1 /* Data references and dependences detectors.
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This pass walks a given loop structure searching for array
22 references. The information about the array accesses is recorded
23 in DATA_REFERENCE structures.
25 The basic test for determining the dependences is:
26 given two access functions chrec1 and chrec2 to a same array, and
27 x and y two vectors from the iteration domain, the same element of
28 the array is accessed twice at iterations x and y if and only if:
29 | chrec1 (x) == chrec2 (y).
31 The goals of this analysis are:
33 - to determine the independence: the relation between two
34 independent accesses is qualified with the chrec_known (this
35 information allows a loop parallelization),
37 - when two data references access the same data, to qualify the
38 dependence relation with classic dependence representations:
42 - loop carried level dependence
43 - polyhedron dependence
44 or with the chains of recurrences based representation,
46 - to define a knowledge base for storing the data dependence
49 - to define an interface to access this data.
54 - subscript: given two array accesses a subscript is the tuple
55 composed of the access functions for a given dimension. Example:
56 Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
57 (f1, g1), (f2, g2), (f3, g3).
59 - Diophantine equation: an equation whose coefficients and
60 solutions are integer constants, for example the equation
62 has an integer solution x = 1 and y = -1.
66 - "Advanced Compilation for High Performance Computing" by Randy
67 Allen and Ken Kennedy.
68 http://citeseer.ist.psu.edu/goff91practical.html
70 - "Loop Transformations for Restructuring Compilers - The Foundations"
78 #include "coretypes.h"
83 #include "gimple-pretty-print.h"
85 #include "fold-const.h"
87 #include "gimple-iterator.h"
88 #include "tree-ssa-loop-niter.h"
89 #include "tree-ssa-loop.h"
92 #include "tree-data-ref.h"
93 #include "tree-scalar-evolution.h"
95 #include "tree-affine.h"
98 #include "stringpool.h"
100 #include "tree-ssanames.h"
102 static struct datadep_stats
104 int num_dependence_tests
;
105 int num_dependence_dependent
;
106 int num_dependence_independent
;
107 int num_dependence_undetermined
;
109 int num_subscript_tests
;
110 int num_subscript_undetermined
;
111 int num_same_subscript_function
;
114 int num_ziv_independent
;
115 int num_ziv_dependent
;
116 int num_ziv_unimplemented
;
119 int num_siv_independent
;
120 int num_siv_dependent
;
121 int num_siv_unimplemented
;
124 int num_miv_independent
;
125 int num_miv_dependent
;
126 int num_miv_unimplemented
;
129 static bool subscript_dependence_tester_1 (struct data_dependence_relation
*,
130 unsigned int, unsigned int,
132 /* Returns true iff A divides B. */
135 tree_fold_divides_p (const_tree a
, const_tree b
)
137 gcc_assert (TREE_CODE (a
) == INTEGER_CST
);
138 gcc_assert (TREE_CODE (b
) == INTEGER_CST
);
139 return integer_zerop (int_const_binop (TRUNC_MOD_EXPR
, b
, a
));
142 /* Returns true iff A divides B. */
145 int_divides_p (int a
, int b
)
147 return ((b
% a
) == 0);
150 /* Return true if reference REF contains a union access. */
153 ref_contains_union_access_p (tree ref
)
155 while (handled_component_p (ref
))
157 ref
= TREE_OPERAND (ref
, 0);
158 if (TREE_CODE (TREE_TYPE (ref
)) == UNION_TYPE
159 || TREE_CODE (TREE_TYPE (ref
)) == QUAL_UNION_TYPE
)
167 /* Dump into FILE all the data references from DATAREFS. */
170 dump_data_references (FILE *file
, vec
<data_reference_p
> datarefs
)
173 struct data_reference
*dr
;
175 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
176 dump_data_reference (file
, dr
);
179 /* Unified dump into FILE all the data references from DATAREFS. */
182 debug (vec
<data_reference_p
> &ref
)
184 dump_data_references (stderr
, ref
);
188 debug (vec
<data_reference_p
> *ptr
)
193 fprintf (stderr
, "<nil>\n");
197 /* Dump into STDERR all the data references from DATAREFS. */
200 debug_data_references (vec
<data_reference_p
> datarefs
)
202 dump_data_references (stderr
, datarefs
);
205 /* Print to STDERR the data_reference DR. */
208 debug_data_reference (struct data_reference
*dr
)
210 dump_data_reference (stderr
, dr
);
213 /* Dump function for a DATA_REFERENCE structure. */
216 dump_data_reference (FILE *outf
,
217 struct data_reference
*dr
)
221 fprintf (outf
, "#(Data Ref: \n");
222 fprintf (outf
, "# bb: %d \n", gimple_bb (DR_STMT (dr
))->index
);
223 fprintf (outf
, "# stmt: ");
224 print_gimple_stmt (outf
, DR_STMT (dr
), 0);
225 fprintf (outf
, "# ref: ");
226 print_generic_stmt (outf
, DR_REF (dr
));
227 fprintf (outf
, "# base_object: ");
228 print_generic_stmt (outf
, DR_BASE_OBJECT (dr
));
230 for (i
= 0; i
< DR_NUM_DIMENSIONS (dr
); i
++)
232 fprintf (outf
, "# Access function %d: ", i
);
233 print_generic_stmt (outf
, DR_ACCESS_FN (dr
, i
));
235 fprintf (outf
, "#)\n");
238 /* Unified dump function for a DATA_REFERENCE structure. */
241 debug (data_reference
&ref
)
243 dump_data_reference (stderr
, &ref
);
247 debug (data_reference
*ptr
)
252 fprintf (stderr
, "<nil>\n");
256 /* Dumps the affine function described by FN to the file OUTF. */
259 dump_affine_function (FILE *outf
, affine_fn fn
)
264 print_generic_expr (outf
, fn
[0], TDF_SLIM
);
265 for (i
= 1; fn
.iterate (i
, &coef
); i
++)
267 fprintf (outf
, " + ");
268 print_generic_expr (outf
, coef
, TDF_SLIM
);
269 fprintf (outf
, " * x_%u", i
);
273 /* Dumps the conflict function CF to the file OUTF. */
276 dump_conflict_function (FILE *outf
, conflict_function
*cf
)
280 if (cf
->n
== NO_DEPENDENCE
)
281 fprintf (outf
, "no dependence");
282 else if (cf
->n
== NOT_KNOWN
)
283 fprintf (outf
, "not known");
286 for (i
= 0; i
< cf
->n
; i
++)
291 dump_affine_function (outf
, cf
->fns
[i
]);
297 /* Dump function for a SUBSCRIPT structure. */
300 dump_subscript (FILE *outf
, struct subscript
*subscript
)
302 conflict_function
*cf
= SUB_CONFLICTS_IN_A (subscript
);
304 fprintf (outf
, "\n (subscript \n");
305 fprintf (outf
, " iterations_that_access_an_element_twice_in_A: ");
306 dump_conflict_function (outf
, cf
);
307 if (CF_NONTRIVIAL_P (cf
))
309 tree last_iteration
= SUB_LAST_CONFLICT (subscript
);
310 fprintf (outf
, "\n last_conflict: ");
311 print_generic_expr (outf
, last_iteration
);
314 cf
= SUB_CONFLICTS_IN_B (subscript
);
315 fprintf (outf
, "\n iterations_that_access_an_element_twice_in_B: ");
316 dump_conflict_function (outf
, cf
);
317 if (CF_NONTRIVIAL_P (cf
))
319 tree last_iteration
= SUB_LAST_CONFLICT (subscript
);
320 fprintf (outf
, "\n last_conflict: ");
321 print_generic_expr (outf
, last_iteration
);
324 fprintf (outf
, "\n (Subscript distance: ");
325 print_generic_expr (outf
, SUB_DISTANCE (subscript
));
326 fprintf (outf
, " ))\n");
329 /* Print the classic direction vector DIRV to OUTF. */
332 print_direction_vector (FILE *outf
,
338 for (eq
= 0; eq
< length
; eq
++)
340 enum data_dependence_direction dir
= ((enum data_dependence_direction
)
346 fprintf (outf
, " +");
349 fprintf (outf
, " -");
352 fprintf (outf
, " =");
354 case dir_positive_or_equal
:
355 fprintf (outf
, " +=");
357 case dir_positive_or_negative
:
358 fprintf (outf
, " +-");
360 case dir_negative_or_equal
:
361 fprintf (outf
, " -=");
364 fprintf (outf
, " *");
367 fprintf (outf
, "indep");
371 fprintf (outf
, "\n");
374 /* Print a vector of direction vectors. */
377 print_dir_vectors (FILE *outf
, vec
<lambda_vector
> dir_vects
,
383 FOR_EACH_VEC_ELT (dir_vects
, j
, v
)
384 print_direction_vector (outf
, v
, length
);
387 /* Print out a vector VEC of length N to OUTFILE. */
390 print_lambda_vector (FILE * outfile
, lambda_vector vector
, int n
)
394 for (i
= 0; i
< n
; i
++)
395 fprintf (outfile
, "%3d ", vector
[i
]);
396 fprintf (outfile
, "\n");
399 /* Print a vector of distance vectors. */
402 print_dist_vectors (FILE *outf
, vec
<lambda_vector
> dist_vects
,
408 FOR_EACH_VEC_ELT (dist_vects
, j
, v
)
409 print_lambda_vector (outf
, v
, length
);
412 /* Dump function for a DATA_DEPENDENCE_RELATION structure. */
415 dump_data_dependence_relation (FILE *outf
,
416 struct data_dependence_relation
*ddr
)
418 struct data_reference
*dra
, *drb
;
420 fprintf (outf
, "(Data Dep: \n");
422 if (!ddr
|| DDR_ARE_DEPENDENT (ddr
) == chrec_dont_know
)
429 dump_data_reference (outf
, dra
);
431 fprintf (outf
, " (nil)\n");
433 dump_data_reference (outf
, drb
);
435 fprintf (outf
, " (nil)\n");
437 fprintf (outf
, " (don't know)\n)\n");
443 dump_data_reference (outf
, dra
);
444 dump_data_reference (outf
, drb
);
446 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
447 fprintf (outf
, " (no dependence)\n");
449 else if (DDR_ARE_DEPENDENT (ddr
) == NULL_TREE
)
455 FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr
), i
, sub
)
457 fprintf (outf
, " access_fn_A: ");
458 print_generic_stmt (outf
, SUB_ACCESS_FN (sub
, 0));
459 fprintf (outf
, " access_fn_B: ");
460 print_generic_stmt (outf
, SUB_ACCESS_FN (sub
, 1));
461 dump_subscript (outf
, sub
);
464 fprintf (outf
, " inner loop index: %d\n", DDR_INNER_LOOP (ddr
));
465 fprintf (outf
, " loop nest: (");
466 FOR_EACH_VEC_ELT (DDR_LOOP_NEST (ddr
), i
, loopi
)
467 fprintf (outf
, "%d ", loopi
->num
);
468 fprintf (outf
, ")\n");
470 for (i
= 0; i
< DDR_NUM_DIST_VECTS (ddr
); i
++)
472 fprintf (outf
, " distance_vector: ");
473 print_lambda_vector (outf
, DDR_DIST_VECT (ddr
, i
),
477 for (i
= 0; i
< DDR_NUM_DIR_VECTS (ddr
); i
++)
479 fprintf (outf
, " direction_vector: ");
480 print_direction_vector (outf
, DDR_DIR_VECT (ddr
, i
),
485 fprintf (outf
, ")\n");
491 debug_data_dependence_relation (struct data_dependence_relation
*ddr
)
493 dump_data_dependence_relation (stderr
, ddr
);
496 /* Dump into FILE all the dependence relations from DDRS. */
499 dump_data_dependence_relations (FILE *file
,
503 struct data_dependence_relation
*ddr
;
505 FOR_EACH_VEC_ELT (ddrs
, i
, ddr
)
506 dump_data_dependence_relation (file
, ddr
);
510 debug (vec
<ddr_p
> &ref
)
512 dump_data_dependence_relations (stderr
, ref
);
516 debug (vec
<ddr_p
> *ptr
)
521 fprintf (stderr
, "<nil>\n");
525 /* Dump to STDERR all the dependence relations from DDRS. */
528 debug_data_dependence_relations (vec
<ddr_p
> ddrs
)
530 dump_data_dependence_relations (stderr
, ddrs
);
533 /* Dumps the distance and direction vectors in FILE. DDRS contains
534 the dependence relations, and VECT_SIZE is the size of the
535 dependence vectors, or in other words the number of loops in the
539 dump_dist_dir_vectors (FILE *file
, vec
<ddr_p
> ddrs
)
542 struct data_dependence_relation
*ddr
;
545 FOR_EACH_VEC_ELT (ddrs
, i
, ddr
)
546 if (DDR_ARE_DEPENDENT (ddr
) == NULL_TREE
&& DDR_AFFINE_P (ddr
))
548 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr
), j
, v
)
550 fprintf (file
, "DISTANCE_V (");
551 print_lambda_vector (file
, v
, DDR_NB_LOOPS (ddr
));
552 fprintf (file
, ")\n");
555 FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr
), j
, v
)
557 fprintf (file
, "DIRECTION_V (");
558 print_direction_vector (file
, v
, DDR_NB_LOOPS (ddr
));
559 fprintf (file
, ")\n");
563 fprintf (file
, "\n\n");
566 /* Dumps the data dependence relations DDRS in FILE. */
569 dump_ddrs (FILE *file
, vec
<ddr_p
> ddrs
)
572 struct data_dependence_relation
*ddr
;
574 FOR_EACH_VEC_ELT (ddrs
, i
, ddr
)
575 dump_data_dependence_relation (file
, ddr
);
577 fprintf (file
, "\n\n");
581 debug_ddrs (vec
<ddr_p
> ddrs
)
583 dump_ddrs (stderr
, ddrs
);
586 /* Helper function for split_constant_offset. Expresses OP0 CODE OP1
587 (the type of the result is TYPE) as VAR + OFF, where OFF is a nonzero
588 constant of type ssizetype, and returns true. If we cannot do this
589 with OFF nonzero, OFF and VAR are set to NULL_TREE instead and false
593 split_constant_offset_1 (tree type
, tree op0
, enum tree_code code
, tree op1
,
594 tree
*var
, tree
*off
)
598 enum tree_code ocode
= code
;
606 *var
= build_int_cst (type
, 0);
607 *off
= fold_convert (ssizetype
, op0
);
610 case POINTER_PLUS_EXPR
:
615 split_constant_offset (op0
, &var0
, &off0
);
616 split_constant_offset (op1
, &var1
, &off1
);
617 *var
= fold_build2 (code
, type
, var0
, var1
);
618 *off
= size_binop (ocode
, off0
, off1
);
622 if (TREE_CODE (op1
) != INTEGER_CST
)
625 split_constant_offset (op0
, &var0
, &off0
);
626 *var
= fold_build2 (MULT_EXPR
, type
, var0
, op1
);
627 *off
= size_binop (MULT_EXPR
, off0
, fold_convert (ssizetype
, op1
));
633 poly_int64 pbitsize
, pbitpos
, pbytepos
;
635 int punsignedp
, preversep
, pvolatilep
;
637 op0
= TREE_OPERAND (op0
, 0);
639 = get_inner_reference (op0
, &pbitsize
, &pbitpos
, &poffset
, &pmode
,
640 &punsignedp
, &preversep
, &pvolatilep
);
642 if (!multiple_p (pbitpos
, BITS_PER_UNIT
, &pbytepos
))
644 base
= build_fold_addr_expr (base
);
645 off0
= ssize_int (pbytepos
);
649 split_constant_offset (poffset
, &poffset
, &off1
);
650 off0
= size_binop (PLUS_EXPR
, off0
, off1
);
651 if (POINTER_TYPE_P (TREE_TYPE (base
)))
652 base
= fold_build_pointer_plus (base
, poffset
);
654 base
= fold_build2 (PLUS_EXPR
, TREE_TYPE (base
), base
,
655 fold_convert (TREE_TYPE (base
), poffset
));
658 var0
= fold_convert (type
, base
);
660 /* If variable length types are involved, punt, otherwise casts
661 might be converted into ARRAY_REFs in gimplify_conversion.
662 To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which
663 possibly no longer appears in current GIMPLE, might resurface.
664 This perhaps could run
665 if (CONVERT_EXPR_P (var0))
667 gimplify_conversion (&var0);
668 // Attempt to fill in any within var0 found ARRAY_REF's
669 // element size from corresponding op embedded ARRAY_REF,
670 // if unsuccessful, just punt.
672 while (POINTER_TYPE_P (type
))
673 type
= TREE_TYPE (type
);
674 if (int_size_in_bytes (type
) < 0)
684 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0
))
687 gimple
*def_stmt
= SSA_NAME_DEF_STMT (op0
);
688 enum tree_code subcode
;
690 if (gimple_code (def_stmt
) != GIMPLE_ASSIGN
)
693 var0
= gimple_assign_rhs1 (def_stmt
);
694 subcode
= gimple_assign_rhs_code (def_stmt
);
695 var1
= gimple_assign_rhs2 (def_stmt
);
697 return split_constant_offset_1 (type
, var0
, subcode
, var1
, var
, off
);
701 /* We must not introduce undefined overflow, and we must not change the value.
702 Hence we're okay if the inner type doesn't overflow to start with
703 (pointer or signed), the outer type also is an integer or pointer
704 and the outer precision is at least as large as the inner. */
705 tree itype
= TREE_TYPE (op0
);
706 if ((POINTER_TYPE_P (itype
)
707 || (INTEGRAL_TYPE_P (itype
) && TYPE_OVERFLOW_UNDEFINED (itype
)))
708 && TYPE_PRECISION (type
) >= TYPE_PRECISION (itype
)
709 && (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
)))
711 split_constant_offset (op0
, &var0
, off
);
712 *var
= fold_convert (type
, var0
);
723 /* Expresses EXP as VAR + OFF, where off is a constant. The type of OFF
724 will be ssizetype. */
727 split_constant_offset (tree exp
, tree
*var
, tree
*off
)
729 tree type
= TREE_TYPE (exp
), op0
, op1
, e
, o
;
733 *off
= ssize_int (0);
735 if (tree_is_chrec (exp
)
736 || get_gimple_rhs_class (TREE_CODE (exp
)) == GIMPLE_TERNARY_RHS
)
739 code
= TREE_CODE (exp
);
740 extract_ops_from_tree (exp
, &code
, &op0
, &op1
);
741 if (split_constant_offset_1 (type
, op0
, code
, op1
, &e
, &o
))
748 /* Returns the address ADDR of an object in a canonical shape (without nop
749 casts, and with type of pointer to the object). */
752 canonicalize_base_object_address (tree addr
)
758 /* The base address may be obtained by casting from integer, in that case
760 if (!POINTER_TYPE_P (TREE_TYPE (addr
)))
763 if (TREE_CODE (addr
) != ADDR_EXPR
)
766 return build_fold_addr_expr (TREE_OPERAND (addr
, 0));
769 /* Analyze the behavior of memory reference REF. There are two modes:
771 - BB analysis. In this case we simply split the address into base,
772 init and offset components, without reference to any containing loop.
773 The resulting base and offset are general expressions and they can
774 vary arbitrarily from one iteration of the containing loop to the next.
775 The step is always zero.
777 - loop analysis. In this case we analyze the reference both wrt LOOP
778 and on the basis that the reference occurs (is "used") in LOOP;
779 see the comment above analyze_scalar_evolution_in_loop for more
780 information about this distinction. The base, init, offset and
781 step fields are all invariant in LOOP.
783 Perform BB analysis if LOOP is null, or if LOOP is the function's
784 dummy outermost loop. In other cases perform loop analysis.
786 Return true if the analysis succeeded and store the results in DRB if so.
787 BB analysis can only fail for bitfield or reversed-storage accesses. */
790 dr_analyze_innermost (innermost_loop_behavior
*drb
, tree ref
,
793 poly_int64 pbitsize
, pbitpos
;
796 int punsignedp
, preversep
, pvolatilep
;
797 affine_iv base_iv
, offset_iv
;
798 tree init
, dinit
, step
;
799 bool in_loop
= (loop
&& loop
->num
);
801 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
802 fprintf (dump_file
, "analyze_innermost: ");
804 base
= get_inner_reference (ref
, &pbitsize
, &pbitpos
, &poffset
, &pmode
,
805 &punsignedp
, &preversep
, &pvolatilep
);
806 gcc_assert (base
!= NULL_TREE
);
809 if (!multiple_p (pbitpos
, BITS_PER_UNIT
, &pbytepos
))
811 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
812 fprintf (dump_file
, "failed: bit offset alignment.\n");
818 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
819 fprintf (dump_file
, "failed: reverse storage order.\n");
823 /* Calculate the alignment and misalignment for the inner reference. */
824 unsigned int HOST_WIDE_INT bit_base_misalignment
;
825 unsigned int bit_base_alignment
;
826 get_object_alignment_1 (base
, &bit_base_alignment
, &bit_base_misalignment
);
828 /* There are no bitfield references remaining in BASE, so the values
829 we got back must be whole bytes. */
830 gcc_assert (bit_base_alignment
% BITS_PER_UNIT
== 0
831 && bit_base_misalignment
% BITS_PER_UNIT
== 0);
832 unsigned int base_alignment
= bit_base_alignment
/ BITS_PER_UNIT
;
833 poly_int64 base_misalignment
= bit_base_misalignment
/ BITS_PER_UNIT
;
835 if (TREE_CODE (base
) == MEM_REF
)
837 if (!integer_zerop (TREE_OPERAND (base
, 1)))
839 /* Subtract MOFF from the base and add it to POFFSET instead.
840 Adjust the misalignment to reflect the amount we subtracted. */
841 poly_offset_int moff
= mem_ref_offset (base
);
842 base_misalignment
-= moff
.force_shwi ();
843 tree mofft
= wide_int_to_tree (sizetype
, moff
);
847 poffset
= size_binop (PLUS_EXPR
, poffset
, mofft
);
849 base
= TREE_OPERAND (base
, 0);
852 base
= build_fold_addr_expr (base
);
856 if (!simple_iv (loop
, loop
, base
, &base_iv
, true))
858 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
859 fprintf (dump_file
, "failed: evolution of base is not affine.\n");
866 base_iv
.step
= ssize_int (0);
867 base_iv
.no_overflow
= true;
872 offset_iv
.base
= ssize_int (0);
873 offset_iv
.step
= ssize_int (0);
879 offset_iv
.base
= poffset
;
880 offset_iv
.step
= ssize_int (0);
882 else if (!simple_iv (loop
, loop
, poffset
, &offset_iv
, true))
884 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
885 fprintf (dump_file
, "failed: evolution of offset is not affine.\n");
890 init
= ssize_int (pbytepos
);
892 /* Subtract any constant component from the base and add it to INIT instead.
893 Adjust the misalignment to reflect the amount we subtracted. */
894 split_constant_offset (base_iv
.base
, &base_iv
.base
, &dinit
);
895 init
= size_binop (PLUS_EXPR
, init
, dinit
);
896 base_misalignment
-= TREE_INT_CST_LOW (dinit
);
898 split_constant_offset (offset_iv
.base
, &offset_iv
.base
, &dinit
);
899 init
= size_binop (PLUS_EXPR
, init
, dinit
);
901 step
= size_binop (PLUS_EXPR
,
902 fold_convert (ssizetype
, base_iv
.step
),
903 fold_convert (ssizetype
, offset_iv
.step
));
905 base
= canonicalize_base_object_address (base_iv
.base
);
907 /* See if get_pointer_alignment can guarantee a higher alignment than
908 the one we calculated above. */
909 unsigned int HOST_WIDE_INT alt_misalignment
;
910 unsigned int alt_alignment
;
911 get_pointer_alignment_1 (base
, &alt_alignment
, &alt_misalignment
);
913 /* As above, these values must be whole bytes. */
914 gcc_assert (alt_alignment
% BITS_PER_UNIT
== 0
915 && alt_misalignment
% BITS_PER_UNIT
== 0);
916 alt_alignment
/= BITS_PER_UNIT
;
917 alt_misalignment
/= BITS_PER_UNIT
;
919 if (base_alignment
< alt_alignment
)
921 base_alignment
= alt_alignment
;
922 base_misalignment
= alt_misalignment
;
925 drb
->base_address
= base
;
926 drb
->offset
= fold_convert (ssizetype
, offset_iv
.base
);
929 if (known_misalignment (base_misalignment
, base_alignment
,
930 &drb
->base_misalignment
))
931 drb
->base_alignment
= base_alignment
;
934 drb
->base_alignment
= known_alignment (base_misalignment
);
935 drb
->base_misalignment
= 0;
937 drb
->offset_alignment
= highest_pow2_factor (offset_iv
.base
);
938 drb
->step_alignment
= highest_pow2_factor (step
);
940 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
941 fprintf (dump_file
, "success.\n");
946 /* Return true if OP is a valid component reference for a DR access
947 function. This accepts a subset of what handled_component_p accepts. */
950 access_fn_component_p (tree op
)
952 switch (TREE_CODE (op
))
960 return TREE_CODE (TREE_TYPE (TREE_OPERAND (op
, 0))) == RECORD_TYPE
;
967 /* Determines the base object and the list of indices of memory reference
968 DR, analyzed in LOOP and instantiated before NEST. */
971 dr_analyze_indices (struct data_reference
*dr
, edge nest
, loop_p loop
)
973 vec
<tree
> access_fns
= vNULL
;
975 tree base
, off
, access_fn
;
977 /* If analyzing a basic-block there are no indices to analyze
978 and thus no access functions. */
981 DR_BASE_OBJECT (dr
) = DR_REF (dr
);
982 DR_ACCESS_FNS (dr
).create (0);
988 /* REALPART_EXPR and IMAGPART_EXPR can be handled like accesses
989 into a two element array with a constant index. The base is
990 then just the immediate underlying object. */
991 if (TREE_CODE (ref
) == REALPART_EXPR
)
993 ref
= TREE_OPERAND (ref
, 0);
994 access_fns
.safe_push (integer_zero_node
);
996 else if (TREE_CODE (ref
) == IMAGPART_EXPR
)
998 ref
= TREE_OPERAND (ref
, 0);
999 access_fns
.safe_push (integer_one_node
);
1002 /* Analyze access functions of dimensions we know to be independent.
1003 The list of component references handled here should be kept in
1004 sync with access_fn_component_p. */
1005 while (handled_component_p (ref
))
1007 if (TREE_CODE (ref
) == ARRAY_REF
)
1009 op
= TREE_OPERAND (ref
, 1);
1010 access_fn
= analyze_scalar_evolution (loop
, op
);
1011 access_fn
= instantiate_scev (nest
, loop
, access_fn
);
1012 access_fns
.safe_push (access_fn
);
1014 else if (TREE_CODE (ref
) == COMPONENT_REF
1015 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref
, 0))) == RECORD_TYPE
)
1017 /* For COMPONENT_REFs of records (but not unions!) use the
1018 FIELD_DECL offset as constant access function so we can
1019 disambiguate a[i].f1 and a[i].f2. */
1020 tree off
= component_ref_field_offset (ref
);
1021 off
= size_binop (PLUS_EXPR
,
1022 size_binop (MULT_EXPR
,
1023 fold_convert (bitsizetype
, off
),
1024 bitsize_int (BITS_PER_UNIT
)),
1025 DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref
, 1)));
1026 access_fns
.safe_push (off
);
1029 /* If we have an unhandled component we could not translate
1030 to an access function stop analyzing. We have determined
1031 our base object in this case. */
1034 ref
= TREE_OPERAND (ref
, 0);
1037 /* If the address operand of a MEM_REF base has an evolution in the
1038 analyzed nest, add it as an additional independent access-function. */
1039 if (TREE_CODE (ref
) == MEM_REF
)
1041 op
= TREE_OPERAND (ref
, 0);
1042 access_fn
= analyze_scalar_evolution (loop
, op
);
1043 access_fn
= instantiate_scev (nest
, loop
, access_fn
);
1044 if (TREE_CODE (access_fn
) == POLYNOMIAL_CHREC
)
1047 tree memoff
= TREE_OPERAND (ref
, 1);
1048 base
= initial_condition (access_fn
);
1049 orig_type
= TREE_TYPE (base
);
1050 STRIP_USELESS_TYPE_CONVERSION (base
);
1051 split_constant_offset (base
, &base
, &off
);
1052 STRIP_USELESS_TYPE_CONVERSION (base
);
1053 /* Fold the MEM_REF offset into the evolutions initial
1054 value to make more bases comparable. */
1055 if (!integer_zerop (memoff
))
1057 off
= size_binop (PLUS_EXPR
, off
,
1058 fold_convert (ssizetype
, memoff
));
1059 memoff
= build_int_cst (TREE_TYPE (memoff
), 0);
1061 /* Adjust the offset so it is a multiple of the access type
1062 size and thus we separate bases that can possibly be used
1063 to produce partial overlaps (which the access_fn machinery
1066 if (TYPE_SIZE_UNIT (TREE_TYPE (ref
))
1067 && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (ref
))) == INTEGER_CST
1068 && !integer_zerop (TYPE_SIZE_UNIT (TREE_TYPE (ref
))))
1071 wi::to_wide (TYPE_SIZE_UNIT (TREE_TYPE (ref
))),
1074 /* If we can't compute the remainder simply force the initial
1075 condition to zero. */
1076 rem
= wi::to_wide (off
);
1077 off
= wide_int_to_tree (ssizetype
, wi::to_wide (off
) - rem
);
1078 memoff
= wide_int_to_tree (TREE_TYPE (memoff
), rem
);
1079 /* And finally replace the initial condition. */
1080 access_fn
= chrec_replace_initial_condition
1081 (access_fn
, fold_convert (orig_type
, off
));
1082 /* ??? This is still not a suitable base object for
1083 dr_may_alias_p - the base object needs to be an
1084 access that covers the object as whole. With
1085 an evolution in the pointer this cannot be
1087 As a band-aid, mark the access so we can special-case
1088 it in dr_may_alias_p. */
1090 ref
= fold_build2_loc (EXPR_LOCATION (ref
),
1091 MEM_REF
, TREE_TYPE (ref
),
1093 MR_DEPENDENCE_CLIQUE (ref
) = MR_DEPENDENCE_CLIQUE (old
);
1094 MR_DEPENDENCE_BASE (ref
) = MR_DEPENDENCE_BASE (old
);
1095 DR_UNCONSTRAINED_BASE (dr
) = true;
1096 access_fns
.safe_push (access_fn
);
1099 else if (DECL_P (ref
))
1101 /* Canonicalize DR_BASE_OBJECT to MEM_REF form. */
1102 ref
= build2 (MEM_REF
, TREE_TYPE (ref
),
1103 build_fold_addr_expr (ref
),
1104 build_int_cst (reference_alias_ptr_type (ref
), 0));
1107 DR_BASE_OBJECT (dr
) = ref
;
1108 DR_ACCESS_FNS (dr
) = access_fns
;
1111 /* Extracts the alias analysis information from the memory reference DR. */
1114 dr_analyze_alias (struct data_reference
*dr
)
1116 tree ref
= DR_REF (dr
);
1117 tree base
= get_base_address (ref
), addr
;
1119 if (INDIRECT_REF_P (base
)
1120 || TREE_CODE (base
) == MEM_REF
)
1122 addr
= TREE_OPERAND (base
, 0);
1123 if (TREE_CODE (addr
) == SSA_NAME
)
1124 DR_PTR_INFO (dr
) = SSA_NAME_PTR_INFO (addr
);
1128 /* Frees data reference DR. */
1131 free_data_ref (data_reference_p dr
)
1133 DR_ACCESS_FNS (dr
).release ();
1137 /* Analyze memory reference MEMREF, which is accessed in STMT.
1138 The reference is a read if IS_READ is true, otherwise it is a write.
1139 IS_CONDITIONAL_IN_STMT indicates that the reference is conditional
1140 within STMT, i.e. that it might not occur even if STMT is executed
1141 and runs to completion.
1143 Return the data_reference description of MEMREF. NEST is the outermost
1144 loop in which the reference should be instantiated, LOOP is the loop
1145 in which the data reference should be analyzed. */
1147 struct data_reference
*
1148 create_data_ref (edge nest
, loop_p loop
, tree memref
, gimple
*stmt
,
1149 bool is_read
, bool is_conditional_in_stmt
)
1151 struct data_reference
*dr
;
1153 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1155 fprintf (dump_file
, "Creating dr for ");
1156 print_generic_expr (dump_file
, memref
, TDF_SLIM
);
1157 fprintf (dump_file
, "\n");
1160 dr
= XCNEW (struct data_reference
);
1161 DR_STMT (dr
) = stmt
;
1162 DR_REF (dr
) = memref
;
1163 DR_IS_READ (dr
) = is_read
;
1164 DR_IS_CONDITIONAL_IN_STMT (dr
) = is_conditional_in_stmt
;
1166 dr_analyze_innermost (&DR_INNERMOST (dr
), memref
,
1167 nest
!= NULL
? loop
: NULL
);
1168 dr_analyze_indices (dr
, nest
, loop
);
1169 dr_analyze_alias (dr
);
1171 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1174 fprintf (dump_file
, "\tbase_address: ");
1175 print_generic_expr (dump_file
, DR_BASE_ADDRESS (dr
), TDF_SLIM
);
1176 fprintf (dump_file
, "\n\toffset from base address: ");
1177 print_generic_expr (dump_file
, DR_OFFSET (dr
), TDF_SLIM
);
1178 fprintf (dump_file
, "\n\tconstant offset from base address: ");
1179 print_generic_expr (dump_file
, DR_INIT (dr
), TDF_SLIM
);
1180 fprintf (dump_file
, "\n\tstep: ");
1181 print_generic_expr (dump_file
, DR_STEP (dr
), TDF_SLIM
);
1182 fprintf (dump_file
, "\n\tbase alignment: %d", DR_BASE_ALIGNMENT (dr
));
1183 fprintf (dump_file
, "\n\tbase misalignment: %d",
1184 DR_BASE_MISALIGNMENT (dr
));
1185 fprintf (dump_file
, "\n\toffset alignment: %d",
1186 DR_OFFSET_ALIGNMENT (dr
));
1187 fprintf (dump_file
, "\n\tstep alignment: %d", DR_STEP_ALIGNMENT (dr
));
1188 fprintf (dump_file
, "\n\tbase_object: ");
1189 print_generic_expr (dump_file
, DR_BASE_OBJECT (dr
), TDF_SLIM
);
1190 fprintf (dump_file
, "\n");
1191 for (i
= 0; i
< DR_NUM_DIMENSIONS (dr
); i
++)
1193 fprintf (dump_file
, "\tAccess function %d: ", i
);
1194 print_generic_stmt (dump_file
, DR_ACCESS_FN (dr
, i
), TDF_SLIM
);
1201 /* A helper function computes order between two tree epxressions T1 and T2.
1202 This is used in comparator functions sorting objects based on the order
1203 of tree expressions. The function returns -1, 0, or 1. */
1206 data_ref_compare_tree (tree t1
, tree t2
)
1209 enum tree_code code
;
1219 STRIP_USELESS_TYPE_CONVERSION (t1
);
1220 STRIP_USELESS_TYPE_CONVERSION (t2
);
1224 if (TREE_CODE (t1
) != TREE_CODE (t2
)
1225 && ! (CONVERT_EXPR_P (t1
) && CONVERT_EXPR_P (t2
)))
1226 return TREE_CODE (t1
) < TREE_CODE (t2
) ? -1 : 1;
1228 code
= TREE_CODE (t1
);
1232 return tree_int_cst_compare (t1
, t2
);
1235 if (TREE_STRING_LENGTH (t1
) != TREE_STRING_LENGTH (t2
))
1236 return TREE_STRING_LENGTH (t1
) < TREE_STRING_LENGTH (t2
) ? -1 : 1;
1237 return memcmp (TREE_STRING_POINTER (t1
), TREE_STRING_POINTER (t2
),
1238 TREE_STRING_LENGTH (t1
));
1241 if (SSA_NAME_VERSION (t1
) != SSA_NAME_VERSION (t2
))
1242 return SSA_NAME_VERSION (t1
) < SSA_NAME_VERSION (t2
) ? -1 : 1;
1246 if (POLY_INT_CST_P (t1
))
1247 return compare_sizes_for_sort (wi::to_poly_widest (t1
),
1248 wi::to_poly_widest (t2
));
1250 tclass
= TREE_CODE_CLASS (code
);
1252 /* For decls, compare their UIDs. */
1253 if (tclass
== tcc_declaration
)
1255 if (DECL_UID (t1
) != DECL_UID (t2
))
1256 return DECL_UID (t1
) < DECL_UID (t2
) ? -1 : 1;
1259 /* For expressions, compare their operands recursively. */
1260 else if (IS_EXPR_CODE_CLASS (tclass
))
1262 for (i
= TREE_OPERAND_LENGTH (t1
) - 1; i
>= 0; --i
)
1264 cmp
= data_ref_compare_tree (TREE_OPERAND (t1
, i
),
1265 TREE_OPERAND (t2
, i
));
1277 /* Return TRUE it's possible to resolve data dependence DDR by runtime alias
1281 runtime_alias_check_p (ddr_p ddr
, struct loop
*loop
, bool speed_p
)
1283 if (dump_enabled_p ())
1285 dump_printf (MSG_NOTE
, "consider run-time aliasing test between ");
1286 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (DDR_A (ddr
)));
1287 dump_printf (MSG_NOTE
, " and ");
1288 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (DDR_B (ddr
)));
1289 dump_printf (MSG_NOTE
, "\n");
1294 if (dump_enabled_p ())
1295 dump_printf (MSG_MISSED_OPTIMIZATION
,
1296 "runtime alias check not supported when optimizing "
1301 /* FORNOW: We don't support versioning with outer-loop in either
1302 vectorization or loop distribution. */
1303 if (loop
!= NULL
&& loop
->inner
!= NULL
)
1305 if (dump_enabled_p ())
1306 dump_printf (MSG_MISSED_OPTIMIZATION
,
1307 "runtime alias check not supported for outer loop.\n");
1314 /* Operator == between two dr_with_seg_len objects.
1316 This equality operator is used to make sure two data refs
1317 are the same one so that we will consider to combine the
1318 aliasing checks of those two pairs of data dependent data
1322 operator == (const dr_with_seg_len
& d1
,
1323 const dr_with_seg_len
& d2
)
1325 return (operand_equal_p (DR_BASE_ADDRESS (d1
.dr
),
1326 DR_BASE_ADDRESS (d2
.dr
), 0)
1327 && data_ref_compare_tree (DR_OFFSET (d1
.dr
), DR_OFFSET (d2
.dr
)) == 0
1328 && data_ref_compare_tree (DR_INIT (d1
.dr
), DR_INIT (d2
.dr
)) == 0
1329 && data_ref_compare_tree (d1
.seg_len
, d2
.seg_len
) == 0
1330 && known_eq (d1
.access_size
, d2
.access_size
)
1331 && d1
.align
== d2
.align
);
1334 /* Comparison function for sorting objects of dr_with_seg_len_pair_t
1335 so that we can combine aliasing checks in one scan. */
1338 comp_dr_with_seg_len_pair (const void *pa_
, const void *pb_
)
1340 const dr_with_seg_len_pair_t
* pa
= (const dr_with_seg_len_pair_t
*) pa_
;
1341 const dr_with_seg_len_pair_t
* pb
= (const dr_with_seg_len_pair_t
*) pb_
;
1342 const dr_with_seg_len
&a1
= pa
->first
, &a2
= pa
->second
;
1343 const dr_with_seg_len
&b1
= pb
->first
, &b2
= pb
->second
;
1345 /* For DR pairs (a, b) and (c, d), we only consider to merge the alias checks
1346 if a and c have the same basic address snd step, and b and d have the same
1347 address and step. Therefore, if any a&c or b&d don't have the same address
1348 and step, we don't care the order of those two pairs after sorting. */
1351 if ((comp_res
= data_ref_compare_tree (DR_BASE_ADDRESS (a1
.dr
),
1352 DR_BASE_ADDRESS (b1
.dr
))) != 0)
1354 if ((comp_res
= data_ref_compare_tree (DR_BASE_ADDRESS (a2
.dr
),
1355 DR_BASE_ADDRESS (b2
.dr
))) != 0)
1357 if ((comp_res
= data_ref_compare_tree (DR_STEP (a1
.dr
),
1358 DR_STEP (b1
.dr
))) != 0)
1360 if ((comp_res
= data_ref_compare_tree (DR_STEP (a2
.dr
),
1361 DR_STEP (b2
.dr
))) != 0)
1363 if ((comp_res
= data_ref_compare_tree (DR_OFFSET (a1
.dr
),
1364 DR_OFFSET (b1
.dr
))) != 0)
1366 if ((comp_res
= data_ref_compare_tree (DR_INIT (a1
.dr
),
1367 DR_INIT (b1
.dr
))) != 0)
1369 if ((comp_res
= data_ref_compare_tree (DR_OFFSET (a2
.dr
),
1370 DR_OFFSET (b2
.dr
))) != 0)
1372 if ((comp_res
= data_ref_compare_tree (DR_INIT (a2
.dr
),
1373 DR_INIT (b2
.dr
))) != 0)
1379 /* Merge alias checks recorded in ALIAS_PAIRS and remove redundant ones.
1380 FACTOR is number of iterations that each data reference is accessed.
1382 Basically, for each pair of dependent data refs store_ptr_0 & load_ptr_0,
1383 we create an expression:
1385 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
1386 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
1388 for aliasing checks. However, in some cases we can decrease the number
1389 of checks by combining two checks into one. For example, suppose we have
1390 another pair of data refs store_ptr_0 & load_ptr_1, and if the following
1391 condition is satisfied:
1393 load_ptr_0 < load_ptr_1 &&
1394 load_ptr_1 - load_ptr_0 - load_segment_length_0 < store_segment_length_0
1396 (this condition means, in each iteration of vectorized loop, the accessed
1397 memory of store_ptr_0 cannot be between the memory of load_ptr_0 and
1400 we then can use only the following expression to finish the alising checks
1401 between store_ptr_0 & load_ptr_0 and store_ptr_0 & load_ptr_1:
1403 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
1404 || (load_ptr_1 + load_segment_length_1 <= store_ptr_0))
1406 Note that we only consider that load_ptr_0 and load_ptr_1 have the same
1410 prune_runtime_alias_test_list (vec
<dr_with_seg_len_pair_t
> *alias_pairs
,
1413 /* Sort the collected data ref pairs so that we can scan them once to
1414 combine all possible aliasing checks. */
1415 alias_pairs
->qsort (comp_dr_with_seg_len_pair
);
1417 /* Scan the sorted dr pairs and check if we can combine alias checks
1418 of two neighboring dr pairs. */
1419 for (size_t i
= 1; i
< alias_pairs
->length (); ++i
)
1421 /* Deal with two ddrs (dr_a1, dr_b1) and (dr_a2, dr_b2). */
1422 dr_with_seg_len
*dr_a1
= &(*alias_pairs
)[i
-1].first
,
1423 *dr_b1
= &(*alias_pairs
)[i
-1].second
,
1424 *dr_a2
= &(*alias_pairs
)[i
].first
,
1425 *dr_b2
= &(*alias_pairs
)[i
].second
;
1427 /* Remove duplicate data ref pairs. */
1428 if (*dr_a1
== *dr_a2
&& *dr_b1
== *dr_b2
)
1430 if (dump_enabled_p ())
1432 dump_printf (MSG_NOTE
, "found equal ranges ");
1433 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (dr_a1
->dr
));
1434 dump_printf (MSG_NOTE
, ", ");
1435 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (dr_b1
->dr
));
1436 dump_printf (MSG_NOTE
, " and ");
1437 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (dr_a2
->dr
));
1438 dump_printf (MSG_NOTE
, ", ");
1439 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (dr_b2
->dr
));
1440 dump_printf (MSG_NOTE
, "\n");
1442 alias_pairs
->ordered_remove (i
--);
1446 if (*dr_a1
== *dr_a2
|| *dr_b1
== *dr_b2
)
1448 /* We consider the case that DR_B1 and DR_B2 are same memrefs,
1449 and DR_A1 and DR_A2 are two consecutive memrefs. */
1450 if (*dr_a1
== *dr_a2
)
1452 std::swap (dr_a1
, dr_b1
);
1453 std::swap (dr_a2
, dr_b2
);
1456 poly_int64 init_a1
, init_a2
;
1457 /* Only consider cases in which the distance between the initial
1458 DR_A1 and the initial DR_A2 is known at compile time. */
1459 if (!operand_equal_p (DR_BASE_ADDRESS (dr_a1
->dr
),
1460 DR_BASE_ADDRESS (dr_a2
->dr
), 0)
1461 || !operand_equal_p (DR_OFFSET (dr_a1
->dr
),
1462 DR_OFFSET (dr_a2
->dr
), 0)
1463 || !poly_int_tree_p (DR_INIT (dr_a1
->dr
), &init_a1
)
1464 || !poly_int_tree_p (DR_INIT (dr_a2
->dr
), &init_a2
))
1467 /* Don't combine if we can't tell which one comes first. */
1468 if (!ordered_p (init_a1
, init_a2
))
1471 /* Make sure dr_a1 starts left of dr_a2. */
1472 if (maybe_gt (init_a1
, init_a2
))
1474 std::swap (*dr_a1
, *dr_a2
);
1475 std::swap (init_a1
, init_a2
);
1478 /* Work out what the segment length would be if we did combine
1481 - If DR_A1 and DR_A2 have equal lengths, that length is
1482 also the combined length.
1484 - If DR_A1 and DR_A2 both have negative "lengths", the combined
1485 length is the lower bound on those lengths.
1487 - If DR_A1 and DR_A2 both have positive lengths, the combined
1488 length is the upper bound on those lengths.
1490 Other cases are unlikely to give a useful combination.
1492 The lengths both have sizetype, so the sign is taken from
1493 the step instead. */
1494 if (!operand_equal_p (dr_a1
->seg_len
, dr_a2
->seg_len
, 0))
1496 poly_uint64 seg_len_a1
, seg_len_a2
;
1497 if (!poly_int_tree_p (dr_a1
->seg_len
, &seg_len_a1
)
1498 || !poly_int_tree_p (dr_a2
->seg_len
, &seg_len_a2
))
1501 tree indicator_a
= dr_direction_indicator (dr_a1
->dr
);
1502 if (TREE_CODE (indicator_a
) != INTEGER_CST
)
1505 tree indicator_b
= dr_direction_indicator (dr_a2
->dr
);
1506 if (TREE_CODE (indicator_b
) != INTEGER_CST
)
1509 int sign_a
= tree_int_cst_sgn (indicator_a
);
1510 int sign_b
= tree_int_cst_sgn (indicator_b
);
1512 poly_uint64 new_seg_len
;
1513 if (sign_a
<= 0 && sign_b
<= 0)
1514 new_seg_len
= lower_bound (seg_len_a1
, seg_len_a2
);
1515 else if (sign_a
>= 0 && sign_b
>= 0)
1516 new_seg_len
= upper_bound (seg_len_a1
, seg_len_a2
);
1520 dr_a1
->seg_len
= build_int_cst (TREE_TYPE (dr_a1
->seg_len
),
1522 dr_a1
->align
= MIN (dr_a1
->align
, known_alignment (new_seg_len
));
1525 /* This is always positive due to the swap above. */
1526 poly_uint64 diff
= init_a2
- init_a1
;
1528 /* The new check will start at DR_A1. Make sure that its access
1529 size encompasses the initial DR_A2. */
1530 if (maybe_lt (dr_a1
->access_size
, diff
+ dr_a2
->access_size
))
1532 dr_a1
->access_size
= upper_bound (dr_a1
->access_size
,
1533 diff
+ dr_a2
->access_size
);
1534 unsigned int new_align
= known_alignment (dr_a1
->access_size
);
1535 dr_a1
->align
= MIN (dr_a1
->align
, new_align
);
1537 if (dump_enabled_p ())
1539 dump_printf (MSG_NOTE
, "merging ranges for ");
1540 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (dr_a1
->dr
));
1541 dump_printf (MSG_NOTE
, ", ");
1542 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (dr_b1
->dr
));
1543 dump_printf (MSG_NOTE
, " and ");
1544 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (dr_a2
->dr
));
1545 dump_printf (MSG_NOTE
, ", ");
1546 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (dr_b2
->dr
));
1547 dump_printf (MSG_NOTE
, "\n");
1549 alias_pairs
->ordered_remove (i
);
1555 /* Given LOOP's two data references and segment lengths described by DR_A
1556 and DR_B, create expression checking if the two addresses ranges intersect
1557 with each other based on index of the two addresses. This can only be
1558 done if DR_A and DR_B referring to the same (array) object and the index
1559 is the only difference. For example:
1562 data-ref arr[i] arr[j]
1564 index {i_0, +, 1}_loop {j_0, +, 1}_loop
1566 The addresses and their index are like:
1568 |<- ADDR_A ->| |<- ADDR_B ->|
1569 ------------------------------------------------------->
1571 ------------------------------------------------------->
1572 i_0 ... i_0+4 j_0 ... j_0+4
1574 We can create expression based on index rather than address:
1576 (i_0 + 4 < j_0 || j_0 + 4 < i_0)
1578 Note evolution step of index needs to be considered in comparison. */
1581 create_intersect_range_checks_index (struct loop
*loop
, tree
*cond_expr
,
1582 const dr_with_seg_len
& dr_a
,
1583 const dr_with_seg_len
& dr_b
)
1585 if (integer_zerop (DR_STEP (dr_a
.dr
))
1586 || integer_zerop (DR_STEP (dr_b
.dr
))
1587 || DR_NUM_DIMENSIONS (dr_a
.dr
) != DR_NUM_DIMENSIONS (dr_b
.dr
))
1590 poly_uint64 seg_len1
, seg_len2
;
1591 if (!poly_int_tree_p (dr_a
.seg_len
, &seg_len1
)
1592 || !poly_int_tree_p (dr_b
.seg_len
, &seg_len2
))
1595 if (!tree_fits_shwi_p (DR_STEP (dr_a
.dr
)))
1598 if (!operand_equal_p (DR_BASE_OBJECT (dr_a
.dr
), DR_BASE_OBJECT (dr_b
.dr
), 0))
1601 if (!operand_equal_p (DR_STEP (dr_a
.dr
), DR_STEP (dr_b
.dr
), 0))
1604 gcc_assert (TREE_CODE (DR_STEP (dr_a
.dr
)) == INTEGER_CST
);
1606 bool neg_step
= tree_int_cst_compare (DR_STEP (dr_a
.dr
), size_zero_node
) < 0;
1607 unsigned HOST_WIDE_INT abs_step
= tree_to_shwi (DR_STEP (dr_a
.dr
));
1610 abs_step
= -abs_step
;
1611 seg_len1
= -seg_len1
;
1612 seg_len2
= -seg_len2
;
1616 /* Include the access size in the length, so that we only have one
1617 tree addition below. */
1618 seg_len1
+= dr_a
.access_size
;
1619 seg_len2
+= dr_b
.access_size
;
1622 /* Infer the number of iterations with which the memory segment is accessed
1623 by DR. In other words, alias is checked if memory segment accessed by
1624 DR_A in some iterations intersect with memory segment accessed by DR_B
1625 in the same amount iterations.
1626 Note segnment length is a linear function of number of iterations with
1627 DR_STEP as the coefficient. */
1628 poly_uint64 niter_len1
, niter_len2
;
1629 if (!can_div_trunc_p (seg_len1
+ abs_step
- 1, abs_step
, &niter_len1
)
1630 || !can_div_trunc_p (seg_len2
+ abs_step
- 1, abs_step
, &niter_len2
))
1633 poly_uint64 niter_access1
= 0, niter_access2
= 0;
1636 /* Divide each access size by the byte step, rounding up. */
1637 if (!can_div_trunc_p (dr_a
.access_size
- abs_step
- 1,
1638 abs_step
, &niter_access1
)
1639 || !can_div_trunc_p (dr_b
.access_size
+ abs_step
- 1,
1640 abs_step
, &niter_access2
))
1645 for (i
= 0; i
< DR_NUM_DIMENSIONS (dr_a
.dr
); i
++)
1647 tree access1
= DR_ACCESS_FN (dr_a
.dr
, i
);
1648 tree access2
= DR_ACCESS_FN (dr_b
.dr
, i
);
1649 /* Two indices must be the same if they are not scev, or not scev wrto
1650 current loop being vecorized. */
1651 if (TREE_CODE (access1
) != POLYNOMIAL_CHREC
1652 || TREE_CODE (access2
) != POLYNOMIAL_CHREC
1653 || CHREC_VARIABLE (access1
) != (unsigned)loop
->num
1654 || CHREC_VARIABLE (access2
) != (unsigned)loop
->num
)
1656 if (operand_equal_p (access1
, access2
, 0))
1661 /* The two indices must have the same step. */
1662 if (!operand_equal_p (CHREC_RIGHT (access1
), CHREC_RIGHT (access2
), 0))
1665 tree idx_step
= CHREC_RIGHT (access1
);
1666 /* Index must have const step, otherwise DR_STEP won't be constant. */
1667 gcc_assert (TREE_CODE (idx_step
) == INTEGER_CST
);
1668 /* Index must evaluate in the same direction as DR. */
1669 gcc_assert (!neg_step
|| tree_int_cst_sign_bit (idx_step
) == 1);
1671 tree min1
= CHREC_LEFT (access1
);
1672 tree min2
= CHREC_LEFT (access2
);
1673 if (!types_compatible_p (TREE_TYPE (min1
), TREE_TYPE (min2
)))
1676 /* Ideally, alias can be checked against loop's control IV, but we
1677 need to prove linear mapping between control IV and reference
1678 index. Although that should be true, we check against (array)
1679 index of data reference. Like segment length, index length is
1680 linear function of the number of iterations with index_step as
1681 the coefficient, i.e, niter_len * idx_step. */
1682 tree idx_len1
= fold_build2 (MULT_EXPR
, TREE_TYPE (min1
), idx_step
,
1683 build_int_cst (TREE_TYPE (min1
),
1685 tree idx_len2
= fold_build2 (MULT_EXPR
, TREE_TYPE (min2
), idx_step
,
1686 build_int_cst (TREE_TYPE (min2
),
1688 tree max1
= fold_build2 (PLUS_EXPR
, TREE_TYPE (min1
), min1
, idx_len1
);
1689 tree max2
= fold_build2 (PLUS_EXPR
, TREE_TYPE (min2
), min2
, idx_len2
);
1690 /* Adjust ranges for negative step. */
1693 /* IDX_LEN1 and IDX_LEN2 are negative in this case. */
1694 std::swap (min1
, max1
);
1695 std::swap (min2
, max2
);
1697 /* As with the lengths just calculated, we've measured the access
1698 sizes in iterations, so multiply them by the index step. */
1700 = fold_build2 (MULT_EXPR
, TREE_TYPE (min1
), idx_step
,
1701 build_int_cst (TREE_TYPE (min1
), niter_access1
));
1703 = fold_build2 (MULT_EXPR
, TREE_TYPE (min2
), idx_step
,
1704 build_int_cst (TREE_TYPE (min2
), niter_access2
));
1706 /* MINUS_EXPR because the above values are negative. */
1707 max1
= fold_build2 (MINUS_EXPR
, TREE_TYPE (max1
), max1
, idx_access1
);
1708 max2
= fold_build2 (MINUS_EXPR
, TREE_TYPE (max2
), max2
, idx_access2
);
1711 = fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
1712 fold_build2 (LE_EXPR
, boolean_type_node
, max1
, min2
),
1713 fold_build2 (LE_EXPR
, boolean_type_node
, max2
, min1
));
1715 *cond_expr
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
1716 *cond_expr
, part_cond_expr
);
1718 *cond_expr
= part_cond_expr
;
1723 /* If ALIGN is nonzero, set up *SEQ_MIN_OUT and *SEQ_MAX_OUT so that for
1724 every address ADDR accessed by D:
1726 *SEQ_MIN_OUT <= ADDR (== ADDR & -ALIGN) <= *SEQ_MAX_OUT
1728 In this case, every element accessed by D is aligned to at least
1731 If ALIGN is zero then instead set *SEG_MAX_OUT so that:
1733 *SEQ_MIN_OUT <= ADDR < *SEQ_MAX_OUT. */
1736 get_segment_min_max (const dr_with_seg_len
&d
, tree
*seg_min_out
,
1737 tree
*seg_max_out
, HOST_WIDE_INT align
)
1739 /* Each access has the following pattern:
1742 <--- A: -ve step --->
1743 +-----+-------+-----+-------+-----+
1744 | n-1 | ,.... | 0 | ..... | n-1 |
1745 +-----+-------+-----+-------+-----+
1746 <--- B: +ve step --->
1751 where "n" is the number of scalar iterations covered by the segment.
1752 (This should be VF for a particular pair if we know that both steps
1753 are the same, otherwise it will be the full number of scalar loop
1756 A is the range of bytes accessed when the step is negative,
1757 B is the range when the step is positive.
1759 If the access size is "access_size" bytes, the lowest addressed byte is:
1761 base + (step < 0 ? seg_len : 0) [LB]
1763 and the highest addressed byte is always below:
1765 base + (step < 0 ? 0 : seg_len) + access_size [UB]
1771 If ALIGN is nonzero, all three values are aligned to at least ALIGN
1774 LB <= ADDR <= UB - ALIGN
1776 where "- ALIGN" folds naturally with the "+ access_size" and often
1779 We don't try to simplify LB and UB beyond this (e.g. by using
1780 MIN and MAX based on whether seg_len rather than the stride is
1781 negative) because it is possible for the absolute size of the
1782 segment to overflow the range of a ssize_t.
1784 Keeping the pointer_plus outside of the cond_expr should allow
1785 the cond_exprs to be shared with other alias checks. */
1786 tree indicator
= dr_direction_indicator (d
.dr
);
1787 tree neg_step
= fold_build2 (LT_EXPR
, boolean_type_node
,
1788 fold_convert (ssizetype
, indicator
),
1790 tree addr_base
= fold_build_pointer_plus (DR_BASE_ADDRESS (d
.dr
),
1792 addr_base
= fold_build_pointer_plus (addr_base
, DR_INIT (d
.dr
));
1793 tree seg_len
= fold_convert (sizetype
, d
.seg_len
);
1795 tree min_reach
= fold_build3 (COND_EXPR
, sizetype
, neg_step
,
1796 seg_len
, size_zero_node
);
1797 tree max_reach
= fold_build3 (COND_EXPR
, sizetype
, neg_step
,
1798 size_zero_node
, seg_len
);
1799 max_reach
= fold_build2 (PLUS_EXPR
, sizetype
, max_reach
,
1800 size_int (d
.access_size
- align
));
1802 *seg_min_out
= fold_build_pointer_plus (addr_base
, min_reach
);
1803 *seg_max_out
= fold_build_pointer_plus (addr_base
, max_reach
);
1806 /* Given two data references and segment lengths described by DR_A and DR_B,
1807 create expression checking if the two addresses ranges intersect with
1810 ((DR_A_addr_0 + DR_A_segment_length_0) <= DR_B_addr_0)
1811 || (DR_B_addr_0 + DER_B_segment_length_0) <= DR_A_addr_0)) */
1814 create_intersect_range_checks (struct loop
*loop
, tree
*cond_expr
,
1815 const dr_with_seg_len
& dr_a
,
1816 const dr_with_seg_len
& dr_b
)
1818 *cond_expr
= NULL_TREE
;
1819 if (create_intersect_range_checks_index (loop
, cond_expr
, dr_a
, dr_b
))
1822 unsigned HOST_WIDE_INT min_align
;
1824 if (TREE_CODE (DR_STEP (dr_a
.dr
)) == INTEGER_CST
1825 && TREE_CODE (DR_STEP (dr_b
.dr
)) == INTEGER_CST
)
1827 /* In this case adding access_size to seg_len is likely to give
1828 a simple X * step, where X is either the number of scalar
1829 iterations or the vectorization factor. We're better off
1830 keeping that, rather than subtracting an alignment from it.
1832 In this case the maximum values are exclusive and so there is
1833 no alias if the maximum of one segment equals the minimum
1840 /* Calculate the minimum alignment shared by all four pointers,
1841 then arrange for this alignment to be subtracted from the
1842 exclusive maximum values to get inclusive maximum values.
1843 This "- min_align" is cumulative with a "+ access_size"
1844 in the calculation of the maximum values. In the best
1845 (and common) case, the two cancel each other out, leaving
1846 us with an inclusive bound based only on seg_len. In the
1847 worst case we're simply adding a smaller number than before.
1849 Because the maximum values are inclusive, there is an alias
1850 if the maximum value of one segment is equal to the minimum
1851 value of the other. */
1852 min_align
= MIN (dr_a
.align
, dr_b
.align
);
1856 tree seg_a_min
, seg_a_max
, seg_b_min
, seg_b_max
;
1857 get_segment_min_max (dr_a
, &seg_a_min
, &seg_a_max
, min_align
);
1858 get_segment_min_max (dr_b
, &seg_b_min
, &seg_b_max
, min_align
);
1861 = fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
1862 fold_build2 (cmp_code
, boolean_type_node
, seg_a_max
, seg_b_min
),
1863 fold_build2 (cmp_code
, boolean_type_node
, seg_b_max
, seg_a_min
));
1866 /* Create a conditional expression that represents the run-time checks for
1867 overlapping of address ranges represented by a list of data references
1868 pairs passed in ALIAS_PAIRS. Data references are in LOOP. The returned
1869 COND_EXPR is the conditional expression to be used in the if statement
1870 that controls which version of the loop gets executed at runtime. */
1873 create_runtime_alias_checks (struct loop
*loop
,
1874 vec
<dr_with_seg_len_pair_t
> *alias_pairs
,
1877 tree part_cond_expr
;
1879 for (size_t i
= 0, s
= alias_pairs
->length (); i
< s
; ++i
)
1881 const dr_with_seg_len
& dr_a
= (*alias_pairs
)[i
].first
;
1882 const dr_with_seg_len
& dr_b
= (*alias_pairs
)[i
].second
;
1884 if (dump_enabled_p ())
1886 dump_printf (MSG_NOTE
, "create runtime check for data references ");
1887 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (dr_a
.dr
));
1888 dump_printf (MSG_NOTE
, " and ");
1889 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (dr_b
.dr
));
1890 dump_printf (MSG_NOTE
, "\n");
1893 /* Create condition expression for each pair data references. */
1894 create_intersect_range_checks (loop
, &part_cond_expr
, dr_a
, dr_b
);
1896 *cond_expr
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
1897 *cond_expr
, part_cond_expr
);
1899 *cond_expr
= part_cond_expr
;
1903 /* Check if OFFSET1 and OFFSET2 (DR_OFFSETs of some data-refs) are identical
1906 dr_equal_offsets_p1 (tree offset1
, tree offset2
)
1910 STRIP_NOPS (offset1
);
1911 STRIP_NOPS (offset2
);
1913 if (offset1
== offset2
)
1916 if (TREE_CODE (offset1
) != TREE_CODE (offset2
)
1917 || (!BINARY_CLASS_P (offset1
) && !UNARY_CLASS_P (offset1
)))
1920 res
= dr_equal_offsets_p1 (TREE_OPERAND (offset1
, 0),
1921 TREE_OPERAND (offset2
, 0));
1923 if (!res
|| !BINARY_CLASS_P (offset1
))
1926 res
= dr_equal_offsets_p1 (TREE_OPERAND (offset1
, 1),
1927 TREE_OPERAND (offset2
, 1));
1932 /* Check if DRA and DRB have equal offsets. */
1934 dr_equal_offsets_p (struct data_reference
*dra
,
1935 struct data_reference
*drb
)
1937 tree offset1
, offset2
;
1939 offset1
= DR_OFFSET (dra
);
1940 offset2
= DR_OFFSET (drb
);
1942 return dr_equal_offsets_p1 (offset1
, offset2
);
1945 /* Returns true if FNA == FNB. */
1948 affine_function_equal_p (affine_fn fna
, affine_fn fnb
)
1950 unsigned i
, n
= fna
.length ();
1952 if (n
!= fnb
.length ())
1955 for (i
= 0; i
< n
; i
++)
1956 if (!operand_equal_p (fna
[i
], fnb
[i
], 0))
1962 /* If all the functions in CF are the same, returns one of them,
1963 otherwise returns NULL. */
1966 common_affine_function (conflict_function
*cf
)
1971 if (!CF_NONTRIVIAL_P (cf
))
1972 return affine_fn ();
1976 for (i
= 1; i
< cf
->n
; i
++)
1977 if (!affine_function_equal_p (comm
, cf
->fns
[i
]))
1978 return affine_fn ();
1983 /* Returns the base of the affine function FN. */
1986 affine_function_base (affine_fn fn
)
1991 /* Returns true if FN is a constant. */
1994 affine_function_constant_p (affine_fn fn
)
1999 for (i
= 1; fn
.iterate (i
, &coef
); i
++)
2000 if (!integer_zerop (coef
))
2006 /* Returns true if FN is the zero constant function. */
2009 affine_function_zero_p (affine_fn fn
)
2011 return (integer_zerop (affine_function_base (fn
))
2012 && affine_function_constant_p (fn
));
2015 /* Returns a signed integer type with the largest precision from TA
2019 signed_type_for_types (tree ta
, tree tb
)
2021 if (TYPE_PRECISION (ta
) > TYPE_PRECISION (tb
))
2022 return signed_type_for (ta
);
2024 return signed_type_for (tb
);
2027 /* Applies operation OP on affine functions FNA and FNB, and returns the
2031 affine_fn_op (enum tree_code op
, affine_fn fna
, affine_fn fnb
)
2037 if (fnb
.length () > fna
.length ())
2049 for (i
= 0; i
< n
; i
++)
2051 tree type
= signed_type_for_types (TREE_TYPE (fna
[i
]),
2052 TREE_TYPE (fnb
[i
]));
2053 ret
.quick_push (fold_build2 (op
, type
, fna
[i
], fnb
[i
]));
2056 for (; fna
.iterate (i
, &coef
); i
++)
2057 ret
.quick_push (fold_build2 (op
, signed_type_for (TREE_TYPE (coef
)),
2058 coef
, integer_zero_node
));
2059 for (; fnb
.iterate (i
, &coef
); i
++)
2060 ret
.quick_push (fold_build2 (op
, signed_type_for (TREE_TYPE (coef
)),
2061 integer_zero_node
, coef
));
2066 /* Returns the sum of affine functions FNA and FNB. */
2069 affine_fn_plus (affine_fn fna
, affine_fn fnb
)
2071 return affine_fn_op (PLUS_EXPR
, fna
, fnb
);
2074 /* Returns the difference of affine functions FNA and FNB. */
2077 affine_fn_minus (affine_fn fna
, affine_fn fnb
)
2079 return affine_fn_op (MINUS_EXPR
, fna
, fnb
);
2082 /* Frees affine function FN. */
2085 affine_fn_free (affine_fn fn
)
2090 /* Determine for each subscript in the data dependence relation DDR
2094 compute_subscript_distance (struct data_dependence_relation
*ddr
)
2096 conflict_function
*cf_a
, *cf_b
;
2097 affine_fn fn_a
, fn_b
, diff
;
2099 if (DDR_ARE_DEPENDENT (ddr
) == NULL_TREE
)
2103 for (i
= 0; i
< DDR_NUM_SUBSCRIPTS (ddr
); i
++)
2105 struct subscript
*subscript
;
2107 subscript
= DDR_SUBSCRIPT (ddr
, i
);
2108 cf_a
= SUB_CONFLICTS_IN_A (subscript
);
2109 cf_b
= SUB_CONFLICTS_IN_B (subscript
);
2111 fn_a
= common_affine_function (cf_a
);
2112 fn_b
= common_affine_function (cf_b
);
2113 if (!fn_a
.exists () || !fn_b
.exists ())
2115 SUB_DISTANCE (subscript
) = chrec_dont_know
;
2118 diff
= affine_fn_minus (fn_a
, fn_b
);
2120 if (affine_function_constant_p (diff
))
2121 SUB_DISTANCE (subscript
) = affine_function_base (diff
);
2123 SUB_DISTANCE (subscript
) = chrec_dont_know
;
2125 affine_fn_free (diff
);
2130 /* Returns the conflict function for "unknown". */
2132 static conflict_function
*
2133 conflict_fn_not_known (void)
2135 conflict_function
*fn
= XCNEW (conflict_function
);
2141 /* Returns the conflict function for "independent". */
2143 static conflict_function
*
2144 conflict_fn_no_dependence (void)
2146 conflict_function
*fn
= XCNEW (conflict_function
);
2147 fn
->n
= NO_DEPENDENCE
;
2152 /* Returns true if the address of OBJ is invariant in LOOP. */
2155 object_address_invariant_in_loop_p (const struct loop
*loop
, const_tree obj
)
2157 while (handled_component_p (obj
))
2159 if (TREE_CODE (obj
) == ARRAY_REF
)
2161 /* Index of the ARRAY_REF was zeroed in analyze_indices, thus we only
2162 need to check the stride and the lower bound of the reference. */
2163 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj
, 2),
2165 || chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj
, 3),
2169 else if (TREE_CODE (obj
) == COMPONENT_REF
)
2171 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj
, 2),
2175 obj
= TREE_OPERAND (obj
, 0);
2178 if (!INDIRECT_REF_P (obj
)
2179 && TREE_CODE (obj
) != MEM_REF
)
2182 return !chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj
, 0),
2186 /* Returns false if we can prove that data references A and B do not alias,
2187 true otherwise. If LOOP_NEST is false no cross-iteration aliases are
2191 dr_may_alias_p (const struct data_reference
*a
, const struct data_reference
*b
,
2194 tree addr_a
= DR_BASE_OBJECT (a
);
2195 tree addr_b
= DR_BASE_OBJECT (b
);
2197 /* If we are not processing a loop nest but scalar code we
2198 do not need to care about possible cross-iteration dependences
2199 and thus can process the full original reference. Do so,
2200 similar to how loop invariant motion applies extra offset-based
2204 aff_tree off1
, off2
;
2205 poly_widest_int size1
, size2
;
2206 get_inner_reference_aff (DR_REF (a
), &off1
, &size1
);
2207 get_inner_reference_aff (DR_REF (b
), &off2
, &size2
);
2208 aff_combination_scale (&off1
, -1);
2209 aff_combination_add (&off2
, &off1
);
2210 if (aff_comb_cannot_overlap_p (&off2
, size1
, size2
))
2214 if ((TREE_CODE (addr_a
) == MEM_REF
|| TREE_CODE (addr_a
) == TARGET_MEM_REF
)
2215 && (TREE_CODE (addr_b
) == MEM_REF
|| TREE_CODE (addr_b
) == TARGET_MEM_REF
)
2216 && MR_DEPENDENCE_CLIQUE (addr_a
) == MR_DEPENDENCE_CLIQUE (addr_b
)
2217 && MR_DEPENDENCE_BASE (addr_a
) != MR_DEPENDENCE_BASE (addr_b
))
2220 /* If we had an evolution in a pointer-based MEM_REF BASE_OBJECT we
2221 do not know the size of the base-object. So we cannot do any
2222 offset/overlap based analysis but have to rely on points-to
2223 information only. */
2224 if (TREE_CODE (addr_a
) == MEM_REF
2225 && (DR_UNCONSTRAINED_BASE (a
)
2226 || TREE_CODE (TREE_OPERAND (addr_a
, 0)) == SSA_NAME
))
2228 /* For true dependences we can apply TBAA. */
2229 if (flag_strict_aliasing
2230 && DR_IS_WRITE (a
) && DR_IS_READ (b
)
2231 && !alias_sets_conflict_p (get_alias_set (DR_REF (a
)),
2232 get_alias_set (DR_REF (b
))))
2234 if (TREE_CODE (addr_b
) == MEM_REF
)
2235 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a
, 0),
2236 TREE_OPERAND (addr_b
, 0));
2238 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a
, 0),
2239 build_fold_addr_expr (addr_b
));
2241 else if (TREE_CODE (addr_b
) == MEM_REF
2242 && (DR_UNCONSTRAINED_BASE (b
)
2243 || TREE_CODE (TREE_OPERAND (addr_b
, 0)) == SSA_NAME
))
2245 /* For true dependences we can apply TBAA. */
2246 if (flag_strict_aliasing
2247 && DR_IS_WRITE (a
) && DR_IS_READ (b
)
2248 && !alias_sets_conflict_p (get_alias_set (DR_REF (a
)),
2249 get_alias_set (DR_REF (b
))))
2251 if (TREE_CODE (addr_a
) == MEM_REF
)
2252 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a
, 0),
2253 TREE_OPERAND (addr_b
, 0));
2255 return ptr_derefs_may_alias_p (build_fold_addr_expr (addr_a
),
2256 TREE_OPERAND (addr_b
, 0));
2259 /* Otherwise DR_BASE_OBJECT is an access that covers the whole object
2260 that is being subsetted in the loop nest. */
2261 if (DR_IS_WRITE (a
) && DR_IS_WRITE (b
))
2262 return refs_output_dependent_p (addr_a
, addr_b
);
2263 else if (DR_IS_READ (a
) && DR_IS_WRITE (b
))
2264 return refs_anti_dependent_p (addr_a
, addr_b
);
2265 return refs_may_alias_p (addr_a
, addr_b
);
2268 /* REF_A and REF_B both satisfy access_fn_component_p. Return true
2269 if it is meaningful to compare their associated access functions
2270 when checking for dependencies. */
2273 access_fn_components_comparable_p (tree ref_a
, tree ref_b
)
2275 /* Allow pairs of component refs from the following sets:
2277 { REALPART_EXPR, IMAGPART_EXPR }
2280 tree_code code_a
= TREE_CODE (ref_a
);
2281 tree_code code_b
= TREE_CODE (ref_b
);
2282 if (code_a
== IMAGPART_EXPR
)
2283 code_a
= REALPART_EXPR
;
2284 if (code_b
== IMAGPART_EXPR
)
2285 code_b
= REALPART_EXPR
;
2286 if (code_a
!= code_b
)
2289 if (TREE_CODE (ref_a
) == COMPONENT_REF
)
2290 /* ??? We cannot simply use the type of operand #0 of the refs here as
2291 the Fortran compiler smuggles type punning into COMPONENT_REFs.
2292 Use the DECL_CONTEXT of the FIELD_DECLs instead. */
2293 return (DECL_CONTEXT (TREE_OPERAND (ref_a
, 1))
2294 == DECL_CONTEXT (TREE_OPERAND (ref_b
, 1)));
2296 return types_compatible_p (TREE_TYPE (TREE_OPERAND (ref_a
, 0)),
2297 TREE_TYPE (TREE_OPERAND (ref_b
, 0)));
2300 /* Initialize a data dependence relation between data accesses A and
2301 B. NB_LOOPS is the number of loops surrounding the references: the
2302 size of the classic distance/direction vectors. */
2304 struct data_dependence_relation
*
2305 initialize_data_dependence_relation (struct data_reference
*a
,
2306 struct data_reference
*b
,
2307 vec
<loop_p
> loop_nest
)
2309 struct data_dependence_relation
*res
;
2312 res
= XCNEW (struct data_dependence_relation
);
2315 DDR_LOOP_NEST (res
).create (0);
2316 DDR_SUBSCRIPTS (res
).create (0);
2317 DDR_DIR_VECTS (res
).create (0);
2318 DDR_DIST_VECTS (res
).create (0);
2320 if (a
== NULL
|| b
== NULL
)
2322 DDR_ARE_DEPENDENT (res
) = chrec_dont_know
;
2326 /* If the data references do not alias, then they are independent. */
2327 if (!dr_may_alias_p (a
, b
, loop_nest
.exists ()))
2329 DDR_ARE_DEPENDENT (res
) = chrec_known
;
2333 unsigned int num_dimensions_a
= DR_NUM_DIMENSIONS (a
);
2334 unsigned int num_dimensions_b
= DR_NUM_DIMENSIONS (b
);
2335 if (num_dimensions_a
== 0 || num_dimensions_b
== 0)
2337 DDR_ARE_DEPENDENT (res
) = chrec_dont_know
;
2341 /* For unconstrained bases, the root (highest-indexed) subscript
2342 describes a variation in the base of the original DR_REF rather
2343 than a component access. We have no type that accurately describes
2344 the new DR_BASE_OBJECT (whose TREE_TYPE describes the type *after*
2345 applying this subscript) so limit the search to the last real
2351 f (int a[][8], int b[][8])
2353 for (int i = 0; i < 8; ++i)
2354 a[i * 2][0] = b[i][0];
2357 the a and b accesses have a single ARRAY_REF component reference [0]
2358 but have two subscripts. */
2359 if (DR_UNCONSTRAINED_BASE (a
))
2360 num_dimensions_a
-= 1;
2361 if (DR_UNCONSTRAINED_BASE (b
))
2362 num_dimensions_b
-= 1;
2364 /* These structures describe sequences of component references in
2365 DR_REF (A) and DR_REF (B). Each component reference is tied to a
2366 specific access function. */
2368 /* The sequence starts at DR_ACCESS_FN (A, START_A) of A and
2369 DR_ACCESS_FN (B, START_B) of B (inclusive) and extends to higher
2370 indices. In C notation, these are the indices of the rightmost
2371 component references; e.g. for a sequence .b.c.d, the start
2373 unsigned int start_a
;
2374 unsigned int start_b
;
2376 /* The sequence contains LENGTH consecutive access functions from
2378 unsigned int length
;
2380 /* The enclosing objects for the A and B sequences respectively,
2381 i.e. the objects to which DR_ACCESS_FN (A, START_A + LENGTH - 1)
2382 and DR_ACCESS_FN (B, START_B + LENGTH - 1) are applied. */
2385 } full_seq
= {}, struct_seq
= {};
2387 /* Before each iteration of the loop:
2389 - REF_A is what you get after applying DR_ACCESS_FN (A, INDEX_A) and
2390 - REF_B is what you get after applying DR_ACCESS_FN (B, INDEX_B). */
2391 unsigned int index_a
= 0;
2392 unsigned int index_b
= 0;
2393 tree ref_a
= DR_REF (a
);
2394 tree ref_b
= DR_REF (b
);
2396 /* Now walk the component references from the final DR_REFs back up to
2397 the enclosing base objects. Each component reference corresponds
2398 to one access function in the DR, with access function 0 being for
2399 the final DR_REF and the highest-indexed access function being the
2400 one that is applied to the base of the DR.
2402 Look for a sequence of component references whose access functions
2403 are comparable (see access_fn_components_comparable_p). If more
2404 than one such sequence exists, pick the one nearest the base
2405 (which is the leftmost sequence in C notation). Store this sequence
2408 For example, if we have:
2410 struct foo { struct bar s; ... } (*a)[10], (*b)[10];
2413 B: __real b[0][i].s.e[i].f
2415 (where d is the same type as the real component of f) then the access
2422 B: __real .f [i] .e .s [i]
2424 The A0/B2 column isn't comparable, since .d is a COMPONENT_REF
2425 and [i] is an ARRAY_REF. However, the A1/B3 column contains two
2426 COMPONENT_REF accesses for struct bar, so is comparable. Likewise
2427 the A2/B4 column contains two COMPONENT_REF accesses for struct foo,
2428 so is comparable. The A3/B5 column contains two ARRAY_REFs that
2429 index foo[10] arrays, so is again comparable. The sequence is
2432 A: [1, 3] (i.e. [i].s.c)
2433 B: [3, 5] (i.e. [i].s.e)
2435 Also look for sequences of component references whose access
2436 functions are comparable and whose enclosing objects have the same
2437 RECORD_TYPE. Store this sequence in STRUCT_SEQ. In the above
2438 example, STRUCT_SEQ would be:
2440 A: [1, 2] (i.e. s.c)
2441 B: [3, 4] (i.e. s.e) */
2442 while (index_a
< num_dimensions_a
&& index_b
< num_dimensions_b
)
2444 /* REF_A and REF_B must be one of the component access types
2445 allowed by dr_analyze_indices. */
2446 gcc_checking_assert (access_fn_component_p (ref_a
));
2447 gcc_checking_assert (access_fn_component_p (ref_b
));
2449 /* Get the immediately-enclosing objects for REF_A and REF_B,
2450 i.e. the references *before* applying DR_ACCESS_FN (A, INDEX_A)
2451 and DR_ACCESS_FN (B, INDEX_B). */
2452 tree object_a
= TREE_OPERAND (ref_a
, 0);
2453 tree object_b
= TREE_OPERAND (ref_b
, 0);
2455 tree type_a
= TREE_TYPE (object_a
);
2456 tree type_b
= TREE_TYPE (object_b
);
2457 if (access_fn_components_comparable_p (ref_a
, ref_b
))
2459 /* This pair of component accesses is comparable for dependence
2460 analysis, so we can include DR_ACCESS_FN (A, INDEX_A) and
2461 DR_ACCESS_FN (B, INDEX_B) in the sequence. */
2462 if (full_seq
.start_a
+ full_seq
.length
!= index_a
2463 || full_seq
.start_b
+ full_seq
.length
!= index_b
)
2465 /* The accesses don't extend the current sequence,
2466 so start a new one here. */
2467 full_seq
.start_a
= index_a
;
2468 full_seq
.start_b
= index_b
;
2469 full_seq
.length
= 0;
2472 /* Add this pair of references to the sequence. */
2473 full_seq
.length
+= 1;
2474 full_seq
.object_a
= object_a
;
2475 full_seq
.object_b
= object_b
;
2477 /* If the enclosing objects are structures (and thus have the
2478 same RECORD_TYPE), record the new sequence in STRUCT_SEQ. */
2479 if (TREE_CODE (type_a
) == RECORD_TYPE
)
2480 struct_seq
= full_seq
;
2482 /* Move to the next containing reference for both A and B. */
2490 /* Try to approach equal type sizes. */
2491 if (!COMPLETE_TYPE_P (type_a
)
2492 || !COMPLETE_TYPE_P (type_b
)
2493 || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_a
))
2494 || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_b
)))
2497 unsigned HOST_WIDE_INT size_a
= tree_to_uhwi (TYPE_SIZE_UNIT (type_a
));
2498 unsigned HOST_WIDE_INT size_b
= tree_to_uhwi (TYPE_SIZE_UNIT (type_b
));
2499 if (size_a
<= size_b
)
2504 if (size_b
<= size_a
)
2511 /* See whether FULL_SEQ ends at the base and whether the two bases
2512 are equal. We do not care about TBAA or alignment info so we can
2513 use OEP_ADDRESS_OF to avoid false negatives. */
2514 tree base_a
= DR_BASE_OBJECT (a
);
2515 tree base_b
= DR_BASE_OBJECT (b
);
2516 bool same_base_p
= (full_seq
.start_a
+ full_seq
.length
== num_dimensions_a
2517 && full_seq
.start_b
+ full_seq
.length
== num_dimensions_b
2518 && DR_UNCONSTRAINED_BASE (a
) == DR_UNCONSTRAINED_BASE (b
)
2519 && operand_equal_p (base_a
, base_b
, OEP_ADDRESS_OF
)
2520 && types_compatible_p (TREE_TYPE (base_a
),
2522 && (!loop_nest
.exists ()
2523 || (object_address_invariant_in_loop_p
2524 (loop_nest
[0], base_a
))));
2526 /* If the bases are the same, we can include the base variation too.
2527 E.g. the b accesses in:
2529 for (int i = 0; i < n; ++i)
2530 b[i + 4][0] = b[i][0];
2532 have a definite dependence distance of 4, while for:
2534 for (int i = 0; i < n; ++i)
2535 a[i + 4][0] = b[i][0];
2537 the dependence distance depends on the gap between a and b.
2539 If the bases are different then we can only rely on the sequence
2540 rooted at a structure access, since arrays are allowed to overlap
2541 arbitrarily and change shape arbitrarily. E.g. we treat this as
2546 ((int (*)[4][3]) &a[1])[i][0] += ((int (*)[4][3]) &a[2])[i][0];
2548 where two lvalues with the same int[4][3] type overlap, and where
2549 both lvalues are distinct from the object's declared type. */
2552 if (DR_UNCONSTRAINED_BASE (a
))
2553 full_seq
.length
+= 1;
2556 full_seq
= struct_seq
;
2558 /* Punt if we didn't find a suitable sequence. */
2559 if (full_seq
.length
== 0)
2561 DDR_ARE_DEPENDENT (res
) = chrec_dont_know
;
2567 /* Partial overlap is possible for different bases when strict aliasing
2568 is not in effect. It's also possible if either base involves a union
2571 struct s1 { int a[2]; };
2572 struct s2 { struct s1 b; int c; };
2573 struct s3 { int d; struct s1 e; };
2574 union u { struct s2 f; struct s3 g; } *p, *q;
2576 the s1 at "p->f.b" (base "p->f") partially overlaps the s1 at
2577 "p->g.e" (base "p->g") and might partially overlap the s1 at
2578 "q->g.e" (base "q->g"). */
2579 if (!flag_strict_aliasing
2580 || ref_contains_union_access_p (full_seq
.object_a
)
2581 || ref_contains_union_access_p (full_seq
.object_b
))
2583 DDR_ARE_DEPENDENT (res
) = chrec_dont_know
;
2587 DDR_COULD_BE_INDEPENDENT_P (res
) = true;
2588 if (!loop_nest
.exists ()
2589 || (object_address_invariant_in_loop_p (loop_nest
[0],
2591 && object_address_invariant_in_loop_p (loop_nest
[0],
2592 full_seq
.object_b
)))
2594 DDR_OBJECT_A (res
) = full_seq
.object_a
;
2595 DDR_OBJECT_B (res
) = full_seq
.object_b
;
2599 DDR_AFFINE_P (res
) = true;
2600 DDR_ARE_DEPENDENT (res
) = NULL_TREE
;
2601 DDR_SUBSCRIPTS (res
).create (full_seq
.length
);
2602 DDR_LOOP_NEST (res
) = loop_nest
;
2603 DDR_INNER_LOOP (res
) = 0;
2604 DDR_SELF_REFERENCE (res
) = false;
2606 for (i
= 0; i
< full_seq
.length
; ++i
)
2608 struct subscript
*subscript
;
2610 subscript
= XNEW (struct subscript
);
2611 SUB_ACCESS_FN (subscript
, 0) = DR_ACCESS_FN (a
, full_seq
.start_a
+ i
);
2612 SUB_ACCESS_FN (subscript
, 1) = DR_ACCESS_FN (b
, full_seq
.start_b
+ i
);
2613 SUB_CONFLICTS_IN_A (subscript
) = conflict_fn_not_known ();
2614 SUB_CONFLICTS_IN_B (subscript
) = conflict_fn_not_known ();
2615 SUB_LAST_CONFLICT (subscript
) = chrec_dont_know
;
2616 SUB_DISTANCE (subscript
) = chrec_dont_know
;
2617 DDR_SUBSCRIPTS (res
).safe_push (subscript
);
2623 /* Frees memory used by the conflict function F. */
2626 free_conflict_function (conflict_function
*f
)
2630 if (CF_NONTRIVIAL_P (f
))
2632 for (i
= 0; i
< f
->n
; i
++)
2633 affine_fn_free (f
->fns
[i
]);
2638 /* Frees memory used by SUBSCRIPTS. */
2641 free_subscripts (vec
<subscript_p
> subscripts
)
2646 FOR_EACH_VEC_ELT (subscripts
, i
, s
)
2648 free_conflict_function (s
->conflicting_iterations_in_a
);
2649 free_conflict_function (s
->conflicting_iterations_in_b
);
2652 subscripts
.release ();
2655 /* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
2659 finalize_ddr_dependent (struct data_dependence_relation
*ddr
,
2662 DDR_ARE_DEPENDENT (ddr
) = chrec
;
2663 free_subscripts (DDR_SUBSCRIPTS (ddr
));
2664 DDR_SUBSCRIPTS (ddr
).create (0);
2667 /* The dependence relation DDR cannot be represented by a distance
2671 non_affine_dependence_relation (struct data_dependence_relation
*ddr
)
2673 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2674 fprintf (dump_file
, "(Dependence relation cannot be represented by distance vector.) \n");
2676 DDR_AFFINE_P (ddr
) = false;
2681 /* This section contains the classic Banerjee tests. */
2683 /* Returns true iff CHREC_A and CHREC_B are not dependent on any index
2684 variables, i.e., if the ZIV (Zero Index Variable) test is true. */
2687 ziv_subscript_p (const_tree chrec_a
, const_tree chrec_b
)
2689 return (evolution_function_is_constant_p (chrec_a
)
2690 && evolution_function_is_constant_p (chrec_b
));
2693 /* Returns true iff CHREC_A and CHREC_B are dependent on an index
2694 variable, i.e., if the SIV (Single Index Variable) test is true. */
2697 siv_subscript_p (const_tree chrec_a
, const_tree chrec_b
)
2699 if ((evolution_function_is_constant_p (chrec_a
)
2700 && evolution_function_is_univariate_p (chrec_b
))
2701 || (evolution_function_is_constant_p (chrec_b
)
2702 && evolution_function_is_univariate_p (chrec_a
)))
2705 if (evolution_function_is_univariate_p (chrec_a
)
2706 && evolution_function_is_univariate_p (chrec_b
))
2708 switch (TREE_CODE (chrec_a
))
2710 case POLYNOMIAL_CHREC
:
2711 switch (TREE_CODE (chrec_b
))
2713 case POLYNOMIAL_CHREC
:
2714 if (CHREC_VARIABLE (chrec_a
) != CHREC_VARIABLE (chrec_b
))
2730 /* Creates a conflict function with N dimensions. The affine functions
2731 in each dimension follow. */
2733 static conflict_function
*
2734 conflict_fn (unsigned n
, ...)
2737 conflict_function
*ret
= XCNEW (conflict_function
);
2740 gcc_assert (n
> 0 && n
<= MAX_DIM
);
2744 for (i
= 0; i
< n
; i
++)
2745 ret
->fns
[i
] = va_arg (ap
, affine_fn
);
2751 /* Returns constant affine function with value CST. */
2754 affine_fn_cst (tree cst
)
2758 fn
.quick_push (cst
);
2762 /* Returns affine function with single variable, CST + COEF * x_DIM. */
2765 affine_fn_univar (tree cst
, unsigned dim
, tree coef
)
2768 fn
.create (dim
+ 1);
2771 gcc_assert (dim
> 0);
2772 fn
.quick_push (cst
);
2773 for (i
= 1; i
< dim
; i
++)
2774 fn
.quick_push (integer_zero_node
);
2775 fn
.quick_push (coef
);
2779 /* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
2780 *OVERLAPS_B are initialized to the functions that describe the
2781 relation between the elements accessed twice by CHREC_A and
2782 CHREC_B. For k >= 0, the following property is verified:
2784 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
2787 analyze_ziv_subscript (tree chrec_a
,
2789 conflict_function
**overlaps_a
,
2790 conflict_function
**overlaps_b
,
2791 tree
*last_conflicts
)
2793 tree type
, difference
;
2794 dependence_stats
.num_ziv
++;
2796 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2797 fprintf (dump_file
, "(analyze_ziv_subscript \n");
2799 type
= signed_type_for_types (TREE_TYPE (chrec_a
), TREE_TYPE (chrec_b
));
2800 chrec_a
= chrec_convert (type
, chrec_a
, NULL
);
2801 chrec_b
= chrec_convert (type
, chrec_b
, NULL
);
2802 difference
= chrec_fold_minus (type
, chrec_a
, chrec_b
);
2804 switch (TREE_CODE (difference
))
2807 if (integer_zerop (difference
))
2809 /* The difference is equal to zero: the accessed index
2810 overlaps for each iteration in the loop. */
2811 *overlaps_a
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
2812 *overlaps_b
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
2813 *last_conflicts
= chrec_dont_know
;
2814 dependence_stats
.num_ziv_dependent
++;
2818 /* The accesses do not overlap. */
2819 *overlaps_a
= conflict_fn_no_dependence ();
2820 *overlaps_b
= conflict_fn_no_dependence ();
2821 *last_conflicts
= integer_zero_node
;
2822 dependence_stats
.num_ziv_independent
++;
2827 /* We're not sure whether the indexes overlap. For the moment,
2828 conservatively answer "don't know". */
2829 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2830 fprintf (dump_file
, "ziv test failed: difference is non-integer.\n");
2832 *overlaps_a
= conflict_fn_not_known ();
2833 *overlaps_b
= conflict_fn_not_known ();
2834 *last_conflicts
= chrec_dont_know
;
2835 dependence_stats
.num_ziv_unimplemented
++;
2839 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2840 fprintf (dump_file
, ")\n");
2843 /* Similar to max_stmt_executions_int, but returns the bound as a tree,
2844 and only if it fits to the int type. If this is not the case, or the
2845 bound on the number of iterations of LOOP could not be derived, returns
2849 max_stmt_executions_tree (struct loop
*loop
)
2853 if (!max_stmt_executions (loop
, &nit
))
2854 return chrec_dont_know
;
2856 if (!wi::fits_to_tree_p (nit
, unsigned_type_node
))
2857 return chrec_dont_know
;
2859 return wide_int_to_tree (unsigned_type_node
, nit
);
2862 /* Determine whether the CHREC is always positive/negative. If the expression
2863 cannot be statically analyzed, return false, otherwise set the answer into
2867 chrec_is_positive (tree chrec
, bool *value
)
2869 bool value0
, value1
, value2
;
2870 tree end_value
, nb_iter
;
2872 switch (TREE_CODE (chrec
))
2874 case POLYNOMIAL_CHREC
:
2875 if (!chrec_is_positive (CHREC_LEFT (chrec
), &value0
)
2876 || !chrec_is_positive (CHREC_RIGHT (chrec
), &value1
))
2879 /* FIXME -- overflows. */
2880 if (value0
== value1
)
2886 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
2887 and the proof consists in showing that the sign never
2888 changes during the execution of the loop, from 0 to
2889 loop->nb_iterations. */
2890 if (!evolution_function_is_affine_p (chrec
))
2893 nb_iter
= number_of_latch_executions (get_chrec_loop (chrec
));
2894 if (chrec_contains_undetermined (nb_iter
))
2898 /* TODO -- If the test is after the exit, we may decrease the number of
2899 iterations by one. */
2901 nb_iter
= chrec_fold_minus (type
, nb_iter
, build_int_cst (type
, 1));
2904 end_value
= chrec_apply (CHREC_VARIABLE (chrec
), chrec
, nb_iter
);
2906 if (!chrec_is_positive (end_value
, &value2
))
2910 return value0
== value1
;
2913 switch (tree_int_cst_sgn (chrec
))
2932 /* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
2933 constant, and CHREC_B is an affine function. *OVERLAPS_A and
2934 *OVERLAPS_B are initialized to the functions that describe the
2935 relation between the elements accessed twice by CHREC_A and
2936 CHREC_B. For k >= 0, the following property is verified:
2938 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
2941 analyze_siv_subscript_cst_affine (tree chrec_a
,
2943 conflict_function
**overlaps_a
,
2944 conflict_function
**overlaps_b
,
2945 tree
*last_conflicts
)
2947 bool value0
, value1
, value2
;
2948 tree type
, difference
, tmp
;
2950 type
= signed_type_for_types (TREE_TYPE (chrec_a
), TREE_TYPE (chrec_b
));
2951 chrec_a
= chrec_convert (type
, chrec_a
, NULL
);
2952 chrec_b
= chrec_convert (type
, chrec_b
, NULL
);
2953 difference
= chrec_fold_minus (type
, initial_condition (chrec_b
), chrec_a
);
2955 /* Special case overlap in the first iteration. */
2956 if (integer_zerop (difference
))
2958 *overlaps_a
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
2959 *overlaps_b
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
2960 *last_conflicts
= integer_one_node
;
2964 if (!chrec_is_positive (initial_condition (difference
), &value0
))
2966 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2967 fprintf (dump_file
, "siv test failed: chrec is not positive.\n");
2969 dependence_stats
.num_siv_unimplemented
++;
2970 *overlaps_a
= conflict_fn_not_known ();
2971 *overlaps_b
= conflict_fn_not_known ();
2972 *last_conflicts
= chrec_dont_know
;
2977 if (value0
== false)
2979 if (!chrec_is_positive (CHREC_RIGHT (chrec_b
), &value1
))
2981 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2982 fprintf (dump_file
, "siv test failed: chrec not positive.\n");
2984 *overlaps_a
= conflict_fn_not_known ();
2985 *overlaps_b
= conflict_fn_not_known ();
2986 *last_conflicts
= chrec_dont_know
;
2987 dependence_stats
.num_siv_unimplemented
++;
2996 chrec_b = {10, +, 1}
2999 if (tree_fold_divides_p (CHREC_RIGHT (chrec_b
), difference
))
3001 HOST_WIDE_INT numiter
;
3002 struct loop
*loop
= get_chrec_loop (chrec_b
);
3004 *overlaps_a
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
3005 tmp
= fold_build2 (EXACT_DIV_EXPR
, type
,
3006 fold_build1 (ABS_EXPR
, type
, difference
),
3007 CHREC_RIGHT (chrec_b
));
3008 *overlaps_b
= conflict_fn (1, affine_fn_cst (tmp
));
3009 *last_conflicts
= integer_one_node
;
3012 /* Perform weak-zero siv test to see if overlap is
3013 outside the loop bounds. */
3014 numiter
= max_stmt_executions_int (loop
);
3017 && compare_tree_int (tmp
, numiter
) > 0)
3019 free_conflict_function (*overlaps_a
);
3020 free_conflict_function (*overlaps_b
);
3021 *overlaps_a
= conflict_fn_no_dependence ();
3022 *overlaps_b
= conflict_fn_no_dependence ();
3023 *last_conflicts
= integer_zero_node
;
3024 dependence_stats
.num_siv_independent
++;
3027 dependence_stats
.num_siv_dependent
++;
3031 /* When the step does not divide the difference, there are
3035 *overlaps_a
= conflict_fn_no_dependence ();
3036 *overlaps_b
= conflict_fn_no_dependence ();
3037 *last_conflicts
= integer_zero_node
;
3038 dependence_stats
.num_siv_independent
++;
3047 chrec_b = {10, +, -1}
3049 In this case, chrec_a will not overlap with chrec_b. */
3050 *overlaps_a
= conflict_fn_no_dependence ();
3051 *overlaps_b
= conflict_fn_no_dependence ();
3052 *last_conflicts
= integer_zero_node
;
3053 dependence_stats
.num_siv_independent
++;
3060 if (!chrec_is_positive (CHREC_RIGHT (chrec_b
), &value2
))
3062 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3063 fprintf (dump_file
, "siv test failed: chrec not positive.\n");
3065 *overlaps_a
= conflict_fn_not_known ();
3066 *overlaps_b
= conflict_fn_not_known ();
3067 *last_conflicts
= chrec_dont_know
;
3068 dependence_stats
.num_siv_unimplemented
++;
3073 if (value2
== false)
3077 chrec_b = {10, +, -1}
3079 if (tree_fold_divides_p (CHREC_RIGHT (chrec_b
), difference
))
3081 HOST_WIDE_INT numiter
;
3082 struct loop
*loop
= get_chrec_loop (chrec_b
);
3084 *overlaps_a
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
3085 tmp
= fold_build2 (EXACT_DIV_EXPR
, type
, difference
,
3086 CHREC_RIGHT (chrec_b
));
3087 *overlaps_b
= conflict_fn (1, affine_fn_cst (tmp
));
3088 *last_conflicts
= integer_one_node
;
3090 /* Perform weak-zero siv test to see if overlap is
3091 outside the loop bounds. */
3092 numiter
= max_stmt_executions_int (loop
);
3095 && compare_tree_int (tmp
, numiter
) > 0)
3097 free_conflict_function (*overlaps_a
);
3098 free_conflict_function (*overlaps_b
);
3099 *overlaps_a
= conflict_fn_no_dependence ();
3100 *overlaps_b
= conflict_fn_no_dependence ();
3101 *last_conflicts
= integer_zero_node
;
3102 dependence_stats
.num_siv_independent
++;
3105 dependence_stats
.num_siv_dependent
++;
3109 /* When the step does not divide the difference, there
3113 *overlaps_a
= conflict_fn_no_dependence ();
3114 *overlaps_b
= conflict_fn_no_dependence ();
3115 *last_conflicts
= integer_zero_node
;
3116 dependence_stats
.num_siv_independent
++;
3126 In this case, chrec_a will not overlap with chrec_b. */
3127 *overlaps_a
= conflict_fn_no_dependence ();
3128 *overlaps_b
= conflict_fn_no_dependence ();
3129 *last_conflicts
= integer_zero_node
;
3130 dependence_stats
.num_siv_independent
++;
3138 /* Helper recursive function for initializing the matrix A. Returns
3139 the initial value of CHREC. */
3142 initialize_matrix_A (lambda_matrix A
, tree chrec
, unsigned index
, int mult
)
3146 switch (TREE_CODE (chrec
))
3148 case POLYNOMIAL_CHREC
:
3149 A
[index
][0] = mult
* int_cst_value (CHREC_RIGHT (chrec
));
3150 return initialize_matrix_A (A
, CHREC_LEFT (chrec
), index
+ 1, mult
);
3156 tree op0
= initialize_matrix_A (A
, TREE_OPERAND (chrec
, 0), index
, mult
);
3157 tree op1
= initialize_matrix_A (A
, TREE_OPERAND (chrec
, 1), index
, mult
);
3159 return chrec_fold_op (TREE_CODE (chrec
), chrec_type (chrec
), op0
, op1
);
3164 tree op
= initialize_matrix_A (A
, TREE_OPERAND (chrec
, 0), index
, mult
);
3165 return chrec_convert (chrec_type (chrec
), op
, NULL
);
3170 /* Handle ~X as -1 - X. */
3171 tree op
= initialize_matrix_A (A
, TREE_OPERAND (chrec
, 0), index
, mult
);
3172 return chrec_fold_op (MINUS_EXPR
, chrec_type (chrec
),
3173 build_int_cst (TREE_TYPE (chrec
), -1), op
);
3185 #define FLOOR_DIV(x,y) ((x) / (y))
3187 /* Solves the special case of the Diophantine equation:
3188 | {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
3190 Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the
3191 number of iterations that loops X and Y run. The overlaps will be
3192 constructed as evolutions in dimension DIM. */
3195 compute_overlap_steps_for_affine_univar (HOST_WIDE_INT niter
,
3196 HOST_WIDE_INT step_a
,
3197 HOST_WIDE_INT step_b
,
3198 affine_fn
*overlaps_a
,
3199 affine_fn
*overlaps_b
,
3200 tree
*last_conflicts
, int dim
)
3202 if (((step_a
> 0 && step_b
> 0)
3203 || (step_a
< 0 && step_b
< 0)))
3205 HOST_WIDE_INT step_overlaps_a
, step_overlaps_b
;
3206 HOST_WIDE_INT gcd_steps_a_b
, last_conflict
, tau2
;
3208 gcd_steps_a_b
= gcd (step_a
, step_b
);
3209 step_overlaps_a
= step_b
/ gcd_steps_a_b
;
3210 step_overlaps_b
= step_a
/ gcd_steps_a_b
;
3214 tau2
= FLOOR_DIV (niter
, step_overlaps_a
);
3215 tau2
= MIN (tau2
, FLOOR_DIV (niter
, step_overlaps_b
));
3216 last_conflict
= tau2
;
3217 *last_conflicts
= build_int_cst (NULL_TREE
, last_conflict
);
3220 *last_conflicts
= chrec_dont_know
;
3222 *overlaps_a
= affine_fn_univar (integer_zero_node
, dim
,
3223 build_int_cst (NULL_TREE
,
3225 *overlaps_b
= affine_fn_univar (integer_zero_node
, dim
,
3226 build_int_cst (NULL_TREE
,
3232 *overlaps_a
= affine_fn_cst (integer_zero_node
);
3233 *overlaps_b
= affine_fn_cst (integer_zero_node
);
3234 *last_conflicts
= integer_zero_node
;
3238 /* Solves the special case of a Diophantine equation where CHREC_A is
3239 an affine bivariate function, and CHREC_B is an affine univariate
3240 function. For example,
3242 | {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
3244 has the following overlapping functions:
3246 | x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
3247 | y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
3248 | z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
3250 FORNOW: This is a specialized implementation for a case occurring in
3251 a common benchmark. Implement the general algorithm. */
3254 compute_overlap_steps_for_affine_1_2 (tree chrec_a
, tree chrec_b
,
3255 conflict_function
**overlaps_a
,
3256 conflict_function
**overlaps_b
,
3257 tree
*last_conflicts
)
3259 bool xz_p
, yz_p
, xyz_p
;
3260 HOST_WIDE_INT step_x
, step_y
, step_z
;
3261 HOST_WIDE_INT niter_x
, niter_y
, niter_z
, niter
;
3262 affine_fn overlaps_a_xz
, overlaps_b_xz
;
3263 affine_fn overlaps_a_yz
, overlaps_b_yz
;
3264 affine_fn overlaps_a_xyz
, overlaps_b_xyz
;
3265 affine_fn ova1
, ova2
, ovb
;
3266 tree last_conflicts_xz
, last_conflicts_yz
, last_conflicts_xyz
;
3268 step_x
= int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a
)));
3269 step_y
= int_cst_value (CHREC_RIGHT (chrec_a
));
3270 step_z
= int_cst_value (CHREC_RIGHT (chrec_b
));
3272 niter_x
= max_stmt_executions_int (get_chrec_loop (CHREC_LEFT (chrec_a
)));
3273 niter_y
= max_stmt_executions_int (get_chrec_loop (chrec_a
));
3274 niter_z
= max_stmt_executions_int (get_chrec_loop (chrec_b
));
3276 if (niter_x
< 0 || niter_y
< 0 || niter_z
< 0)
3278 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3279 fprintf (dump_file
, "overlap steps test failed: no iteration counts.\n");
3281 *overlaps_a
= conflict_fn_not_known ();
3282 *overlaps_b
= conflict_fn_not_known ();
3283 *last_conflicts
= chrec_dont_know
;
3287 niter
= MIN (niter_x
, niter_z
);
3288 compute_overlap_steps_for_affine_univar (niter
, step_x
, step_z
,
3291 &last_conflicts_xz
, 1);
3292 niter
= MIN (niter_y
, niter_z
);
3293 compute_overlap_steps_for_affine_univar (niter
, step_y
, step_z
,
3296 &last_conflicts_yz
, 2);
3297 niter
= MIN (niter_x
, niter_z
);
3298 niter
= MIN (niter_y
, niter
);
3299 compute_overlap_steps_for_affine_univar (niter
, step_x
+ step_y
, step_z
,
3302 &last_conflicts_xyz
, 3);
3304 xz_p
= !integer_zerop (last_conflicts_xz
);
3305 yz_p
= !integer_zerop (last_conflicts_yz
);
3306 xyz_p
= !integer_zerop (last_conflicts_xyz
);
3308 if (xz_p
|| yz_p
|| xyz_p
)
3310 ova1
= affine_fn_cst (integer_zero_node
);
3311 ova2
= affine_fn_cst (integer_zero_node
);
3312 ovb
= affine_fn_cst (integer_zero_node
);
3315 affine_fn t0
= ova1
;
3318 ova1
= affine_fn_plus (ova1
, overlaps_a_xz
);
3319 ovb
= affine_fn_plus (ovb
, overlaps_b_xz
);
3320 affine_fn_free (t0
);
3321 affine_fn_free (t2
);
3322 *last_conflicts
= last_conflicts_xz
;
3326 affine_fn t0
= ova2
;
3329 ova2
= affine_fn_plus (ova2
, overlaps_a_yz
);
3330 ovb
= affine_fn_plus (ovb
, overlaps_b_yz
);
3331 affine_fn_free (t0
);
3332 affine_fn_free (t2
);
3333 *last_conflicts
= last_conflicts_yz
;
3337 affine_fn t0
= ova1
;
3338 affine_fn t2
= ova2
;
3341 ova1
= affine_fn_plus (ova1
, overlaps_a_xyz
);
3342 ova2
= affine_fn_plus (ova2
, overlaps_a_xyz
);
3343 ovb
= affine_fn_plus (ovb
, overlaps_b_xyz
);
3344 affine_fn_free (t0
);
3345 affine_fn_free (t2
);
3346 affine_fn_free (t4
);
3347 *last_conflicts
= last_conflicts_xyz
;
3349 *overlaps_a
= conflict_fn (2, ova1
, ova2
);
3350 *overlaps_b
= conflict_fn (1, ovb
);
3354 *overlaps_a
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
3355 *overlaps_b
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
3356 *last_conflicts
= integer_zero_node
;
3359 affine_fn_free (overlaps_a_xz
);
3360 affine_fn_free (overlaps_b_xz
);
3361 affine_fn_free (overlaps_a_yz
);
3362 affine_fn_free (overlaps_b_yz
);
3363 affine_fn_free (overlaps_a_xyz
);
3364 affine_fn_free (overlaps_b_xyz
);
3367 /* Copy the elements of vector VEC1 with length SIZE to VEC2. */
3370 lambda_vector_copy (lambda_vector vec1
, lambda_vector vec2
,
3373 memcpy (vec2
, vec1
, size
* sizeof (*vec1
));
3376 /* Copy the elements of M x N matrix MAT1 to MAT2. */
3379 lambda_matrix_copy (lambda_matrix mat1
, lambda_matrix mat2
,
3384 for (i
= 0; i
< m
; i
++)
3385 lambda_vector_copy (mat1
[i
], mat2
[i
], n
);
3388 /* Store the N x N identity matrix in MAT. */
3391 lambda_matrix_id (lambda_matrix mat
, int size
)
3395 for (i
= 0; i
< size
; i
++)
3396 for (j
= 0; j
< size
; j
++)
3397 mat
[i
][j
] = (i
== j
) ? 1 : 0;
3400 /* Return the first nonzero element of vector VEC1 between START and N.
3401 We must have START <= N. Returns N if VEC1 is the zero vector. */
3404 lambda_vector_first_nz (lambda_vector vec1
, int n
, int start
)
3407 while (j
< n
&& vec1
[j
] == 0)
3412 /* Add a multiple of row R1 of matrix MAT with N columns to row R2:
3413 R2 = R2 + CONST1 * R1. */
3416 lambda_matrix_row_add (lambda_matrix mat
, int n
, int r1
, int r2
, int const1
)
3423 for (i
= 0; i
< n
; i
++)
3424 mat
[r2
][i
] += const1
* mat
[r1
][i
];
3427 /* Multiply vector VEC1 of length SIZE by a constant CONST1,
3428 and store the result in VEC2. */
3431 lambda_vector_mult_const (lambda_vector vec1
, lambda_vector vec2
,
3432 int size
, int const1
)
3437 lambda_vector_clear (vec2
, size
);
3439 for (i
= 0; i
< size
; i
++)
3440 vec2
[i
] = const1
* vec1
[i
];
3443 /* Negate vector VEC1 with length SIZE and store it in VEC2. */
3446 lambda_vector_negate (lambda_vector vec1
, lambda_vector vec2
,
3449 lambda_vector_mult_const (vec1
, vec2
, size
, -1);
3452 /* Negate row R1 of matrix MAT which has N columns. */
3455 lambda_matrix_row_negate (lambda_matrix mat
, int n
, int r1
)
3457 lambda_vector_negate (mat
[r1
], mat
[r1
], n
);
3460 /* Return true if two vectors are equal. */
3463 lambda_vector_equal (lambda_vector vec1
, lambda_vector vec2
, int size
)
3466 for (i
= 0; i
< size
; i
++)
3467 if (vec1
[i
] != vec2
[i
])
3472 /* Given an M x N integer matrix A, this function determines an M x
3473 M unimodular matrix U, and an M x N echelon matrix S such that
3474 "U.A = S". This decomposition is also known as "right Hermite".
3476 Ref: Algorithm 2.1 page 33 in "Loop Transformations for
3477 Restructuring Compilers" Utpal Banerjee. */
3480 lambda_matrix_right_hermite (lambda_matrix A
, int m
, int n
,
3481 lambda_matrix S
, lambda_matrix U
)
3485 lambda_matrix_copy (A
, S
, m
, n
);
3486 lambda_matrix_id (U
, m
);
3488 for (j
= 0; j
< n
; j
++)
3490 if (lambda_vector_first_nz (S
[j
], m
, i0
) < m
)
3493 for (i
= m
- 1; i
>= i0
; i
--)
3495 while (S
[i
][j
] != 0)
3497 int sigma
, factor
, a
, b
;
3501 sigma
= (a
* b
< 0) ? -1: 1;
3504 factor
= sigma
* (a
/ b
);
3506 lambda_matrix_row_add (S
, n
, i
, i
-1, -factor
);
3507 std::swap (S
[i
], S
[i
-1]);
3509 lambda_matrix_row_add (U
, m
, i
, i
-1, -factor
);
3510 std::swap (U
[i
], U
[i
-1]);
3517 /* Determines the overlapping elements due to accesses CHREC_A and
3518 CHREC_B, that are affine functions. This function cannot handle
3519 symbolic evolution functions, ie. when initial conditions are
3520 parameters, because it uses lambda matrices of integers. */
3523 analyze_subscript_affine_affine (tree chrec_a
,
3525 conflict_function
**overlaps_a
,
3526 conflict_function
**overlaps_b
,
3527 tree
*last_conflicts
)
3529 unsigned nb_vars_a
, nb_vars_b
, dim
;
3530 HOST_WIDE_INT init_a
, init_b
, gamma
, gcd_alpha_beta
;
3531 lambda_matrix A
, U
, S
;
3532 struct obstack scratch_obstack
;
3534 if (eq_evolutions_p (chrec_a
, chrec_b
))
3536 /* The accessed index overlaps for each iteration in the
3538 *overlaps_a
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
3539 *overlaps_b
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
3540 *last_conflicts
= chrec_dont_know
;
3543 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3544 fprintf (dump_file
, "(analyze_subscript_affine_affine \n");
3546 /* For determining the initial intersection, we have to solve a
3547 Diophantine equation. This is the most time consuming part.
3549 For answering to the question: "Is there a dependence?" we have
3550 to prove that there exists a solution to the Diophantine
3551 equation, and that the solution is in the iteration domain,
3552 i.e. the solution is positive or zero, and that the solution
3553 happens before the upper bound loop.nb_iterations. Otherwise
3554 there is no dependence. This function outputs a description of
3555 the iterations that hold the intersections. */
3557 nb_vars_a
= nb_vars_in_chrec (chrec_a
);
3558 nb_vars_b
= nb_vars_in_chrec (chrec_b
);
3560 gcc_obstack_init (&scratch_obstack
);
3562 dim
= nb_vars_a
+ nb_vars_b
;
3563 U
= lambda_matrix_new (dim
, dim
, &scratch_obstack
);
3564 A
= lambda_matrix_new (dim
, 1, &scratch_obstack
);
3565 S
= lambda_matrix_new (dim
, 1, &scratch_obstack
);
3567 init_a
= int_cst_value (initialize_matrix_A (A
, chrec_a
, 0, 1));
3568 init_b
= int_cst_value (initialize_matrix_A (A
, chrec_b
, nb_vars_a
, -1));
3569 gamma
= init_b
- init_a
;
3571 /* Don't do all the hard work of solving the Diophantine equation
3572 when we already know the solution: for example,
3575 | gamma = 3 - 3 = 0.
3576 Then the first overlap occurs during the first iterations:
3577 | {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
3581 if (nb_vars_a
== 1 && nb_vars_b
== 1)
3583 HOST_WIDE_INT step_a
, step_b
;
3584 HOST_WIDE_INT niter
, niter_a
, niter_b
;
3587 niter_a
= max_stmt_executions_int (get_chrec_loop (chrec_a
));
3588 niter_b
= max_stmt_executions_int (get_chrec_loop (chrec_b
));
3589 niter
= MIN (niter_a
, niter_b
);
3590 step_a
= int_cst_value (CHREC_RIGHT (chrec_a
));
3591 step_b
= int_cst_value (CHREC_RIGHT (chrec_b
));
3593 compute_overlap_steps_for_affine_univar (niter
, step_a
, step_b
,
3596 *overlaps_a
= conflict_fn (1, ova
);
3597 *overlaps_b
= conflict_fn (1, ovb
);
3600 else if (nb_vars_a
== 2 && nb_vars_b
== 1)
3601 compute_overlap_steps_for_affine_1_2
3602 (chrec_a
, chrec_b
, overlaps_a
, overlaps_b
, last_conflicts
);
3604 else if (nb_vars_a
== 1 && nb_vars_b
== 2)
3605 compute_overlap_steps_for_affine_1_2
3606 (chrec_b
, chrec_a
, overlaps_b
, overlaps_a
, last_conflicts
);
3610 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3611 fprintf (dump_file
, "affine-affine test failed: too many variables.\n");
3612 *overlaps_a
= conflict_fn_not_known ();
3613 *overlaps_b
= conflict_fn_not_known ();
3614 *last_conflicts
= chrec_dont_know
;
3616 goto end_analyze_subs_aa
;
3620 lambda_matrix_right_hermite (A
, dim
, 1, S
, U
);
3625 lambda_matrix_row_negate (U
, dim
, 0);
3627 gcd_alpha_beta
= S
[0][0];
3629 /* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
3630 but that is a quite strange case. Instead of ICEing, answer
3632 if (gcd_alpha_beta
== 0)
3634 *overlaps_a
= conflict_fn_not_known ();
3635 *overlaps_b
= conflict_fn_not_known ();
3636 *last_conflicts
= chrec_dont_know
;
3637 goto end_analyze_subs_aa
;
3640 /* The classic "gcd-test". */
3641 if (!int_divides_p (gcd_alpha_beta
, gamma
))
3643 /* The "gcd-test" has determined that there is no integer
3644 solution, i.e. there is no dependence. */
3645 *overlaps_a
= conflict_fn_no_dependence ();
3646 *overlaps_b
= conflict_fn_no_dependence ();
3647 *last_conflicts
= integer_zero_node
;
3650 /* Both access functions are univariate. This includes SIV and MIV cases. */
3651 else if (nb_vars_a
== 1 && nb_vars_b
== 1)
3653 /* Both functions should have the same evolution sign. */
3654 if (((A
[0][0] > 0 && -A
[1][0] > 0)
3655 || (A
[0][0] < 0 && -A
[1][0] < 0)))
3657 /* The solutions are given by:
3659 | [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0]
3662 For a given integer t. Using the following variables,
3664 | i0 = u11 * gamma / gcd_alpha_beta
3665 | j0 = u12 * gamma / gcd_alpha_beta
3672 | y0 = j0 + j1 * t. */
3673 HOST_WIDE_INT i0
, j0
, i1
, j1
;
3675 i0
= U
[0][0] * gamma
/ gcd_alpha_beta
;
3676 j0
= U
[0][1] * gamma
/ gcd_alpha_beta
;
3680 if ((i1
== 0 && i0
< 0)
3681 || (j1
== 0 && j0
< 0))
3683 /* There is no solution.
3684 FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
3685 falls in here, but for the moment we don't look at the
3686 upper bound of the iteration domain. */
3687 *overlaps_a
= conflict_fn_no_dependence ();
3688 *overlaps_b
= conflict_fn_no_dependence ();
3689 *last_conflicts
= integer_zero_node
;
3690 goto end_analyze_subs_aa
;
3693 if (i1
> 0 && j1
> 0)
3695 HOST_WIDE_INT niter_a
3696 = max_stmt_executions_int (get_chrec_loop (chrec_a
));
3697 HOST_WIDE_INT niter_b
3698 = max_stmt_executions_int (get_chrec_loop (chrec_b
));
3699 HOST_WIDE_INT niter
= MIN (niter_a
, niter_b
);
3701 /* (X0, Y0) is a solution of the Diophantine equation:
3702 "chrec_a (X0) = chrec_b (Y0)". */
3703 HOST_WIDE_INT tau1
= MAX (CEIL (-i0
, i1
),
3705 HOST_WIDE_INT x0
= i1
* tau1
+ i0
;
3706 HOST_WIDE_INT y0
= j1
* tau1
+ j0
;
3708 /* (X1, Y1) is the smallest positive solution of the eq
3709 "chrec_a (X1) = chrec_b (Y1)", i.e. this is where the
3710 first conflict occurs. */
3711 HOST_WIDE_INT min_multiple
= MIN (x0
/ i1
, y0
/ j1
);
3712 HOST_WIDE_INT x1
= x0
- i1
* min_multiple
;
3713 HOST_WIDE_INT y1
= y0
- j1
* min_multiple
;
3717 HOST_WIDE_INT tau2
= MIN (FLOOR_DIV (niter_a
- i0
, i1
),
3718 FLOOR_DIV (niter_b
- j0
, j1
));
3719 HOST_WIDE_INT last_conflict
= tau2
- (x1
- i0
)/i1
;
3721 /* If the overlap occurs outside of the bounds of the
3722 loop, there is no dependence. */
3723 if (x1
>= niter_a
|| y1
>= niter_b
)
3725 *overlaps_a
= conflict_fn_no_dependence ();
3726 *overlaps_b
= conflict_fn_no_dependence ();
3727 *last_conflicts
= integer_zero_node
;
3728 goto end_analyze_subs_aa
;
3731 *last_conflicts
= build_int_cst (NULL_TREE
, last_conflict
);
3734 *last_conflicts
= chrec_dont_know
;
3738 affine_fn_univar (build_int_cst (NULL_TREE
, x1
),
3740 build_int_cst (NULL_TREE
, i1
)));
3743 affine_fn_univar (build_int_cst (NULL_TREE
, y1
),
3745 build_int_cst (NULL_TREE
, j1
)));
3749 /* FIXME: For the moment, the upper bound of the
3750 iteration domain for i and j is not checked. */
3751 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3752 fprintf (dump_file
, "affine-affine test failed: unimplemented.\n");
3753 *overlaps_a
= conflict_fn_not_known ();
3754 *overlaps_b
= conflict_fn_not_known ();
3755 *last_conflicts
= chrec_dont_know
;
3760 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3761 fprintf (dump_file
, "affine-affine test failed: unimplemented.\n");
3762 *overlaps_a
= conflict_fn_not_known ();
3763 *overlaps_b
= conflict_fn_not_known ();
3764 *last_conflicts
= chrec_dont_know
;
3769 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3770 fprintf (dump_file
, "affine-affine test failed: unimplemented.\n");
3771 *overlaps_a
= conflict_fn_not_known ();
3772 *overlaps_b
= conflict_fn_not_known ();
3773 *last_conflicts
= chrec_dont_know
;
3776 end_analyze_subs_aa
:
3777 obstack_free (&scratch_obstack
, NULL
);
3778 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3780 fprintf (dump_file
, " (overlaps_a = ");
3781 dump_conflict_function (dump_file
, *overlaps_a
);
3782 fprintf (dump_file
, ")\n (overlaps_b = ");
3783 dump_conflict_function (dump_file
, *overlaps_b
);
3784 fprintf (dump_file
, "))\n");
3788 /* Returns true when analyze_subscript_affine_affine can be used for
3789 determining the dependence relation between chrec_a and chrec_b,
3790 that contain symbols. This function modifies chrec_a and chrec_b
3791 such that the analysis result is the same, and such that they don't
3792 contain symbols, and then can safely be passed to the analyzer.
3794 Example: The analysis of the following tuples of evolutions produce
3795 the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
3798 {x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
3799 {-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
3803 can_use_analyze_subscript_affine_affine (tree
*chrec_a
, tree
*chrec_b
)
3805 tree diff
, type
, left_a
, left_b
, right_b
;
3807 if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a
))
3808 || chrec_contains_symbols (CHREC_RIGHT (*chrec_b
)))
3809 /* FIXME: For the moment not handled. Might be refined later. */
3812 type
= chrec_type (*chrec_a
);
3813 left_a
= CHREC_LEFT (*chrec_a
);
3814 left_b
= chrec_convert (type
, CHREC_LEFT (*chrec_b
), NULL
);
3815 diff
= chrec_fold_minus (type
, left_a
, left_b
);
3817 if (!evolution_function_is_constant_p (diff
))
3820 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3821 fprintf (dump_file
, "can_use_subscript_aff_aff_for_symbolic \n");
3823 *chrec_a
= build_polynomial_chrec (CHREC_VARIABLE (*chrec_a
),
3824 diff
, CHREC_RIGHT (*chrec_a
));
3825 right_b
= chrec_convert (type
, CHREC_RIGHT (*chrec_b
), NULL
);
3826 *chrec_b
= build_polynomial_chrec (CHREC_VARIABLE (*chrec_b
),
3827 build_int_cst (type
, 0),
3832 /* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
3833 *OVERLAPS_B are initialized to the functions that describe the
3834 relation between the elements accessed twice by CHREC_A and
3835 CHREC_B. For k >= 0, the following property is verified:
3837 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
3840 analyze_siv_subscript (tree chrec_a
,
3842 conflict_function
**overlaps_a
,
3843 conflict_function
**overlaps_b
,
3844 tree
*last_conflicts
,
3847 dependence_stats
.num_siv
++;
3849 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3850 fprintf (dump_file
, "(analyze_siv_subscript \n");
3852 if (evolution_function_is_constant_p (chrec_a
)
3853 && evolution_function_is_affine_in_loop (chrec_b
, loop_nest_num
))
3854 analyze_siv_subscript_cst_affine (chrec_a
, chrec_b
,
3855 overlaps_a
, overlaps_b
, last_conflicts
);
3857 else if (evolution_function_is_affine_in_loop (chrec_a
, loop_nest_num
)
3858 && evolution_function_is_constant_p (chrec_b
))
3859 analyze_siv_subscript_cst_affine (chrec_b
, chrec_a
,
3860 overlaps_b
, overlaps_a
, last_conflicts
);
3862 else if (evolution_function_is_affine_in_loop (chrec_a
, loop_nest_num
)
3863 && evolution_function_is_affine_in_loop (chrec_b
, loop_nest_num
))
3865 if (!chrec_contains_symbols (chrec_a
)
3866 && !chrec_contains_symbols (chrec_b
))
3868 analyze_subscript_affine_affine (chrec_a
, chrec_b
,
3869 overlaps_a
, overlaps_b
,
3872 if (CF_NOT_KNOWN_P (*overlaps_a
)
3873 || CF_NOT_KNOWN_P (*overlaps_b
))
3874 dependence_stats
.num_siv_unimplemented
++;
3875 else if (CF_NO_DEPENDENCE_P (*overlaps_a
)
3876 || CF_NO_DEPENDENCE_P (*overlaps_b
))
3877 dependence_stats
.num_siv_independent
++;
3879 dependence_stats
.num_siv_dependent
++;
3881 else if (can_use_analyze_subscript_affine_affine (&chrec_a
,
3884 analyze_subscript_affine_affine (chrec_a
, chrec_b
,
3885 overlaps_a
, overlaps_b
,
3888 if (CF_NOT_KNOWN_P (*overlaps_a
)
3889 || CF_NOT_KNOWN_P (*overlaps_b
))
3890 dependence_stats
.num_siv_unimplemented
++;
3891 else if (CF_NO_DEPENDENCE_P (*overlaps_a
)
3892 || CF_NO_DEPENDENCE_P (*overlaps_b
))
3893 dependence_stats
.num_siv_independent
++;
3895 dependence_stats
.num_siv_dependent
++;
3898 goto siv_subscript_dontknow
;
3903 siv_subscript_dontknow
:;
3904 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3905 fprintf (dump_file
, " siv test failed: unimplemented");
3906 *overlaps_a
= conflict_fn_not_known ();
3907 *overlaps_b
= conflict_fn_not_known ();
3908 *last_conflicts
= chrec_dont_know
;
3909 dependence_stats
.num_siv_unimplemented
++;
3912 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3913 fprintf (dump_file
, ")\n");
3916 /* Returns false if we can prove that the greatest common divisor of the steps
3917 of CHREC does not divide CST, false otherwise. */
3920 gcd_of_steps_may_divide_p (const_tree chrec
, const_tree cst
)
3922 HOST_WIDE_INT cd
= 0, val
;
3925 if (!tree_fits_shwi_p (cst
))
3927 val
= tree_to_shwi (cst
);
3929 while (TREE_CODE (chrec
) == POLYNOMIAL_CHREC
)
3931 step
= CHREC_RIGHT (chrec
);
3932 if (!tree_fits_shwi_p (step
))
3934 cd
= gcd (cd
, tree_to_shwi (step
));
3935 chrec
= CHREC_LEFT (chrec
);
3938 return val
% cd
== 0;
3941 /* Analyze a MIV (Multiple Index Variable) subscript with respect to
3942 LOOP_NEST. *OVERLAPS_A and *OVERLAPS_B are initialized to the
3943 functions that describe the relation between the elements accessed
3944 twice by CHREC_A and CHREC_B. For k >= 0, the following property
3947 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
3950 analyze_miv_subscript (tree chrec_a
,
3952 conflict_function
**overlaps_a
,
3953 conflict_function
**overlaps_b
,
3954 tree
*last_conflicts
,
3955 struct loop
*loop_nest
)
3957 tree type
, difference
;
3959 dependence_stats
.num_miv
++;
3960 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3961 fprintf (dump_file
, "(analyze_miv_subscript \n");
3963 type
= signed_type_for_types (TREE_TYPE (chrec_a
), TREE_TYPE (chrec_b
));
3964 chrec_a
= chrec_convert (type
, chrec_a
, NULL
);
3965 chrec_b
= chrec_convert (type
, chrec_b
, NULL
);
3966 difference
= chrec_fold_minus (type
, chrec_a
, chrec_b
);
3968 if (eq_evolutions_p (chrec_a
, chrec_b
))
3970 /* Access functions are the same: all the elements are accessed
3971 in the same order. */
3972 *overlaps_a
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
3973 *overlaps_b
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
3974 *last_conflicts
= max_stmt_executions_tree (get_chrec_loop (chrec_a
));
3975 dependence_stats
.num_miv_dependent
++;
3978 else if (evolution_function_is_constant_p (difference
)
3979 && evolution_function_is_affine_multivariate_p (chrec_a
,
3981 && !gcd_of_steps_may_divide_p (chrec_a
, difference
))
3983 /* testsuite/.../ssa-chrec-33.c
3984 {{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
3986 The difference is 1, and all the evolution steps are multiples
3987 of 2, consequently there are no overlapping elements. */
3988 *overlaps_a
= conflict_fn_no_dependence ();
3989 *overlaps_b
= conflict_fn_no_dependence ();
3990 *last_conflicts
= integer_zero_node
;
3991 dependence_stats
.num_miv_independent
++;
3994 else if (evolution_function_is_affine_multivariate_p (chrec_a
, loop_nest
->num
)
3995 && !chrec_contains_symbols (chrec_a
)
3996 && evolution_function_is_affine_multivariate_p (chrec_b
, loop_nest
->num
)
3997 && !chrec_contains_symbols (chrec_b
))
3999 /* testsuite/.../ssa-chrec-35.c
4000 {0, +, 1}_2 vs. {0, +, 1}_3
4001 the overlapping elements are respectively located at iterations:
4002 {0, +, 1}_x and {0, +, 1}_x,
4003 in other words, we have the equality:
4004 {0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
4007 {{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
4008 {0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
4010 {{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
4011 {{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
4013 analyze_subscript_affine_affine (chrec_a
, chrec_b
,
4014 overlaps_a
, overlaps_b
, last_conflicts
);
4016 if (CF_NOT_KNOWN_P (*overlaps_a
)
4017 || CF_NOT_KNOWN_P (*overlaps_b
))
4018 dependence_stats
.num_miv_unimplemented
++;
4019 else if (CF_NO_DEPENDENCE_P (*overlaps_a
)
4020 || CF_NO_DEPENDENCE_P (*overlaps_b
))
4021 dependence_stats
.num_miv_independent
++;
4023 dependence_stats
.num_miv_dependent
++;
4028 /* When the analysis is too difficult, answer "don't know". */
4029 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4030 fprintf (dump_file
, "analyze_miv_subscript test failed: unimplemented.\n");
4032 *overlaps_a
= conflict_fn_not_known ();
4033 *overlaps_b
= conflict_fn_not_known ();
4034 *last_conflicts
= chrec_dont_know
;
4035 dependence_stats
.num_miv_unimplemented
++;
4038 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4039 fprintf (dump_file
, ")\n");
4042 /* Determines the iterations for which CHREC_A is equal to CHREC_B in
4043 with respect to LOOP_NEST. OVERLAP_ITERATIONS_A and
4044 OVERLAP_ITERATIONS_B are initialized with two functions that
4045 describe the iterations that contain conflicting elements.
4047 Remark: For an integer k >= 0, the following equality is true:
4049 CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
4053 analyze_overlapping_iterations (tree chrec_a
,
4055 conflict_function
**overlap_iterations_a
,
4056 conflict_function
**overlap_iterations_b
,
4057 tree
*last_conflicts
, struct loop
*loop_nest
)
4059 unsigned int lnn
= loop_nest
->num
;
4061 dependence_stats
.num_subscript_tests
++;
4063 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4065 fprintf (dump_file
, "(analyze_overlapping_iterations \n");
4066 fprintf (dump_file
, " (chrec_a = ");
4067 print_generic_expr (dump_file
, chrec_a
);
4068 fprintf (dump_file
, ")\n (chrec_b = ");
4069 print_generic_expr (dump_file
, chrec_b
);
4070 fprintf (dump_file
, ")\n");
4073 if (chrec_a
== NULL_TREE
4074 || chrec_b
== NULL_TREE
4075 || chrec_contains_undetermined (chrec_a
)
4076 || chrec_contains_undetermined (chrec_b
))
4078 dependence_stats
.num_subscript_undetermined
++;
4080 *overlap_iterations_a
= conflict_fn_not_known ();
4081 *overlap_iterations_b
= conflict_fn_not_known ();
4084 /* If they are the same chrec, and are affine, they overlap
4085 on every iteration. */
4086 else if (eq_evolutions_p (chrec_a
, chrec_b
)
4087 && (evolution_function_is_affine_multivariate_p (chrec_a
, lnn
)
4088 || operand_equal_p (chrec_a
, chrec_b
, 0)))
4090 dependence_stats
.num_same_subscript_function
++;
4091 *overlap_iterations_a
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
4092 *overlap_iterations_b
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
4093 *last_conflicts
= chrec_dont_know
;
4096 /* If they aren't the same, and aren't affine, we can't do anything
4098 else if ((chrec_contains_symbols (chrec_a
)
4099 || chrec_contains_symbols (chrec_b
))
4100 && (!evolution_function_is_affine_multivariate_p (chrec_a
, lnn
)
4101 || !evolution_function_is_affine_multivariate_p (chrec_b
, lnn
)))
4103 dependence_stats
.num_subscript_undetermined
++;
4104 *overlap_iterations_a
= conflict_fn_not_known ();
4105 *overlap_iterations_b
= conflict_fn_not_known ();
4108 else if (ziv_subscript_p (chrec_a
, chrec_b
))
4109 analyze_ziv_subscript (chrec_a
, chrec_b
,
4110 overlap_iterations_a
, overlap_iterations_b
,
4113 else if (siv_subscript_p (chrec_a
, chrec_b
))
4114 analyze_siv_subscript (chrec_a
, chrec_b
,
4115 overlap_iterations_a
, overlap_iterations_b
,
4116 last_conflicts
, lnn
);
4119 analyze_miv_subscript (chrec_a
, chrec_b
,
4120 overlap_iterations_a
, overlap_iterations_b
,
4121 last_conflicts
, loop_nest
);
4123 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4125 fprintf (dump_file
, " (overlap_iterations_a = ");
4126 dump_conflict_function (dump_file
, *overlap_iterations_a
);
4127 fprintf (dump_file
, ")\n (overlap_iterations_b = ");
4128 dump_conflict_function (dump_file
, *overlap_iterations_b
);
4129 fprintf (dump_file
, "))\n");
4133 /* Helper function for uniquely inserting distance vectors. */
4136 save_dist_v (struct data_dependence_relation
*ddr
, lambda_vector dist_v
)
4141 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr
), i
, v
)
4142 if (lambda_vector_equal (v
, dist_v
, DDR_NB_LOOPS (ddr
)))
4145 DDR_DIST_VECTS (ddr
).safe_push (dist_v
);
4148 /* Helper function for uniquely inserting direction vectors. */
4151 save_dir_v (struct data_dependence_relation
*ddr
, lambda_vector dir_v
)
4156 FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr
), i
, v
)
4157 if (lambda_vector_equal (v
, dir_v
, DDR_NB_LOOPS (ddr
)))
4160 DDR_DIR_VECTS (ddr
).safe_push (dir_v
);
4163 /* Add a distance of 1 on all the loops outer than INDEX. If we
4164 haven't yet determined a distance for this outer loop, push a new
4165 distance vector composed of the previous distance, and a distance
4166 of 1 for this outer loop. Example:
4174 Saved vectors are of the form (dist_in_1, dist_in_2). First, we
4175 save (0, 1), then we have to save (1, 0). */
4178 add_outer_distances (struct data_dependence_relation
*ddr
,
4179 lambda_vector dist_v
, int index
)
4181 /* For each outer loop where init_v is not set, the accesses are
4182 in dependence of distance 1 in the loop. */
4183 while (--index
>= 0)
4185 lambda_vector save_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
4186 lambda_vector_copy (dist_v
, save_v
, DDR_NB_LOOPS (ddr
));
4188 save_dist_v (ddr
, save_v
);
4192 /* Return false when fail to represent the data dependence as a
4193 distance vector. A_INDEX is the index of the first reference
4194 (0 for DDR_A, 1 for DDR_B) and B_INDEX is the index of the
4195 second reference. INIT_B is set to true when a component has been
4196 added to the distance vector DIST_V. INDEX_CARRY is then set to
4197 the index in DIST_V that carries the dependence. */
4200 build_classic_dist_vector_1 (struct data_dependence_relation
*ddr
,
4201 unsigned int a_index
, unsigned int b_index
,
4202 lambda_vector dist_v
, bool *init_b
,
4206 lambda_vector init_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
4208 for (i
= 0; i
< DDR_NUM_SUBSCRIPTS (ddr
); i
++)
4210 tree access_fn_a
, access_fn_b
;
4211 struct subscript
*subscript
= DDR_SUBSCRIPT (ddr
, i
);
4213 if (chrec_contains_undetermined (SUB_DISTANCE (subscript
)))
4215 non_affine_dependence_relation (ddr
);
4219 access_fn_a
= SUB_ACCESS_FN (subscript
, a_index
);
4220 access_fn_b
= SUB_ACCESS_FN (subscript
, b_index
);
4222 if (TREE_CODE (access_fn_a
) == POLYNOMIAL_CHREC
4223 && TREE_CODE (access_fn_b
) == POLYNOMIAL_CHREC
)
4227 int var_a
= CHREC_VARIABLE (access_fn_a
);
4228 int var_b
= CHREC_VARIABLE (access_fn_b
);
4231 || chrec_contains_undetermined (SUB_DISTANCE (subscript
)))
4233 non_affine_dependence_relation (ddr
);
4237 dist
= int_cst_value (SUB_DISTANCE (subscript
));
4238 index
= index_in_loop_nest (var_a
, DDR_LOOP_NEST (ddr
));
4239 *index_carry
= MIN (index
, *index_carry
);
4241 /* This is the subscript coupling test. If we have already
4242 recorded a distance for this loop (a distance coming from
4243 another subscript), it should be the same. For example,
4244 in the following code, there is no dependence:
4251 if (init_v
[index
] != 0 && dist_v
[index
] != dist
)
4253 finalize_ddr_dependent (ddr
, chrec_known
);
4257 dist_v
[index
] = dist
;
4261 else if (!operand_equal_p (access_fn_a
, access_fn_b
, 0))
4263 /* This can be for example an affine vs. constant dependence
4264 (T[i] vs. T[3]) that is not an affine dependence and is
4265 not representable as a distance vector. */
4266 non_affine_dependence_relation (ddr
);
4274 /* Return true when the DDR contains only constant access functions. */
4277 constant_access_functions (const struct data_dependence_relation
*ddr
)
4282 FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr
), i
, sub
)
4283 if (!evolution_function_is_constant_p (SUB_ACCESS_FN (sub
, 0))
4284 || !evolution_function_is_constant_p (SUB_ACCESS_FN (sub
, 1)))
4290 /* Helper function for the case where DDR_A and DDR_B are the same
4291 multivariate access function with a constant step. For an example
4295 add_multivariate_self_dist (struct data_dependence_relation
*ddr
, tree c_2
)
4298 tree c_1
= CHREC_LEFT (c_2
);
4299 tree c_0
= CHREC_LEFT (c_1
);
4300 lambda_vector dist_v
;
4301 HOST_WIDE_INT v1
, v2
, cd
;
4303 /* Polynomials with more than 2 variables are not handled yet. When
4304 the evolution steps are parameters, it is not possible to
4305 represent the dependence using classical distance vectors. */
4306 if (TREE_CODE (c_0
) != INTEGER_CST
4307 || TREE_CODE (CHREC_RIGHT (c_1
)) != INTEGER_CST
4308 || TREE_CODE (CHREC_RIGHT (c_2
)) != INTEGER_CST
)
4310 DDR_AFFINE_P (ddr
) = false;
4314 x_2
= index_in_loop_nest (CHREC_VARIABLE (c_2
), DDR_LOOP_NEST (ddr
));
4315 x_1
= index_in_loop_nest (CHREC_VARIABLE (c_1
), DDR_LOOP_NEST (ddr
));
4317 /* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2). */
4318 dist_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
4319 v1
= int_cst_value (CHREC_RIGHT (c_1
));
4320 v2
= int_cst_value (CHREC_RIGHT (c_2
));
4333 save_dist_v (ddr
, dist_v
);
4335 add_outer_distances (ddr
, dist_v
, x_1
);
4338 /* Helper function for the case where DDR_A and DDR_B are the same
4339 access functions. */
4342 add_other_self_distances (struct data_dependence_relation
*ddr
)
4344 lambda_vector dist_v
;
4346 int index_carry
= DDR_NB_LOOPS (ddr
);
4349 FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr
), i
, sub
)
4351 tree access_fun
= SUB_ACCESS_FN (sub
, 0);
4353 if (TREE_CODE (access_fun
) == POLYNOMIAL_CHREC
)
4355 if (!evolution_function_is_univariate_p (access_fun
))
4357 if (DDR_NUM_SUBSCRIPTS (ddr
) != 1)
4359 DDR_ARE_DEPENDENT (ddr
) = chrec_dont_know
;
4363 access_fun
= SUB_ACCESS_FN (DDR_SUBSCRIPT (ddr
, 0), 0);
4365 if (TREE_CODE (CHREC_LEFT (access_fun
)) == POLYNOMIAL_CHREC
)
4366 add_multivariate_self_dist (ddr
, access_fun
);
4368 /* The evolution step is not constant: it varies in
4369 the outer loop, so this cannot be represented by a
4370 distance vector. For example in pr34635.c the
4371 evolution is {0, +, {0, +, 4}_1}_2. */
4372 DDR_AFFINE_P (ddr
) = false;
4377 index_carry
= MIN (index_carry
,
4378 index_in_loop_nest (CHREC_VARIABLE (access_fun
),
4379 DDR_LOOP_NEST (ddr
)));
4383 dist_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
4384 add_outer_distances (ddr
, dist_v
, index_carry
);
4388 insert_innermost_unit_dist_vector (struct data_dependence_relation
*ddr
)
4390 lambda_vector dist_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
4392 dist_v
[DDR_INNER_LOOP (ddr
)] = 1;
4393 save_dist_v (ddr
, dist_v
);
4396 /* Adds a unit distance vector to DDR when there is a 0 overlap. This
4397 is the case for example when access functions are the same and
4398 equal to a constant, as in:
4405 in which case the distance vectors are (0) and (1). */
4408 add_distance_for_zero_overlaps (struct data_dependence_relation
*ddr
)
4412 for (i
= 0; i
< DDR_NUM_SUBSCRIPTS (ddr
); i
++)
4414 subscript_p sub
= DDR_SUBSCRIPT (ddr
, i
);
4415 conflict_function
*ca
= SUB_CONFLICTS_IN_A (sub
);
4416 conflict_function
*cb
= SUB_CONFLICTS_IN_B (sub
);
4418 for (j
= 0; j
< ca
->n
; j
++)
4419 if (affine_function_zero_p (ca
->fns
[j
]))
4421 insert_innermost_unit_dist_vector (ddr
);
4425 for (j
= 0; j
< cb
->n
; j
++)
4426 if (affine_function_zero_p (cb
->fns
[j
]))
4428 insert_innermost_unit_dist_vector (ddr
);
4434 /* Return true when the DDR contains two data references that have the
4435 same access functions. */
4438 same_access_functions (const struct data_dependence_relation
*ddr
)
4443 FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr
), i
, sub
)
4444 if (!eq_evolutions_p (SUB_ACCESS_FN (sub
, 0),
4445 SUB_ACCESS_FN (sub
, 1)))
4451 /* Compute the classic per loop distance vector. DDR is the data
4452 dependence relation to build a vector from. Return false when fail
4453 to represent the data dependence as a distance vector. */
4456 build_classic_dist_vector (struct data_dependence_relation
*ddr
,
4457 struct loop
*loop_nest
)
4459 bool init_b
= false;
4460 int index_carry
= DDR_NB_LOOPS (ddr
);
4461 lambda_vector dist_v
;
4463 if (DDR_ARE_DEPENDENT (ddr
) != NULL_TREE
)
4466 if (same_access_functions (ddr
))
4468 /* Save the 0 vector. */
4469 dist_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
4470 save_dist_v (ddr
, dist_v
);
4472 if (constant_access_functions (ddr
))
4473 add_distance_for_zero_overlaps (ddr
);
4475 if (DDR_NB_LOOPS (ddr
) > 1)
4476 add_other_self_distances (ddr
);
4481 dist_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
4482 if (!build_classic_dist_vector_1 (ddr
, 0, 1, dist_v
, &init_b
, &index_carry
))
4485 /* Save the distance vector if we initialized one. */
4488 /* Verify a basic constraint: classic distance vectors should
4489 always be lexicographically positive.
4491 Data references are collected in the order of execution of
4492 the program, thus for the following loop
4494 | for (i = 1; i < 100; i++)
4495 | for (j = 1; j < 100; j++)
4497 | t = T[j+1][i-1]; // A
4498 | T[j][i] = t + 2; // B
4501 references are collected following the direction of the wind:
4502 A then B. The data dependence tests are performed also
4503 following this order, such that we're looking at the distance
4504 separating the elements accessed by A from the elements later
4505 accessed by B. But in this example, the distance returned by
4506 test_dep (A, B) is lexicographically negative (-1, 1), that
4507 means that the access A occurs later than B with respect to
4508 the outer loop, ie. we're actually looking upwind. In this
4509 case we solve test_dep (B, A) looking downwind to the
4510 lexicographically positive solution, that returns the
4511 distance vector (1, -1). */
4512 if (!lambda_vector_lexico_pos (dist_v
, DDR_NB_LOOPS (ddr
)))
4514 lambda_vector save_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
4515 if (!subscript_dependence_tester_1 (ddr
, 1, 0, loop_nest
))
4517 compute_subscript_distance (ddr
);
4518 if (!build_classic_dist_vector_1 (ddr
, 1, 0, save_v
, &init_b
,
4521 save_dist_v (ddr
, save_v
);
4522 DDR_REVERSED_P (ddr
) = true;
4524 /* In this case there is a dependence forward for all the
4527 | for (k = 1; k < 100; k++)
4528 | for (i = 1; i < 100; i++)
4529 | for (j = 1; j < 100; j++)
4531 | t = T[j+1][i-1]; // A
4532 | T[j][i] = t + 2; // B
4540 if (DDR_NB_LOOPS (ddr
) > 1)
4542 add_outer_distances (ddr
, save_v
, index_carry
);
4543 add_outer_distances (ddr
, dist_v
, index_carry
);
4548 lambda_vector save_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
4549 lambda_vector_copy (dist_v
, save_v
, DDR_NB_LOOPS (ddr
));
4551 if (DDR_NB_LOOPS (ddr
) > 1)
4553 lambda_vector opposite_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
4555 if (!subscript_dependence_tester_1 (ddr
, 1, 0, loop_nest
))
4557 compute_subscript_distance (ddr
);
4558 if (!build_classic_dist_vector_1 (ddr
, 1, 0, opposite_v
, &init_b
,
4562 save_dist_v (ddr
, save_v
);
4563 add_outer_distances (ddr
, dist_v
, index_carry
);
4564 add_outer_distances (ddr
, opposite_v
, index_carry
);
4567 save_dist_v (ddr
, save_v
);
4572 /* There is a distance of 1 on all the outer loops: Example:
4573 there is a dependence of distance 1 on loop_1 for the array A.
4579 add_outer_distances (ddr
, dist_v
,
4580 lambda_vector_first_nz (dist_v
,
4581 DDR_NB_LOOPS (ddr
), 0));
4584 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4588 fprintf (dump_file
, "(build_classic_dist_vector\n");
4589 for (i
= 0; i
< DDR_NUM_DIST_VECTS (ddr
); i
++)
4591 fprintf (dump_file
, " dist_vector = (");
4592 print_lambda_vector (dump_file
, DDR_DIST_VECT (ddr
, i
),
4593 DDR_NB_LOOPS (ddr
));
4594 fprintf (dump_file
, " )\n");
4596 fprintf (dump_file
, ")\n");
4602 /* Return the direction for a given distance.
4603 FIXME: Computing dir this way is suboptimal, since dir can catch
4604 cases that dist is unable to represent. */
4606 static inline enum data_dependence_direction
4607 dir_from_dist (int dist
)
4610 return dir_positive
;
4612 return dir_negative
;
4617 /* Compute the classic per loop direction vector. DDR is the data
4618 dependence relation to build a vector from. */
4621 build_classic_dir_vector (struct data_dependence_relation
*ddr
)
4624 lambda_vector dist_v
;
4626 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr
), i
, dist_v
)
4628 lambda_vector dir_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
4630 for (j
= 0; j
< DDR_NB_LOOPS (ddr
); j
++)
4631 dir_v
[j
] = dir_from_dist (dist_v
[j
]);
4633 save_dir_v (ddr
, dir_v
);
4637 /* Helper function. Returns true when there is a dependence between the
4638 data references. A_INDEX is the index of the first reference (0 for
4639 DDR_A, 1 for DDR_B) and B_INDEX is the index of the second reference. */
4642 subscript_dependence_tester_1 (struct data_dependence_relation
*ddr
,
4643 unsigned int a_index
, unsigned int b_index
,
4644 struct loop
*loop_nest
)
4647 tree last_conflicts
;
4648 struct subscript
*subscript
;
4649 tree res
= NULL_TREE
;
4651 for (i
= 0; DDR_SUBSCRIPTS (ddr
).iterate (i
, &subscript
); i
++)
4653 conflict_function
*overlaps_a
, *overlaps_b
;
4655 analyze_overlapping_iterations (SUB_ACCESS_FN (subscript
, a_index
),
4656 SUB_ACCESS_FN (subscript
, b_index
),
4657 &overlaps_a
, &overlaps_b
,
4658 &last_conflicts
, loop_nest
);
4660 if (SUB_CONFLICTS_IN_A (subscript
))
4661 free_conflict_function (SUB_CONFLICTS_IN_A (subscript
));
4662 if (SUB_CONFLICTS_IN_B (subscript
))
4663 free_conflict_function (SUB_CONFLICTS_IN_B (subscript
));
4665 SUB_CONFLICTS_IN_A (subscript
) = overlaps_a
;
4666 SUB_CONFLICTS_IN_B (subscript
) = overlaps_b
;
4667 SUB_LAST_CONFLICT (subscript
) = last_conflicts
;
4669 /* If there is any undetermined conflict function we have to
4670 give a conservative answer in case we cannot prove that
4671 no dependence exists when analyzing another subscript. */
4672 if (CF_NOT_KNOWN_P (overlaps_a
)
4673 || CF_NOT_KNOWN_P (overlaps_b
))
4675 res
= chrec_dont_know
;
4679 /* When there is a subscript with no dependence we can stop. */
4680 else if (CF_NO_DEPENDENCE_P (overlaps_a
)
4681 || CF_NO_DEPENDENCE_P (overlaps_b
))
4688 if (res
== NULL_TREE
)
4691 if (res
== chrec_known
)
4692 dependence_stats
.num_dependence_independent
++;
4694 dependence_stats
.num_dependence_undetermined
++;
4695 finalize_ddr_dependent (ddr
, res
);
4699 /* Computes the conflicting iterations in LOOP_NEST, and initialize DDR. */
4702 subscript_dependence_tester (struct data_dependence_relation
*ddr
,
4703 struct loop
*loop_nest
)
4705 if (subscript_dependence_tester_1 (ddr
, 0, 1, loop_nest
))
4706 dependence_stats
.num_dependence_dependent
++;
4708 compute_subscript_distance (ddr
);
4709 if (build_classic_dist_vector (ddr
, loop_nest
))
4710 build_classic_dir_vector (ddr
);
4713 /* Returns true when all the access functions of A are affine or
4714 constant with respect to LOOP_NEST. */
4717 access_functions_are_affine_or_constant_p (const struct data_reference
*a
,
4718 const struct loop
*loop_nest
)
4721 vec
<tree
> fns
= DR_ACCESS_FNS (a
);
4724 FOR_EACH_VEC_ELT (fns
, i
, t
)
4725 if (!evolution_function_is_invariant_p (t
, loop_nest
->num
)
4726 && !evolution_function_is_affine_multivariate_p (t
, loop_nest
->num
))
4732 /* This computes the affine dependence relation between A and B with
4733 respect to LOOP_NEST. CHREC_KNOWN is used for representing the
4734 independence between two accesses, while CHREC_DONT_KNOW is used
4735 for representing the unknown relation.
4737 Note that it is possible to stop the computation of the dependence
4738 relation the first time we detect a CHREC_KNOWN element for a given
4742 compute_affine_dependence (struct data_dependence_relation
*ddr
,
4743 struct loop
*loop_nest
)
4745 struct data_reference
*dra
= DDR_A (ddr
);
4746 struct data_reference
*drb
= DDR_B (ddr
);
4748 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4750 fprintf (dump_file
, "(compute_affine_dependence\n");
4751 fprintf (dump_file
, " stmt_a: ");
4752 print_gimple_stmt (dump_file
, DR_STMT (dra
), 0, TDF_SLIM
);
4753 fprintf (dump_file
, " stmt_b: ");
4754 print_gimple_stmt (dump_file
, DR_STMT (drb
), 0, TDF_SLIM
);
4757 /* Analyze only when the dependence relation is not yet known. */
4758 if (DDR_ARE_DEPENDENT (ddr
) == NULL_TREE
)
4760 dependence_stats
.num_dependence_tests
++;
4762 if (access_functions_are_affine_or_constant_p (dra
, loop_nest
)
4763 && access_functions_are_affine_or_constant_p (drb
, loop_nest
))
4764 subscript_dependence_tester (ddr
, loop_nest
);
4766 /* As a last case, if the dependence cannot be determined, or if
4767 the dependence is considered too difficult to determine, answer
4771 dependence_stats
.num_dependence_undetermined
++;
4773 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4775 fprintf (dump_file
, "Data ref a:\n");
4776 dump_data_reference (dump_file
, dra
);
4777 fprintf (dump_file
, "Data ref b:\n");
4778 dump_data_reference (dump_file
, drb
);
4779 fprintf (dump_file
, "affine dependence test not usable: access function not affine or constant.\n");
4781 finalize_ddr_dependent (ddr
, chrec_dont_know
);
4785 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4787 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
4788 fprintf (dump_file
, ") -> no dependence\n");
4789 else if (DDR_ARE_DEPENDENT (ddr
) == chrec_dont_know
)
4790 fprintf (dump_file
, ") -> dependence analysis failed\n");
4792 fprintf (dump_file
, ")\n");
4796 /* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
4797 the data references in DATAREFS, in the LOOP_NEST. When
4798 COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
4799 relations. Return true when successful, i.e. data references number
4800 is small enough to be handled. */
4803 compute_all_dependences (vec
<data_reference_p
> datarefs
,
4804 vec
<ddr_p
> *dependence_relations
,
4805 vec
<loop_p
> loop_nest
,
4806 bool compute_self_and_rr
)
4808 struct data_dependence_relation
*ddr
;
4809 struct data_reference
*a
, *b
;
4812 if ((int) datarefs
.length ()
4813 > PARAM_VALUE (PARAM_LOOP_MAX_DATAREFS_FOR_DATADEPS
))
4815 struct data_dependence_relation
*ddr
;
4817 /* Insert a single relation into dependence_relations:
4819 ddr
= initialize_data_dependence_relation (NULL
, NULL
, loop_nest
);
4820 dependence_relations
->safe_push (ddr
);
4824 FOR_EACH_VEC_ELT (datarefs
, i
, a
)
4825 for (j
= i
+ 1; datarefs
.iterate (j
, &b
); j
++)
4826 if (DR_IS_WRITE (a
) || DR_IS_WRITE (b
) || compute_self_and_rr
)
4828 ddr
= initialize_data_dependence_relation (a
, b
, loop_nest
);
4829 dependence_relations
->safe_push (ddr
);
4830 if (loop_nest
.exists ())
4831 compute_affine_dependence (ddr
, loop_nest
[0]);
4834 if (compute_self_and_rr
)
4835 FOR_EACH_VEC_ELT (datarefs
, i
, a
)
4837 ddr
= initialize_data_dependence_relation (a
, a
, loop_nest
);
4838 dependence_relations
->safe_push (ddr
);
4839 if (loop_nest
.exists ())
4840 compute_affine_dependence (ddr
, loop_nest
[0]);
4846 /* Describes a location of a memory reference. */
4850 /* The memory reference. */
4853 /* True if the memory reference is read. */
4856 /* True if the data reference is conditional within the containing
4857 statement, i.e. if it might not occur even when the statement
4858 is executed and runs to completion. */
4859 bool is_conditional_in_stmt
;
4863 /* Stores the locations of memory references in STMT to REFERENCES. Returns
4864 true if STMT clobbers memory, false otherwise. */
4867 get_references_in_stmt (gimple
*stmt
, vec
<data_ref_loc
, va_heap
> *references
)
4869 bool clobbers_memory
= false;
4872 enum gimple_code stmt_code
= gimple_code (stmt
);
4874 /* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
4875 As we cannot model data-references to not spelled out
4876 accesses give up if they may occur. */
4877 if (stmt_code
== GIMPLE_CALL
4878 && !(gimple_call_flags (stmt
) & ECF_CONST
))
4880 /* Allow IFN_GOMP_SIMD_LANE in their own loops. */
4881 if (gimple_call_internal_p (stmt
))
4882 switch (gimple_call_internal_fn (stmt
))
4884 case IFN_GOMP_SIMD_LANE
:
4886 struct loop
*loop
= gimple_bb (stmt
)->loop_father
;
4887 tree uid
= gimple_call_arg (stmt
, 0);
4888 gcc_assert (TREE_CODE (uid
) == SSA_NAME
);
4890 || loop
->simduid
!= SSA_NAME_VAR (uid
))
4891 clobbers_memory
= true;
4895 case IFN_MASK_STORE
:
4898 clobbers_memory
= true;
4902 clobbers_memory
= true;
4904 else if (stmt_code
== GIMPLE_ASM
4905 && (gimple_asm_volatile_p (as_a
<gasm
*> (stmt
))
4906 || gimple_vuse (stmt
)))
4907 clobbers_memory
= true;
4909 if (!gimple_vuse (stmt
))
4910 return clobbers_memory
;
4912 if (stmt_code
== GIMPLE_ASSIGN
)
4915 op0
= gimple_assign_lhs (stmt
);
4916 op1
= gimple_assign_rhs1 (stmt
);
4919 || (REFERENCE_CLASS_P (op1
)
4920 && (base
= get_base_address (op1
))
4921 && TREE_CODE (base
) != SSA_NAME
4922 && !is_gimple_min_invariant (base
)))
4926 ref
.is_conditional_in_stmt
= false;
4927 references
->safe_push (ref
);
4930 else if (stmt_code
== GIMPLE_CALL
)
4936 ref
.is_read
= false;
4937 if (gimple_call_internal_p (stmt
))
4938 switch (gimple_call_internal_fn (stmt
))
4941 if (gimple_call_lhs (stmt
) == NULL_TREE
)
4945 case IFN_MASK_STORE
:
4946 ptr
= build_int_cst (TREE_TYPE (gimple_call_arg (stmt
, 1)), 0);
4947 align
= tree_to_shwi (gimple_call_arg (stmt
, 1));
4949 type
= TREE_TYPE (gimple_call_lhs (stmt
));
4951 type
= TREE_TYPE (gimple_call_arg (stmt
, 3));
4952 if (TYPE_ALIGN (type
) != align
)
4953 type
= build_aligned_type (type
, align
);
4954 ref
.is_conditional_in_stmt
= true;
4955 ref
.ref
= fold_build2 (MEM_REF
, type
, gimple_call_arg (stmt
, 0),
4957 references
->safe_push (ref
);
4963 op0
= gimple_call_lhs (stmt
);
4964 n
= gimple_call_num_args (stmt
);
4965 for (i
= 0; i
< n
; i
++)
4967 op1
= gimple_call_arg (stmt
, i
);
4970 || (REFERENCE_CLASS_P (op1
) && get_base_address (op1
)))
4974 ref
.is_conditional_in_stmt
= false;
4975 references
->safe_push (ref
);
4980 return clobbers_memory
;
4984 || (REFERENCE_CLASS_P (op0
) && get_base_address (op0
))))
4987 ref
.is_read
= false;
4988 ref
.is_conditional_in_stmt
= false;
4989 references
->safe_push (ref
);
4991 return clobbers_memory
;
4995 /* Returns true if the loop-nest has any data reference. */
4998 loop_nest_has_data_refs (loop_p loop
)
5000 basic_block
*bbs
= get_loop_body (loop
);
5001 auto_vec
<data_ref_loc
, 3> references
;
5003 for (unsigned i
= 0; i
< loop
->num_nodes
; i
++)
5005 basic_block bb
= bbs
[i
];
5006 gimple_stmt_iterator bsi
;
5008 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
5010 gimple
*stmt
= gsi_stmt (bsi
);
5011 get_references_in_stmt (stmt
, &references
);
5012 if (references
.length ())
5023 /* Stores the data references in STMT to DATAREFS. If there is an unanalyzable
5024 reference, returns false, otherwise returns true. NEST is the outermost
5025 loop of the loop nest in which the references should be analyzed. */
5028 find_data_references_in_stmt (struct loop
*nest
, gimple
*stmt
,
5029 vec
<data_reference_p
> *datarefs
)
5032 auto_vec
<data_ref_loc
, 2> references
;
5035 data_reference_p dr
;
5037 if (get_references_in_stmt (stmt
, &references
))
5040 FOR_EACH_VEC_ELT (references
, i
, ref
)
5042 dr
= create_data_ref (nest
? loop_preheader_edge (nest
) : NULL
,
5043 loop_containing_stmt (stmt
), ref
->ref
,
5044 stmt
, ref
->is_read
, ref
->is_conditional_in_stmt
);
5045 gcc_assert (dr
!= NULL
);
5046 datarefs
->safe_push (dr
);
5052 /* Stores the data references in STMT to DATAREFS. If there is an
5053 unanalyzable reference, returns false, otherwise returns true.
5054 NEST is the outermost loop of the loop nest in which the references
5055 should be instantiated, LOOP is the loop in which the references
5056 should be analyzed. */
5059 graphite_find_data_references_in_stmt (edge nest
, loop_p loop
, gimple
*stmt
,
5060 vec
<data_reference_p
> *datarefs
)
5063 auto_vec
<data_ref_loc
, 2> references
;
5066 data_reference_p dr
;
5068 if (get_references_in_stmt (stmt
, &references
))
5071 FOR_EACH_VEC_ELT (references
, i
, ref
)
5073 dr
= create_data_ref (nest
, loop
, ref
->ref
, stmt
, ref
->is_read
,
5074 ref
->is_conditional_in_stmt
);
5075 gcc_assert (dr
!= NULL
);
5076 datarefs
->safe_push (dr
);
5082 /* Search the data references in LOOP, and record the information into
5083 DATAREFS. Returns chrec_dont_know when failing to analyze a
5084 difficult case, returns NULL_TREE otherwise. */
5087 find_data_references_in_bb (struct loop
*loop
, basic_block bb
,
5088 vec
<data_reference_p
> *datarefs
)
5090 gimple_stmt_iterator bsi
;
5092 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
5094 gimple
*stmt
= gsi_stmt (bsi
);
5096 if (!find_data_references_in_stmt (loop
, stmt
, datarefs
))
5098 struct data_reference
*res
;
5099 res
= XCNEW (struct data_reference
);
5100 datarefs
->safe_push (res
);
5102 return chrec_dont_know
;
5109 /* Search the data references in LOOP, and record the information into
5110 DATAREFS. Returns chrec_dont_know when failing to analyze a
5111 difficult case, returns NULL_TREE otherwise.
5113 TODO: This function should be made smarter so that it can handle address
5114 arithmetic as if they were array accesses, etc. */
5117 find_data_references_in_loop (struct loop
*loop
,
5118 vec
<data_reference_p
> *datarefs
)
5120 basic_block bb
, *bbs
;
5123 bbs
= get_loop_body_in_dom_order (loop
);
5125 for (i
= 0; i
< loop
->num_nodes
; i
++)
5129 if (find_data_references_in_bb (loop
, bb
, datarefs
) == chrec_dont_know
)
5132 return chrec_dont_know
;
5140 /* Return the alignment in bytes that DRB is guaranteed to have at all
5144 dr_alignment (innermost_loop_behavior
*drb
)
5146 /* Get the alignment of BASE_ADDRESS + INIT. */
5147 unsigned int alignment
= drb
->base_alignment
;
5148 unsigned int misalignment
= (drb
->base_misalignment
5149 + TREE_INT_CST_LOW (drb
->init
));
5150 if (misalignment
!= 0)
5151 alignment
= MIN (alignment
, misalignment
& -misalignment
);
5153 /* Cap it to the alignment of OFFSET. */
5154 if (!integer_zerop (drb
->offset
))
5155 alignment
= MIN (alignment
, drb
->offset_alignment
);
5157 /* Cap it to the alignment of STEP. */
5158 if (!integer_zerop (drb
->step
))
5159 alignment
= MIN (alignment
, drb
->step_alignment
);
5164 /* Recursive helper function. */
5167 find_loop_nest_1 (struct loop
*loop
, vec
<loop_p
> *loop_nest
)
5169 /* Inner loops of the nest should not contain siblings. Example:
5170 when there are two consecutive loops,
5181 the dependence relation cannot be captured by the distance
5186 loop_nest
->safe_push (loop
);
5188 return find_loop_nest_1 (loop
->inner
, loop_nest
);
5192 /* Return false when the LOOP is not well nested. Otherwise return
5193 true and insert in LOOP_NEST the loops of the nest. LOOP_NEST will
5194 contain the loops from the outermost to the innermost, as they will
5195 appear in the classic distance vector. */
5198 find_loop_nest (struct loop
*loop
, vec
<loop_p
> *loop_nest
)
5200 loop_nest
->safe_push (loop
);
5202 return find_loop_nest_1 (loop
->inner
, loop_nest
);
5206 /* Returns true when the data dependences have been computed, false otherwise.
5207 Given a loop nest LOOP, the following vectors are returned:
5208 DATAREFS is initialized to all the array elements contained in this loop,
5209 DEPENDENCE_RELATIONS contains the relations between the data references.
5210 Compute read-read and self relations if
5211 COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
5214 compute_data_dependences_for_loop (struct loop
*loop
,
5215 bool compute_self_and_read_read_dependences
,
5216 vec
<loop_p
> *loop_nest
,
5217 vec
<data_reference_p
> *datarefs
,
5218 vec
<ddr_p
> *dependence_relations
)
5222 memset (&dependence_stats
, 0, sizeof (dependence_stats
));
5224 /* If the loop nest is not well formed, or one of the data references
5225 is not computable, give up without spending time to compute other
5228 || !find_loop_nest (loop
, loop_nest
)
5229 || find_data_references_in_loop (loop
, datarefs
) == chrec_dont_know
5230 || !compute_all_dependences (*datarefs
, dependence_relations
, *loop_nest
,
5231 compute_self_and_read_read_dependences
))
5234 if (dump_file
&& (dump_flags
& TDF_STATS
))
5236 fprintf (dump_file
, "Dependence tester statistics:\n");
5238 fprintf (dump_file
, "Number of dependence tests: %d\n",
5239 dependence_stats
.num_dependence_tests
);
5240 fprintf (dump_file
, "Number of dependence tests classified dependent: %d\n",
5241 dependence_stats
.num_dependence_dependent
);
5242 fprintf (dump_file
, "Number of dependence tests classified independent: %d\n",
5243 dependence_stats
.num_dependence_independent
);
5244 fprintf (dump_file
, "Number of undetermined dependence tests: %d\n",
5245 dependence_stats
.num_dependence_undetermined
);
5247 fprintf (dump_file
, "Number of subscript tests: %d\n",
5248 dependence_stats
.num_subscript_tests
);
5249 fprintf (dump_file
, "Number of undetermined subscript tests: %d\n",
5250 dependence_stats
.num_subscript_undetermined
);
5251 fprintf (dump_file
, "Number of same subscript function: %d\n",
5252 dependence_stats
.num_same_subscript_function
);
5254 fprintf (dump_file
, "Number of ziv tests: %d\n",
5255 dependence_stats
.num_ziv
);
5256 fprintf (dump_file
, "Number of ziv tests returning dependent: %d\n",
5257 dependence_stats
.num_ziv_dependent
);
5258 fprintf (dump_file
, "Number of ziv tests returning independent: %d\n",
5259 dependence_stats
.num_ziv_independent
);
5260 fprintf (dump_file
, "Number of ziv tests unimplemented: %d\n",
5261 dependence_stats
.num_ziv_unimplemented
);
5263 fprintf (dump_file
, "Number of siv tests: %d\n",
5264 dependence_stats
.num_siv
);
5265 fprintf (dump_file
, "Number of siv tests returning dependent: %d\n",
5266 dependence_stats
.num_siv_dependent
);
5267 fprintf (dump_file
, "Number of siv tests returning independent: %d\n",
5268 dependence_stats
.num_siv_independent
);
5269 fprintf (dump_file
, "Number of siv tests unimplemented: %d\n",
5270 dependence_stats
.num_siv_unimplemented
);
5272 fprintf (dump_file
, "Number of miv tests: %d\n",
5273 dependence_stats
.num_miv
);
5274 fprintf (dump_file
, "Number of miv tests returning dependent: %d\n",
5275 dependence_stats
.num_miv_dependent
);
5276 fprintf (dump_file
, "Number of miv tests returning independent: %d\n",
5277 dependence_stats
.num_miv_independent
);
5278 fprintf (dump_file
, "Number of miv tests unimplemented: %d\n",
5279 dependence_stats
.num_miv_unimplemented
);
5285 /* Free the memory used by a data dependence relation DDR. */
5288 free_dependence_relation (struct data_dependence_relation
*ddr
)
5293 if (DDR_SUBSCRIPTS (ddr
).exists ())
5294 free_subscripts (DDR_SUBSCRIPTS (ddr
));
5295 DDR_DIST_VECTS (ddr
).release ();
5296 DDR_DIR_VECTS (ddr
).release ();
5301 /* Free the memory used by the data dependence relations from
5302 DEPENDENCE_RELATIONS. */
5305 free_dependence_relations (vec
<ddr_p
> dependence_relations
)
5308 struct data_dependence_relation
*ddr
;
5310 FOR_EACH_VEC_ELT (dependence_relations
, i
, ddr
)
5312 free_dependence_relation (ddr
);
5314 dependence_relations
.release ();
5317 /* Free the memory used by the data references from DATAREFS. */
5320 free_data_refs (vec
<data_reference_p
> datarefs
)
5323 struct data_reference
*dr
;
5325 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
5327 datarefs
.release ();
5330 /* Common routine implementing both dr_direction_indicator and
5331 dr_zero_step_indicator. Return USEFUL_MIN if the indicator is known
5332 to be >= USEFUL_MIN and -1 if the indicator is known to be negative.
5333 Return the step as the indicator otherwise. */
5336 dr_step_indicator (struct data_reference
*dr
, int useful_min
)
5338 tree step
= DR_STEP (dr
);
5340 /* Look for cases where the step is scaled by a positive constant
5341 integer, which will often be the access size. If the multiplication
5342 doesn't change the sign (due to overflow effects) then we can
5343 test the unscaled value instead. */
5344 if (TREE_CODE (step
) == MULT_EXPR
5345 && TREE_CODE (TREE_OPERAND (step
, 1)) == INTEGER_CST
5346 && tree_int_cst_sgn (TREE_OPERAND (step
, 1)) > 0)
5348 tree factor
= TREE_OPERAND (step
, 1);
5349 step
= TREE_OPERAND (step
, 0);
5351 /* Strip widening and truncating conversions as well as nops. */
5352 if (CONVERT_EXPR_P (step
)
5353 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (step
, 0))))
5354 step
= TREE_OPERAND (step
, 0);
5355 tree type
= TREE_TYPE (step
);
5357 /* Get the range of step values that would not cause overflow. */
5358 widest_int minv
= (wi::to_widest (TYPE_MIN_VALUE (ssizetype
))
5359 / wi::to_widest (factor
));
5360 widest_int maxv
= (wi::to_widest (TYPE_MAX_VALUE (ssizetype
))
5361 / wi::to_widest (factor
));
5363 /* Get the range of values that the unconverted step actually has. */
5364 wide_int step_min
, step_max
;
5365 if (TREE_CODE (step
) != SSA_NAME
5366 || get_range_info (step
, &step_min
, &step_max
) != VR_RANGE
)
5368 step_min
= wi::to_wide (TYPE_MIN_VALUE (type
));
5369 step_max
= wi::to_wide (TYPE_MAX_VALUE (type
));
5372 /* Check whether the unconverted step has an acceptable range. */
5373 signop sgn
= TYPE_SIGN (type
);
5374 if (wi::les_p (minv
, widest_int::from (step_min
, sgn
))
5375 && wi::ges_p (maxv
, widest_int::from (step_max
, sgn
)))
5377 if (wi::ge_p (step_min
, useful_min
, sgn
))
5378 return ssize_int (useful_min
);
5379 else if (wi::lt_p (step_max
, 0, sgn
))
5380 return ssize_int (-1);
5382 return fold_convert (ssizetype
, step
);
5385 return DR_STEP (dr
);
5388 /* Return a value that is negative iff DR has a negative step. */
5391 dr_direction_indicator (struct data_reference
*dr
)
5393 return dr_step_indicator (dr
, 0);
5396 /* Return a value that is zero iff DR has a zero step. */
5399 dr_zero_step_indicator (struct data_reference
*dr
)
5401 return dr_step_indicator (dr
, 1);
5404 /* Return true if DR is known to have a nonnegative (but possibly zero)
5408 dr_known_forward_stride_p (struct data_reference
*dr
)
5410 tree indicator
= dr_direction_indicator (dr
);
5411 tree neg_step_val
= fold_binary (LT_EXPR
, boolean_type_node
,
5412 fold_convert (ssizetype
, indicator
),
5414 return neg_step_val
&& integer_zerop (neg_step_val
);