1 // Special functions -*- C++ -*-
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
25 /** @file tr1/gamma.tcc
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{tr1/cmath}
31 // ISO C++ 14882 TR1: 5.2 Special functions
34 // Written by Edward Smith-Rowland based on:
35 // (1) Handbook of Mathematical Functions,
36 // ed. Milton Abramowitz and Irene A. Stegun,
37 // Dover Publications,
38 // Section 6, pp. 253-266
39 // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
40 // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
41 // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
42 // 2nd ed, pp. 213-216
43 // (4) Gamma, Exploring Euler's Constant, Julian Havil,
46 #ifndef _GLIBCXX_TR1_GAMMA_TCC
47 #define _GLIBCXX_TR1_GAMMA_TCC 1
49 #include <tr1/special_function_util.h>
51 namespace std _GLIBCXX_VISIBILITY(default)
53 _GLIBCXX_BEGIN_NAMESPACE_VERSION
55 #if _GLIBCXX_USE_STD_SPEC_FUNCS
56 # define _GLIBCXX_MATH_NS ::std
57 #elif defined(_GLIBCXX_TR1_CMATH)
60 # define _GLIBCXX_MATH_NS ::std::tr1
62 # error do not include this header directly, use <cmath> or <tr1/cmath>
64 // Implementation-space details.
68 * @brief This returns Bernoulli numbers from a table or by summation
71 * Recursion is unstable.
73 * @param __n the order n of the Bernoulli number.
74 * @return The Bernoulli number of order n.
76 template <typename _Tp>
78 __bernoulli_series(unsigned int __n)
81 static const _Tp __num[28] = {
82 _Tp(1UL), -_Tp(1UL) / _Tp(2UL),
83 _Tp(1UL) / _Tp(6UL), _Tp(0UL),
84 -_Tp(1UL) / _Tp(30UL), _Tp(0UL),
85 _Tp(1UL) / _Tp(42UL), _Tp(0UL),
86 -_Tp(1UL) / _Tp(30UL), _Tp(0UL),
87 _Tp(5UL) / _Tp(66UL), _Tp(0UL),
88 -_Tp(691UL) / _Tp(2730UL), _Tp(0UL),
89 _Tp(7UL) / _Tp(6UL), _Tp(0UL),
90 -_Tp(3617UL) / _Tp(510UL), _Tp(0UL),
91 _Tp(43867UL) / _Tp(798UL), _Tp(0UL),
92 -_Tp(174611) / _Tp(330UL), _Tp(0UL),
93 _Tp(854513UL) / _Tp(138UL), _Tp(0UL),
94 -_Tp(236364091UL) / _Tp(2730UL), _Tp(0UL),
95 _Tp(8553103UL) / _Tp(6UL), _Tp(0UL)
102 return -_Tp(1) / _Tp(2);
104 // Take care of the rest of the odd ones.
108 // Take care of some small evens that are painful for the series.
114 if ((__n / 2) % 2 == 0)
116 for (unsigned int __k = 1; __k <= __n; ++__k)
117 __fact *= __k / (_Tp(2) * __numeric_constants<_Tp>::__pi());
121 for (unsigned int __i = 1; __i < 1000; ++__i)
123 _Tp __term = std::pow(_Tp(__i), -_Tp(__n));
124 if (__term < std::numeric_limits<_Tp>::epsilon())
129 return __fact * __sum;
134 * @brief This returns Bernoulli number \f$B_n\f$.
136 * @param __n the order n of the Bernoulli number.
137 * @return The Bernoulli number of order n.
139 template<typename _Tp>
142 { return __bernoulli_series<_Tp>(__n); }
146 * @brief Return \f$log(\Gamma(x))\f$ by asymptotic expansion
147 * with Bernoulli number coefficients. This is like
148 * Sterling's approximation.
150 * @param __x The argument of the log of the gamma function.
151 * @return The logarithm of the gamma function.
153 template<typename _Tp>
155 __log_gamma_bernoulli(_Tp __x)
157 _Tp __lg = (__x - _Tp(0.5L)) * std::log(__x) - __x
158 + _Tp(0.5L) * std::log(_Tp(2)
159 * __numeric_constants<_Tp>::__pi());
161 const _Tp __xx = __x * __x;
162 _Tp __help = _Tp(1) / __x;
163 for ( unsigned int __i = 1; __i < 20; ++__i )
165 const _Tp __2i = _Tp(2 * __i);
166 __help /= __2i * (__2i - _Tp(1)) * __xx;
167 __lg += __bernoulli<_Tp>(2 * __i) * __help;
175 * @brief Return \f$log(\Gamma(x))\f$ by the Lanczos method.
176 * This method dominates all others on the positive axis I think.
178 * @param __x The argument of the log of the gamma function.
179 * @return The logarithm of the gamma function.
181 template<typename _Tp>
183 __log_gamma_lanczos(_Tp __x)
185 const _Tp __xm1 = __x - _Tp(1);
187 static const _Tp __lanczos_cheb_7[9] = {
188 _Tp( 0.99999999999980993227684700473478L),
189 _Tp( 676.520368121885098567009190444019L),
190 _Tp(-1259.13921672240287047156078755283L),
191 _Tp( 771.3234287776530788486528258894L),
192 _Tp(-176.61502916214059906584551354L),
193 _Tp( 12.507343278686904814458936853L),
194 _Tp(-0.13857109526572011689554707L),
195 _Tp( 9.984369578019570859563e-6L),
196 _Tp( 1.50563273514931155834e-7L)
199 static const _Tp __LOGROOT2PI
200 = _Tp(0.9189385332046727417803297364056176L);
202 _Tp __sum = __lanczos_cheb_7[0];
203 for(unsigned int __k = 1; __k < 9; ++__k)
204 __sum += __lanczos_cheb_7[__k] / (__xm1 + __k);
206 const _Tp __term1 = (__xm1 + _Tp(0.5L))
207 * std::log((__xm1 + _Tp(7.5L))
208 / __numeric_constants<_Tp>::__euler());
209 const _Tp __term2 = __LOGROOT2PI + std::log(__sum);
210 const _Tp __result = __term1 + (__term2 - _Tp(7));
217 * @brief Return \f$ log(|\Gamma(x)|) \f$.
218 * This will return values even for \f$ x < 0 \f$.
219 * To recover the sign of \f$ \Gamma(x) \f$ for
220 * any argument use @a __log_gamma_sign.
222 * @param __x The argument of the log of the gamma function.
223 * @return The logarithm of the gamma function.
225 template<typename _Tp>
230 return __log_gamma_lanczos(__x);
234 = std::abs(std::sin(__numeric_constants<_Tp>::__pi() * __x));
235 if (__sin_fact == _Tp(0))
236 std::__throw_domain_error(__N("Argument is nonpositive integer "
238 return __numeric_constants<_Tp>::__lnpi()
239 - std::log(__sin_fact)
240 - __log_gamma_lanczos(_Tp(1) - __x);
246 * @brief Return the sign of \f$ \Gamma(x) \f$.
247 * At nonpositive integers zero is returned.
249 * @param __x The argument of the gamma function.
250 * @return The sign of the gamma function.
252 template<typename _Tp>
254 __log_gamma_sign(_Tp __x)
261 = std::sin(__numeric_constants<_Tp>::__pi() * __x);
262 if (__sin_fact > _Tp(0))
264 else if (__sin_fact < _Tp(0))
273 * @brief Return the logarithm of the binomial coefficient.
274 * The binomial coefficient is given by:
276 * \left( \right) = \frac{n!}{(n-k)! k!}
279 * @param __n The first argument of the binomial coefficient.
280 * @param __k The second argument of the binomial coefficient.
281 * @return The binomial coefficient.
283 template<typename _Tp>
285 __log_bincoef(unsigned int __n, unsigned int __k)
287 // Max e exponent before overflow.
288 static const _Tp __max_bincoeff
289 = std::numeric_limits<_Tp>::max_exponent10
290 * std::log(_Tp(10)) - _Tp(1);
291 #if _GLIBCXX_USE_C99_MATH_TR1
292 _Tp __coeff = _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __n))
293 - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __k))
294 - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __n - __k));
296 _Tp __coeff = __log_gamma(_Tp(1 + __n))
297 - __log_gamma(_Tp(1 + __k))
298 - __log_gamma(_Tp(1 + __n - __k));
304 * @brief Return the binomial coefficient.
305 * The binomial coefficient is given by:
307 * \left( \right) = \frac{n!}{(n-k)! k!}
310 * @param __n The first argument of the binomial coefficient.
311 * @param __k The second argument of the binomial coefficient.
312 * @return The binomial coefficient.
314 template<typename _Tp>
316 __bincoef(unsigned int __n, unsigned int __k)
318 // Max e exponent before overflow.
319 static const _Tp __max_bincoeff
320 = std::numeric_limits<_Tp>::max_exponent10
321 * std::log(_Tp(10)) - _Tp(1);
323 const _Tp __log_coeff = __log_bincoef<_Tp>(__n, __k);
324 if (__log_coeff > __max_bincoeff)
325 return std::numeric_limits<_Tp>::quiet_NaN();
327 return std::exp(__log_coeff);
332 * @brief Return \f$ \Gamma(x) \f$.
334 * @param __x The argument of the gamma function.
335 * @return The gamma function.
337 template<typename _Tp>
340 { return std::exp(__log_gamma(__x)); }
344 * @brief Return the digamma function by series expansion.
345 * The digamma or @f$ \psi(x) @f$ function is defined by
347 * \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
350 * The series is given by:
352 * \psi(x) = -\gamma_E - \frac{1}{x}
353 * \sum_{k=1}^{\infty} \frac{x}{k(x + k)}
356 template<typename _Tp>
358 __psi_series(_Tp __x)
360 _Tp __sum = -__numeric_constants<_Tp>::__gamma_e() - _Tp(1) / __x;
361 const unsigned int __max_iter = 100000;
362 for (unsigned int __k = 1; __k < __max_iter; ++__k)
364 const _Tp __term = __x / (__k * (__k + __x));
366 if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
374 * @brief Return the digamma function for large argument.
375 * The digamma or @f$ \psi(x) @f$ function is defined by
377 * \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
380 * The asymptotic series is given by:
382 * \psi(x) = \ln(x) - \frac{1}{2x}
383 * - \sum_{n=1}^{\infty} \frac{B_{2n}}{2 n x^{2n}}
386 template<typename _Tp>
390 _Tp __sum = std::log(__x) - _Tp(0.5L) / __x;
391 const _Tp __xx = __x * __x;
393 const unsigned int __max_iter = 100;
394 for (unsigned int __k = 1; __k < __max_iter; ++__k)
396 const _Tp __term = __bernoulli<_Tp>(2 * __k) / (2 * __k * __xp);
398 if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
407 * @brief Return the digamma function.
408 * The digamma or @f$ \psi(x) @f$ function is defined by
410 * \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
412 * For negative argument the reflection formula is used:
414 * \psi(x) = \psi(1-x) - \pi \cot(\pi x)
417 template<typename _Tp>
421 const int __n = static_cast<int>(__x + 0.5L);
422 const _Tp __eps = _Tp(4) * std::numeric_limits<_Tp>::epsilon();
423 if (__n <= 0 && std::abs(__x - _Tp(__n)) < __eps)
424 return std::numeric_limits<_Tp>::quiet_NaN();
425 else if (__x < _Tp(0))
427 const _Tp __pi = __numeric_constants<_Tp>::__pi();
428 return __psi(_Tp(1) - __x)
429 - __pi * std::cos(__pi * __x) / std::sin(__pi * __x);
431 else if (__x > _Tp(100))
432 return __psi_asymp(__x);
434 return __psi_series(__x);
439 * @brief Return the polygamma function @f$ \psi^{(n)}(x) @f$.
441 * The polygamma function is related to the Hurwitz zeta function:
443 * \psi^{(n)}(x) = (-1)^{n+1} m! \zeta(m+1,x)
446 template<typename _Tp>
448 __psi(unsigned int __n, _Tp __x)
451 std::__throw_domain_error(__N("Argument out of range "
457 const _Tp __hzeta = __hurwitz_zeta(_Tp(__n + 1), __x);
458 #if _GLIBCXX_USE_C99_MATH_TR1
459 const _Tp __ln_nfact = _GLIBCXX_MATH_NS::lgamma(_Tp(__n + 1));
461 const _Tp __ln_nfact = __log_gamma(_Tp(__n + 1));
463 _Tp __result = std::exp(__ln_nfact) * __hzeta;
465 __result = -__result;
469 } // namespace __detail
470 #undef _GLIBCXX_MATH_NS
471 #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
475 _GLIBCXX_END_NAMESPACE_VERSION
478 #endif // _GLIBCXX_TR1_GAMMA_TCC