_or (tree t, location_t loc)
148 location_t tloc = EXPR_LOCATION (t);
149 return tloc == UNKNOWN_LOCATION ? loc : tloc;
152 /* Similar to protected_set_expr_location, but never modify x in place,
153 if location can and needs to be set, unshare it. */
155 static inline tree
156 protected_set_expr_location_unshare (tree x, location_t loc)
158 if (CAN_HAVE_LOCATION_P (x)
159 && EXPR_LOCATION (x) != loc
160 && !(TREE_CODE (x) == SAVE_EXPR
161 || TREE_CODE (x) == TARGET_EXPR
162 || TREE_CODE (x) == BIND_EXPR))
164 x = copy_node (x);
165 SET_EXPR_LOCATION (x, loc);
167 return x;
170 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
171 division and returns the quotient. Otherwise returns
172 NULL_TREE. */
174 tree
175 div_if_zero_remainder (const_tree arg1, const_tree arg2)
177 widest_int quo;
179 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
180 SIGNED, &quo))
181 return wide_int_to_tree (TREE_TYPE (arg1), quo);
183 return NULL_TREE;
186 /* This is nonzero if we should defer warnings about undefined
187 overflow. This facility exists because these warnings are a
188 special case. The code to estimate loop iterations does not want
189 to issue any warnings, since it works with expressions which do not
190 occur in user code. Various bits of cleanup code call fold(), but
191 only use the result if it has certain characteristics (e.g., is a
192 constant); that code only wants to issue a warning if the result is
193 used. */
195 static int fold_deferring_overflow_warnings;
197 /* If a warning about undefined overflow is deferred, this is the
198 warning. Note that this may cause us to turn two warnings into
199 one, but that is fine since it is sufficient to only give one
200 warning per expression. */
202 static const char* fold_deferred_overflow_warning;
204 /* If a warning about undefined overflow is deferred, this is the
205 level at which the warning should be emitted. */
207 static enum warn_strict_overflow_code fold_deferred_overflow_code;
209 /* Start deferring overflow warnings. We could use a stack here to
210 permit nested calls, but at present it is not necessary. */
212 void
213 fold_defer_overflow_warnings (void)
215 ++fold_deferring_overflow_warnings;
218 /* Stop deferring overflow warnings. If there is a pending warning,
219 and ISSUE is true, then issue the warning if appropriate. STMT is
220 the statement with which the warning should be associated (used for
221 location information); STMT may be NULL. CODE is the level of the
222 warning--a warn_strict_overflow_code value. This function will use
223 the smaller of CODE and the deferred code when deciding whether to
224 issue the warning. CODE may be zero to mean to always use the
225 deferred code. */
227 void
228 fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code)
230 const char *warnmsg;
231 location_t locus;
233 gcc_assert (fold_deferring_overflow_warnings > 0);
234 --fold_deferring_overflow_warnings;
235 if (fold_deferring_overflow_warnings > 0)
237 if (fold_deferred_overflow_warning != NULL
238 && code != 0
239 && code < (int) fold_deferred_overflow_code)
240 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
241 return;
244 warnmsg = fold_deferred_overflow_warning;
245 fold_deferred_overflow_warning = NULL;
247 if (!issue || warnmsg == NULL)
248 return;
250 if (gimple_no_warning_p (stmt))
251 return;
253 /* Use the smallest code level when deciding to issue the
254 warning. */
255 if (code == 0 || code > (int) fold_deferred_overflow_code)
256 code = fold_deferred_overflow_code;
258 if (!issue_strict_overflow_warning (code))
259 return;
261 if (stmt == NULL)
262 locus = input_location;
263 else
264 locus = gimple_location (stmt);
265 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
268 /* Stop deferring overflow warnings, ignoring any deferred
269 warnings. */
271 void
272 fold_undefer_and_ignore_overflow_warnings (void)
274 fold_undefer_overflow_warnings (false, NULL, 0);
277 /* Whether we are deferring overflow warnings. */
279 bool
280 fold_deferring_overflow_warnings_p (void)
282 return fold_deferring_overflow_warnings > 0;
285 /* This is called when we fold something based on the fact that signed
286 overflow is undefined. */
288 void
289 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
291 if (fold_deferring_overflow_warnings > 0)
293 if (fold_deferred_overflow_warning == NULL
294 || wc < fold_deferred_overflow_code)
296 fold_deferred_overflow_warning = gmsgid;
297 fold_deferred_overflow_code = wc;
300 else if (issue_strict_overflow_warning (wc))
301 warning (OPT_Wstrict_overflow, gmsgid);
304 /* Return true if the built-in mathematical function specified by CODE
305 is odd, i.e. -f(x) == f(-x). */
307 bool
308 negate_mathfn_p (combined_fn fn)
310 switch (fn)
312 CASE_CFN_ASIN:
313 CASE_CFN_ASINH:
314 CASE_CFN_ATAN:
315 CASE_CFN_ATANH:
316 CASE_CFN_CASIN:
317 CASE_CFN_CASINH:
318 CASE_CFN_CATAN:
319 CASE_CFN_CATANH:
320 CASE_CFN_CBRT:
321 CASE_CFN_CPROJ:
322 CASE_CFN_CSIN:
323 CASE_CFN_CSINH:
324 CASE_CFN_CTAN:
325 CASE_CFN_CTANH:
326 CASE_CFN_ERF:
327 CASE_CFN_LLROUND:
328 CASE_CFN_LROUND:
329 CASE_CFN_ROUND:
330 CASE_CFN_SIN:
331 CASE_CFN_SINH:
332 CASE_CFN_TAN:
333 CASE_CFN_TANH:
334 CASE_CFN_TRUNC:
335 return true;
337 CASE_CFN_LLRINT:
338 CASE_CFN_LRINT:
339 CASE_CFN_NEARBYINT:
340 CASE_CFN_RINT:
341 return !flag_rounding_math;
343 default:
344 break;
346 return false;
349 /* Check whether we may negate an integer constant T without causing
350 overflow. */
352 bool
353 may_negate_without_overflow_p (const_tree t)
355 tree type;
357 gcc_assert (TREE_CODE (t) == INTEGER_CST);
359 type = TREE_TYPE (t);
360 if (TYPE_UNSIGNED (type))
361 return false;
363 return !wi::only_sign_bit_p (t);
366 /* Determine whether an expression T can be cheaply negated using
367 the function negate_expr without introducing undefined overflow. */
369 static bool
370 negate_expr_p (tree t)
372 tree type;
374 if (t == 0)
375 return false;
377 type = TREE_TYPE (t);
379 STRIP_SIGN_NOPS (t);
380 switch (TREE_CODE (t))
382 case INTEGER_CST:
383 if (INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type))
384 return true;
386 /* Check that -CST will not overflow type. */
387 return may_negate_without_overflow_p (t);
388 case BIT_NOT_EXPR:
389 return (INTEGRAL_TYPE_P (type)
390 && TYPE_OVERFLOW_WRAPS (type));
392 case FIXED_CST:
393 return true;
395 case NEGATE_EXPR:
396 return !TYPE_OVERFLOW_SANITIZED (type);
398 case REAL_CST:
399 /* We want to canonicalize to positive real constants. Pretend
400 that only negative ones can be easily negated. */
401 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
403 case COMPLEX_CST:
404 return negate_expr_p (TREE_REALPART (t))
405 && negate_expr_p (TREE_IMAGPART (t));
407 case VECTOR_CST:
409 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
410 return true;
412 int count = VECTOR_CST_NELTS (t), i;
414 for (i = 0; i < count; i++)
415 if (!negate_expr_p (VECTOR_CST_ELT (t, i)))
416 return false;
418 return true;
421 case COMPLEX_EXPR:
422 return negate_expr_p (TREE_OPERAND (t, 0))
423 && negate_expr_p (TREE_OPERAND (t, 1));
425 case CONJ_EXPR:
426 return negate_expr_p (TREE_OPERAND (t, 0));
428 case PLUS_EXPR:
429 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
430 || HONOR_SIGNED_ZEROS (element_mode (type))
431 || (INTEGRAL_TYPE_P (type)
432 && ! TYPE_OVERFLOW_WRAPS (type)))
433 return false;
434 /* -(A + B) -> (-B) - A. */
435 if (negate_expr_p (TREE_OPERAND (t, 1)))
436 return true;
437 /* -(A + B) -> (-A) - B. */
438 return negate_expr_p (TREE_OPERAND (t, 0));
440 case MINUS_EXPR:
441 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
442 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
443 && !HONOR_SIGNED_ZEROS (element_mode (type))
444 && (! INTEGRAL_TYPE_P (type)
445 || TYPE_OVERFLOW_WRAPS (type));
447 case MULT_EXPR:
448 if (TYPE_UNSIGNED (type))
449 break;
450 /* INT_MIN/n * n doesn't overflow while negating one operand it does
451 if n is a (negative) power of two. */
452 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
453 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
454 && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
455 && wi::popcount (wi::abs (TREE_OPERAND (t, 0))) != 1)
456 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
457 && wi::popcount (wi::abs (TREE_OPERAND (t, 1))) != 1)))
458 break;
460 /* Fall through. */
462 case RDIV_EXPR:
463 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
464 return negate_expr_p (TREE_OPERAND (t, 1))
465 || negate_expr_p (TREE_OPERAND (t, 0));
466 break;
468 case TRUNC_DIV_EXPR:
469 case ROUND_DIV_EXPR:
470 case EXACT_DIV_EXPR:
471 if (TYPE_UNSIGNED (type))
472 break;
473 if (negate_expr_p (TREE_OPERAND (t, 0)))
474 return true;
475 /* In general we can't negate B in A / B, because if A is INT_MIN and
476 B is 1, we may turn this into INT_MIN / -1 which is undefined
477 and actually traps on some architectures. */
478 if (! INTEGRAL_TYPE_P (TREE_TYPE (t))
479 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
480 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
481 && ! integer_onep (TREE_OPERAND (t, 1))))
482 return negate_expr_p (TREE_OPERAND (t, 1));
483 break;
485 case NOP_EXPR:
486 /* Negate -((double)float) as (double)(-float). */
487 if (TREE_CODE (type) == REAL_TYPE)
489 tree tem = strip_float_extensions (t);
490 if (tem != t)
491 return negate_expr_p (tem);
493 break;
495 case CALL_EXPR:
496 /* Negate -f(x) as f(-x). */
497 if (negate_mathfn_p (get_call_combined_fn (t)))
498 return negate_expr_p (CALL_EXPR_ARG (t, 0));
499 break;
501 case RSHIFT_EXPR:
502 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
503 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
505 tree op1 = TREE_OPERAND (t, 1);
506 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
507 return true;
509 break;
511 default:
512 break;
514 return false;
517 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
518 simplification is possible.
519 If negate_expr_p would return true for T, NULL_TREE will never be
520 returned. */
522 static tree
523 fold_negate_expr_1 (location_t loc, tree t)
525 tree type = TREE_TYPE (t);
526 tree tem;
528 switch (TREE_CODE (t))
530 /* Convert - (~A) to A + 1. */
531 case BIT_NOT_EXPR:
532 if (INTEGRAL_TYPE_P (type))
533 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
534 build_one_cst (type));
535 break;
537 case INTEGER_CST:
538 tem = fold_negate_const (t, type);
539 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
540 || (ANY_INTEGRAL_TYPE_P (type)
541 && !TYPE_OVERFLOW_TRAPS (type)
542 && TYPE_OVERFLOW_WRAPS (type))
543 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
544 return tem;
545 break;
547 case REAL_CST:
548 tem = fold_negate_const (t, type);
549 return tem;
551 case FIXED_CST:
552 tem = fold_negate_const (t, type);
553 return tem;
555 case COMPLEX_CST:
557 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
558 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
559 if (rpart && ipart)
560 return build_complex (type, rpart, ipart);
562 break;
564 case VECTOR_CST:
566 int count = VECTOR_CST_NELTS (t), i;
568 auto_vec<tree, 32> elts (count);
569 for (i = 0; i < count; i++)
571 tree elt = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
572 if (elt == NULL_TREE)
573 return NULL_TREE;
574 elts.quick_push (elt);
577 return build_vector (type, elts);
580 case COMPLEX_EXPR:
581 if (negate_expr_p (t))
582 return fold_build2_loc (loc, COMPLEX_EXPR, type,
583 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
584 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
585 break;
587 case CONJ_EXPR:
588 if (negate_expr_p (t))
589 return fold_build1_loc (loc, CONJ_EXPR, type,
590 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
591 break;
593 case NEGATE_EXPR:
594 if (!TYPE_OVERFLOW_SANITIZED (type))
595 return TREE_OPERAND (t, 0);
596 break;
598 case PLUS_EXPR:
599 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
600 && !HONOR_SIGNED_ZEROS (element_mode (type)))
602 /* -(A + B) -> (-B) - A. */
603 if (negate_expr_p (TREE_OPERAND (t, 1)))
605 tem = negate_expr (TREE_OPERAND (t, 1));
606 return fold_build2_loc (loc, MINUS_EXPR, type,
607 tem, TREE_OPERAND (t, 0));
610 /* -(A + B) -> (-A) - B. */
611 if (negate_expr_p (TREE_OPERAND (t, 0)))
613 tem = negate_expr (TREE_OPERAND (t, 0));
614 return fold_build2_loc (loc, MINUS_EXPR, type,
615 tem, TREE_OPERAND (t, 1));
618 break;
620 case MINUS_EXPR:
621 /* - (A - B) -> B - A */
622 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
623 && !HONOR_SIGNED_ZEROS (element_mode (type)))
624 return fold_build2_loc (loc, MINUS_EXPR, type,
625 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
626 break;
628 case MULT_EXPR:
629 if (TYPE_UNSIGNED (type))
630 break;
632 /* Fall through. */
634 case RDIV_EXPR:
635 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
637 tem = TREE_OPERAND (t, 1);
638 if (negate_expr_p (tem))
639 return fold_build2_loc (loc, TREE_CODE (t), type,
640 TREE_OPERAND (t, 0), negate_expr (tem));
641 tem = TREE_OPERAND (t, 0);
642 if (negate_expr_p (tem))
643 return fold_build2_loc (loc, TREE_CODE (t), type,
644 negate_expr (tem), TREE_OPERAND (t, 1));
646 break;
648 case TRUNC_DIV_EXPR:
649 case ROUND_DIV_EXPR:
650 case EXACT_DIV_EXPR:
651 if (TYPE_UNSIGNED (type))
652 break;
653 if (negate_expr_p (TREE_OPERAND (t, 0)))
654 return fold_build2_loc (loc, TREE_CODE (t), type,
655 negate_expr (TREE_OPERAND (t, 0)),
656 TREE_OPERAND (t, 1));
657 /* In general we can't negate B in A / B, because if A is INT_MIN and
658 B is 1, we may turn this into INT_MIN / -1 which is undefined
659 and actually traps on some architectures. */
660 if ((! INTEGRAL_TYPE_P (TREE_TYPE (t))
661 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
662 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
663 && ! integer_onep (TREE_OPERAND (t, 1))))
664 && negate_expr_p (TREE_OPERAND (t, 1)))
665 return fold_build2_loc (loc, TREE_CODE (t), type,
666 TREE_OPERAND (t, 0),
667 negate_expr (TREE_OPERAND (t, 1)));
668 break;
670 case NOP_EXPR:
671 /* Convert -((double)float) into (double)(-float). */
672 if (TREE_CODE (type) == REAL_TYPE)
674 tem = strip_float_extensions (t);
675 if (tem != t && negate_expr_p (tem))
676 return fold_convert_loc (loc, type, negate_expr (tem));
678 break;
680 case CALL_EXPR:
681 /* Negate -f(x) as f(-x). */
682 if (negate_mathfn_p (get_call_combined_fn (t))
683 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
685 tree fndecl, arg;
687 fndecl = get_callee_fndecl (t);
688 arg = negate_expr (CALL_EXPR_ARG (t, 0));
689 return build_call_expr_loc (loc, fndecl, 1, arg);
691 break;
693 case RSHIFT_EXPR:
694 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
695 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
697 tree op1 = TREE_OPERAND (t, 1);
698 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
700 tree ntype = TYPE_UNSIGNED (type)
701 ? signed_type_for (type)
702 : unsigned_type_for (type);
703 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
704 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
705 return fold_convert_loc (loc, type, temp);
708 break;
710 default:
711 break;
714 return NULL_TREE;
717 /* A wrapper for fold_negate_expr_1. */
719 static tree
720 fold_negate_expr (location_t loc, tree t)
722 tree type = TREE_TYPE (t);
723 STRIP_SIGN_NOPS (t);
724 tree tem = fold_negate_expr_1 (loc, t);
725 if (tem == NULL_TREE)
726 return NULL_TREE;
727 return fold_convert_loc (loc, type, tem);
730 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
731 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
732 return NULL_TREE. */
734 static tree
735 negate_expr (tree t)
737 tree type, tem;
738 location_t loc;
740 if (t == NULL_TREE)
741 return NULL_TREE;
743 loc = EXPR_LOCATION (t);
744 type = TREE_TYPE (t);
745 STRIP_SIGN_NOPS (t);
747 tem = fold_negate_expr (loc, t);
748 if (!tem)
749 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
750 return fold_convert_loc (loc, type, tem);
753 /* Split a tree IN into a constant, literal and variable parts that could be
754 combined with CODE to make IN. "constant" means an expression with
755 TREE_CONSTANT but that isn't an actual constant. CODE must be a
756 commutative arithmetic operation. Store the constant part into *CONP,
757 the literal in *LITP and return the variable part. If a part isn't
758 present, set it to null. If the tree does not decompose in this way,
759 return the entire tree as the variable part and the other parts as null.
761 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
762 case, we negate an operand that was subtracted. Except if it is a
763 literal for which we use *MINUS_LITP instead.
765 If NEGATE_P is true, we are negating all of IN, again except a literal
766 for which we use *MINUS_LITP instead. If a variable part is of pointer
767 type, it is negated after converting to TYPE. This prevents us from
768 generating illegal MINUS pointer expression. LOC is the location of
769 the converted variable part.
771 If IN is itself a literal or constant, return it as appropriate.
773 Note that we do not guarantee that any of the three values will be the
774 same type as IN, but they will have the same signedness and mode. */
776 static tree
777 split_tree (tree in, tree type, enum tree_code code,
778 tree *minus_varp, tree *conp, tree *minus_conp,
779 tree *litp, tree *minus_litp, int negate_p)
781 tree var = 0;
782 *minus_varp = 0;
783 *conp = 0;
784 *minus_conp = 0;
785 *litp = 0;
786 *minus_litp = 0;
788 /* Strip any conversions that don't change the machine mode or signedness. */
789 STRIP_SIGN_NOPS (in);
791 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
792 || TREE_CODE (in) == FIXED_CST)
793 *litp = in;
794 else if (TREE_CODE (in) == code
795 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
796 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
797 /* We can associate addition and subtraction together (even
798 though the C standard doesn't say so) for integers because
799 the value is not affected. For reals, the value might be
800 affected, so we can't. */
801 && ((code == PLUS_EXPR && TREE_CODE (in) == POINTER_PLUS_EXPR)
802 || (code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
803 || (code == MINUS_EXPR
804 && (TREE_CODE (in) == PLUS_EXPR
805 || TREE_CODE (in) == POINTER_PLUS_EXPR)))))
807 tree op0 = TREE_OPERAND (in, 0);
808 tree op1 = TREE_OPERAND (in, 1);
809 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
810 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
812 /* First see if either of the operands is a literal, then a constant. */
813 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
814 || TREE_CODE (op0) == FIXED_CST)
815 *litp = op0, op0 = 0;
816 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
817 || TREE_CODE (op1) == FIXED_CST)
818 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
820 if (op0 != 0 && TREE_CONSTANT (op0))
821 *conp = op0, op0 = 0;
822 else if (op1 != 0 && TREE_CONSTANT (op1))
823 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
825 /* If we haven't dealt with either operand, this is not a case we can
826 decompose. Otherwise, VAR is either of the ones remaining, if any. */
827 if (op0 != 0 && op1 != 0)
828 var = in;
829 else if (op0 != 0)
830 var = op0;
831 else
832 var = op1, neg_var_p = neg1_p;
834 /* Now do any needed negations. */
835 if (neg_litp_p)
836 *minus_litp = *litp, *litp = 0;
837 if (neg_conp_p && *conp)
838 *minus_conp = *conp, *conp = 0;
839 if (neg_var_p && var)
840 *minus_varp = var, var = 0;
842 else if (TREE_CONSTANT (in))
843 *conp = in;
844 else if (TREE_CODE (in) == BIT_NOT_EXPR
845 && code == PLUS_EXPR)
847 /* -1 - X is folded to ~X, undo that here. Do _not_ do this
848 when IN is constant. */
849 *litp = build_minus_one_cst (type);
850 *minus_varp = TREE_OPERAND (in, 0);
852 else
853 var = in;
855 if (negate_p)
857 if (*litp)
858 *minus_litp = *litp, *litp = 0;
859 else if (*minus_litp)
860 *litp = *minus_litp, *minus_litp = 0;
861 if (*conp)
862 *minus_conp = *conp, *conp = 0;
863 else if (*minus_conp)
864 *conp = *minus_conp, *minus_conp = 0;
865 if (var)
866 *minus_varp = var, var = 0;
867 else if (*minus_varp)
868 var = *minus_varp, *minus_varp = 0;
871 if (*litp
872 && TREE_OVERFLOW_P (*litp))
873 *litp = drop_tree_overflow (*litp);
874 if (*minus_litp
875 && TREE_OVERFLOW_P (*minus_litp))
876 *minus_litp = drop_tree_overflow (*minus_litp);
878 return var;
881 /* Re-associate trees split by the above function. T1 and T2 are
882 either expressions to associate or null. Return the new
883 expression, if any. LOC is the location of the new expression. If
884 we build an operation, do it in TYPE and with CODE. */
886 static tree
887 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
889 if (t1 == 0)
891 gcc_assert (t2 == 0 || code != MINUS_EXPR);
892 return t2;
894 else if (t2 == 0)
895 return t1;
897 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
898 try to fold this since we will have infinite recursion. But do
899 deal with any NEGATE_EXPRs. */
900 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
901 || TREE_CODE (t1) == PLUS_EXPR || TREE_CODE (t2) == PLUS_EXPR
902 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
904 if (code == PLUS_EXPR)
906 if (TREE_CODE (t1) == NEGATE_EXPR)
907 return build2_loc (loc, MINUS_EXPR, type,
908 fold_convert_loc (loc, type, t2),
909 fold_convert_loc (loc, type,
910 TREE_OPERAND (t1, 0)));
911 else if (TREE_CODE (t2) == NEGATE_EXPR)
912 return build2_loc (loc, MINUS_EXPR, type,
913 fold_convert_loc (loc, type, t1),
914 fold_convert_loc (loc, type,
915 TREE_OPERAND (t2, 0)));
916 else if (integer_zerop (t2))
917 return fold_convert_loc (loc, type, t1);
919 else if (code == MINUS_EXPR)
921 if (integer_zerop (t2))
922 return fold_convert_loc (loc, type, t1);
925 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
926 fold_convert_loc (loc, type, t2));
929 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
930 fold_convert_loc (loc, type, t2));
933 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
934 for use in int_const_binop, size_binop and size_diffop. */
936 static bool
937 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
939 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
940 return false;
941 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
942 return false;
944 switch (code)
946 case LSHIFT_EXPR:
947 case RSHIFT_EXPR:
948 case LROTATE_EXPR:
949 case RROTATE_EXPR:
950 return true;
952 default:
953 break;
956 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
957 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
958 && TYPE_MODE (type1) == TYPE_MODE (type2);
962 /* Combine two integer constants ARG1 and ARG2 under operation CODE
963 to produce a new constant. Return NULL_TREE if we don't know how
964 to evaluate CODE at compile-time. */
966 static tree
967 int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree parg2,
968 int overflowable)
970 wide_int res;
971 tree t;
972 tree type = TREE_TYPE (arg1);
973 signop sign = TYPE_SIGN (type);
974 bool overflow = false;
976 wide_int arg2 = wi::to_wide (parg2, TYPE_PRECISION (type));
978 switch (code)
980 case BIT_IOR_EXPR:
981 res = wi::bit_or (arg1, arg2);
982 break;
984 case BIT_XOR_EXPR:
985 res = wi::bit_xor (arg1, arg2);
986 break;
988 case BIT_AND_EXPR:
989 res = wi::bit_and (arg1, arg2);
990 break;
992 case RSHIFT_EXPR:
993 case LSHIFT_EXPR:
994 if (wi::neg_p (arg2))
996 arg2 = -arg2;
997 if (code == RSHIFT_EXPR)
998 code = LSHIFT_EXPR;
999 else
1000 code = RSHIFT_EXPR;
1003 if (code == RSHIFT_EXPR)
1004 /* It's unclear from the C standard whether shifts can overflow.
1005 The following code ignores overflow; perhaps a C standard
1006 interpretation ruling is needed. */
1007 res = wi::rshift (arg1, arg2, sign);
1008 else
1009 res = wi::lshift (arg1, arg2);
1010 break;
1012 case RROTATE_EXPR:
1013 case LROTATE_EXPR:
1014 if (wi::neg_p (arg2))
1016 arg2 = -arg2;
1017 if (code == RROTATE_EXPR)
1018 code = LROTATE_EXPR;
1019 else
1020 code = RROTATE_EXPR;
1023 if (code == RROTATE_EXPR)
1024 res = wi::rrotate (arg1, arg2);
1025 else
1026 res = wi::lrotate (arg1, arg2);
1027 break;
1029 case PLUS_EXPR:
1030 res = wi::add (arg1, arg2, sign, &overflow);
1031 break;
1033 case MINUS_EXPR:
1034 res = wi::sub (arg1, arg2, sign, &overflow);
1035 break;
1037 case MULT_EXPR:
1038 res = wi::mul (arg1, arg2, sign, &overflow);
1039 break;
1041 case MULT_HIGHPART_EXPR:
1042 res = wi::mul_high (arg1, arg2, sign);
1043 break;
1045 case TRUNC_DIV_EXPR:
1046 case EXACT_DIV_EXPR:
1047 if (arg2 == 0)
1048 return NULL_TREE;
1049 res = wi::div_trunc (arg1, arg2, sign, &overflow);
1050 break;
1052 case FLOOR_DIV_EXPR:
1053 if (arg2 == 0)
1054 return NULL_TREE;
1055 res = wi::div_floor (arg1, arg2, sign, &overflow);
1056 break;
1058 case CEIL_DIV_EXPR:
1059 if (arg2 == 0)
1060 return NULL_TREE;
1061 res = wi::div_ceil (arg1, arg2, sign, &overflow);
1062 break;
1064 case ROUND_DIV_EXPR:
1065 if (arg2 == 0)
1066 return NULL_TREE;
1067 res = wi::div_round (arg1, arg2, sign, &overflow);
1068 break;
1070 case TRUNC_MOD_EXPR:
1071 if (arg2 == 0)
1072 return NULL_TREE;
1073 res = wi::mod_trunc (arg1, arg2, sign, &overflow);
1074 break;
1076 case FLOOR_MOD_EXPR:
1077 if (arg2 == 0)
1078 return NULL_TREE;
1079 res = wi::mod_floor (arg1, arg2, sign, &overflow);
1080 break;
1082 case CEIL_MOD_EXPR:
1083 if (arg2 == 0)
1084 return NULL_TREE;
1085 res = wi::mod_ceil (arg1, arg2, sign, &overflow);
1086 break;
1088 case ROUND_MOD_EXPR:
1089 if (arg2 == 0)
1090 return NULL_TREE;
1091 res = wi::mod_round (arg1, arg2, sign, &overflow);
1092 break;
1094 case MIN_EXPR:
1095 res = wi::min (arg1, arg2, sign);
1096 break;
1098 case MAX_EXPR:
1099 res = wi::max (arg1, arg2, sign);
1100 break;
1102 default:
1103 return NULL_TREE;
1106 t = force_fit_type (type, res, overflowable,
1107 (((sign == SIGNED || overflowable == -1)
1108 && overflow)
1109 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (parg2)));
1111 return t;
1114 tree
1115 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
1117 return int_const_binop_1 (code, arg1, arg2, 1);
1120 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1121 constant. We assume ARG1 and ARG2 have the same data type, or at least
1122 are the same kind of constant and the same machine mode. Return zero if
1123 combining the constants is not allowed in the current operating mode. */
1125 static tree
1126 const_binop (enum tree_code code, tree arg1, tree arg2)
1128 /* Sanity check for the recursive cases. */
1129 if (!arg1 || !arg2)
1130 return NULL_TREE;
1132 STRIP_NOPS (arg1);
1133 STRIP_NOPS (arg2);
1135 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1137 if (code == POINTER_PLUS_EXPR)
1138 return int_const_binop (PLUS_EXPR,
1139 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1141 return int_const_binop (code, arg1, arg2);
1144 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1146 machine_mode mode;
1147 REAL_VALUE_TYPE d1;
1148 REAL_VALUE_TYPE d2;
1149 REAL_VALUE_TYPE value;
1150 REAL_VALUE_TYPE result;
1151 bool inexact;
1152 tree t, type;
1154 /* The following codes are handled by real_arithmetic. */
1155 switch (code)
1157 case PLUS_EXPR:
1158 case MINUS_EXPR:
1159 case MULT_EXPR:
1160 case RDIV_EXPR:
1161 case MIN_EXPR:
1162 case MAX_EXPR:
1163 break;
1165 default:
1166 return NULL_TREE;
1169 d1 = TREE_REAL_CST (arg1);
1170 d2 = TREE_REAL_CST (arg2);
1172 type = TREE_TYPE (arg1);
1173 mode = TYPE_MODE (type);
1175 /* Don't perform operation if we honor signaling NaNs and
1176 either operand is a signaling NaN. */
1177 if (HONOR_SNANS (mode)
1178 && (REAL_VALUE_ISSIGNALING_NAN (d1)
1179 || REAL_VALUE_ISSIGNALING_NAN (d2)))
1180 return NULL_TREE;
1182 /* Don't perform operation if it would raise a division
1183 by zero exception. */
1184 if (code == RDIV_EXPR
1185 && real_equal (&d2, &dconst0)
1186 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1187 return NULL_TREE;
1189 /* If either operand is a NaN, just return it. Otherwise, set up
1190 for floating-point trap; we return an overflow. */
1191 if (REAL_VALUE_ISNAN (d1))
1193 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1194 is off. */
1195 d1.signalling = 0;
1196 t = build_real (type, d1);
1197 return t;
1199 else if (REAL_VALUE_ISNAN (d2))
1201 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1202 is off. */
1203 d2.signalling = 0;
1204 t = build_real (type, d2);
1205 return t;
1208 inexact = real_arithmetic (&value, code, &d1, &d2);
1209 real_convert (&result, mode, &value);
1211 /* Don't constant fold this floating point operation if
1212 the result has overflowed and flag_trapping_math. */
1213 if (flag_trapping_math
1214 && MODE_HAS_INFINITIES (mode)
1215 && REAL_VALUE_ISINF (result)
1216 && !REAL_VALUE_ISINF (d1)
1217 && !REAL_VALUE_ISINF (d2))
1218 return NULL_TREE;
1220 /* Don't constant fold this floating point operation if the
1221 result may dependent upon the run-time rounding mode and
1222 flag_rounding_math is set, or if GCC's software emulation
1223 is unable to accurately represent the result. */
1224 if ((flag_rounding_math
1225 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1226 && (inexact || !real_identical (&result, &value)))
1227 return NULL_TREE;
1229 t = build_real (type, result);
1231 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1232 return t;
1235 if (TREE_CODE (arg1) == FIXED_CST)
1237 FIXED_VALUE_TYPE f1;
1238 FIXED_VALUE_TYPE f2;
1239 FIXED_VALUE_TYPE result;
1240 tree t, type;
1241 int sat_p;
1242 bool overflow_p;
1244 /* The following codes are handled by fixed_arithmetic. */
1245 switch (code)
1247 case PLUS_EXPR:
1248 case MINUS_EXPR:
1249 case MULT_EXPR:
1250 case TRUNC_DIV_EXPR:
1251 if (TREE_CODE (arg2) != FIXED_CST)
1252 return NULL_TREE;
1253 f2 = TREE_FIXED_CST (arg2);
1254 break;
1256 case LSHIFT_EXPR:
1257 case RSHIFT_EXPR:
1259 if (TREE_CODE (arg2) != INTEGER_CST)
1260 return NULL_TREE;
1261 wide_int w2 = arg2;
1262 f2.data.high = w2.elt (1);
1263 f2.data.low = w2.ulow ();
1264 f2.mode = SImode;
1266 break;
1268 default:
1269 return NULL_TREE;
1272 f1 = TREE_FIXED_CST (arg1);
1273 type = TREE_TYPE (arg1);
1274 sat_p = TYPE_SATURATING (type);
1275 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1276 t = build_fixed (type, result);
1277 /* Propagate overflow flags. */
1278 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1279 TREE_OVERFLOW (t) = 1;
1280 return t;
1283 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1285 tree type = TREE_TYPE (arg1);
1286 tree r1 = TREE_REALPART (arg1);
1287 tree i1 = TREE_IMAGPART (arg1);
1288 tree r2 = TREE_REALPART (arg2);
1289 tree i2 = TREE_IMAGPART (arg2);
1290 tree real, imag;
1292 switch (code)
1294 case PLUS_EXPR:
1295 case MINUS_EXPR:
1296 real = const_binop (code, r1, r2);
1297 imag = const_binop (code, i1, i2);
1298 break;
1300 case MULT_EXPR:
1301 if (COMPLEX_FLOAT_TYPE_P (type))
1302 return do_mpc_arg2 (arg1, arg2, type,
1303 /* do_nonfinite= */ folding_initializer,
1304 mpc_mul);
1306 real = const_binop (MINUS_EXPR,
1307 const_binop (MULT_EXPR, r1, r2),
1308 const_binop (MULT_EXPR, i1, i2));
1309 imag = const_binop (PLUS_EXPR,
1310 const_binop (MULT_EXPR, r1, i2),
1311 const_binop (MULT_EXPR, i1, r2));
1312 break;
1314 case RDIV_EXPR:
1315 if (COMPLEX_FLOAT_TYPE_P (type))
1316 return do_mpc_arg2 (arg1, arg2, type,
1317 /* do_nonfinite= */ folding_initializer,
1318 mpc_div);
1319 /* Fallthru. */
1320 case TRUNC_DIV_EXPR:
1321 case CEIL_DIV_EXPR:
1322 case FLOOR_DIV_EXPR:
1323 case ROUND_DIV_EXPR:
1324 if (flag_complex_method == 0)
1326 /* Keep this algorithm in sync with
1327 tree-complex.c:expand_complex_div_straight().
1329 Expand complex division to scalars, straightforward algorithm.
1330 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1331 t = br*br + bi*bi
1333 tree magsquared
1334 = const_binop (PLUS_EXPR,
1335 const_binop (MULT_EXPR, r2, r2),
1336 const_binop (MULT_EXPR, i2, i2));
1337 tree t1
1338 = const_binop (PLUS_EXPR,
1339 const_binop (MULT_EXPR, r1, r2),
1340 const_binop (MULT_EXPR, i1, i2));
1341 tree t2
1342 = const_binop (MINUS_EXPR,
1343 const_binop (MULT_EXPR, i1, r2),
1344 const_binop (MULT_EXPR, r1, i2));
1346 real = const_binop (code, t1, magsquared);
1347 imag = const_binop (code, t2, magsquared);
1349 else
1351 /* Keep this algorithm in sync with
1352 tree-complex.c:expand_complex_div_wide().
1354 Expand complex division to scalars, modified algorithm to minimize
1355 overflow with wide input ranges. */
1356 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1357 fold_abs_const (r2, TREE_TYPE (type)),
1358 fold_abs_const (i2, TREE_TYPE (type)));
1360 if (integer_nonzerop (compare))
1362 /* In the TRUE branch, we compute
1363 ratio = br/bi;
1364 div = (br * ratio) + bi;
1365 tr = (ar * ratio) + ai;
1366 ti = (ai * ratio) - ar;
1367 tr = tr / div;
1368 ti = ti / div; */
1369 tree ratio = const_binop (code, r2, i2);
1370 tree div = const_binop (PLUS_EXPR, i2,
1371 const_binop (MULT_EXPR, r2, ratio));
1372 real = const_binop (MULT_EXPR, r1, ratio);
1373 real = const_binop (PLUS_EXPR, real, i1);
1374 real = const_binop (code, real, div);
1376 imag = const_binop (MULT_EXPR, i1, ratio);
1377 imag = const_binop (MINUS_EXPR, imag, r1);
1378 imag = const_binop (code, imag, div);
1380 else
1382 /* In the FALSE branch, we compute
1383 ratio = d/c;
1384 divisor = (d * ratio) + c;
1385 tr = (b * ratio) + a;
1386 ti = b - (a * ratio);
1387 tr = tr / div;
1388 ti = ti / div; */
1389 tree ratio = const_binop (code, i2, r2);
1390 tree div = const_binop (PLUS_EXPR, r2,
1391 const_binop (MULT_EXPR, i2, ratio));
1393 real = const_binop (MULT_EXPR, i1, ratio);
1394 real = const_binop (PLUS_EXPR, real, r1);
1395 real = const_binop (code, real, div);
1397 imag = const_binop (MULT_EXPR, r1, ratio);
1398 imag = const_binop (MINUS_EXPR, i1, imag);
1399 imag = const_binop (code, imag, div);
1402 break;
1404 default:
1405 return NULL_TREE;
1408 if (real && imag)
1409 return build_complex (type, real, imag);
1412 if (TREE_CODE (arg1) == VECTOR_CST
1413 && TREE_CODE (arg2) == VECTOR_CST)
1415 tree type = TREE_TYPE (arg1);
1416 int count = VECTOR_CST_NELTS (arg1), i;
1418 auto_vec<tree, 32> elts (count);
1419 for (i = 0; i < count; i++)
1421 tree elem1 = VECTOR_CST_ELT (arg1, i);
1422 tree elem2 = VECTOR_CST_ELT (arg2, i);
1424 tree elt = const_binop (code, elem1, elem2);
1426 /* It is possible that const_binop cannot handle the given
1427 code and return NULL_TREE */
1428 if (elt == NULL_TREE)
1429 return NULL_TREE;
1430 elts.quick_push (elt);
1433 return build_vector (type, elts);
1436 /* Shifts allow a scalar offset for a vector. */
1437 if (TREE_CODE (arg1) == VECTOR_CST
1438 && TREE_CODE (arg2) == INTEGER_CST)
1440 tree type = TREE_TYPE (arg1);
1441 int count = VECTOR_CST_NELTS (arg1), i;
1443 auto_vec<tree, 32> elts (count);
1444 for (i = 0; i < count; i++)
1446 tree elem1 = VECTOR_CST_ELT (arg1, i);
1448 tree elt = const_binop (code, elem1, arg2);
1450 /* It is possible that const_binop cannot handle the given
1451 code and return NULL_TREE. */
1452 if (elt == NULL_TREE)
1453 return NULL_TREE;
1454 elts.quick_push (elt);
1457 return build_vector (type, elts);
1459 return NULL_TREE;
1462 /* Overload that adds a TYPE parameter to be able to dispatch
1463 to fold_relational_const. */
1465 tree
1466 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1468 if (TREE_CODE_CLASS (code) == tcc_comparison)
1469 return fold_relational_const (code, type, arg1, arg2);
1471 /* ??? Until we make the const_binop worker take the type of the
1472 result as argument put those cases that need it here. */
1473 switch (code)
1475 case COMPLEX_EXPR:
1476 if ((TREE_CODE (arg1) == REAL_CST
1477 && TREE_CODE (arg2) == REAL_CST)
1478 || (TREE_CODE (arg1) == INTEGER_CST
1479 && TREE_CODE (arg2) == INTEGER_CST))
1480 return build_complex (type, arg1, arg2);
1481 return NULL_TREE;
1483 case VEC_PACK_TRUNC_EXPR:
1484 case VEC_PACK_FIX_TRUNC_EXPR:
1486 unsigned int out_nelts, in_nelts, i;
1488 if (TREE_CODE (arg1) != VECTOR_CST
1489 || TREE_CODE (arg2) != VECTOR_CST)
1490 return NULL_TREE;
1492 in_nelts = VECTOR_CST_NELTS (arg1);
1493 out_nelts = in_nelts * 2;
1494 gcc_assert (in_nelts == VECTOR_CST_NELTS (arg2)
1495 && out_nelts == TYPE_VECTOR_SUBPARTS (type));
1497 auto_vec<tree, 32> elts (out_nelts);
1498 for (i = 0; i < out_nelts; i++)
1500 tree elt = (i < in_nelts
1501 ? VECTOR_CST_ELT (arg1, i)
1502 : VECTOR_CST_ELT (arg2, i - in_nelts));
1503 elt = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1504 ? NOP_EXPR : FIX_TRUNC_EXPR,
1505 TREE_TYPE (type), elt);
1506 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1507 return NULL_TREE;
1508 elts.quick_push (elt);
1511 return build_vector (type, elts);
1514 case VEC_WIDEN_MULT_LO_EXPR:
1515 case VEC_WIDEN_MULT_HI_EXPR:
1516 case VEC_WIDEN_MULT_EVEN_EXPR:
1517 case VEC_WIDEN_MULT_ODD_EXPR:
1519 unsigned int out_nelts, in_nelts, out, ofs, scale;
1521 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1522 return NULL_TREE;
1524 in_nelts = VECTOR_CST_NELTS (arg1);
1525 out_nelts = in_nelts / 2;
1526 gcc_assert (in_nelts == VECTOR_CST_NELTS (arg2)
1527 && out_nelts == TYPE_VECTOR_SUBPARTS (type));
1529 if (code == VEC_WIDEN_MULT_LO_EXPR)
1530 scale = 0, ofs = BYTES_BIG_ENDIAN ? out_nelts : 0;
1531 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1532 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : out_nelts;
1533 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1534 scale = 1, ofs = 0;
1535 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1536 scale = 1, ofs = 1;
1538 auto_vec<tree, 32> elts (out_nelts);
1539 for (out = 0; out < out_nelts; out++)
1541 unsigned int in = (out << scale) + ofs;
1542 tree t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type),
1543 VECTOR_CST_ELT (arg1, in));
1544 tree t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type),
1545 VECTOR_CST_ELT (arg2, in));
1547 if (t1 == NULL_TREE || t2 == NULL_TREE)
1548 return NULL_TREE;
1549 tree elt = const_binop (MULT_EXPR, t1, t2);
1550 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1551 return NULL_TREE;
1552 elts.quick_push (elt);
1555 return build_vector (type, elts);
1558 default:;
1561 if (TREE_CODE_CLASS (code) != tcc_binary)
1562 return NULL_TREE;
1564 /* Make sure type and arg0 have the same saturating flag. */
1565 gcc_checking_assert (TYPE_SATURATING (type)
1566 == TYPE_SATURATING (TREE_TYPE (arg1)));
1568 return const_binop (code, arg1, arg2);
1571 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1572 Return zero if computing the constants is not possible. */
1574 tree
1575 const_unop (enum tree_code code, tree type, tree arg0)
1577 /* Don't perform the operation, other than NEGATE and ABS, if
1578 flag_signaling_nans is on and the operand is a signaling NaN. */
1579 if (TREE_CODE (arg0) == REAL_CST
1580 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
1581 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0))
1582 && code != NEGATE_EXPR
1583 && code != ABS_EXPR)
1584 return NULL_TREE;
1586 switch (code)
1588 CASE_CONVERT:
1589 case FLOAT_EXPR:
1590 case FIX_TRUNC_EXPR:
1591 case FIXED_CONVERT_EXPR:
1592 return fold_convert_const (code, type, arg0);
1594 case ADDR_SPACE_CONVERT_EXPR:
1595 /* If the source address is 0, and the source address space
1596 cannot have a valid object at 0, fold to dest type null. */
1597 if (integer_zerop (arg0)
1598 && !(targetm.addr_space.zero_address_valid
1599 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))))))
1600 return fold_convert_const (code, type, arg0);
1601 break;
1603 case VIEW_CONVERT_EXPR:
1604 return fold_view_convert_expr (type, arg0);
1606 case NEGATE_EXPR:
1608 /* Can't call fold_negate_const directly here as that doesn't
1609 handle all cases and we might not be able to negate some
1610 constants. */
1611 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1612 if (tem && CONSTANT_CLASS_P (tem))
1613 return tem;
1614 break;
1617 case ABS_EXPR:
1618 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1619 return fold_abs_const (arg0, type);
1620 break;
1622 case CONJ_EXPR:
1623 if (TREE_CODE (arg0) == COMPLEX_CST)
1625 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1626 TREE_TYPE (type));
1627 return build_complex (type, TREE_REALPART (arg0), ipart);
1629 break;
1631 case BIT_NOT_EXPR:
1632 if (TREE_CODE (arg0) == INTEGER_CST)
1633 return fold_not_const (arg0, type);
1634 /* Perform BIT_NOT_EXPR on each element individually. */
1635 else if (TREE_CODE (arg0) == VECTOR_CST)
1637 tree elem;
1638 unsigned count = VECTOR_CST_NELTS (arg0), i;
1640 auto_vec<tree, 32> elements (count);
1641 for (i = 0; i < count; i++)
1643 elem = VECTOR_CST_ELT (arg0, i);
1644 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1645 if (elem == NULL_TREE)
1646 break;
1647 elements.quick_push (elem);
1649 if (i == count)
1650 return build_vector (type, elements);
1652 break;
1654 case TRUTH_NOT_EXPR:
1655 if (TREE_CODE (arg0) == INTEGER_CST)
1656 return constant_boolean_node (integer_zerop (arg0), type);
1657 break;
1659 case REALPART_EXPR:
1660 if (TREE_CODE (arg0) == COMPLEX_CST)
1661 return fold_convert (type, TREE_REALPART (arg0));
1662 break;
1664 case IMAGPART_EXPR:
1665 if (TREE_CODE (arg0) == COMPLEX_CST)
1666 return fold_convert (type, TREE_IMAGPART (arg0));
1667 break;
1669 case VEC_UNPACK_LO_EXPR:
1670 case VEC_UNPACK_HI_EXPR:
1671 case VEC_UNPACK_FLOAT_LO_EXPR:
1672 case VEC_UNPACK_FLOAT_HI_EXPR:
1674 unsigned int out_nelts, in_nelts, i;
1675 enum tree_code subcode;
1677 if (TREE_CODE (arg0) != VECTOR_CST)
1678 return NULL_TREE;
1680 in_nelts = VECTOR_CST_NELTS (arg0);
1681 out_nelts = in_nelts / 2;
1682 gcc_assert (out_nelts == TYPE_VECTOR_SUBPARTS (type));
1684 unsigned int offset = 0;
1685 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1686 || code == VEC_UNPACK_FLOAT_LO_EXPR))
1687 offset = out_nelts;
1689 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1690 subcode = NOP_EXPR;
1691 else
1692 subcode = FLOAT_EXPR;
1694 auto_vec<tree, 32> elts (out_nelts);
1695 for (i = 0; i < out_nelts; i++)
1697 tree elt = fold_convert_const (subcode, TREE_TYPE (type),
1698 VECTOR_CST_ELT (arg0, i + offset));
1699 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1700 return NULL_TREE;
1701 elts.quick_push (elt);
1704 return build_vector (type, elts);
1707 case REDUC_MIN_EXPR:
1708 case REDUC_MAX_EXPR:
1709 case REDUC_PLUS_EXPR:
1711 unsigned int nelts, i;
1712 enum tree_code subcode;
1714 if (TREE_CODE (arg0) != VECTOR_CST)
1715 return NULL_TREE;
1716 nelts = VECTOR_CST_NELTS (arg0);
1718 switch (code)
1720 case REDUC_MIN_EXPR: subcode = MIN_EXPR; break;
1721 case REDUC_MAX_EXPR: subcode = MAX_EXPR; break;
1722 case REDUC_PLUS_EXPR: subcode = PLUS_EXPR; break;
1723 default: gcc_unreachable ();
1726 tree res = VECTOR_CST_ELT (arg0, 0);
1727 for (i = 1; i < nelts; i++)
1729 res = const_binop (subcode, res, VECTOR_CST_ELT (arg0, i));
1730 if (res == NULL_TREE || !CONSTANT_CLASS_P (res))
1731 return NULL_TREE;
1734 return res;
1737 default:
1738 break;
1741 return NULL_TREE;
1744 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1745 indicates which particular sizetype to create. */
1747 tree
1748 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1750 return build_int_cst (sizetype_tab[(int) kind], number);
1753 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1754 is a tree code. The type of the result is taken from the operands.
1755 Both must be equivalent integer types, ala int_binop_types_match_p.
1756 If the operands are constant, so is the result. */
1758 tree
1759 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1761 tree type = TREE_TYPE (arg0);
1763 if (arg0 == error_mark_node || arg1 == error_mark_node)
1764 return error_mark_node;
1766 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1767 TREE_TYPE (arg1)));
1769 /* Handle the special case of two integer constants faster. */
1770 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1772 /* And some specific cases even faster than that. */
1773 if (code == PLUS_EXPR)
1775 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1776 return arg1;
1777 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1778 return arg0;
1780 else if (code == MINUS_EXPR)
1782 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1783 return arg0;
1785 else if (code == MULT_EXPR)
1787 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1788 return arg1;
1791 /* Handle general case of two integer constants. For sizetype
1792 constant calculations we always want to know about overflow,
1793 even in the unsigned case. */
1794 return int_const_binop_1 (code, arg0, arg1, -1);
1797 return fold_build2_loc (loc, code, type, arg0, arg1);
1800 /* Given two values, either both of sizetype or both of bitsizetype,
1801 compute the difference between the two values. Return the value
1802 in signed type corresponding to the type of the operands. */
1804 tree
1805 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1807 tree type = TREE_TYPE (arg0);
1808 tree ctype;
1810 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1811 TREE_TYPE (arg1)));
1813 /* If the type is already signed, just do the simple thing. */
1814 if (!TYPE_UNSIGNED (type))
1815 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1817 if (type == sizetype)
1818 ctype = ssizetype;
1819 else if (type == bitsizetype)
1820 ctype = sbitsizetype;
1821 else
1822 ctype = signed_type_for (type);
1824 /* If either operand is not a constant, do the conversions to the signed
1825 type and subtract. The hardware will do the right thing with any
1826 overflow in the subtraction. */
1827 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1828 return size_binop_loc (loc, MINUS_EXPR,
1829 fold_convert_loc (loc, ctype, arg0),
1830 fold_convert_loc (loc, ctype, arg1));
1832 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1833 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1834 overflow) and negate (which can't either). Special-case a result
1835 of zero while we're here. */
1836 if (tree_int_cst_equal (arg0, arg1))
1837 return build_int_cst (ctype, 0);
1838 else if (tree_int_cst_lt (arg1, arg0))
1839 return fold_convert_loc (loc, ctype,
1840 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1841 else
1842 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1843 fold_convert_loc (loc, ctype,
1844 size_binop_loc (loc,
1845 MINUS_EXPR,
1846 arg1, arg0)));
1849 /* A subroutine of fold_convert_const handling conversions of an
1850 INTEGER_CST to another integer type. */
1852 static tree
1853 fold_convert_const_int_from_int (tree type, const_tree arg1)
1855 /* Given an integer constant, make new constant with new type,
1856 appropriately sign-extended or truncated. Use widest_int
1857 so that any extension is done according ARG1's type. */
1858 return force_fit_type (type, wi::to_widest (arg1),
1859 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1860 TREE_OVERFLOW (arg1));
1863 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1864 to an integer type. */
1866 static tree
1867 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1869 bool overflow = false;
1870 tree t;
1872 /* The following code implements the floating point to integer
1873 conversion rules required by the Java Language Specification,
1874 that IEEE NaNs are mapped to zero and values that overflow
1875 the target precision saturate, i.e. values greater than
1876 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1877 are mapped to INT_MIN. These semantics are allowed by the
1878 C and C++ standards that simply state that the behavior of
1879 FP-to-integer conversion is unspecified upon overflow. */
1881 wide_int val;
1882 REAL_VALUE_TYPE r;
1883 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1885 switch (code)
1887 case FIX_TRUNC_EXPR:
1888 real_trunc (&r, VOIDmode, &x);
1889 break;
1891 default:
1892 gcc_unreachable ();
1895 /* If R is NaN, return zero and show we have an overflow. */
1896 if (REAL_VALUE_ISNAN (r))
1898 overflow = true;
1899 val = wi::zero (TYPE_PRECISION (type));
1902 /* See if R is less than the lower bound or greater than the
1903 upper bound. */
1905 if (! overflow)
1907 tree lt = TYPE_MIN_VALUE (type);
1908 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1909 if (real_less (&r, &l))
1911 overflow = true;
1912 val = lt;
1916 if (! overflow)
1918 tree ut = TYPE_MAX_VALUE (type);
1919 if (ut)
1921 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1922 if (real_less (&u, &r))
1924 overflow = true;
1925 val = ut;
1930 if (! overflow)
1931 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
1933 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1934 return t;
1937 /* A subroutine of fold_convert_const handling conversions of a
1938 FIXED_CST to an integer type. */
1940 static tree
1941 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1943 tree t;
1944 double_int temp, temp_trunc;
1945 scalar_mode mode;
1947 /* Right shift FIXED_CST to temp by fbit. */
1948 temp = TREE_FIXED_CST (arg1).data;
1949 mode = TREE_FIXED_CST (arg1).mode;
1950 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
1952 temp = temp.rshift (GET_MODE_FBIT (mode),
1953 HOST_BITS_PER_DOUBLE_INT,
1954 SIGNED_FIXED_POINT_MODE_P (mode));
1956 /* Left shift temp to temp_trunc by fbit. */
1957 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
1958 HOST_BITS_PER_DOUBLE_INT,
1959 SIGNED_FIXED_POINT_MODE_P (mode));
1961 else
1963 temp = double_int_zero;
1964 temp_trunc = double_int_zero;
1967 /* If FIXED_CST is negative, we need to round the value toward 0.
1968 By checking if the fractional bits are not zero to add 1 to temp. */
1969 if (SIGNED_FIXED_POINT_MODE_P (mode)
1970 && temp_trunc.is_negative ()
1971 && TREE_FIXED_CST (arg1).data != temp_trunc)
1972 temp += double_int_one;
1974 /* Given a fixed-point constant, make new constant with new type,
1975 appropriately sign-extended or truncated. */
1976 t = force_fit_type (type, temp, -1,
1977 (temp.is_negative ()
1978 && (TYPE_UNSIGNED (type)
1979 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1980 | TREE_OVERFLOW (arg1));
1982 return t;
1985 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1986 to another floating point type. */
1988 static tree
1989 fold_convert_const_real_from_real (tree type, const_tree arg1)
1991 REAL_VALUE_TYPE value;
1992 tree t;
1994 /* Don't perform the operation if flag_signaling_nans is on
1995 and the operand is a signaling NaN. */
1996 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
1997 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1)))
1998 return NULL_TREE;
2000 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
2001 t = build_real (type, value);
2003 /* If converting an infinity or NAN to a representation that doesn't
2004 have one, set the overflow bit so that we can produce some kind of
2005 error message at the appropriate point if necessary. It's not the
2006 most user-friendly message, but it's better than nothing. */
2007 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
2008 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
2009 TREE_OVERFLOW (t) = 1;
2010 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
2011 && !MODE_HAS_NANS (TYPE_MODE (type)))
2012 TREE_OVERFLOW (t) = 1;
2013 /* Regular overflow, conversion produced an infinity in a mode that
2014 can't represent them. */
2015 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
2016 && REAL_VALUE_ISINF (value)
2017 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
2018 TREE_OVERFLOW (t) = 1;
2019 else
2020 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2021 return t;
2024 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2025 to a floating point type. */
2027 static tree
2028 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2030 REAL_VALUE_TYPE value;
2031 tree t;
2033 real_convert_from_fixed (&value, SCALAR_FLOAT_TYPE_MODE (type),
2034 &TREE_FIXED_CST (arg1));
2035 t = build_real (type, value);
2037 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2038 return t;
2041 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2042 to another fixed-point type. */
2044 static tree
2045 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2047 FIXED_VALUE_TYPE value;
2048 tree t;
2049 bool overflow_p;
2051 overflow_p = fixed_convert (&value, SCALAR_TYPE_MODE (type),
2052 &TREE_FIXED_CST (arg1), TYPE_SATURATING (type));
2053 t = build_fixed (type, value);
2055 /* Propagate overflow flags. */
2056 if (overflow_p | TREE_OVERFLOW (arg1))
2057 TREE_OVERFLOW (t) = 1;
2058 return t;
2061 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2062 to a fixed-point type. */
2064 static tree
2065 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2067 FIXED_VALUE_TYPE value;
2068 tree t;
2069 bool overflow_p;
2070 double_int di;
2072 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2074 di.low = TREE_INT_CST_ELT (arg1, 0);
2075 if (TREE_INT_CST_NUNITS (arg1) == 1)
2076 di.high = (HOST_WIDE_INT) di.low < 0 ? HOST_WIDE_INT_M1 : 0;
2077 else
2078 di.high = TREE_INT_CST_ELT (arg1, 1);
2080 overflow_p = fixed_convert_from_int (&value, SCALAR_TYPE_MODE (type), di,
2081 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2082 TYPE_SATURATING (type));
2083 t = build_fixed (type, value);
2085 /* Propagate overflow flags. */
2086 if (overflow_p | TREE_OVERFLOW (arg1))
2087 TREE_OVERFLOW (t) = 1;
2088 return t;
2091 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2092 to a fixed-point type. */
2094 static tree
2095 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2097 FIXED_VALUE_TYPE value;
2098 tree t;
2099 bool overflow_p;
2101 overflow_p = fixed_convert_from_real (&value, SCALAR_TYPE_MODE (type),
2102 &TREE_REAL_CST (arg1),
2103 TYPE_SATURATING (type));
2104 t = build_fixed (type, value);
2106 /* Propagate overflow flags. */
2107 if (overflow_p | TREE_OVERFLOW (arg1))
2108 TREE_OVERFLOW (t) = 1;
2109 return t;
2112 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2113 type TYPE. If no simplification can be done return NULL_TREE. */
2115 static tree
2116 fold_convert_const (enum tree_code code, tree type, tree arg1)
2118 if (TREE_TYPE (arg1) == type)
2119 return arg1;
2121 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2122 || TREE_CODE (type) == OFFSET_TYPE)
2124 if (TREE_CODE (arg1) == INTEGER_CST)
2125 return fold_convert_const_int_from_int (type, arg1);
2126 else if (TREE_CODE (arg1) == REAL_CST)
2127 return fold_convert_const_int_from_real (code, type, arg1);
2128 else if (TREE_CODE (arg1) == FIXED_CST)
2129 return fold_convert_const_int_from_fixed (type, arg1);
2131 else if (TREE_CODE (type) == REAL_TYPE)
2133 if (TREE_CODE (arg1) == INTEGER_CST)
2134 return build_real_from_int_cst (type, arg1);
2135 else if (TREE_CODE (arg1) == REAL_CST)
2136 return fold_convert_const_real_from_real (type, arg1);
2137 else if (TREE_CODE (arg1) == FIXED_CST)
2138 return fold_convert_const_real_from_fixed (type, arg1);
2140 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2142 if (TREE_CODE (arg1) == FIXED_CST)
2143 return fold_convert_const_fixed_from_fixed (type, arg1);
2144 else if (TREE_CODE (arg1) == INTEGER_CST)
2145 return fold_convert_const_fixed_from_int (type, arg1);
2146 else if (TREE_CODE (arg1) == REAL_CST)
2147 return fold_convert_const_fixed_from_real (type, arg1);
2149 else if (TREE_CODE (type) == VECTOR_TYPE)
2151 if (TREE_CODE (arg1) == VECTOR_CST
2152 && TYPE_VECTOR_SUBPARTS (type) == VECTOR_CST_NELTS (arg1))
2154 int len = VECTOR_CST_NELTS (arg1);
2155 tree elttype = TREE_TYPE (type);
2156 auto_vec<tree, 32> v (len);
2157 for (int i = 0; i < len; ++i)
2159 tree elt = VECTOR_CST_ELT (arg1, i);
2160 tree cvt = fold_convert_const (code, elttype, elt);
2161 if (cvt == NULL_TREE)
2162 return NULL_TREE;
2163 v.quick_push (cvt);
2165 return build_vector (type, v);
2168 return NULL_TREE;
2171 /* Construct a vector of zero elements of vector type TYPE. */
2173 static tree
2174 build_zero_vector (tree type)
2176 tree t;
2178 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2179 return build_vector_from_val (type, t);
2182 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2184 bool
2185 fold_convertible_p (const_tree type, const_tree arg)
2187 tree orig = TREE_TYPE (arg);
2189 if (type == orig)
2190 return true;
2192 if (TREE_CODE (arg) == ERROR_MARK
2193 || TREE_CODE (type) == ERROR_MARK
2194 || TREE_CODE (orig) == ERROR_MARK)
2195 return false;
2197 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2198 return true;
2200 switch (TREE_CODE (type))
2202 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2203 case POINTER_TYPE: case REFERENCE_TYPE:
2204 case OFFSET_TYPE:
2205 return (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2206 || TREE_CODE (orig) == OFFSET_TYPE);
2208 case REAL_TYPE:
2209 case FIXED_POINT_TYPE:
2210 case VECTOR_TYPE:
2211 case VOID_TYPE:
2212 return TREE_CODE (type) == TREE_CODE (orig);
2214 default:
2215 return false;
2219 /* Convert expression ARG to type TYPE. Used by the middle-end for
2220 simple conversions in preference to calling the front-end's convert. */
2222 tree
2223 fold_convert_loc (location_t loc, tree type, tree arg)
2225 tree orig = TREE_TYPE (arg);
2226 tree tem;
2228 if (type == orig)
2229 return arg;
2231 if (TREE_CODE (arg) == ERROR_MARK
2232 || TREE_CODE (type) == ERROR_MARK
2233 || TREE_CODE (orig) == ERROR_MARK)
2234 return error_mark_node;
2236 switch (TREE_CODE (type))
2238 case POINTER_TYPE:
2239 case REFERENCE_TYPE:
2240 /* Handle conversions between pointers to different address spaces. */
2241 if (POINTER_TYPE_P (orig)
2242 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2243 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2244 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2245 /* fall through */
2247 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2248 case OFFSET_TYPE:
2249 if (TREE_CODE (arg) == INTEGER_CST)
2251 tem = fold_convert_const (NOP_EXPR, type, arg);
2252 if (tem != NULL_TREE)
2253 return tem;
2255 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2256 || TREE_CODE (orig) == OFFSET_TYPE)
2257 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2258 if (TREE_CODE (orig) == COMPLEX_TYPE)
2259 return fold_convert_loc (loc, type,
2260 fold_build1_loc (loc, REALPART_EXPR,
2261 TREE_TYPE (orig), arg));
2262 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2263 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2264 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2266 case REAL_TYPE:
2267 if (TREE_CODE (arg) == INTEGER_CST)
2269 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2270 if (tem != NULL_TREE)
2271 return tem;
2273 else if (TREE_CODE (arg) == REAL_CST)
2275 tem = fold_convert_const (NOP_EXPR, type, arg);
2276 if (tem != NULL_TREE)
2277 return tem;
2279 else if (TREE_CODE (arg) == FIXED_CST)
2281 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2282 if (tem != NULL_TREE)
2283 return tem;
2286 switch (TREE_CODE (orig))
2288 case INTEGER_TYPE:
2289 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2290 case POINTER_TYPE: case REFERENCE_TYPE:
2291 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2293 case REAL_TYPE:
2294 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2296 case FIXED_POINT_TYPE:
2297 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2299 case COMPLEX_TYPE:
2300 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2301 return fold_convert_loc (loc, type, tem);
2303 default:
2304 gcc_unreachable ();
2307 case FIXED_POINT_TYPE:
2308 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2309 || TREE_CODE (arg) == REAL_CST)
2311 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2312 if (tem != NULL_TREE)
2313 goto fold_convert_exit;
2316 switch (TREE_CODE (orig))
2318 case FIXED_POINT_TYPE:
2319 case INTEGER_TYPE:
2320 case ENUMERAL_TYPE:
2321 case BOOLEAN_TYPE:
2322 case REAL_TYPE:
2323 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2325 case COMPLEX_TYPE:
2326 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2327 return fold_convert_loc (loc, type, tem);
2329 default:
2330 gcc_unreachable ();
2333 case COMPLEX_TYPE:
2334 switch (TREE_CODE (orig))
2336 case INTEGER_TYPE:
2337 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2338 case POINTER_TYPE: case REFERENCE_TYPE:
2339 case REAL_TYPE:
2340 case FIXED_POINT_TYPE:
2341 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2342 fold_convert_loc (loc, TREE_TYPE (type), arg),
2343 fold_convert_loc (loc, TREE_TYPE (type),
2344 integer_zero_node));
2345 case COMPLEX_TYPE:
2347 tree rpart, ipart;
2349 if (TREE_CODE (arg) == COMPLEX_EXPR)
2351 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2352 TREE_OPERAND (arg, 0));
2353 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2354 TREE_OPERAND (arg, 1));
2355 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2358 arg = save_expr (arg);
2359 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2360 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2361 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2362 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2363 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2366 default:
2367 gcc_unreachable ();
2370 case VECTOR_TYPE:
2371 if (integer_zerop (arg))
2372 return build_zero_vector (type);
2373 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2374 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2375 || TREE_CODE (orig) == VECTOR_TYPE);
2376 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2378 case VOID_TYPE:
2379 tem = fold_ignored_result (arg);
2380 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2382 default:
2383 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2384 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2385 gcc_unreachable ();
2387 fold_convert_exit:
2388 protected_set_expr_location_unshare (tem, loc);
2389 return tem;
2392 /* Return false if expr can be assumed not to be an lvalue, true
2393 otherwise. */
2395 static bool
2396 maybe_lvalue_p (const_tree x)
2398 /* We only need to wrap lvalue tree codes. */
2399 switch (TREE_CODE (x))
2401 case VAR_DECL:
2402 case PARM_DECL:
2403 case RESULT_DECL:
2404 case LABEL_DECL:
2405 case FUNCTION_DECL:
2406 case SSA_NAME:
2408 case COMPONENT_REF:
2409 case MEM_REF:
2410 case INDIRECT_REF:
2411 case ARRAY_REF:
2412 case ARRAY_RANGE_REF:
2413 case BIT_FIELD_REF:
2414 case OBJ_TYPE_REF:
2416 case REALPART_EXPR:
2417 case IMAGPART_EXPR:
2418 case PREINCREMENT_EXPR:
2419 case PREDECREMENT_EXPR:
2420 case SAVE_EXPR:
2421 case TRY_CATCH_EXPR:
2422 case WITH_CLEANUP_EXPR:
2423 case COMPOUND_EXPR:
2424 case MODIFY_EXPR:
2425 case TARGET_EXPR:
2426 case COND_EXPR:
2427 case BIND_EXPR:
2428 break;
2430 default:
2431 /* Assume the worst for front-end tree codes. */
2432 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2433 break;
2434 return false;
2437 return true;
2440 /* Return an expr equal to X but certainly not valid as an lvalue. */
2442 tree
2443 non_lvalue_loc (location_t loc, tree x)
2445 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2446 us. */
2447 if (in_gimple_form)
2448 return x;
2450 if (! maybe_lvalue_p (x))
2451 return x;
2452 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2455 /* When pedantic, return an expr equal to X but certainly not valid as a
2456 pedantic lvalue. Otherwise, return X. */
2458 static tree
2459 pedantic_non_lvalue_loc (location_t loc, tree x)
2461 return protected_set_expr_location_unshare (x, loc);
2464 /* Given a tree comparison code, return the code that is the logical inverse.
2465 It is generally not safe to do this for floating-point comparisons, except
2466 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2467 ERROR_MARK in this case. */
2469 enum tree_code
2470 invert_tree_comparison (enum tree_code code, bool honor_nans)
2472 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2473 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2474 return ERROR_MARK;
2476 switch (code)
2478 case EQ_EXPR:
2479 return NE_EXPR;
2480 case NE_EXPR:
2481 return EQ_EXPR;
2482 case GT_EXPR:
2483 return honor_nans ? UNLE_EXPR : LE_EXPR;
2484 case GE_EXPR:
2485 return honor_nans ? UNLT_EXPR : LT_EXPR;
2486 case LT_EXPR:
2487 return honor_nans ? UNGE_EXPR : GE_EXPR;
2488 case LE_EXPR:
2489 return honor_nans ? UNGT_EXPR : GT_EXPR;
2490 case LTGT_EXPR:
2491 return UNEQ_EXPR;
2492 case UNEQ_EXPR:
2493 return LTGT_EXPR;
2494 case UNGT_EXPR:
2495 return LE_EXPR;
2496 case UNGE_EXPR:
2497 return LT_EXPR;
2498 case UNLT_EXPR:
2499 return GE_EXPR;
2500 case UNLE_EXPR:
2501 return GT_EXPR;
2502 case ORDERED_EXPR:
2503 return UNORDERED_EXPR;
2504 case UNORDERED_EXPR:
2505 return ORDERED_EXPR;
2506 default:
2507 gcc_unreachable ();
2511 /* Similar, but return the comparison that results if the operands are
2512 swapped. This is safe for floating-point. */
2514 enum tree_code
2515 swap_tree_comparison (enum tree_code code)
2517 switch (code)
2519 case EQ_EXPR:
2520 case NE_EXPR:
2521 case ORDERED_EXPR:
2522 case UNORDERED_EXPR:
2523 case LTGT_EXPR:
2524 case UNEQ_EXPR:
2525 return code;
2526 case GT_EXPR:
2527 return LT_EXPR;
2528 case GE_EXPR:
2529 return LE_EXPR;
2530 case LT_EXPR:
2531 return GT_EXPR;
2532 case LE_EXPR:
2533 return GE_EXPR;
2534 case UNGT_EXPR:
2535 return UNLT_EXPR;
2536 case UNGE_EXPR:
2537 return UNLE_EXPR;
2538 case UNLT_EXPR:
2539 return UNGT_EXPR;
2540 case UNLE_EXPR:
2541 return UNGE_EXPR;
2542 default:
2543 gcc_unreachable ();
2548 /* Convert a comparison tree code from an enum tree_code representation
2549 into a compcode bit-based encoding. This function is the inverse of
2550 compcode_to_comparison. */
2552 static enum comparison_code
2553 comparison_to_compcode (enum tree_code code)
2555 switch (code)
2557 case LT_EXPR:
2558 return COMPCODE_LT;
2559 case EQ_EXPR:
2560 return COMPCODE_EQ;
2561 case LE_EXPR:
2562 return COMPCODE_LE;
2563 case GT_EXPR:
2564 return COMPCODE_GT;
2565 case NE_EXPR:
2566 return COMPCODE_NE;
2567 case GE_EXPR:
2568 return COMPCODE_GE;
2569 case ORDERED_EXPR:
2570 return COMPCODE_ORD;
2571 case UNORDERED_EXPR:
2572 return COMPCODE_UNORD;
2573 case UNLT_EXPR:
2574 return COMPCODE_UNLT;
2575 case UNEQ_EXPR:
2576 return COMPCODE_UNEQ;
2577 case UNLE_EXPR:
2578 return COMPCODE_UNLE;
2579 case UNGT_EXPR:
2580 return COMPCODE_UNGT;
2581 case LTGT_EXPR:
2582 return COMPCODE_LTGT;
2583 case UNGE_EXPR:
2584 return COMPCODE_UNGE;
2585 default:
2586 gcc_unreachable ();
2590 /* Convert a compcode bit-based encoding of a comparison operator back
2591 to GCC's enum tree_code representation. This function is the
2592 inverse of comparison_to_compcode. */
2594 static enum tree_code
2595 compcode_to_comparison (enum comparison_code code)
2597 switch (code)
2599 case COMPCODE_LT:
2600 return LT_EXPR;
2601 case COMPCODE_EQ:
2602 return EQ_EXPR;
2603 case COMPCODE_LE:
2604 return LE_EXPR;
2605 case COMPCODE_GT:
2606 return GT_EXPR;
2607 case COMPCODE_NE:
2608 return NE_EXPR;
2609 case COMPCODE_GE:
2610 return GE_EXPR;
2611 case COMPCODE_ORD:
2612 return ORDERED_EXPR;
2613 case COMPCODE_UNORD:
2614 return UNORDERED_EXPR;
2615 case COMPCODE_UNLT:
2616 return UNLT_EXPR;
2617 case COMPCODE_UNEQ:
2618 return UNEQ_EXPR;
2619 case COMPCODE_UNLE:
2620 return UNLE_EXPR;
2621 case COMPCODE_UNGT:
2622 return UNGT_EXPR;
2623 case COMPCODE_LTGT:
2624 return LTGT_EXPR;
2625 case COMPCODE_UNGE:
2626 return UNGE_EXPR;
2627 default:
2628 gcc_unreachable ();
2632 /* Return a tree for the comparison which is the combination of
2633 doing the AND or OR (depending on CODE) of the two operations LCODE
2634 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2635 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2636 if this makes the transformation invalid. */
2638 tree
2639 combine_comparisons (location_t loc,
2640 enum tree_code code, enum tree_code lcode,
2641 enum tree_code rcode, tree truth_type,
2642 tree ll_arg, tree lr_arg)
2644 bool honor_nans = HONOR_NANS (ll_arg);
2645 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2646 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2647 int compcode;
2649 switch (code)
2651 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2652 compcode = lcompcode & rcompcode;
2653 break;
2655 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2656 compcode = lcompcode | rcompcode;
2657 break;
2659 default:
2660 return NULL_TREE;
2663 if (!honor_nans)
2665 /* Eliminate unordered comparisons, as well as LTGT and ORD
2666 which are not used unless the mode has NaNs. */
2667 compcode &= ~COMPCODE_UNORD;
2668 if (compcode == COMPCODE_LTGT)
2669 compcode = COMPCODE_NE;
2670 else if (compcode == COMPCODE_ORD)
2671 compcode = COMPCODE_TRUE;
2673 else if (flag_trapping_math)
2675 /* Check that the original operation and the optimized ones will trap
2676 under the same condition. */
2677 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2678 && (lcompcode != COMPCODE_EQ)
2679 && (lcompcode != COMPCODE_ORD);
2680 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2681 && (rcompcode != COMPCODE_EQ)
2682 && (rcompcode != COMPCODE_ORD);
2683 bool trap = (compcode & COMPCODE_UNORD) == 0
2684 && (compcode != COMPCODE_EQ)
2685 && (compcode != COMPCODE_ORD);
2687 /* In a short-circuited boolean expression the LHS might be
2688 such that the RHS, if evaluated, will never trap. For
2689 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2690 if neither x nor y is NaN. (This is a mixed blessing: for
2691 example, the expression above will never trap, hence
2692 optimizing it to x < y would be invalid). */
2693 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2694 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2695 rtrap = false;
2697 /* If the comparison was short-circuited, and only the RHS
2698 trapped, we may now generate a spurious trap. */
2699 if (rtrap && !ltrap
2700 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2701 return NULL_TREE;
2703 /* If we changed the conditions that cause a trap, we lose. */
2704 if ((ltrap || rtrap) != trap)
2705 return NULL_TREE;
2708 if (compcode == COMPCODE_TRUE)
2709 return constant_boolean_node (true, truth_type);
2710 else if (compcode == COMPCODE_FALSE)
2711 return constant_boolean_node (false, truth_type);
2712 else
2714 enum tree_code tcode;
2716 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2717 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2721 /* Return nonzero if two operands (typically of the same tree node)
2722 are necessarily equal. FLAGS modifies behavior as follows:
2724 If OEP_ONLY_CONST is set, only return nonzero for constants.
2725 This function tests whether the operands are indistinguishable;
2726 it does not test whether they are equal using C's == operation.
2727 The distinction is important for IEEE floating point, because
2728 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2729 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2731 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2732 even though it may hold multiple values during a function.
2733 This is because a GCC tree node guarantees that nothing else is
2734 executed between the evaluation of its "operands" (which may often
2735 be evaluated in arbitrary order). Hence if the operands themselves
2736 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2737 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2738 unset means assuming isochronic (or instantaneous) tree equivalence.
2739 Unless comparing arbitrary expression trees, such as from different
2740 statements, this flag can usually be left unset.
2742 If OEP_PURE_SAME is set, then pure functions with identical arguments
2743 are considered the same. It is used when the caller has other ways
2744 to ensure that global memory is unchanged in between.
2746 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2747 not values of expressions.
2749 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects
2750 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs.
2752 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2753 any operand with side effect. This is unnecesarily conservative in the
2754 case we know that arg0 and arg1 are in disjoint code paths (such as in
2755 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2756 addresses with TREE_CONSTANT flag set so we know that &var == &var
2757 even if var is volatile. */
2760 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2762 /* When checking, verify at the outermost operand_equal_p call that
2763 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2764 hash value. */
2765 if (flag_checking && !(flags & OEP_NO_HASH_CHECK))
2767 if (operand_equal_p (arg0, arg1, flags | OEP_NO_HASH_CHECK))
2769 if (arg0 != arg1)
2771 inchash::hash hstate0 (0), hstate1 (0);
2772 inchash::add_expr (arg0, hstate0, flags | OEP_HASH_CHECK);
2773 inchash::add_expr (arg1, hstate1, flags | OEP_HASH_CHECK);
2774 hashval_t h0 = hstate0.end ();
2775 hashval_t h1 = hstate1.end ();
2776 gcc_assert (h0 == h1);
2778 return 1;
2780 else
2781 return 0;
2784 /* If either is ERROR_MARK, they aren't equal. */
2785 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2786 || TREE_TYPE (arg0) == error_mark_node
2787 || TREE_TYPE (arg1) == error_mark_node)
2788 return 0;
2790 /* Similar, if either does not have a type (like a released SSA name),
2791 they aren't equal. */
2792 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2793 return 0;
2795 /* We cannot consider pointers to different address space equal. */
2796 if (POINTER_TYPE_P (TREE_TYPE (arg0))
2797 && POINTER_TYPE_P (TREE_TYPE (arg1))
2798 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2799 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2800 return 0;
2802 /* Check equality of integer constants before bailing out due to
2803 precision differences. */
2804 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2806 /* Address of INTEGER_CST is not defined; check that we did not forget
2807 to drop the OEP_ADDRESS_OF flags. */
2808 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2809 return tree_int_cst_equal (arg0, arg1);
2812 if (!(flags & OEP_ADDRESS_OF))
2814 /* If both types don't have the same signedness, then we can't consider
2815 them equal. We must check this before the STRIP_NOPS calls
2816 because they may change the signedness of the arguments. As pointers
2817 strictly don't have a signedness, require either two pointers or
2818 two non-pointers as well. */
2819 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2820 || POINTER_TYPE_P (TREE_TYPE (arg0))
2821 != POINTER_TYPE_P (TREE_TYPE (arg1)))
2822 return 0;
2824 /* If both types don't have the same precision, then it is not safe
2825 to strip NOPs. */
2826 if (element_precision (TREE_TYPE (arg0))
2827 != element_precision (TREE_TYPE (arg1)))
2828 return 0;
2830 STRIP_NOPS (arg0);
2831 STRIP_NOPS (arg1);
2833 #if 0
2834 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
2835 sanity check once the issue is solved. */
2836 else
2837 /* Addresses of conversions and SSA_NAMEs (and many other things)
2838 are not defined. Check that we did not forget to drop the
2839 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
2840 gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1)
2841 && TREE_CODE (arg0) != SSA_NAME);
2842 #endif
2844 /* In case both args are comparisons but with different comparison
2845 code, try to swap the comparison operands of one arg to produce
2846 a match and compare that variant. */
2847 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2848 && COMPARISON_CLASS_P (arg0)
2849 && COMPARISON_CLASS_P (arg1))
2851 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2853 if (TREE_CODE (arg0) == swap_code)
2854 return operand_equal_p (TREE_OPERAND (arg0, 0),
2855 TREE_OPERAND (arg1, 1), flags)
2856 && operand_equal_p (TREE_OPERAND (arg0, 1),
2857 TREE_OPERAND (arg1, 0), flags);
2860 if (TREE_CODE (arg0) != TREE_CODE (arg1))
2862 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2863 if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1))
2865 else if (flags & OEP_ADDRESS_OF)
2867 /* If we are interested in comparing addresses ignore
2868 MEM_REF wrappings of the base that can appear just for
2869 TBAA reasons. */
2870 if (TREE_CODE (arg0) == MEM_REF
2871 && DECL_P (arg1)
2872 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR
2873 && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1
2874 && integer_zerop (TREE_OPERAND (arg0, 1)))
2875 return 1;
2876 else if (TREE_CODE (arg1) == MEM_REF
2877 && DECL_P (arg0)
2878 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR
2879 && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0
2880 && integer_zerop (TREE_OPERAND (arg1, 1)))
2881 return 1;
2882 return 0;
2884 else
2885 return 0;
2888 /* When not checking adddresses, this is needed for conversions and for
2889 COMPONENT_REF. Might as well play it safe and always test this. */
2890 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2891 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2892 || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1))
2893 && !(flags & OEP_ADDRESS_OF)))
2894 return 0;
2896 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2897 We don't care about side effects in that case because the SAVE_EXPR
2898 takes care of that for us. In all other cases, two expressions are
2899 equal if they have no side effects. If we have two identical
2900 expressions with side effects that should be treated the same due
2901 to the only side effects being identical SAVE_EXPR's, that will
2902 be detected in the recursive calls below.
2903 If we are taking an invariant address of two identical objects
2904 they are necessarily equal as well. */
2905 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2906 && (TREE_CODE (arg0) == SAVE_EXPR
2907 || (flags & OEP_MATCH_SIDE_EFFECTS)
2908 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2909 return 1;
2911 /* Next handle constant cases, those for which we can return 1 even
2912 if ONLY_CONST is set. */
2913 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2914 switch (TREE_CODE (arg0))
2916 case INTEGER_CST:
2917 return tree_int_cst_equal (arg0, arg1);
2919 case FIXED_CST:
2920 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2921 TREE_FIXED_CST (arg1));
2923 case REAL_CST:
2924 if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1)))
2925 return 1;
2928 if (!HONOR_SIGNED_ZEROS (arg0))
2930 /* If we do not distinguish between signed and unsigned zero,
2931 consider them equal. */
2932 if (real_zerop (arg0) && real_zerop (arg1))
2933 return 1;
2935 return 0;
2937 case VECTOR_CST:
2939 unsigned i;
2941 if (VECTOR_CST_NELTS (arg0) != VECTOR_CST_NELTS (arg1))
2942 return 0;
2944 for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
2946 if (!operand_equal_p (VECTOR_CST_ELT (arg0, i),
2947 VECTOR_CST_ELT (arg1, i), flags))
2948 return 0;
2950 return 1;
2953 case COMPLEX_CST:
2954 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2955 flags)
2956 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2957 flags));
2959 case STRING_CST:
2960 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2961 && ! memcmp (TREE_STRING_POINTER (arg0),
2962 TREE_STRING_POINTER (arg1),
2963 TREE_STRING_LENGTH (arg0)));
2965 case ADDR_EXPR:
2966 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2967 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2968 flags | OEP_ADDRESS_OF
2969 | OEP_MATCH_SIDE_EFFECTS);
2970 case CONSTRUCTOR:
2971 /* In GIMPLE empty constructors are allowed in initializers of
2972 aggregates. */
2973 return !CONSTRUCTOR_NELTS (arg0) && !CONSTRUCTOR_NELTS (arg1);
2974 default:
2975 break;
2978 if (flags & OEP_ONLY_CONST)
2979 return 0;
2981 /* Define macros to test an operand from arg0 and arg1 for equality and a
2982 variant that allows null and views null as being different from any
2983 non-null value. In the latter case, if either is null, the both
2984 must be; otherwise, do the normal comparison. */
2985 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2986 TREE_OPERAND (arg1, N), flags)
2988 #define OP_SAME_WITH_NULL(N) \
2989 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2990 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2992 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2994 case tcc_unary:
2995 /* Two conversions are equal only if signedness and modes match. */
2996 switch (TREE_CODE (arg0))
2998 CASE_CONVERT:
2999 case FIX_TRUNC_EXPR:
3000 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
3001 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
3002 return 0;
3003 break;
3004 default:
3005 break;
3008 return OP_SAME (0);
3011 case tcc_comparison:
3012 case tcc_binary:
3013 if (OP_SAME (0) && OP_SAME (1))
3014 return 1;
3016 /* For commutative ops, allow the other order. */
3017 return (commutative_tree_code (TREE_CODE (arg0))
3018 && operand_equal_p (TREE_OPERAND (arg0, 0),
3019 TREE_OPERAND (arg1, 1), flags)
3020 && operand_equal_p (TREE_OPERAND (arg0, 1),
3021 TREE_OPERAND (arg1, 0), flags));
3023 case tcc_reference:
3024 /* If either of the pointer (or reference) expressions we are
3025 dereferencing contain a side effect, these cannot be equal,
3026 but their addresses can be. */
3027 if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0
3028 && (TREE_SIDE_EFFECTS (arg0)
3029 || TREE_SIDE_EFFECTS (arg1)))
3030 return 0;
3032 switch (TREE_CODE (arg0))
3034 case INDIRECT_REF:
3035 if (!(flags & OEP_ADDRESS_OF)
3036 && (TYPE_ALIGN (TREE_TYPE (arg0))
3037 != TYPE_ALIGN (TREE_TYPE (arg1))))
3038 return 0;
3039 flags &= ~OEP_ADDRESS_OF;
3040 return OP_SAME (0);
3042 case IMAGPART_EXPR:
3043 /* Require the same offset. */
3044 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3045 TYPE_SIZE (TREE_TYPE (arg1)),
3046 flags & ~OEP_ADDRESS_OF))
3047 return 0;
3049 /* Fallthru. */
3050 case REALPART_EXPR:
3051 case VIEW_CONVERT_EXPR:
3052 return OP_SAME (0);
3054 case TARGET_MEM_REF:
3055 case MEM_REF:
3056 if (!(flags & OEP_ADDRESS_OF))
3058 /* Require equal access sizes */
3059 if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1))
3060 && (!TYPE_SIZE (TREE_TYPE (arg0))
3061 || !TYPE_SIZE (TREE_TYPE (arg1))
3062 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3063 TYPE_SIZE (TREE_TYPE (arg1)),
3064 flags)))
3065 return 0;
3066 /* Verify that access happens in similar types. */
3067 if (!types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1)))
3068 return 0;
3069 /* Verify that accesses are TBAA compatible. */
3070 if (!alias_ptr_types_compatible_p
3071 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
3072 TREE_TYPE (TREE_OPERAND (arg1, 1)))
3073 || (MR_DEPENDENCE_CLIQUE (arg0)
3074 != MR_DEPENDENCE_CLIQUE (arg1))
3075 || (MR_DEPENDENCE_BASE (arg0)
3076 != MR_DEPENDENCE_BASE (arg1)))
3077 return 0;
3078 /* Verify that alignment is compatible. */
3079 if (TYPE_ALIGN (TREE_TYPE (arg0))
3080 != TYPE_ALIGN (TREE_TYPE (arg1)))
3081 return 0;
3083 flags &= ~OEP_ADDRESS_OF;
3084 return (OP_SAME (0) && OP_SAME (1)
3085 /* TARGET_MEM_REF require equal extra operands. */
3086 && (TREE_CODE (arg0) != TARGET_MEM_REF
3087 || (OP_SAME_WITH_NULL (2)
3088 && OP_SAME_WITH_NULL (3)
3089 && OP_SAME_WITH_NULL (4))));
3091 case ARRAY_REF:
3092 case ARRAY_RANGE_REF:
3093 if (!OP_SAME (0))
3094 return 0;
3095 flags &= ~OEP_ADDRESS_OF;
3096 /* Compare the array index by value if it is constant first as we
3097 may have different types but same value here. */
3098 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3099 TREE_OPERAND (arg1, 1))
3100 || OP_SAME (1))
3101 && OP_SAME_WITH_NULL (2)
3102 && OP_SAME_WITH_NULL (3)
3103 /* Compare low bound and element size as with OEP_ADDRESS_OF
3104 we have to account for the offset of the ref. */
3105 && (TREE_TYPE (TREE_OPERAND (arg0, 0))
3106 == TREE_TYPE (TREE_OPERAND (arg1, 0))
3107 || (operand_equal_p (array_ref_low_bound
3108 (CONST_CAST_TREE (arg0)),
3109 array_ref_low_bound
3110 (CONST_CAST_TREE (arg1)), flags)
3111 && operand_equal_p (array_ref_element_size
3112 (CONST_CAST_TREE (arg0)),
3113 array_ref_element_size
3114 (CONST_CAST_TREE (arg1)),
3115 flags))));
3117 case COMPONENT_REF:
3118 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3119 may be NULL when we're called to compare MEM_EXPRs. */
3120 if (!OP_SAME_WITH_NULL (0)
3121 || !OP_SAME (1))
3122 return 0;
3123 flags &= ~OEP_ADDRESS_OF;
3124 return OP_SAME_WITH_NULL (2);
3126 case BIT_FIELD_REF:
3127 if (!OP_SAME (0))
3128 return 0;
3129 flags &= ~OEP_ADDRESS_OF;
3130 return OP_SAME (1) && OP_SAME (2);
3132 default:
3133 return 0;
3136 case tcc_expression:
3137 switch (TREE_CODE (arg0))
3139 case ADDR_EXPR:
3140 /* Be sure we pass right ADDRESS_OF flag. */
3141 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3142 return operand_equal_p (TREE_OPERAND (arg0, 0),
3143 TREE_OPERAND (arg1, 0),
3144 flags | OEP_ADDRESS_OF);
3146 case TRUTH_NOT_EXPR:
3147 return OP_SAME (0);
3149 case TRUTH_ANDIF_EXPR:
3150 case TRUTH_ORIF_EXPR:
3151 return OP_SAME (0) && OP_SAME (1);
3153 case FMA_EXPR:
3154 case WIDEN_MULT_PLUS_EXPR:
3155 case WIDEN_MULT_MINUS_EXPR:
3156 if (!OP_SAME (2))
3157 return 0;
3158 /* The multiplcation operands are commutative. */
3159 /* FALLTHRU */
3161 case TRUTH_AND_EXPR:
3162 case TRUTH_OR_EXPR:
3163 case TRUTH_XOR_EXPR:
3164 if (OP_SAME (0) && OP_SAME (1))
3165 return 1;
3167 /* Otherwise take into account this is a commutative operation. */
3168 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3169 TREE_OPERAND (arg1, 1), flags)
3170 && operand_equal_p (TREE_OPERAND (arg0, 1),
3171 TREE_OPERAND (arg1, 0), flags));
3173 case COND_EXPR:
3174 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2))
3175 return 0;
3176 flags &= ~OEP_ADDRESS_OF;
3177 return OP_SAME (0);
3179 case BIT_INSERT_EXPR:
3180 /* BIT_INSERT_EXPR has an implict operand as the type precision
3181 of op1. Need to check to make sure they are the same. */
3182 if (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
3183 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
3184 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 1)))
3185 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 1))))
3186 return false;
3187 /* FALLTHRU */
3189 case VEC_COND_EXPR:
3190 case DOT_PROD_EXPR:
3191 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3193 case MODIFY_EXPR:
3194 case INIT_EXPR:
3195 case COMPOUND_EXPR:
3196 case PREDECREMENT_EXPR:
3197 case PREINCREMENT_EXPR:
3198 case POSTDECREMENT_EXPR:
3199 case POSTINCREMENT_EXPR:
3200 if (flags & OEP_LEXICOGRAPHIC)
3201 return OP_SAME (0) && OP_SAME (1);
3202 return 0;
3204 case CLEANUP_POINT_EXPR:
3205 case EXPR_STMT:
3206 if (flags & OEP_LEXICOGRAPHIC)
3207 return OP_SAME (0);
3208 return 0;
3210 default:
3211 return 0;
3214 case tcc_vl_exp:
3215 switch (TREE_CODE (arg0))
3217 case CALL_EXPR:
3218 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3219 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3220 /* If not both CALL_EXPRs are either internal or normal function
3221 functions, then they are not equal. */
3222 return 0;
3223 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3225 /* If the CALL_EXPRs call different internal functions, then they
3226 are not equal. */
3227 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3228 return 0;
3230 else
3232 /* If the CALL_EXPRs call different functions, then they are not
3233 equal. */
3234 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3235 flags))
3236 return 0;
3239 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3241 unsigned int cef = call_expr_flags (arg0);
3242 if (flags & OEP_PURE_SAME)
3243 cef &= ECF_CONST | ECF_PURE;
3244 else
3245 cef &= ECF_CONST;
3246 if (!cef && !(flags & OEP_LEXICOGRAPHIC))
3247 return 0;
3250 /* Now see if all the arguments are the same. */
3252 const_call_expr_arg_iterator iter0, iter1;
3253 const_tree a0, a1;
3254 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3255 a1 = first_const_call_expr_arg (arg1, &iter1);
3256 a0 && a1;
3257 a0 = next_const_call_expr_arg (&iter0),
3258 a1 = next_const_call_expr_arg (&iter1))
3259 if (! operand_equal_p (a0, a1, flags))
3260 return 0;
3262 /* If we get here and both argument lists are exhausted
3263 then the CALL_EXPRs are equal. */
3264 return ! (a0 || a1);
3266 default:
3267 return 0;
3270 case tcc_declaration:
3271 /* Consider __builtin_sqrt equal to sqrt. */
3272 return (TREE_CODE (arg0) == FUNCTION_DECL
3273 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3274 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3275 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3277 case tcc_exceptional:
3278 if (TREE_CODE (arg0) == CONSTRUCTOR)
3280 /* In GIMPLE constructors are used only to build vectors from
3281 elements. Individual elements in the constructor must be
3282 indexed in increasing order and form an initial sequence.
3284 We make no effort to compare constructors in generic.
3285 (see sem_variable::equals in ipa-icf which can do so for
3286 constants). */
3287 if (!VECTOR_TYPE_P (TREE_TYPE (arg0))
3288 || !VECTOR_TYPE_P (TREE_TYPE (arg1)))
3289 return 0;
3291 /* Be sure that vectors constructed have the same representation.
3292 We only tested element precision and modes to match.
3293 Vectors may be BLKmode and thus also check that the number of
3294 parts match. */
3295 if (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0))
3296 != TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)))
3297 return 0;
3299 vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0);
3300 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1);
3301 unsigned int len = vec_safe_length (v0);
3303 if (len != vec_safe_length (v1))
3304 return 0;
3306 for (unsigned int i = 0; i < len; i++)
3308 constructor_elt *c0 = &(*v0)[i];
3309 constructor_elt *c1 = &(*v1)[i];
3311 if (!operand_equal_p (c0->value, c1->value, flags)
3312 /* In GIMPLE the indexes can be either NULL or matching i.
3313 Double check this so we won't get false
3314 positives for GENERIC. */
3315 || (c0->index
3316 && (TREE_CODE (c0->index) != INTEGER_CST
3317 || !compare_tree_int (c0->index, i)))
3318 || (c1->index
3319 && (TREE_CODE (c1->index) != INTEGER_CST
3320 || !compare_tree_int (c1->index, i))))
3321 return 0;
3323 return 1;
3325 else if (TREE_CODE (arg0) == STATEMENT_LIST
3326 && (flags & OEP_LEXICOGRAPHIC))
3328 /* Compare the STATEMENT_LISTs. */
3329 tree_stmt_iterator tsi1, tsi2;
3330 tree body1 = CONST_CAST_TREE (arg0);
3331 tree body2 = CONST_CAST_TREE (arg1);
3332 for (tsi1 = tsi_start (body1), tsi2 = tsi_start (body2); ;
3333 tsi_next (&tsi1), tsi_next (&tsi2))
3335 /* The lists don't have the same number of statements. */
3336 if (tsi_end_p (tsi1) ^ tsi_end_p (tsi2))
3337 return 0;
3338 if (tsi_end_p (tsi1) && tsi_end_p (tsi2))
3339 return 1;
3340 if (!operand_equal_p (tsi_stmt (tsi1), tsi_stmt (tsi2),
3341 OEP_LEXICOGRAPHIC))
3342 return 0;
3345 return 0;
3347 case tcc_statement:
3348 switch (TREE_CODE (arg0))
3350 case RETURN_EXPR:
3351 if (flags & OEP_LEXICOGRAPHIC)
3352 return OP_SAME_WITH_NULL (0);
3353 return 0;
3354 default:
3355 return 0;
3358 default:
3359 return 0;
3362 #undef OP_SAME
3363 #undef OP_SAME_WITH_NULL
3366 /* Similar to operand_equal_p, but strip nops first. */
3368 static bool
3369 operand_equal_for_comparison_p (tree arg0, tree arg1)
3371 if (operand_equal_p (arg0, arg1, 0))
3372 return true;
3374 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3375 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3376 return false;
3378 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3379 and see if the inner values are the same. This removes any
3380 signedness comparison, which doesn't matter here. */
3381 STRIP_NOPS (arg0);
3382 STRIP_NOPS (arg1);
3383 if (operand_equal_p (arg0, arg1, 0))
3384 return true;
3386 return false;
3389 /* See if ARG is an expression that is either a comparison or is performing
3390 arithmetic on comparisons. The comparisons must only be comparing
3391 two different values, which will be stored in *CVAL1 and *CVAL2; if
3392 they are nonzero it means that some operands have already been found.
3393 No variables may be used anywhere else in the expression except in the
3394 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3395 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3397 If this is true, return 1. Otherwise, return zero. */
3399 static int
3400 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3402 enum tree_code code = TREE_CODE (arg);
3403 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3405 /* We can handle some of the tcc_expression cases here. */
3406 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3407 tclass = tcc_unary;
3408 else if (tclass == tcc_expression
3409 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3410 || code == COMPOUND_EXPR))
3411 tclass = tcc_binary;
3413 else if (tclass == tcc_expression && code == SAVE_EXPR
3414 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3416 /* If we've already found a CVAL1 or CVAL2, this expression is
3417 two complex to handle. */
3418 if (*cval1 || *cval2)
3419 return 0;
3421 tclass = tcc_unary;
3422 *save_p = 1;
3425 switch (tclass)
3427 case tcc_unary:
3428 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3430 case tcc_binary:
3431 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3432 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3433 cval1, cval2, save_p));
3435 case tcc_constant:
3436 return 1;
3438 case tcc_expression:
3439 if (code == COND_EXPR)
3440 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3441 cval1, cval2, save_p)
3442 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3443 cval1, cval2, save_p)
3444 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3445 cval1, cval2, save_p));
3446 return 0;
3448 case tcc_comparison:
3449 /* First see if we can handle the first operand, then the second. For
3450 the second operand, we know *CVAL1 can't be zero. It must be that
3451 one side of the comparison is each of the values; test for the
3452 case where this isn't true by failing if the two operands
3453 are the same. */
3455 if (operand_equal_p (TREE_OPERAND (arg, 0),
3456 TREE_OPERAND (arg, 1), 0))
3457 return 0;
3459 if (*cval1 == 0)
3460 *cval1 = TREE_OPERAND (arg, 0);
3461 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3463 else if (*cval2 == 0)
3464 *cval2 = TREE_OPERAND (arg, 0);
3465 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3467 else
3468 return 0;
3470 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3472 else if (*cval2 == 0)
3473 *cval2 = TREE_OPERAND (arg, 1);
3474 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3476 else
3477 return 0;
3479 return 1;
3481 default:
3482 return 0;
3486 /* ARG is a tree that is known to contain just arithmetic operations and
3487 comparisons. Evaluate the operations in the tree substituting NEW0 for
3488 any occurrence of OLD0 as an operand of a comparison and likewise for
3489 NEW1 and OLD1. */
3491 static tree
3492 eval_subst (location_t loc, tree arg, tree old0, tree new0,
3493 tree old1, tree new1)
3495 tree type = TREE_TYPE (arg);
3496 enum tree_code code = TREE_CODE (arg);
3497 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3499 /* We can handle some of the tcc_expression cases here. */
3500 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3501 tclass = tcc_unary;
3502 else if (tclass == tcc_expression
3503 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3504 tclass = tcc_binary;
3506 switch (tclass)
3508 case tcc_unary:
3509 return fold_build1_loc (loc, code, type,
3510 eval_subst (loc, TREE_OPERAND (arg, 0),
3511 old0, new0, old1, new1));
3513 case tcc_binary:
3514 return fold_build2_loc (loc, code, type,
3515 eval_subst (loc, TREE_OPERAND (arg, 0),
3516 old0, new0, old1, new1),
3517 eval_subst (loc, TREE_OPERAND (arg, 1),
3518 old0, new0, old1, new1));
3520 case tcc_expression:
3521 switch (code)
3523 case SAVE_EXPR:
3524 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3525 old1, new1);
3527 case COMPOUND_EXPR:
3528 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3529 old1, new1);
3531 case COND_EXPR:
3532 return fold_build3_loc (loc, code, type,
3533 eval_subst (loc, TREE_OPERAND (arg, 0),
3534 old0, new0, old1, new1),
3535 eval_subst (loc, TREE_OPERAND (arg, 1),
3536 old0, new0, old1, new1),
3537 eval_subst (loc, TREE_OPERAND (arg, 2),
3538 old0, new0, old1, new1));
3539 default:
3540 break;
3542 /* Fall through - ??? */
3544 case tcc_comparison:
3546 tree arg0 = TREE_OPERAND (arg, 0);
3547 tree arg1 = TREE_OPERAND (arg, 1);
3549 /* We need to check both for exact equality and tree equality. The
3550 former will be true if the operand has a side-effect. In that
3551 case, we know the operand occurred exactly once. */
3553 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3554 arg0 = new0;
3555 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3556 arg0 = new1;
3558 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3559 arg1 = new0;
3560 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3561 arg1 = new1;
3563 return fold_build2_loc (loc, code, type, arg0, arg1);
3566 default:
3567 return arg;
3571 /* Return a tree for the case when the result of an expression is RESULT
3572 converted to TYPE and OMITTED was previously an operand of the expression
3573 but is now not needed (e.g., we folded OMITTED * 0).
3575 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3576 the conversion of RESULT to TYPE. */
3578 tree
3579 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3581 tree t = fold_convert_loc (loc, type, result);
3583 /* If the resulting operand is an empty statement, just return the omitted
3584 statement casted to void. */
3585 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3586 return build1_loc (loc, NOP_EXPR, void_type_node,
3587 fold_ignored_result (omitted));
3589 if (TREE_SIDE_EFFECTS (omitted))
3590 return build2_loc (loc, COMPOUND_EXPR, type,
3591 fold_ignored_result (omitted), t);
3593 return non_lvalue_loc (loc, t);
3596 /* Return a tree for the case when the result of an expression is RESULT
3597 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3598 of the expression but are now not needed.
3600 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3601 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3602 evaluated before OMITTED2. Otherwise, if neither has side effects,
3603 just do the conversion of RESULT to TYPE. */
3605 tree
3606 omit_two_operands_loc (location_t loc, tree type, tree result,
3607 tree omitted1, tree omitted2)
3609 tree t = fold_convert_loc (loc, type, result);
3611 if (TREE_SIDE_EFFECTS (omitted2))
3612 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3613 if (TREE_SIDE_EFFECTS (omitted1))
3614 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3616 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3620 /* Return a simplified tree node for the truth-negation of ARG. This
3621 never alters ARG itself. We assume that ARG is an operation that
3622 returns a truth value (0 or 1).
3624 FIXME: one would think we would fold the result, but it causes
3625 problems with the dominator optimizer. */
3627 static tree
3628 fold_truth_not_expr (location_t loc, tree arg)
3630 tree type = TREE_TYPE (arg);
3631 enum tree_code code = TREE_CODE (arg);
3632 location_t loc1, loc2;
3634 /* If this is a comparison, we can simply invert it, except for
3635 floating-point non-equality comparisons, in which case we just
3636 enclose a TRUTH_NOT_EXPR around what we have. */
3638 if (TREE_CODE_CLASS (code) == tcc_comparison)
3640 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3641 if (FLOAT_TYPE_P (op_type)
3642 && flag_trapping_math
3643 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3644 && code != NE_EXPR && code != EQ_EXPR)
3645 return NULL_TREE;
3647 code = invert_tree_comparison (code, HONOR_NANS (op_type));
3648 if (code == ERROR_MARK)
3649 return NULL_TREE;
3651 tree ret = build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3652 TREE_OPERAND (arg, 1));
3653 if (TREE_NO_WARNING (arg))
3654 TREE_NO_WARNING (ret) = 1;
3655 return ret;
3658 switch (code)
3660 case INTEGER_CST:
3661 return constant_boolean_node (integer_zerop (arg), type);
3663 case TRUTH_AND_EXPR:
3664 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3665 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3666 return build2_loc (loc, TRUTH_OR_EXPR, type,
3667 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3668 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3670 case TRUTH_OR_EXPR:
3671 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3672 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3673 return build2_loc (loc, TRUTH_AND_EXPR, type,
3674 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3675 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3677 case TRUTH_XOR_EXPR:
3678 /* Here we can invert either operand. We invert the first operand
3679 unless the second operand is a TRUTH_NOT_EXPR in which case our
3680 result is the XOR of the first operand with the inside of the
3681 negation of the second operand. */
3683 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3684 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3685 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3686 else
3687 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3688 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3689 TREE_OPERAND (arg, 1));
3691 case TRUTH_ANDIF_EXPR:
3692 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3693 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3694 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3695 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3696 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3698 case TRUTH_ORIF_EXPR:
3699 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3700 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3701 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3702 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3703 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3705 case TRUTH_NOT_EXPR:
3706 return TREE_OPERAND (arg, 0);
3708 case COND_EXPR:
3710 tree arg1 = TREE_OPERAND (arg, 1);
3711 tree arg2 = TREE_OPERAND (arg, 2);
3713 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3714 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3716 /* A COND_EXPR may have a throw as one operand, which
3717 then has void type. Just leave void operands
3718 as they are. */
3719 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3720 VOID_TYPE_P (TREE_TYPE (arg1))
3721 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3722 VOID_TYPE_P (TREE_TYPE (arg2))
3723 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3726 case COMPOUND_EXPR:
3727 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3728 return build2_loc (loc, COMPOUND_EXPR, type,
3729 TREE_OPERAND (arg, 0),
3730 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3732 case NON_LVALUE_EXPR:
3733 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3734 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3736 CASE_CONVERT:
3737 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3738 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3740 /* fall through */
3742 case FLOAT_EXPR:
3743 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3744 return build1_loc (loc, TREE_CODE (arg), type,
3745 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3747 case BIT_AND_EXPR:
3748 if (!integer_onep (TREE_OPERAND (arg, 1)))
3749 return NULL_TREE;
3750 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3752 case SAVE_EXPR:
3753 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3755 case CLEANUP_POINT_EXPR:
3756 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3757 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3758 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3760 default:
3761 return NULL_TREE;
3765 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3766 assume that ARG is an operation that returns a truth value (0 or 1
3767 for scalars, 0 or -1 for vectors). Return the folded expression if
3768 folding is successful. Otherwise, return NULL_TREE. */
3770 static tree
3771 fold_invert_truthvalue (location_t loc, tree arg)
3773 tree type = TREE_TYPE (arg);
3774 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3775 ? BIT_NOT_EXPR
3776 : TRUTH_NOT_EXPR,
3777 type, arg);
3780 /* Return a simplified tree node for the truth-negation of ARG. This
3781 never alters ARG itself. We assume that ARG is an operation that
3782 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3784 tree
3785 invert_truthvalue_loc (location_t loc, tree arg)
3787 if (TREE_CODE (arg) == ERROR_MARK)
3788 return arg;
3790 tree type = TREE_TYPE (arg);
3791 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3792 ? BIT_NOT_EXPR
3793 : TRUTH_NOT_EXPR,
3794 type, arg);
3797 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3798 with code CODE. This optimization is unsafe. */
3799 static tree
3800 distribute_real_division (location_t loc, enum tree_code code, tree type,
3801 tree arg0, tree arg1)
3803 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3804 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3806 /* (A / C) +- (B / C) -> (A +- B) / C. */
3807 if (mul0 == mul1
3808 && operand_equal_p (TREE_OPERAND (arg0, 1),
3809 TREE_OPERAND (arg1, 1), 0))
3810 return fold_build2_loc (loc, mul0 ? MULT_EXPR : RDIV_EXPR, type,
3811 fold_build2_loc (loc, code, type,
3812 TREE_OPERAND (arg0, 0),
3813 TREE_OPERAND (arg1, 0)),
3814 TREE_OPERAND (arg0, 1));
3816 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3817 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3818 TREE_OPERAND (arg1, 0), 0)
3819 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3820 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3822 REAL_VALUE_TYPE r0, r1;
3823 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3824 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3825 if (!mul0)
3826 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3827 if (!mul1)
3828 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3829 real_arithmetic (&r0, code, &r0, &r1);
3830 return fold_build2_loc (loc, MULT_EXPR, type,
3831 TREE_OPERAND (arg0, 0),
3832 build_real (type, r0));
3835 return NULL_TREE;
3838 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3839 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3840 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3841 is the original memory reference used to preserve the alias set of
3842 the access. */
3844 static tree
3845 make_bit_field_ref (location_t loc, tree inner, tree orig_inner, tree type,
3846 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
3847 int unsignedp, int reversep)
3849 tree result, bftype;
3851 /* Attempt not to lose the access path if possible. */
3852 if (TREE_CODE (orig_inner) == COMPONENT_REF)
3854 tree ninner = TREE_OPERAND (orig_inner, 0);
3855 machine_mode nmode;
3856 HOST_WIDE_INT nbitsize, nbitpos;
3857 tree noffset;
3858 int nunsignedp, nreversep, nvolatilep = 0;
3859 tree base = get_inner_reference (ninner, &nbitsize, &nbitpos,
3860 &noffset, &nmode, &nunsignedp,
3861 &nreversep, &nvolatilep);
3862 if (base == inner
3863 && noffset == NULL_TREE
3864 && nbitsize >= bitsize
3865 && nbitpos <= bitpos
3866 && bitpos + bitsize <= nbitpos + nbitsize
3867 && !reversep
3868 && !nreversep
3869 && !nvolatilep)
3871 inner = ninner;
3872 bitpos -= nbitpos;
3876 alias_set_type iset = get_alias_set (orig_inner);
3877 if (iset == 0 && get_alias_set (inner) != iset)
3878 inner = fold_build2 (MEM_REF, TREE_TYPE (inner),
3879 build_fold_addr_expr (inner),
3880 build_int_cst (ptr_type_node, 0));
3882 if (bitpos == 0 && !reversep)
3884 tree size = TYPE_SIZE (TREE_TYPE (inner));
3885 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3886 || POINTER_TYPE_P (TREE_TYPE (inner)))
3887 && tree_fits_shwi_p (size)
3888 && tree_to_shwi (size) == bitsize)
3889 return fold_convert_loc (loc, type, inner);
3892 bftype = type;
3893 if (TYPE_PRECISION (bftype) != bitsize
3894 || TYPE_UNSIGNED (bftype) == !unsignedp)
3895 bftype = build_nonstandard_integer_type (bitsize, 0);
3897 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3898 bitsize_int (bitsize), bitsize_int (bitpos));
3899 REF_REVERSE_STORAGE_ORDER (result) = reversep;
3901 if (bftype != type)
3902 result = fold_convert_loc (loc, type, result);
3904 return result;
3907 /* Optimize a bit-field compare.
3909 There are two cases: First is a compare against a constant and the
3910 second is a comparison of two items where the fields are at the same
3911 bit position relative to the start of a chunk (byte, halfword, word)
3912 large enough to contain it. In these cases we can avoid the shift
3913 implicit in bitfield extractions.
3915 For constants, we emit a compare of the shifted constant with the
3916 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3917 compared. For two fields at the same position, we do the ANDs with the
3918 similar mask and compare the result of the ANDs.
3920 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3921 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3922 are the left and right operands of the comparison, respectively.
3924 If the optimization described above can be done, we return the resulting
3925 tree. Otherwise we return zero. */
3927 static tree
3928 optimize_bit_field_compare (location_t loc, enum tree_code code,
3929 tree compare_type, tree lhs, tree rhs)
3931 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3932 tree type = TREE_TYPE (lhs);
3933 tree unsigned_type;
3934 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3935 machine_mode lmode, rmode;
3936 scalar_int_mode nmode;
3937 int lunsignedp, runsignedp;
3938 int lreversep, rreversep;
3939 int lvolatilep = 0, rvolatilep = 0;
3940 tree linner, rinner = NULL_TREE;
3941 tree mask;
3942 tree offset;
3944 /* Get all the information about the extractions being done. If the bit size
3945 if the same as the size of the underlying object, we aren't doing an
3946 extraction at all and so can do nothing. We also don't want to
3947 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3948 then will no longer be able to replace it. */
3949 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3950 &lunsignedp, &lreversep, &lvolatilep);
3951 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3952 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR || lvolatilep)
3953 return 0;
3955 if (const_p)
3956 rreversep = lreversep;
3957 else
3959 /* If this is not a constant, we can only do something if bit positions,
3960 sizes, signedness and storage order are the same. */
3961 rinner
3962 = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3963 &runsignedp, &rreversep, &rvolatilep);
3965 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3966 || lunsignedp != runsignedp || lreversep != rreversep || offset != 0
3967 || TREE_CODE (rinner) == PLACEHOLDER_EXPR || rvolatilep)
3968 return 0;
3971 /* Honor the C++ memory model and mimic what RTL expansion does. */
3972 unsigned HOST_WIDE_INT bitstart = 0;
3973 unsigned HOST_WIDE_INT bitend = 0;
3974 if (TREE_CODE (lhs) == COMPONENT_REF)
3976 get_bit_range (&bitstart, &bitend, lhs, &lbitpos, &offset);
3977 if (offset != NULL_TREE)
3978 return 0;
3981 /* See if we can find a mode to refer to this field. We should be able to,
3982 but fail if we can't. */
3983 if (!get_best_mode (lbitsize, lbitpos, bitstart, bitend,
3984 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3985 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3986 TYPE_ALIGN (TREE_TYPE (rinner))),
3987 BITS_PER_WORD, false, &nmode))
3988 return 0;
3990 /* Set signed and unsigned types of the precision of this mode for the
3991 shifts below. */
3992 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3994 /* Compute the bit position and size for the new reference and our offset
3995 within it. If the new reference is the same size as the original, we
3996 won't optimize anything, so return zero. */
3997 nbitsize = GET_MODE_BITSIZE (nmode);
3998 nbitpos = lbitpos & ~ (nbitsize - 1);
3999 lbitpos -= nbitpos;
4000 if (nbitsize == lbitsize)
4001 return 0;
4003 if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4004 lbitpos = nbitsize - lbitsize - lbitpos;
4006 /* Make the mask to be used against the extracted field. */
4007 mask = build_int_cst_type (unsigned_type, -1);
4008 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
4009 mask = const_binop (RSHIFT_EXPR, mask,
4010 size_int (nbitsize - lbitsize - lbitpos));
4012 if (! const_p)
4013 /* If not comparing with constant, just rework the comparison
4014 and return. */
4015 return fold_build2_loc (loc, code, compare_type,
4016 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4017 make_bit_field_ref (loc, linner, lhs,
4018 unsigned_type,
4019 nbitsize, nbitpos,
4020 1, lreversep),
4021 mask),
4022 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4023 make_bit_field_ref (loc, rinner, rhs,
4024 unsigned_type,
4025 nbitsize, nbitpos,
4026 1, rreversep),
4027 mask));
4029 /* Otherwise, we are handling the constant case. See if the constant is too
4030 big for the field. Warn and return a tree for 0 (false) if so. We do
4031 this not only for its own sake, but to avoid having to test for this
4032 error case below. If we didn't, we might generate wrong code.
4034 For unsigned fields, the constant shifted right by the field length should
4035 be all zero. For signed fields, the high-order bits should agree with
4036 the sign bit. */
4038 if (lunsignedp)
4040 if (wi::lrshift (rhs, lbitsize) != 0)
4042 warning (0, "comparison is always %d due to width of bit-field",
4043 code == NE_EXPR);
4044 return constant_boolean_node (code == NE_EXPR, compare_type);
4047 else
4049 wide_int tem = wi::arshift (rhs, lbitsize - 1);
4050 if (tem != 0 && tem != -1)
4052 warning (0, "comparison is always %d due to width of bit-field",
4053 code == NE_EXPR);
4054 return constant_boolean_node (code == NE_EXPR, compare_type);
4058 /* Single-bit compares should always be against zero. */
4059 if (lbitsize == 1 && ! integer_zerop (rhs))
4061 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
4062 rhs = build_int_cst (type, 0);
4065 /* Make a new bitfield reference, shift the constant over the
4066 appropriate number of bits and mask it with the computed mask
4067 (in case this was a signed field). If we changed it, make a new one. */
4068 lhs = make_bit_field_ref (loc, linner, lhs, unsigned_type,
4069 nbitsize, nbitpos, 1, lreversep);
4071 rhs = const_binop (BIT_AND_EXPR,
4072 const_binop (LSHIFT_EXPR,
4073 fold_convert_loc (loc, unsigned_type, rhs),
4074 size_int (lbitpos)),
4075 mask);
4077 lhs = build2_loc (loc, code, compare_type,
4078 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
4079 return lhs;
4082 /* Subroutine for fold_truth_andor_1: decode a field reference.
4084 If EXP is a comparison reference, we return the innermost reference.
4086 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4087 set to the starting bit number.
4089 If the innermost field can be completely contained in a mode-sized
4090 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4092 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4093 otherwise it is not changed.
4095 *PUNSIGNEDP is set to the signedness of the field.
4097 *PREVERSEP is set to the storage order of the field.
4099 *PMASK is set to the mask used. This is either contained in a
4100 BIT_AND_EXPR or derived from the width of the field.
4102 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4104 Return 0 if this is not a component reference or is one that we can't
4105 do anything with. */
4107 static tree
4108 decode_field_reference (location_t loc, tree *exp_, HOST_WIDE_INT *pbitsize,
4109 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
4110 int *punsignedp, int *preversep, int *pvolatilep,
4111 tree *pmask, tree *pand_mask)
4113 tree exp = *exp_;
4114 tree outer_type = 0;
4115 tree and_mask = 0;
4116 tree mask, inner, offset;
4117 tree unsigned_type;
4118 unsigned int precision;
4120 /* All the optimizations using this function assume integer fields.
4121 There are problems with FP fields since the type_for_size call
4122 below can fail for, e.g., XFmode. */
4123 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
4124 return 0;
4126 /* We are interested in the bare arrangement of bits, so strip everything
4127 that doesn't affect the machine mode. However, record the type of the
4128 outermost expression if it may matter below. */
4129 if (CONVERT_EXPR_P (exp)
4130 || TREE_CODE (exp) == NON_LVALUE_EXPR)
4131 outer_type = TREE_TYPE (exp);
4132 STRIP_NOPS (exp);
4134 if (TREE_CODE (exp) == BIT_AND_EXPR)
4136 and_mask = TREE_OPERAND (exp, 1);
4137 exp = TREE_OPERAND (exp, 0);
4138 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
4139 if (TREE_CODE (and_mask) != INTEGER_CST)
4140 return 0;
4143 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
4144 punsignedp, preversep, pvolatilep);
4145 if ((inner == exp && and_mask == 0)
4146 || *pbitsize < 0 || offset != 0
4147 || TREE_CODE (inner) == PLACEHOLDER_EXPR
4148 /* Reject out-of-bound accesses (PR79731). */
4149 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner))
4150 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner)),
4151 *pbitpos + *pbitsize) < 0))
4152 return 0;
4154 *exp_ = exp;
4156 /* If the number of bits in the reference is the same as the bitsize of
4157 the outer type, then the outer type gives the signedness. Otherwise
4158 (in case of a small bitfield) the signedness is unchanged. */
4159 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4160 *punsignedp = TYPE_UNSIGNED (outer_type);
4162 /* Compute the mask to access the bitfield. */
4163 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4164 precision = TYPE_PRECISION (unsigned_type);
4166 mask = build_int_cst_type (unsigned_type, -1);
4168 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4169 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4171 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4172 if (and_mask != 0)
4173 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4174 fold_convert_loc (loc, unsigned_type, and_mask), mask);
4176 *pmask = mask;
4177 *pand_mask = and_mask;
4178 return inner;
4181 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4182 bit positions and MASK is SIGNED. */
4184 static int
4185 all_ones_mask_p (const_tree mask, unsigned int size)
4187 tree type = TREE_TYPE (mask);
4188 unsigned int precision = TYPE_PRECISION (type);
4190 /* If this function returns true when the type of the mask is
4191 UNSIGNED, then there will be errors. In particular see
4192 gcc.c-torture/execute/990326-1.c. There does not appear to be
4193 any documentation paper trail as to why this is so. But the pre
4194 wide-int worked with that restriction and it has been preserved
4195 here. */
4196 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
4197 return false;
4199 return wi::mask (size, false, precision) == mask;
4202 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4203 represents the sign bit of EXP's type. If EXP represents a sign
4204 or zero extension, also test VAL against the unextended type.
4205 The return value is the (sub)expression whose sign bit is VAL,
4206 or NULL_TREE otherwise. */
4208 tree
4209 sign_bit_p (tree exp, const_tree val)
4211 int width;
4212 tree t;
4214 /* Tree EXP must have an integral type. */
4215 t = TREE_TYPE (exp);
4216 if (! INTEGRAL_TYPE_P (t))
4217 return NULL_TREE;
4219 /* Tree VAL must be an integer constant. */
4220 if (TREE_CODE (val) != INTEGER_CST
4221 || TREE_OVERFLOW (val))
4222 return NULL_TREE;
4224 width = TYPE_PRECISION (t);
4225 if (wi::only_sign_bit_p (val, width))
4226 return exp;
4228 /* Handle extension from a narrower type. */
4229 if (TREE_CODE (exp) == NOP_EXPR
4230 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4231 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4233 return NULL_TREE;
4236 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4237 to be evaluated unconditionally. */
4239 static int
4240 simple_operand_p (const_tree exp)
4242 /* Strip any conversions that don't change the machine mode. */
4243 STRIP_NOPS (exp);
4245 return (CONSTANT_CLASS_P (exp)
4246 || TREE_CODE (exp) == SSA_NAME
4247 || (DECL_P (exp)
4248 && ! TREE_ADDRESSABLE (exp)
4249 && ! TREE_THIS_VOLATILE (exp)
4250 && ! DECL_NONLOCAL (exp)
4251 /* Don't regard global variables as simple. They may be
4252 allocated in ways unknown to the compiler (shared memory,
4253 #pragma weak, etc). */
4254 && ! TREE_PUBLIC (exp)
4255 && ! DECL_EXTERNAL (exp)
4256 /* Weakrefs are not safe to be read, since they can be NULL.
4257 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4258 have DECL_WEAK flag set. */
4259 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
4260 /* Loading a static variable is unduly expensive, but global
4261 registers aren't expensive. */
4262 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4265 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4266 to be evaluated unconditionally.
4267 I addition to simple_operand_p, we assume that comparisons, conversions,
4268 and logic-not operations are simple, if their operands are simple, too. */
4270 static bool
4271 simple_operand_p_2 (tree exp)
4273 enum tree_code code;
4275 if (TREE_SIDE_EFFECTS (exp)
4276 || tree_could_trap_p (exp))
4277 return false;
4279 while (CONVERT_EXPR_P (exp))
4280 exp = TREE_OPERAND (exp, 0);
4282 code = TREE_CODE (exp);
4284 if (TREE_CODE_CLASS (code) == tcc_comparison)
4285 return (simple_operand_p (TREE_OPERAND (exp, 0))
4286 && simple_operand_p (TREE_OPERAND (exp, 1)));
4288 if (code == TRUTH_NOT_EXPR)
4289 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
4291 return simple_operand_p (exp);
4295 /* The following functions are subroutines to fold_range_test and allow it to
4296 try to change a logical combination of comparisons into a range test.
4298 For example, both
4299 X == 2 || X == 3 || X == 4 || X == 5
4301 X >= 2 && X <= 5
4302 are converted to
4303 (unsigned) (X - 2) <= 3
4305 We describe each set of comparisons as being either inside or outside
4306 a range, using a variable named like IN_P, and then describe the
4307 range with a lower and upper bound. If one of the bounds is omitted,
4308 it represents either the highest or lowest value of the type.
4310 In the comments below, we represent a range by two numbers in brackets
4311 preceded by a "+" to designate being inside that range, or a "-" to
4312 designate being outside that range, so the condition can be inverted by
4313 flipping the prefix. An omitted bound is represented by a "-". For
4314 example, "- [-, 10]" means being outside the range starting at the lowest
4315 possible value and ending at 10, in other words, being greater than 10.
4316 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4317 always false.
4319 We set up things so that the missing bounds are handled in a consistent
4320 manner so neither a missing bound nor "true" and "false" need to be
4321 handled using a special case. */
4323 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4324 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4325 and UPPER1_P are nonzero if the respective argument is an upper bound
4326 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4327 must be specified for a comparison. ARG1 will be converted to ARG0's
4328 type if both are specified. */
4330 static tree
4331 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4332 tree arg1, int upper1_p)
4334 tree tem;
4335 int result;
4336 int sgn0, sgn1;
4338 /* If neither arg represents infinity, do the normal operation.
4339 Else, if not a comparison, return infinity. Else handle the special
4340 comparison rules. Note that most of the cases below won't occur, but
4341 are handled for consistency. */
4343 if (arg0 != 0 && arg1 != 0)
4345 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4346 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4347 STRIP_NOPS (tem);
4348 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4351 if (TREE_CODE_CLASS (code) != tcc_comparison)
4352 return 0;
4354 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4355 for neither. In real maths, we cannot assume open ended ranges are
4356 the same. But, this is computer arithmetic, where numbers are finite.
4357 We can therefore make the transformation of any unbounded range with
4358 the value Z, Z being greater than any representable number. This permits
4359 us to treat unbounded ranges as equal. */
4360 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4361 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4362 switch (code)
4364 case EQ_EXPR:
4365 result = sgn0 == sgn1;
4366 break;
4367 case NE_EXPR:
4368 result = sgn0 != sgn1;
4369 break;
4370 case LT_EXPR:
4371 result = sgn0 < sgn1;
4372 break;
4373 case LE_EXPR:
4374 result = sgn0 <= sgn1;
4375 break;
4376 case GT_EXPR:
4377 result = sgn0 > sgn1;
4378 break;
4379 case GE_EXPR:
4380 result = sgn0 >= sgn1;
4381 break;
4382 default:
4383 gcc_unreachable ();
4386 return constant_boolean_node (result, type);
4389 /* Helper routine for make_range. Perform one step for it, return
4390 new expression if the loop should continue or NULL_TREE if it should
4391 stop. */
4393 tree
4394 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4395 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4396 bool *strict_overflow_p)
4398 tree arg0_type = TREE_TYPE (arg0);
4399 tree n_low, n_high, low = *p_low, high = *p_high;
4400 int in_p = *p_in_p, n_in_p;
4402 switch (code)
4404 case TRUTH_NOT_EXPR:
4405 /* We can only do something if the range is testing for zero. */
4406 if (low == NULL_TREE || high == NULL_TREE
4407 || ! integer_zerop (low) || ! integer_zerop (high))
4408 return NULL_TREE;
4409 *p_in_p = ! in_p;
4410 return arg0;
4412 case EQ_EXPR: case NE_EXPR:
4413 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4414 /* We can only do something if the range is testing for zero
4415 and if the second operand is an integer constant. Note that
4416 saying something is "in" the range we make is done by
4417 complementing IN_P since it will set in the initial case of
4418 being not equal to zero; "out" is leaving it alone. */
4419 if (low == NULL_TREE || high == NULL_TREE
4420 || ! integer_zerop (low) || ! integer_zerop (high)
4421 || TREE_CODE (arg1) != INTEGER_CST)
4422 return NULL_TREE;
4424 switch (code)
4426 case NE_EXPR: /* - [c, c] */
4427 low = high = arg1;
4428 break;
4429 case EQ_EXPR: /* + [c, c] */
4430 in_p = ! in_p, low = high = arg1;
4431 break;
4432 case GT_EXPR: /* - [-, c] */
4433 low = 0, high = arg1;
4434 break;
4435 case GE_EXPR: /* + [c, -] */
4436 in_p = ! in_p, low = arg1, high = 0;
4437 break;
4438 case LT_EXPR: /* - [c, -] */
4439 low = arg1, high = 0;
4440 break;
4441 case LE_EXPR: /* + [-, c] */
4442 in_p = ! in_p, low = 0, high = arg1;
4443 break;
4444 default:
4445 gcc_unreachable ();
4448 /* If this is an unsigned comparison, we also know that EXP is
4449 greater than or equal to zero. We base the range tests we make
4450 on that fact, so we record it here so we can parse existing
4451 range tests. We test arg0_type since often the return type
4452 of, e.g. EQ_EXPR, is boolean. */
4453 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4455 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4456 in_p, low, high, 1,
4457 build_int_cst (arg0_type, 0),
4458 NULL_TREE))
4459 return NULL_TREE;
4461 in_p = n_in_p, low = n_low, high = n_high;
4463 /* If the high bound is missing, but we have a nonzero low
4464 bound, reverse the range so it goes from zero to the low bound
4465 minus 1. */
4466 if (high == 0 && low && ! integer_zerop (low))
4468 in_p = ! in_p;
4469 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4470 build_int_cst (TREE_TYPE (low), 1), 0);
4471 low = build_int_cst (arg0_type, 0);
4475 *p_low = low;
4476 *p_high = high;
4477 *p_in_p = in_p;
4478 return arg0;
4480 case NEGATE_EXPR:
4481 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4482 low and high are non-NULL, then normalize will DTRT. */
4483 if (!TYPE_UNSIGNED (arg0_type)
4484 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4486 if (low == NULL_TREE)
4487 low = TYPE_MIN_VALUE (arg0_type);
4488 if (high == NULL_TREE)
4489 high = TYPE_MAX_VALUE (arg0_type);
4492 /* (-x) IN [a,b] -> x in [-b, -a] */
4493 n_low = range_binop (MINUS_EXPR, exp_type,
4494 build_int_cst (exp_type, 0),
4495 0, high, 1);
4496 n_high = range_binop (MINUS_EXPR, exp_type,
4497 build_int_cst (exp_type, 0),
4498 0, low, 0);
4499 if (n_high != 0 && TREE_OVERFLOW (n_high))
4500 return NULL_TREE;
4501 goto normalize;
4503 case BIT_NOT_EXPR:
4504 /* ~ X -> -X - 1 */
4505 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
4506 build_int_cst (exp_type, 1));
4508 case PLUS_EXPR:
4509 case MINUS_EXPR:
4510 if (TREE_CODE (arg1) != INTEGER_CST)
4511 return NULL_TREE;
4513 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4514 move a constant to the other side. */
4515 if (!TYPE_UNSIGNED (arg0_type)
4516 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4517 return NULL_TREE;
4519 /* If EXP is signed, any overflow in the computation is undefined,
4520 so we don't worry about it so long as our computations on
4521 the bounds don't overflow. For unsigned, overflow is defined
4522 and this is exactly the right thing. */
4523 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4524 arg0_type, low, 0, arg1, 0);
4525 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4526 arg0_type, high, 1, arg1, 0);
4527 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4528 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4529 return NULL_TREE;
4531 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4532 *strict_overflow_p = true;
4534 normalize:
4535 /* Check for an unsigned range which has wrapped around the maximum
4536 value thus making n_high < n_low, and normalize it. */
4537 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4539 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4540 build_int_cst (TREE_TYPE (n_high), 1), 0);
4541 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4542 build_int_cst (TREE_TYPE (n_low), 1), 0);
4544 /* If the range is of the form +/- [ x+1, x ], we won't
4545 be able to normalize it. But then, it represents the
4546 whole range or the empty set, so make it
4547 +/- [ -, - ]. */
4548 if (tree_int_cst_equal (n_low, low)
4549 && tree_int_cst_equal (n_high, high))
4550 low = high = 0;
4551 else
4552 in_p = ! in_p;
4554 else
4555 low = n_low, high = n_high;
4557 *p_low = low;
4558 *p_high = high;
4559 *p_in_p = in_p;
4560 return arg0;
4562 CASE_CONVERT:
4563 case NON_LVALUE_EXPR:
4564 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4565 return NULL_TREE;
4567 if (! INTEGRAL_TYPE_P (arg0_type)
4568 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4569 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4570 return NULL_TREE;
4572 n_low = low, n_high = high;
4574 if (n_low != 0)
4575 n_low = fold_convert_loc (loc, arg0_type, n_low);
4577 if (n_high != 0)
4578 n_high = fold_convert_loc (loc, arg0_type, n_high);
4580 /* If we're converting arg0 from an unsigned type, to exp,
4581 a signed type, we will be doing the comparison as unsigned.
4582 The tests above have already verified that LOW and HIGH
4583 are both positive.
4585 So we have to ensure that we will handle large unsigned
4586 values the same way that the current signed bounds treat
4587 negative values. */
4589 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4591 tree high_positive;
4592 tree equiv_type;
4593 /* For fixed-point modes, we need to pass the saturating flag
4594 as the 2nd parameter. */
4595 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4596 equiv_type
4597 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4598 TYPE_SATURATING (arg0_type));
4599 else
4600 equiv_type
4601 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4603 /* A range without an upper bound is, naturally, unbounded.
4604 Since convert would have cropped a very large value, use
4605 the max value for the destination type. */
4606 high_positive
4607 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4608 : TYPE_MAX_VALUE (arg0_type);
4610 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4611 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4612 fold_convert_loc (loc, arg0_type,
4613 high_positive),
4614 build_int_cst (arg0_type, 1));
4616 /* If the low bound is specified, "and" the range with the
4617 range for which the original unsigned value will be
4618 positive. */
4619 if (low != 0)
4621 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4622 1, fold_convert_loc (loc, arg0_type,
4623 integer_zero_node),
4624 high_positive))
4625 return NULL_TREE;
4627 in_p = (n_in_p == in_p);
4629 else
4631 /* Otherwise, "or" the range with the range of the input
4632 that will be interpreted as negative. */
4633 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4634 1, fold_convert_loc (loc, arg0_type,
4635 integer_zero_node),
4636 high_positive))
4637 return NULL_TREE;
4639 in_p = (in_p != n_in_p);
4643 *p_low = n_low;
4644 *p_high = n_high;
4645 *p_in_p = in_p;
4646 return arg0;
4648 default:
4649 return NULL_TREE;
4653 /* Given EXP, a logical expression, set the range it is testing into
4654 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4655 actually being tested. *PLOW and *PHIGH will be made of the same
4656 type as the returned expression. If EXP is not a comparison, we
4657 will most likely not be returning a useful value and range. Set
4658 *STRICT_OVERFLOW_P to true if the return value is only valid
4659 because signed overflow is undefined; otherwise, do not change
4660 *STRICT_OVERFLOW_P. */
4662 tree
4663 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4664 bool *strict_overflow_p)
4666 enum tree_code code;
4667 tree arg0, arg1 = NULL_TREE;
4668 tree exp_type, nexp;
4669 int in_p;
4670 tree low, high;
4671 location_t loc = EXPR_LOCATION (exp);
4673 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4674 and see if we can refine the range. Some of the cases below may not
4675 happen, but it doesn't seem worth worrying about this. We "continue"
4676 the outer loop when we've changed something; otherwise we "break"
4677 the switch, which will "break" the while. */
4679 in_p = 0;
4680 low = high = build_int_cst (TREE_TYPE (exp), 0);
4682 while (1)
4684 code = TREE_CODE (exp);
4685 exp_type = TREE_TYPE (exp);
4686 arg0 = NULL_TREE;
4688 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4690 if (TREE_OPERAND_LENGTH (exp) > 0)
4691 arg0 = TREE_OPERAND (exp, 0);
4692 if (TREE_CODE_CLASS (code) == tcc_binary
4693 || TREE_CODE_CLASS (code) == tcc_comparison
4694 || (TREE_CODE_CLASS (code) == tcc_expression
4695 && TREE_OPERAND_LENGTH (exp) > 1))
4696 arg1 = TREE_OPERAND (exp, 1);
4698 if (arg0 == NULL_TREE)
4699 break;
4701 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4702 &high, &in_p, strict_overflow_p);
4703 if (nexp == NULL_TREE)
4704 break;
4705 exp = nexp;
4708 /* If EXP is a constant, we can evaluate whether this is true or false. */
4709 if (TREE_CODE (exp) == INTEGER_CST)
4711 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4712 exp, 0, low, 0))
4713 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4714 exp, 1, high, 1)));
4715 low = high = 0;
4716 exp = 0;
4719 *pin_p = in_p, *plow = low, *phigh = high;
4720 return exp;
4723 /* Returns TRUE if [LOW, HIGH] range check can be optimized to
4724 a bitwise check i.e. when
4725 LOW == 0xXX...X00...0
4726 HIGH == 0xXX...X11...1
4727 Return corresponding mask in MASK and stem in VALUE. */
4729 static bool
4730 maskable_range_p (const_tree low, const_tree high, tree type, tree *mask,
4731 tree *value)
4733 if (TREE_CODE (low) != INTEGER_CST
4734 || TREE_CODE (high) != INTEGER_CST)
4735 return false;
4737 unsigned prec = TYPE_PRECISION (type);
4738 wide_int lo = wi::to_wide (low, prec);
4739 wide_int hi = wi::to_wide (high, prec);
4741 wide_int end_mask = lo ^ hi;
4742 if ((end_mask & (end_mask + 1)) != 0
4743 || (lo & end_mask) != 0)
4744 return false;
4746 wide_int stem_mask = ~end_mask;
4747 wide_int stem = lo & stem_mask;
4748 if (stem != (hi & stem_mask))
4749 return false;
4751 *mask = wide_int_to_tree (type, stem_mask);
4752 *value = wide_int_to_tree (type, stem);
4754 return true;
4757 /* Helper routine for build_range_check and match.pd. Return the type to
4758 perform the check or NULL if it shouldn't be optimized. */
4760 tree
4761 range_check_type (tree etype)
4763 /* First make sure that arithmetics in this type is valid, then make sure
4764 that it wraps around. */
4765 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4766 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4767 TYPE_UNSIGNED (etype));
4769 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4771 tree utype, minv, maxv;
4773 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4774 for the type in question, as we rely on this here. */
4775 utype = unsigned_type_for (etype);
4776 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
4777 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4778 build_int_cst (TREE_TYPE (maxv), 1), 1);
4779 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
4781 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4782 minv, 1, maxv, 1)))
4783 etype = utype;
4784 else
4785 return NULL_TREE;
4787 return etype;
4790 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4791 type, TYPE, return an expression to test if EXP is in (or out of, depending
4792 on IN_P) the range. Return 0 if the test couldn't be created. */
4794 tree
4795 build_range_check (location_t loc, tree type, tree exp, int in_p,
4796 tree low, tree high)
4798 tree etype = TREE_TYPE (exp), mask, value;
4800 /* Disable this optimization for function pointer expressions
4801 on targets that require function pointer canonicalization. */
4802 if (targetm.have_canonicalize_funcptr_for_compare ()
4803 && TREE_CODE (etype) == POINTER_TYPE
4804 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4805 return NULL_TREE;
4807 if (! in_p)
4809 value = build_range_check (loc, type, exp, 1, low, high);
4810 if (value != 0)
4811 return invert_truthvalue_loc (loc, value);
4813 return 0;
4816 if (low == 0 && high == 0)
4817 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4819 if (low == 0)
4820 return fold_build2_loc (loc, LE_EXPR, type, exp,
4821 fold_convert_loc (loc, etype, high));
4823 if (high == 0)
4824 return fold_build2_loc (loc, GE_EXPR, type, exp,
4825 fold_convert_loc (loc, etype, low));
4827 if (operand_equal_p (low, high, 0))
4828 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4829 fold_convert_loc (loc, etype, low));
4831 if (TREE_CODE (exp) == BIT_AND_EXPR
4832 && maskable_range_p (low, high, etype, &mask, &value))
4833 return fold_build2_loc (loc, EQ_EXPR, type,
4834 fold_build2_loc (loc, BIT_AND_EXPR, etype,
4835 exp, mask),
4836 value);
4838 if (integer_zerop (low))
4840 if (! TYPE_UNSIGNED (etype))
4842 etype = unsigned_type_for (etype);
4843 high = fold_convert_loc (loc, etype, high);
4844 exp = fold_convert_loc (loc, etype, exp);
4846 return build_range_check (loc, type, exp, 1, 0, high);
4849 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4850 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4852 int prec = TYPE_PRECISION (etype);
4854 if (wi::mask (prec - 1, false, prec) == high)
4856 if (TYPE_UNSIGNED (etype))
4858 tree signed_etype = signed_type_for (etype);
4859 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4860 etype
4861 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4862 else
4863 etype = signed_etype;
4864 exp = fold_convert_loc (loc, etype, exp);
4866 return fold_build2_loc (loc, GT_EXPR, type, exp,
4867 build_int_cst (etype, 0));
4871 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4872 This requires wrap-around arithmetics for the type of the expression. */
4873 etype = range_check_type (etype);
4874 if (etype == NULL_TREE)
4875 return NULL_TREE;
4877 if (POINTER_TYPE_P (etype))
4878 etype = unsigned_type_for (etype);
4880 high = fold_convert_loc (loc, etype, high);
4881 low = fold_convert_loc (loc, etype, low);
4882 exp = fold_convert_loc (loc, etype, exp);
4884 value = const_binop (MINUS_EXPR, high, low);
4886 if (value != 0 && !TREE_OVERFLOW (value))
4887 return build_range_check (loc, type,
4888 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4889 1, build_int_cst (etype, 0), value);
4891 return 0;
4894 /* Return the predecessor of VAL in its type, handling the infinite case. */
4896 static tree
4897 range_predecessor (tree val)
4899 tree type = TREE_TYPE (val);
4901 if (INTEGRAL_TYPE_P (type)
4902 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4903 return 0;
4904 else
4905 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
4906 build_int_cst (TREE_TYPE (val), 1), 0);
4909 /* Return the successor of VAL in its type, handling the infinite case. */
4911 static tree
4912 range_successor (tree val)
4914 tree type = TREE_TYPE (val);
4916 if (INTEGRAL_TYPE_P (type)
4917 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4918 return 0;
4919 else
4920 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
4921 build_int_cst (TREE_TYPE (val), 1), 0);
4924 /* Given two ranges, see if we can merge them into one. Return 1 if we
4925 can, 0 if we can't. Set the output range into the specified parameters. */
4927 bool
4928 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4929 tree high0, int in1_p, tree low1, tree high1)
4931 int no_overlap;
4932 int subset;
4933 int temp;
4934 tree tem;
4935 int in_p;
4936 tree low, high;
4937 int lowequal = ((low0 == 0 && low1 == 0)
4938 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4939 low0, 0, low1, 0)));
4940 int highequal = ((high0 == 0 && high1 == 0)
4941 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4942 high0, 1, high1, 1)));
4944 /* Make range 0 be the range that starts first, or ends last if they
4945 start at the same value. Swap them if it isn't. */
4946 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4947 low0, 0, low1, 0))
4948 || (lowequal
4949 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4950 high1, 1, high0, 1))))
4952 temp = in0_p, in0_p = in1_p, in1_p = temp;
4953 tem = low0, low0 = low1, low1 = tem;
4954 tem = high0, high0 = high1, high1 = tem;
4957 /* Now flag two cases, whether the ranges are disjoint or whether the
4958 second range is totally subsumed in the first. Note that the tests
4959 below are simplified by the ones above. */
4960 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4961 high0, 1, low1, 0));
4962 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4963 high1, 1, high0, 1));
4965 /* We now have four cases, depending on whether we are including or
4966 excluding the two ranges. */
4967 if (in0_p && in1_p)
4969 /* If they don't overlap, the result is false. If the second range
4970 is a subset it is the result. Otherwise, the range is from the start
4971 of the second to the end of the first. */
4972 if (no_overlap)
4973 in_p = 0, low = high = 0;
4974 else if (subset)
4975 in_p = 1, low = low1, high = high1;
4976 else
4977 in_p = 1, low = low1, high = high0;
4980 else if (in0_p && ! in1_p)
4982 /* If they don't overlap, the result is the first range. If they are
4983 equal, the result is false. If the second range is a subset of the
4984 first, and the ranges begin at the same place, we go from just after
4985 the end of the second range to the end of the first. If the second
4986 range is not a subset of the first, or if it is a subset and both
4987 ranges end at the same place, the range starts at the start of the
4988 first range and ends just before the second range.
4989 Otherwise, we can't describe this as a single range. */
4990 if (no_overlap)
4991 in_p = 1, low = low0, high = high0;
4992 else if (lowequal && highequal)
4993 in_p = 0, low = high = 0;
4994 else if (subset && lowequal)
4996 low = range_successor (high1);
4997 high = high0;
4998 in_p = 1;
4999 if (low == 0)
5001 /* We are in the weird situation where high0 > high1 but
5002 high1 has no successor. Punt. */
5003 return 0;
5006 else if (! subset || highequal)
5008 low = low0;
5009 high = range_predecessor (low1);
5010 in_p = 1;
5011 if (high == 0)
5013 /* low0 < low1 but low1 has no predecessor. Punt. */
5014 return 0;
5017 else
5018 return 0;
5021 else if (! in0_p && in1_p)
5023 /* If they don't overlap, the result is the second range. If the second
5024 is a subset of the first, the result is false. Otherwise,
5025 the range starts just after the first range and ends at the
5026 end of the second. */
5027 if (no_overlap)
5028 in_p = 1, low = low1, high = high1;
5029 else if (subset || highequal)
5030 in_p = 0, low = high = 0;
5031 else
5033 low = range_successor (high0);
5034 high = high1;
5035 in_p = 1;
5036 if (low == 0)
5038 /* high1 > high0 but high0 has no successor. Punt. */
5039 return 0;
5044 else
5046 /* The case where we are excluding both ranges. Here the complex case
5047 is if they don't overlap. In that case, the only time we have a
5048 range is if they are adjacent. If the second is a subset of the
5049 first, the result is the first. Otherwise, the range to exclude
5050 starts at the beginning of the first range and ends at the end of the
5051 second. */
5052 if (no_overlap)
5054 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
5055 range_successor (high0),
5056 1, low1, 0)))
5057 in_p = 0, low = low0, high = high1;
5058 else
5060 /* Canonicalize - [min, x] into - [-, x]. */
5061 if (low0 && TREE_CODE (low0) == INTEGER_CST)
5062 switch (TREE_CODE (TREE_TYPE (low0)))
5064 case ENUMERAL_TYPE:
5065 if (TYPE_PRECISION (TREE_TYPE (low0))
5066 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
5067 break;
5068 /* FALLTHROUGH */
5069 case INTEGER_TYPE:
5070 if (tree_int_cst_equal (low0,
5071 TYPE_MIN_VALUE (TREE_TYPE (low0))))
5072 low0 = 0;
5073 break;
5074 case POINTER_TYPE:
5075 if (TYPE_UNSIGNED (TREE_TYPE (low0))
5076 && integer_zerop (low0))
5077 low0 = 0;
5078 break;
5079 default:
5080 break;
5083 /* Canonicalize - [x, max] into - [x, -]. */
5084 if (high1 && TREE_CODE (high1) == INTEGER_CST)
5085 switch (TREE_CODE (TREE_TYPE (high1)))
5087 case ENUMERAL_TYPE:
5088 if (TYPE_PRECISION (TREE_TYPE (high1))
5089 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
5090 break;
5091 /* FALLTHROUGH */
5092 case INTEGER_TYPE:
5093 if (tree_int_cst_equal (high1,
5094 TYPE_MAX_VALUE (TREE_TYPE (high1))))
5095 high1 = 0;
5096 break;
5097 case POINTER_TYPE:
5098 if (TYPE_UNSIGNED (TREE_TYPE (high1))
5099 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
5100 high1, 1,
5101 build_int_cst (TREE_TYPE (high1), 1),
5102 1)))
5103 high1 = 0;
5104 break;
5105 default:
5106 break;
5109 /* The ranges might be also adjacent between the maximum and
5110 minimum values of the given type. For
5111 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5112 return + [x + 1, y - 1]. */
5113 if (low0 == 0 && high1 == 0)
5115 low = range_successor (high0);
5116 high = range_predecessor (low1);
5117 if (low == 0 || high == 0)
5118 return 0;
5120 in_p = 1;
5122 else
5123 return 0;
5126 else if (subset)
5127 in_p = 0, low = low0, high = high0;
5128 else
5129 in_p = 0, low = low0, high = high1;
5132 *pin_p = in_p, *plow = low, *phigh = high;
5133 return 1;
5137 /* Subroutine of fold, looking inside expressions of the form
5138 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5139 of the COND_EXPR. This function is being used also to optimize
5140 A op B ? C : A, by reversing the comparison first.
5142 Return a folded expression whose code is not a COND_EXPR
5143 anymore, or NULL_TREE if no folding opportunity is found. */
5145 static tree
5146 fold_cond_expr_with_comparison (location_t loc, tree type,
5147 tree arg0, tree arg1, tree arg2)
5149 enum tree_code comp_code = TREE_CODE (arg0);
5150 tree arg00 = TREE_OPERAND (arg0, 0);
5151 tree arg01 = TREE_OPERAND (arg0, 1);
5152 tree arg1_type = TREE_TYPE (arg1);
5153 tree tem;
5155 STRIP_NOPS (arg1);
5156 STRIP_NOPS (arg2);
5158 /* If we have A op 0 ? A : -A, consider applying the following
5159 transformations:
5161 A == 0? A : -A same as -A
5162 A != 0? A : -A same as A
5163 A >= 0? A : -A same as abs (A)
5164 A > 0? A : -A same as abs (A)
5165 A <= 0? A : -A same as -abs (A)
5166 A < 0? A : -A same as -abs (A)
5168 None of these transformations work for modes with signed
5169 zeros. If A is +/-0, the first two transformations will
5170 change the sign of the result (from +0 to -0, or vice
5171 versa). The last four will fix the sign of the result,
5172 even though the original expressions could be positive or
5173 negative, depending on the sign of A.
5175 Note that all these transformations are correct if A is
5176 NaN, since the two alternatives (A and -A) are also NaNs. */
5177 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5178 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
5179 ? real_zerop (arg01)
5180 : integer_zerop (arg01))
5181 && ((TREE_CODE (arg2) == NEGATE_EXPR
5182 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
5183 /* In the case that A is of the form X-Y, '-A' (arg2) may
5184 have already been folded to Y-X, check for that. */
5185 || (TREE_CODE (arg1) == MINUS_EXPR
5186 && TREE_CODE (arg2) == MINUS_EXPR
5187 && operand_equal_p (TREE_OPERAND (arg1, 0),
5188 TREE_OPERAND (arg2, 1), 0)
5189 && operand_equal_p (TREE_OPERAND (arg1, 1),
5190 TREE_OPERAND (arg2, 0), 0))))
5191 switch (comp_code)
5193 case EQ_EXPR:
5194 case UNEQ_EXPR:
5195 tem = fold_convert_loc (loc, arg1_type, arg1);
5196 return fold_convert_loc (loc, type, negate_expr (tem));
5197 case NE_EXPR:
5198 case LTGT_EXPR:
5199 return fold_convert_loc (loc, type, arg1);
5200 case UNGE_EXPR:
5201 case UNGT_EXPR:
5202 if (flag_trapping_math)
5203 break;
5204 /* Fall through. */
5205 case GE_EXPR:
5206 case GT_EXPR:
5207 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5208 break;
5209 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5210 return fold_convert_loc (loc, type, tem);
5211 case UNLE_EXPR:
5212 case UNLT_EXPR:
5213 if (flag_trapping_math)
5214 break;
5215 /* FALLTHRU */
5216 case LE_EXPR:
5217 case LT_EXPR:
5218 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5219 break;
5220 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5221 return negate_expr (fold_convert_loc (loc, type, tem));
5222 default:
5223 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5224 break;
5227 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5228 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5229 both transformations are correct when A is NaN: A != 0
5230 is then true, and A == 0 is false. */
5232 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5233 && integer_zerop (arg01) && integer_zerop (arg2))
5235 if (comp_code == NE_EXPR)
5236 return fold_convert_loc (loc, type, arg1);
5237 else if (comp_code == EQ_EXPR)
5238 return build_zero_cst (type);
5241 /* Try some transformations of A op B ? A : B.
5243 A == B? A : B same as B
5244 A != B? A : B same as A
5245 A >= B? A : B same as max (A, B)
5246 A > B? A : B same as max (B, A)
5247 A <= B? A : B same as min (A, B)
5248 A < B? A : B same as min (B, A)
5250 As above, these transformations don't work in the presence
5251 of signed zeros. For example, if A and B are zeros of
5252 opposite sign, the first two transformations will change
5253 the sign of the result. In the last four, the original
5254 expressions give different results for (A=+0, B=-0) and
5255 (A=-0, B=+0), but the transformed expressions do not.
5257 The first two transformations are correct if either A or B
5258 is a NaN. In the first transformation, the condition will
5259 be false, and B will indeed be chosen. In the case of the
5260 second transformation, the condition A != B will be true,
5261 and A will be chosen.
5263 The conversions to max() and min() are not correct if B is
5264 a number and A is not. The conditions in the original
5265 expressions will be false, so all four give B. The min()
5266 and max() versions would give a NaN instead. */
5267 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5268 && operand_equal_for_comparison_p (arg01, arg2)
5269 /* Avoid these transformations if the COND_EXPR may be used
5270 as an lvalue in the C++ front-end. PR c++/19199. */
5271 && (in_gimple_form
5272 || VECTOR_TYPE_P (type)
5273 || (! lang_GNU_CXX ()
5274 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5275 || ! maybe_lvalue_p (arg1)
5276 || ! maybe_lvalue_p (arg2)))
5278 tree comp_op0 = arg00;
5279 tree comp_op1 = arg01;
5280 tree comp_type = TREE_TYPE (comp_op0);
5282 switch (comp_code)
5284 case EQ_EXPR:
5285 return fold_convert_loc (loc, type, arg2);
5286 case NE_EXPR:
5287 return fold_convert_loc (loc, type, arg1);
5288 case LE_EXPR:
5289 case LT_EXPR:
5290 case UNLE_EXPR:
5291 case UNLT_EXPR:
5292 /* In C++ a ?: expression can be an lvalue, so put the
5293 operand which will be used if they are equal first
5294 so that we can convert this back to the
5295 corresponding COND_EXPR. */
5296 if (!HONOR_NANS (arg1))
5298 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5299 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5300 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5301 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
5302 : fold_build2_loc (loc, MIN_EXPR, comp_type,
5303 comp_op1, comp_op0);
5304 return fold_convert_loc (loc, type, tem);
5306 break;
5307 case GE_EXPR:
5308 case GT_EXPR:
5309 case UNGE_EXPR:
5310 case UNGT_EXPR:
5311 if (!HONOR_NANS (arg1))
5313 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5314 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5315 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5316 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
5317 : fold_build2_loc (loc, MAX_EXPR, comp_type,
5318 comp_op1, comp_op0);
5319 return fold_convert_loc (loc, type, tem);
5321 break;
5322 case UNEQ_EXPR:
5323 if (!HONOR_NANS (arg1))
5324 return fold_convert_loc (loc, type, arg2);
5325 break;
5326 case LTGT_EXPR:
5327 if (!HONOR_NANS (arg1))
5328 return fold_convert_loc (loc, type, arg1);
5329 break;
5330 default:
5331 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5332 break;
5336 return NULL_TREE;
5341 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5342 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5343 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5344 false) >= 2)
5345 #endif
5347 /* EXP is some logical combination of boolean tests. See if we can
5348 merge it into some range test. Return the new tree if so. */
5350 static tree
5351 fold_range_test (location_t loc, enum tree_code code, tree type,
5352 tree op0, tree op1)
5354 int or_op = (code == TRUTH_ORIF_EXPR
5355 || code == TRUTH_OR_EXPR);
5356 int in0_p, in1_p, in_p;
5357 tree low0, low1, low, high0, high1, high;
5358 bool strict_overflow_p = false;
5359 tree tem, lhs, rhs;
5360 const char * const warnmsg = G_("assuming signed overflow does not occur "
5361 "when simplifying range test");
5363 if (!INTEGRAL_TYPE_P (type))
5364 return 0;
5366 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5367 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5369 /* If this is an OR operation, invert both sides; we will invert
5370 again at the end. */
5371 if (or_op)
5372 in0_p = ! in0_p, in1_p = ! in1_p;
5374 /* If both expressions are the same, if we can merge the ranges, and we
5375 can build the range test, return it or it inverted. If one of the
5376 ranges is always true or always false, consider it to be the same
5377 expression as the other. */
5378 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5379 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5380 in1_p, low1, high1)
5381 && 0 != (tem = (build_range_check (loc, type,
5382 lhs != 0 ? lhs
5383 : rhs != 0 ? rhs : integer_zero_node,
5384 in_p, low, high))))
5386 if (strict_overflow_p)
5387 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5388 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5391 /* On machines where the branch cost is expensive, if this is a
5392 short-circuited branch and the underlying object on both sides
5393 is the same, make a non-short-circuit operation. */
5394 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5395 && !flag_sanitize_coverage
5396 && lhs != 0 && rhs != 0
5397 && (code == TRUTH_ANDIF_EXPR
5398 || code == TRUTH_ORIF_EXPR)
5399 && operand_equal_p (lhs, rhs, 0))
5401 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5402 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5403 which cases we can't do this. */
5404 if (simple_operand_p (lhs))
5405 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5406 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5407 type, op0, op1);
5409 else if (!lang_hooks.decls.global_bindings_p ()
5410 && !CONTAINS_PLACEHOLDER_P (lhs))
5412 tree common = save_expr (lhs);
5414 if (0 != (lhs = build_range_check (loc, type, common,
5415 or_op ? ! in0_p : in0_p,
5416 low0, high0))
5417 && (0 != (rhs = build_range_check (loc, type, common,
5418 or_op ? ! in1_p : in1_p,
5419 low1, high1))))
5421 if (strict_overflow_p)
5422 fold_overflow_warning (warnmsg,
5423 WARN_STRICT_OVERFLOW_COMPARISON);
5424 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5425 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5426 type, lhs, rhs);
5431 return 0;
5434 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5435 bit value. Arrange things so the extra bits will be set to zero if and
5436 only if C is signed-extended to its full width. If MASK is nonzero,
5437 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5439 static tree
5440 unextend (tree c, int p, int unsignedp, tree mask)
5442 tree type = TREE_TYPE (c);
5443 int modesize = GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type));
5444 tree temp;
5446 if (p == modesize || unsignedp)
5447 return c;
5449 /* We work by getting just the sign bit into the low-order bit, then
5450 into the high-order bit, then sign-extend. We then XOR that value
5451 with C. */
5452 temp = build_int_cst (TREE_TYPE (c), wi::extract_uhwi (c, p - 1, 1));
5454 /* We must use a signed type in order to get an arithmetic right shift.
5455 However, we must also avoid introducing accidental overflows, so that
5456 a subsequent call to integer_zerop will work. Hence we must
5457 do the type conversion here. At this point, the constant is either
5458 zero or one, and the conversion to a signed type can never overflow.
5459 We could get an overflow if this conversion is done anywhere else. */
5460 if (TYPE_UNSIGNED (type))
5461 temp = fold_convert (signed_type_for (type), temp);
5463 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5464 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5465 if (mask != 0)
5466 temp = const_binop (BIT_AND_EXPR, temp,
5467 fold_convert (TREE_TYPE (c), mask));
5468 /* If necessary, convert the type back to match the type of C. */
5469 if (TYPE_UNSIGNED (type))
5470 temp = fold_convert (type, temp);
5472 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5475 /* For an expression that has the form
5476 (A && B) || ~B
5478 (A || B) && ~B,
5479 we can drop one of the inner expressions and simplify to
5480 A || ~B
5482 A && ~B
5483 LOC is the location of the resulting expression. OP is the inner
5484 logical operation; the left-hand side in the examples above, while CMPOP
5485 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5486 removing a condition that guards another, as in
5487 (A != NULL && A->...) || A == NULL
5488 which we must not transform. If RHS_ONLY is true, only eliminate the
5489 right-most operand of the inner logical operation. */
5491 static tree
5492 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5493 bool rhs_only)
5495 tree type = TREE_TYPE (cmpop);
5496 enum tree_code code = TREE_CODE (cmpop);
5497 enum tree_code truthop_code = TREE_CODE (op);
5498 tree lhs = TREE_OPERAND (op, 0);
5499 tree rhs = TREE_OPERAND (op, 1);
5500 tree orig_lhs = lhs, orig_rhs = rhs;
5501 enum tree_code rhs_code = TREE_CODE (rhs);
5502 enum tree_code lhs_code = TREE_CODE (lhs);
5503 enum tree_code inv_code;
5505 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5506 return NULL_TREE;
5508 if (TREE_CODE_CLASS (code) != tcc_comparison)
5509 return NULL_TREE;
5511 if (rhs_code == truthop_code)
5513 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5514 if (newrhs != NULL_TREE)
5516 rhs = newrhs;
5517 rhs_code = TREE_CODE (rhs);
5520 if (lhs_code == truthop_code && !rhs_only)
5522 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5523 if (newlhs != NULL_TREE)
5525 lhs = newlhs;
5526 lhs_code = TREE_CODE (lhs);
5530 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
5531 if (inv_code == rhs_code
5532 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5533 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5534 return lhs;
5535 if (!rhs_only && inv_code == lhs_code
5536 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5537 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5538 return rhs;
5539 if (rhs != orig_rhs || lhs != orig_lhs)
5540 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5541 lhs, rhs);
5542 return NULL_TREE;
5545 /* Find ways of folding logical expressions of LHS and RHS:
5546 Try to merge two comparisons to the same innermost item.
5547 Look for range tests like "ch >= '0' && ch <= '9'".
5548 Look for combinations of simple terms on machines with expensive branches
5549 and evaluate the RHS unconditionally.
5551 For example, if we have p->a == 2 && p->b == 4 and we can make an
5552 object large enough to span both A and B, we can do this with a comparison
5553 against the object ANDed with the a mask.
5555 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5556 operations to do this with one comparison.
5558 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5559 function and the one above.
5561 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5562 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5564 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5565 two operands.
5567 We return the simplified tree or 0 if no optimization is possible. */
5569 static tree
5570 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5571 tree lhs, tree rhs)
5573 /* If this is the "or" of two comparisons, we can do something if
5574 the comparisons are NE_EXPR. If this is the "and", we can do something
5575 if the comparisons are EQ_EXPR. I.e.,
5576 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5578 WANTED_CODE is this operation code. For single bit fields, we can
5579 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5580 comparison for one-bit fields. */
5582 enum tree_code wanted_code;
5583 enum tree_code lcode, rcode;
5584 tree ll_arg, lr_arg, rl_arg, rr_arg;
5585 tree ll_inner, lr_inner, rl_inner, rr_inner;
5586 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5587 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5588 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5589 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5590 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5591 int ll_reversep, lr_reversep, rl_reversep, rr_reversep;
5592 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5593 scalar_int_mode lnmode, rnmode;
5594 tree ll_mask, lr_mask, rl_mask, rr_mask;
5595 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5596 tree l_const, r_const;
5597 tree lntype, rntype, result;
5598 HOST_WIDE_INT first_bit, end_bit;
5599 int volatilep;
5601 /* Start by getting the comparison codes. Fail if anything is volatile.
5602 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5603 it were surrounded with a NE_EXPR. */
5605 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5606 return 0;
5608 lcode = TREE_CODE (lhs);
5609 rcode = TREE_CODE (rhs);
5611 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5613 lhs = build2 (NE_EXPR, truth_type, lhs,
5614 build_int_cst (TREE_TYPE (lhs), 0));
5615 lcode = NE_EXPR;
5618 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5620 rhs = build2 (NE_EXPR, truth_type, rhs,
5621 build_int_cst (TREE_TYPE (rhs), 0));
5622 rcode = NE_EXPR;
5625 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5626 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5627 return 0;
5629 ll_arg = TREE_OPERAND (lhs, 0);
5630 lr_arg = TREE_OPERAND (lhs, 1);
5631 rl_arg = TREE_OPERAND (rhs, 0);
5632 rr_arg = TREE_OPERAND (rhs, 1);
5634 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5635 if (simple_operand_p (ll_arg)
5636 && simple_operand_p (lr_arg))
5638 if (operand_equal_p (ll_arg, rl_arg, 0)
5639 && operand_equal_p (lr_arg, rr_arg, 0))
5641 result = combine_comparisons (loc, code, lcode, rcode,
5642 truth_type, ll_arg, lr_arg);
5643 if (result)
5644 return result;
5646 else if (operand_equal_p (ll_arg, rr_arg, 0)
5647 && operand_equal_p (lr_arg, rl_arg, 0))
5649 result = combine_comparisons (loc, code, lcode,
5650 swap_tree_comparison (rcode),
5651 truth_type, ll_arg, lr_arg);
5652 if (result)
5653 return result;
5657 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5658 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5660 /* If the RHS can be evaluated unconditionally and its operands are
5661 simple, it wins to evaluate the RHS unconditionally on machines
5662 with expensive branches. In this case, this isn't a comparison
5663 that can be merged. */
5665 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5666 false) >= 2
5667 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5668 && simple_operand_p (rl_arg)
5669 && simple_operand_p (rr_arg))
5671 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5672 if (code == TRUTH_OR_EXPR
5673 && lcode == NE_EXPR && integer_zerop (lr_arg)
5674 && rcode == NE_EXPR && integer_zerop (rr_arg)
5675 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5676 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5677 return build2_loc (loc, NE_EXPR, truth_type,
5678 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5679 ll_arg, rl_arg),
5680 build_int_cst (TREE_TYPE (ll_arg), 0));
5682 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5683 if (code == TRUTH_AND_EXPR
5684 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5685 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5686 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5687 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5688 return build2_loc (loc, EQ_EXPR, truth_type,
5689 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5690 ll_arg, rl_arg),
5691 build_int_cst (TREE_TYPE (ll_arg), 0));
5694 /* See if the comparisons can be merged. Then get all the parameters for
5695 each side. */
5697 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5698 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5699 return 0;
5701 ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0;
5702 volatilep = 0;
5703 ll_inner = decode_field_reference (loc, &ll_arg,
5704 &ll_bitsize, &ll_bitpos, &ll_mode,
5705 &ll_unsignedp, &ll_reversep, &volatilep,
5706 &ll_mask, &ll_and_mask);
5707 lr_inner = decode_field_reference (loc, &lr_arg,
5708 &lr_bitsize, &lr_bitpos, &lr_mode,
5709 &lr_unsignedp, &lr_reversep, &volatilep,
5710 &lr_mask, &lr_and_mask);
5711 rl_inner = decode_field_reference (loc, &rl_arg,
5712 &rl_bitsize, &rl_bitpos, &rl_mode,
5713 &rl_unsignedp, &rl_reversep, &volatilep,
5714 &rl_mask, &rl_and_mask);
5715 rr_inner = decode_field_reference (loc, &rr_arg,
5716 &rr_bitsize, &rr_bitpos, &rr_mode,
5717 &rr_unsignedp, &rr_reversep, &volatilep,
5718 &rr_mask, &rr_and_mask);
5720 /* It must be true that the inner operation on the lhs of each
5721 comparison must be the same if we are to be able to do anything.
5722 Then see if we have constants. If not, the same must be true for
5723 the rhs's. */
5724 if (volatilep
5725 || ll_reversep != rl_reversep
5726 || ll_inner == 0 || rl_inner == 0
5727 || ! operand_equal_p (ll_inner, rl_inner, 0))
5728 return 0;
5730 if (TREE_CODE (lr_arg) == INTEGER_CST
5731 && TREE_CODE (rr_arg) == INTEGER_CST)
5733 l_const = lr_arg, r_const = rr_arg;
5734 lr_reversep = ll_reversep;
5736 else if (lr_reversep != rr_reversep
5737 || lr_inner == 0 || rr_inner == 0
5738 || ! operand_equal_p (lr_inner, rr_inner, 0))
5739 return 0;
5740 else
5741 l_const = r_const = 0;
5743 /* If either comparison code is not correct for our logical operation,
5744 fail. However, we can convert a one-bit comparison against zero into
5745 the opposite comparison against that bit being set in the field. */
5747 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5748 if (lcode != wanted_code)
5750 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5752 /* Make the left operand unsigned, since we are only interested
5753 in the value of one bit. Otherwise we are doing the wrong
5754 thing below. */
5755 ll_unsignedp = 1;
5756 l_const = ll_mask;
5758 else
5759 return 0;
5762 /* This is analogous to the code for l_const above. */
5763 if (rcode != wanted_code)
5765 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5767 rl_unsignedp = 1;
5768 r_const = rl_mask;
5770 else
5771 return 0;
5774 /* See if we can find a mode that contains both fields being compared on
5775 the left. If we can't, fail. Otherwise, update all constants and masks
5776 to be relative to a field of that size. */
5777 first_bit = MIN (ll_bitpos, rl_bitpos);
5778 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5779 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5780 TYPE_ALIGN (TREE_TYPE (ll_inner)), BITS_PER_WORD,
5781 volatilep, &lnmode))
5782 return 0;
5784 lnbitsize = GET_MODE_BITSIZE (lnmode);
5785 lnbitpos = first_bit & ~ (lnbitsize - 1);
5786 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5787 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5789 if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5791 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5792 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5795 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5796 size_int (xll_bitpos));
5797 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5798 size_int (xrl_bitpos));
5800 if (l_const)
5802 l_const = fold_convert_loc (loc, lntype, l_const);
5803 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5804 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5805 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5806 fold_build1_loc (loc, BIT_NOT_EXPR,
5807 lntype, ll_mask))))
5809 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5811 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5814 if (r_const)
5816 r_const = fold_convert_loc (loc, lntype, r_const);
5817 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5818 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5819 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5820 fold_build1_loc (loc, BIT_NOT_EXPR,
5821 lntype, rl_mask))))
5823 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5825 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5829 /* If the right sides are not constant, do the same for it. Also,
5830 disallow this optimization if a size or signedness mismatch occurs
5831 between the left and right sides. */
5832 if (l_const == 0)
5834 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5835 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5836 /* Make sure the two fields on the right
5837 correspond to the left without being swapped. */
5838 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5839 return 0;
5841 first_bit = MIN (lr_bitpos, rr_bitpos);
5842 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5843 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5844 TYPE_ALIGN (TREE_TYPE (lr_inner)), BITS_PER_WORD,
5845 volatilep, &rnmode))
5846 return 0;
5848 rnbitsize = GET_MODE_BITSIZE (rnmode);
5849 rnbitpos = first_bit & ~ (rnbitsize - 1);
5850 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5851 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5853 if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5855 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5856 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5859 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5860 rntype, lr_mask),
5861 size_int (xlr_bitpos));
5862 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5863 rntype, rr_mask),
5864 size_int (xrr_bitpos));
5866 /* Make a mask that corresponds to both fields being compared.
5867 Do this for both items being compared. If the operands are the
5868 same size and the bits being compared are in the same position
5869 then we can do this by masking both and comparing the masked
5870 results. */
5871 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5872 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5873 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5875 lhs = make_bit_field_ref (loc, ll_inner, ll_arg,
5876 lntype, lnbitsize, lnbitpos,
5877 ll_unsignedp || rl_unsignedp, ll_reversep);
5878 if (! all_ones_mask_p (ll_mask, lnbitsize))
5879 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5881 rhs = make_bit_field_ref (loc, lr_inner, lr_arg,
5882 rntype, rnbitsize, rnbitpos,
5883 lr_unsignedp || rr_unsignedp, lr_reversep);
5884 if (! all_ones_mask_p (lr_mask, rnbitsize))
5885 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5887 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5890 /* There is still another way we can do something: If both pairs of
5891 fields being compared are adjacent, we may be able to make a wider
5892 field containing them both.
5894 Note that we still must mask the lhs/rhs expressions. Furthermore,
5895 the mask must be shifted to account for the shift done by
5896 make_bit_field_ref. */
5897 if ((ll_bitsize + ll_bitpos == rl_bitpos
5898 && lr_bitsize + lr_bitpos == rr_bitpos)
5899 || (ll_bitpos == rl_bitpos + rl_bitsize
5900 && lr_bitpos == rr_bitpos + rr_bitsize))
5902 tree type;
5904 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, lntype,
5905 ll_bitsize + rl_bitsize,
5906 MIN (ll_bitpos, rl_bitpos),
5907 ll_unsignedp, ll_reversep);
5908 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, rntype,
5909 lr_bitsize + rr_bitsize,
5910 MIN (lr_bitpos, rr_bitpos),
5911 lr_unsignedp, lr_reversep);
5913 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5914 size_int (MIN (xll_bitpos, xrl_bitpos)));
5915 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5916 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5918 /* Convert to the smaller type before masking out unwanted bits. */
5919 type = lntype;
5920 if (lntype != rntype)
5922 if (lnbitsize > rnbitsize)
5924 lhs = fold_convert_loc (loc, rntype, lhs);
5925 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5926 type = rntype;
5928 else if (lnbitsize < rnbitsize)
5930 rhs = fold_convert_loc (loc, lntype, rhs);
5931 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5932 type = lntype;
5936 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5937 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5939 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5940 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5942 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5945 return 0;
5948 /* Handle the case of comparisons with constants. If there is something in
5949 common between the masks, those bits of the constants must be the same.
5950 If not, the condition is always false. Test for this to avoid generating
5951 incorrect code below. */
5952 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5953 if (! integer_zerop (result)
5954 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5955 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5957 if (wanted_code == NE_EXPR)
5959 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5960 return constant_boolean_node (true, truth_type);
5962 else
5964 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5965 return constant_boolean_node (false, truth_type);
5969 /* Construct the expression we will return. First get the component
5970 reference we will make. Unless the mask is all ones the width of
5971 that field, perform the mask operation. Then compare with the
5972 merged constant. */
5973 result = make_bit_field_ref (loc, ll_inner, ll_arg,
5974 lntype, lnbitsize, lnbitpos,
5975 ll_unsignedp || rl_unsignedp, ll_reversep);
5977 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5978 if (! all_ones_mask_p (ll_mask, lnbitsize))
5979 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5981 return build2_loc (loc, wanted_code, truth_type, result,
5982 const_binop (BIT_IOR_EXPR, l_const, r_const));
5985 /* T is an integer expression that is being multiplied, divided, or taken a
5986 modulus (CODE says which and what kind of divide or modulus) by a
5987 constant C. See if we can eliminate that operation by folding it with
5988 other operations already in T. WIDE_TYPE, if non-null, is a type that
5989 should be used for the computation if wider than our type.
5991 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5992 (X * 2) + (Y * 4). We must, however, be assured that either the original
5993 expression would not overflow or that overflow is undefined for the type
5994 in the language in question.
5996 If we return a non-null expression, it is an equivalent form of the
5997 original computation, but need not be in the original type.
5999 We set *STRICT_OVERFLOW_P to true if the return values depends on
6000 signed overflow being undefined. Otherwise we do not change
6001 *STRICT_OVERFLOW_P. */
6003 static tree
6004 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
6005 bool *strict_overflow_p)
6007 /* To avoid exponential search depth, refuse to allow recursion past
6008 three levels. Beyond that (1) it's highly unlikely that we'll find
6009 something interesting and (2) we've probably processed it before
6010 when we built the inner expression. */
6012 static int depth;
6013 tree ret;
6015 if (depth > 3)
6016 return NULL;
6018 depth++;
6019 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
6020 depth--;
6022 return ret;
6025 static tree
6026 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
6027 bool *strict_overflow_p)
6029 tree type = TREE_TYPE (t);
6030 enum tree_code tcode = TREE_CODE (t);
6031 tree ctype = (wide_type != 0
6032 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type))
6033 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type)))
6034 ? wide_type : type);
6035 tree t1, t2;
6036 int same_p = tcode == code;
6037 tree op0 = NULL_TREE, op1 = NULL_TREE;
6038 bool sub_strict_overflow_p;
6040 /* Don't deal with constants of zero here; they confuse the code below. */
6041 if (integer_zerop (c))
6042 return NULL_TREE;
6044 if (TREE_CODE_CLASS (tcode) == tcc_unary)
6045 op0 = TREE_OPERAND (t, 0);
6047 if (TREE_CODE_CLASS (tcode) == tcc_binary)
6048 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
6050 /* Note that we need not handle conditional operations here since fold
6051 already handles those cases. So just do arithmetic here. */
6052 switch (tcode)
6054 case INTEGER_CST:
6055 /* For a constant, we can always simplify if we are a multiply
6056 or (for divide and modulus) if it is a multiple of our constant. */
6057 if (code == MULT_EXPR
6058 || wi::multiple_of_p (t, c, TYPE_SIGN (type)))
6060 tree tem = const_binop (code, fold_convert (ctype, t),
6061 fold_convert (ctype, c));
6062 /* If the multiplication overflowed, we lost information on it.
6063 See PR68142 and PR69845. */
6064 if (TREE_OVERFLOW (tem))
6065 return NULL_TREE;
6066 return tem;
6068 break;
6070 CASE_CONVERT: case NON_LVALUE_EXPR:
6071 /* If op0 is an expression ... */
6072 if ((COMPARISON_CLASS_P (op0)
6073 || UNARY_CLASS_P (op0)
6074 || BINARY_CLASS_P (op0)
6075 || VL_EXP_CLASS_P (op0)
6076 || EXPRESSION_CLASS_P (op0))
6077 /* ... and has wrapping overflow, and its type is smaller
6078 than ctype, then we cannot pass through as widening. */
6079 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6080 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
6081 && (TYPE_PRECISION (ctype)
6082 > TYPE_PRECISION (TREE_TYPE (op0))))
6083 /* ... or this is a truncation (t is narrower than op0),
6084 then we cannot pass through this narrowing. */
6085 || (TYPE_PRECISION (type)
6086 < TYPE_PRECISION (TREE_TYPE (op0)))
6087 /* ... or signedness changes for division or modulus,
6088 then we cannot pass through this conversion. */
6089 || (code != MULT_EXPR
6090 && (TYPE_UNSIGNED (ctype)
6091 != TYPE_UNSIGNED (TREE_TYPE (op0))))
6092 /* ... or has undefined overflow while the converted to
6093 type has not, we cannot do the operation in the inner type
6094 as that would introduce undefined overflow. */
6095 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6096 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
6097 && !TYPE_OVERFLOW_UNDEFINED (type))))
6098 break;
6100 /* Pass the constant down and see if we can make a simplification. If
6101 we can, replace this expression with the inner simplification for
6102 possible later conversion to our or some other type. */
6103 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6104 && TREE_CODE (t2) == INTEGER_CST
6105 && !TREE_OVERFLOW (t2)
6106 && (0 != (t1 = extract_muldiv (op0, t2, code,
6107 code == MULT_EXPR
6108 ? ctype : NULL_TREE,
6109 strict_overflow_p))))
6110 return t1;
6111 break;
6113 case ABS_EXPR:
6114 /* If widening the type changes it from signed to unsigned, then we
6115 must avoid building ABS_EXPR itself as unsigned. */
6116 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6118 tree cstype = (*signed_type_for) (ctype);
6119 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
6120 != 0)
6122 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6123 return fold_convert (ctype, t1);
6125 break;
6127 /* If the constant is negative, we cannot simplify this. */
6128 if (tree_int_cst_sgn (c) == -1)
6129 break;
6130 /* FALLTHROUGH */
6131 case NEGATE_EXPR:
6132 /* For division and modulus, type can't be unsigned, as e.g.
6133 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6134 For signed types, even with wrapping overflow, this is fine. */
6135 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
6136 break;
6137 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6138 != 0)
6139 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6140 break;
6142 case MIN_EXPR: case MAX_EXPR:
6143 /* If widening the type changes the signedness, then we can't perform
6144 this optimization as that changes the result. */
6145 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6146 break;
6148 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6149 sub_strict_overflow_p = false;
6150 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6151 &sub_strict_overflow_p)) != 0
6152 && (t2 = extract_muldiv (op1, c, code, wide_type,
6153 &sub_strict_overflow_p)) != 0)
6155 if (tree_int_cst_sgn (c) < 0)
6156 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6157 if (sub_strict_overflow_p)
6158 *strict_overflow_p = true;
6159 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6160 fold_convert (ctype, t2));
6162 break;
6164 case LSHIFT_EXPR: case RSHIFT_EXPR:
6165 /* If the second operand is constant, this is a multiplication
6166 or floor division, by a power of two, so we can treat it that
6167 way unless the multiplier or divisor overflows. Signed
6168 left-shift overflow is implementation-defined rather than
6169 undefined in C90, so do not convert signed left shift into
6170 multiplication. */
6171 if (TREE_CODE (op1) == INTEGER_CST
6172 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6173 /* const_binop may not detect overflow correctly,
6174 so check for it explicitly here. */
6175 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
6176 && 0 != (t1 = fold_convert (ctype,
6177 const_binop (LSHIFT_EXPR,
6178 size_one_node,
6179 op1)))
6180 && !TREE_OVERFLOW (t1))
6181 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6182 ? MULT_EXPR : FLOOR_DIV_EXPR,
6183 ctype,
6184 fold_convert (ctype, op0),
6185 t1),
6186 c, code, wide_type, strict_overflow_p);
6187 break;
6189 case PLUS_EXPR: case MINUS_EXPR:
6190 /* See if we can eliminate the operation on both sides. If we can, we
6191 can return a new PLUS or MINUS. If we can't, the only remaining
6192 cases where we can do anything are if the second operand is a
6193 constant. */
6194 sub_strict_overflow_p = false;
6195 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6196 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6197 if (t1 != 0 && t2 != 0
6198 && TYPE_OVERFLOW_WRAPS (ctype)
6199 && (code == MULT_EXPR
6200 /* If not multiplication, we can only do this if both operands
6201 are divisible by c. */
6202 || (multiple_of_p (ctype, op0, c)
6203 && multiple_of_p (ctype, op1, c))))
6205 if (sub_strict_overflow_p)
6206 *strict_overflow_p = true;
6207 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6208 fold_convert (ctype, t2));
6211 /* If this was a subtraction, negate OP1 and set it to be an addition.
6212 This simplifies the logic below. */
6213 if (tcode == MINUS_EXPR)
6215 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6216 /* If OP1 was not easily negatable, the constant may be OP0. */
6217 if (TREE_CODE (op0) == INTEGER_CST)
6219 std::swap (op0, op1);
6220 std::swap (t1, t2);
6224 if (TREE_CODE (op1) != INTEGER_CST)
6225 break;
6227 /* If either OP1 or C are negative, this optimization is not safe for
6228 some of the division and remainder types while for others we need
6229 to change the code. */
6230 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6232 if (code == CEIL_DIV_EXPR)
6233 code = FLOOR_DIV_EXPR;
6234 else if (code == FLOOR_DIV_EXPR)
6235 code = CEIL_DIV_EXPR;
6236 else if (code != MULT_EXPR
6237 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6238 break;
6241 /* If it's a multiply or a division/modulus operation of a multiple
6242 of our constant, do the operation and verify it doesn't overflow. */
6243 if (code == MULT_EXPR
6244 || wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6246 op1 = const_binop (code, fold_convert (ctype, op1),
6247 fold_convert (ctype, c));
6248 /* We allow the constant to overflow with wrapping semantics. */
6249 if (op1 == 0
6250 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6251 break;
6253 else
6254 break;
6256 /* If we have an unsigned type, we cannot widen the operation since it
6257 will change the result if the original computation overflowed. */
6258 if (TYPE_UNSIGNED (ctype) && ctype != type)
6259 break;
6261 /* The last case is if we are a multiply. In that case, we can
6262 apply the distributive law to commute the multiply and addition
6263 if the multiplication of the constants doesn't overflow
6264 and overflow is defined. With undefined overflow
6265 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6266 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype))
6267 return fold_build2 (tcode, ctype,
6268 fold_build2 (code, ctype,
6269 fold_convert (ctype, op0),
6270 fold_convert (ctype, c)),
6271 op1);
6273 break;
6275 case MULT_EXPR:
6276 /* We have a special case here if we are doing something like
6277 (C * 8) % 4 since we know that's zero. */
6278 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6279 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6280 /* If the multiplication can overflow we cannot optimize this. */
6281 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6282 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6283 && wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6285 *strict_overflow_p = true;
6286 return omit_one_operand (type, integer_zero_node, op0);
6289 /* ... fall through ... */
6291 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6292 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6293 /* If we can extract our operation from the LHS, do so and return a
6294 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6295 do something only if the second operand is a constant. */
6296 if (same_p
6297 && TYPE_OVERFLOW_WRAPS (ctype)
6298 && (t1 = extract_muldiv (op0, c, code, wide_type,
6299 strict_overflow_p)) != 0)
6300 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6301 fold_convert (ctype, op1));
6302 else if (tcode == MULT_EXPR && code == MULT_EXPR
6303 && TYPE_OVERFLOW_WRAPS (ctype)
6304 && (t1 = extract_muldiv (op1, c, code, wide_type,
6305 strict_overflow_p)) != 0)
6306 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6307 fold_convert (ctype, t1));
6308 else if (TREE_CODE (op1) != INTEGER_CST)
6309 return 0;
6311 /* If these are the same operation types, we can associate them
6312 assuming no overflow. */
6313 if (tcode == code)
6315 bool overflow_p = false;
6316 bool overflow_mul_p;
6317 signop sign = TYPE_SIGN (ctype);
6318 unsigned prec = TYPE_PRECISION (ctype);
6319 wide_int mul = wi::mul (wi::to_wide (op1, prec),
6320 wi::to_wide (c, prec),
6321 sign, &overflow_mul_p);
6322 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6323 if (overflow_mul_p
6324 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6325 overflow_p = true;
6326 if (!overflow_p)
6327 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6328 wide_int_to_tree (ctype, mul));
6331 /* If these operations "cancel" each other, we have the main
6332 optimizations of this pass, which occur when either constant is a
6333 multiple of the other, in which case we replace this with either an
6334 operation or CODE or TCODE.
6336 If we have an unsigned type, we cannot do this since it will change
6337 the result if the original computation overflowed. */
6338 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6339 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6340 || (tcode == MULT_EXPR
6341 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6342 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6343 && code != MULT_EXPR)))
6345 if (wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6347 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6348 *strict_overflow_p = true;
6349 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6350 fold_convert (ctype,
6351 const_binop (TRUNC_DIV_EXPR,
6352 op1, c)));
6354 else if (wi::multiple_of_p (c, op1, TYPE_SIGN (type)))
6356 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6357 *strict_overflow_p = true;
6358 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6359 fold_convert (ctype,
6360 const_binop (TRUNC_DIV_EXPR,
6361 c, op1)));
6364 break;
6366 default:
6367 break;
6370 return 0;
6373 /* Return a node which has the indicated constant VALUE (either 0 or
6374 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6375 and is of the indicated TYPE. */
6377 tree
6378 constant_boolean_node (bool value, tree type)
6380 if (type == integer_type_node)
6381 return value ? integer_one_node : integer_zero_node;
6382 else if (type == boolean_type_node)
6383 return value ? boolean_true_node : boolean_false_node;
6384 else if (TREE_CODE (type) == VECTOR_TYPE)
6385 return build_vector_from_val (type,
6386 build_int_cst (TREE_TYPE (type),
6387 value ? -1 : 0));
6388 else
6389 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6393 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6394 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6395 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6396 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6397 COND is the first argument to CODE; otherwise (as in the example
6398 given here), it is the second argument. TYPE is the type of the
6399 original expression. Return NULL_TREE if no simplification is
6400 possible. */
6402 static tree
6403 fold_binary_op_with_conditional_arg (location_t loc,
6404 enum tree_code code,
6405 tree type, tree op0, tree op1,
6406 tree cond, tree arg, int cond_first_p)
6408 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6409 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6410 tree test, true_value, false_value;
6411 tree lhs = NULL_TREE;
6412 tree rhs = NULL_TREE;
6413 enum tree_code cond_code = COND_EXPR;
6415 if (TREE_CODE (cond) == COND_EXPR
6416 || TREE_CODE (cond) == VEC_COND_EXPR)
6418 test = TREE_OPERAND (cond, 0);
6419 true_value = TREE_OPERAND (cond, 1);
6420 false_value = TREE_OPERAND (cond, 2);
6421 /* If this operand throws an expression, then it does not make
6422 sense to try to perform a logical or arithmetic operation
6423 involving it. */
6424 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6425 lhs = true_value;
6426 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6427 rhs = false_value;
6429 else if (!(TREE_CODE (type) != VECTOR_TYPE
6430 && TREE_CODE (TREE_TYPE (cond)) == VECTOR_TYPE))
6432 tree testtype = TREE_TYPE (cond);
6433 test = cond;
6434 true_value = constant_boolean_node (true, testtype);
6435 false_value = constant_boolean_node (false, testtype);
6437 else
6438 /* Detect the case of mixing vector and scalar types - bail out. */
6439 return NULL_TREE;
6441 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6442 cond_code = VEC_COND_EXPR;
6444 /* This transformation is only worthwhile if we don't have to wrap ARG
6445 in a SAVE_EXPR and the operation can be simplified without recursing
6446 on at least one of the branches once its pushed inside the COND_EXPR. */
6447 if (!TREE_CONSTANT (arg)
6448 && (TREE_SIDE_EFFECTS (arg)
6449 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6450 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6451 return NULL_TREE;
6453 arg = fold_convert_loc (loc, arg_type, arg);
6454 if (lhs == 0)
6456 true_value = fold_convert_loc (loc, cond_type, true_value);
6457 if (cond_first_p)
6458 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6459 else
6460 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6462 if (rhs == 0)
6464 false_value = fold_convert_loc (loc, cond_type, false_value);
6465 if (cond_first_p)
6466 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6467 else
6468 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6471 /* Check that we have simplified at least one of the branches. */
6472 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6473 return NULL_TREE;
6475 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6479 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6481 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6482 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6483 ADDEND is the same as X.
6485 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6486 and finite. The problematic cases are when X is zero, and its mode
6487 has signed zeros. In the case of rounding towards -infinity,
6488 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6489 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6491 bool
6492 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6494 if (!real_zerop (addend))
6495 return false;
6497 /* Don't allow the fold with -fsignaling-nans. */
6498 if (HONOR_SNANS (element_mode (type)))
6499 return false;
6501 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6502 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
6503 return true;
6505 /* In a vector or complex, we would need to check the sign of all zeros. */
6506 if (TREE_CODE (addend) != REAL_CST)
6507 return false;
6509 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6510 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6511 negate = !negate;
6513 /* The mode has signed zeros, and we have to honor their sign.
6514 In this situation, there is only one case we can return true for.
6515 X - 0 is the same as X unless rounding towards -infinity is
6516 supported. */
6517 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type));
6520 /* Subroutine of match.pd that optimizes comparisons of a division by
6521 a nonzero integer constant against an integer constant, i.e.
6522 X/C1 op C2.
6524 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6525 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */
6527 enum tree_code
6528 fold_div_compare (enum tree_code code, tree c1, tree c2, tree *lo,
6529 tree *hi, bool *neg_overflow)
6531 tree prod, tmp, type = TREE_TYPE (c1);
6532 signop sign = TYPE_SIGN (type);
6533 bool overflow;
6535 /* We have to do this the hard way to detect unsigned overflow.
6536 prod = int_const_binop (MULT_EXPR, c1, c2); */
6537 wide_int val = wi::mul (c1, c2, sign, &overflow);
6538 prod = force_fit_type (type, val, -1, overflow);
6539 *neg_overflow = false;
6541 if (sign == UNSIGNED)
6543 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1));
6544 *lo = prod;
6546 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6547 val = wi::add (prod, tmp, sign, &overflow);
6548 *hi = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (prod));
6550 else if (tree_int_cst_sgn (c1) >= 0)
6552 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1));
6553 switch (tree_int_cst_sgn (c2))
6555 case -1:
6556 *neg_overflow = true;
6557 *lo = int_const_binop (MINUS_EXPR, prod, tmp);
6558 *hi = prod;
6559 break;
6561 case 0:
6562 *lo = fold_negate_const (tmp, type);
6563 *hi = tmp;
6564 break;
6566 case 1:
6567 *hi = int_const_binop (PLUS_EXPR, prod, tmp);
6568 *lo = prod;
6569 break;
6571 default:
6572 gcc_unreachable ();
6575 else
6577 /* A negative divisor reverses the relational operators. */
6578 code = swap_tree_comparison (code);
6580 tmp = int_const_binop (PLUS_EXPR, c1, build_int_cst (type, 1));
6581 switch (tree_int_cst_sgn (c2))
6583 case -1:
6584 *hi = int_const_binop (MINUS_EXPR, prod, tmp);
6585 *lo = prod;
6586 break;
6588 case 0:
6589 *hi = fold_negate_const (tmp, type);
6590 *lo = tmp;
6591 break;
6593 case 1:
6594 *neg_overflow = true;
6595 *lo = int_const_binop (PLUS_EXPR, prod, tmp);
6596 *hi = prod;
6597 break;
6599 default:
6600 gcc_unreachable ();
6604 if (code != EQ_EXPR && code != NE_EXPR)
6605 return code;
6607 if (TREE_OVERFLOW (*lo)
6608 || operand_equal_p (*lo, TYPE_MIN_VALUE (type), 0))
6609 *lo = NULL_TREE;
6610 if (TREE_OVERFLOW (*hi)
6611 || operand_equal_p (*hi, TYPE_MAX_VALUE (type), 0))
6612 *hi = NULL_TREE;
6614 return code;
6618 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6619 equality/inequality test, then return a simplified form of the test
6620 using a sign testing. Otherwise return NULL. TYPE is the desired
6621 result type. */
6623 static tree
6624 fold_single_bit_test_into_sign_test (location_t loc,
6625 enum tree_code code, tree arg0, tree arg1,
6626 tree result_type)
6628 /* If this is testing a single bit, we can optimize the test. */
6629 if ((code == NE_EXPR || code == EQ_EXPR)
6630 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6631 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6633 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6634 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6635 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6637 if (arg00 != NULL_TREE
6638 /* This is only a win if casting to a signed type is cheap,
6639 i.e. when arg00's type is not a partial mode. */
6640 && type_has_mode_precision_p (TREE_TYPE (arg00)))
6642 tree stype = signed_type_for (TREE_TYPE (arg00));
6643 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6644 result_type,
6645 fold_convert_loc (loc, stype, arg00),
6646 build_int_cst (stype, 0));
6650 return NULL_TREE;
6653 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6654 equality/inequality test, then return a simplified form of
6655 the test using shifts and logical operations. Otherwise return
6656 NULL. TYPE is the desired result type. */
6658 tree
6659 fold_single_bit_test (location_t loc, enum tree_code code,
6660 tree arg0, tree arg1, tree result_type)
6662 /* If this is testing a single bit, we can optimize the test. */
6663 if ((code == NE_EXPR || code == EQ_EXPR)
6664 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6665 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6667 tree inner = TREE_OPERAND (arg0, 0);
6668 tree type = TREE_TYPE (arg0);
6669 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6670 scalar_int_mode operand_mode = SCALAR_INT_TYPE_MODE (type);
6671 int ops_unsigned;
6672 tree signed_type, unsigned_type, intermediate_type;
6673 tree tem, one;
6675 /* First, see if we can fold the single bit test into a sign-bit
6676 test. */
6677 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6678 result_type);
6679 if (tem)
6680 return tem;
6682 /* Otherwise we have (A & C) != 0 where C is a single bit,
6683 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6684 Similarly for (A & C) == 0. */
6686 /* If INNER is a right shift of a constant and it plus BITNUM does
6687 not overflow, adjust BITNUM and INNER. */
6688 if (TREE_CODE (inner) == RSHIFT_EXPR
6689 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6690 && bitnum < TYPE_PRECISION (type)
6691 && wi::ltu_p (TREE_OPERAND (inner, 1),
6692 TYPE_PRECISION (type) - bitnum))
6694 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6695 inner = TREE_OPERAND (inner, 0);
6698 /* If we are going to be able to omit the AND below, we must do our
6699 operations as unsigned. If we must use the AND, we have a choice.
6700 Normally unsigned is faster, but for some machines signed is. */
6701 ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND
6702 && !flag_syntax_only) ? 0 : 1;
6704 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6705 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6706 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6707 inner = fold_convert_loc (loc, intermediate_type, inner);
6709 if (bitnum != 0)
6710 inner = build2 (RSHIFT_EXPR, intermediate_type,
6711 inner, size_int (bitnum));
6713 one = build_int_cst (intermediate_type, 1);
6715 if (code == EQ_EXPR)
6716 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6718 /* Put the AND last so it can combine with more things. */
6719 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6721 /* Make sure to return the proper type. */
6722 inner = fold_convert_loc (loc, result_type, inner);
6724 return inner;
6726 return NULL_TREE;
6729 /* Test whether it is preferable two swap two operands, ARG0 and
6730 ARG1, for example because ARG0 is an integer constant and ARG1
6731 isn't. */
6733 bool
6734 tree_swap_operands_p (const_tree arg0, const_tree arg1)
6736 if (CONSTANT_CLASS_P (arg1))
6737 return 0;
6738 if (CONSTANT_CLASS_P (arg0))
6739 return 1;
6741 STRIP_NOPS (arg0);
6742 STRIP_NOPS (arg1);
6744 if (TREE_CONSTANT (arg1))
6745 return 0;
6746 if (TREE_CONSTANT (arg0))
6747 return 1;
6749 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6750 for commutative and comparison operators. Ensuring a canonical
6751 form allows the optimizers to find additional redundancies without
6752 having to explicitly check for both orderings. */
6753 if (TREE_CODE (arg0) == SSA_NAME
6754 && TREE_CODE (arg1) == SSA_NAME
6755 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6756 return 1;
6758 /* Put SSA_NAMEs last. */
6759 if (TREE_CODE (arg1) == SSA_NAME)
6760 return 0;
6761 if (TREE_CODE (arg0) == SSA_NAME)
6762 return 1;
6764 /* Put variables last. */
6765 if (DECL_P (arg1))
6766 return 0;
6767 if (DECL_P (arg0))
6768 return 1;
6770 return 0;
6774 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6775 means A >= Y && A != MAX, but in this case we know that
6776 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6778 static tree
6779 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
6781 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6783 if (TREE_CODE (bound) == LT_EXPR)
6784 a = TREE_OPERAND (bound, 0);
6785 else if (TREE_CODE (bound) == GT_EXPR)
6786 a = TREE_OPERAND (bound, 1);
6787 else
6788 return NULL_TREE;
6790 typea = TREE_TYPE (a);
6791 if (!INTEGRAL_TYPE_P (typea)
6792 && !POINTER_TYPE_P (typea))
6793 return NULL_TREE;
6795 if (TREE_CODE (ineq) == LT_EXPR)
6797 a1 = TREE_OPERAND (ineq, 1);
6798 y = TREE_OPERAND (ineq, 0);
6800 else if (TREE_CODE (ineq) == GT_EXPR)
6802 a1 = TREE_OPERAND (ineq, 0);
6803 y = TREE_OPERAND (ineq, 1);
6805 else
6806 return NULL_TREE;
6808 if (TREE_TYPE (a1) != typea)
6809 return NULL_TREE;
6811 if (POINTER_TYPE_P (typea))
6813 /* Convert the pointer types into integer before taking the difference. */
6814 tree ta = fold_convert_loc (loc, ssizetype, a);
6815 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
6816 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
6818 else
6819 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
6821 if (!diff || !integer_onep (diff))
6822 return NULL_TREE;
6824 return fold_build2_loc (loc, GE_EXPR, type, a, y);
6827 /* Fold a sum or difference of at least one multiplication.
6828 Returns the folded tree or NULL if no simplification could be made. */
6830 static tree
6831 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
6832 tree arg0, tree arg1)
6834 tree arg00, arg01, arg10, arg11;
6835 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6837 /* (A * C) +- (B * C) -> (A+-B) * C.
6838 (A * C) +- A -> A * (C+-1).
6839 We are most concerned about the case where C is a constant,
6840 but other combinations show up during loop reduction. Since
6841 it is not difficult, try all four possibilities. */
6843 if (TREE_CODE (arg0) == MULT_EXPR)
6845 arg00 = TREE_OPERAND (arg0, 0);
6846 arg01 = TREE_OPERAND (arg0, 1);
6848 else if (TREE_CODE (arg0) == INTEGER_CST)
6850 arg00 = build_one_cst (type);
6851 arg01 = arg0;
6853 else
6855 /* We cannot generate constant 1 for fract. */
6856 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6857 return NULL_TREE;
6858 arg00 = arg0;
6859 arg01 = build_one_cst (type);
6861 if (TREE_CODE (arg1) == MULT_EXPR)
6863 arg10 = TREE_OPERAND (arg1, 0);
6864 arg11 = TREE_OPERAND (arg1, 1);
6866 else if (TREE_CODE (arg1) == INTEGER_CST)
6868 arg10 = build_one_cst (type);
6869 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
6870 the purpose of this canonicalization. */
6871 if (wi::neg_p (arg1, TYPE_SIGN (TREE_TYPE (arg1)))
6872 && negate_expr_p (arg1)
6873 && code == PLUS_EXPR)
6875 arg11 = negate_expr (arg1);
6876 code = MINUS_EXPR;
6878 else
6879 arg11 = arg1;
6881 else
6883 /* We cannot generate constant 1 for fract. */
6884 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6885 return NULL_TREE;
6886 arg10 = arg1;
6887 arg11 = build_one_cst (type);
6889 same = NULL_TREE;
6891 /* Prefer factoring a common non-constant. */
6892 if (operand_equal_p (arg00, arg10, 0))
6893 same = arg00, alt0 = arg01, alt1 = arg11;
6894 else if (operand_equal_p (arg01, arg11, 0))
6895 same = arg01, alt0 = arg00, alt1 = arg10;
6896 else if (operand_equal_p (arg00, arg11, 0))
6897 same = arg00, alt0 = arg01, alt1 = arg10;
6898 else if (operand_equal_p (arg01, arg10, 0))
6899 same = arg01, alt0 = arg00, alt1 = arg11;
6901 /* No identical multiplicands; see if we can find a common
6902 power-of-two factor in non-power-of-two multiplies. This
6903 can help in multi-dimensional array access. */
6904 else if (tree_fits_shwi_p (arg01)
6905 && tree_fits_shwi_p (arg11))
6907 HOST_WIDE_INT int01, int11, tmp;
6908 bool swap = false;
6909 tree maybe_same;
6910 int01 = tree_to_shwi (arg01);
6911 int11 = tree_to_shwi (arg11);
6913 /* Move min of absolute values to int11. */
6914 if (absu_hwi (int01) < absu_hwi (int11))
6916 tmp = int01, int01 = int11, int11 = tmp;
6917 alt0 = arg00, arg00 = arg10, arg10 = alt0;
6918 maybe_same = arg01;
6919 swap = true;
6921 else
6922 maybe_same = arg11;
6924 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0
6925 /* The remainder should not be a constant, otherwise we
6926 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
6927 increased the number of multiplications necessary. */
6928 && TREE_CODE (arg10) != INTEGER_CST)
6930 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
6931 build_int_cst (TREE_TYPE (arg00),
6932 int01 / int11));
6933 alt1 = arg10;
6934 same = maybe_same;
6935 if (swap)
6936 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
6940 if (!same)
6941 return NULL_TREE;
6943 if (! INTEGRAL_TYPE_P (type)
6944 || TYPE_OVERFLOW_WRAPS (type)
6945 /* We are neither factoring zero nor minus one. */
6946 || TREE_CODE (same) == INTEGER_CST)
6947 return fold_build2_loc (loc, MULT_EXPR, type,
6948 fold_build2_loc (loc, code, type,
6949 fold_convert_loc (loc, type, alt0),
6950 fold_convert_loc (loc, type, alt1)),
6951 fold_convert_loc (loc, type, same));
6953 /* Same may be zero and thus the operation 'code' may overflow. Likewise
6954 same may be minus one and thus the multiplication may overflow. Perform
6955 the operations in an unsigned type. */
6956 tree utype = unsigned_type_for (type);
6957 tree tem = fold_build2_loc (loc, code, utype,
6958 fold_convert_loc (loc, utype, alt0),
6959 fold_convert_loc (loc, utype, alt1));
6960 /* If the sum evaluated to a constant that is not -INF the multiplication
6961 cannot overflow. */
6962 if (TREE_CODE (tem) == INTEGER_CST
6963 && ! wi::eq_p (tem, wi::min_value (TYPE_PRECISION (utype), SIGNED)))
6964 return fold_build2_loc (loc, MULT_EXPR, type,
6965 fold_convert (type, tem), same);
6967 return fold_convert_loc (loc, type,
6968 fold_build2_loc (loc, MULT_EXPR, utype, tem,
6969 fold_convert_loc (loc, utype, same)));
6972 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
6973 specified by EXPR into the buffer PTR of length LEN bytes.
6974 Return the number of bytes placed in the buffer, or zero
6975 upon failure. */
6977 static int
6978 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
6980 tree type = TREE_TYPE (expr);
6981 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
6982 int byte, offset, word, words;
6983 unsigned char value;
6985 if ((off == -1 && total_bytes > len)
6986 || off >= total_bytes)
6987 return 0;
6988 if (off == -1)
6989 off = 0;
6990 words = total_bytes / UNITS_PER_WORD;
6992 for (byte = 0; byte < total_bytes; byte++)
6994 int bitpos = byte * BITS_PER_UNIT;
6995 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
6996 number of bytes. */
6997 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
6999 if (total_bytes > UNITS_PER_WORD)
7001 word = byte / UNITS_PER_WORD;
7002 if (WORDS_BIG_ENDIAN)
7003 word = (words - 1) - word;
7004 offset = word * UNITS_PER_WORD;
7005 if (BYTES_BIG_ENDIAN)
7006 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7007 else
7008 offset += byte % UNITS_PER_WORD;
7010 else
7011 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7012 if (offset >= off
7013 && offset - off < len)
7014 ptr[offset - off] = value;
7016 return MIN (len, total_bytes - off);
7020 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7021 specified by EXPR into the buffer PTR of length LEN bytes.
7022 Return the number of bytes placed in the buffer, or zero
7023 upon failure. */
7025 static int
7026 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
7028 tree type = TREE_TYPE (expr);
7029 scalar_mode mode = SCALAR_TYPE_MODE (type);
7030 int total_bytes = GET_MODE_SIZE (mode);
7031 FIXED_VALUE_TYPE value;
7032 tree i_value, i_type;
7034 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7035 return 0;
7037 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
7039 if (NULL_TREE == i_type
7040 || TYPE_PRECISION (i_type) != total_bytes)
7041 return 0;
7043 value = TREE_FIXED_CST (expr);
7044 i_value = double_int_to_tree (i_type, value.data);
7046 return native_encode_int (i_value, ptr, len, off);
7050 /* Subroutine of native_encode_expr. Encode the REAL_CST
7051 specified by EXPR into the buffer PTR of length LEN bytes.
7052 Return the number of bytes placed in the buffer, or zero
7053 upon failure. */
7055 static int
7056 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
7058 tree type = TREE_TYPE (expr);
7059 int total_bytes = GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type));
7060 int byte, offset, word, words, bitpos;
7061 unsigned char value;
7063 /* There are always 32 bits in each long, no matter the size of
7064 the hosts long. We handle floating point representations with
7065 up to 192 bits. */
7066 long tmp[6];
7068 if ((off == -1 && total_bytes > len)
7069 || off >= total_bytes)
7070 return 0;
7071 if (off == -1)
7072 off = 0;
7073 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7075 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7077 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7078 bitpos += BITS_PER_UNIT)
7080 byte = (bitpos / BITS_PER_UNIT) & 3;
7081 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7083 if (UNITS_PER_WORD < 4)
7085 word = byte / UNITS_PER_WORD;
7086 if (WORDS_BIG_ENDIAN)
7087 word = (words - 1) - word;
7088 offset = word * UNITS_PER_WORD;
7089 if (BYTES_BIG_ENDIAN)
7090 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7091 else
7092 offset += byte % UNITS_PER_WORD;
7094 else
7096 offset = byte;
7097 if (BYTES_BIG_ENDIAN)
7099 /* Reverse bytes within each long, or within the entire float
7100 if it's smaller than a long (for HFmode). */
7101 offset = MIN (3, total_bytes - 1) - offset;
7102 gcc_assert (offset >= 0);
7105 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
7106 if (offset >= off
7107 && offset - off < len)
7108 ptr[offset - off] = value;
7110 return MIN (len, total_bytes - off);
7113 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7114 specified by EXPR into the buffer PTR of length LEN bytes.
7115 Return the number of bytes placed in the buffer, or zero
7116 upon failure. */
7118 static int
7119 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7121 int rsize, isize;
7122 tree part;
7124 part = TREE_REALPART (expr);
7125 rsize = native_encode_expr (part, ptr, len, off);
7126 if (off == -1
7127 && rsize == 0)
7128 return 0;
7129 part = TREE_IMAGPART (expr);
7130 if (off != -1)
7131 off = MAX (0, off - GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (part))));
7132 isize = native_encode_expr (part, ptr+rsize, len-rsize, off);
7133 if (off == -1
7134 && isize != rsize)
7135 return 0;
7136 return rsize + isize;
7140 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7141 specified by EXPR into the buffer PTR of length LEN bytes.
7142 Return the number of bytes placed in the buffer, or zero
7143 upon failure. */
7145 static int
7146 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7148 unsigned i, count;
7149 int size, offset;
7150 tree itype, elem;
7152 offset = 0;
7153 count = VECTOR_CST_NELTS (expr);
7154 itype = TREE_TYPE (TREE_TYPE (expr));
7155 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (itype));
7156 for (i = 0; i < count; i++)
7158 if (off >= size)
7160 off -= size;
7161 continue;
7163 elem = VECTOR_CST_ELT (expr, i);
7164 int res = native_encode_expr (elem, ptr+offset, len-offset, off);
7165 if ((off == -1 && res != size)
7166 || res == 0)
7167 return 0;
7168 offset += res;
7169 if (offset >= len)
7170 return offset;
7171 if (off != -1)
7172 off = 0;
7174 return offset;
7178 /* Subroutine of native_encode_expr. Encode the STRING_CST
7179 specified by EXPR into the buffer PTR of length LEN bytes.
7180 Return the number of bytes placed in the buffer, or zero
7181 upon failure. */
7183 static int
7184 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7186 if (! can_native_encode_string_p (expr))
7187 return 0;
7189 HOST_WIDE_INT total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (expr)));
7190 if ((off == -1 && total_bytes > len)
7191 || off >= total_bytes)
7192 return 0;
7193 if (off == -1)
7194 off = 0;
7195 if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7197 int written = 0;
7198 if (off < TREE_STRING_LENGTH (expr))
7200 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7201 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7203 memset (ptr + written, 0,
7204 MIN (total_bytes - written, len - written));
7206 else
7207 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7208 return MIN (total_bytes - off, len);
7212 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7213 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7214 buffer PTR of length LEN bytes. If OFF is not -1 then start
7215 the encoding at byte offset OFF and encode at most LEN bytes.
7216 Return the number of bytes placed in the buffer, or zero upon failure. */
7219 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7221 /* We don't support starting at negative offset and -1 is special. */
7222 if (off < -1)
7223 return 0;
7225 switch (TREE_CODE (expr))
7227 case INTEGER_CST:
7228 return native_encode_int (expr, ptr, len, off);
7230 case REAL_CST:
7231 return native_encode_real (expr, ptr, len, off);
7233 case FIXED_CST:
7234 return native_encode_fixed (expr, ptr, len, off);
7236 case COMPLEX_CST:
7237 return native_encode_complex (expr, ptr, len, off);
7239 case VECTOR_CST:
7240 return native_encode_vector (expr, ptr, len, off);
7242 case STRING_CST:
7243 return native_encode_string (expr, ptr, len, off);
7245 default:
7246 return 0;
7251 /* Subroutine of native_interpret_expr. Interpret the contents of
7252 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7253 If the buffer cannot be interpreted, return NULL_TREE. */
7255 static tree
7256 native_interpret_int (tree type, const unsigned char *ptr, int len)
7258 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
7260 if (total_bytes > len
7261 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7262 return NULL_TREE;
7264 wide_int result = wi::from_buffer (ptr, total_bytes);
7266 return wide_int_to_tree (type, result);
7270 /* Subroutine of native_interpret_expr. Interpret the contents of
7271 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7272 If the buffer cannot be interpreted, return NULL_TREE. */
7274 static tree
7275 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7277 scalar_mode mode = SCALAR_TYPE_MODE (type);
7278 int total_bytes = GET_MODE_SIZE (mode);
7279 double_int result;
7280 FIXED_VALUE_TYPE fixed_value;
7282 if (total_bytes > len
7283 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7284 return NULL_TREE;
7286 result = double_int::from_buffer (ptr, total_bytes);
7287 fixed_value = fixed_from_double_int (result, mode);
7289 return build_fixed (type, fixed_value);
7293 /* Subroutine of native_interpret_expr. Interpret the contents of
7294 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7295 If the buffer cannot be interpreted, return NULL_TREE. */
7297 static tree
7298 native_interpret_real (tree type, const unsigned char *ptr, int len)
7300 scalar_float_mode mode = SCALAR_FLOAT_TYPE_MODE (type);
7301 int total_bytes = GET_MODE_SIZE (mode);
7302 unsigned char value;
7303 /* There are always 32 bits in each long, no matter the size of
7304 the hosts long. We handle floating point representations with
7305 up to 192 bits. */
7306 REAL_VALUE_TYPE r;
7307 long tmp[6];
7309 if (total_bytes > len || total_bytes > 24)
7310 return NULL_TREE;
7311 int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7313 memset (tmp, 0, sizeof (tmp));
7314 for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7315 bitpos += BITS_PER_UNIT)
7317 /* Both OFFSET and BYTE index within a long;
7318 bitpos indexes the whole float. */
7319 int offset, byte = (bitpos / BITS_PER_UNIT) & 3;
7320 if (UNITS_PER_WORD < 4)
7322 int word = byte / UNITS_PER_WORD;
7323 if (WORDS_BIG_ENDIAN)
7324 word = (words - 1) - word;
7325 offset = word * UNITS_PER_WORD;
7326 if (BYTES_BIG_ENDIAN)
7327 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7328 else
7329 offset += byte % UNITS_PER_WORD;
7331 else
7333 offset = byte;
7334 if (BYTES_BIG_ENDIAN)
7336 /* Reverse bytes within each long, or within the entire float
7337 if it's smaller than a long (for HFmode). */
7338 offset = MIN (3, total_bytes - 1) - offset;
7339 gcc_assert (offset >= 0);
7342 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7344 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7347 real_from_target (&r, tmp, mode);
7348 return build_real (type, r);
7352 /* Subroutine of native_interpret_expr. Interpret the contents of
7353 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7354 If the buffer cannot be interpreted, return NULL_TREE. */
7356 static tree
7357 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7359 tree etype, rpart, ipart;
7360 int size;
7362 etype = TREE_TYPE (type);
7363 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype));
7364 if (size * 2 > len)
7365 return NULL_TREE;
7366 rpart = native_interpret_expr (etype, ptr, size);
7367 if (!rpart)
7368 return NULL_TREE;
7369 ipart = native_interpret_expr (etype, ptr+size, size);
7370 if (!ipart)
7371 return NULL_TREE;
7372 return build_complex (type, rpart, ipart);
7376 /* Subroutine of native_interpret_expr. Interpret the contents of
7377 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7378 If the buffer cannot be interpreted, return NULL_TREE. */
7380 static tree
7381 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7383 tree etype, elem;
7384 int i, size, count;
7386 etype = TREE_TYPE (type);
7387 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype));
7388 count = TYPE_VECTOR_SUBPARTS (type);
7389 if (size * count > len)
7390 return NULL_TREE;
7392 auto_vec<tree, 32> elements (count);
7393 for (i = 0; i < count; ++i)
7395 elem = native_interpret_expr (etype, ptr+(i*size), size);
7396 if (!elem)
7397 return NULL_TREE;
7398 elements.quick_push (elem);
7400 return build_vector (type, elements);
7404 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7405 the buffer PTR of length LEN as a constant of type TYPE. For
7406 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7407 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7408 return NULL_TREE. */
7410 tree
7411 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7413 switch (TREE_CODE (type))
7415 case INTEGER_TYPE:
7416 case ENUMERAL_TYPE:
7417 case BOOLEAN_TYPE:
7418 case POINTER_TYPE:
7419 case REFERENCE_TYPE:
7420 return native_interpret_int (type, ptr, len);
7422 case REAL_TYPE:
7423 return native_interpret_real (type, ptr, len);
7425 case FIXED_POINT_TYPE:
7426 return native_interpret_fixed (type, ptr, len);
7428 case COMPLEX_TYPE:
7429 return native_interpret_complex (type, ptr, len);
7431 case VECTOR_TYPE:
7432 return native_interpret_vector (type, ptr, len);
7434 default:
7435 return NULL_TREE;
7439 /* Returns true if we can interpret the contents of a native encoding
7440 as TYPE. */
7442 static bool
7443 can_native_interpret_type_p (tree type)
7445 switch (TREE_CODE (type))
7447 case INTEGER_TYPE:
7448 case ENUMERAL_TYPE:
7449 case BOOLEAN_TYPE:
7450 case POINTER_TYPE:
7451 case REFERENCE_TYPE:
7452 case FIXED_POINT_TYPE:
7453 case REAL_TYPE:
7454 case COMPLEX_TYPE:
7455 case VECTOR_TYPE:
7456 return true;
7457 default:
7458 return false;
7462 /* Return true iff a constant of type TYPE is accepted by
7463 native_encode_expr. */
7465 bool
7466 can_native_encode_type_p (tree type)
7468 switch (TREE_CODE (type))
7470 case INTEGER_TYPE:
7471 case REAL_TYPE:
7472 case FIXED_POINT_TYPE:
7473 case COMPLEX_TYPE:
7474 case VECTOR_TYPE:
7475 case POINTER_TYPE:
7476 return true;
7477 default:
7478 return false;
7482 /* Return true iff a STRING_CST S is accepted by
7483 native_encode_expr. */
7485 bool
7486 can_native_encode_string_p (const_tree expr)
7488 tree type = TREE_TYPE (expr);
7490 /* Wide-char strings are encoded in target byte-order so native
7491 encoding them is trivial. */
7492 if (BITS_PER_UNIT != CHAR_BIT
7493 || TREE_CODE (type) != ARRAY_TYPE
7494 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7495 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7496 return false;
7497 return true;
7500 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7501 TYPE at compile-time. If we're unable to perform the conversion
7502 return NULL_TREE. */
7504 static tree
7505 fold_view_convert_expr (tree type, tree expr)
7507 /* We support up to 512-bit values (for V8DFmode). */
7508 unsigned char buffer[64];
7509 int len;
7511 /* Check that the host and target are sane. */
7512 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7513 return NULL_TREE;
7515 len = native_encode_expr (expr, buffer, sizeof (buffer));
7516 if (len == 0)
7517 return NULL_TREE;
7519 return native_interpret_expr (type, buffer, len);
7522 /* Build an expression for the address of T. Folds away INDIRECT_REF
7523 to avoid confusing the gimplify process. */
7525 tree
7526 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7528 /* The size of the object is not relevant when talking about its address. */
7529 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7530 t = TREE_OPERAND (t, 0);
7532 if (TREE_CODE (t) == INDIRECT_REF)
7534 t = TREE_OPERAND (t, 0);
7536 if (TREE_TYPE (t) != ptrtype)
7537 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7539 else if (TREE_CODE (t) == MEM_REF
7540 && integer_zerop (TREE_OPERAND (t, 1)))
7541 return TREE_OPERAND (t, 0);
7542 else if (TREE_CODE (t) == MEM_REF
7543 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7544 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7545 TREE_OPERAND (t, 0),
7546 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7547 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7549 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7551 if (TREE_TYPE (t) != ptrtype)
7552 t = fold_convert_loc (loc, ptrtype, t);
7554 else
7555 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7557 return t;
7560 /* Build an expression for the address of T. */
7562 tree
7563 build_fold_addr_expr_loc (location_t loc, tree t)
7565 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7567 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7570 /* Fold a unary expression of code CODE and type TYPE with operand
7571 OP0. Return the folded expression if folding is successful.
7572 Otherwise, return NULL_TREE. */
7574 tree
7575 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7577 tree tem;
7578 tree arg0;
7579 enum tree_code_class kind = TREE_CODE_CLASS (code);
7581 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7582 && TREE_CODE_LENGTH (code) == 1);
7584 arg0 = op0;
7585 if (arg0)
7587 if (CONVERT_EXPR_CODE_P (code)
7588 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7590 /* Don't use STRIP_NOPS, because signedness of argument type
7591 matters. */
7592 STRIP_SIGN_NOPS (arg0);
7594 else
7596 /* Strip any conversions that don't change the mode. This
7597 is safe for every expression, except for a comparison
7598 expression because its signedness is derived from its
7599 operands.
7601 Note that this is done as an internal manipulation within
7602 the constant folder, in order to find the simplest
7603 representation of the arguments so that their form can be
7604 studied. In any cases, the appropriate type conversions
7605 should be put back in the tree that will get out of the
7606 constant folder. */
7607 STRIP_NOPS (arg0);
7610 if (CONSTANT_CLASS_P (arg0))
7612 tree tem = const_unop (code, type, arg0);
7613 if (tem)
7615 if (TREE_TYPE (tem) != type)
7616 tem = fold_convert_loc (loc, type, tem);
7617 return tem;
7622 tem = generic_simplify (loc, code, type, op0);
7623 if (tem)
7624 return tem;
7626 if (TREE_CODE_CLASS (code) == tcc_unary)
7628 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7629 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7630 fold_build1_loc (loc, code, type,
7631 fold_convert_loc (loc, TREE_TYPE (op0),
7632 TREE_OPERAND (arg0, 1))));
7633 else if (TREE_CODE (arg0) == COND_EXPR)
7635 tree arg01 = TREE_OPERAND (arg0, 1);
7636 tree arg02 = TREE_OPERAND (arg0, 2);
7637 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7638 arg01 = fold_build1_loc (loc, code, type,
7639 fold_convert_loc (loc,
7640 TREE_TYPE (op0), arg01));
7641 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7642 arg02 = fold_build1_loc (loc, code, type,
7643 fold_convert_loc (loc,
7644 TREE_TYPE (op0), arg02));
7645 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7646 arg01, arg02);
7648 /* If this was a conversion, and all we did was to move into
7649 inside the COND_EXPR, bring it back out. But leave it if
7650 it is a conversion from integer to integer and the
7651 result precision is no wider than a word since such a
7652 conversion is cheap and may be optimized away by combine,
7653 while it couldn't if it were outside the COND_EXPR. Then return
7654 so we don't get into an infinite recursion loop taking the
7655 conversion out and then back in. */
7657 if ((CONVERT_EXPR_CODE_P (code)
7658 || code == NON_LVALUE_EXPR)
7659 && TREE_CODE (tem) == COND_EXPR
7660 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7661 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7662 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7663 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7664 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7665 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7666 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7667 && (INTEGRAL_TYPE_P
7668 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7669 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7670 || flag_syntax_only))
7671 tem = build1_loc (loc, code, type,
7672 build3 (COND_EXPR,
7673 TREE_TYPE (TREE_OPERAND
7674 (TREE_OPERAND (tem, 1), 0)),
7675 TREE_OPERAND (tem, 0),
7676 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7677 TREE_OPERAND (TREE_OPERAND (tem, 2),
7678 0)));
7679 return tem;
7683 switch (code)
7685 case NON_LVALUE_EXPR:
7686 if (!maybe_lvalue_p (op0))
7687 return fold_convert_loc (loc, type, op0);
7688 return NULL_TREE;
7690 CASE_CONVERT:
7691 case FLOAT_EXPR:
7692 case FIX_TRUNC_EXPR:
7693 if (COMPARISON_CLASS_P (op0))
7695 /* If we have (type) (a CMP b) and type is an integral type, return
7696 new expression involving the new type. Canonicalize
7697 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7698 non-integral type.
7699 Do not fold the result as that would not simplify further, also
7700 folding again results in recursions. */
7701 if (TREE_CODE (type) == BOOLEAN_TYPE)
7702 return build2_loc (loc, TREE_CODE (op0), type,
7703 TREE_OPERAND (op0, 0),
7704 TREE_OPERAND (op0, 1));
7705 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7706 && TREE_CODE (type) != VECTOR_TYPE)
7707 return build3_loc (loc, COND_EXPR, type, op0,
7708 constant_boolean_node (true, type),
7709 constant_boolean_node (false, type));
7712 /* Handle (T *)&A.B.C for A being of type T and B and C
7713 living at offset zero. This occurs frequently in
7714 C++ upcasting and then accessing the base. */
7715 if (TREE_CODE (op0) == ADDR_EXPR
7716 && POINTER_TYPE_P (type)
7717 && handled_component_p (TREE_OPERAND (op0, 0)))
7719 HOST_WIDE_INT bitsize, bitpos;
7720 tree offset;
7721 machine_mode mode;
7722 int unsignedp, reversep, volatilep;
7723 tree base
7724 = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos,
7725 &offset, &mode, &unsignedp, &reversep,
7726 &volatilep);
7727 /* If the reference was to a (constant) zero offset, we can use
7728 the address of the base if it has the same base type
7729 as the result type and the pointer type is unqualified. */
7730 if (! offset && bitpos == 0
7731 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7732 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7733 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7734 return fold_convert_loc (loc, type,
7735 build_fold_addr_expr_loc (loc, base));
7738 if (TREE_CODE (op0) == MODIFY_EXPR
7739 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7740 /* Detect assigning a bitfield. */
7741 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7742 && DECL_BIT_FIELD
7743 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7745 /* Don't leave an assignment inside a conversion
7746 unless assigning a bitfield. */
7747 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7748 /* First do the assignment, then return converted constant. */
7749 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7750 TREE_NO_WARNING (tem) = 1;
7751 TREE_USED (tem) = 1;
7752 return tem;
7755 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7756 constants (if x has signed type, the sign bit cannot be set
7757 in c). This folds extension into the BIT_AND_EXPR.
7758 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7759 very likely don't have maximal range for their precision and this
7760 transformation effectively doesn't preserve non-maximal ranges. */
7761 if (TREE_CODE (type) == INTEGER_TYPE
7762 && TREE_CODE (op0) == BIT_AND_EXPR
7763 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7765 tree and_expr = op0;
7766 tree and0 = TREE_OPERAND (and_expr, 0);
7767 tree and1 = TREE_OPERAND (and_expr, 1);
7768 int change = 0;
7770 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7771 || (TYPE_PRECISION (type)
7772 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7773 change = 1;
7774 else if (TYPE_PRECISION (TREE_TYPE (and1))
7775 <= HOST_BITS_PER_WIDE_INT
7776 && tree_fits_uhwi_p (and1))
7778 unsigned HOST_WIDE_INT cst;
7780 cst = tree_to_uhwi (and1);
7781 cst &= HOST_WIDE_INT_M1U
7782 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7783 change = (cst == 0);
7784 if (change
7785 && !flag_syntax_only
7786 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0)))
7787 == ZERO_EXTEND))
7789 tree uns = unsigned_type_for (TREE_TYPE (and0));
7790 and0 = fold_convert_loc (loc, uns, and0);
7791 and1 = fold_convert_loc (loc, uns, and1);
7794 if (change)
7796 tem = force_fit_type (type, wi::to_widest (and1), 0,
7797 TREE_OVERFLOW (and1));
7798 return fold_build2_loc (loc, BIT_AND_EXPR, type,
7799 fold_convert_loc (loc, type, and0), tem);
7803 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
7804 cast (T1)X will fold away. We assume that this happens when X itself
7805 is a cast. */
7806 if (POINTER_TYPE_P (type)
7807 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
7808 && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0)))
7810 tree arg00 = TREE_OPERAND (arg0, 0);
7811 tree arg01 = TREE_OPERAND (arg0, 1);
7813 return fold_build_pointer_plus_loc
7814 (loc, fold_convert_loc (loc, type, arg00), arg01);
7817 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7818 of the same precision, and X is an integer type not narrower than
7819 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7820 if (INTEGRAL_TYPE_P (type)
7821 && TREE_CODE (op0) == BIT_NOT_EXPR
7822 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7823 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
7824 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7826 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7827 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7828 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7829 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
7830 fold_convert_loc (loc, type, tem));
7833 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7834 type of X and Y (integer types only). */
7835 if (INTEGRAL_TYPE_P (type)
7836 && TREE_CODE (op0) == MULT_EXPR
7837 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7838 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
7840 /* Be careful not to introduce new overflows. */
7841 tree mult_type;
7842 if (TYPE_OVERFLOW_WRAPS (type))
7843 mult_type = type;
7844 else
7845 mult_type = unsigned_type_for (type);
7847 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
7849 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
7850 fold_convert_loc (loc, mult_type,
7851 TREE_OPERAND (op0, 0)),
7852 fold_convert_loc (loc, mult_type,
7853 TREE_OPERAND (op0, 1)));
7854 return fold_convert_loc (loc, type, tem);
7858 return NULL_TREE;
7860 case VIEW_CONVERT_EXPR:
7861 if (TREE_CODE (op0) == MEM_REF)
7863 if (TYPE_ALIGN (TREE_TYPE (op0)) != TYPE_ALIGN (type))
7864 type = build_aligned_type (type, TYPE_ALIGN (TREE_TYPE (op0)));
7865 tem = fold_build2_loc (loc, MEM_REF, type,
7866 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
7867 REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0);
7868 return tem;
7871 return NULL_TREE;
7873 case NEGATE_EXPR:
7874 tem = fold_negate_expr (loc, arg0);
7875 if (tem)
7876 return fold_convert_loc (loc, type, tem);
7877 return NULL_TREE;
7879 case ABS_EXPR:
7880 /* Convert fabs((double)float) into (double)fabsf(float). */
7881 if (TREE_CODE (arg0) == NOP_EXPR
7882 && TREE_CODE (type) == REAL_TYPE)
7884 tree targ0 = strip_float_extensions (arg0);
7885 if (targ0 != arg0)
7886 return fold_convert_loc (loc, type,
7887 fold_build1_loc (loc, ABS_EXPR,
7888 TREE_TYPE (targ0),
7889 targ0));
7891 return NULL_TREE;
7893 case BIT_NOT_EXPR:
7894 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7895 if (TREE_CODE (arg0) == BIT_XOR_EXPR
7896 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7897 fold_convert_loc (loc, type,
7898 TREE_OPERAND (arg0, 0)))))
7899 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
7900 fold_convert_loc (loc, type,
7901 TREE_OPERAND (arg0, 1)));
7902 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7903 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7904 fold_convert_loc (loc, type,
7905 TREE_OPERAND (arg0, 1)))))
7906 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
7907 fold_convert_loc (loc, type,
7908 TREE_OPERAND (arg0, 0)), tem);
7910 return NULL_TREE;
7912 case TRUTH_NOT_EXPR:
7913 /* Note that the operand of this must be an int
7914 and its values must be 0 or 1.
7915 ("true" is a fixed value perhaps depending on the language,
7916 but we don't handle values other than 1 correctly yet.) */
7917 tem = fold_truth_not_expr (loc, arg0);
7918 if (!tem)
7919 return NULL_TREE;
7920 return fold_convert_loc (loc, type, tem);
7922 case INDIRECT_REF:
7923 /* Fold *&X to X if X is an lvalue. */
7924 if (TREE_CODE (op0) == ADDR_EXPR)
7926 tree op00 = TREE_OPERAND (op0, 0);
7927 if ((VAR_P (op00)
7928 || TREE_CODE (op00) == PARM_DECL
7929 || TREE_CODE (op00) == RESULT_DECL)
7930 && !TREE_READONLY (op00))
7931 return op00;
7933 return NULL_TREE;
7935 default:
7936 return NULL_TREE;
7937 } /* switch (code) */
7941 /* If the operation was a conversion do _not_ mark a resulting constant
7942 with TREE_OVERFLOW if the original constant was not. These conversions
7943 have implementation defined behavior and retaining the TREE_OVERFLOW
7944 flag here would confuse later passes such as VRP. */
7945 tree
7946 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
7947 tree type, tree op0)
7949 tree res = fold_unary_loc (loc, code, type, op0);
7950 if (res
7951 && TREE_CODE (res) == INTEGER_CST
7952 && TREE_CODE (op0) == INTEGER_CST
7953 && CONVERT_EXPR_CODE_P (code))
7954 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
7956 return res;
7959 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
7960 operands OP0 and OP1. LOC is the location of the resulting expression.
7961 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
7962 Return the folded expression if folding is successful. Otherwise,
7963 return NULL_TREE. */
7964 static tree
7965 fold_truth_andor (location_t loc, enum tree_code code, tree type,
7966 tree arg0, tree arg1, tree op0, tree op1)
7968 tree tem;
7970 /* We only do these simplifications if we are optimizing. */
7971 if (!optimize)
7972 return NULL_TREE;
7974 /* Check for things like (A || B) && (A || C). We can convert this
7975 to A || (B && C). Note that either operator can be any of the four
7976 truth and/or operations and the transformation will still be
7977 valid. Also note that we only care about order for the
7978 ANDIF and ORIF operators. If B contains side effects, this
7979 might change the truth-value of A. */
7980 if (TREE_CODE (arg0) == TREE_CODE (arg1)
7981 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
7982 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
7983 || TREE_CODE (arg0) == TRUTH_AND_EXPR
7984 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
7985 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
7987 tree a00 = TREE_OPERAND (arg0, 0);
7988 tree a01 = TREE_OPERAND (arg0, 1);
7989 tree a10 = TREE_OPERAND (arg1, 0);
7990 tree a11 = TREE_OPERAND (arg1, 1);
7991 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
7992 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
7993 && (code == TRUTH_AND_EXPR
7994 || code == TRUTH_OR_EXPR));
7996 if (operand_equal_p (a00, a10, 0))
7997 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
7998 fold_build2_loc (loc, code, type, a01, a11));
7999 else if (commutative && operand_equal_p (a00, a11, 0))
8000 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8001 fold_build2_loc (loc, code, type, a01, a10));
8002 else if (commutative && operand_equal_p (a01, a10, 0))
8003 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
8004 fold_build2_loc (loc, code, type, a00, a11));
8006 /* This case if tricky because we must either have commutative
8007 operators or else A10 must not have side-effects. */
8009 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
8010 && operand_equal_p (a01, a11, 0))
8011 return fold_build2_loc (loc, TREE_CODE (arg0), type,
8012 fold_build2_loc (loc, code, type, a00, a10),
8013 a01);
8016 /* See if we can build a range comparison. */
8017 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
8018 return tem;
8020 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
8021 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
8023 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
8024 if (tem)
8025 return fold_build2_loc (loc, code, type, tem, arg1);
8028 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
8029 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
8031 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
8032 if (tem)
8033 return fold_build2_loc (loc, code, type, arg0, tem);
8036 /* Check for the possibility of merging component references. If our
8037 lhs is another similar operation, try to merge its rhs with our
8038 rhs. Then try to merge our lhs and rhs. */
8039 if (TREE_CODE (arg0) == code
8040 && 0 != (tem = fold_truth_andor_1 (loc, code, type,
8041 TREE_OPERAND (arg0, 1), arg1)))
8042 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
8044 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
8045 return tem;
8047 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8048 && !flag_sanitize_coverage
8049 && (code == TRUTH_AND_EXPR
8050 || code == TRUTH_ANDIF_EXPR
8051 || code == TRUTH_OR_EXPR
8052 || code == TRUTH_ORIF_EXPR))
8054 enum tree_code ncode, icode;
8056 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
8057 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
8058 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
8060 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8061 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8062 We don't want to pack more than two leafs to a non-IF AND/OR
8063 expression.
8064 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8065 equal to IF-CODE, then we don't want to add right-hand operand.
8066 If the inner right-hand side of left-hand operand has
8067 side-effects, or isn't simple, then we can't add to it,
8068 as otherwise we might destroy if-sequence. */
8069 if (TREE_CODE (arg0) == icode
8070 && simple_operand_p_2 (arg1)
8071 /* Needed for sequence points to handle trappings, and
8072 side-effects. */
8073 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
8075 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
8076 arg1);
8077 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
8078 tem);
8080 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8081 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8082 else if (TREE_CODE (arg1) == icode
8083 && simple_operand_p_2 (arg0)
8084 /* Needed for sequence points to handle trappings, and
8085 side-effects. */
8086 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
8088 tem = fold_build2_loc (loc, ncode, type,
8089 arg0, TREE_OPERAND (arg1, 0));
8090 return fold_build2_loc (loc, icode, type, tem,
8091 TREE_OPERAND (arg1, 1));
8093 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8094 into (A OR B).
8095 For sequence point consistancy, we need to check for trapping,
8096 and side-effects. */
8097 else if (code == icode && simple_operand_p_2 (arg0)
8098 && simple_operand_p_2 (arg1))
8099 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8102 return NULL_TREE;
8105 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8106 by changing CODE to reduce the magnitude of constants involved in
8107 ARG0 of the comparison.
8108 Returns a canonicalized comparison tree if a simplification was
8109 possible, otherwise returns NULL_TREE.
8110 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8111 valid if signed overflow is undefined. */
8113 static tree
8114 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8115 tree arg0, tree arg1,
8116 bool *strict_overflow_p)
8118 enum tree_code code0 = TREE_CODE (arg0);
8119 tree t, cst0 = NULL_TREE;
8120 int sgn0;
8122 /* Match A +- CST code arg1. We can change this only if overflow
8123 is undefined. */
8124 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8125 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8126 /* In principle pointers also have undefined overflow behavior,
8127 but that causes problems elsewhere. */
8128 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8129 && (code0 == MINUS_EXPR
8130 || code0 == PLUS_EXPR)
8131 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST))
8132 return NULL_TREE;
8134 /* Identify the constant in arg0 and its sign. */
8135 cst0 = TREE_OPERAND (arg0, 1);
8136 sgn0 = tree_int_cst_sgn (cst0);
8138 /* Overflowed constants and zero will cause problems. */
8139 if (integer_zerop (cst0)
8140 || TREE_OVERFLOW (cst0))
8141 return NULL_TREE;
8143 /* See if we can reduce the magnitude of the constant in
8144 arg0 by changing the comparison code. */
8145 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8146 if (code == LT_EXPR
8147 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8148 code = LE_EXPR;
8149 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8150 else if (code == GT_EXPR
8151 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8152 code = GE_EXPR;
8153 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8154 else if (code == LE_EXPR
8155 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8156 code = LT_EXPR;
8157 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8158 else if (code == GE_EXPR
8159 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8160 code = GT_EXPR;
8161 else
8162 return NULL_TREE;
8163 *strict_overflow_p = true;
8165 /* Now build the constant reduced in magnitude. But not if that
8166 would produce one outside of its types range. */
8167 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8168 && ((sgn0 == 1
8169 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8170 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8171 || (sgn0 == -1
8172 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8173 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8174 return NULL_TREE;
8176 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8177 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8178 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8179 t = fold_convert (TREE_TYPE (arg1), t);
8181 return fold_build2_loc (loc, code, type, t, arg1);
8184 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8185 overflow further. Try to decrease the magnitude of constants involved
8186 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8187 and put sole constants at the second argument position.
8188 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8190 static tree
8191 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8192 tree arg0, tree arg1)
8194 tree t;
8195 bool strict_overflow_p;
8196 const char * const warnmsg = G_("assuming signed overflow does not occur "
8197 "when reducing constant in comparison");
8199 /* Try canonicalization by simplifying arg0. */
8200 strict_overflow_p = false;
8201 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8202 &strict_overflow_p);
8203 if (t)
8205 if (strict_overflow_p)
8206 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8207 return t;
8210 /* Try canonicalization by simplifying arg1 using the swapped
8211 comparison. */
8212 code = swap_tree_comparison (code);
8213 strict_overflow_p = false;
8214 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8215 &strict_overflow_p);
8216 if (t && strict_overflow_p)
8217 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8218 return t;
8221 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8222 space. This is used to avoid issuing overflow warnings for
8223 expressions like &p->x which can not wrap. */
8225 static bool
8226 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8228 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8229 return true;
8231 if (bitpos < 0)
8232 return true;
8234 wide_int wi_offset;
8235 int precision = TYPE_PRECISION (TREE_TYPE (base));
8236 if (offset == NULL_TREE)
8237 wi_offset = wi::zero (precision);
8238 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8239 return true;
8240 else
8241 wi_offset = offset;
8243 bool overflow;
8244 wide_int units = wi::shwi (bitpos / BITS_PER_UNIT, precision);
8245 wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8246 if (overflow)
8247 return true;
8249 if (!wi::fits_uhwi_p (total))
8250 return true;
8252 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8253 if (size <= 0)
8254 return true;
8256 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8257 array. */
8258 if (TREE_CODE (base) == ADDR_EXPR)
8260 HOST_WIDE_INT base_size;
8262 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8263 if (base_size > 0 && size < base_size)
8264 size = base_size;
8267 return total.to_uhwi () > (unsigned HOST_WIDE_INT) size;
8270 /* Return a positive integer when the symbol DECL is known to have
8271 a nonzero address, zero when it's known not to (e.g., it's a weak
8272 symbol), and a negative integer when the symbol is not yet in the
8273 symbol table and so whether or not its address is zero is unknown.
8274 For function local objects always return positive integer. */
8275 static int
8276 maybe_nonzero_address (tree decl)
8278 if (DECL_P (decl) && decl_in_symtab_p (decl))
8279 if (struct symtab_node *symbol = symtab_node::get_create (decl))
8280 return symbol->nonzero_address ();
8282 /* Function local objects are never NULL. */
8283 if (DECL_P (decl)
8284 && (DECL_CONTEXT (decl)
8285 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL
8286 && auto_var_in_fn_p (decl, DECL_CONTEXT (decl))))
8287 return 1;
8289 return -1;
8292 /* Subroutine of fold_binary. This routine performs all of the
8293 transformations that are common to the equality/inequality
8294 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8295 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8296 fold_binary should call fold_binary. Fold a comparison with
8297 tree code CODE and type TYPE with operands OP0 and OP1. Return
8298 the folded comparison or NULL_TREE. */
8300 static tree
8301 fold_comparison (location_t loc, enum tree_code code, tree type,
8302 tree op0, tree op1)
8304 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8305 tree arg0, arg1, tem;
8307 arg0 = op0;
8308 arg1 = op1;
8310 STRIP_SIGN_NOPS (arg0);
8311 STRIP_SIGN_NOPS (arg1);
8313 /* For comparisons of pointers we can decompose it to a compile time
8314 comparison of the base objects and the offsets into the object.
8315 This requires at least one operand being an ADDR_EXPR or a
8316 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8317 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8318 && (TREE_CODE (arg0) == ADDR_EXPR
8319 || TREE_CODE (arg1) == ADDR_EXPR
8320 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8321 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8323 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8324 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8325 machine_mode mode;
8326 int volatilep, reversep, unsignedp;
8327 bool indirect_base0 = false, indirect_base1 = false;
8329 /* Get base and offset for the access. Strip ADDR_EXPR for
8330 get_inner_reference, but put it back by stripping INDIRECT_REF
8331 off the base object if possible. indirect_baseN will be true
8332 if baseN is not an address but refers to the object itself. */
8333 base0 = arg0;
8334 if (TREE_CODE (arg0) == ADDR_EXPR)
8336 base0
8337 = get_inner_reference (TREE_OPERAND (arg0, 0),
8338 &bitsize, &bitpos0, &offset0, &mode,
8339 &unsignedp, &reversep, &volatilep);
8340 if (TREE_CODE (base0) == INDIRECT_REF)
8341 base0 = TREE_OPERAND (base0, 0);
8342 else
8343 indirect_base0 = true;
8345 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8347 base0 = TREE_OPERAND (arg0, 0);
8348 STRIP_SIGN_NOPS (base0);
8349 if (TREE_CODE (base0) == ADDR_EXPR)
8351 base0
8352 = get_inner_reference (TREE_OPERAND (base0, 0),
8353 &bitsize, &bitpos0, &offset0, &mode,
8354 &unsignedp, &reversep, &volatilep);
8355 if (TREE_CODE (base0) == INDIRECT_REF)
8356 base0 = TREE_OPERAND (base0, 0);
8357 else
8358 indirect_base0 = true;
8360 if (offset0 == NULL_TREE || integer_zerop (offset0))
8361 offset0 = TREE_OPERAND (arg0, 1);
8362 else
8363 offset0 = size_binop (PLUS_EXPR, offset0,
8364 TREE_OPERAND (arg0, 1));
8365 if (TREE_CODE (offset0) == INTEGER_CST)
8367 offset_int tem = wi::sext (wi::to_offset (offset0),
8368 TYPE_PRECISION (sizetype));
8369 tem <<= LOG2_BITS_PER_UNIT;
8370 tem += bitpos0;
8371 if (wi::fits_shwi_p (tem))
8373 bitpos0 = tem.to_shwi ();
8374 offset0 = NULL_TREE;
8379 base1 = arg1;
8380 if (TREE_CODE (arg1) == ADDR_EXPR)
8382 base1
8383 = get_inner_reference (TREE_OPERAND (arg1, 0),
8384 &bitsize, &bitpos1, &offset1, &mode,
8385 &unsignedp, &reversep, &volatilep);
8386 if (TREE_CODE (base1) == INDIRECT_REF)
8387 base1 = TREE_OPERAND (base1, 0);
8388 else
8389 indirect_base1 = true;
8391 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8393 base1 = TREE_OPERAND (arg1, 0);
8394 STRIP_SIGN_NOPS (base1);
8395 if (TREE_CODE (base1) == ADDR_EXPR)
8397 base1
8398 = get_inner_reference (TREE_OPERAND (base1, 0),
8399 &bitsize, &bitpos1, &offset1, &mode,
8400 &unsignedp, &reversep, &volatilep);
8401 if (TREE_CODE (base1) == INDIRECT_REF)
8402 base1 = TREE_OPERAND (base1, 0);
8403 else
8404 indirect_base1 = true;
8406 if (offset1 == NULL_TREE || integer_zerop (offset1))
8407 offset1 = TREE_OPERAND (arg1, 1);
8408 else
8409 offset1 = size_binop (PLUS_EXPR, offset1,
8410 TREE_OPERAND (arg1, 1));
8411 if (TREE_CODE (offset1) == INTEGER_CST)
8413 offset_int tem = wi::sext (wi::to_offset (offset1),
8414 TYPE_PRECISION (sizetype));
8415 tem <<= LOG2_BITS_PER_UNIT;
8416 tem += bitpos1;
8417 if (wi::fits_shwi_p (tem))
8419 bitpos1 = tem.to_shwi ();
8420 offset1 = NULL_TREE;
8425 /* If we have equivalent bases we might be able to simplify. */
8426 if (indirect_base0 == indirect_base1
8427 && operand_equal_p (base0, base1,
8428 indirect_base0 ? OEP_ADDRESS_OF : 0))
8430 /* We can fold this expression to a constant if the non-constant
8431 offset parts are equal. */
8432 if (offset0 == offset1
8433 || (offset0 && offset1
8434 && operand_equal_p (offset0, offset1, 0)))
8436 if (!equality_code
8437 && bitpos0 != bitpos1
8438 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8439 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8440 fold_overflow_warning (("assuming pointer wraparound does not "
8441 "occur when comparing P +- C1 with "
8442 "P +- C2"),
8443 WARN_STRICT_OVERFLOW_CONDITIONAL);
8445 switch (code)
8447 case EQ_EXPR:
8448 return constant_boolean_node (bitpos0 == bitpos1, type);
8449 case NE_EXPR:
8450 return constant_boolean_node (bitpos0 != bitpos1, type);
8451 case LT_EXPR:
8452 return constant_boolean_node (bitpos0 < bitpos1, type);
8453 case LE_EXPR:
8454 return constant_boolean_node (bitpos0 <= bitpos1, type);
8455 case GE_EXPR:
8456 return constant_boolean_node (bitpos0 >= bitpos1, type);
8457 case GT_EXPR:
8458 return constant_boolean_node (bitpos0 > bitpos1, type);
8459 default:;
8462 /* We can simplify the comparison to a comparison of the variable
8463 offset parts if the constant offset parts are equal.
8464 Be careful to use signed sizetype here because otherwise we
8465 mess with array offsets in the wrong way. This is possible
8466 because pointer arithmetic is restricted to retain within an
8467 object and overflow on pointer differences is undefined as of
8468 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8469 else if (bitpos0 == bitpos1)
8471 /* By converting to signed sizetype we cover middle-end pointer
8472 arithmetic which operates on unsigned pointer types of size
8473 type size and ARRAY_REF offsets which are properly sign or
8474 zero extended from their type in case it is narrower than
8475 sizetype. */
8476 if (offset0 == NULL_TREE)
8477 offset0 = build_int_cst (ssizetype, 0);
8478 else
8479 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8480 if (offset1 == NULL_TREE)
8481 offset1 = build_int_cst (ssizetype, 0);
8482 else
8483 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8485 if (!equality_code
8486 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8487 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8488 fold_overflow_warning (("assuming pointer wraparound does not "
8489 "occur when comparing P +- C1 with "
8490 "P +- C2"),
8491 WARN_STRICT_OVERFLOW_COMPARISON);
8493 return fold_build2_loc (loc, code, type, offset0, offset1);
8496 /* For equal offsets we can simplify to a comparison of the
8497 base addresses. */
8498 else if (bitpos0 == bitpos1
8499 && (indirect_base0
8500 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
8501 && (indirect_base1
8502 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
8503 && ((offset0 == offset1)
8504 || (offset0 && offset1
8505 && operand_equal_p (offset0, offset1, 0))))
8507 if (indirect_base0)
8508 base0 = build_fold_addr_expr_loc (loc, base0);
8509 if (indirect_base1)
8510 base1 = build_fold_addr_expr_loc (loc, base1);
8511 return fold_build2_loc (loc, code, type, base0, base1);
8513 /* Comparison between an ordinary (non-weak) symbol and a null
8514 pointer can be eliminated since such symbols must have a non
8515 null address. In C, relational expressions between pointers
8516 to objects and null pointers are undefined. The results
8517 below follow the C++ rules with the additional property that
8518 every object pointer compares greater than a null pointer.
8520 else if (((DECL_P (base0)
8521 && maybe_nonzero_address (base0) > 0
8522 /* Avoid folding references to struct members at offset 0 to
8523 prevent tests like '&ptr->firstmember == 0' from getting
8524 eliminated. When ptr is null, although the -> expression
8525 is strictly speaking invalid, GCC retains it as a matter
8526 of QoI. See PR c/44555. */
8527 && (offset0 == NULL_TREE && bitpos0 != 0))
8528 || CONSTANT_CLASS_P (base0))
8529 && indirect_base0
8530 /* The caller guarantees that when one of the arguments is
8531 constant (i.e., null in this case) it is second. */
8532 && integer_zerop (arg1))
8534 switch (code)
8536 case EQ_EXPR:
8537 case LE_EXPR:
8538 case LT_EXPR:
8539 return constant_boolean_node (false, type);
8540 case GE_EXPR:
8541 case GT_EXPR:
8542 case NE_EXPR:
8543 return constant_boolean_node (true, type);
8544 default:
8545 gcc_unreachable ();
8550 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8551 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8552 the resulting offset is smaller in absolute value than the
8553 original one and has the same sign. */
8554 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8555 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8556 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8557 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8558 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8559 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8560 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8561 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8563 tree const1 = TREE_OPERAND (arg0, 1);
8564 tree const2 = TREE_OPERAND (arg1, 1);
8565 tree variable1 = TREE_OPERAND (arg0, 0);
8566 tree variable2 = TREE_OPERAND (arg1, 0);
8567 tree cst;
8568 const char * const warnmsg = G_("assuming signed overflow does not "
8569 "occur when combining constants around "
8570 "a comparison");
8572 /* Put the constant on the side where it doesn't overflow and is
8573 of lower absolute value and of same sign than before. */
8574 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8575 ? MINUS_EXPR : PLUS_EXPR,
8576 const2, const1);
8577 if (!TREE_OVERFLOW (cst)
8578 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
8579 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
8581 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8582 return fold_build2_loc (loc, code, type,
8583 variable1,
8584 fold_build2_loc (loc, TREE_CODE (arg1),
8585 TREE_TYPE (arg1),
8586 variable2, cst));
8589 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8590 ? MINUS_EXPR : PLUS_EXPR,
8591 const1, const2);
8592 if (!TREE_OVERFLOW (cst)
8593 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
8594 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
8596 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8597 return fold_build2_loc (loc, code, type,
8598 fold_build2_loc (loc, TREE_CODE (arg0),
8599 TREE_TYPE (arg0),
8600 variable1, cst),
8601 variable2);
8605 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
8606 if (tem)
8607 return tem;
8609 /* If we are comparing an expression that just has comparisons
8610 of two integer values, arithmetic expressions of those comparisons,
8611 and constants, we can simplify it. There are only three cases
8612 to check: the two values can either be equal, the first can be
8613 greater, or the second can be greater. Fold the expression for
8614 those three values. Since each value must be 0 or 1, we have
8615 eight possibilities, each of which corresponds to the constant 0
8616 or 1 or one of the six possible comparisons.
8618 This handles common cases like (a > b) == 0 but also handles
8619 expressions like ((x > y) - (y > x)) > 0, which supposedly
8620 occur in macroized code. */
8622 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8624 tree cval1 = 0, cval2 = 0;
8625 int save_p = 0;
8627 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
8628 /* Don't handle degenerate cases here; they should already
8629 have been handled anyway. */
8630 && cval1 != 0 && cval2 != 0
8631 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8632 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8633 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8634 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8635 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8636 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8637 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8639 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8640 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8642 /* We can't just pass T to eval_subst in case cval1 or cval2
8643 was the same as ARG1. */
8645 tree high_result
8646 = fold_build2_loc (loc, code, type,
8647 eval_subst (loc, arg0, cval1, maxval,
8648 cval2, minval),
8649 arg1);
8650 tree equal_result
8651 = fold_build2_loc (loc, code, type,
8652 eval_subst (loc, arg0, cval1, maxval,
8653 cval2, maxval),
8654 arg1);
8655 tree low_result
8656 = fold_build2_loc (loc, code, type,
8657 eval_subst (loc, arg0, cval1, minval,
8658 cval2, maxval),
8659 arg1);
8661 /* All three of these results should be 0 or 1. Confirm they are.
8662 Then use those values to select the proper code to use. */
8664 if (TREE_CODE (high_result) == INTEGER_CST
8665 && TREE_CODE (equal_result) == INTEGER_CST
8666 && TREE_CODE (low_result) == INTEGER_CST)
8668 /* Make a 3-bit mask with the high-order bit being the
8669 value for `>', the next for '=', and the low for '<'. */
8670 switch ((integer_onep (high_result) * 4)
8671 + (integer_onep (equal_result) * 2)
8672 + integer_onep (low_result))
8674 case 0:
8675 /* Always false. */
8676 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
8677 case 1:
8678 code = LT_EXPR;
8679 break;
8680 case 2:
8681 code = EQ_EXPR;
8682 break;
8683 case 3:
8684 code = LE_EXPR;
8685 break;
8686 case 4:
8687 code = GT_EXPR;
8688 break;
8689 case 5:
8690 code = NE_EXPR;
8691 break;
8692 case 6:
8693 code = GE_EXPR;
8694 break;
8695 case 7:
8696 /* Always true. */
8697 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
8700 if (save_p)
8702 tem = save_expr (build2 (code, type, cval1, cval2));
8703 protected_set_expr_location (tem, loc);
8704 return tem;
8706 return fold_build2_loc (loc, code, type, cval1, cval2);
8711 return NULL_TREE;
8715 /* Subroutine of fold_binary. Optimize complex multiplications of the
8716 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8717 argument EXPR represents the expression "z" of type TYPE. */
8719 static tree
8720 fold_mult_zconjz (location_t loc, tree type, tree expr)
8722 tree itype = TREE_TYPE (type);
8723 tree rpart, ipart, tem;
8725 if (TREE_CODE (expr) == COMPLEX_EXPR)
8727 rpart = TREE_OPERAND (expr, 0);
8728 ipart = TREE_OPERAND (expr, 1);
8730 else if (TREE_CODE (expr) == COMPLEX_CST)
8732 rpart = TREE_REALPART (expr);
8733 ipart = TREE_IMAGPART (expr);
8735 else
8737 expr = save_expr (expr);
8738 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
8739 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
8742 rpart = save_expr (rpart);
8743 ipart = save_expr (ipart);
8744 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
8745 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
8746 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
8747 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
8748 build_zero_cst (itype));
8752 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8753 CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return
8754 true if successful. */
8756 static bool
8757 vec_cst_ctor_to_array (tree arg, unsigned int nelts, tree *elts)
8759 unsigned int i;
8761 if (TREE_CODE (arg) == VECTOR_CST)
8763 for (i = 0; i < VECTOR_CST_NELTS (arg); ++i)
8764 elts[i] = VECTOR_CST_ELT (arg, i);
8766 else if (TREE_CODE (arg) == CONSTRUCTOR)
8768 constructor_elt *elt;
8770 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
8771 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
8772 return false;
8773 else
8774 elts[i] = elt->value;
8776 else
8777 return false;
8778 for (; i < nelts; i++)
8779 elts[i]
8780 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
8781 return true;
8784 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8785 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8786 NULL_TREE otherwise. */
8788 static tree
8789 fold_vec_perm (tree type, tree arg0, tree arg1, vec_perm_indices sel)
8791 unsigned int i;
8792 bool need_ctor = false;
8794 unsigned int nelts = sel.length ();
8795 gcc_assert (TYPE_VECTOR_SUBPARTS (type) == nelts
8796 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts
8797 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts);
8798 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
8799 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
8800 return NULL_TREE;
8802 tree *in_elts = XALLOCAVEC (tree, nelts * 2);
8803 if (!vec_cst_ctor_to_array (arg0, nelts, in_elts)
8804 || !vec_cst_ctor_to_array (arg1, nelts, in_elts + nelts))
8805 return NULL_TREE;
8807 auto_vec<tree, 32> out_elts (nelts);
8808 for (i = 0; i < nelts; i++)
8810 if (!CONSTANT_CLASS_P (in_elts[sel[i]]))
8811 need_ctor = true;
8812 out_elts.quick_push (unshare_expr (in_elts[sel[i]]));
8815 if (need_ctor)
8817 vec<constructor_elt, va_gc> *v;
8818 vec_alloc (v, nelts);
8819 for (i = 0; i < nelts; i++)
8820 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, out_elts[i]);
8821 return build_constructor (type, v);
8823 else
8824 return build_vector (type, out_elts);
8827 /* Try to fold a pointer difference of type TYPE two address expressions of
8828 array references AREF0 and AREF1 using location LOC. Return a
8829 simplified expression for the difference or NULL_TREE. */
8831 static tree
8832 fold_addr_of_array_ref_difference (location_t loc, tree type,
8833 tree aref0, tree aref1)
8835 tree base0 = TREE_OPERAND (aref0, 0);
8836 tree base1 = TREE_OPERAND (aref1, 0);
8837 tree base_offset = build_int_cst (type, 0);
8839 /* If the bases are array references as well, recurse. If the bases
8840 are pointer indirections compute the difference of the pointers.
8841 If the bases are equal, we are set. */
8842 if ((TREE_CODE (base0) == ARRAY_REF
8843 && TREE_CODE (base1) == ARRAY_REF
8844 && (base_offset
8845 = fold_addr_of_array_ref_difference (loc, type, base0, base1)))
8846 || (INDIRECT_REF_P (base0)
8847 && INDIRECT_REF_P (base1)
8848 && (base_offset
8849 = fold_binary_loc (loc, MINUS_EXPR, type,
8850 fold_convert (type, TREE_OPERAND (base0, 0)),
8851 fold_convert (type,
8852 TREE_OPERAND (base1, 0)))))
8853 || operand_equal_p (base0, base1, OEP_ADDRESS_OF))
8855 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
8856 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
8857 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
8858 tree diff = fold_build2_loc (loc, MINUS_EXPR, type, op0, op1);
8859 return fold_build2_loc (loc, PLUS_EXPR, type,
8860 base_offset,
8861 fold_build2_loc (loc, MULT_EXPR, type,
8862 diff, esz));
8864 return NULL_TREE;
8867 /* If the real or vector real constant CST of type TYPE has an exact
8868 inverse, return it, else return NULL. */
8870 tree
8871 exact_inverse (tree type, tree cst)
8873 REAL_VALUE_TYPE r;
8874 tree unit_type;
8875 machine_mode mode;
8876 unsigned vec_nelts, i;
8878 switch (TREE_CODE (cst))
8880 case REAL_CST:
8881 r = TREE_REAL_CST (cst);
8883 if (exact_real_inverse (TYPE_MODE (type), &r))
8884 return build_real (type, r);
8886 return NULL_TREE;
8888 case VECTOR_CST:
8890 vec_nelts = VECTOR_CST_NELTS (cst);
8891 unit_type = TREE_TYPE (type);
8892 mode = TYPE_MODE (unit_type);
8894 auto_vec<tree, 32> elts (vec_nelts);
8895 for (i = 0; i < vec_nelts; i++)
8897 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
8898 if (!exact_real_inverse (mode, &r))
8899 return NULL_TREE;
8900 elts.quick_push (build_real (unit_type, r));
8903 return build_vector (type, elts);
8906 default:
8907 return NULL_TREE;
8911 /* Mask out the tz least significant bits of X of type TYPE where
8912 tz is the number of trailing zeroes in Y. */
8913 static wide_int
8914 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
8916 int tz = wi::ctz (y);
8917 if (tz > 0)
8918 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
8919 return x;
8922 /* Return true when T is an address and is known to be nonzero.
8923 For floating point we further ensure that T is not denormal.
8924 Similar logic is present in nonzero_address in rtlanal.h.
8926 If the return value is based on the assumption that signed overflow
8927 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
8928 change *STRICT_OVERFLOW_P. */
8930 static bool
8931 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
8933 tree type = TREE_TYPE (t);
8934 enum tree_code code;
8936 /* Doing something useful for floating point would need more work. */
8937 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
8938 return false;
8940 code = TREE_CODE (t);
8941 switch (TREE_CODE_CLASS (code))
8943 case tcc_unary:
8944 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8945 strict_overflow_p);
8946 case tcc_binary:
8947 case tcc_comparison:
8948 return tree_binary_nonzero_warnv_p (code, type,
8949 TREE_OPERAND (t, 0),
8950 TREE_OPERAND (t, 1),
8951 strict_overflow_p);
8952 case tcc_constant:
8953 case tcc_declaration:
8954 case tcc_reference:
8955 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
8957 default:
8958 break;
8961 switch (code)
8963 case TRUTH_NOT_EXPR:
8964 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8965 strict_overflow_p);
8967 case TRUTH_AND_EXPR:
8968 case TRUTH_OR_EXPR:
8969 case TRUTH_XOR_EXPR:
8970 return tree_binary_nonzero_warnv_p (code, type,
8971 TREE_OPERAND (t, 0),
8972 TREE_OPERAND (t, 1),
8973 strict_overflow_p);
8975 case COND_EXPR:
8976 case CONSTRUCTOR:
8977 case OBJ_TYPE_REF:
8978 case ASSERT_EXPR:
8979 case ADDR_EXPR:
8980 case WITH_SIZE_EXPR:
8981 case SSA_NAME:
8982 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
8984 case COMPOUND_EXPR:
8985 case MODIFY_EXPR:
8986 case BIND_EXPR:
8987 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
8988 strict_overflow_p);
8990 case SAVE_EXPR:
8991 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
8992 strict_overflow_p);
8994 case CALL_EXPR:
8996 tree fndecl = get_callee_fndecl (t);
8997 if (!fndecl) return false;
8998 if (flag_delete_null_pointer_checks && !flag_check_new
8999 && DECL_IS_OPERATOR_NEW (fndecl)
9000 && !TREE_NOTHROW (fndecl))
9001 return true;
9002 if (flag_delete_null_pointer_checks
9003 && lookup_attribute ("returns_nonnull",
9004 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
9005 return true;
9006 return alloca_call_p (t);
9009 default:
9010 break;
9012 return false;
9015 /* Return true when T is an address and is known to be nonzero.
9016 Handle warnings about undefined signed overflow. */
9018 bool
9019 tree_expr_nonzero_p (tree t)
9021 bool ret, strict_overflow_p;
9023 strict_overflow_p = false;
9024 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
9025 if (strict_overflow_p)
9026 fold_overflow_warning (("assuming signed overflow does not occur when "
9027 "determining that expression is always "
9028 "non-zero"),
9029 WARN_STRICT_OVERFLOW_MISC);
9030 return ret;
9033 /* Return true if T is known not to be equal to an integer W. */
9035 bool
9036 expr_not_equal_to (tree t, const wide_int &w)
9038 wide_int min, max, nz;
9039 value_range_type rtype;
9040 switch (TREE_CODE (t))
9042 case INTEGER_CST:
9043 return wi::ne_p (t, w);
9045 case SSA_NAME:
9046 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
9047 return false;
9048 rtype = get_range_info (t, &min, &max);
9049 if (rtype == VR_RANGE)
9051 if (wi::lt_p (max, w, TYPE_SIGN (TREE_TYPE (t))))
9052 return true;
9053 if (wi::lt_p (w, min, TYPE_SIGN (TREE_TYPE (t))))
9054 return true;
9056 else if (rtype == VR_ANTI_RANGE
9057 && wi::le_p (min, w, TYPE_SIGN (TREE_TYPE (t)))
9058 && wi::le_p (w, max, TYPE_SIGN (TREE_TYPE (t))))
9059 return true;
9060 /* If T has some known zero bits and W has any of those bits set,
9061 then T is known not to be equal to W. */
9062 if (wi::ne_p (wi::zext (wi::bit_and_not (w, get_nonzero_bits (t)),
9063 TYPE_PRECISION (TREE_TYPE (t))), 0))
9064 return true;
9065 return false;
9067 default:
9068 return false;
9072 /* Fold a binary expression of code CODE and type TYPE with operands
9073 OP0 and OP1. LOC is the location of the resulting expression.
9074 Return the folded expression if folding is successful. Otherwise,
9075 return NULL_TREE. */
9077 tree
9078 fold_binary_loc (location_t loc,
9079 enum tree_code code, tree type, tree op0, tree op1)
9081 enum tree_code_class kind = TREE_CODE_CLASS (code);
9082 tree arg0, arg1, tem;
9083 tree t1 = NULL_TREE;
9084 bool strict_overflow_p;
9085 unsigned int prec;
9087 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9088 && TREE_CODE_LENGTH (code) == 2
9089 && op0 != NULL_TREE
9090 && op1 != NULL_TREE);
9092 arg0 = op0;
9093 arg1 = op1;
9095 /* Strip any conversions that don't change the mode. This is
9096 safe for every expression, except for a comparison expression
9097 because its signedness is derived from its operands. So, in
9098 the latter case, only strip conversions that don't change the
9099 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9100 preserved.
9102 Note that this is done as an internal manipulation within the
9103 constant folder, in order to find the simplest representation
9104 of the arguments so that their form can be studied. In any
9105 cases, the appropriate type conversions should be put back in
9106 the tree that will get out of the constant folder. */
9108 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9110 STRIP_SIGN_NOPS (arg0);
9111 STRIP_SIGN_NOPS (arg1);
9113 else
9115 STRIP_NOPS (arg0);
9116 STRIP_NOPS (arg1);
9119 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9120 constant but we can't do arithmetic on them. */
9121 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
9123 tem = const_binop (code, type, arg0, arg1);
9124 if (tem != NULL_TREE)
9126 if (TREE_TYPE (tem) != type)
9127 tem = fold_convert_loc (loc, type, tem);
9128 return tem;
9132 /* If this is a commutative operation, and ARG0 is a constant, move it
9133 to ARG1 to reduce the number of tests below. */
9134 if (commutative_tree_code (code)
9135 && tree_swap_operands_p (arg0, arg1))
9136 return fold_build2_loc (loc, code, type, op1, op0);
9138 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9139 to ARG1 to reduce the number of tests below. */
9140 if (kind == tcc_comparison
9141 && tree_swap_operands_p (arg0, arg1))
9142 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9144 tem = generic_simplify (loc, code, type, op0, op1);
9145 if (tem)
9146 return tem;
9148 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9150 First check for cases where an arithmetic operation is applied to a
9151 compound, conditional, or comparison operation. Push the arithmetic
9152 operation inside the compound or conditional to see if any folding
9153 can then be done. Convert comparison to conditional for this purpose.
9154 The also optimizes non-constant cases that used to be done in
9155 expand_expr.
9157 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9158 one of the operands is a comparison and the other is a comparison, a
9159 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9160 code below would make the expression more complex. Change it to a
9161 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9162 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9164 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9165 || code == EQ_EXPR || code == NE_EXPR)
9166 && TREE_CODE (type) != VECTOR_TYPE
9167 && ((truth_value_p (TREE_CODE (arg0))
9168 && (truth_value_p (TREE_CODE (arg1))
9169 || (TREE_CODE (arg1) == BIT_AND_EXPR
9170 && integer_onep (TREE_OPERAND (arg1, 1)))))
9171 || (truth_value_p (TREE_CODE (arg1))
9172 && (truth_value_p (TREE_CODE (arg0))
9173 || (TREE_CODE (arg0) == BIT_AND_EXPR
9174 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9176 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9177 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9178 : TRUTH_XOR_EXPR,
9179 boolean_type_node,
9180 fold_convert_loc (loc, boolean_type_node, arg0),
9181 fold_convert_loc (loc, boolean_type_node, arg1));
9183 if (code == EQ_EXPR)
9184 tem = invert_truthvalue_loc (loc, tem);
9186 return fold_convert_loc (loc, type, tem);
9189 if (TREE_CODE_CLASS (code) == tcc_binary
9190 || TREE_CODE_CLASS (code) == tcc_comparison)
9192 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9194 tem = fold_build2_loc (loc, code, type,
9195 fold_convert_loc (loc, TREE_TYPE (op0),
9196 TREE_OPERAND (arg0, 1)), op1);
9197 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9198 tem);
9200 if (TREE_CODE (arg1) == COMPOUND_EXPR)
9202 tem = fold_build2_loc (loc, code, type, op0,
9203 fold_convert_loc (loc, TREE_TYPE (op1),
9204 TREE_OPERAND (arg1, 1)));
9205 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9206 tem);
9209 if (TREE_CODE (arg0) == COND_EXPR
9210 || TREE_CODE (arg0) == VEC_COND_EXPR
9211 || COMPARISON_CLASS_P (arg0))
9213 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9214 arg0, arg1,
9215 /*cond_first_p=*/1);
9216 if (tem != NULL_TREE)
9217 return tem;
9220 if (TREE_CODE (arg1) == COND_EXPR
9221 || TREE_CODE (arg1) == VEC_COND_EXPR
9222 || COMPARISON_CLASS_P (arg1))
9224 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9225 arg1, arg0,
9226 /*cond_first_p=*/0);
9227 if (tem != NULL_TREE)
9228 return tem;
9232 switch (code)
9234 case MEM_REF:
9235 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9236 if (TREE_CODE (arg0) == ADDR_EXPR
9237 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9239 tree iref = TREE_OPERAND (arg0, 0);
9240 return fold_build2 (MEM_REF, type,
9241 TREE_OPERAND (iref, 0),
9242 int_const_binop (PLUS_EXPR, arg1,
9243 TREE_OPERAND (iref, 1)));
9246 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9247 if (TREE_CODE (arg0) == ADDR_EXPR
9248 && handled_component_p (TREE_OPERAND (arg0, 0)))
9250 tree base;
9251 HOST_WIDE_INT coffset;
9252 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9253 &coffset);
9254 if (!base)
9255 return NULL_TREE;
9256 return fold_build2 (MEM_REF, type,
9257 build_fold_addr_expr (base),
9258 int_const_binop (PLUS_EXPR, arg1,
9259 size_int (coffset)));
9262 return NULL_TREE;
9264 case POINTER_PLUS_EXPR:
9265 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9266 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9267 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9268 return fold_convert_loc (loc, type,
9269 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9270 fold_convert_loc (loc, sizetype,
9271 arg1),
9272 fold_convert_loc (loc, sizetype,
9273 arg0)));
9275 return NULL_TREE;
9277 case PLUS_EXPR:
9278 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
9280 /* X + (X / CST) * -CST is X % CST. */
9281 if (TREE_CODE (arg1) == MULT_EXPR
9282 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9283 && operand_equal_p (arg0,
9284 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9286 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9287 tree cst1 = TREE_OPERAND (arg1, 1);
9288 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9289 cst1, cst0);
9290 if (sum && integer_zerop (sum))
9291 return fold_convert_loc (loc, type,
9292 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9293 TREE_TYPE (arg0), arg0,
9294 cst0));
9298 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9299 one. Make sure the type is not saturating and has the signedness of
9300 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9301 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9302 if ((TREE_CODE (arg0) == MULT_EXPR
9303 || TREE_CODE (arg1) == MULT_EXPR)
9304 && !TYPE_SATURATING (type)
9305 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9306 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9307 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9309 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9310 if (tem)
9311 return tem;
9314 if (! FLOAT_TYPE_P (type))
9316 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9317 (plus (plus (mult) (mult)) (foo)) so that we can
9318 take advantage of the factoring cases below. */
9319 if (ANY_INTEGRAL_TYPE_P (type)
9320 && TYPE_OVERFLOW_WRAPS (type)
9321 && (((TREE_CODE (arg0) == PLUS_EXPR
9322 || TREE_CODE (arg0) == MINUS_EXPR)
9323 && TREE_CODE (arg1) == MULT_EXPR)
9324 || ((TREE_CODE (arg1) == PLUS_EXPR
9325 || TREE_CODE (arg1) == MINUS_EXPR)
9326 && TREE_CODE (arg0) == MULT_EXPR)))
9328 tree parg0, parg1, parg, marg;
9329 enum tree_code pcode;
9331 if (TREE_CODE (arg1) == MULT_EXPR)
9332 parg = arg0, marg = arg1;
9333 else
9334 parg = arg1, marg = arg0;
9335 pcode = TREE_CODE (parg);
9336 parg0 = TREE_OPERAND (parg, 0);
9337 parg1 = TREE_OPERAND (parg, 1);
9338 STRIP_NOPS (parg0);
9339 STRIP_NOPS (parg1);
9341 if (TREE_CODE (parg0) == MULT_EXPR
9342 && TREE_CODE (parg1) != MULT_EXPR)
9343 return fold_build2_loc (loc, pcode, type,
9344 fold_build2_loc (loc, PLUS_EXPR, type,
9345 fold_convert_loc (loc, type,
9346 parg0),
9347 fold_convert_loc (loc, type,
9348 marg)),
9349 fold_convert_loc (loc, type, parg1));
9350 if (TREE_CODE (parg0) != MULT_EXPR
9351 && TREE_CODE (parg1) == MULT_EXPR)
9352 return
9353 fold_build2_loc (loc, PLUS_EXPR, type,
9354 fold_convert_loc (loc, type, parg0),
9355 fold_build2_loc (loc, pcode, type,
9356 fold_convert_loc (loc, type, marg),
9357 fold_convert_loc (loc, type,
9358 parg1)));
9361 else
9363 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9364 to __complex__ ( x, y ). This is not the same for SNaNs or
9365 if signed zeros are involved. */
9366 if (!HONOR_SNANS (element_mode (arg0))
9367 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9368 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9370 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9371 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9372 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9373 bool arg0rz = false, arg0iz = false;
9374 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9375 || (arg0i && (arg0iz = real_zerop (arg0i))))
9377 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9378 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9379 if (arg0rz && arg1i && real_zerop (arg1i))
9381 tree rp = arg1r ? arg1r
9382 : build1 (REALPART_EXPR, rtype, arg1);
9383 tree ip = arg0i ? arg0i
9384 : build1 (IMAGPART_EXPR, rtype, arg0);
9385 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9387 else if (arg0iz && arg1r && real_zerop (arg1r))
9389 tree rp = arg0r ? arg0r
9390 : build1 (REALPART_EXPR, rtype, arg0);
9391 tree ip = arg1i ? arg1i
9392 : build1 (IMAGPART_EXPR, rtype, arg1);
9393 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9398 if (flag_unsafe_math_optimizations
9399 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9400 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9401 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9402 return tem;
9404 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9405 We associate floats only if the user has specified
9406 -fassociative-math. */
9407 if (flag_associative_math
9408 && TREE_CODE (arg1) == PLUS_EXPR
9409 && TREE_CODE (arg0) != MULT_EXPR)
9411 tree tree10 = TREE_OPERAND (arg1, 0);
9412 tree tree11 = TREE_OPERAND (arg1, 1);
9413 if (TREE_CODE (tree11) == MULT_EXPR
9414 && TREE_CODE (tree10) == MULT_EXPR)
9416 tree tree0;
9417 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
9418 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
9421 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9422 We associate floats only if the user has specified
9423 -fassociative-math. */
9424 if (flag_associative_math
9425 && TREE_CODE (arg0) == PLUS_EXPR
9426 && TREE_CODE (arg1) != MULT_EXPR)
9428 tree tree00 = TREE_OPERAND (arg0, 0);
9429 tree tree01 = TREE_OPERAND (arg0, 1);
9430 if (TREE_CODE (tree01) == MULT_EXPR
9431 && TREE_CODE (tree00) == MULT_EXPR)
9433 tree tree0;
9434 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
9435 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
9440 bit_rotate:
9441 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9442 is a rotate of A by C1 bits. */
9443 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9444 is a rotate of A by B bits. */
9446 enum tree_code code0, code1;
9447 tree rtype;
9448 code0 = TREE_CODE (arg0);
9449 code1 = TREE_CODE (arg1);
9450 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9451 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9452 && operand_equal_p (TREE_OPERAND (arg0, 0),
9453 TREE_OPERAND (arg1, 0), 0)
9454 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
9455 TYPE_UNSIGNED (rtype))
9456 /* Only create rotates in complete modes. Other cases are not
9457 expanded properly. */
9458 && (element_precision (rtype)
9459 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype))))
9461 tree tree01, tree11;
9462 enum tree_code code01, code11;
9464 tree01 = TREE_OPERAND (arg0, 1);
9465 tree11 = TREE_OPERAND (arg1, 1);
9466 STRIP_NOPS (tree01);
9467 STRIP_NOPS (tree11);
9468 code01 = TREE_CODE (tree01);
9469 code11 = TREE_CODE (tree11);
9470 if (code01 == INTEGER_CST
9471 && code11 == INTEGER_CST
9472 && (wi::to_widest (tree01) + wi::to_widest (tree11)
9473 == element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
9475 tem = build2_loc (loc, LROTATE_EXPR,
9476 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9477 TREE_OPERAND (arg0, 0),
9478 code0 == LSHIFT_EXPR
9479 ? TREE_OPERAND (arg0, 1)
9480 : TREE_OPERAND (arg1, 1));
9481 return fold_convert_loc (loc, type, tem);
9483 else if (code11 == MINUS_EXPR)
9485 tree tree110, tree111;
9486 tree110 = TREE_OPERAND (tree11, 0);
9487 tree111 = TREE_OPERAND (tree11, 1);
9488 STRIP_NOPS (tree110);
9489 STRIP_NOPS (tree111);
9490 if (TREE_CODE (tree110) == INTEGER_CST
9491 && 0 == compare_tree_int (tree110,
9492 element_precision
9493 (TREE_TYPE (TREE_OPERAND
9494 (arg0, 0))))
9495 && operand_equal_p (tree01, tree111, 0))
9496 return
9497 fold_convert_loc (loc, type,
9498 build2 ((code0 == LSHIFT_EXPR
9499 ? LROTATE_EXPR
9500 : RROTATE_EXPR),
9501 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9502 TREE_OPERAND (arg0, 0),
9503 TREE_OPERAND (arg0, 1)));
9505 else if (code01 == MINUS_EXPR)
9507 tree tree010, tree011;
9508 tree010 = TREE_OPERAND (tree01, 0);
9509 tree011 = TREE_OPERAND (tree01, 1);
9510 STRIP_NOPS (tree010);
9511 STRIP_NOPS (tree011);
9512 if (TREE_CODE (tree010) == INTEGER_CST
9513 && 0 == compare_tree_int (tree010,
9514 element_precision
9515 (TREE_TYPE (TREE_OPERAND
9516 (arg0, 0))))
9517 && operand_equal_p (tree11, tree011, 0))
9518 return fold_convert_loc
9519 (loc, type,
9520 build2 ((code0 != LSHIFT_EXPR
9521 ? LROTATE_EXPR
9522 : RROTATE_EXPR),
9523 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9524 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1)));
9529 associate:
9530 /* In most languages, can't associate operations on floats through
9531 parentheses. Rather than remember where the parentheses were, we
9532 don't associate floats at all, unless the user has specified
9533 -fassociative-math.
9534 And, we need to make sure type is not saturating. */
9536 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9537 && !TYPE_SATURATING (type))
9539 tree var0, minus_var0, con0, minus_con0, lit0, minus_lit0;
9540 tree var1, minus_var1, con1, minus_con1, lit1, minus_lit1;
9541 tree atype = type;
9542 bool ok = true;
9544 /* Split both trees into variables, constants, and literals. Then
9545 associate each group together, the constants with literals,
9546 then the result with variables. This increases the chances of
9547 literals being recombined later and of generating relocatable
9548 expressions for the sum of a constant and literal. */
9549 var0 = split_tree (arg0, type, code,
9550 &minus_var0, &con0, &minus_con0,
9551 &lit0, &minus_lit0, 0);
9552 var1 = split_tree (arg1, type, code,
9553 &minus_var1, &con1, &minus_con1,
9554 &lit1, &minus_lit1, code == MINUS_EXPR);
9556 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9557 if (code == MINUS_EXPR)
9558 code = PLUS_EXPR;
9560 /* With undefined overflow prefer doing association in a type
9561 which wraps on overflow, if that is one of the operand types. */
9562 if (POINTER_TYPE_P (type)
9563 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
9565 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9566 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
9567 atype = TREE_TYPE (arg0);
9568 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9569 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
9570 atype = TREE_TYPE (arg1);
9571 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
9574 /* With undefined overflow we can only associate constants with one
9575 variable, and constants whose association doesn't overflow. */
9576 if (POINTER_TYPE_P (atype)
9577 || (INTEGRAL_TYPE_P (atype) && !TYPE_OVERFLOW_WRAPS (atype)))
9579 if ((var0 && var1) || (minus_var0 && minus_var1))
9581 /* ??? If split_tree would handle NEGATE_EXPR we could
9582 simply reject these cases and the allowed cases would
9583 be the var0/minus_var1 ones. */
9584 tree tmp0 = var0 ? var0 : minus_var0;
9585 tree tmp1 = var1 ? var1 : minus_var1;
9586 bool one_neg = false;
9588 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9590 tmp0 = TREE_OPERAND (tmp0, 0);
9591 one_neg = !one_neg;
9593 if (CONVERT_EXPR_P (tmp0)
9594 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9595 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9596 <= TYPE_PRECISION (atype)))
9597 tmp0 = TREE_OPERAND (tmp0, 0);
9598 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9600 tmp1 = TREE_OPERAND (tmp1, 0);
9601 one_neg = !one_neg;
9603 if (CONVERT_EXPR_P (tmp1)
9604 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9605 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9606 <= TYPE_PRECISION (atype)))
9607 tmp1 = TREE_OPERAND (tmp1, 0);
9608 /* The only case we can still associate with two variables
9609 is if they cancel out. */
9610 if (!one_neg
9611 || !operand_equal_p (tmp0, tmp1, 0))
9612 ok = false;
9614 else if ((var0 && minus_var1
9615 && ! operand_equal_p (var0, minus_var1, 0))
9616 || (minus_var0 && var1
9617 && ! operand_equal_p (minus_var0, var1, 0)))
9618 ok = false;
9621 /* Only do something if we found more than two objects. Otherwise,
9622 nothing has changed and we risk infinite recursion. */
9623 if (ok
9624 && (2 < ((var0 != 0) + (var1 != 0)
9625 + (minus_var0 != 0) + (minus_var1 != 0)
9626 + (con0 != 0) + (con1 != 0)
9627 + (minus_con0 != 0) + (minus_con1 != 0)
9628 + (lit0 != 0) + (lit1 != 0)
9629 + (minus_lit0 != 0) + (minus_lit1 != 0))))
9631 var0 = associate_trees (loc, var0, var1, code, atype);
9632 minus_var0 = associate_trees (loc, minus_var0, minus_var1,
9633 code, atype);
9634 con0 = associate_trees (loc, con0, con1, code, atype);
9635 minus_con0 = associate_trees (loc, minus_con0, minus_con1,
9636 code, atype);
9637 lit0 = associate_trees (loc, lit0, lit1, code, atype);
9638 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
9639 code, atype);
9641 if (minus_var0 && var0)
9643 var0 = associate_trees (loc, var0, minus_var0,
9644 MINUS_EXPR, atype);
9645 minus_var0 = 0;
9647 if (minus_con0 && con0)
9649 con0 = associate_trees (loc, con0, minus_con0,
9650 MINUS_EXPR, atype);
9651 minus_con0 = 0;
9654 /* Preserve the MINUS_EXPR if the negative part of the literal is
9655 greater than the positive part. Otherwise, the multiplicative
9656 folding code (i.e extract_muldiv) may be fooled in case
9657 unsigned constants are subtracted, like in the following
9658 example: ((X*2 + 4) - 8U)/2. */
9659 if (minus_lit0 && lit0)
9661 if (TREE_CODE (lit0) == INTEGER_CST
9662 && TREE_CODE (minus_lit0) == INTEGER_CST
9663 && tree_int_cst_lt (lit0, minus_lit0)
9664 /* But avoid ending up with only negated parts. */
9665 && (var0 || con0))
9667 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
9668 MINUS_EXPR, atype);
9669 lit0 = 0;
9671 else
9673 lit0 = associate_trees (loc, lit0, minus_lit0,
9674 MINUS_EXPR, atype);
9675 minus_lit0 = 0;
9679 /* Don't introduce overflows through reassociation. */
9680 if ((lit0 && TREE_OVERFLOW_P (lit0))
9681 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0)))
9682 return NULL_TREE;
9684 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */
9685 con0 = associate_trees (loc, con0, lit0, code, atype);
9686 lit0 = 0;
9687 minus_con0 = associate_trees (loc, minus_con0, minus_lit0,
9688 code, atype);
9689 minus_lit0 = 0;
9691 /* Eliminate minus_con0. */
9692 if (minus_con0)
9694 if (con0)
9695 con0 = associate_trees (loc, con0, minus_con0,
9696 MINUS_EXPR, atype);
9697 else if (var0)
9698 var0 = associate_trees (loc, var0, minus_con0,
9699 MINUS_EXPR, atype);
9700 else
9701 gcc_unreachable ();
9702 minus_con0 = 0;
9705 /* Eliminate minus_var0. */
9706 if (minus_var0)
9708 if (con0)
9709 con0 = associate_trees (loc, con0, minus_var0,
9710 MINUS_EXPR, atype);
9711 else
9712 gcc_unreachable ();
9713 minus_var0 = 0;
9716 return
9717 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
9718 code, atype));
9722 return NULL_TREE;
9724 case MINUS_EXPR:
9725 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9726 if (TREE_CODE (arg0) == NEGATE_EXPR
9727 && negate_expr_p (op1))
9728 return fold_build2_loc (loc, MINUS_EXPR, type,
9729 negate_expr (op1),
9730 fold_convert_loc (loc, type,
9731 TREE_OPERAND (arg0, 0)));
9733 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9734 __complex__ ( x, -y ). This is not the same for SNaNs or if
9735 signed zeros are involved. */
9736 if (!HONOR_SNANS (element_mode (arg0))
9737 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9738 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9740 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9741 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9742 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9743 bool arg0rz = false, arg0iz = false;
9744 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9745 || (arg0i && (arg0iz = real_zerop (arg0i))))
9747 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9748 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9749 if (arg0rz && arg1i && real_zerop (arg1i))
9751 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9752 arg1r ? arg1r
9753 : build1 (REALPART_EXPR, rtype, arg1));
9754 tree ip = arg0i ? arg0i
9755 : build1 (IMAGPART_EXPR, rtype, arg0);
9756 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9758 else if (arg0iz && arg1r && real_zerop (arg1r))
9760 tree rp = arg0r ? arg0r
9761 : build1 (REALPART_EXPR, rtype, arg0);
9762 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9763 arg1i ? arg1i
9764 : build1 (IMAGPART_EXPR, rtype, arg1));
9765 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9770 /* A - B -> A + (-B) if B is easily negatable. */
9771 if (negate_expr_p (op1)
9772 && ! TYPE_OVERFLOW_SANITIZED (type)
9773 && ((FLOAT_TYPE_P (type)
9774 /* Avoid this transformation if B is a positive REAL_CST. */
9775 && (TREE_CODE (op1) != REAL_CST
9776 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1))))
9777 || INTEGRAL_TYPE_P (type)))
9778 return fold_build2_loc (loc, PLUS_EXPR, type,
9779 fold_convert_loc (loc, type, arg0),
9780 negate_expr (op1));
9782 /* Fold &a[i] - &a[j] to i-j. */
9783 if (TREE_CODE (arg0) == ADDR_EXPR
9784 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
9785 && TREE_CODE (arg1) == ADDR_EXPR
9786 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
9788 tree tem = fold_addr_of_array_ref_difference (loc, type,
9789 TREE_OPERAND (arg0, 0),
9790 TREE_OPERAND (arg1, 0));
9791 if (tem)
9792 return tem;
9795 if (FLOAT_TYPE_P (type)
9796 && flag_unsafe_math_optimizations
9797 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9798 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9799 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9800 return tem;
9802 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
9803 one. Make sure the type is not saturating and has the signedness of
9804 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9805 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9806 if ((TREE_CODE (arg0) == MULT_EXPR
9807 || TREE_CODE (arg1) == MULT_EXPR)
9808 && !TYPE_SATURATING (type)
9809 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9810 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9811 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9813 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9814 if (tem)
9815 return tem;
9818 goto associate;
9820 case MULT_EXPR:
9821 if (! FLOAT_TYPE_P (type))
9823 /* Transform x * -C into -x * C if x is easily negatable. */
9824 if (TREE_CODE (op1) == INTEGER_CST
9825 && tree_int_cst_sgn (op1) == -1
9826 && negate_expr_p (op0)
9827 && negate_expr_p (op1)
9828 && (tem = negate_expr (op1)) != op1
9829 && ! TREE_OVERFLOW (tem))
9830 return fold_build2_loc (loc, MULT_EXPR, type,
9831 fold_convert_loc (loc, type,
9832 negate_expr (op0)), tem);
9834 strict_overflow_p = false;
9835 if (TREE_CODE (arg1) == INTEGER_CST
9836 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
9837 &strict_overflow_p)))
9839 if (strict_overflow_p)
9840 fold_overflow_warning (("assuming signed overflow does not "
9841 "occur when simplifying "
9842 "multiplication"),
9843 WARN_STRICT_OVERFLOW_MISC);
9844 return fold_convert_loc (loc, type, tem);
9847 /* Optimize z * conj(z) for integer complex numbers. */
9848 if (TREE_CODE (arg0) == CONJ_EXPR
9849 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9850 return fold_mult_zconjz (loc, type, arg1);
9851 if (TREE_CODE (arg1) == CONJ_EXPR
9852 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9853 return fold_mult_zconjz (loc, type, arg0);
9855 else
9857 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
9858 This is not the same for NaNs or if signed zeros are
9859 involved. */
9860 if (!HONOR_NANS (arg0)
9861 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9862 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
9863 && TREE_CODE (arg1) == COMPLEX_CST
9864 && real_zerop (TREE_REALPART (arg1)))
9866 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9867 if (real_onep (TREE_IMAGPART (arg1)))
9868 return
9869 fold_build2_loc (loc, COMPLEX_EXPR, type,
9870 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
9871 rtype, arg0)),
9872 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
9873 else if (real_minus_onep (TREE_IMAGPART (arg1)))
9874 return
9875 fold_build2_loc (loc, COMPLEX_EXPR, type,
9876 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
9877 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
9878 rtype, arg0)));
9881 /* Optimize z * conj(z) for floating point complex numbers.
9882 Guarded by flag_unsafe_math_optimizations as non-finite
9883 imaginary components don't produce scalar results. */
9884 if (flag_unsafe_math_optimizations
9885 && TREE_CODE (arg0) == CONJ_EXPR
9886 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9887 return fold_mult_zconjz (loc, type, arg1);
9888 if (flag_unsafe_math_optimizations
9889 && TREE_CODE (arg1) == CONJ_EXPR
9890 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9891 return fold_mult_zconjz (loc, type, arg0);
9893 goto associate;
9895 case BIT_IOR_EXPR:
9896 /* Canonicalize (X & C1) | C2. */
9897 if (TREE_CODE (arg0) == BIT_AND_EXPR
9898 && TREE_CODE (arg1) == INTEGER_CST
9899 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9901 int width = TYPE_PRECISION (type), w;
9902 wide_int c1 = TREE_OPERAND (arg0, 1);
9903 wide_int c2 = arg1;
9905 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
9906 if ((c1 & c2) == c1)
9907 return omit_one_operand_loc (loc, type, arg1,
9908 TREE_OPERAND (arg0, 0));
9910 wide_int msk = wi::mask (width, false,
9911 TYPE_PRECISION (TREE_TYPE (arg1)));
9913 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
9914 if (msk.and_not (c1 | c2) == 0)
9916 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9917 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
9920 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
9921 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
9922 mode which allows further optimizations. */
9923 c1 &= msk;
9924 c2 &= msk;
9925 wide_int c3 = c1.and_not (c2);
9926 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
9928 wide_int mask = wi::mask (w, false,
9929 TYPE_PRECISION (type));
9930 if (((c1 | c2) & mask) == mask && c1.and_not (mask) == 0)
9932 c3 = mask;
9933 break;
9937 if (c3 != c1)
9939 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9940 tem = fold_build2_loc (loc, BIT_AND_EXPR, type, tem,
9941 wide_int_to_tree (type, c3));
9942 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
9946 /* See if this can be simplified into a rotate first. If that
9947 is unsuccessful continue in the association code. */
9948 goto bit_rotate;
9950 case BIT_XOR_EXPR:
9951 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
9952 if (TREE_CODE (arg0) == BIT_AND_EXPR
9953 && INTEGRAL_TYPE_P (type)
9954 && integer_onep (TREE_OPERAND (arg0, 1))
9955 && integer_onep (arg1))
9956 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
9957 build_zero_cst (TREE_TYPE (arg0)));
9959 /* See if this can be simplified into a rotate first. If that
9960 is unsuccessful continue in the association code. */
9961 goto bit_rotate;
9963 case BIT_AND_EXPR:
9964 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
9965 if (TREE_CODE (arg0) == BIT_XOR_EXPR
9966 && INTEGRAL_TYPE_P (type)
9967 && integer_onep (TREE_OPERAND (arg0, 1))
9968 && integer_onep (arg1))
9970 tree tem2;
9971 tem = TREE_OPERAND (arg0, 0);
9972 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
9973 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
9974 tem, tem2);
9975 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
9976 build_zero_cst (TREE_TYPE (tem)));
9978 /* Fold ~X & 1 as (X & 1) == 0. */
9979 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9980 && INTEGRAL_TYPE_P (type)
9981 && integer_onep (arg1))
9983 tree tem2;
9984 tem = TREE_OPERAND (arg0, 0);
9985 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
9986 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
9987 tem, tem2);
9988 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
9989 build_zero_cst (TREE_TYPE (tem)));
9991 /* Fold !X & 1 as X == 0. */
9992 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
9993 && integer_onep (arg1))
9995 tem = TREE_OPERAND (arg0, 0);
9996 return fold_build2_loc (loc, EQ_EXPR, type, tem,
9997 build_zero_cst (TREE_TYPE (tem)));
10000 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
10001 multiple of 1 << CST. */
10002 if (TREE_CODE (arg1) == INTEGER_CST)
10004 wide_int cst1 = arg1;
10005 wide_int ncst1 = -cst1;
10006 if ((cst1 & ncst1) == ncst1
10007 && multiple_of_p (type, arg0,
10008 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
10009 return fold_convert_loc (loc, type, arg0);
10012 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10013 bits from CST2. */
10014 if (TREE_CODE (arg1) == INTEGER_CST
10015 && TREE_CODE (arg0) == MULT_EXPR
10016 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10018 wide_int warg1 = arg1;
10019 wide_int masked = mask_with_tz (type, warg1, TREE_OPERAND (arg0, 1));
10021 if (masked == 0)
10022 return omit_two_operands_loc (loc, type, build_zero_cst (type),
10023 arg0, arg1);
10024 else if (masked != warg1)
10026 /* Avoid the transform if arg1 is a mask of some
10027 mode which allows further optimizations. */
10028 int pop = wi::popcount (warg1);
10029 if (!(pop >= BITS_PER_UNIT
10030 && pow2p_hwi (pop)
10031 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
10032 return fold_build2_loc (loc, code, type, op0,
10033 wide_int_to_tree (type, masked));
10037 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
10038 ((A & N) + B) & M -> (A + B) & M
10039 Similarly if (N & M) == 0,
10040 ((A | N) + B) & M -> (A + B) & M
10041 and for - instead of + (or unary - instead of +)
10042 and/or ^ instead of |.
10043 If B is constant and (B & M) == 0, fold into A & M. */
10044 if (TREE_CODE (arg1) == INTEGER_CST)
10046 wide_int cst1 = arg1;
10047 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0
10048 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10049 && (TREE_CODE (arg0) == PLUS_EXPR
10050 || TREE_CODE (arg0) == MINUS_EXPR
10051 || TREE_CODE (arg0) == NEGATE_EXPR)
10052 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
10053 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
10055 tree pmop[2];
10056 int which = 0;
10057 wide_int cst0;
10059 /* Now we know that arg0 is (C + D) or (C - D) or
10060 -C and arg1 (M) is == (1LL << cst) - 1.
10061 Store C into PMOP[0] and D into PMOP[1]. */
10062 pmop[0] = TREE_OPERAND (arg0, 0);
10063 pmop[1] = NULL;
10064 if (TREE_CODE (arg0) != NEGATE_EXPR)
10066 pmop[1] = TREE_OPERAND (arg0, 1);
10067 which = 1;
10070 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1)
10071 which = -1;
10073 for (; which >= 0; which--)
10074 switch (TREE_CODE (pmop[which]))
10076 case BIT_AND_EXPR:
10077 case BIT_IOR_EXPR:
10078 case BIT_XOR_EXPR:
10079 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
10080 != INTEGER_CST)
10081 break;
10082 cst0 = TREE_OPERAND (pmop[which], 1);
10083 cst0 &= cst1;
10084 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
10086 if (cst0 != cst1)
10087 break;
10089 else if (cst0 != 0)
10090 break;
10091 /* If C or D is of the form (A & N) where
10092 (N & M) == M, or of the form (A | N) or
10093 (A ^ N) where (N & M) == 0, replace it with A. */
10094 pmop[which] = TREE_OPERAND (pmop[which], 0);
10095 break;
10096 case INTEGER_CST:
10097 /* If C or D is a N where (N & M) == 0, it can be
10098 omitted (assumed 0). */
10099 if ((TREE_CODE (arg0) == PLUS_EXPR
10100 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
10101 && (cst1 & pmop[which]) == 0)
10102 pmop[which] = NULL;
10103 break;
10104 default:
10105 break;
10108 /* Only build anything new if we optimized one or both arguments
10109 above. */
10110 if (pmop[0] != TREE_OPERAND (arg0, 0)
10111 || (TREE_CODE (arg0) != NEGATE_EXPR
10112 && pmop[1] != TREE_OPERAND (arg0, 1)))
10114 tree utype = TREE_TYPE (arg0);
10115 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
10117 /* Perform the operations in a type that has defined
10118 overflow behavior. */
10119 utype = unsigned_type_for (TREE_TYPE (arg0));
10120 if (pmop[0] != NULL)
10121 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
10122 if (pmop[1] != NULL)
10123 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
10126 if (TREE_CODE (arg0) == NEGATE_EXPR)
10127 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
10128 else if (TREE_CODE (arg0) == PLUS_EXPR)
10130 if (pmop[0] != NULL && pmop[1] != NULL)
10131 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
10132 pmop[0], pmop[1]);
10133 else if (pmop[0] != NULL)
10134 tem = pmop[0];
10135 else if (pmop[1] != NULL)
10136 tem = pmop[1];
10137 else
10138 return build_int_cst (type, 0);
10140 else if (pmop[0] == NULL)
10141 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
10142 else
10143 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
10144 pmop[0], pmop[1]);
10145 /* TEM is now the new binary +, - or unary - replacement. */
10146 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
10147 fold_convert_loc (loc, utype, arg1));
10148 return fold_convert_loc (loc, type, tem);
10153 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10154 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10155 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10157 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10159 wide_int mask = wide_int::from (arg1, prec, UNSIGNED);
10160 if (mask == -1)
10161 return
10162 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10165 goto associate;
10167 case RDIV_EXPR:
10168 /* Don't touch a floating-point divide by zero unless the mode
10169 of the constant can represent infinity. */
10170 if (TREE_CODE (arg1) == REAL_CST
10171 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10172 && real_zerop (arg1))
10173 return NULL_TREE;
10175 /* (-A) / (-B) -> A / B */
10176 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10177 return fold_build2_loc (loc, RDIV_EXPR, type,
10178 TREE_OPERAND (arg0, 0),
10179 negate_expr (arg1));
10180 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10181 return fold_build2_loc (loc, RDIV_EXPR, type,
10182 negate_expr (arg0),
10183 TREE_OPERAND (arg1, 0));
10184 return NULL_TREE;
10186 case TRUNC_DIV_EXPR:
10187 /* Fall through */
10189 case FLOOR_DIV_EXPR:
10190 /* Simplify A / (B << N) where A and B are positive and B is
10191 a power of 2, to A >> (N + log2(B)). */
10192 strict_overflow_p = false;
10193 if (TREE_CODE (arg1) == LSHIFT_EXPR
10194 && (TYPE_UNSIGNED (type)
10195 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
10197 tree sval = TREE_OPERAND (arg1, 0);
10198 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
10200 tree sh_cnt = TREE_OPERAND (arg1, 1);
10201 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
10202 wi::exact_log2 (sval));
10204 if (strict_overflow_p)
10205 fold_overflow_warning (("assuming signed overflow does not "
10206 "occur when simplifying A / (B << N)"),
10207 WARN_STRICT_OVERFLOW_MISC);
10209 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
10210 sh_cnt, pow2);
10211 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10212 fold_convert_loc (loc, type, arg0), sh_cnt);
10216 /* Fall through */
10218 case ROUND_DIV_EXPR:
10219 case CEIL_DIV_EXPR:
10220 case EXACT_DIV_EXPR:
10221 if (integer_zerop (arg1))
10222 return NULL_TREE;
10224 /* Convert -A / -B to A / B when the type is signed and overflow is
10225 undefined. */
10226 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10227 && TREE_CODE (op0) == NEGATE_EXPR
10228 && negate_expr_p (op1))
10230 if (INTEGRAL_TYPE_P (type))
10231 fold_overflow_warning (("assuming signed overflow does not occur "
10232 "when distributing negation across "
10233 "division"),
10234 WARN_STRICT_OVERFLOW_MISC);
10235 return fold_build2_loc (loc, code, type,
10236 fold_convert_loc (loc, type,
10237 TREE_OPERAND (arg0, 0)),
10238 negate_expr (op1));
10240 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10241 && TREE_CODE (arg1) == NEGATE_EXPR
10242 && negate_expr_p (op0))
10244 if (INTEGRAL_TYPE_P (type))
10245 fold_overflow_warning (("assuming signed overflow does not occur "
10246 "when distributing negation across "
10247 "division"),
10248 WARN_STRICT_OVERFLOW_MISC);
10249 return fold_build2_loc (loc, code, type,
10250 negate_expr (op0),
10251 fold_convert_loc (loc, type,
10252 TREE_OPERAND (arg1, 0)));
10255 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10256 operation, EXACT_DIV_EXPR.
10258 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10259 At one time others generated faster code, it's not clear if they do
10260 after the last round to changes to the DIV code in expmed.c. */
10261 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10262 && multiple_of_p (type, arg0, arg1))
10263 return fold_build2_loc (loc, EXACT_DIV_EXPR, type,
10264 fold_convert (type, arg0),
10265 fold_convert (type, arg1));
10267 strict_overflow_p = false;
10268 if (TREE_CODE (arg1) == INTEGER_CST
10269 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10270 &strict_overflow_p)))
10272 if (strict_overflow_p)
10273 fold_overflow_warning (("assuming signed overflow does not occur "
10274 "when simplifying division"),
10275 WARN_STRICT_OVERFLOW_MISC);
10276 return fold_convert_loc (loc, type, tem);
10279 return NULL_TREE;
10281 case CEIL_MOD_EXPR:
10282 case FLOOR_MOD_EXPR:
10283 case ROUND_MOD_EXPR:
10284 case TRUNC_MOD_EXPR:
10285 strict_overflow_p = false;
10286 if (TREE_CODE (arg1) == INTEGER_CST
10287 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10288 &strict_overflow_p)))
10290 if (strict_overflow_p)
10291 fold_overflow_warning (("assuming signed overflow does not occur "
10292 "when simplifying modulus"),
10293 WARN_STRICT_OVERFLOW_MISC);
10294 return fold_convert_loc (loc, type, tem);
10297 return NULL_TREE;
10299 case LROTATE_EXPR:
10300 case RROTATE_EXPR:
10301 case RSHIFT_EXPR:
10302 case LSHIFT_EXPR:
10303 /* Since negative shift count is not well-defined,
10304 don't try to compute it in the compiler. */
10305 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
10306 return NULL_TREE;
10308 prec = element_precision (type);
10310 /* If we have a rotate of a bit operation with the rotate count and
10311 the second operand of the bit operation both constant,
10312 permute the two operations. */
10313 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10314 && (TREE_CODE (arg0) == BIT_AND_EXPR
10315 || TREE_CODE (arg0) == BIT_IOR_EXPR
10316 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10317 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10319 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10320 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10321 return fold_build2_loc (loc, TREE_CODE (arg0), type,
10322 fold_build2_loc (loc, code, type,
10323 arg00, arg1),
10324 fold_build2_loc (loc, code, type,
10325 arg01, arg1));
10328 /* Two consecutive rotates adding up to the some integer
10329 multiple of the precision of the type can be ignored. */
10330 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10331 && TREE_CODE (arg0) == RROTATE_EXPR
10332 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10333 && wi::umod_trunc (wi::add (arg1, TREE_OPERAND (arg0, 1)),
10334 prec) == 0)
10335 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10337 return NULL_TREE;
10339 case MIN_EXPR:
10340 case MAX_EXPR:
10341 goto associate;
10343 case TRUTH_ANDIF_EXPR:
10344 /* Note that the operands of this must be ints
10345 and their values must be 0 or 1.
10346 ("true" is a fixed value perhaps depending on the language.) */
10347 /* If first arg is constant zero, return it. */
10348 if (integer_zerop (arg0))
10349 return fold_convert_loc (loc, type, arg0);
10350 /* FALLTHRU */
10351 case TRUTH_AND_EXPR:
10352 /* If either arg is constant true, drop it. */
10353 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10354 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10355 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
10356 /* Preserve sequence points. */
10357 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10358 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10359 /* If second arg is constant zero, result is zero, but first arg
10360 must be evaluated. */
10361 if (integer_zerop (arg1))
10362 return omit_one_operand_loc (loc, type, arg1, arg0);
10363 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10364 case will be handled here. */
10365 if (integer_zerop (arg0))
10366 return omit_one_operand_loc (loc, type, arg0, arg1);
10368 /* !X && X is always false. */
10369 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10370 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10371 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10372 /* X && !X is always false. */
10373 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10374 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10375 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10377 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10378 means A >= Y && A != MAX, but in this case we know that
10379 A < X <= MAX. */
10381 if (!TREE_SIDE_EFFECTS (arg0)
10382 && !TREE_SIDE_EFFECTS (arg1))
10384 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
10385 if (tem && !operand_equal_p (tem, arg0, 0))
10386 return fold_build2_loc (loc, code, type, tem, arg1);
10388 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
10389 if (tem && !operand_equal_p (tem, arg1, 0))
10390 return fold_build2_loc (loc, code, type, arg0, tem);
10393 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10394 != NULL_TREE)
10395 return tem;
10397 return NULL_TREE;
10399 case TRUTH_ORIF_EXPR:
10400 /* Note that the operands of this must be ints
10401 and their values must be 0 or true.
10402 ("true" is a fixed value perhaps depending on the language.) */
10403 /* If first arg is constant true, return it. */
10404 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10405 return fold_convert_loc (loc, type, arg0);
10406 /* FALLTHRU */
10407 case TRUTH_OR_EXPR:
10408 /* If either arg is constant zero, drop it. */
10409 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
10410 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10411 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
10412 /* Preserve sequence points. */
10413 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10414 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10415 /* If second arg is constant true, result is true, but we must
10416 evaluate first arg. */
10417 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
10418 return omit_one_operand_loc (loc, type, arg1, arg0);
10419 /* Likewise for first arg, but note this only occurs here for
10420 TRUTH_OR_EXPR. */
10421 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10422 return omit_one_operand_loc (loc, type, arg0, arg1);
10424 /* !X || X is always true. */
10425 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10426 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10427 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10428 /* X || !X is always true. */
10429 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10430 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10431 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10433 /* (X && !Y) || (!X && Y) is X ^ Y */
10434 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
10435 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
10437 tree a0, a1, l0, l1, n0, n1;
10439 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10440 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10442 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10443 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10445 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
10446 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
10448 if ((operand_equal_p (n0, a0, 0)
10449 && operand_equal_p (n1, a1, 0))
10450 || (operand_equal_p (n0, a1, 0)
10451 && operand_equal_p (n1, a0, 0)))
10452 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
10455 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10456 != NULL_TREE)
10457 return tem;
10459 return NULL_TREE;
10461 case TRUTH_XOR_EXPR:
10462 /* If the second arg is constant zero, drop it. */
10463 if (integer_zerop (arg1))
10464 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10465 /* If the second arg is constant true, this is a logical inversion. */
10466 if (integer_onep (arg1))
10468 tem = invert_truthvalue_loc (loc, arg0);
10469 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
10471 /* Identical arguments cancel to zero. */
10472 if (operand_equal_p (arg0, arg1, 0))
10473 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10475 /* !X ^ X is always true. */
10476 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10477 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10478 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10480 /* X ^ !X is always true. */
10481 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10482 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10483 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10485 return NULL_TREE;
10487 case EQ_EXPR:
10488 case NE_EXPR:
10489 STRIP_NOPS (arg0);
10490 STRIP_NOPS (arg1);
10492 tem = fold_comparison (loc, code, type, op0, op1);
10493 if (tem != NULL_TREE)
10494 return tem;
10496 /* bool_var != 1 becomes !bool_var. */
10497 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
10498 && code == NE_EXPR)
10499 return fold_convert_loc (loc, type,
10500 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10501 TREE_TYPE (arg0), arg0));
10503 /* bool_var == 0 becomes !bool_var. */
10504 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
10505 && code == EQ_EXPR)
10506 return fold_convert_loc (loc, type,
10507 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10508 TREE_TYPE (arg0), arg0));
10510 /* !exp != 0 becomes !exp */
10511 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
10512 && code == NE_EXPR)
10513 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10515 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
10516 if ((TREE_CODE (arg0) == PLUS_EXPR
10517 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
10518 || TREE_CODE (arg0) == MINUS_EXPR)
10519 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
10520 0)),
10521 arg1, 0)
10522 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10523 || POINTER_TYPE_P (TREE_TYPE (arg0))))
10525 tree val = TREE_OPERAND (arg0, 1);
10526 val = fold_build2_loc (loc, code, type, val,
10527 build_int_cst (TREE_TYPE (val), 0));
10528 return omit_two_operands_loc (loc, type, val,
10529 TREE_OPERAND (arg0, 0), arg1);
10532 /* Transform comparisons of the form X CMP X +- Y to Y CMP 0. */
10533 if ((TREE_CODE (arg1) == PLUS_EXPR
10534 || TREE_CODE (arg1) == POINTER_PLUS_EXPR
10535 || TREE_CODE (arg1) == MINUS_EXPR)
10536 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg1,
10537 0)),
10538 arg0, 0)
10539 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10540 || POINTER_TYPE_P (TREE_TYPE (arg1))))
10542 tree val = TREE_OPERAND (arg1, 1);
10543 val = fold_build2_loc (loc, code, type, val,
10544 build_int_cst (TREE_TYPE (val), 0));
10545 return omit_two_operands_loc (loc, type, val,
10546 TREE_OPERAND (arg1, 0), arg0);
10549 /* If this is an EQ or NE comparison with zero and ARG0 is
10550 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10551 two operations, but the latter can be done in one less insn
10552 on machines that have only two-operand insns or on which a
10553 constant cannot be the first operand. */
10554 if (TREE_CODE (arg0) == BIT_AND_EXPR
10555 && integer_zerop (arg1))
10557 tree arg00 = TREE_OPERAND (arg0, 0);
10558 tree arg01 = TREE_OPERAND (arg0, 1);
10559 if (TREE_CODE (arg00) == LSHIFT_EXPR
10560 && integer_onep (TREE_OPERAND (arg00, 0)))
10562 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
10563 arg01, TREE_OPERAND (arg00, 1));
10564 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10565 build_int_cst (TREE_TYPE (arg0), 1));
10566 return fold_build2_loc (loc, code, type,
10567 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10568 arg1);
10570 else if (TREE_CODE (arg01) == LSHIFT_EXPR
10571 && integer_onep (TREE_OPERAND (arg01, 0)))
10573 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
10574 arg00, TREE_OPERAND (arg01, 1));
10575 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10576 build_int_cst (TREE_TYPE (arg0), 1));
10577 return fold_build2_loc (loc, code, type,
10578 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10579 arg1);
10583 /* If this is an NE or EQ comparison of zero against the result of a
10584 signed MOD operation whose second operand is a power of 2, make
10585 the MOD operation unsigned since it is simpler and equivalent. */
10586 if (integer_zerop (arg1)
10587 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
10588 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
10589 || TREE_CODE (arg0) == CEIL_MOD_EXPR
10590 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
10591 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
10592 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10594 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
10595 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
10596 fold_convert_loc (loc, newtype,
10597 TREE_OPERAND (arg0, 0)),
10598 fold_convert_loc (loc, newtype,
10599 TREE_OPERAND (arg0, 1)));
10601 return fold_build2_loc (loc, code, type, newmod,
10602 fold_convert_loc (loc, newtype, arg1));
10605 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10606 C1 is a valid shift constant, and C2 is a power of two, i.e.
10607 a single bit. */
10608 if (TREE_CODE (arg0) == BIT_AND_EXPR
10609 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
10610 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
10611 == INTEGER_CST
10612 && integer_pow2p (TREE_OPERAND (arg0, 1))
10613 && integer_zerop (arg1))
10615 tree itype = TREE_TYPE (arg0);
10616 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
10617 prec = TYPE_PRECISION (itype);
10619 /* Check for a valid shift count. */
10620 if (wi::ltu_p (arg001, prec))
10622 tree arg01 = TREE_OPERAND (arg0, 1);
10623 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10624 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
10625 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10626 can be rewritten as (X & (C2 << C1)) != 0. */
10627 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
10629 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
10630 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
10631 return fold_build2_loc (loc, code, type, tem,
10632 fold_convert_loc (loc, itype, arg1));
10634 /* Otherwise, for signed (arithmetic) shifts,
10635 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10636 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10637 else if (!TYPE_UNSIGNED (itype))
10638 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
10639 arg000, build_int_cst (itype, 0));
10640 /* Otherwise, of unsigned (logical) shifts,
10641 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10642 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10643 else
10644 return omit_one_operand_loc (loc, type,
10645 code == EQ_EXPR ? integer_one_node
10646 : integer_zero_node,
10647 arg000);
10651 /* If this is a comparison of a field, we may be able to simplify it. */
10652 if ((TREE_CODE (arg0) == COMPONENT_REF
10653 || TREE_CODE (arg0) == BIT_FIELD_REF)
10654 /* Handle the constant case even without -O
10655 to make sure the warnings are given. */
10656 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
10658 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
10659 if (t1)
10660 return t1;
10663 /* Optimize comparisons of strlen vs zero to a compare of the
10664 first character of the string vs zero. To wit,
10665 strlen(ptr) == 0 => *ptr == 0
10666 strlen(ptr) != 0 => *ptr != 0
10667 Other cases should reduce to one of these two (or a constant)
10668 due to the return value of strlen being unsigned. */
10669 if (TREE_CODE (arg0) == CALL_EXPR
10670 && integer_zerop (arg1))
10672 tree fndecl = get_callee_fndecl (arg0);
10674 if (fndecl
10675 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
10676 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
10677 && call_expr_nargs (arg0) == 1
10678 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
10680 tree iref = build_fold_indirect_ref_loc (loc,
10681 CALL_EXPR_ARG (arg0, 0));
10682 return fold_build2_loc (loc, code, type, iref,
10683 build_int_cst (TREE_TYPE (iref), 0));
10687 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10688 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10689 if (TREE_CODE (arg0) == RSHIFT_EXPR
10690 && integer_zerop (arg1)
10691 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10693 tree arg00 = TREE_OPERAND (arg0, 0);
10694 tree arg01 = TREE_OPERAND (arg0, 1);
10695 tree itype = TREE_TYPE (arg00);
10696 if (wi::eq_p (arg01, element_precision (itype) - 1))
10698 if (TYPE_UNSIGNED (itype))
10700 itype = signed_type_for (itype);
10701 arg00 = fold_convert_loc (loc, itype, arg00);
10703 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
10704 type, arg00, build_zero_cst (itype));
10708 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10709 (X & C) == 0 when C is a single bit. */
10710 if (TREE_CODE (arg0) == BIT_AND_EXPR
10711 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
10712 && integer_zerop (arg1)
10713 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10715 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10716 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
10717 TREE_OPERAND (arg0, 1));
10718 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
10719 type, tem,
10720 fold_convert_loc (loc, TREE_TYPE (arg0),
10721 arg1));
10724 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10725 constant C is a power of two, i.e. a single bit. */
10726 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10727 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
10728 && integer_zerop (arg1)
10729 && integer_pow2p (TREE_OPERAND (arg0, 1))
10730 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10731 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10733 tree arg00 = TREE_OPERAND (arg0, 0);
10734 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10735 arg00, build_int_cst (TREE_TYPE (arg00), 0));
10738 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10739 when is C is a power of two, i.e. a single bit. */
10740 if (TREE_CODE (arg0) == BIT_AND_EXPR
10741 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
10742 && integer_zerop (arg1)
10743 && integer_pow2p (TREE_OPERAND (arg0, 1))
10744 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10745 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10747 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10748 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
10749 arg000, TREE_OPERAND (arg0, 1));
10750 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10751 tem, build_int_cst (TREE_TYPE (tem), 0));
10754 if (integer_zerop (arg1)
10755 && tree_expr_nonzero_p (arg0))
10757 tree res = constant_boolean_node (code==NE_EXPR, type);
10758 return omit_one_operand_loc (loc, type, res, arg0);
10761 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10762 if (TREE_CODE (arg0) == BIT_AND_EXPR
10763 && TREE_CODE (arg1) == BIT_AND_EXPR)
10765 tree arg00 = TREE_OPERAND (arg0, 0);
10766 tree arg01 = TREE_OPERAND (arg0, 1);
10767 tree arg10 = TREE_OPERAND (arg1, 0);
10768 tree arg11 = TREE_OPERAND (arg1, 1);
10769 tree itype = TREE_TYPE (arg0);
10771 if (operand_equal_p (arg01, arg11, 0))
10773 tem = fold_convert_loc (loc, itype, arg10);
10774 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10775 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01);
10776 return fold_build2_loc (loc, code, type, tem,
10777 build_zero_cst (itype));
10779 if (operand_equal_p (arg01, arg10, 0))
10781 tem = fold_convert_loc (loc, itype, arg11);
10782 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10783 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01);
10784 return fold_build2_loc (loc, code, type, tem,
10785 build_zero_cst (itype));
10787 if (operand_equal_p (arg00, arg11, 0))
10789 tem = fold_convert_loc (loc, itype, arg10);
10790 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem);
10791 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00);
10792 return fold_build2_loc (loc, code, type, tem,
10793 build_zero_cst (itype));
10795 if (operand_equal_p (arg00, arg10, 0))
10797 tem = fold_convert_loc (loc, itype, arg11);
10798 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem);
10799 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00);
10800 return fold_build2_loc (loc, code, type, tem,
10801 build_zero_cst (itype));
10805 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10806 && TREE_CODE (arg1) == BIT_XOR_EXPR)
10808 tree arg00 = TREE_OPERAND (arg0, 0);
10809 tree arg01 = TREE_OPERAND (arg0, 1);
10810 tree arg10 = TREE_OPERAND (arg1, 0);
10811 tree arg11 = TREE_OPERAND (arg1, 1);
10812 tree itype = TREE_TYPE (arg0);
10814 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10815 operand_equal_p guarantees no side-effects so we don't need
10816 to use omit_one_operand on Z. */
10817 if (operand_equal_p (arg01, arg11, 0))
10818 return fold_build2_loc (loc, code, type, arg00,
10819 fold_convert_loc (loc, TREE_TYPE (arg00),
10820 arg10));
10821 if (operand_equal_p (arg01, arg10, 0))
10822 return fold_build2_loc (loc, code, type, arg00,
10823 fold_convert_loc (loc, TREE_TYPE (arg00),
10824 arg11));
10825 if (operand_equal_p (arg00, arg11, 0))
10826 return fold_build2_loc (loc, code, type, arg01,
10827 fold_convert_loc (loc, TREE_TYPE (arg01),
10828 arg10));
10829 if (operand_equal_p (arg00, arg10, 0))
10830 return fold_build2_loc (loc, code, type, arg01,
10831 fold_convert_loc (loc, TREE_TYPE (arg01),
10832 arg11));
10834 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10835 if (TREE_CODE (arg01) == INTEGER_CST
10836 && TREE_CODE (arg11) == INTEGER_CST)
10838 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
10839 fold_convert_loc (loc, itype, arg11));
10840 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10841 return fold_build2_loc (loc, code, type, tem,
10842 fold_convert_loc (loc, itype, arg10));
10846 /* Attempt to simplify equality/inequality comparisons of complex
10847 values. Only lower the comparison if the result is known or
10848 can be simplified to a single scalar comparison. */
10849 if ((TREE_CODE (arg0) == COMPLEX_EXPR
10850 || TREE_CODE (arg0) == COMPLEX_CST)
10851 && (TREE_CODE (arg1) == COMPLEX_EXPR
10852 || TREE_CODE (arg1) == COMPLEX_CST))
10854 tree real0, imag0, real1, imag1;
10855 tree rcond, icond;
10857 if (TREE_CODE (arg0) == COMPLEX_EXPR)
10859 real0 = TREE_OPERAND (arg0, 0);
10860 imag0 = TREE_OPERAND (arg0, 1);
10862 else
10864 real0 = TREE_REALPART (arg0);
10865 imag0 = TREE_IMAGPART (arg0);
10868 if (TREE_CODE (arg1) == COMPLEX_EXPR)
10870 real1 = TREE_OPERAND (arg1, 0);
10871 imag1 = TREE_OPERAND (arg1, 1);
10873 else
10875 real1 = TREE_REALPART (arg1);
10876 imag1 = TREE_IMAGPART (arg1);
10879 rcond = fold_binary_loc (loc, code, type, real0, real1);
10880 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
10882 if (integer_zerop (rcond))
10884 if (code == EQ_EXPR)
10885 return omit_two_operands_loc (loc, type, boolean_false_node,
10886 imag0, imag1);
10887 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
10889 else
10891 if (code == NE_EXPR)
10892 return omit_two_operands_loc (loc, type, boolean_true_node,
10893 imag0, imag1);
10894 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
10898 icond = fold_binary_loc (loc, code, type, imag0, imag1);
10899 if (icond && TREE_CODE (icond) == INTEGER_CST)
10901 if (integer_zerop (icond))
10903 if (code == EQ_EXPR)
10904 return omit_two_operands_loc (loc, type, boolean_false_node,
10905 real0, real1);
10906 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
10908 else
10910 if (code == NE_EXPR)
10911 return omit_two_operands_loc (loc, type, boolean_true_node,
10912 real0, real1);
10913 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
10918 return NULL_TREE;
10920 case LT_EXPR:
10921 case GT_EXPR:
10922 case LE_EXPR:
10923 case GE_EXPR:
10924 tem = fold_comparison (loc, code, type, op0, op1);
10925 if (tem != NULL_TREE)
10926 return tem;
10928 /* Transform comparisons of the form X +- C CMP X. */
10929 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
10930 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10931 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
10932 && !HONOR_SNANS (arg0))
10933 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10934 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
10936 tree arg01 = TREE_OPERAND (arg0, 1);
10937 enum tree_code code0 = TREE_CODE (arg0);
10938 int is_positive;
10940 if (TREE_CODE (arg01) == REAL_CST)
10941 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
10942 else
10943 is_positive = tree_int_cst_sgn (arg01);
10945 /* (X - c) > X becomes false. */
10946 if (code == GT_EXPR
10947 && ((code0 == MINUS_EXPR && is_positive >= 0)
10948 || (code0 == PLUS_EXPR && is_positive <= 0)))
10950 if (TREE_CODE (arg01) == INTEGER_CST
10951 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10952 fold_overflow_warning (("assuming signed overflow does not "
10953 "occur when assuming that (X - c) > X "
10954 "is always false"),
10955 WARN_STRICT_OVERFLOW_ALL);
10956 return constant_boolean_node (0, type);
10959 /* Likewise (X + c) < X becomes false. */
10960 if (code == LT_EXPR
10961 && ((code0 == PLUS_EXPR && is_positive >= 0)
10962 || (code0 == MINUS_EXPR && is_positive <= 0)))
10964 if (TREE_CODE (arg01) == INTEGER_CST
10965 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10966 fold_overflow_warning (("assuming signed overflow does not "
10967 "occur when assuming that "
10968 "(X + c) < X is always false"),
10969 WARN_STRICT_OVERFLOW_ALL);
10970 return constant_boolean_node (0, type);
10973 /* Convert (X - c) <= X to true. */
10974 if (!HONOR_NANS (arg1)
10975 && code == LE_EXPR
10976 && ((code0 == MINUS_EXPR && is_positive >= 0)
10977 || (code0 == PLUS_EXPR && is_positive <= 0)))
10979 if (TREE_CODE (arg01) == INTEGER_CST
10980 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10981 fold_overflow_warning (("assuming signed overflow does not "
10982 "occur when assuming that "
10983 "(X - c) <= X is always true"),
10984 WARN_STRICT_OVERFLOW_ALL);
10985 return constant_boolean_node (1, type);
10988 /* Convert (X + c) >= X to true. */
10989 if (!HONOR_NANS (arg1)
10990 && code == GE_EXPR
10991 && ((code0 == PLUS_EXPR && is_positive >= 0)
10992 || (code0 == MINUS_EXPR && is_positive <= 0)))
10994 if (TREE_CODE (arg01) == INTEGER_CST
10995 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10996 fold_overflow_warning (("assuming signed overflow does not "
10997 "occur when assuming that "
10998 "(X + c) >= X is always true"),
10999 WARN_STRICT_OVERFLOW_ALL);
11000 return constant_boolean_node (1, type);
11003 if (TREE_CODE (arg01) == INTEGER_CST)
11005 /* Convert X + c > X and X - c < X to true for integers. */
11006 if (code == GT_EXPR
11007 && ((code0 == PLUS_EXPR && is_positive > 0)
11008 || (code0 == MINUS_EXPR && is_positive < 0)))
11010 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11011 fold_overflow_warning (("assuming signed overflow does "
11012 "not occur when assuming that "
11013 "(X + c) > X is always true"),
11014 WARN_STRICT_OVERFLOW_ALL);
11015 return constant_boolean_node (1, type);
11018 if (code == LT_EXPR
11019 && ((code0 == MINUS_EXPR && is_positive > 0)
11020 || (code0 == PLUS_EXPR && is_positive < 0)))
11022 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11023 fold_overflow_warning (("assuming signed overflow does "
11024 "not occur when assuming that "
11025 "(X - c) < X is always true"),
11026 WARN_STRICT_OVERFLOW_ALL);
11027 return constant_boolean_node (1, type);
11030 /* Convert X + c <= X and X - c >= X to false for integers. */
11031 if (code == LE_EXPR
11032 && ((code0 == PLUS_EXPR && is_positive > 0)
11033 || (code0 == MINUS_EXPR && is_positive < 0)))
11035 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11036 fold_overflow_warning (("assuming signed overflow does "
11037 "not occur when assuming that "
11038 "(X + c) <= X is always false"),
11039 WARN_STRICT_OVERFLOW_ALL);
11040 return constant_boolean_node (0, type);
11043 if (code == GE_EXPR
11044 && ((code0 == MINUS_EXPR && is_positive > 0)
11045 || (code0 == PLUS_EXPR && is_positive < 0)))
11047 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11048 fold_overflow_warning (("assuming signed overflow does "
11049 "not occur when assuming that "
11050 "(X - c) >= X is always false"),
11051 WARN_STRICT_OVERFLOW_ALL);
11052 return constant_boolean_node (0, type);
11057 /* If we are comparing an ABS_EXPR with a constant, we can
11058 convert all the cases into explicit comparisons, but they may
11059 well not be faster than doing the ABS and one comparison.
11060 But ABS (X) <= C is a range comparison, which becomes a subtraction
11061 and a comparison, and is probably faster. */
11062 if (code == LE_EXPR
11063 && TREE_CODE (arg1) == INTEGER_CST
11064 && TREE_CODE (arg0) == ABS_EXPR
11065 && ! TREE_SIDE_EFFECTS (arg0)
11066 && (0 != (tem = negate_expr (arg1)))
11067 && TREE_CODE (tem) == INTEGER_CST
11068 && !TREE_OVERFLOW (tem))
11069 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
11070 build2 (GE_EXPR, type,
11071 TREE_OPERAND (arg0, 0), tem),
11072 build2 (LE_EXPR, type,
11073 TREE_OPERAND (arg0, 0), arg1));
11075 /* Convert ABS_EXPR<x> >= 0 to true. */
11076 strict_overflow_p = false;
11077 if (code == GE_EXPR
11078 && (integer_zerop (arg1)
11079 || (! HONOR_NANS (arg0)
11080 && real_zerop (arg1)))
11081 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11083 if (strict_overflow_p)
11084 fold_overflow_warning (("assuming signed overflow does not occur "
11085 "when simplifying comparison of "
11086 "absolute value and zero"),
11087 WARN_STRICT_OVERFLOW_CONDITIONAL);
11088 return omit_one_operand_loc (loc, type,
11089 constant_boolean_node (true, type),
11090 arg0);
11093 /* Convert ABS_EXPR<x> < 0 to false. */
11094 strict_overflow_p = false;
11095 if (code == LT_EXPR
11096 && (integer_zerop (arg1) || real_zerop (arg1))
11097 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11099 if (strict_overflow_p)
11100 fold_overflow_warning (("assuming signed overflow does not occur "
11101 "when simplifying comparison of "
11102 "absolute value and zero"),
11103 WARN_STRICT_OVERFLOW_CONDITIONAL);
11104 return omit_one_operand_loc (loc, type,
11105 constant_boolean_node (false, type),
11106 arg0);
11109 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11110 and similarly for >= into !=. */
11111 if ((code == LT_EXPR || code == GE_EXPR)
11112 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11113 && TREE_CODE (arg1) == LSHIFT_EXPR
11114 && integer_onep (TREE_OPERAND (arg1, 0)))
11115 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11116 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11117 TREE_OPERAND (arg1, 1)),
11118 build_zero_cst (TREE_TYPE (arg0)));
11120 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11121 otherwise Y might be >= # of bits in X's type and thus e.g.
11122 (unsigned char) (1 << Y) for Y 15 might be 0.
11123 If the cast is widening, then 1 << Y should have unsigned type,
11124 otherwise if Y is number of bits in the signed shift type minus 1,
11125 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11126 31 might be 0xffffffff80000000. */
11127 if ((code == LT_EXPR || code == GE_EXPR)
11128 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11129 && CONVERT_EXPR_P (arg1)
11130 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
11131 && (element_precision (TREE_TYPE (arg1))
11132 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
11133 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
11134 || (element_precision (TREE_TYPE (arg1))
11135 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
11136 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
11138 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11139 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
11140 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11141 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
11142 build_zero_cst (TREE_TYPE (arg0)));
11145 return NULL_TREE;
11147 case UNORDERED_EXPR:
11148 case ORDERED_EXPR:
11149 case UNLT_EXPR:
11150 case UNLE_EXPR:
11151 case UNGT_EXPR:
11152 case UNGE_EXPR:
11153 case UNEQ_EXPR:
11154 case LTGT_EXPR:
11155 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11157 tree targ0 = strip_float_extensions (arg0);
11158 tree targ1 = strip_float_extensions (arg1);
11159 tree newtype = TREE_TYPE (targ0);
11161 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
11162 newtype = TREE_TYPE (targ1);
11164 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11165 return fold_build2_loc (loc, code, type,
11166 fold_convert_loc (loc, newtype, targ0),
11167 fold_convert_loc (loc, newtype, targ1));
11170 return NULL_TREE;
11172 case COMPOUND_EXPR:
11173 /* When pedantic, a compound expression can be neither an lvalue
11174 nor an integer constant expression. */
11175 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11176 return NULL_TREE;
11177 /* Don't let (0, 0) be null pointer constant. */
11178 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11179 : fold_convert_loc (loc, type, arg1);
11180 return pedantic_non_lvalue_loc (loc, tem);
11182 case ASSERT_EXPR:
11183 /* An ASSERT_EXPR should never be passed to fold_binary. */
11184 gcc_unreachable ();
11186 default:
11187 return NULL_TREE;
11188 } /* switch (code) */
11191 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11192 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
11193 of GOTO_EXPR. */
11195 static tree
11196 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
11198 switch (TREE_CODE (*tp))
11200 case LABEL_EXPR:
11201 return *tp;
11203 case GOTO_EXPR:
11204 *walk_subtrees = 0;
11206 /* fall through */
11208 default:
11209 return NULL_TREE;
11213 /* Return whether the sub-tree ST contains a label which is accessible from
11214 outside the sub-tree. */
11216 static bool
11217 contains_label_p (tree st)
11219 return
11220 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
11223 /* Fold a ternary expression of code CODE and type TYPE with operands
11224 OP0, OP1, and OP2. Return the folded expression if folding is
11225 successful. Otherwise, return NULL_TREE. */
11227 tree
11228 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
11229 tree op0, tree op1, tree op2)
11231 tree tem;
11232 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
11233 enum tree_code_class kind = TREE_CODE_CLASS (code);
11235 gcc_assert (IS_EXPR_CODE_CLASS (kind)
11236 && TREE_CODE_LENGTH (code) == 3);
11238 /* If this is a commutative operation, and OP0 is a constant, move it
11239 to OP1 to reduce the number of tests below. */
11240 if (commutative_ternary_tree_code (code)
11241 && tree_swap_operands_p (op0, op1))
11242 return fold_build3_loc (loc, code, type, op1, op0, op2);
11244 tem = generic_simplify (loc, code, type, op0, op1, op2);
11245 if (tem)
11246 return tem;
11248 /* Strip any conversions that don't change the mode. This is safe
11249 for every expression, except for a comparison expression because
11250 its signedness is derived from its operands. So, in the latter
11251 case, only strip conversions that don't change the signedness.
11253 Note that this is done as an internal manipulation within the
11254 constant folder, in order to find the simplest representation of
11255 the arguments so that their form can be studied. In any cases,
11256 the appropriate type conversions should be put back in the tree
11257 that will get out of the constant folder. */
11258 if (op0)
11260 arg0 = op0;
11261 STRIP_NOPS (arg0);
11264 if (op1)
11266 arg1 = op1;
11267 STRIP_NOPS (arg1);
11270 if (op2)
11272 arg2 = op2;
11273 STRIP_NOPS (arg2);
11276 switch (code)
11278 case COMPONENT_REF:
11279 if (TREE_CODE (arg0) == CONSTRUCTOR
11280 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
11282 unsigned HOST_WIDE_INT idx;
11283 tree field, value;
11284 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
11285 if (field == arg1)
11286 return value;
11288 return NULL_TREE;
11290 case COND_EXPR:
11291 case VEC_COND_EXPR:
11292 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11293 so all simple results must be passed through pedantic_non_lvalue. */
11294 if (TREE_CODE (arg0) == INTEGER_CST)
11296 tree unused_op = integer_zerop (arg0) ? op1 : op2;
11297 tem = integer_zerop (arg0) ? op2 : op1;
11298 /* Only optimize constant conditions when the selected branch
11299 has the same type as the COND_EXPR. This avoids optimizing
11300 away "c ? x : throw", where the throw has a void type.
11301 Avoid throwing away that operand which contains label. */
11302 if ((!TREE_SIDE_EFFECTS (unused_op)
11303 || !contains_label_p (unused_op))
11304 && (! VOID_TYPE_P (TREE_TYPE (tem))
11305 || VOID_TYPE_P (type)))
11306 return pedantic_non_lvalue_loc (loc, tem);
11307 return NULL_TREE;
11309 else if (TREE_CODE (arg0) == VECTOR_CST)
11311 if ((TREE_CODE (arg1) == VECTOR_CST
11312 || TREE_CODE (arg1) == CONSTRUCTOR)
11313 && (TREE_CODE (arg2) == VECTOR_CST
11314 || TREE_CODE (arg2) == CONSTRUCTOR))
11316 unsigned int nelts = VECTOR_CST_NELTS (arg0), i;
11317 gcc_assert (nelts == TYPE_VECTOR_SUBPARTS (type));
11318 auto_vec_perm_indices sel (nelts);
11319 for (i = 0; i < nelts; i++)
11321 tree val = VECTOR_CST_ELT (arg0, i);
11322 if (integer_all_onesp (val))
11323 sel.quick_push (i);
11324 else if (integer_zerop (val))
11325 sel.quick_push (nelts + i);
11326 else /* Currently unreachable. */
11327 return NULL_TREE;
11329 tree t = fold_vec_perm (type, arg1, arg2, sel);
11330 if (t != NULL_TREE)
11331 return t;
11335 /* If we have A op B ? A : C, we may be able to convert this to a
11336 simpler expression, depending on the operation and the values
11337 of B and C. Signed zeros prevent all of these transformations,
11338 for reasons given above each one.
11340 Also try swapping the arguments and inverting the conditional. */
11341 if (COMPARISON_CLASS_P (arg0)
11342 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), arg1)
11343 && !HONOR_SIGNED_ZEROS (element_mode (arg1)))
11345 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
11346 if (tem)
11347 return tem;
11350 if (COMPARISON_CLASS_P (arg0)
11351 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op2)
11352 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
11354 location_t loc0 = expr_location_or (arg0, loc);
11355 tem = fold_invert_truthvalue (loc0, arg0);
11356 if (tem && COMPARISON_CLASS_P (tem))
11358 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
11359 if (tem)
11360 return tem;
11364 /* If the second operand is simpler than the third, swap them
11365 since that produces better jump optimization results. */
11366 if (truth_value_p (TREE_CODE (arg0))
11367 && tree_swap_operands_p (op1, op2))
11369 location_t loc0 = expr_location_or (arg0, loc);
11370 /* See if this can be inverted. If it can't, possibly because
11371 it was a floating-point inequality comparison, don't do
11372 anything. */
11373 tem = fold_invert_truthvalue (loc0, arg0);
11374 if (tem)
11375 return fold_build3_loc (loc, code, type, tem, op2, op1);
11378 /* Convert A ? 1 : 0 to simply A. */
11379 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
11380 : (integer_onep (op1)
11381 && !VECTOR_TYPE_P (type)))
11382 && integer_zerop (op2)
11383 /* If we try to convert OP0 to our type, the
11384 call to fold will try to move the conversion inside
11385 a COND, which will recurse. In that case, the COND_EXPR
11386 is probably the best choice, so leave it alone. */
11387 && type == TREE_TYPE (arg0))
11388 return pedantic_non_lvalue_loc (loc, arg0);
11390 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11391 over COND_EXPR in cases such as floating point comparisons. */
11392 if (integer_zerop (op1)
11393 && code == COND_EXPR
11394 && integer_onep (op2)
11395 && !VECTOR_TYPE_P (type)
11396 && truth_value_p (TREE_CODE (arg0)))
11397 return pedantic_non_lvalue_loc (loc,
11398 fold_convert_loc (loc, type,
11399 invert_truthvalue_loc (loc,
11400 arg0)));
11402 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11403 if (TREE_CODE (arg0) == LT_EXPR
11404 && integer_zerop (TREE_OPERAND (arg0, 1))
11405 && integer_zerop (op2)
11406 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
11408 /* sign_bit_p looks through both zero and sign extensions,
11409 but for this optimization only sign extensions are
11410 usable. */
11411 tree tem2 = TREE_OPERAND (arg0, 0);
11412 while (tem != tem2)
11414 if (TREE_CODE (tem2) != NOP_EXPR
11415 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
11417 tem = NULL_TREE;
11418 break;
11420 tem2 = TREE_OPERAND (tem2, 0);
11422 /* sign_bit_p only checks ARG1 bits within A's precision.
11423 If <sign bit of A> has wider type than A, bits outside
11424 of A's precision in <sign bit of A> need to be checked.
11425 If they are all 0, this optimization needs to be done
11426 in unsigned A's type, if they are all 1 in signed A's type,
11427 otherwise this can't be done. */
11428 if (tem
11429 && TYPE_PRECISION (TREE_TYPE (tem))
11430 < TYPE_PRECISION (TREE_TYPE (arg1))
11431 && TYPE_PRECISION (TREE_TYPE (tem))
11432 < TYPE_PRECISION (type))
11434 int inner_width, outer_width;
11435 tree tem_type;
11437 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
11438 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
11439 if (outer_width > TYPE_PRECISION (type))
11440 outer_width = TYPE_PRECISION (type);
11442 wide_int mask = wi::shifted_mask
11443 (inner_width, outer_width - inner_width, false,
11444 TYPE_PRECISION (TREE_TYPE (arg1)));
11446 wide_int common = mask & arg1;
11447 if (common == mask)
11449 tem_type = signed_type_for (TREE_TYPE (tem));
11450 tem = fold_convert_loc (loc, tem_type, tem);
11452 else if (common == 0)
11454 tem_type = unsigned_type_for (TREE_TYPE (tem));
11455 tem = fold_convert_loc (loc, tem_type, tem);
11457 else
11458 tem = NULL;
11461 if (tem)
11462 return
11463 fold_convert_loc (loc, type,
11464 fold_build2_loc (loc, BIT_AND_EXPR,
11465 TREE_TYPE (tem), tem,
11466 fold_convert_loc (loc,
11467 TREE_TYPE (tem),
11468 arg1)));
11471 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11472 already handled above. */
11473 if (TREE_CODE (arg0) == BIT_AND_EXPR
11474 && integer_onep (TREE_OPERAND (arg0, 1))
11475 && integer_zerop (op2)
11476 && integer_pow2p (arg1))
11478 tree tem = TREE_OPERAND (arg0, 0);
11479 STRIP_NOPS (tem);
11480 if (TREE_CODE (tem) == RSHIFT_EXPR
11481 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
11482 && (unsigned HOST_WIDE_INT) tree_log2 (arg1)
11483 == tree_to_uhwi (TREE_OPERAND (tem, 1)))
11484 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11485 fold_convert_loc (loc, type,
11486 TREE_OPERAND (tem, 0)),
11487 op1);
11490 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11491 is probably obsolete because the first operand should be a
11492 truth value (that's why we have the two cases above), but let's
11493 leave it in until we can confirm this for all front-ends. */
11494 if (integer_zerop (op2)
11495 && TREE_CODE (arg0) == NE_EXPR
11496 && integer_zerop (TREE_OPERAND (arg0, 1))
11497 && integer_pow2p (arg1)
11498 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11499 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11500 arg1, OEP_ONLY_CONST))
11501 return pedantic_non_lvalue_loc (loc,
11502 fold_convert_loc (loc, type,
11503 TREE_OPERAND (arg0, 0)));
11505 /* Disable the transformations below for vectors, since
11506 fold_binary_op_with_conditional_arg may undo them immediately,
11507 yielding an infinite loop. */
11508 if (code == VEC_COND_EXPR)
11509 return NULL_TREE;
11511 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11512 if (integer_zerop (op2)
11513 && truth_value_p (TREE_CODE (arg0))
11514 && truth_value_p (TREE_CODE (arg1))
11515 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11516 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
11517 : TRUTH_ANDIF_EXPR,
11518 type, fold_convert_loc (loc, type, arg0), op1);
11520 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11521 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
11522 && truth_value_p (TREE_CODE (arg0))
11523 && truth_value_p (TREE_CODE (arg1))
11524 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11526 location_t loc0 = expr_location_or (arg0, loc);
11527 /* Only perform transformation if ARG0 is easily inverted. */
11528 tem = fold_invert_truthvalue (loc0, arg0);
11529 if (tem)
11530 return fold_build2_loc (loc, code == VEC_COND_EXPR
11531 ? BIT_IOR_EXPR
11532 : TRUTH_ORIF_EXPR,
11533 type, fold_convert_loc (loc, type, tem),
11534 op1);
11537 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11538 if (integer_zerop (arg1)
11539 && truth_value_p (TREE_CODE (arg0))
11540 && truth_value_p (TREE_CODE (op2))
11541 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11543 location_t loc0 = expr_location_or (arg0, loc);
11544 /* Only perform transformation if ARG0 is easily inverted. */
11545 tem = fold_invert_truthvalue (loc0, arg0);
11546 if (tem)
11547 return fold_build2_loc (loc, code == VEC_COND_EXPR
11548 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
11549 type, fold_convert_loc (loc, type, tem),
11550 op2);
11553 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11554 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
11555 && truth_value_p (TREE_CODE (arg0))
11556 && truth_value_p (TREE_CODE (op2))
11557 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11558 return fold_build2_loc (loc, code == VEC_COND_EXPR
11559 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
11560 type, fold_convert_loc (loc, type, arg0), op2);
11562 return NULL_TREE;
11564 case CALL_EXPR:
11565 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11566 of fold_ternary on them. */
11567 gcc_unreachable ();
11569 case BIT_FIELD_REF:
11570 if (TREE_CODE (arg0) == VECTOR_CST
11571 && (type == TREE_TYPE (TREE_TYPE (arg0))
11572 || (TREE_CODE (type) == VECTOR_TYPE
11573 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))))
11575 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
11576 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
11577 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
11578 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
11580 if (n != 0
11581 && (idx % width) == 0
11582 && (n % width) == 0
11583 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
11585 idx = idx / width;
11586 n = n / width;
11588 if (TREE_CODE (arg0) == VECTOR_CST)
11590 if (n == 1)
11591 return VECTOR_CST_ELT (arg0, idx);
11593 auto_vec<tree, 32> vals (n);
11594 for (unsigned i = 0; i < n; ++i)
11595 vals.quick_push (VECTOR_CST_ELT (arg0, idx + i));
11596 return build_vector (type, vals);
11601 /* On constants we can use native encode/interpret to constant
11602 fold (nearly) all BIT_FIELD_REFs. */
11603 if (CONSTANT_CLASS_P (arg0)
11604 && can_native_interpret_type_p (type)
11605 && BITS_PER_UNIT == 8)
11607 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11608 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
11609 /* Limit us to a reasonable amount of work. To relax the
11610 other limitations we need bit-shifting of the buffer
11611 and rounding up the size. */
11612 if (bitpos % BITS_PER_UNIT == 0
11613 && bitsize % BITS_PER_UNIT == 0
11614 && bitsize <= MAX_BITSIZE_MODE_ANY_MODE)
11616 unsigned char b[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
11617 unsigned HOST_WIDE_INT len
11618 = native_encode_expr (arg0, b, bitsize / BITS_PER_UNIT,
11619 bitpos / BITS_PER_UNIT);
11620 if (len > 0
11621 && len * BITS_PER_UNIT >= bitsize)
11623 tree v = native_interpret_expr (type, b,
11624 bitsize / BITS_PER_UNIT);
11625 if (v)
11626 return v;
11631 return NULL_TREE;
11633 case FMA_EXPR:
11634 /* For integers we can decompose the FMA if possible. */
11635 if (TREE_CODE (arg0) == INTEGER_CST
11636 && TREE_CODE (arg1) == INTEGER_CST)
11637 return fold_build2_loc (loc, PLUS_EXPR, type,
11638 const_binop (MULT_EXPR, arg0, arg1), arg2);
11639 if (integer_zerop (arg2))
11640 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11642 return fold_fma (loc, type, arg0, arg1, arg2);
11644 case VEC_PERM_EXPR:
11645 if (TREE_CODE (arg2) == VECTOR_CST)
11647 unsigned int nelts = VECTOR_CST_NELTS (arg2), i, mask, mask2;
11648 bool need_mask_canon = false;
11649 bool need_mask_canon2 = false;
11650 bool all_in_vec0 = true;
11651 bool all_in_vec1 = true;
11652 bool maybe_identity = true;
11653 bool single_arg = (op0 == op1);
11654 bool changed = false;
11656 mask2 = 2 * nelts - 1;
11657 mask = single_arg ? (nelts - 1) : mask2;
11658 gcc_assert (nelts == TYPE_VECTOR_SUBPARTS (type));
11659 auto_vec_perm_indices sel (nelts);
11660 auto_vec_perm_indices sel2 (nelts);
11661 for (i = 0; i < nelts; i++)
11663 tree val = VECTOR_CST_ELT (arg2, i);
11664 if (TREE_CODE (val) != INTEGER_CST)
11665 return NULL_TREE;
11667 /* Make sure that the perm value is in an acceptable
11668 range. */
11669 wide_int t = val;
11670 need_mask_canon |= wi::gtu_p (t, mask);
11671 need_mask_canon2 |= wi::gtu_p (t, mask2);
11672 unsigned int elt = t.to_uhwi () & mask;
11673 unsigned int elt2 = t.to_uhwi () & mask2;
11675 if (elt < nelts)
11676 all_in_vec1 = false;
11677 else
11678 all_in_vec0 = false;
11680 if ((elt & (nelts - 1)) != i)
11681 maybe_identity = false;
11683 sel.quick_push (elt);
11684 sel2.quick_push (elt2);
11687 if (maybe_identity)
11689 if (all_in_vec0)
11690 return op0;
11691 if (all_in_vec1)
11692 return op1;
11695 if (all_in_vec0)
11696 op1 = op0;
11697 else if (all_in_vec1)
11699 op0 = op1;
11700 for (i = 0; i < nelts; i++)
11701 sel[i] -= nelts;
11702 need_mask_canon = true;
11705 if ((TREE_CODE (op0) == VECTOR_CST
11706 || TREE_CODE (op0) == CONSTRUCTOR)
11707 && (TREE_CODE (op1) == VECTOR_CST
11708 || TREE_CODE (op1) == CONSTRUCTOR))
11710 tree t = fold_vec_perm (type, op0, op1, sel);
11711 if (t != NULL_TREE)
11712 return t;
11715 if (op0 == op1 && !single_arg)
11716 changed = true;
11718 /* Some targets are deficient and fail to expand a single
11719 argument permutation while still allowing an equivalent
11720 2-argument version. */
11721 if (need_mask_canon && arg2 == op2
11722 && !can_vec_perm_p (TYPE_MODE (type), false, &sel)
11723 && can_vec_perm_p (TYPE_MODE (type), false, &sel2))
11725 need_mask_canon = need_mask_canon2;
11726 sel = sel2;
11729 if (need_mask_canon && arg2 == op2)
11731 tree eltype = TREE_TYPE (TREE_TYPE (arg2));
11732 auto_vec<tree, 32> tsel (nelts);
11733 for (i = 0; i < nelts; i++)
11734 tsel.quick_push (build_int_cst (eltype, sel[i]));
11735 op2 = build_vector (TREE_TYPE (arg2), tsel);
11736 changed = true;
11739 if (changed)
11740 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2);
11742 return NULL_TREE;
11744 case BIT_INSERT_EXPR:
11745 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11746 if (TREE_CODE (arg0) == INTEGER_CST
11747 && TREE_CODE (arg1) == INTEGER_CST)
11749 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11750 unsigned bitsize = TYPE_PRECISION (TREE_TYPE (arg1));
11751 wide_int tem = wi::bit_and (arg0,
11752 wi::shifted_mask (bitpos, bitsize, true,
11753 TYPE_PRECISION (type)));
11754 wide_int tem2
11755 = wi::lshift (wi::zext (wi::to_wide (arg1, TYPE_PRECISION (type)),
11756 bitsize), bitpos);
11757 return wide_int_to_tree (type, wi::bit_or (tem, tem2));
11759 else if (TREE_CODE (arg0) == VECTOR_CST
11760 && CONSTANT_CLASS_P (arg1)
11761 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0)),
11762 TREE_TYPE (arg1)))
11764 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11765 unsigned HOST_WIDE_INT elsize
11766 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1)));
11767 if (bitpos % elsize == 0)
11769 unsigned k = bitpos / elsize;
11770 if (operand_equal_p (VECTOR_CST_ELT (arg0, k), arg1, 0))
11771 return arg0;
11772 else
11774 unsigned int nelts = VECTOR_CST_NELTS (arg0);
11775 auto_vec<tree, 32> elts (nelts);
11776 elts.quick_grow (nelts);
11777 memcpy (&elts[0], VECTOR_CST_ELTS (arg0),
11778 sizeof (tree) * nelts);
11779 elts[k] = arg1;
11780 return build_vector (type, elts);
11784 return NULL_TREE;
11786 default:
11787 return NULL_TREE;
11788 } /* switch (code) */
11791 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11792 of an array (or vector). */
11794 tree
11795 get_array_ctor_element_at_index (tree ctor, offset_int access_index)
11797 tree index_type = NULL_TREE;
11798 offset_int low_bound = 0;
11800 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
11802 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
11803 if (domain_type && TYPE_MIN_VALUE (domain_type))
11805 /* Static constructors for variably sized objects makes no sense. */
11806 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
11807 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
11808 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
11812 if (index_type)
11813 access_index = wi::ext (access_index, TYPE_PRECISION (index_type),
11814 TYPE_SIGN (index_type));
11816 offset_int index = low_bound - 1;
11817 if (index_type)
11818 index = wi::ext (index, TYPE_PRECISION (index_type),
11819 TYPE_SIGN (index_type));
11821 offset_int max_index;
11822 unsigned HOST_WIDE_INT cnt;
11823 tree cfield, cval;
11825 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
11827 /* Array constructor might explicitly set index, or specify a range,
11828 or leave index NULL meaning that it is next index after previous
11829 one. */
11830 if (cfield)
11832 if (TREE_CODE (cfield) == INTEGER_CST)
11833 max_index = index = wi::to_offset (cfield);
11834 else
11836 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
11837 index = wi::to_offset (TREE_OPERAND (cfield, 0));
11838 max_index = wi::to_offset (TREE_OPERAND (cfield, 1));
11841 else
11843 index += 1;
11844 if (index_type)
11845 index = wi::ext (index, TYPE_PRECISION (index_type),
11846 TYPE_SIGN (index_type));
11847 max_index = index;
11850 /* Do we have match? */
11851 if (wi::cmpu (access_index, index) >= 0
11852 && wi::cmpu (access_index, max_index) <= 0)
11853 return cval;
11855 return NULL_TREE;
11858 /* Perform constant folding and related simplification of EXPR.
11859 The related simplifications include x*1 => x, x*0 => 0, etc.,
11860 and application of the associative law.
11861 NOP_EXPR conversions may be removed freely (as long as we
11862 are careful not to change the type of the overall expression).
11863 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11864 but we can constant-fold them if they have constant operands. */
11866 #ifdef ENABLE_FOLD_CHECKING
11867 # define fold(x) fold_1 (x)
11868 static tree fold_1 (tree);
11869 static
11870 #endif
11871 tree
11872 fold (tree expr)
11874 const tree t = expr;
11875 enum tree_code code = TREE_CODE (t);
11876 enum tree_code_class kind = TREE_CODE_CLASS (code);
11877 tree tem;
11878 location_t loc = EXPR_LOCATION (expr);
11880 /* Return right away if a constant. */
11881 if (kind == tcc_constant)
11882 return t;
11884 /* CALL_EXPR-like objects with variable numbers of operands are
11885 treated specially. */
11886 if (kind == tcc_vl_exp)
11888 if (code == CALL_EXPR)
11890 tem = fold_call_expr (loc, expr, false);
11891 return tem ? tem : expr;
11893 return expr;
11896 if (IS_EXPR_CODE_CLASS (kind))
11898 tree type = TREE_TYPE (t);
11899 tree op0, op1, op2;
11901 switch (TREE_CODE_LENGTH (code))
11903 case 1:
11904 op0 = TREE_OPERAND (t, 0);
11905 tem = fold_unary_loc (loc, code, type, op0);
11906 return tem ? tem : expr;
11907 case 2:
11908 op0 = TREE_OPERAND (t, 0);
11909 op1 = TREE_OPERAND (t, 1);
11910 tem = fold_binary_loc (loc, code, type, op0, op1);
11911 return tem ? tem : expr;
11912 case 3:
11913 op0 = TREE_OPERAND (t, 0);
11914 op1 = TREE_OPERAND (t, 1);
11915 op2 = TREE_OPERAND (t, 2);
11916 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
11917 return tem ? tem : expr;
11918 default:
11919 break;
11923 switch (code)
11925 case ARRAY_REF:
11927 tree op0 = TREE_OPERAND (t, 0);
11928 tree op1 = TREE_OPERAND (t, 1);
11930 if (TREE_CODE (op1) == INTEGER_CST
11931 && TREE_CODE (op0) == CONSTRUCTOR
11932 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
11934 tree val = get_array_ctor_element_at_index (op0,
11935 wi::to_offset (op1));
11936 if (val)
11937 return val;
11940 return t;
11943 /* Return a VECTOR_CST if possible. */
11944 case CONSTRUCTOR:
11946 tree type = TREE_TYPE (t);
11947 if (TREE_CODE (type) != VECTOR_TYPE)
11948 return t;
11950 unsigned i;
11951 tree val;
11952 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
11953 if (! CONSTANT_CLASS_P (val))
11954 return t;
11956 return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t));
11959 case CONST_DECL:
11960 return fold (DECL_INITIAL (t));
11962 default:
11963 return t;
11964 } /* switch (code) */
11967 #ifdef ENABLE_FOLD_CHECKING
11968 #undef fold
11970 static void fold_checksum_tree (const_tree, struct md5_ctx *,
11971 hash_table<nofree_ptr_hash<const tree_node> > *);
11972 static void fold_check_failed (const_tree, const_tree);
11973 void print_fold_checksum (const_tree);
11975 /* When --enable-checking=fold, compute a digest of expr before
11976 and after actual fold call to see if fold did not accidentally
11977 change original expr. */
11979 tree
11980 fold (tree expr)
11982 tree ret;
11983 struct md5_ctx ctx;
11984 unsigned char checksum_before[16], checksum_after[16];
11985 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
11987 md5_init_ctx (&ctx);
11988 fold_checksum_tree (expr, &ctx, &ht);
11989 md5_finish_ctx (&ctx, checksum_before);
11990 ht.empty ();
11992 ret = fold_1 (expr);
11994 md5_init_ctx (&ctx);
11995 fold_checksum_tree (expr, &ctx, &ht);
11996 md5_finish_ctx (&ctx, checksum_after);
11998 if (memcmp (checksum_before, checksum_after, 16))
11999 fold_check_failed (expr, ret);
12001 return ret;
12004 void
12005 print_fold_checksum (const_tree expr)
12007 struct md5_ctx ctx;
12008 unsigned char checksum[16], cnt;
12009 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12011 md5_init_ctx (&ctx);
12012 fold_checksum_tree (expr, &ctx, &ht);
12013 md5_finish_ctx (&ctx, checksum);
12014 for (cnt = 0; cnt < 16; ++cnt)
12015 fprintf (stderr, "%02x", checksum[cnt]);
12016 putc ('\n', stderr);
12019 static void
12020 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
12022 internal_error ("fold check: original tree changed by fold");
12025 static void
12026 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
12027 hash_table<nofree_ptr_hash <const tree_node> > *ht)
12029 const tree_node **slot;
12030 enum tree_code code;
12031 union tree_node buf;
12032 int i, len;
12034 recursive_label:
12035 if (expr == NULL)
12036 return;
12037 slot = ht->find_slot (expr, INSERT);
12038 if (*slot != NULL)
12039 return;
12040 *slot = expr;
12041 code = TREE_CODE (expr);
12042 if (TREE_CODE_CLASS (code) == tcc_declaration
12043 && HAS_DECL_ASSEMBLER_NAME_P (expr))
12045 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12046 memcpy ((char *) &buf, expr, tree_size (expr));
12047 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
12048 buf.decl_with_vis.symtab_node = NULL;
12049 expr = (tree) &buf;
12051 else if (TREE_CODE_CLASS (code) == tcc_type
12052 && (TYPE_POINTER_TO (expr)
12053 || TYPE_REFERENCE_TO (expr)
12054 || TYPE_CACHED_VALUES_P (expr)
12055 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
12056 || TYPE_NEXT_VARIANT (expr)
12057 || TYPE_ALIAS_SET_KNOWN_P (expr)))
12059 /* Allow these fields to be modified. */
12060 tree tmp;
12061 memcpy ((char *) &buf, expr, tree_size (expr));
12062 expr = tmp = (tree) &buf;
12063 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
12064 TYPE_POINTER_TO (tmp) = NULL;
12065 TYPE_REFERENCE_TO (tmp) = NULL;
12066 TYPE_NEXT_VARIANT (tmp) = NULL;
12067 TYPE_ALIAS_SET (tmp) = -1;
12068 if (TYPE_CACHED_VALUES_P (tmp))
12070 TYPE_CACHED_VALUES_P (tmp) = 0;
12071 TYPE_CACHED_VALUES (tmp) = NULL;
12074 md5_process_bytes (expr, tree_size (expr), ctx);
12075 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
12076 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
12077 if (TREE_CODE_CLASS (code) != tcc_type
12078 && TREE_CODE_CLASS (code) != tcc_declaration
12079 && code != TREE_LIST
12080 && code != SSA_NAME
12081 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
12082 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
12083 switch (TREE_CODE_CLASS (code))
12085 case tcc_constant:
12086 switch (code)
12088 case STRING_CST:
12089 md5_process_bytes (TREE_STRING_POINTER (expr),
12090 TREE_STRING_LENGTH (expr), ctx);
12091 break;
12092 case COMPLEX_CST:
12093 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
12094 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
12095 break;
12096 case VECTOR_CST:
12097 for (i = 0; i < (int) VECTOR_CST_NELTS (expr); ++i)
12098 fold_checksum_tree (VECTOR_CST_ELT (expr, i), ctx, ht);
12099 break;
12100 default:
12101 break;
12103 break;
12104 case tcc_exceptional:
12105 switch (code)
12107 case TREE_LIST:
12108 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
12109 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
12110 expr = TREE_CHAIN (expr);
12111 goto recursive_label;
12112 break;
12113 case TREE_VEC:
12114 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
12115 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
12116 break;
12117 default:
12118 break;
12120 break;
12121 case tcc_expression:
12122 case tcc_reference:
12123 case tcc_comparison:
12124 case tcc_unary:
12125 case tcc_binary:
12126 case tcc_statement:
12127 case tcc_vl_exp:
12128 len = TREE_OPERAND_LENGTH (expr);
12129 for (i = 0; i < len; ++i)
12130 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
12131 break;
12132 case tcc_declaration:
12133 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
12134 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
12135 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
12137 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
12138 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
12139 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
12140 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
12141 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
12144 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
12146 if (TREE_CODE (expr) == FUNCTION_DECL)
12148 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
12149 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
12151 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
12153 break;
12154 case tcc_type:
12155 if (TREE_CODE (expr) == ENUMERAL_TYPE)
12156 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
12157 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
12158 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
12159 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
12160 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
12161 if (INTEGRAL_TYPE_P (expr)
12162 || SCALAR_FLOAT_TYPE_P (expr))
12164 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
12165 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
12167 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
12168 if (TREE_CODE (expr) == RECORD_TYPE
12169 || TREE_CODE (expr) == UNION_TYPE
12170 || TREE_CODE (expr) == QUAL_UNION_TYPE)
12171 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
12172 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
12173 break;
12174 default:
12175 break;
12179 /* Helper function for outputting the checksum of a tree T. When
12180 debugging with gdb, you can "define mynext" to be "next" followed
12181 by "call debug_fold_checksum (op0)", then just trace down till the
12182 outputs differ. */
12184 DEBUG_FUNCTION void
12185 debug_fold_checksum (const_tree t)
12187 int i;
12188 unsigned char checksum[16];
12189 struct md5_ctx ctx;
12190 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12192 md5_init_ctx (&ctx);
12193 fold_checksum_tree (t, &ctx, &ht);
12194 md5_finish_ctx (&ctx, checksum);
12195 ht.empty ();
12197 for (i = 0; i < 16; i++)
12198 fprintf (stderr, "%d ", checksum[i]);
12200 fprintf (stderr, "\n");
12203 #endif
12205 /* Fold a unary tree expression with code CODE of type TYPE with an
12206 operand OP0. LOC is the location of the resulting expression.
12207 Return a folded expression if successful. Otherwise, return a tree
12208 expression with code CODE of type TYPE with an operand OP0. */
12210 tree
12211 fold_build1_loc (location_t loc,
12212 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
12214 tree tem;
12215 #ifdef ENABLE_FOLD_CHECKING
12216 unsigned char checksum_before[16], checksum_after[16];
12217 struct md5_ctx ctx;
12218 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12220 md5_init_ctx (&ctx);
12221 fold_checksum_tree (op0, &ctx, &ht);
12222 md5_finish_ctx (&ctx, checksum_before);
12223 ht.empty ();
12224 #endif
12226 tem = fold_unary_loc (loc, code, type, op0);
12227 if (!tem)
12228 tem = build1_loc (loc, code, type, op0 PASS_MEM_STAT);
12230 #ifdef ENABLE_FOLD_CHECKING
12231 md5_init_ctx (&ctx);
12232 fold_checksum_tree (op0, &ctx, &ht);
12233 md5_finish_ctx (&ctx, checksum_after);
12235 if (memcmp (checksum_before, checksum_after, 16))
12236 fold_check_failed (op0, tem);
12237 #endif
12238 return tem;
12241 /* Fold a binary tree expression with code CODE of type TYPE with
12242 operands OP0 and OP1. LOC is the location of the resulting
12243 expression. Return a folded expression if successful. Otherwise,
12244 return a tree expression with code CODE of type TYPE with operands
12245 OP0 and OP1. */
12247 tree
12248 fold_build2_loc (location_t loc,
12249 enum tree_code code, tree type, tree op0, tree op1
12250 MEM_STAT_DECL)
12252 tree tem;
12253 #ifdef ENABLE_FOLD_CHECKING
12254 unsigned char checksum_before_op0[16],
12255 checksum_before_op1[16],
12256 checksum_after_op0[16],
12257 checksum_after_op1[16];
12258 struct md5_ctx ctx;
12259 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12261 md5_init_ctx (&ctx);
12262 fold_checksum_tree (op0, &ctx, &ht);
12263 md5_finish_ctx (&ctx, checksum_before_op0);
12264 ht.empty ();
12266 md5_init_ctx (&ctx);
12267 fold_checksum_tree (op1, &ctx, &ht);
12268 md5_finish_ctx (&ctx, checksum_before_op1);
12269 ht.empty ();
12270 #endif
12272 tem = fold_binary_loc (loc, code, type, op0, op1);
12273 if (!tem)
12274 tem = build2_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
12276 #ifdef ENABLE_FOLD_CHECKING
12277 md5_init_ctx (&ctx);
12278 fold_checksum_tree (op0, &ctx, &ht);
12279 md5_finish_ctx (&ctx, checksum_after_op0);
12280 ht.empty ();
12282 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12283 fold_check_failed (op0, tem);
12285 md5_init_ctx (&ctx);
12286 fold_checksum_tree (op1, &ctx, &ht);
12287 md5_finish_ctx (&ctx, checksum_after_op1);
12289 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12290 fold_check_failed (op1, tem);
12291 #endif
12292 return tem;
12295 /* Fold a ternary tree expression with code CODE of type TYPE with
12296 operands OP0, OP1, and OP2. Return a folded expression if
12297 successful. Otherwise, return a tree expression with code CODE of
12298 type TYPE with operands OP0, OP1, and OP2. */
12300 tree
12301 fold_build3_loc (location_t loc, enum tree_code code, tree type,
12302 tree op0, tree op1, tree op2 MEM_STAT_DECL)
12304 tree tem;
12305 #ifdef ENABLE_FOLD_CHECKING
12306 unsigned char checksum_before_op0[16],
12307 checksum_before_op1[16],
12308 checksum_before_op2[16],
12309 checksum_after_op0[16],
12310 checksum_after_op1[16],
12311 checksum_after_op2[16];
12312 struct md5_ctx ctx;
12313 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12315 md5_init_ctx (&ctx);
12316 fold_checksum_tree (op0, &ctx, &ht);
12317 md5_finish_ctx (&ctx, checksum_before_op0);
12318 ht.empty ();
12320 md5_init_ctx (&ctx);
12321 fold_checksum_tree (op1, &ctx, &ht);
12322 md5_finish_ctx (&ctx, checksum_before_op1);
12323 ht.empty ();
12325 md5_init_ctx (&ctx);
12326 fold_checksum_tree (op2, &ctx, &ht);
12327 md5_finish_ctx (&ctx, checksum_before_op2);
12328 ht.empty ();
12329 #endif
12331 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
12332 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12333 if (!tem)
12334 tem = build3_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
12336 #ifdef ENABLE_FOLD_CHECKING
12337 md5_init_ctx (&ctx);
12338 fold_checksum_tree (op0, &ctx, &ht);
12339 md5_finish_ctx (&ctx, checksum_after_op0);
12340 ht.empty ();
12342 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12343 fold_check_failed (op0, tem);
12345 md5_init_ctx (&ctx);
12346 fold_checksum_tree (op1, &ctx, &ht);
12347 md5_finish_ctx (&ctx, checksum_after_op1);
12348 ht.empty ();
12350 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12351 fold_check_failed (op1, tem);
12353 md5_init_ctx (&ctx);
12354 fold_checksum_tree (op2, &ctx, &ht);
12355 md5_finish_ctx (&ctx, checksum_after_op2);
12357 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
12358 fold_check_failed (op2, tem);
12359 #endif
12360 return tem;
12363 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12364 arguments in ARGARRAY, and a null static chain.
12365 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12366 of type TYPE from the given operands as constructed by build_call_array. */
12368 tree
12369 fold_build_call_array_loc (location_t loc, tree type, tree fn,
12370 int nargs, tree *argarray)
12372 tree tem;
12373 #ifdef ENABLE_FOLD_CHECKING
12374 unsigned char checksum_before_fn[16],
12375 checksum_before_arglist[16],
12376 checksum_after_fn[16],
12377 checksum_after_arglist[16];
12378 struct md5_ctx ctx;
12379 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12380 int i;
12382 md5_init_ctx (&ctx);
12383 fold_checksum_tree (fn, &ctx, &ht);
12384 md5_finish_ctx (&ctx, checksum_before_fn);
12385 ht.empty ();
12387 md5_init_ctx (&ctx);
12388 for (i = 0; i < nargs; i++)
12389 fold_checksum_tree (argarray[i], &ctx, &ht);
12390 md5_finish_ctx (&ctx, checksum_before_arglist);
12391 ht.empty ();
12392 #endif
12394 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
12395 if (!tem)
12396 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
12398 #ifdef ENABLE_FOLD_CHECKING
12399 md5_init_ctx (&ctx);
12400 fold_checksum_tree (fn, &ctx, &ht);
12401 md5_finish_ctx (&ctx, checksum_after_fn);
12402 ht.empty ();
12404 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
12405 fold_check_failed (fn, tem);
12407 md5_init_ctx (&ctx);
12408 for (i = 0; i < nargs; i++)
12409 fold_checksum_tree (argarray[i], &ctx, &ht);
12410 md5_finish_ctx (&ctx, checksum_after_arglist);
12412 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
12413 fold_check_failed (NULL_TREE, tem);
12414 #endif
12415 return tem;
12418 /* Perform constant folding and related simplification of initializer
12419 expression EXPR. These behave identically to "fold_buildN" but ignore
12420 potential run-time traps and exceptions that fold must preserve. */
12422 #define START_FOLD_INIT \
12423 int saved_signaling_nans = flag_signaling_nans;\
12424 int saved_trapping_math = flag_trapping_math;\
12425 int saved_rounding_math = flag_rounding_math;\
12426 int saved_trapv = flag_trapv;\
12427 int saved_folding_initializer = folding_initializer;\
12428 flag_signaling_nans = 0;\
12429 flag_trapping_math = 0;\
12430 flag_rounding_math = 0;\
12431 flag_trapv = 0;\
12432 folding_initializer = 1;
12434 #define END_FOLD_INIT \
12435 flag_signaling_nans = saved_signaling_nans;\
12436 flag_trapping_math = saved_trapping_math;\
12437 flag_rounding_math = saved_rounding_math;\
12438 flag_trapv = saved_trapv;\
12439 folding_initializer = saved_folding_initializer;
12441 tree
12442 fold_build1_initializer_loc (location_t loc, enum tree_code code,
12443 tree type, tree op)
12445 tree result;
12446 START_FOLD_INIT;
12448 result = fold_build1_loc (loc, code, type, op);
12450 END_FOLD_INIT;
12451 return result;
12454 tree
12455 fold_build2_initializer_loc (location_t loc, enum tree_code code,
12456 tree type, tree op0, tree op1)
12458 tree result;
12459 START_FOLD_INIT;
12461 result = fold_build2_loc (loc, code, type, op0, op1);
12463 END_FOLD_INIT;
12464 return result;
12467 tree
12468 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
12469 int nargs, tree *argarray)
12471 tree result;
12472 START_FOLD_INIT;
12474 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
12476 END_FOLD_INIT;
12477 return result;
12480 #undef START_FOLD_INIT
12481 #undef END_FOLD_INIT
12483 /* Determine if first argument is a multiple of second argument. Return 0 if
12484 it is not, or we cannot easily determined it to be.
12486 An example of the sort of thing we care about (at this point; this routine
12487 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12488 fold cases do now) is discovering that
12490 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12492 is a multiple of
12494 SAVE_EXPR (J * 8)
12496 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12498 This code also handles discovering that
12500 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12502 is a multiple of 8 so we don't have to worry about dealing with a
12503 possible remainder.
12505 Note that we *look* inside a SAVE_EXPR only to determine how it was
12506 calculated; it is not safe for fold to do much of anything else with the
12507 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12508 at run time. For example, the latter example above *cannot* be implemented
12509 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12510 evaluation time of the original SAVE_EXPR is not necessarily the same at
12511 the time the new expression is evaluated. The only optimization of this
12512 sort that would be valid is changing
12514 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12516 divided by 8 to
12518 SAVE_EXPR (I) * SAVE_EXPR (J)
12520 (where the same SAVE_EXPR (J) is used in the original and the
12521 transformed version). */
12524 multiple_of_p (tree type, const_tree top, const_tree bottom)
12526 gimple *stmt;
12527 tree t1, op1, op2;
12529 if (operand_equal_p (top, bottom, 0))
12530 return 1;
12532 if (TREE_CODE (type) != INTEGER_TYPE)
12533 return 0;
12535 switch (TREE_CODE (top))
12537 case BIT_AND_EXPR:
12538 /* Bitwise and provides a power of two multiple. If the mask is
12539 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12540 if (!integer_pow2p (bottom))
12541 return 0;
12542 /* FALLTHRU */
12544 case MULT_EXPR:
12545 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12546 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12548 case MINUS_EXPR:
12549 /* It is impossible to prove if op0 - op1 is multiple of bottom
12550 precisely, so be conservative here checking if both op0 and op1
12551 are multiple of bottom. Note we check the second operand first
12552 since it's usually simpler. */
12553 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12554 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12556 case PLUS_EXPR:
12557 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12558 as op0 - 3 if the expression has unsigned type. For example,
12559 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12560 op1 = TREE_OPERAND (top, 1);
12561 if (TYPE_UNSIGNED (type)
12562 && TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sign_bit (op1))
12563 op1 = fold_build1 (NEGATE_EXPR, type, op1);
12564 return (multiple_of_p (type, op1, bottom)
12565 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12567 case LSHIFT_EXPR:
12568 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
12570 op1 = TREE_OPERAND (top, 1);
12571 /* const_binop may not detect overflow correctly,
12572 so check for it explicitly here. */
12573 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
12574 && 0 != (t1 = fold_convert (type,
12575 const_binop (LSHIFT_EXPR,
12576 size_one_node,
12577 op1)))
12578 && !TREE_OVERFLOW (t1))
12579 return multiple_of_p (type, t1, bottom);
12581 return 0;
12583 case NOP_EXPR:
12584 /* Can't handle conversions from non-integral or wider integral type. */
12585 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
12586 || (TYPE_PRECISION (type)
12587 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
12588 return 0;
12590 /* fall through */
12592 case SAVE_EXPR:
12593 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
12595 case COND_EXPR:
12596 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12597 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
12599 case INTEGER_CST:
12600 if (TREE_CODE (bottom) != INTEGER_CST
12601 || integer_zerop (bottom)
12602 || (TYPE_UNSIGNED (type)
12603 && (tree_int_cst_sgn (top) < 0
12604 || tree_int_cst_sgn (bottom) < 0)))
12605 return 0;
12606 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
12607 SIGNED);
12609 case SSA_NAME:
12610 if (TREE_CODE (bottom) == INTEGER_CST
12611 && (stmt = SSA_NAME_DEF_STMT (top)) != NULL
12612 && gimple_code (stmt) == GIMPLE_ASSIGN)
12614 enum tree_code code = gimple_assign_rhs_code (stmt);
12616 /* Check for special cases to see if top is defined as multiple
12617 of bottom:
12619 top = (X & ~(bottom - 1) ; bottom is power of 2
12623 Y = X % bottom
12624 top = X - Y. */
12625 if (code == BIT_AND_EXPR
12626 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12627 && TREE_CODE (op2) == INTEGER_CST
12628 && integer_pow2p (bottom)
12629 && wi::multiple_of_p (wi::to_widest (op2),
12630 wi::to_widest (bottom), UNSIGNED))
12631 return 1;
12633 op1 = gimple_assign_rhs1 (stmt);
12634 if (code == MINUS_EXPR
12635 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12636 && TREE_CODE (op2) == SSA_NAME
12637 && (stmt = SSA_NAME_DEF_STMT (op2)) != NULL
12638 && gimple_code (stmt) == GIMPLE_ASSIGN
12639 && (code = gimple_assign_rhs_code (stmt)) == TRUNC_MOD_EXPR
12640 && operand_equal_p (op1, gimple_assign_rhs1 (stmt), 0)
12641 && operand_equal_p (bottom, gimple_assign_rhs2 (stmt), 0))
12642 return 1;
12645 /* fall through */
12647 default:
12648 return 0;
12652 #define tree_expr_nonnegative_warnv_p(X, Y) \
12653 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12655 #define RECURSE(X) \
12656 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12658 /* Return true if CODE or TYPE is known to be non-negative. */
12660 static bool
12661 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
12663 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
12664 && truth_value_p (code))
12665 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12666 have a signed:1 type (where the value is -1 and 0). */
12667 return true;
12668 return false;
12671 /* Return true if (CODE OP0) is known to be non-negative. If the return
12672 value is based on the assumption that signed overflow is undefined,
12673 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12674 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12676 bool
12677 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12678 bool *strict_overflow_p, int depth)
12680 if (TYPE_UNSIGNED (type))
12681 return true;
12683 switch (code)
12685 case ABS_EXPR:
12686 /* We can't return 1 if flag_wrapv is set because
12687 ABS_EXPR<INT_MIN> = INT_MIN. */
12688 if (!ANY_INTEGRAL_TYPE_P (type))
12689 return true;
12690 if (TYPE_OVERFLOW_UNDEFINED (type))
12692 *strict_overflow_p = true;
12693 return true;
12695 break;
12697 case NON_LVALUE_EXPR:
12698 case FLOAT_EXPR:
12699 case FIX_TRUNC_EXPR:
12700 return RECURSE (op0);
12702 CASE_CONVERT:
12704 tree inner_type = TREE_TYPE (op0);
12705 tree outer_type = type;
12707 if (TREE_CODE (outer_type) == REAL_TYPE)
12709 if (TREE_CODE (inner_type) == REAL_TYPE)
12710 return RECURSE (op0);
12711 if (INTEGRAL_TYPE_P (inner_type))
12713 if (TYPE_UNSIGNED (inner_type))
12714 return true;
12715 return RECURSE (op0);
12718 else if (INTEGRAL_TYPE_P (outer_type))
12720 if (TREE_CODE (inner_type) == REAL_TYPE)
12721 return RECURSE (op0);
12722 if (INTEGRAL_TYPE_P (inner_type))
12723 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
12724 && TYPE_UNSIGNED (inner_type);
12727 break;
12729 default:
12730 return tree_simple_nonnegative_warnv_p (code, type);
12733 /* We don't know sign of `t', so be conservative and return false. */
12734 return false;
12737 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12738 value is based on the assumption that signed overflow is undefined,
12739 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12740 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12742 bool
12743 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12744 tree op1, bool *strict_overflow_p,
12745 int depth)
12747 if (TYPE_UNSIGNED (type))
12748 return true;
12750 switch (code)
12752 case POINTER_PLUS_EXPR:
12753 case PLUS_EXPR:
12754 if (FLOAT_TYPE_P (type))
12755 return RECURSE (op0) && RECURSE (op1);
12757 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12758 both unsigned and at least 2 bits shorter than the result. */
12759 if (TREE_CODE (type) == INTEGER_TYPE
12760 && TREE_CODE (op0) == NOP_EXPR
12761 && TREE_CODE (op1) == NOP_EXPR)
12763 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
12764 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
12765 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
12766 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
12768 unsigned int prec = MAX (TYPE_PRECISION (inner1),
12769 TYPE_PRECISION (inner2)) + 1;
12770 return prec < TYPE_PRECISION (type);
12773 break;
12775 case MULT_EXPR:
12776 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
12778 /* x * x is always non-negative for floating point x
12779 or without overflow. */
12780 if (operand_equal_p (op0, op1, 0)
12781 || (RECURSE (op0) && RECURSE (op1)))
12783 if (ANY_INTEGRAL_TYPE_P (type)
12784 && TYPE_OVERFLOW_UNDEFINED (type))
12785 *strict_overflow_p = true;
12786 return true;
12790 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12791 both unsigned and their total bits is shorter than the result. */
12792 if (TREE_CODE (type) == INTEGER_TYPE
12793 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
12794 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
12796 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
12797 ? TREE_TYPE (TREE_OPERAND (op0, 0))
12798 : TREE_TYPE (op0);
12799 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
12800 ? TREE_TYPE (TREE_OPERAND (op1, 0))
12801 : TREE_TYPE (op1);
12803 bool unsigned0 = TYPE_UNSIGNED (inner0);
12804 bool unsigned1 = TYPE_UNSIGNED (inner1);
12806 if (TREE_CODE (op0) == INTEGER_CST)
12807 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
12809 if (TREE_CODE (op1) == INTEGER_CST)
12810 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
12812 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
12813 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
12815 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
12816 ? tree_int_cst_min_precision (op0, UNSIGNED)
12817 : TYPE_PRECISION (inner0);
12819 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
12820 ? tree_int_cst_min_precision (op1, UNSIGNED)
12821 : TYPE_PRECISION (inner1);
12823 return precision0 + precision1 < TYPE_PRECISION (type);
12826 return false;
12828 case BIT_AND_EXPR:
12829 case MAX_EXPR:
12830 return RECURSE (op0) || RECURSE (op1);
12832 case BIT_IOR_EXPR:
12833 case BIT_XOR_EXPR:
12834 case MIN_EXPR:
12835 case RDIV_EXPR:
12836 case TRUNC_DIV_EXPR:
12837 case CEIL_DIV_EXPR:
12838 case FLOOR_DIV_EXPR:
12839 case ROUND_DIV_EXPR:
12840 return RECURSE (op0) && RECURSE (op1);
12842 case TRUNC_MOD_EXPR:
12843 return RECURSE (op0);
12845 case FLOOR_MOD_EXPR:
12846 return RECURSE (op1);
12848 case CEIL_MOD_EXPR:
12849 case ROUND_MOD_EXPR:
12850 default:
12851 return tree_simple_nonnegative_warnv_p (code, type);
12854 /* We don't know sign of `t', so be conservative and return false. */
12855 return false;
12858 /* Return true if T is known to be non-negative. If the return
12859 value is based on the assumption that signed overflow is undefined,
12860 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12861 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12863 bool
12864 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
12866 if (TYPE_UNSIGNED (TREE_TYPE (t)))
12867 return true;
12869 switch (TREE_CODE (t))
12871 case INTEGER_CST:
12872 return tree_int_cst_sgn (t) >= 0;
12874 case REAL_CST:
12875 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
12877 case FIXED_CST:
12878 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
12880 case COND_EXPR:
12881 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
12883 case SSA_NAME:
12884 /* Limit the depth of recursion to avoid quadratic behavior.
12885 This is expected to catch almost all occurrences in practice.
12886 If this code misses important cases that unbounded recursion
12887 would not, passes that need this information could be revised
12888 to provide it through dataflow propagation. */
12889 return (!name_registered_for_update_p (t)
12890 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
12891 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t),
12892 strict_overflow_p, depth));
12894 default:
12895 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
12899 /* Return true if T is known to be non-negative. If the return
12900 value is based on the assumption that signed overflow is undefined,
12901 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12902 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12904 bool
12905 tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1,
12906 bool *strict_overflow_p, int depth)
12908 switch (fn)
12910 CASE_CFN_ACOS:
12911 CASE_CFN_ACOSH:
12912 CASE_CFN_CABS:
12913 CASE_CFN_COSH:
12914 CASE_CFN_ERFC:
12915 CASE_CFN_EXP:
12916 CASE_CFN_EXP10:
12917 CASE_CFN_EXP2:
12918 CASE_CFN_FABS:
12919 CASE_CFN_FDIM:
12920 CASE_CFN_HYPOT:
12921 CASE_CFN_POW10:
12922 CASE_CFN_FFS:
12923 CASE_CFN_PARITY:
12924 CASE_CFN_POPCOUNT:
12925 CASE_CFN_CLZ:
12926 CASE_CFN_CLRSB:
12927 case CFN_BUILT_IN_BSWAP32:
12928 case CFN_BUILT_IN_BSWAP64:
12929 /* Always true. */
12930 return true;
12932 CASE_CFN_SQRT:
12933 /* sqrt(-0.0) is -0.0. */
12934 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
12935 return true;
12936 return RECURSE (arg0);
12938 CASE_CFN_ASINH:
12939 CASE_CFN_ATAN:
12940 CASE_CFN_ATANH:
12941 CASE_CFN_CBRT:
12942 CASE_CFN_CEIL:
12943 CASE_CFN_ERF:
12944 CASE_CFN_EXPM1:
12945 CASE_CFN_FLOOR:
12946 CASE_CFN_FMOD:
12947 CASE_CFN_FREXP:
12948 CASE_CFN_ICEIL:
12949 CASE_CFN_IFLOOR:
12950 CASE_CFN_IRINT:
12951 CASE_CFN_IROUND:
12952 CASE_CFN_LCEIL:
12953 CASE_CFN_LDEXP:
12954 CASE_CFN_LFLOOR:
12955 CASE_CFN_LLCEIL:
12956 CASE_CFN_LLFLOOR:
12957 CASE_CFN_LLRINT:
12958 CASE_CFN_LLROUND:
12959 CASE_CFN_LRINT:
12960 CASE_CFN_LROUND:
12961 CASE_CFN_MODF:
12962 CASE_CFN_NEARBYINT:
12963 CASE_CFN_RINT:
12964 CASE_CFN_ROUND:
12965 CASE_CFN_SCALB:
12966 CASE_CFN_SCALBLN:
12967 CASE_CFN_SCALBN:
12968 CASE_CFN_SIGNBIT:
12969 CASE_CFN_SIGNIFICAND:
12970 CASE_CFN_SINH:
12971 CASE_CFN_TANH:
12972 CASE_CFN_TRUNC:
12973 /* True if the 1st argument is nonnegative. */
12974 return RECURSE (arg0);
12976 CASE_CFN_FMAX:
12977 /* True if the 1st OR 2nd arguments are nonnegative. */
12978 return RECURSE (arg0) || RECURSE (arg1);
12980 CASE_CFN_FMIN:
12981 /* True if the 1st AND 2nd arguments are nonnegative. */
12982 return RECURSE (arg0) && RECURSE (arg1);
12984 CASE_CFN_COPYSIGN:
12985 /* True if the 2nd argument is nonnegative. */
12986 return RECURSE (arg1);
12988 CASE_CFN_POWI:
12989 /* True if the 1st argument is nonnegative or the second
12990 argument is an even integer. */
12991 if (TREE_CODE (arg1) == INTEGER_CST
12992 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
12993 return true;
12994 return RECURSE (arg0);
12996 CASE_CFN_POW:
12997 /* True if the 1st argument is nonnegative or the second
12998 argument is an even integer valued real. */
12999 if (TREE_CODE (arg1) == REAL_CST)
13001 REAL_VALUE_TYPE c;
13002 HOST_WIDE_INT n;
13004 c = TREE_REAL_CST (arg1);
13005 n = real_to_integer (&c);
13006 if ((n & 1) == 0)
13008 REAL_VALUE_TYPE cint;
13009 real_from_integer (&cint, VOIDmode, n, SIGNED);
13010 if (real_identical (&c, &cint))
13011 return true;
13014 return RECURSE (arg0);
13016 default:
13017 break;
13019 return tree_simple_nonnegative_warnv_p (CALL_EXPR, type);
13022 /* Return true if T is known to be non-negative. If the return
13023 value is based on the assumption that signed overflow is undefined,
13024 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13025 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13027 static bool
13028 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13030 enum tree_code code = TREE_CODE (t);
13031 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13032 return true;
13034 switch (code)
13036 case TARGET_EXPR:
13038 tree temp = TARGET_EXPR_SLOT (t);
13039 t = TARGET_EXPR_INITIAL (t);
13041 /* If the initializer is non-void, then it's a normal expression
13042 that will be assigned to the slot. */
13043 if (!VOID_TYPE_P (t))
13044 return RECURSE (t);
13046 /* Otherwise, the initializer sets the slot in some way. One common
13047 way is an assignment statement at the end of the initializer. */
13048 while (1)
13050 if (TREE_CODE (t) == BIND_EXPR)
13051 t = expr_last (BIND_EXPR_BODY (t));
13052 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
13053 || TREE_CODE (t) == TRY_CATCH_EXPR)
13054 t = expr_last (TREE_OPERAND (t, 0));
13055 else if (TREE_CODE (t) == STATEMENT_LIST)
13056 t = expr_last (t);
13057 else
13058 break;
13060 if (TREE_CODE (t) == MODIFY_EXPR
13061 && TREE_OPERAND (t, 0) == temp)
13062 return RECURSE (TREE_OPERAND (t, 1));
13064 return false;
13067 case CALL_EXPR:
13069 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
13070 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
13072 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
13073 get_call_combined_fn (t),
13074 arg0,
13075 arg1,
13076 strict_overflow_p, depth);
13078 case COMPOUND_EXPR:
13079 case MODIFY_EXPR:
13080 return RECURSE (TREE_OPERAND (t, 1));
13082 case BIND_EXPR:
13083 return RECURSE (expr_last (TREE_OPERAND (t, 1)));
13085 case SAVE_EXPR:
13086 return RECURSE (TREE_OPERAND (t, 0));
13088 default:
13089 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
13093 #undef RECURSE
13094 #undef tree_expr_nonnegative_warnv_p
13096 /* Return true if T is known to be non-negative. If the return
13097 value is based on the assumption that signed overflow is undefined,
13098 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13099 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13101 bool
13102 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13104 enum tree_code code;
13105 if (t == error_mark_node)
13106 return false;
13108 code = TREE_CODE (t);
13109 switch (TREE_CODE_CLASS (code))
13111 case tcc_binary:
13112 case tcc_comparison:
13113 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13114 TREE_TYPE (t),
13115 TREE_OPERAND (t, 0),
13116 TREE_OPERAND (t, 1),
13117 strict_overflow_p, depth);
13119 case tcc_unary:
13120 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13121 TREE_TYPE (t),
13122 TREE_OPERAND (t, 0),
13123 strict_overflow_p, depth);
13125 case tcc_constant:
13126 case tcc_declaration:
13127 case tcc_reference:
13128 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13130 default:
13131 break;
13134 switch (code)
13136 case TRUTH_AND_EXPR:
13137 case TRUTH_OR_EXPR:
13138 case TRUTH_XOR_EXPR:
13139 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13140 TREE_TYPE (t),
13141 TREE_OPERAND (t, 0),
13142 TREE_OPERAND (t, 1),
13143 strict_overflow_p, depth);
13144 case TRUTH_NOT_EXPR:
13145 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13146 TREE_TYPE (t),
13147 TREE_OPERAND (t, 0),
13148 strict_overflow_p, depth);
13150 case COND_EXPR:
13151 case CONSTRUCTOR:
13152 case OBJ_TYPE_REF:
13153 case ASSERT_EXPR:
13154 case ADDR_EXPR:
13155 case WITH_SIZE_EXPR:
13156 case SSA_NAME:
13157 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13159 default:
13160 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth);
13164 /* Return true if `t' is known to be non-negative. Handle warnings
13165 about undefined signed overflow. */
13167 bool
13168 tree_expr_nonnegative_p (tree t)
13170 bool ret, strict_overflow_p;
13172 strict_overflow_p = false;
13173 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
13174 if (strict_overflow_p)
13175 fold_overflow_warning (("assuming signed overflow does not occur when "
13176 "determining that expression is always "
13177 "non-negative"),
13178 WARN_STRICT_OVERFLOW_MISC);
13179 return ret;
13183 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13184 For floating point we further ensure that T is not denormal.
13185 Similar logic is present in nonzero_address in rtlanal.h.
13187 If the return value is based on the assumption that signed overflow
13188 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13189 change *STRICT_OVERFLOW_P. */
13191 bool
13192 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
13193 bool *strict_overflow_p)
13195 switch (code)
13197 case ABS_EXPR:
13198 return tree_expr_nonzero_warnv_p (op0,
13199 strict_overflow_p);
13201 case NOP_EXPR:
13203 tree inner_type = TREE_TYPE (op0);
13204 tree outer_type = type;
13206 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
13207 && tree_expr_nonzero_warnv_p (op0,
13208 strict_overflow_p));
13210 break;
13212 case NON_LVALUE_EXPR:
13213 return tree_expr_nonzero_warnv_p (op0,
13214 strict_overflow_p);
13216 default:
13217 break;
13220 return false;
13223 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13224 For floating point we further ensure that T is not denormal.
13225 Similar logic is present in nonzero_address in rtlanal.h.
13227 If the return value is based on the assumption that signed overflow
13228 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13229 change *STRICT_OVERFLOW_P. */
13231 bool
13232 tree_binary_nonzero_warnv_p (enum tree_code code,
13233 tree type,
13234 tree op0,
13235 tree op1, bool *strict_overflow_p)
13237 bool sub_strict_overflow_p;
13238 switch (code)
13240 case POINTER_PLUS_EXPR:
13241 case PLUS_EXPR:
13242 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
13244 /* With the presence of negative values it is hard
13245 to say something. */
13246 sub_strict_overflow_p = false;
13247 if (!tree_expr_nonnegative_warnv_p (op0,
13248 &sub_strict_overflow_p)
13249 || !tree_expr_nonnegative_warnv_p (op1,
13250 &sub_strict_overflow_p))
13251 return false;
13252 /* One of operands must be positive and the other non-negative. */
13253 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13254 overflows, on a twos-complement machine the sum of two
13255 nonnegative numbers can never be zero. */
13256 return (tree_expr_nonzero_warnv_p (op0,
13257 strict_overflow_p)
13258 || tree_expr_nonzero_warnv_p (op1,
13259 strict_overflow_p));
13261 break;
13263 case MULT_EXPR:
13264 if (TYPE_OVERFLOW_UNDEFINED (type))
13266 if (tree_expr_nonzero_warnv_p (op0,
13267 strict_overflow_p)
13268 && tree_expr_nonzero_warnv_p (op1,
13269 strict_overflow_p))
13271 *strict_overflow_p = true;
13272 return true;
13275 break;
13277 case MIN_EXPR:
13278 sub_strict_overflow_p = false;
13279 if (tree_expr_nonzero_warnv_p (op0,
13280 &sub_strict_overflow_p)
13281 && tree_expr_nonzero_warnv_p (op1,
13282 &sub_strict_overflow_p))
13284 if (sub_strict_overflow_p)
13285 *strict_overflow_p = true;
13287 break;
13289 case MAX_EXPR:
13290 sub_strict_overflow_p = false;
13291 if (tree_expr_nonzero_warnv_p (op0,
13292 &sub_strict_overflow_p))
13294 if (sub_strict_overflow_p)
13295 *strict_overflow_p = true;
13297 /* When both operands are nonzero, then MAX must be too. */
13298 if (tree_expr_nonzero_warnv_p (op1,
13299 strict_overflow_p))
13300 return true;
13302 /* MAX where operand 0 is positive is positive. */
13303 return tree_expr_nonnegative_warnv_p (op0,
13304 strict_overflow_p);
13306 /* MAX where operand 1 is positive is positive. */
13307 else if (tree_expr_nonzero_warnv_p (op1,
13308 &sub_strict_overflow_p)
13309 && tree_expr_nonnegative_warnv_p (op1,
13310 &sub_strict_overflow_p))
13312 if (sub_strict_overflow_p)
13313 *strict_overflow_p = true;
13314 return true;
13316 break;
13318 case BIT_IOR_EXPR:
13319 return (tree_expr_nonzero_warnv_p (op1,
13320 strict_overflow_p)
13321 || tree_expr_nonzero_warnv_p (op0,
13322 strict_overflow_p));
13324 default:
13325 break;
13328 return false;
13331 /* Return true when T is an address and is known to be nonzero.
13332 For floating point we further ensure that T is not denormal.
13333 Similar logic is present in nonzero_address in rtlanal.h.
13335 If the return value is based on the assumption that signed overflow
13336 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13337 change *STRICT_OVERFLOW_P. */
13339 bool
13340 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
13342 bool sub_strict_overflow_p;
13343 switch (TREE_CODE (t))
13345 case INTEGER_CST:
13346 return !integer_zerop (t);
13348 case ADDR_EXPR:
13350 tree base = TREE_OPERAND (t, 0);
13352 if (!DECL_P (base))
13353 base = get_base_address (base);
13355 if (base && TREE_CODE (base) == TARGET_EXPR)
13356 base = TARGET_EXPR_SLOT (base);
13358 if (!base)
13359 return false;
13361 /* For objects in symbol table check if we know they are non-zero.
13362 Don't do anything for variables and functions before symtab is built;
13363 it is quite possible that they will be declared weak later. */
13364 int nonzero_addr = maybe_nonzero_address (base);
13365 if (nonzero_addr >= 0)
13366 return nonzero_addr;
13368 /* Constants are never weak. */
13369 if (CONSTANT_CLASS_P (base))
13370 return true;
13372 return false;
13375 case COND_EXPR:
13376 sub_strict_overflow_p = false;
13377 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13378 &sub_strict_overflow_p)
13379 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
13380 &sub_strict_overflow_p))
13382 if (sub_strict_overflow_p)
13383 *strict_overflow_p = true;
13384 return true;
13386 break;
13388 case SSA_NAME:
13389 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
13390 break;
13391 return expr_not_equal_to (t, wi::zero (TYPE_PRECISION (TREE_TYPE (t))));
13393 default:
13394 break;
13396 return false;
13399 #define integer_valued_real_p(X) \
13400 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13402 #define RECURSE(X) \
13403 ((integer_valued_real_p) (X, depth + 1))
13405 /* Return true if the floating point result of (CODE OP0) has an
13406 integer value. We also allow +Inf, -Inf and NaN to be considered
13407 integer values. Return false for signaling NaN.
13409 DEPTH is the current nesting depth of the query. */
13411 bool
13412 integer_valued_real_unary_p (tree_code code, tree op0, int depth)
13414 switch (code)
13416 case FLOAT_EXPR:
13417 return true;
13419 case ABS_EXPR:
13420 return RECURSE (op0);
13422 CASE_CONVERT:
13424 tree type = TREE_TYPE (op0);
13425 if (TREE_CODE (type) == INTEGER_TYPE)
13426 return true;
13427 if (TREE_CODE (type) == REAL_TYPE)
13428 return RECURSE (op0);
13429 break;
13432 default:
13433 break;
13435 return false;
13438 /* Return true if the floating point result of (CODE OP0 OP1) has an
13439 integer value. We also allow +Inf, -Inf and NaN to be considered
13440 integer values. Return false for signaling NaN.
13442 DEPTH is the current nesting depth of the query. */
13444 bool
13445 integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth)
13447 switch (code)
13449 case PLUS_EXPR:
13450 case MINUS_EXPR:
13451 case MULT_EXPR:
13452 case MIN_EXPR:
13453 case MAX_EXPR:
13454 return RECURSE (op0) && RECURSE (op1);
13456 default:
13457 break;
13459 return false;
13462 /* Return true if the floating point result of calling FNDECL with arguments
13463 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13464 considered integer values. Return false for signaling NaN. If FNDECL
13465 takes fewer than 2 arguments, the remaining ARGn are null.
13467 DEPTH is the current nesting depth of the query. */
13469 bool
13470 integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth)
13472 switch (fn)
13474 CASE_CFN_CEIL:
13475 CASE_CFN_FLOOR:
13476 CASE_CFN_NEARBYINT:
13477 CASE_CFN_RINT:
13478 CASE_CFN_ROUND:
13479 CASE_CFN_TRUNC:
13480 return true;
13482 CASE_CFN_FMIN:
13483 CASE_CFN_FMAX:
13484 return RECURSE (arg0) && RECURSE (arg1);
13486 default:
13487 break;
13489 return false;
13492 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13493 has an integer value. We also allow +Inf, -Inf and NaN to be
13494 considered integer values. Return false for signaling NaN.
13496 DEPTH is the current nesting depth of the query. */
13498 bool
13499 integer_valued_real_single_p (tree t, int depth)
13501 switch (TREE_CODE (t))
13503 case REAL_CST:
13504 return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t)));
13506 case COND_EXPR:
13507 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
13509 case SSA_NAME:
13510 /* Limit the depth of recursion to avoid quadratic behavior.
13511 This is expected to catch almost all occurrences in practice.
13512 If this code misses important cases that unbounded recursion
13513 would not, passes that need this information could be revised
13514 to provide it through dataflow propagation. */
13515 return (!name_registered_for_update_p (t)
13516 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
13517 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t),
13518 depth));
13520 default:
13521 break;
13523 return false;
13526 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13527 has an integer value. We also allow +Inf, -Inf and NaN to be
13528 considered integer values. Return false for signaling NaN.
13530 DEPTH is the current nesting depth of the query. */
13532 static bool
13533 integer_valued_real_invalid_p (tree t, int depth)
13535 switch (TREE_CODE (t))
13537 case COMPOUND_EXPR:
13538 case MODIFY_EXPR:
13539 case BIND_EXPR:
13540 return RECURSE (TREE_OPERAND (t, 1));
13542 case SAVE_EXPR:
13543 return RECURSE (TREE_OPERAND (t, 0));
13545 default:
13546 break;
13548 return false;
13551 #undef RECURSE
13552 #undef integer_valued_real_p
13554 /* Return true if the floating point expression T has an integer value.
13555 We also allow +Inf, -Inf and NaN to be considered integer values.
13556 Return false for signaling NaN.
13558 DEPTH is the current nesting depth of the query. */
13560 bool
13561 integer_valued_real_p (tree t, int depth)
13563 if (t == error_mark_node)
13564 return false;
13566 tree_code code = TREE_CODE (t);
13567 switch (TREE_CODE_CLASS (code))
13569 case tcc_binary:
13570 case tcc_comparison:
13571 return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0),
13572 TREE_OPERAND (t, 1), depth);
13574 case tcc_unary:
13575 return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth);
13577 case tcc_constant:
13578 case tcc_declaration:
13579 case tcc_reference:
13580 return integer_valued_real_single_p (t, depth);
13582 default:
13583 break;
13586 switch (code)
13588 case COND_EXPR:
13589 case SSA_NAME:
13590 return integer_valued_real_single_p (t, depth);
13592 case CALL_EXPR:
13594 tree arg0 = (call_expr_nargs (t) > 0
13595 ? CALL_EXPR_ARG (t, 0)
13596 : NULL_TREE);
13597 tree arg1 = (call_expr_nargs (t) > 1
13598 ? CALL_EXPR_ARG (t, 1)
13599 : NULL_TREE);
13600 return integer_valued_real_call_p (get_call_combined_fn (t),
13601 arg0, arg1, depth);
13604 default:
13605 return integer_valued_real_invalid_p (t, depth);
13609 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13610 attempt to fold the expression to a constant without modifying TYPE,
13611 OP0 or OP1.
13613 If the expression could be simplified to a constant, then return
13614 the constant. If the expression would not be simplified to a
13615 constant, then return NULL_TREE. */
13617 tree
13618 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
13620 tree tem = fold_binary (code, type, op0, op1);
13621 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13624 /* Given the components of a unary expression CODE, TYPE and OP0,
13625 attempt to fold the expression to a constant without modifying
13626 TYPE or OP0.
13628 If the expression could be simplified to a constant, then return
13629 the constant. If the expression would not be simplified to a
13630 constant, then return NULL_TREE. */
13632 tree
13633 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
13635 tree tem = fold_unary (code, type, op0);
13636 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13639 /* If EXP represents referencing an element in a constant string
13640 (either via pointer arithmetic or array indexing), return the
13641 tree representing the value accessed, otherwise return NULL. */
13643 tree
13644 fold_read_from_constant_string (tree exp)
13646 if ((TREE_CODE (exp) == INDIRECT_REF
13647 || TREE_CODE (exp) == ARRAY_REF)
13648 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
13650 tree exp1 = TREE_OPERAND (exp, 0);
13651 tree index;
13652 tree string;
13653 location_t loc = EXPR_LOCATION (exp);
13655 if (TREE_CODE (exp) == INDIRECT_REF)
13656 string = string_constant (exp1, &index);
13657 else
13659 tree low_bound = array_ref_low_bound (exp);
13660 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
13662 /* Optimize the special-case of a zero lower bound.
13664 We convert the low_bound to sizetype to avoid some problems
13665 with constant folding. (E.g. suppose the lower bound is 1,
13666 and its mode is QI. Without the conversion,l (ARRAY
13667 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13668 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13669 if (! integer_zerop (low_bound))
13670 index = size_diffop_loc (loc, index,
13671 fold_convert_loc (loc, sizetype, low_bound));
13673 string = exp1;
13676 scalar_int_mode char_mode;
13677 if (string
13678 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
13679 && TREE_CODE (string) == STRING_CST
13680 && TREE_CODE (index) == INTEGER_CST
13681 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
13682 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))),
13683 &char_mode)
13684 && GET_MODE_SIZE (char_mode) == 1)
13685 return build_int_cst_type (TREE_TYPE (exp),
13686 (TREE_STRING_POINTER (string)
13687 [TREE_INT_CST_LOW (index)]));
13689 return NULL;
13692 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13693 an integer constant, real, or fixed-point constant.
13695 TYPE is the type of the result. */
13697 static tree
13698 fold_negate_const (tree arg0, tree type)
13700 tree t = NULL_TREE;
13702 switch (TREE_CODE (arg0))
13704 case INTEGER_CST:
13706 bool overflow;
13707 wide_int val = wi::neg (arg0, &overflow);
13708 t = force_fit_type (type, val, 1,
13709 (overflow && ! TYPE_UNSIGNED (type))
13710 || TREE_OVERFLOW (arg0));
13711 break;
13714 case REAL_CST:
13715 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13716 break;
13718 case FIXED_CST:
13720 FIXED_VALUE_TYPE f;
13721 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
13722 &(TREE_FIXED_CST (arg0)), NULL,
13723 TYPE_SATURATING (type));
13724 t = build_fixed (type, f);
13725 /* Propagate overflow flags. */
13726 if (overflow_p | TREE_OVERFLOW (arg0))
13727 TREE_OVERFLOW (t) = 1;
13728 break;
13731 default:
13732 gcc_unreachable ();
13735 return t;
13738 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13739 an integer constant or real constant.
13741 TYPE is the type of the result. */
13743 tree
13744 fold_abs_const (tree arg0, tree type)
13746 tree t = NULL_TREE;
13748 switch (TREE_CODE (arg0))
13750 case INTEGER_CST:
13752 /* If the value is unsigned or non-negative, then the absolute value
13753 is the same as the ordinary value. */
13754 if (!wi::neg_p (arg0, TYPE_SIGN (type)))
13755 t = arg0;
13757 /* If the value is negative, then the absolute value is
13758 its negation. */
13759 else
13761 bool overflow;
13762 wide_int val = wi::neg (arg0, &overflow);
13763 t = force_fit_type (type, val, -1,
13764 overflow | TREE_OVERFLOW (arg0));
13767 break;
13769 case REAL_CST:
13770 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
13771 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13772 else
13773 t = arg0;
13774 break;
13776 default:
13777 gcc_unreachable ();
13780 return t;
13783 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13784 constant. TYPE is the type of the result. */
13786 static tree
13787 fold_not_const (const_tree arg0, tree type)
13789 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
13791 return force_fit_type (type, wi::bit_not (arg0), 0, TREE_OVERFLOW (arg0));
13794 /* Given CODE, a relational operator, the target type, TYPE and two
13795 constant operands OP0 and OP1, return the result of the
13796 relational operation. If the result is not a compile time
13797 constant, then return NULL_TREE. */
13799 static tree
13800 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
13802 int result, invert;
13804 /* From here on, the only cases we handle are when the result is
13805 known to be a constant. */
13807 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
13809 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
13810 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
13812 /* Handle the cases where either operand is a NaN. */
13813 if (real_isnan (c0) || real_isnan (c1))
13815 switch (code)
13817 case EQ_EXPR:
13818 case ORDERED_EXPR:
13819 result = 0;
13820 break;
13822 case NE_EXPR:
13823 case UNORDERED_EXPR:
13824 case UNLT_EXPR:
13825 case UNLE_EXPR:
13826 case UNGT_EXPR:
13827 case UNGE_EXPR:
13828 case UNEQ_EXPR:
13829 result = 1;
13830 break;
13832 case LT_EXPR:
13833 case LE_EXPR:
13834 case GT_EXPR:
13835 case GE_EXPR:
13836 case LTGT_EXPR:
13837 if (flag_trapping_math)
13838 return NULL_TREE;
13839 result = 0;
13840 break;
13842 default:
13843 gcc_unreachable ();
13846 return constant_boolean_node (result, type);
13849 return constant_boolean_node (real_compare (code, c0, c1), type);
13852 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
13854 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
13855 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
13856 return constant_boolean_node (fixed_compare (code, c0, c1), type);
13859 /* Handle equality/inequality of complex constants. */
13860 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
13862 tree rcond = fold_relational_const (code, type,
13863 TREE_REALPART (op0),
13864 TREE_REALPART (op1));
13865 tree icond = fold_relational_const (code, type,
13866 TREE_IMAGPART (op0),
13867 TREE_IMAGPART (op1));
13868 if (code == EQ_EXPR)
13869 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
13870 else if (code == NE_EXPR)
13871 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
13872 else
13873 return NULL_TREE;
13876 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
13878 if (!VECTOR_TYPE_P (type))
13880 /* Have vector comparison with scalar boolean result. */
13881 gcc_assert ((code == EQ_EXPR || code == NE_EXPR)
13882 && VECTOR_CST_NELTS (op0) == VECTOR_CST_NELTS (op1));
13883 for (unsigned i = 0; i < VECTOR_CST_NELTS (op0); i++)
13885 tree elem0 = VECTOR_CST_ELT (op0, i);
13886 tree elem1 = VECTOR_CST_ELT (op1, i);
13887 tree tmp = fold_relational_const (code, type, elem0, elem1);
13888 if (tmp == NULL_TREE)
13889 return NULL_TREE;
13890 if (integer_zerop (tmp))
13891 return constant_boolean_node (false, type);
13893 return constant_boolean_node (true, type);
13895 unsigned count = VECTOR_CST_NELTS (op0);
13896 gcc_assert (VECTOR_CST_NELTS (op1) == count
13897 && TYPE_VECTOR_SUBPARTS (type) == count);
13899 auto_vec<tree, 32> elts (count);
13900 for (unsigned i = 0; i < count; i++)
13902 tree elem_type = TREE_TYPE (type);
13903 tree elem0 = VECTOR_CST_ELT (op0, i);
13904 tree elem1 = VECTOR_CST_ELT (op1, i);
13906 tree tem = fold_relational_const (code, elem_type,
13907 elem0, elem1);
13909 if (tem == NULL_TREE)
13910 return NULL_TREE;
13912 elts.quick_push (build_int_cst (elem_type,
13913 integer_zerop (tem) ? 0 : -1));
13916 return build_vector (type, elts);
13919 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
13921 To compute GT, swap the arguments and do LT.
13922 To compute GE, do LT and invert the result.
13923 To compute LE, swap the arguments, do LT and invert the result.
13924 To compute NE, do EQ and invert the result.
13926 Therefore, the code below must handle only EQ and LT. */
13928 if (code == LE_EXPR || code == GT_EXPR)
13930 std::swap (op0, op1);
13931 code = swap_tree_comparison (code);
13934 /* Note that it is safe to invert for real values here because we
13935 have already handled the one case that it matters. */
13937 invert = 0;
13938 if (code == NE_EXPR || code == GE_EXPR)
13940 invert = 1;
13941 code = invert_tree_comparison (code, false);
13944 /* Compute a result for LT or EQ if args permit;
13945 Otherwise return T. */
13946 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
13948 if (code == EQ_EXPR)
13949 result = tree_int_cst_equal (op0, op1);
13950 else
13951 result = tree_int_cst_lt (op0, op1);
13953 else
13954 return NULL_TREE;
13956 if (invert)
13957 result ^= 1;
13958 return constant_boolean_node (result, type);
13961 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
13962 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
13963 itself. */
13965 tree
13966 fold_build_cleanup_point_expr (tree type, tree expr)
13968 /* If the expression does not have side effects then we don't have to wrap
13969 it with a cleanup point expression. */
13970 if (!TREE_SIDE_EFFECTS (expr))
13971 return expr;
13973 /* If the expression is a return, check to see if the expression inside the
13974 return has no side effects or the right hand side of the modify expression
13975 inside the return. If either don't have side effects set we don't need to
13976 wrap the expression in a cleanup point expression. Note we don't check the
13977 left hand side of the modify because it should always be a return decl. */
13978 if (TREE_CODE (expr) == RETURN_EXPR)
13980 tree op = TREE_OPERAND (expr, 0);
13981 if (!op || !TREE_SIDE_EFFECTS (op))
13982 return expr;
13983 op = TREE_OPERAND (op, 1);
13984 if (!TREE_SIDE_EFFECTS (op))
13985 return expr;
13988 return build1_loc (EXPR_LOCATION (expr), CLEANUP_POINT_EXPR, type, expr);
13991 /* Given a pointer value OP0 and a type TYPE, return a simplified version
13992 of an indirection through OP0, or NULL_TREE if no simplification is
13993 possible. */
13995 tree
13996 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
13998 tree sub = op0;
13999 tree subtype;
14001 STRIP_NOPS (sub);
14002 subtype = TREE_TYPE (sub);
14003 if (!POINTER_TYPE_P (subtype)
14004 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0)))
14005 return NULL_TREE;
14007 if (TREE_CODE (sub) == ADDR_EXPR)
14009 tree op = TREE_OPERAND (sub, 0);
14010 tree optype = TREE_TYPE (op);
14011 /* *&CONST_DECL -> to the value of the const decl. */
14012 if (TREE_CODE (op) == CONST_DECL)
14013 return DECL_INITIAL (op);
14014 /* *&p => p; make sure to handle *&"str"[cst] here. */
14015 if (type == optype)
14017 tree fop = fold_read_from_constant_string (op);
14018 if (fop)
14019 return fop;
14020 else
14021 return op;
14023 /* *(foo *)&fooarray => fooarray[0] */
14024 else if (TREE_CODE (optype) == ARRAY_TYPE
14025 && type == TREE_TYPE (optype)
14026 && (!in_gimple_form
14027 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14029 tree type_domain = TYPE_DOMAIN (optype);
14030 tree min_val = size_zero_node;
14031 if (type_domain && TYPE_MIN_VALUE (type_domain))
14032 min_val = TYPE_MIN_VALUE (type_domain);
14033 if (in_gimple_form
14034 && TREE_CODE (min_val) != INTEGER_CST)
14035 return NULL_TREE;
14036 return build4_loc (loc, ARRAY_REF, type, op, min_val,
14037 NULL_TREE, NULL_TREE);
14039 /* *(foo *)&complexfoo => __real__ complexfoo */
14040 else if (TREE_CODE (optype) == COMPLEX_TYPE
14041 && type == TREE_TYPE (optype))
14042 return fold_build1_loc (loc, REALPART_EXPR, type, op);
14043 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14044 else if (TREE_CODE (optype) == VECTOR_TYPE
14045 && type == TREE_TYPE (optype))
14047 tree part_width = TYPE_SIZE (type);
14048 tree index = bitsize_int (0);
14049 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
14053 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
14054 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
14056 tree op00 = TREE_OPERAND (sub, 0);
14057 tree op01 = TREE_OPERAND (sub, 1);
14059 STRIP_NOPS (op00);
14060 if (TREE_CODE (op00) == ADDR_EXPR)
14062 tree op00type;
14063 op00 = TREE_OPERAND (op00, 0);
14064 op00type = TREE_TYPE (op00);
14066 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14067 if (TREE_CODE (op00type) == VECTOR_TYPE
14068 && type == TREE_TYPE (op00type))
14070 tree part_width = TYPE_SIZE (type);
14071 unsigned HOST_WIDE_INT max_offset
14072 = (tree_to_uhwi (part_width) / BITS_PER_UNIT
14073 * TYPE_VECTOR_SUBPARTS (op00type));
14074 if (tree_int_cst_sign_bit (op01) == 0
14075 && compare_tree_int (op01, max_offset) == -1)
14077 unsigned HOST_WIDE_INT offset = tree_to_uhwi (op01);
14078 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
14079 tree index = bitsize_int (indexi);
14080 return fold_build3_loc (loc,
14081 BIT_FIELD_REF, type, op00,
14082 part_width, index);
14085 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14086 else if (TREE_CODE (op00type) == COMPLEX_TYPE
14087 && type == TREE_TYPE (op00type))
14089 tree size = TYPE_SIZE_UNIT (type);
14090 if (tree_int_cst_equal (size, op01))
14091 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
14093 /* ((foo *)&fooarray)[1] => fooarray[1] */
14094 else if (TREE_CODE (op00type) == ARRAY_TYPE
14095 && type == TREE_TYPE (op00type))
14097 tree type_domain = TYPE_DOMAIN (op00type);
14098 tree min = size_zero_node;
14099 if (type_domain && TYPE_MIN_VALUE (type_domain))
14100 min = TYPE_MIN_VALUE (type_domain);
14101 offset_int off = wi::to_offset (op01);
14102 offset_int el_sz = wi::to_offset (TYPE_SIZE_UNIT (type));
14103 offset_int remainder;
14104 off = wi::divmod_trunc (off, el_sz, SIGNED, &remainder);
14105 if (remainder == 0 && TREE_CODE (min) == INTEGER_CST)
14107 off = off + wi::to_offset (min);
14108 op01 = wide_int_to_tree (sizetype, off);
14109 return build4_loc (loc, ARRAY_REF, type, op00, op01,
14110 NULL_TREE, NULL_TREE);
14116 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14117 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
14118 && type == TREE_TYPE (TREE_TYPE (subtype))
14119 && (!in_gimple_form
14120 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14122 tree type_domain;
14123 tree min_val = size_zero_node;
14124 sub = build_fold_indirect_ref_loc (loc, sub);
14125 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
14126 if (type_domain && TYPE_MIN_VALUE (type_domain))
14127 min_val = TYPE_MIN_VALUE (type_domain);
14128 if (in_gimple_form
14129 && TREE_CODE (min_val) != INTEGER_CST)
14130 return NULL_TREE;
14131 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
14132 NULL_TREE);
14135 return NULL_TREE;
14138 /* Builds an expression for an indirection through T, simplifying some
14139 cases. */
14141 tree
14142 build_fold_indirect_ref_loc (location_t loc, tree t)
14144 tree type = TREE_TYPE (TREE_TYPE (t));
14145 tree sub = fold_indirect_ref_1 (loc, type, t);
14147 if (sub)
14148 return sub;
14150 return build1_loc (loc, INDIRECT_REF, type, t);
14153 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14155 tree
14156 fold_indirect_ref_loc (location_t loc, tree t)
14158 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
14160 if (sub)
14161 return sub;
14162 else
14163 return t;
14166 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14167 whose result is ignored. The type of the returned tree need not be
14168 the same as the original expression. */
14170 tree
14171 fold_ignored_result (tree t)
14173 if (!TREE_SIDE_EFFECTS (t))
14174 return integer_zero_node;
14176 for (;;)
14177 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14179 case tcc_unary:
14180 t = TREE_OPERAND (t, 0);
14181 break;
14183 case tcc_binary:
14184 case tcc_comparison:
14185 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14186 t = TREE_OPERAND (t, 0);
14187 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14188 t = TREE_OPERAND (t, 1);
14189 else
14190 return t;
14191 break;
14193 case tcc_expression:
14194 switch (TREE_CODE (t))
14196 case COMPOUND_EXPR:
14197 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14198 return t;
14199 t = TREE_OPERAND (t, 0);
14200 break;
14202 case COND_EXPR:
14203 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14204 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14205 return t;
14206 t = TREE_OPERAND (t, 0);
14207 break;
14209 default:
14210 return t;
14212 break;
14214 default:
14215 return t;
14219 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14221 tree
14222 round_up_loc (location_t loc, tree value, unsigned int divisor)
14224 tree div = NULL_TREE;
14226 if (divisor == 1)
14227 return value;
14229 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14230 have to do anything. Only do this when we are not given a const,
14231 because in that case, this check is more expensive than just
14232 doing it. */
14233 if (TREE_CODE (value) != INTEGER_CST)
14235 div = build_int_cst (TREE_TYPE (value), divisor);
14237 if (multiple_of_p (TREE_TYPE (value), value, div))
14238 return value;
14241 /* If divisor is a power of two, simplify this to bit manipulation. */
14242 if (pow2_or_zerop (divisor))
14244 if (TREE_CODE (value) == INTEGER_CST)
14246 wide_int val = value;
14247 bool overflow_p;
14249 if ((val & (divisor - 1)) == 0)
14250 return value;
14252 overflow_p = TREE_OVERFLOW (value);
14253 val += divisor - 1;
14254 val &= (int) -divisor;
14255 if (val == 0)
14256 overflow_p = true;
14258 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
14260 else
14262 tree t;
14264 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14265 value = size_binop_loc (loc, PLUS_EXPR, value, t);
14266 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
14267 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14270 else
14272 if (!div)
14273 div = build_int_cst (TREE_TYPE (value), divisor);
14274 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
14275 value = size_binop_loc (loc, MULT_EXPR, value, div);
14278 return value;
14281 /* Likewise, but round down. */
14283 tree
14284 round_down_loc (location_t loc, tree value, int divisor)
14286 tree div = NULL_TREE;
14288 gcc_assert (divisor > 0);
14289 if (divisor == 1)
14290 return value;
14292 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14293 have to do anything. Only do this when we are not given a const,
14294 because in that case, this check is more expensive than just
14295 doing it. */
14296 if (TREE_CODE (value) != INTEGER_CST)
14298 div = build_int_cst (TREE_TYPE (value), divisor);
14300 if (multiple_of_p (TREE_TYPE (value), value, div))
14301 return value;
14304 /* If divisor is a power of two, simplify this to bit manipulation. */
14305 if (pow2_or_zerop (divisor))
14307 tree t;
14309 t = build_int_cst (TREE_TYPE (value), -divisor);
14310 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14312 else
14314 if (!div)
14315 div = build_int_cst (TREE_TYPE (value), divisor);
14316 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
14317 value = size_binop_loc (loc, MULT_EXPR, value, div);
14320 return value;
14323 /* Returns the pointer to the base of the object addressed by EXP and
14324 extracts the information about the offset of the access, storing it
14325 to PBITPOS and POFFSET. */
14327 static tree
14328 split_address_to_core_and_offset (tree exp,
14329 HOST_WIDE_INT *pbitpos, tree *poffset)
14331 tree core;
14332 machine_mode mode;
14333 int unsignedp, reversep, volatilep;
14334 HOST_WIDE_INT bitsize;
14335 location_t loc = EXPR_LOCATION (exp);
14337 if (TREE_CODE (exp) == ADDR_EXPR)
14339 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
14340 poffset, &mode, &unsignedp, &reversep,
14341 &volatilep);
14342 core = build_fold_addr_expr_loc (loc, core);
14344 else if (TREE_CODE (exp) == POINTER_PLUS_EXPR)
14346 core = TREE_OPERAND (exp, 0);
14347 STRIP_NOPS (core);
14348 *pbitpos = 0;
14349 *poffset = TREE_OPERAND (exp, 1);
14350 if (TREE_CODE (*poffset) == INTEGER_CST)
14352 offset_int tem = wi::sext (wi::to_offset (*poffset),
14353 TYPE_PRECISION (TREE_TYPE (*poffset)));
14354 tem <<= LOG2_BITS_PER_UNIT;
14355 if (wi::fits_shwi_p (tem))
14357 *pbitpos = tem.to_shwi ();
14358 *poffset = NULL_TREE;
14362 else
14364 core = exp;
14365 *pbitpos = 0;
14366 *poffset = NULL_TREE;
14369 return core;
14372 /* Returns true if addresses of E1 and E2 differ by a constant, false
14373 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14375 bool
14376 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
14378 tree core1, core2;
14379 HOST_WIDE_INT bitpos1, bitpos2;
14380 tree toffset1, toffset2, tdiff, type;
14382 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
14383 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
14385 if (bitpos1 % BITS_PER_UNIT != 0
14386 || bitpos2 % BITS_PER_UNIT != 0
14387 || !operand_equal_p (core1, core2, 0))
14388 return false;
14390 if (toffset1 && toffset2)
14392 type = TREE_TYPE (toffset1);
14393 if (type != TREE_TYPE (toffset2))
14394 toffset2 = fold_convert (type, toffset2);
14396 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
14397 if (!cst_and_fits_in_hwi (tdiff))
14398 return false;
14400 *diff = int_cst_value (tdiff);
14402 else if (toffset1 || toffset2)
14404 /* If only one of the offsets is non-constant, the difference cannot
14405 be a constant. */
14406 return false;
14408 else
14409 *diff = 0;
14411 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
14412 return true;
14415 /* Return OFF converted to a pointer offset type suitable as offset for
14416 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14417 tree
14418 convert_to_ptrofftype_loc (location_t loc, tree off)
14420 return fold_convert_loc (loc, sizetype, off);
14423 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14424 tree
14425 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
14427 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14428 ptr, convert_to_ptrofftype_loc (loc, off));
14431 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14432 tree
14433 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
14435 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14436 ptr, size_int (off));
14439 /* Return a char pointer for a C string if it is a string constant
14440 or sum of string constant and integer constant. We only support
14441 string constants properly terminated with '\0' character.
14442 If STRLEN is a valid pointer, length (including terminating character)
14443 of returned string is stored to the argument. */
14445 const char *
14446 c_getstr (tree src, unsigned HOST_WIDE_INT *strlen)
14448 tree offset_node;
14450 if (strlen)
14451 *strlen = 0;
14453 src = string_constant (src, &offset_node);
14454 if (src == 0)
14455 return NULL;
14457 unsigned HOST_WIDE_INT offset = 0;
14458 if (offset_node != NULL_TREE)
14460 if (!tree_fits_uhwi_p (offset_node))
14461 return NULL;
14462 else
14463 offset = tree_to_uhwi (offset_node);
14466 unsigned HOST_WIDE_INT string_length = TREE_STRING_LENGTH (src);
14467 const char *string = TREE_STRING_POINTER (src);
14469 /* Support only properly null-terminated strings. */
14470 if (string_length == 0
14471 || string[string_length - 1] != '\0'
14472 || offset >= string_length)
14473 return NULL;
14475 if (strlen)
14476 *strlen = string_length - offset;
14477 return string + offset;
14480 #if CHECKING_P
14482 namespace selftest {
14484 /* Helper functions for writing tests of folding trees. */
14486 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14488 static void
14489 assert_binop_folds_to_const (tree lhs, enum tree_code code, tree rhs,
14490 tree constant)
14492 ASSERT_EQ (constant, fold_build2 (code, TREE_TYPE (lhs), lhs, rhs));
14495 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14496 wrapping WRAPPED_EXPR. */
14498 static void
14499 assert_binop_folds_to_nonlvalue (tree lhs, enum tree_code code, tree rhs,
14500 tree wrapped_expr)
14502 tree result = fold_build2 (code, TREE_TYPE (lhs), lhs, rhs);
14503 ASSERT_NE (wrapped_expr, result);
14504 ASSERT_EQ (NON_LVALUE_EXPR, TREE_CODE (result));
14505 ASSERT_EQ (wrapped_expr, TREE_OPERAND (result, 0));
14508 /* Verify that various arithmetic binary operations are folded
14509 correctly. */
14511 static void
14512 test_arithmetic_folding ()
14514 tree type = integer_type_node;
14515 tree x = create_tmp_var_raw (type, "x");
14516 tree zero = build_zero_cst (type);
14517 tree one = build_int_cst (type, 1);
14519 /* Addition. */
14520 /* 1 <-- (0 + 1) */
14521 assert_binop_folds_to_const (zero, PLUS_EXPR, one,
14522 one);
14523 assert_binop_folds_to_const (one, PLUS_EXPR, zero,
14524 one);
14526 /* (nonlvalue)x <-- (x + 0) */
14527 assert_binop_folds_to_nonlvalue (x, PLUS_EXPR, zero,
14530 /* Subtraction. */
14531 /* 0 <-- (x - x) */
14532 assert_binop_folds_to_const (x, MINUS_EXPR, x,
14533 zero);
14534 assert_binop_folds_to_nonlvalue (x, MINUS_EXPR, zero,
14537 /* Multiplication. */
14538 /* 0 <-- (x * 0) */
14539 assert_binop_folds_to_const (x, MULT_EXPR, zero,
14540 zero);
14542 /* (nonlvalue)x <-- (x * 1) */
14543 assert_binop_folds_to_nonlvalue (x, MULT_EXPR, one,
14547 /* Verify that various binary operations on vectors are folded
14548 correctly. */
14550 static void
14551 test_vector_folding ()
14553 tree inner_type = integer_type_node;
14554 tree type = build_vector_type (inner_type, 4);
14555 tree zero = build_zero_cst (type);
14556 tree one = build_one_cst (type);
14558 /* Verify equality tests that return a scalar boolean result. */
14559 tree res_type = boolean_type_node;
14560 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, one)));
14561 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, zero)));
14562 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, zero, one)));
14563 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, one, one)));
14566 /* Run all of the selftests within this file. */
14568 void
14569 fold_const_c_tests ()
14571 test_arithmetic_folding ();
14572 test_vector_folding ();
14575 } // namespace selftest
14577 #endif /* CHECKING_P */