2011-10-20 Steven G. Kargl <kargl@gcc.gnu.org>
[official-gcc.git] / gcc / sched-deps.c
bloba778721d20b2fe0930538d505b5561970d937c68
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
5 2011
6 Free Software Foundation, Inc.
7 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
8 and currently maintained by, Jim Wilson (wilson@cygnus.com)
10 This file is part of GCC.
12 GCC is free software; you can redistribute it and/or modify it under
13 the terms of the GNU General Public License as published by the Free
14 Software Foundation; either version 3, or (at your option) any later
15 version.
17 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
18 WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 for more details.
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "diagnostic-core.h"
31 #include "rtl.h"
32 #include "tm_p.h"
33 #include "hard-reg-set.h"
34 #include "regs.h"
35 #include "function.h"
36 #include "flags.h"
37 #include "insn-config.h"
38 #include "insn-attr.h"
39 #include "except.h"
40 #include "recog.h"
41 #include "sched-int.h"
42 #include "params.h"
43 #include "cselib.h"
44 #include "ira.h"
45 #include "target.h"
47 #ifdef INSN_SCHEDULING
49 #ifdef ENABLE_CHECKING
50 #define CHECK (true)
51 #else
52 #define CHECK (false)
53 #endif
55 /* Holds current parameters for the dependency analyzer. */
56 struct sched_deps_info_def *sched_deps_info;
58 /* The data is specific to the Haifa scheduler. */
59 VEC(haifa_deps_insn_data_def, heap) *h_d_i_d = NULL;
61 /* Return the major type present in the DS. */
62 enum reg_note
63 ds_to_dk (ds_t ds)
65 if (ds & DEP_TRUE)
66 return REG_DEP_TRUE;
68 if (ds & DEP_OUTPUT)
69 return REG_DEP_OUTPUT;
71 if (ds & DEP_CONTROL)
72 return REG_DEP_CONTROL;
74 gcc_assert (ds & DEP_ANTI);
76 return REG_DEP_ANTI;
79 /* Return equivalent dep_status. */
80 ds_t
81 dk_to_ds (enum reg_note dk)
83 switch (dk)
85 case REG_DEP_TRUE:
86 return DEP_TRUE;
88 case REG_DEP_OUTPUT:
89 return DEP_OUTPUT;
91 case REG_DEP_CONTROL:
92 return DEP_CONTROL;
94 default:
95 gcc_assert (dk == REG_DEP_ANTI);
96 return DEP_ANTI;
100 /* Functions to operate with dependence information container - dep_t. */
102 /* Init DEP with the arguments. */
103 void
104 init_dep_1 (dep_t dep, rtx pro, rtx con, enum reg_note type, ds_t ds)
106 DEP_PRO (dep) = pro;
107 DEP_CON (dep) = con;
108 DEP_TYPE (dep) = type;
109 DEP_STATUS (dep) = ds;
110 DEP_COST (dep) = UNKNOWN_DEP_COST;
113 /* Init DEP with the arguments.
114 While most of the scheduler (including targets) only need the major type
115 of the dependency, it is convenient to hide full dep_status from them. */
116 void
117 init_dep (dep_t dep, rtx pro, rtx con, enum reg_note kind)
119 ds_t ds;
121 if ((current_sched_info->flags & USE_DEPS_LIST))
122 ds = dk_to_ds (kind);
123 else
124 ds = 0;
126 init_dep_1 (dep, pro, con, kind, ds);
129 /* Make a copy of FROM in TO. */
130 static void
131 copy_dep (dep_t to, dep_t from)
133 memcpy (to, from, sizeof (*to));
136 static void dump_ds (FILE *, ds_t);
138 /* Define flags for dump_dep (). */
140 /* Dump producer of the dependence. */
141 #define DUMP_DEP_PRO (2)
143 /* Dump consumer of the dependence. */
144 #define DUMP_DEP_CON (4)
146 /* Dump type of the dependence. */
147 #define DUMP_DEP_TYPE (8)
149 /* Dump status of the dependence. */
150 #define DUMP_DEP_STATUS (16)
152 /* Dump all information about the dependence. */
153 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
154 |DUMP_DEP_STATUS)
156 /* Dump DEP to DUMP.
157 FLAGS is a bit mask specifying what information about DEP needs
158 to be printed.
159 If FLAGS has the very first bit set, then dump all information about DEP
160 and propagate this bit into the callee dump functions. */
161 static void
162 dump_dep (FILE *dump, dep_t dep, int flags)
164 if (flags & 1)
165 flags |= DUMP_DEP_ALL;
167 fprintf (dump, "<");
169 if (flags & DUMP_DEP_PRO)
170 fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
172 if (flags & DUMP_DEP_CON)
173 fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
175 if (flags & DUMP_DEP_TYPE)
177 char t;
178 enum reg_note type = DEP_TYPE (dep);
180 switch (type)
182 case REG_DEP_TRUE:
183 t = 't';
184 break;
186 case REG_DEP_OUTPUT:
187 t = 'o';
188 break;
190 case REG_DEP_CONTROL:
191 t = 'c';
192 break;
194 case REG_DEP_ANTI:
195 t = 'a';
196 break;
198 default:
199 gcc_unreachable ();
200 break;
203 fprintf (dump, "%c; ", t);
206 if (flags & DUMP_DEP_STATUS)
208 if (current_sched_info->flags & USE_DEPS_LIST)
209 dump_ds (dump, DEP_STATUS (dep));
212 fprintf (dump, ">");
215 /* Default flags for dump_dep (). */
216 static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
218 /* Dump all fields of DEP to STDERR. */
219 void
220 sd_debug_dep (dep_t dep)
222 dump_dep (stderr, dep, 1);
223 fprintf (stderr, "\n");
226 /* Determine whether DEP is a dependency link of a non-debug insn on a
227 debug insn. */
229 static inline bool
230 depl_on_debug_p (dep_link_t dep)
232 return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
233 && !DEBUG_INSN_P (DEP_LINK_CON (dep)));
236 /* Functions to operate with a single link from the dependencies lists -
237 dep_link_t. */
239 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
240 PREV_NEXT_P. */
241 static void
242 attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
244 dep_link_t next = *prev_nextp;
246 gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
247 && DEP_LINK_NEXT (l) == NULL);
249 /* Init node being inserted. */
250 DEP_LINK_PREV_NEXTP (l) = prev_nextp;
251 DEP_LINK_NEXT (l) = next;
253 /* Fix next node. */
254 if (next != NULL)
256 gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
258 DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
261 /* Fix prev node. */
262 *prev_nextp = l;
265 /* Add dep_link LINK to deps_list L. */
266 static void
267 add_to_deps_list (dep_link_t link, deps_list_t l)
269 attach_dep_link (link, &DEPS_LIST_FIRST (l));
271 /* Don't count debug deps. */
272 if (!depl_on_debug_p (link))
273 ++DEPS_LIST_N_LINKS (l);
276 /* Detach dep_link L from the list. */
277 static void
278 detach_dep_link (dep_link_t l)
280 dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
281 dep_link_t next = DEP_LINK_NEXT (l);
283 *prev_nextp = next;
285 if (next != NULL)
286 DEP_LINK_PREV_NEXTP (next) = prev_nextp;
288 DEP_LINK_PREV_NEXTP (l) = NULL;
289 DEP_LINK_NEXT (l) = NULL;
292 /* Remove link LINK from list LIST. */
293 static void
294 remove_from_deps_list (dep_link_t link, deps_list_t list)
296 detach_dep_link (link);
298 /* Don't count debug deps. */
299 if (!depl_on_debug_p (link))
300 --DEPS_LIST_N_LINKS (list);
303 /* Move link LINK from list FROM to list TO. */
304 static void
305 move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
307 remove_from_deps_list (link, from);
308 add_to_deps_list (link, to);
311 /* Return true of LINK is not attached to any list. */
312 static bool
313 dep_link_is_detached_p (dep_link_t link)
315 return DEP_LINK_PREV_NEXTP (link) == NULL;
318 /* Pool to hold all dependency nodes (dep_node_t). */
319 static alloc_pool dn_pool;
321 /* Number of dep_nodes out there. */
322 static int dn_pool_diff = 0;
324 /* Create a dep_node. */
325 static dep_node_t
326 create_dep_node (void)
328 dep_node_t n = (dep_node_t) pool_alloc (dn_pool);
329 dep_link_t back = DEP_NODE_BACK (n);
330 dep_link_t forw = DEP_NODE_FORW (n);
332 DEP_LINK_NODE (back) = n;
333 DEP_LINK_NEXT (back) = NULL;
334 DEP_LINK_PREV_NEXTP (back) = NULL;
336 DEP_LINK_NODE (forw) = n;
337 DEP_LINK_NEXT (forw) = NULL;
338 DEP_LINK_PREV_NEXTP (forw) = NULL;
340 ++dn_pool_diff;
342 return n;
345 /* Delete dep_node N. N must not be connected to any deps_list. */
346 static void
347 delete_dep_node (dep_node_t n)
349 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
350 && dep_link_is_detached_p (DEP_NODE_FORW (n)));
352 --dn_pool_diff;
354 pool_free (dn_pool, n);
357 /* Pool to hold dependencies lists (deps_list_t). */
358 static alloc_pool dl_pool;
360 /* Number of deps_lists out there. */
361 static int dl_pool_diff = 0;
363 /* Functions to operate with dependences lists - deps_list_t. */
365 /* Return true if list L is empty. */
366 static bool
367 deps_list_empty_p (deps_list_t l)
369 return DEPS_LIST_N_LINKS (l) == 0;
372 /* Create a new deps_list. */
373 static deps_list_t
374 create_deps_list (void)
376 deps_list_t l = (deps_list_t) pool_alloc (dl_pool);
378 DEPS_LIST_FIRST (l) = NULL;
379 DEPS_LIST_N_LINKS (l) = 0;
381 ++dl_pool_diff;
382 return l;
385 /* Free deps_list L. */
386 static void
387 free_deps_list (deps_list_t l)
389 gcc_assert (deps_list_empty_p (l));
391 --dl_pool_diff;
393 pool_free (dl_pool, l);
396 /* Return true if there is no dep_nodes and deps_lists out there.
397 After the region is scheduled all the dependency nodes and lists
398 should [generally] be returned to pool. */
399 bool
400 deps_pools_are_empty_p (void)
402 return dn_pool_diff == 0 && dl_pool_diff == 0;
405 /* Remove all elements from L. */
406 static void
407 clear_deps_list (deps_list_t l)
411 dep_link_t link = DEPS_LIST_FIRST (l);
413 if (link == NULL)
414 break;
416 remove_from_deps_list (link, l);
418 while (1);
421 /* Decide whether a dependency should be treated as a hard or a speculative
422 dependency. */
423 static bool
424 dep_spec_p (dep_t dep)
426 if (current_sched_info->flags & DO_SPECULATION)
428 if (DEP_STATUS (dep) & SPECULATIVE)
429 return true;
431 if (current_sched_info->flags & DO_PREDICATION)
433 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
434 return true;
436 return false;
439 static regset reg_pending_sets;
440 static regset reg_pending_clobbers;
441 static regset reg_pending_uses;
442 static regset reg_pending_control_uses;
443 static enum reg_pending_barrier_mode reg_pending_barrier;
445 /* Hard registers implicitly clobbered or used (or may be implicitly
446 clobbered or used) by the currently analyzed insn. For example,
447 insn in its constraint has one register class. Even if there is
448 currently no hard register in the insn, the particular hard
449 register will be in the insn after reload pass because the
450 constraint requires it. */
451 static HARD_REG_SET implicit_reg_pending_clobbers;
452 static HARD_REG_SET implicit_reg_pending_uses;
454 /* To speed up the test for duplicate dependency links we keep a
455 record of dependencies created by add_dependence when the average
456 number of instructions in a basic block is very large.
458 Studies have shown that there is typically around 5 instructions between
459 branches for typical C code. So we can make a guess that the average
460 basic block is approximately 5 instructions long; we will choose 100X
461 the average size as a very large basic block.
463 Each insn has associated bitmaps for its dependencies. Each bitmap
464 has enough entries to represent a dependency on any other insn in
465 the insn chain. All bitmap for true dependencies cache is
466 allocated then the rest two ones are also allocated. */
467 static bitmap_head *true_dependency_cache = NULL;
468 static bitmap_head *output_dependency_cache = NULL;
469 static bitmap_head *anti_dependency_cache = NULL;
470 static bitmap_head *control_dependency_cache = NULL;
471 static bitmap_head *spec_dependency_cache = NULL;
472 static int cache_size;
474 static int deps_may_trap_p (const_rtx);
475 static void add_dependence_1 (rtx, rtx, enum reg_note);
476 static void add_dependence_list (rtx, rtx, int, enum reg_note);
477 static void add_dependence_list_and_free (struct deps_desc *, rtx,
478 rtx *, int, enum reg_note);
479 static void delete_all_dependences (rtx);
480 static void fixup_sched_groups (rtx);
482 static void flush_pending_lists (struct deps_desc *, rtx, int, int);
483 static void sched_analyze_1 (struct deps_desc *, rtx, rtx);
484 static void sched_analyze_2 (struct deps_desc *, rtx, rtx);
485 static void sched_analyze_insn (struct deps_desc *, rtx, rtx);
487 static bool sched_has_condition_p (const_rtx);
488 static int conditions_mutex_p (const_rtx, const_rtx, bool, bool);
490 static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
491 rtx, rtx);
492 static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
494 #ifdef ENABLE_CHECKING
495 static void check_dep (dep_t, bool);
496 #endif
498 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
500 static int
501 deps_may_trap_p (const_rtx mem)
503 const_rtx addr = XEXP (mem, 0);
505 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
507 const_rtx t = get_reg_known_value (REGNO (addr));
508 if (t)
509 addr = t;
511 return rtx_addr_can_trap_p (addr);
515 /* Find the condition under which INSN is executed. If REV is not NULL,
516 it is set to TRUE when the returned comparison should be reversed
517 to get the actual condition. */
518 static rtx
519 sched_get_condition_with_rev_uncached (const_rtx insn, bool *rev)
521 rtx pat = PATTERN (insn);
522 rtx src;
524 if (pat == 0)
525 return 0;
527 if (rev)
528 *rev = false;
530 if (GET_CODE (pat) == COND_EXEC)
531 return COND_EXEC_TEST (pat);
533 if (!any_condjump_p (insn) || !onlyjump_p (insn))
534 return 0;
536 src = SET_SRC (pc_set (insn));
538 if (XEXP (src, 2) == pc_rtx)
539 return XEXP (src, 0);
540 else if (XEXP (src, 1) == pc_rtx)
542 rtx cond = XEXP (src, 0);
543 enum rtx_code revcode = reversed_comparison_code (cond, insn);
545 if (revcode == UNKNOWN)
546 return 0;
548 if (rev)
549 *rev = true;
550 return cond;
553 return 0;
556 /* Return the condition under which INSN does not execute (i.e. the
557 not-taken condition for a conditional branch), or NULL if we cannot
558 find such a condition. The caller should make a copy of the condition
559 before using it. */
561 sched_get_reverse_condition_uncached (const_rtx insn)
563 bool rev;
564 rtx cond = sched_get_condition_with_rev_uncached (insn, &rev);
565 if (cond == NULL_RTX)
566 return cond;
567 if (!rev)
569 enum rtx_code revcode = reversed_comparison_code (cond, insn);
570 cond = gen_rtx_fmt_ee (revcode, GET_MODE (cond),
571 XEXP (cond, 0),
572 XEXP (cond, 1));
574 return cond;
577 /* Caching variant of sched_get_condition_with_rev_uncached.
578 We only do actual work the first time we come here for an insn; the
579 results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
580 static rtx
581 sched_get_condition_with_rev (const_rtx insn, bool *rev)
583 bool tmp;
585 if (INSN_LUID (insn) == 0)
586 return sched_get_condition_with_rev_uncached (insn, rev);
588 if (INSN_CACHED_COND (insn) == const_true_rtx)
589 return NULL_RTX;
591 if (INSN_CACHED_COND (insn) != NULL_RTX)
593 if (rev)
594 *rev = INSN_REVERSE_COND (insn);
595 return INSN_CACHED_COND (insn);
598 INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, &tmp);
599 INSN_REVERSE_COND (insn) = tmp;
601 if (INSN_CACHED_COND (insn) == NULL_RTX)
603 INSN_CACHED_COND (insn) = const_true_rtx;
604 return NULL_RTX;
607 if (rev)
608 *rev = INSN_REVERSE_COND (insn);
609 return INSN_CACHED_COND (insn);
612 /* True when we can find a condition under which INSN is executed. */
613 static bool
614 sched_has_condition_p (const_rtx insn)
616 return !! sched_get_condition_with_rev (insn, NULL);
621 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
622 static int
623 conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
625 if (COMPARISON_P (cond1)
626 && COMPARISON_P (cond2)
627 && GET_CODE (cond1) ==
628 (rev1==rev2
629 ? reversed_comparison_code (cond2, NULL)
630 : GET_CODE (cond2))
631 && rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
632 && XEXP (cond1, 1) == XEXP (cond2, 1))
633 return 1;
634 return 0;
637 /* Return true if insn1 and insn2 can never depend on one another because
638 the conditions under which they are executed are mutually exclusive. */
639 bool
640 sched_insns_conditions_mutex_p (const_rtx insn1, const_rtx insn2)
642 rtx cond1, cond2;
643 bool rev1 = false, rev2 = false;
645 /* df doesn't handle conditional lifetimes entirely correctly;
646 calls mess up the conditional lifetimes. */
647 if (!CALL_P (insn1) && !CALL_P (insn2))
649 cond1 = sched_get_condition_with_rev (insn1, &rev1);
650 cond2 = sched_get_condition_with_rev (insn2, &rev2);
651 if (cond1 && cond2
652 && conditions_mutex_p (cond1, cond2, rev1, rev2)
653 /* Make sure first instruction doesn't affect condition of second
654 instruction if switched. */
655 && !modified_in_p (cond1, insn2)
656 /* Make sure second instruction doesn't affect condition of first
657 instruction if switched. */
658 && !modified_in_p (cond2, insn1))
659 return true;
661 return false;
665 /* Return true if INSN can potentially be speculated with type DS. */
666 bool
667 sched_insn_is_legitimate_for_speculation_p (const_rtx insn, ds_t ds)
669 if (HAS_INTERNAL_DEP (insn))
670 return false;
672 if (!NONJUMP_INSN_P (insn))
673 return false;
675 if (SCHED_GROUP_P (insn))
676 return false;
678 if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX (insn)))
679 return false;
681 if (side_effects_p (PATTERN (insn)))
682 return false;
684 if (ds & BE_IN_SPEC)
685 /* The following instructions, which depend on a speculatively scheduled
686 instruction, cannot be speculatively scheduled along. */
688 if (may_trap_or_fault_p (PATTERN (insn)))
689 /* If instruction might fault, it cannot be speculatively scheduled.
690 For control speculation it's obvious why and for data speculation
691 it's because the insn might get wrong input if speculation
692 wasn't successful. */
693 return false;
695 if ((ds & BE_IN_DATA)
696 && sched_has_condition_p (insn))
697 /* If this is a predicated instruction, then it cannot be
698 speculatively scheduled. See PR35659. */
699 return false;
702 return true;
705 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
706 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
707 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
708 This function is used to switch sd_iterator to the next list.
709 !!! For internal use only. Might consider moving it to sched-int.h. */
710 void
711 sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
712 deps_list_t *list_ptr, bool *resolved_p_ptr)
714 sd_list_types_def types = *types_ptr;
716 if (types & SD_LIST_HARD_BACK)
718 *list_ptr = INSN_HARD_BACK_DEPS (insn);
719 *resolved_p_ptr = false;
720 *types_ptr = types & ~SD_LIST_HARD_BACK;
722 else if (types & SD_LIST_SPEC_BACK)
724 *list_ptr = INSN_SPEC_BACK_DEPS (insn);
725 *resolved_p_ptr = false;
726 *types_ptr = types & ~SD_LIST_SPEC_BACK;
728 else if (types & SD_LIST_FORW)
730 *list_ptr = INSN_FORW_DEPS (insn);
731 *resolved_p_ptr = false;
732 *types_ptr = types & ~SD_LIST_FORW;
734 else if (types & SD_LIST_RES_BACK)
736 *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
737 *resolved_p_ptr = true;
738 *types_ptr = types & ~SD_LIST_RES_BACK;
740 else if (types & SD_LIST_RES_FORW)
742 *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
743 *resolved_p_ptr = true;
744 *types_ptr = types & ~SD_LIST_RES_FORW;
746 else
748 *list_ptr = NULL;
749 *resolved_p_ptr = false;
750 *types_ptr = SD_LIST_NONE;
754 /* Return the summary size of INSN's lists defined by LIST_TYPES. */
756 sd_lists_size (const_rtx insn, sd_list_types_def list_types)
758 int size = 0;
760 while (list_types != SD_LIST_NONE)
762 deps_list_t list;
763 bool resolved_p;
765 sd_next_list (insn, &list_types, &list, &resolved_p);
766 if (list)
767 size += DEPS_LIST_N_LINKS (list);
770 return size;
773 /* Return true if INSN's lists defined by LIST_TYPES are all empty. */
775 bool
776 sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
778 while (list_types != SD_LIST_NONE)
780 deps_list_t list;
781 bool resolved_p;
783 sd_next_list (insn, &list_types, &list, &resolved_p);
784 if (!deps_list_empty_p (list))
785 return false;
788 return true;
791 /* Initialize data for INSN. */
792 void
793 sd_init_insn (rtx insn)
795 INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
796 INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
797 INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
798 INSN_FORW_DEPS (insn) = create_deps_list ();
799 INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
801 /* ??? It would be nice to allocate dependency caches here. */
804 /* Free data for INSN. */
805 void
806 sd_finish_insn (rtx insn)
808 /* ??? It would be nice to deallocate dependency caches here. */
810 free_deps_list (INSN_HARD_BACK_DEPS (insn));
811 INSN_HARD_BACK_DEPS (insn) = NULL;
813 free_deps_list (INSN_SPEC_BACK_DEPS (insn));
814 INSN_SPEC_BACK_DEPS (insn) = NULL;
816 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
817 INSN_RESOLVED_BACK_DEPS (insn) = NULL;
819 free_deps_list (INSN_FORW_DEPS (insn));
820 INSN_FORW_DEPS (insn) = NULL;
822 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
823 INSN_RESOLVED_FORW_DEPS (insn) = NULL;
826 /* Find a dependency between producer PRO and consumer CON.
827 Search through resolved dependency lists if RESOLVED_P is true.
828 If no such dependency is found return NULL,
829 otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
830 with an iterator pointing to it. */
831 static dep_t
832 sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
833 sd_iterator_def *sd_it_ptr)
835 sd_list_types_def pro_list_type;
836 sd_list_types_def con_list_type;
837 sd_iterator_def sd_it;
838 dep_t dep;
839 bool found_p = false;
841 if (resolved_p)
843 pro_list_type = SD_LIST_RES_FORW;
844 con_list_type = SD_LIST_RES_BACK;
846 else
848 pro_list_type = SD_LIST_FORW;
849 con_list_type = SD_LIST_BACK;
852 /* Walk through either back list of INSN or forw list of ELEM
853 depending on which one is shorter. */
854 if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
856 /* Find the dep_link with producer PRO in consumer's back_deps. */
857 FOR_EACH_DEP (con, con_list_type, sd_it, dep)
858 if (DEP_PRO (dep) == pro)
860 found_p = true;
861 break;
864 else
866 /* Find the dep_link with consumer CON in producer's forw_deps. */
867 FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
868 if (DEP_CON (dep) == con)
870 found_p = true;
871 break;
875 if (found_p)
877 if (sd_it_ptr != NULL)
878 *sd_it_ptr = sd_it;
880 return dep;
883 return NULL;
886 /* Find a dependency between producer PRO and consumer CON.
887 Use dependency [if available] to check if dependency is present at all.
888 Search through resolved dependency lists if RESOLVED_P is true.
889 If the dependency or NULL if none found. */
890 dep_t
891 sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
893 if (true_dependency_cache != NULL)
894 /* Avoiding the list walk below can cut compile times dramatically
895 for some code. */
897 int elem_luid = INSN_LUID (pro);
898 int insn_luid = INSN_LUID (con);
900 if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
901 && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
902 && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid)
903 && !bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
904 return NULL;
907 return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
910 /* Add or update a dependence described by DEP.
911 MEM1 and MEM2, if non-null, correspond to memory locations in case of
912 data speculation.
914 The function returns a value indicating if an old entry has been changed
915 or a new entry has been added to insn's backward deps.
917 This function merely checks if producer and consumer is the same insn
918 and doesn't create a dep in this case. Actual manipulation of
919 dependence data structures is performed in add_or_update_dep_1. */
920 static enum DEPS_ADJUST_RESULT
921 maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
923 rtx elem = DEP_PRO (dep);
924 rtx insn = DEP_CON (dep);
926 gcc_assert (INSN_P (insn) && INSN_P (elem));
928 /* Don't depend an insn on itself. */
929 if (insn == elem)
931 if (sched_deps_info->generate_spec_deps)
932 /* INSN has an internal dependence, which we can't overcome. */
933 HAS_INTERNAL_DEP (insn) = 1;
935 return DEP_NODEP;
938 return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
941 /* Ask dependency caches what needs to be done for dependence DEP.
942 Return DEP_CREATED if new dependence should be created and there is no
943 need to try to find one searching the dependencies lists.
944 Return DEP_PRESENT if there already is a dependence described by DEP and
945 hence nothing is to be done.
946 Return DEP_CHANGED if there already is a dependence, but it should be
947 updated to incorporate additional information from DEP. */
948 static enum DEPS_ADJUST_RESULT
949 ask_dependency_caches (dep_t dep)
951 int elem_luid = INSN_LUID (DEP_PRO (dep));
952 int insn_luid = INSN_LUID (DEP_CON (dep));
954 gcc_assert (true_dependency_cache != NULL
955 && output_dependency_cache != NULL
956 && anti_dependency_cache != NULL
957 && control_dependency_cache != NULL);
959 if (!(current_sched_info->flags & USE_DEPS_LIST))
961 enum reg_note present_dep_type;
963 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
964 present_dep_type = REG_DEP_TRUE;
965 else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
966 present_dep_type = REG_DEP_OUTPUT;
967 else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
968 present_dep_type = REG_DEP_ANTI;
969 else if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
970 present_dep_type = REG_DEP_CONTROL;
971 else
972 /* There is no existing dep so it should be created. */
973 return DEP_CREATED;
975 if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
976 /* DEP does not add anything to the existing dependence. */
977 return DEP_PRESENT;
979 else
981 ds_t present_dep_types = 0;
983 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
984 present_dep_types |= DEP_TRUE;
985 if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
986 present_dep_types |= DEP_OUTPUT;
987 if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
988 present_dep_types |= DEP_ANTI;
989 if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
990 present_dep_types |= DEP_CONTROL;
992 if (present_dep_types == 0)
993 /* There is no existing dep so it should be created. */
994 return DEP_CREATED;
996 if (!(current_sched_info->flags & DO_SPECULATION)
997 || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
999 if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
1000 == present_dep_types)
1001 /* DEP does not add anything to the existing dependence. */
1002 return DEP_PRESENT;
1004 else
1006 /* Only true dependencies can be data speculative and
1007 only anti dependencies can be control speculative. */
1008 gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
1009 == present_dep_types);
1011 /* if (DEP is SPECULATIVE) then
1012 ..we should update DEP_STATUS
1013 else
1014 ..we should reset existing dep to non-speculative. */
1018 return DEP_CHANGED;
1021 /* Set dependency caches according to DEP. */
1022 static void
1023 set_dependency_caches (dep_t dep)
1025 int elem_luid = INSN_LUID (DEP_PRO (dep));
1026 int insn_luid = INSN_LUID (DEP_CON (dep));
1028 if (!(current_sched_info->flags & USE_DEPS_LIST))
1030 switch (DEP_TYPE (dep))
1032 case REG_DEP_TRUE:
1033 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1034 break;
1036 case REG_DEP_OUTPUT:
1037 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1038 break;
1040 case REG_DEP_ANTI:
1041 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1042 break;
1044 case REG_DEP_CONTROL:
1045 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1046 break;
1048 default:
1049 gcc_unreachable ();
1052 else
1054 ds_t ds = DEP_STATUS (dep);
1056 if (ds & DEP_TRUE)
1057 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1058 if (ds & DEP_OUTPUT)
1059 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1060 if (ds & DEP_ANTI)
1061 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1062 if (ds & DEP_CONTROL)
1063 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1065 if (ds & SPECULATIVE)
1067 gcc_assert (current_sched_info->flags & DO_SPECULATION);
1068 bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
1073 /* Type of dependence DEP have changed from OLD_TYPE. Update dependency
1074 caches accordingly. */
1075 static void
1076 update_dependency_caches (dep_t dep, enum reg_note old_type)
1078 int elem_luid = INSN_LUID (DEP_PRO (dep));
1079 int insn_luid = INSN_LUID (DEP_CON (dep));
1081 /* Clear corresponding cache entry because type of the link
1082 may have changed. Keep them if we use_deps_list. */
1083 if (!(current_sched_info->flags & USE_DEPS_LIST))
1085 switch (old_type)
1087 case REG_DEP_OUTPUT:
1088 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1089 break;
1091 case REG_DEP_ANTI:
1092 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1093 break;
1095 case REG_DEP_CONTROL:
1096 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1097 break;
1099 default:
1100 gcc_unreachable ();
1104 set_dependency_caches (dep);
1107 /* Convert a dependence pointed to by SD_IT to be non-speculative. */
1108 static void
1109 change_spec_dep_to_hard (sd_iterator_def sd_it)
1111 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1112 dep_link_t link = DEP_NODE_BACK (node);
1113 dep_t dep = DEP_NODE_DEP (node);
1114 rtx elem = DEP_PRO (dep);
1115 rtx insn = DEP_CON (dep);
1117 move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
1119 DEP_STATUS (dep) &= ~SPECULATIVE;
1121 if (true_dependency_cache != NULL)
1122 /* Clear the cache entry. */
1123 bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
1124 INSN_LUID (elem));
1127 /* Update DEP to incorporate information from NEW_DEP.
1128 SD_IT points to DEP in case it should be moved to another list.
1129 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1130 data-speculative dependence should be updated. */
1131 static enum DEPS_ADJUST_RESULT
1132 update_dep (dep_t dep, dep_t new_dep,
1133 sd_iterator_def sd_it ATTRIBUTE_UNUSED,
1134 rtx mem1 ATTRIBUTE_UNUSED,
1135 rtx mem2 ATTRIBUTE_UNUSED)
1137 enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
1138 enum reg_note old_type = DEP_TYPE (dep);
1139 bool was_spec = dep_spec_p (dep);
1141 /* If this is a more restrictive type of dependence than the
1142 existing one, then change the existing dependence to this
1143 type. */
1144 if ((int) DEP_TYPE (new_dep) < (int) old_type)
1146 DEP_TYPE (dep) = DEP_TYPE (new_dep);
1147 res = DEP_CHANGED;
1150 if (current_sched_info->flags & USE_DEPS_LIST)
1151 /* Update DEP_STATUS. */
1153 ds_t dep_status = DEP_STATUS (dep);
1154 ds_t ds = DEP_STATUS (new_dep);
1155 ds_t new_status = ds | dep_status;
1157 if (new_status & SPECULATIVE)
1159 /* Either existing dep or a dep we're adding or both are
1160 speculative. */
1161 if (!(ds & SPECULATIVE)
1162 || !(dep_status & SPECULATIVE))
1163 /* The new dep can't be speculative. */
1164 new_status &= ~SPECULATIVE;
1165 else
1167 /* Both are speculative. Merge probabilities. */
1168 if (mem1 != NULL)
1170 dw_t dw;
1172 dw = estimate_dep_weak (mem1, mem2);
1173 ds = set_dep_weak (ds, BEGIN_DATA, dw);
1176 new_status = ds_merge (dep_status, ds);
1180 ds = new_status;
1182 if (dep_status != ds)
1184 DEP_STATUS (dep) = ds;
1185 res = DEP_CHANGED;
1189 if (was_spec && !dep_spec_p (dep))
1190 /* The old dep was speculative, but now it isn't. */
1191 change_spec_dep_to_hard (sd_it);
1193 if (true_dependency_cache != NULL
1194 && res == DEP_CHANGED)
1195 update_dependency_caches (dep, old_type);
1197 return res;
1200 /* Add or update a dependence described by DEP.
1201 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1202 data speculation.
1204 The function returns a value indicating if an old entry has been changed
1205 or a new entry has been added to insn's backward deps or nothing has
1206 been updated at all. */
1207 static enum DEPS_ADJUST_RESULT
1208 add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1209 rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1211 bool maybe_present_p = true;
1212 bool present_p = false;
1214 gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1215 && DEP_PRO (new_dep) != DEP_CON (new_dep));
1217 #ifdef ENABLE_CHECKING
1218 check_dep (new_dep, mem1 != NULL);
1219 #endif
1221 if (true_dependency_cache != NULL)
1223 switch (ask_dependency_caches (new_dep))
1225 case DEP_PRESENT:
1226 return DEP_PRESENT;
1228 case DEP_CHANGED:
1229 maybe_present_p = true;
1230 present_p = true;
1231 break;
1233 case DEP_CREATED:
1234 maybe_present_p = false;
1235 present_p = false;
1236 break;
1238 default:
1239 gcc_unreachable ();
1240 break;
1244 /* Check that we don't already have this dependence. */
1245 if (maybe_present_p)
1247 dep_t present_dep;
1248 sd_iterator_def sd_it;
1250 gcc_assert (true_dependency_cache == NULL || present_p);
1252 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1253 DEP_CON (new_dep),
1254 resolved_p, &sd_it);
1256 if (present_dep != NULL)
1257 /* We found an existing dependency between ELEM and INSN. */
1258 return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
1259 else
1260 /* We didn't find a dep, it shouldn't present in the cache. */
1261 gcc_assert (!present_p);
1264 /* Might want to check one level of transitivity to save conses.
1265 This check should be done in maybe_add_or_update_dep_1.
1266 Since we made it to add_or_update_dep_1, we must create
1267 (or update) a link. */
1269 if (mem1 != NULL_RTX)
1271 gcc_assert (sched_deps_info->generate_spec_deps);
1272 DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1273 estimate_dep_weak (mem1, mem2));
1276 sd_add_dep (new_dep, resolved_p);
1278 return DEP_CREATED;
1281 /* Initialize BACK_LIST_PTR with consumer's backward list and
1282 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1283 initialize with lists that hold resolved deps. */
1284 static void
1285 get_back_and_forw_lists (dep_t dep, bool resolved_p,
1286 deps_list_t *back_list_ptr,
1287 deps_list_t *forw_list_ptr)
1289 rtx con = DEP_CON (dep);
1291 if (!resolved_p)
1293 if (dep_spec_p (dep))
1294 *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1295 else
1296 *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1298 *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1300 else
1302 *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1303 *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1307 /* Add dependence described by DEP.
1308 If RESOLVED_P is true treat the dependence as a resolved one. */
1309 void
1310 sd_add_dep (dep_t dep, bool resolved_p)
1312 dep_node_t n = create_dep_node ();
1313 deps_list_t con_back_deps;
1314 deps_list_t pro_forw_deps;
1315 rtx elem = DEP_PRO (dep);
1316 rtx insn = DEP_CON (dep);
1318 gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1320 if ((current_sched_info->flags & DO_SPECULATION) == 0
1321 || !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1322 DEP_STATUS (dep) &= ~SPECULATIVE;
1324 copy_dep (DEP_NODE_DEP (n), dep);
1326 get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
1328 add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
1330 #ifdef ENABLE_CHECKING
1331 check_dep (dep, false);
1332 #endif
1334 add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1336 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1337 in the bitmap caches of dependency information. */
1338 if (true_dependency_cache != NULL)
1339 set_dependency_caches (dep);
1342 /* Add or update backward dependence between INSN and ELEM
1343 with given type DEP_TYPE and dep_status DS.
1344 This function is a convenience wrapper. */
1345 enum DEPS_ADJUST_RESULT
1346 sd_add_or_update_dep (dep_t dep, bool resolved_p)
1348 return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
1351 /* Resolved dependence pointed to by SD_IT.
1352 SD_IT will advance to the next element. */
1353 void
1354 sd_resolve_dep (sd_iterator_def sd_it)
1356 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1357 dep_t dep = DEP_NODE_DEP (node);
1358 rtx pro = DEP_PRO (dep);
1359 rtx con = DEP_CON (dep);
1361 if (dep_spec_p (dep))
1362 move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1363 INSN_RESOLVED_BACK_DEPS (con));
1364 else
1365 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1366 INSN_RESOLVED_BACK_DEPS (con));
1368 move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1369 INSN_RESOLVED_FORW_DEPS (pro));
1372 /* Perform the inverse operation of sd_resolve_dep. Restore the dependence
1373 pointed to by SD_IT to unresolved state. */
1374 void
1375 sd_unresolve_dep (sd_iterator_def sd_it)
1377 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1378 dep_t dep = DEP_NODE_DEP (node);
1379 rtx pro = DEP_PRO (dep);
1380 rtx con = DEP_CON (dep);
1382 if (dep_spec_p (dep))
1383 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1384 INSN_SPEC_BACK_DEPS (con));
1385 else
1386 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1387 INSN_HARD_BACK_DEPS (con));
1389 move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
1390 INSN_FORW_DEPS (pro));
1393 /* Make TO depend on all the FROM's producers.
1394 If RESOLVED_P is true add dependencies to the resolved lists. */
1395 void
1396 sd_copy_back_deps (rtx to, rtx from, bool resolved_p)
1398 sd_list_types_def list_type;
1399 sd_iterator_def sd_it;
1400 dep_t dep;
1402 list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1404 FOR_EACH_DEP (from, list_type, sd_it, dep)
1406 dep_def _new_dep, *new_dep = &_new_dep;
1408 copy_dep (new_dep, dep);
1409 DEP_CON (new_dep) = to;
1410 sd_add_dep (new_dep, resolved_p);
1414 /* Remove a dependency referred to by SD_IT.
1415 SD_IT will point to the next dependence after removal. */
1416 void
1417 sd_delete_dep (sd_iterator_def sd_it)
1419 dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1420 dep_t dep = DEP_NODE_DEP (n);
1421 rtx pro = DEP_PRO (dep);
1422 rtx con = DEP_CON (dep);
1423 deps_list_t con_back_deps;
1424 deps_list_t pro_forw_deps;
1426 if (true_dependency_cache != NULL)
1428 int elem_luid = INSN_LUID (pro);
1429 int insn_luid = INSN_LUID (con);
1431 bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1432 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1433 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1434 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1436 if (current_sched_info->flags & DO_SPECULATION)
1437 bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1440 get_back_and_forw_lists (dep, sd_it.resolved_p,
1441 &con_back_deps, &pro_forw_deps);
1443 remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
1444 remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1446 delete_dep_node (n);
1449 /* Dump size of the lists. */
1450 #define DUMP_LISTS_SIZE (2)
1452 /* Dump dependencies of the lists. */
1453 #define DUMP_LISTS_DEPS (4)
1455 /* Dump all information about the lists. */
1456 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1458 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1459 FLAGS is a bit mask specifying what information about the lists needs
1460 to be printed.
1461 If FLAGS has the very first bit set, then dump all information about
1462 the lists and propagate this bit into the callee dump functions. */
1463 static void
1464 dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1466 sd_iterator_def sd_it;
1467 dep_t dep;
1468 int all;
1470 all = (flags & 1);
1472 if (all)
1473 flags |= DUMP_LISTS_ALL;
1475 fprintf (dump, "[");
1477 if (flags & DUMP_LISTS_SIZE)
1478 fprintf (dump, "%d; ", sd_lists_size (insn, types));
1480 if (flags & DUMP_LISTS_DEPS)
1482 FOR_EACH_DEP (insn, types, sd_it, dep)
1484 dump_dep (dump, dep, dump_dep_flags | all);
1485 fprintf (dump, " ");
1490 /* Dump all information about deps_lists of INSN specified by TYPES
1491 to STDERR. */
1492 void
1493 sd_debug_lists (rtx insn, sd_list_types_def types)
1495 dump_lists (stderr, insn, types, 1);
1496 fprintf (stderr, "\n");
1499 /* A wrapper around add_dependence_1, to add a dependence of CON on
1500 PRO, with type DEP_TYPE. This function implements special handling
1501 for REG_DEP_CONTROL dependencies. For these, we optionally promote
1502 the type to REG_DEP_ANTI if we can determine that predication is
1503 impossible; otherwise we add additional true dependencies on the
1504 INSN_COND_DEPS list of the jump (which PRO must be). */
1505 void
1506 add_dependence (rtx con, rtx pro, enum reg_note dep_type)
1508 if (dep_type == REG_DEP_CONTROL
1509 && !(current_sched_info->flags & DO_PREDICATION))
1510 dep_type = REG_DEP_ANTI;
1512 /* A REG_DEP_CONTROL dependence may be eliminated through predication,
1513 so we must also make the insn dependent on the setter of the
1514 condition. */
1515 if (dep_type == REG_DEP_CONTROL)
1517 rtx real_pro = pro;
1518 rtx other = real_insn_for_shadow (real_pro);
1519 rtx cond;
1521 if (other != NULL_RTX)
1522 real_pro = other;
1523 cond = sched_get_reverse_condition_uncached (real_pro);
1524 /* Verify that the insn does not use a different value in
1525 the condition register than the one that was present at
1526 the jump. */
1527 if (cond == NULL_RTX)
1528 dep_type = REG_DEP_ANTI;
1529 else if (INSN_CACHED_COND (real_pro) == const_true_rtx)
1531 HARD_REG_SET uses;
1532 CLEAR_HARD_REG_SET (uses);
1533 note_uses (&PATTERN (con), record_hard_reg_uses, &uses);
1534 if (TEST_HARD_REG_BIT (uses, REGNO (XEXP (cond, 0))))
1535 dep_type = REG_DEP_ANTI;
1537 if (dep_type == REG_DEP_CONTROL)
1539 if (sched_verbose >= 5)
1540 fprintf (sched_dump, "making DEP_CONTROL for %d\n",
1541 INSN_UID (real_pro));
1542 add_dependence_list (con, INSN_COND_DEPS (real_pro), 0,
1543 REG_DEP_TRUE);
1547 add_dependence_1 (con, pro, dep_type);
1550 /* A convenience wrapper to operate on an entire list. */
1552 static void
1553 add_dependence_list (rtx insn, rtx list, int uncond, enum reg_note dep_type)
1555 for (; list; list = XEXP (list, 1))
1557 if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0)))
1558 add_dependence (insn, XEXP (list, 0), dep_type);
1562 /* Similar, but free *LISTP at the same time, when the context
1563 is not readonly. */
1565 static void
1566 add_dependence_list_and_free (struct deps_desc *deps, rtx insn, rtx *listp,
1567 int uncond, enum reg_note dep_type)
1569 rtx list, next;
1571 /* We don't want to short-circuit dependencies involving debug
1572 insns, because they may cause actual dependencies to be
1573 disregarded. */
1574 if (deps->readonly || DEBUG_INSN_P (insn))
1576 add_dependence_list (insn, *listp, uncond, dep_type);
1577 return;
1580 for (list = *listp, *listp = NULL; list ; list = next)
1582 next = XEXP (list, 1);
1583 if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0)))
1584 add_dependence (insn, XEXP (list, 0), dep_type);
1585 free_INSN_LIST_node (list);
1589 /* Remove all occurences of INSN from LIST. Return the number of
1590 occurences removed. */
1592 static int
1593 remove_from_dependence_list (rtx insn, rtx* listp)
1595 int removed = 0;
1597 while (*listp)
1599 if (XEXP (*listp, 0) == insn)
1601 remove_free_INSN_LIST_node (listp);
1602 removed++;
1603 continue;
1606 listp = &XEXP (*listp, 1);
1609 return removed;
1612 /* Same as above, but process two lists at once. */
1613 static int
1614 remove_from_both_dependence_lists (rtx insn, rtx *listp, rtx *exprp)
1616 int removed = 0;
1618 while (*listp)
1620 if (XEXP (*listp, 0) == insn)
1622 remove_free_INSN_LIST_node (listp);
1623 remove_free_EXPR_LIST_node (exprp);
1624 removed++;
1625 continue;
1628 listp = &XEXP (*listp, 1);
1629 exprp = &XEXP (*exprp, 1);
1632 return removed;
1635 /* Clear all dependencies for an insn. */
1636 static void
1637 delete_all_dependences (rtx insn)
1639 sd_iterator_def sd_it;
1640 dep_t dep;
1642 /* The below cycle can be optimized to clear the caches and back_deps
1643 in one call but that would provoke duplication of code from
1644 delete_dep (). */
1646 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1647 sd_iterator_cond (&sd_it, &dep);)
1648 sd_delete_dep (sd_it);
1651 /* All insns in a scheduling group except the first should only have
1652 dependencies on the previous insn in the group. So we find the
1653 first instruction in the scheduling group by walking the dependence
1654 chains backwards. Then we add the dependencies for the group to
1655 the previous nonnote insn. */
1657 static void
1658 fixup_sched_groups (rtx insn)
1660 sd_iterator_def sd_it;
1661 dep_t dep;
1662 rtx prev_nonnote;
1664 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1666 rtx i = insn;
1667 rtx pro = DEP_PRO (dep);
1671 i = prev_nonnote_insn (i);
1673 if (pro == i)
1674 goto next_link;
1675 } while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
1677 if (! sched_insns_conditions_mutex_p (i, pro))
1678 add_dependence (i, pro, DEP_TYPE (dep));
1679 next_link:;
1682 delete_all_dependences (insn);
1684 prev_nonnote = prev_nonnote_nondebug_insn (insn);
1685 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
1686 && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
1687 add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
1690 /* Process an insn's memory dependencies. There are four kinds of
1691 dependencies:
1693 (0) read dependence: read follows read
1694 (1) true dependence: read follows write
1695 (2) output dependence: write follows write
1696 (3) anti dependence: write follows read
1698 We are careful to build only dependencies which actually exist, and
1699 use transitivity to avoid building too many links. */
1701 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1702 The MEM is a memory reference contained within INSN, which we are saving
1703 so that we can do memory aliasing on it. */
1705 static void
1706 add_insn_mem_dependence (struct deps_desc *deps, bool read_p,
1707 rtx insn, rtx mem)
1709 rtx *insn_list;
1710 rtx *mem_list;
1711 rtx link;
1713 gcc_assert (!deps->readonly);
1714 if (read_p)
1716 insn_list = &deps->pending_read_insns;
1717 mem_list = &deps->pending_read_mems;
1718 if (!DEBUG_INSN_P (insn))
1719 deps->pending_read_list_length++;
1721 else
1723 insn_list = &deps->pending_write_insns;
1724 mem_list = &deps->pending_write_mems;
1725 deps->pending_write_list_length++;
1728 link = alloc_INSN_LIST (insn, *insn_list);
1729 *insn_list = link;
1731 if (sched_deps_info->use_cselib)
1733 mem = shallow_copy_rtx (mem);
1734 XEXP (mem, 0) = cselib_subst_to_values (XEXP (mem, 0), GET_MODE (mem));
1736 link = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1737 *mem_list = link;
1740 /* Make a dependency between every memory reference on the pending lists
1741 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1742 dependencies for a read operation, similarly with FOR_WRITE. */
1744 static void
1745 flush_pending_lists (struct deps_desc *deps, rtx insn, int for_read,
1746 int for_write)
1748 if (for_write)
1750 add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
1751 1, REG_DEP_ANTI);
1752 if (!deps->readonly)
1754 free_EXPR_LIST_list (&deps->pending_read_mems);
1755 deps->pending_read_list_length = 0;
1759 add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
1760 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
1762 add_dependence_list_and_free (deps, insn,
1763 &deps->last_pending_memory_flush, 1,
1764 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
1766 add_dependence_list_and_free (deps, insn, &deps->pending_jump_insns, 1,
1767 REG_DEP_ANTI);
1769 if (!deps->readonly)
1771 free_EXPR_LIST_list (&deps->pending_write_mems);
1772 deps->pending_write_list_length = 0;
1774 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1775 deps->pending_flush_length = 1;
1779 /* Instruction which dependencies we are analyzing. */
1780 static rtx cur_insn = NULL_RTX;
1782 /* Implement hooks for haifa scheduler. */
1784 static void
1785 haifa_start_insn (rtx insn)
1787 gcc_assert (insn && !cur_insn);
1789 cur_insn = insn;
1792 static void
1793 haifa_finish_insn (void)
1795 cur_insn = NULL;
1798 void
1799 haifa_note_reg_set (int regno)
1801 SET_REGNO_REG_SET (reg_pending_sets, regno);
1804 void
1805 haifa_note_reg_clobber (int regno)
1807 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1810 void
1811 haifa_note_reg_use (int regno)
1813 SET_REGNO_REG_SET (reg_pending_uses, regno);
1816 static void
1817 haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx pending_insn, ds_t ds)
1819 if (!(ds & SPECULATIVE))
1821 mem = NULL_RTX;
1822 pending_mem = NULL_RTX;
1824 else
1825 gcc_assert (ds & BEGIN_DATA);
1828 dep_def _dep, *dep = &_dep;
1830 init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
1831 current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
1832 maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
1837 static void
1838 haifa_note_dep (rtx elem, ds_t ds)
1840 dep_def _dep;
1841 dep_t dep = &_dep;
1843 init_dep (dep, elem, cur_insn, ds_to_dt (ds));
1844 maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
1847 static void
1848 note_reg_use (int r)
1850 if (sched_deps_info->note_reg_use)
1851 sched_deps_info->note_reg_use (r);
1854 static void
1855 note_reg_set (int r)
1857 if (sched_deps_info->note_reg_set)
1858 sched_deps_info->note_reg_set (r);
1861 static void
1862 note_reg_clobber (int r)
1864 if (sched_deps_info->note_reg_clobber)
1865 sched_deps_info->note_reg_clobber (r);
1868 static void
1869 note_mem_dep (rtx m1, rtx m2, rtx e, ds_t ds)
1871 if (sched_deps_info->note_mem_dep)
1872 sched_deps_info->note_mem_dep (m1, m2, e, ds);
1875 static void
1876 note_dep (rtx e, ds_t ds)
1878 if (sched_deps_info->note_dep)
1879 sched_deps_info->note_dep (e, ds);
1882 /* Return corresponding to DS reg_note. */
1883 enum reg_note
1884 ds_to_dt (ds_t ds)
1886 if (ds & DEP_TRUE)
1887 return REG_DEP_TRUE;
1888 else if (ds & DEP_OUTPUT)
1889 return REG_DEP_OUTPUT;
1890 else if (ds & DEP_ANTI)
1891 return REG_DEP_ANTI;
1892 else
1894 gcc_assert (ds & DEP_CONTROL);
1895 return REG_DEP_CONTROL;
1901 /* Functions for computation of info needed for register pressure
1902 sensitive insn scheduling. */
1905 /* Allocate and return reg_use_data structure for REGNO and INSN. */
1906 static struct reg_use_data *
1907 create_insn_reg_use (int regno, rtx insn)
1909 struct reg_use_data *use;
1911 use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
1912 use->regno = regno;
1913 use->insn = insn;
1914 use->next_insn_use = INSN_REG_USE_LIST (insn);
1915 INSN_REG_USE_LIST (insn) = use;
1916 return use;
1919 /* Allocate and return reg_set_data structure for REGNO and INSN. */
1920 static struct reg_set_data *
1921 create_insn_reg_set (int regno, rtx insn)
1923 struct reg_set_data *set;
1925 set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
1926 set->regno = regno;
1927 set->insn = insn;
1928 set->next_insn_set = INSN_REG_SET_LIST (insn);
1929 INSN_REG_SET_LIST (insn) = set;
1930 return set;
1933 /* Set up insn register uses for INSN and dependency context DEPS. */
1934 static void
1935 setup_insn_reg_uses (struct deps_desc *deps, rtx insn)
1937 unsigned i;
1938 reg_set_iterator rsi;
1939 rtx list;
1940 struct reg_use_data *use, *use2, *next;
1941 struct deps_reg *reg_last;
1943 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1945 if (i < FIRST_PSEUDO_REGISTER
1946 && TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
1947 continue;
1949 if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
1950 && ! REGNO_REG_SET_P (reg_pending_sets, i)
1951 && ! REGNO_REG_SET_P (reg_pending_clobbers, i))
1952 /* Ignore use which is not dying. */
1953 continue;
1955 use = create_insn_reg_use (i, insn);
1956 use->next_regno_use = use;
1957 reg_last = &deps->reg_last[i];
1959 /* Create the cycle list of uses. */
1960 for (list = reg_last->uses; list; list = XEXP (list, 1))
1962 use2 = create_insn_reg_use (i, XEXP (list, 0));
1963 next = use->next_regno_use;
1964 use->next_regno_use = use2;
1965 use2->next_regno_use = next;
1970 /* Register pressure info for the currently processed insn. */
1971 static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
1973 /* Return TRUE if INSN has the use structure for REGNO. */
1974 static bool
1975 insn_use_p (rtx insn, int regno)
1977 struct reg_use_data *use;
1979 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1980 if (use->regno == regno)
1981 return true;
1982 return false;
1985 /* Update the register pressure info after birth of pseudo register REGNO
1986 in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
1987 the register is in clobber or unused after the insn. */
1988 static void
1989 mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
1991 int incr, new_incr;
1992 enum reg_class cl;
1994 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
1995 cl = sched_regno_pressure_class[regno];
1996 if (cl != NO_REGS)
1998 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
1999 if (clobber_p)
2001 new_incr = reg_pressure_info[cl].clobber_increase + incr;
2002 reg_pressure_info[cl].clobber_increase = new_incr;
2004 else if (unused_p)
2006 new_incr = reg_pressure_info[cl].unused_set_increase + incr;
2007 reg_pressure_info[cl].unused_set_increase = new_incr;
2009 else
2011 new_incr = reg_pressure_info[cl].set_increase + incr;
2012 reg_pressure_info[cl].set_increase = new_incr;
2013 if (! insn_use_p (insn, regno))
2014 reg_pressure_info[cl].change += incr;
2015 create_insn_reg_set (regno, insn);
2017 gcc_assert (new_incr < (1 << INCREASE_BITS));
2021 /* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
2022 hard registers involved in the birth. */
2023 static void
2024 mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
2025 bool clobber_p, bool unused_p)
2027 enum reg_class cl;
2028 int new_incr, last = regno + nregs;
2030 while (regno < last)
2032 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2033 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2035 cl = sched_regno_pressure_class[regno];
2036 if (cl != NO_REGS)
2038 if (clobber_p)
2040 new_incr = reg_pressure_info[cl].clobber_increase + 1;
2041 reg_pressure_info[cl].clobber_increase = new_incr;
2043 else if (unused_p)
2045 new_incr = reg_pressure_info[cl].unused_set_increase + 1;
2046 reg_pressure_info[cl].unused_set_increase = new_incr;
2048 else
2050 new_incr = reg_pressure_info[cl].set_increase + 1;
2051 reg_pressure_info[cl].set_increase = new_incr;
2052 if (! insn_use_p (insn, regno))
2053 reg_pressure_info[cl].change += 1;
2054 create_insn_reg_set (regno, insn);
2056 gcc_assert (new_incr < (1 << INCREASE_BITS));
2059 regno++;
2063 /* Update the register pressure info after birth of pseudo or hard
2064 register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
2065 correspondingly that the register is in clobber or unused after the
2066 insn. */
2067 static void
2068 mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
2070 int regno;
2072 if (GET_CODE (reg) == SUBREG)
2073 reg = SUBREG_REG (reg);
2075 if (! REG_P (reg))
2076 return;
2078 regno = REGNO (reg);
2079 if (regno < FIRST_PSEUDO_REGISTER)
2080 mark_insn_hard_regno_birth (insn, regno,
2081 hard_regno_nregs[regno][GET_MODE (reg)],
2082 clobber_p, unused_p);
2083 else
2084 mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
2087 /* Update the register pressure info after death of pseudo register
2088 REGNO. */
2089 static void
2090 mark_pseudo_death (int regno)
2092 int incr;
2093 enum reg_class cl;
2095 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2096 cl = sched_regno_pressure_class[regno];
2097 if (cl != NO_REGS)
2099 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2100 reg_pressure_info[cl].change -= incr;
2104 /* Like mark_pseudo_death except that NREGS saying how many hard
2105 registers involved in the death. */
2106 static void
2107 mark_hard_regno_death (int regno, int nregs)
2109 enum reg_class cl;
2110 int last = regno + nregs;
2112 while (regno < last)
2114 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2115 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2117 cl = sched_regno_pressure_class[regno];
2118 if (cl != NO_REGS)
2119 reg_pressure_info[cl].change -= 1;
2121 regno++;
2125 /* Update the register pressure info after death of pseudo or hard
2126 register REG. */
2127 static void
2128 mark_reg_death (rtx reg)
2130 int regno;
2132 if (GET_CODE (reg) == SUBREG)
2133 reg = SUBREG_REG (reg);
2135 if (! REG_P (reg))
2136 return;
2138 regno = REGNO (reg);
2139 if (regno < FIRST_PSEUDO_REGISTER)
2140 mark_hard_regno_death (regno, hard_regno_nregs[regno][GET_MODE (reg)]);
2141 else
2142 mark_pseudo_death (regno);
2145 /* Process SETTER of REG. DATA is an insn containing the setter. */
2146 static void
2147 mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
2149 if (setter != NULL_RTX && GET_CODE (setter) != SET)
2150 return;
2151 mark_insn_reg_birth
2152 ((rtx) data, reg, false,
2153 find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
2156 /* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
2157 static void
2158 mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
2160 if (GET_CODE (setter) == CLOBBER)
2161 mark_insn_reg_birth ((rtx) data, reg, true, false);
2164 /* Set up reg pressure info related to INSN. */
2165 void
2166 init_insn_reg_pressure_info (rtx insn)
2168 int i, len;
2169 enum reg_class cl;
2170 static struct reg_pressure_data *pressure_info;
2171 rtx link;
2173 gcc_assert (sched_pressure_p);
2175 if (! INSN_P (insn))
2176 return;
2178 for (i = 0; i < ira_pressure_classes_num; i++)
2180 cl = ira_pressure_classes[i];
2181 reg_pressure_info[cl].clobber_increase = 0;
2182 reg_pressure_info[cl].set_increase = 0;
2183 reg_pressure_info[cl].unused_set_increase = 0;
2184 reg_pressure_info[cl].change = 0;
2187 note_stores (PATTERN (insn), mark_insn_reg_clobber, insn);
2189 note_stores (PATTERN (insn), mark_insn_reg_store, insn);
2191 #ifdef AUTO_INC_DEC
2192 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2193 if (REG_NOTE_KIND (link) == REG_INC)
2194 mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
2195 #endif
2197 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2198 if (REG_NOTE_KIND (link) == REG_DEAD)
2199 mark_reg_death (XEXP (link, 0));
2201 len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
2202 pressure_info
2203 = INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
2204 INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
2205 * sizeof (int), 1);
2206 for (i = 0; i < ira_pressure_classes_num; i++)
2208 cl = ira_pressure_classes[i];
2209 pressure_info[i].clobber_increase
2210 = reg_pressure_info[cl].clobber_increase;
2211 pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
2212 pressure_info[i].unused_set_increase
2213 = reg_pressure_info[cl].unused_set_increase;
2214 pressure_info[i].change = reg_pressure_info[cl].change;
2221 /* Internal variable for sched_analyze_[12] () functions.
2222 If it is nonzero, this means that sched_analyze_[12] looks
2223 at the most toplevel SET. */
2224 static bool can_start_lhs_rhs_p;
2226 /* Extend reg info for the deps context DEPS given that
2227 we have just generated a register numbered REGNO. */
2228 static void
2229 extend_deps_reg_info (struct deps_desc *deps, int regno)
2231 int max_regno = regno + 1;
2233 gcc_assert (!reload_completed);
2235 /* In a readonly context, it would not hurt to extend info,
2236 but it should not be needed. */
2237 if (reload_completed && deps->readonly)
2239 deps->max_reg = max_regno;
2240 return;
2243 if (max_regno > deps->max_reg)
2245 deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
2246 max_regno);
2247 memset (&deps->reg_last[deps->max_reg],
2248 0, (max_regno - deps->max_reg)
2249 * sizeof (struct deps_reg));
2250 deps->max_reg = max_regno;
2254 /* Extends REG_INFO_P if needed. */
2255 void
2256 maybe_extend_reg_info_p (void)
2258 /* Extend REG_INFO_P, if needed. */
2259 if ((unsigned int)max_regno - 1 >= reg_info_p_size)
2261 size_t new_reg_info_p_size = max_regno + 128;
2263 gcc_assert (!reload_completed && sel_sched_p ());
2265 reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
2266 new_reg_info_p_size,
2267 reg_info_p_size,
2268 sizeof (*reg_info_p));
2269 reg_info_p_size = new_reg_info_p_size;
2273 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2274 The type of the reference is specified by REF and can be SET,
2275 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
2277 static void
2278 sched_analyze_reg (struct deps_desc *deps, int regno, enum machine_mode mode,
2279 enum rtx_code ref, rtx insn)
2281 /* We could emit new pseudos in renaming. Extend the reg structures. */
2282 if (!reload_completed && sel_sched_p ()
2283 && (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
2284 extend_deps_reg_info (deps, regno);
2286 maybe_extend_reg_info_p ();
2288 /* A hard reg in a wide mode may really be multiple registers.
2289 If so, mark all of them just like the first. */
2290 if (regno < FIRST_PSEUDO_REGISTER)
2292 int i = hard_regno_nregs[regno][mode];
2293 if (ref == SET)
2295 while (--i >= 0)
2296 note_reg_set (regno + i);
2298 else if (ref == USE)
2300 while (--i >= 0)
2301 note_reg_use (regno + i);
2303 else
2305 while (--i >= 0)
2306 note_reg_clobber (regno + i);
2310 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2311 it does not reload. Ignore these as they have served their
2312 purpose already. */
2313 else if (regno >= deps->max_reg)
2315 enum rtx_code code = GET_CODE (PATTERN (insn));
2316 gcc_assert (code == USE || code == CLOBBER);
2319 else
2321 if (ref == SET)
2322 note_reg_set (regno);
2323 else if (ref == USE)
2324 note_reg_use (regno);
2325 else
2326 note_reg_clobber (regno);
2328 /* Pseudos that are REG_EQUIV to something may be replaced
2329 by that during reloading. We need only add dependencies for
2330 the address in the REG_EQUIV note. */
2331 if (!reload_completed && get_reg_known_equiv_p (regno))
2333 rtx t = get_reg_known_value (regno);
2334 if (MEM_P (t))
2335 sched_analyze_2 (deps, XEXP (t, 0), insn);
2338 /* Don't let it cross a call after scheduling if it doesn't
2339 already cross one. */
2340 if (REG_N_CALLS_CROSSED (regno) == 0)
2342 if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
2343 deps->sched_before_next_call
2344 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
2345 else
2346 add_dependence_list (insn, deps->last_function_call, 1,
2347 REG_DEP_ANTI);
2352 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2353 rtx, X, creating all dependencies generated by the write to the
2354 destination of X, and reads of everything mentioned. */
2356 static void
2357 sched_analyze_1 (struct deps_desc *deps, rtx x, rtx insn)
2359 rtx dest = XEXP (x, 0);
2360 enum rtx_code code = GET_CODE (x);
2361 bool cslr_p = can_start_lhs_rhs_p;
2363 can_start_lhs_rhs_p = false;
2365 gcc_assert (dest);
2366 if (dest == 0)
2367 return;
2369 if (cslr_p && sched_deps_info->start_lhs)
2370 sched_deps_info->start_lhs (dest);
2372 if (GET_CODE (dest) == PARALLEL)
2374 int i;
2376 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2377 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
2378 sched_analyze_1 (deps,
2379 gen_rtx_CLOBBER (VOIDmode,
2380 XEXP (XVECEXP (dest, 0, i), 0)),
2381 insn);
2383 if (cslr_p && sched_deps_info->finish_lhs)
2384 sched_deps_info->finish_lhs ();
2386 if (code == SET)
2388 can_start_lhs_rhs_p = cslr_p;
2390 sched_analyze_2 (deps, SET_SRC (x), insn);
2392 can_start_lhs_rhs_p = false;
2395 return;
2398 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
2399 || GET_CODE (dest) == ZERO_EXTRACT)
2401 if (GET_CODE (dest) == STRICT_LOW_PART
2402 || GET_CODE (dest) == ZERO_EXTRACT
2403 || df_read_modify_subreg_p (dest))
2405 /* These both read and modify the result. We must handle
2406 them as writes to get proper dependencies for following
2407 instructions. We must handle them as reads to get proper
2408 dependencies from this to previous instructions.
2409 Thus we need to call sched_analyze_2. */
2411 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2413 if (GET_CODE (dest) == ZERO_EXTRACT)
2415 /* The second and third arguments are values read by this insn. */
2416 sched_analyze_2 (deps, XEXP (dest, 1), insn);
2417 sched_analyze_2 (deps, XEXP (dest, 2), insn);
2419 dest = XEXP (dest, 0);
2422 if (REG_P (dest))
2424 int regno = REGNO (dest);
2425 enum machine_mode mode = GET_MODE (dest);
2427 sched_analyze_reg (deps, regno, mode, code, insn);
2429 #ifdef STACK_REGS
2430 /* Treat all writes to a stack register as modifying the TOS. */
2431 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2433 /* Avoid analyzing the same register twice. */
2434 if (regno != FIRST_STACK_REG)
2435 sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
2437 add_to_hard_reg_set (&implicit_reg_pending_uses, mode,
2438 FIRST_STACK_REG);
2440 #endif
2442 else if (MEM_P (dest))
2444 /* Writing memory. */
2445 rtx t = dest;
2447 if (sched_deps_info->use_cselib)
2449 enum machine_mode address_mode
2450 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (dest));
2452 t = shallow_copy_rtx (dest);
2453 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2454 GET_MODE (t), insn);
2455 XEXP (t, 0) = cselib_subst_to_values (XEXP (t, 0), GET_MODE (t));
2457 t = canon_rtx (t);
2459 /* Pending lists can't get larger with a readonly context. */
2460 if (!deps->readonly
2461 && ((deps->pending_read_list_length + deps->pending_write_list_length)
2462 > MAX_PENDING_LIST_LENGTH))
2464 /* Flush all pending reads and writes to prevent the pending lists
2465 from getting any larger. Insn scheduling runs too slowly when
2466 these lists get long. When compiling GCC with itself,
2467 this flush occurs 8 times for sparc, and 10 times for m88k using
2468 the default value of 32. */
2469 flush_pending_lists (deps, insn, false, true);
2471 else
2473 rtx pending, pending_mem;
2475 pending = deps->pending_read_insns;
2476 pending_mem = deps->pending_read_mems;
2477 while (pending)
2479 if (anti_dependence (XEXP (pending_mem, 0), t)
2480 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2481 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2482 DEP_ANTI);
2484 pending = XEXP (pending, 1);
2485 pending_mem = XEXP (pending_mem, 1);
2488 pending = deps->pending_write_insns;
2489 pending_mem = deps->pending_write_mems;
2490 while (pending)
2492 if (output_dependence (XEXP (pending_mem, 0), t)
2493 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2494 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2495 DEP_OUTPUT);
2497 pending = XEXP (pending, 1);
2498 pending_mem = XEXP (pending_mem, 1);
2501 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2502 REG_DEP_ANTI);
2503 add_dependence_list (insn, deps->pending_jump_insns, 1,
2504 REG_DEP_CONTROL);
2506 if (!deps->readonly)
2507 add_insn_mem_dependence (deps, false, insn, dest);
2509 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2512 if (cslr_p && sched_deps_info->finish_lhs)
2513 sched_deps_info->finish_lhs ();
2515 /* Analyze reads. */
2516 if (GET_CODE (x) == SET)
2518 can_start_lhs_rhs_p = cslr_p;
2520 sched_analyze_2 (deps, SET_SRC (x), insn);
2522 can_start_lhs_rhs_p = false;
2526 /* Analyze the uses of memory and registers in rtx X in INSN. */
2527 static void
2528 sched_analyze_2 (struct deps_desc *deps, rtx x, rtx insn)
2530 int i;
2531 int j;
2532 enum rtx_code code;
2533 const char *fmt;
2534 bool cslr_p = can_start_lhs_rhs_p;
2536 can_start_lhs_rhs_p = false;
2538 gcc_assert (x);
2539 if (x == 0)
2540 return;
2542 if (cslr_p && sched_deps_info->start_rhs)
2543 sched_deps_info->start_rhs (x);
2545 code = GET_CODE (x);
2547 switch (code)
2549 case CONST_INT:
2550 case CONST_DOUBLE:
2551 case CONST_FIXED:
2552 case CONST_VECTOR:
2553 case SYMBOL_REF:
2554 case CONST:
2555 case LABEL_REF:
2556 /* Ignore constants. */
2557 if (cslr_p && sched_deps_info->finish_rhs)
2558 sched_deps_info->finish_rhs ();
2560 return;
2562 #ifdef HAVE_cc0
2563 case CC0:
2564 /* User of CC0 depends on immediately preceding insn. */
2565 SCHED_GROUP_P (insn) = 1;
2566 /* Don't move CC0 setter to another block (it can set up the
2567 same flag for previous CC0 users which is safe). */
2568 CANT_MOVE (prev_nonnote_insn (insn)) = 1;
2570 if (cslr_p && sched_deps_info->finish_rhs)
2571 sched_deps_info->finish_rhs ();
2573 return;
2574 #endif
2576 case REG:
2578 int regno = REGNO (x);
2579 enum machine_mode mode = GET_MODE (x);
2581 sched_analyze_reg (deps, regno, mode, USE, insn);
2583 #ifdef STACK_REGS
2584 /* Treat all reads of a stack register as modifying the TOS. */
2585 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2587 /* Avoid analyzing the same register twice. */
2588 if (regno != FIRST_STACK_REG)
2589 sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
2590 sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
2592 #endif
2594 if (cslr_p && sched_deps_info->finish_rhs)
2595 sched_deps_info->finish_rhs ();
2597 return;
2600 case MEM:
2602 /* Reading memory. */
2603 rtx u;
2604 rtx pending, pending_mem;
2605 rtx t = x;
2607 if (sched_deps_info->use_cselib)
2609 enum machine_mode address_mode
2610 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (t));
2612 t = shallow_copy_rtx (t);
2613 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2614 GET_MODE (t), insn);
2615 XEXP (t, 0) = cselib_subst_to_values (XEXP (t, 0), GET_MODE (t));
2618 if (!DEBUG_INSN_P (insn))
2620 t = canon_rtx (t);
2621 pending = deps->pending_read_insns;
2622 pending_mem = deps->pending_read_mems;
2623 while (pending)
2625 if (read_dependence (XEXP (pending_mem, 0), t)
2626 && ! sched_insns_conditions_mutex_p (insn,
2627 XEXP (pending, 0)))
2628 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2629 DEP_ANTI);
2631 pending = XEXP (pending, 1);
2632 pending_mem = XEXP (pending_mem, 1);
2635 pending = deps->pending_write_insns;
2636 pending_mem = deps->pending_write_mems;
2637 while (pending)
2639 if (true_dependence (XEXP (pending_mem, 0), VOIDmode,
2640 t, rtx_varies_p)
2641 && ! sched_insns_conditions_mutex_p (insn,
2642 XEXP (pending, 0)))
2643 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2644 sched_deps_info->generate_spec_deps
2645 ? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
2647 pending = XEXP (pending, 1);
2648 pending_mem = XEXP (pending_mem, 1);
2651 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
2652 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
2654 for (u = deps->pending_jump_insns; u; u = XEXP (u, 1))
2655 if (deps_may_trap_p (x))
2657 if ((sched_deps_info->generate_spec_deps)
2658 && sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
2660 ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
2661 MAX_DEP_WEAK);
2663 note_dep (XEXP (u, 0), ds);
2665 else
2666 add_dependence (insn, XEXP (u, 0), REG_DEP_CONTROL);
2670 /* Always add these dependencies to pending_reads, since
2671 this insn may be followed by a write. */
2672 if (!deps->readonly)
2673 add_insn_mem_dependence (deps, true, insn, x);
2675 sched_analyze_2 (deps, XEXP (x, 0), insn);
2677 if (cslr_p && sched_deps_info->finish_rhs)
2678 sched_deps_info->finish_rhs ();
2680 return;
2683 /* Force pending stores to memory in case a trap handler needs them. */
2684 case TRAP_IF:
2685 flush_pending_lists (deps, insn, true, false);
2686 break;
2688 case PREFETCH:
2689 if (PREFETCH_SCHEDULE_BARRIER_P (x))
2690 reg_pending_barrier = TRUE_BARRIER;
2691 break;
2693 case UNSPEC_VOLATILE:
2694 flush_pending_lists (deps, insn, true, true);
2695 /* FALLTHRU */
2697 case ASM_OPERANDS:
2698 case ASM_INPUT:
2700 /* Traditional and volatile asm instructions must be considered to use
2701 and clobber all hard registers, all pseudo-registers and all of
2702 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
2704 Consider for instance a volatile asm that changes the fpu rounding
2705 mode. An insn should not be moved across this even if it only uses
2706 pseudo-regs because it might give an incorrectly rounded result. */
2707 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
2708 reg_pending_barrier = TRUE_BARRIER;
2710 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2711 We can not just fall through here since then we would be confused
2712 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2713 traditional asms unlike their normal usage. */
2715 if (code == ASM_OPERANDS)
2717 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
2718 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
2720 if (cslr_p && sched_deps_info->finish_rhs)
2721 sched_deps_info->finish_rhs ();
2723 return;
2725 break;
2728 case PRE_DEC:
2729 case POST_DEC:
2730 case PRE_INC:
2731 case POST_INC:
2732 /* These both read and modify the result. We must handle them as writes
2733 to get proper dependencies for following instructions. We must handle
2734 them as reads to get proper dependencies from this to previous
2735 instructions. Thus we need to pass them to both sched_analyze_1
2736 and sched_analyze_2. We must call sched_analyze_2 first in order
2737 to get the proper antecedent for the read. */
2738 sched_analyze_2 (deps, XEXP (x, 0), insn);
2739 sched_analyze_1 (deps, x, insn);
2741 if (cslr_p && sched_deps_info->finish_rhs)
2742 sched_deps_info->finish_rhs ();
2744 return;
2746 case POST_MODIFY:
2747 case PRE_MODIFY:
2748 /* op0 = op0 + op1 */
2749 sched_analyze_2 (deps, XEXP (x, 0), insn);
2750 sched_analyze_2 (deps, XEXP (x, 1), insn);
2751 sched_analyze_1 (deps, x, insn);
2753 if (cslr_p && sched_deps_info->finish_rhs)
2754 sched_deps_info->finish_rhs ();
2756 return;
2758 default:
2759 break;
2762 /* Other cases: walk the insn. */
2763 fmt = GET_RTX_FORMAT (code);
2764 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2766 if (fmt[i] == 'e')
2767 sched_analyze_2 (deps, XEXP (x, i), insn);
2768 else if (fmt[i] == 'E')
2769 for (j = 0; j < XVECLEN (x, i); j++)
2770 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
2773 if (cslr_p && sched_deps_info->finish_rhs)
2774 sched_deps_info->finish_rhs ();
2777 /* Analyze an INSN with pattern X to find all dependencies. */
2778 static void
2779 sched_analyze_insn (struct deps_desc *deps, rtx x, rtx insn)
2781 RTX_CODE code = GET_CODE (x);
2782 rtx link;
2783 unsigned i;
2784 reg_set_iterator rsi;
2786 if (! reload_completed)
2788 HARD_REG_SET temp;
2790 extract_insn (insn);
2791 preprocess_constraints ();
2792 ira_implicitly_set_insn_hard_regs (&temp);
2793 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2794 IOR_HARD_REG_SET (implicit_reg_pending_clobbers, temp);
2797 can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
2798 && code == SET);
2800 if (may_trap_p (x))
2801 /* Avoid moving trapping instructions accross function calls that might
2802 not always return. */
2803 add_dependence_list (insn, deps->last_function_call_may_noreturn,
2804 1, REG_DEP_ANTI);
2806 /* We must avoid creating a situation in which two successors of the
2807 current block have different unwind info after scheduling. If at any
2808 point the two paths re-join this leads to incorrect unwind info. */
2809 /* ??? There are certain situations involving a forced frame pointer in
2810 which, with extra effort, we could fix up the unwind info at a later
2811 CFG join. However, it seems better to notice these cases earlier
2812 during prologue generation and avoid marking the frame pointer setup
2813 as frame-related at all. */
2814 if (RTX_FRAME_RELATED_P (insn))
2815 deps->sched_before_next_jump
2816 = alloc_INSN_LIST (insn, deps->sched_before_next_jump);
2818 if (code == COND_EXEC)
2820 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
2822 /* ??? Should be recording conditions so we reduce the number of
2823 false dependencies. */
2824 x = COND_EXEC_CODE (x);
2825 code = GET_CODE (x);
2827 if (code == SET || code == CLOBBER)
2829 sched_analyze_1 (deps, x, insn);
2831 /* Bare clobber insns are used for letting life analysis, reg-stack
2832 and others know that a value is dead. Depend on the last call
2833 instruction so that reg-stack won't get confused. */
2834 if (code == CLOBBER)
2835 add_dependence_list (insn, deps->last_function_call, 1,
2836 REG_DEP_OUTPUT);
2838 else if (code == PARALLEL)
2840 for (i = XVECLEN (x, 0); i--;)
2842 rtx sub = XVECEXP (x, 0, i);
2843 code = GET_CODE (sub);
2845 if (code == COND_EXEC)
2847 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
2848 sub = COND_EXEC_CODE (sub);
2849 code = GET_CODE (sub);
2851 if (code == SET || code == CLOBBER)
2852 sched_analyze_1 (deps, sub, insn);
2853 else
2854 sched_analyze_2 (deps, sub, insn);
2857 else
2858 sched_analyze_2 (deps, x, insn);
2860 /* Mark registers CLOBBERED or used by called function. */
2861 if (CALL_P (insn))
2863 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2865 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
2866 sched_analyze_1 (deps, XEXP (link, 0), insn);
2867 else
2868 sched_analyze_2 (deps, XEXP (link, 0), insn);
2870 if (find_reg_note (insn, REG_SETJMP, NULL))
2871 reg_pending_barrier = MOVE_BARRIER;
2874 if (JUMP_P (insn))
2876 rtx next;
2877 next = next_nonnote_nondebug_insn (insn);
2878 if (next && BARRIER_P (next))
2879 reg_pending_barrier = MOVE_BARRIER;
2880 else
2882 rtx pending, pending_mem;
2884 if (sched_deps_info->compute_jump_reg_dependencies)
2886 (*sched_deps_info->compute_jump_reg_dependencies)
2887 (insn, reg_pending_control_uses);
2889 /* Make latency of jump equal to 0 by using anti-dependence. */
2890 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
2892 struct deps_reg *reg_last = &deps->reg_last[i];
2893 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI);
2894 add_dependence_list (insn, reg_last->implicit_sets,
2895 0, REG_DEP_ANTI);
2896 add_dependence_list (insn, reg_last->clobbers, 0,
2897 REG_DEP_ANTI);
2901 /* All memory writes and volatile reads must happen before the
2902 jump. Non-volatile reads must happen before the jump iff
2903 the result is needed by the above register used mask. */
2905 pending = deps->pending_write_insns;
2906 pending_mem = deps->pending_write_mems;
2907 while (pending)
2909 if (! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2910 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
2911 pending = XEXP (pending, 1);
2912 pending_mem = XEXP (pending_mem, 1);
2915 pending = deps->pending_read_insns;
2916 pending_mem = deps->pending_read_mems;
2917 while (pending)
2919 if (MEM_VOLATILE_P (XEXP (pending_mem, 0))
2920 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2921 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
2922 pending = XEXP (pending, 1);
2923 pending_mem = XEXP (pending_mem, 1);
2926 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2927 REG_DEP_ANTI);
2928 add_dependence_list (insn, deps->pending_jump_insns, 1,
2929 REG_DEP_ANTI);
2933 /* If this instruction can throw an exception, then moving it changes
2934 where block boundaries fall. This is mighty confusing elsewhere.
2935 Therefore, prevent such an instruction from being moved. Same for
2936 non-jump instructions that define block boundaries.
2937 ??? Unclear whether this is still necessary in EBB mode. If not,
2938 add_branch_dependences should be adjusted for RGN mode instead. */
2939 if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
2940 || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
2941 reg_pending_barrier = MOVE_BARRIER;
2943 if (sched_pressure_p)
2945 setup_insn_reg_uses (deps, insn);
2946 init_insn_reg_pressure_info (insn);
2949 /* Add register dependencies for insn. */
2950 if (DEBUG_INSN_P (insn))
2952 rtx prev = deps->last_debug_insn;
2953 rtx u;
2955 if (!deps->readonly)
2956 deps->last_debug_insn = insn;
2958 if (prev)
2959 add_dependence (insn, prev, REG_DEP_ANTI);
2961 add_dependence_list (insn, deps->last_function_call, 1,
2962 REG_DEP_ANTI);
2964 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
2965 if (!sel_sched_p ())
2966 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
2968 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
2970 struct deps_reg *reg_last = &deps->reg_last[i];
2971 add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI);
2972 /* There's no point in making REG_DEP_CONTROL dependencies for
2973 debug insns. */
2974 add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI);
2976 if (!deps->readonly)
2977 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
2979 CLEAR_REG_SET (reg_pending_uses);
2981 /* Quite often, a debug insn will refer to stuff in the
2982 previous instruction, but the reason we want this
2983 dependency here is to make sure the scheduler doesn't
2984 gratuitously move a debug insn ahead. This could dirty
2985 DF flags and cause additional analysis that wouldn't have
2986 occurred in compilation without debug insns, and such
2987 additional analysis can modify the generated code. */
2988 prev = PREV_INSN (insn);
2990 if (prev && NONDEBUG_INSN_P (prev))
2991 add_dependence (insn, prev, REG_DEP_ANTI);
2993 else
2995 regset_head set_or_clobbered;
2997 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
2999 struct deps_reg *reg_last = &deps->reg_last[i];
3000 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE);
3001 add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI);
3002 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE);
3004 if (!deps->readonly)
3006 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3007 reg_last->uses_length++;
3011 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3012 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
3014 struct deps_reg *reg_last = &deps->reg_last[i];
3015 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE);
3016 add_dependence_list (insn, reg_last->implicit_sets, 0,
3017 REG_DEP_ANTI);
3018 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE);
3020 if (!deps->readonly)
3022 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3023 reg_last->uses_length++;
3027 if (targetm.sched.exposed_pipeline)
3029 INIT_REG_SET (&set_or_clobbered);
3030 bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
3031 reg_pending_sets);
3032 EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
3034 struct deps_reg *reg_last = &deps->reg_last[i];
3035 rtx list;
3036 for (list = reg_last->uses; list; list = XEXP (list, 1))
3038 rtx other = XEXP (list, 0);
3039 if (INSN_CACHED_COND (other) != const_true_rtx
3040 && refers_to_regno_p (i, i + 1, INSN_CACHED_COND (other), NULL))
3041 INSN_CACHED_COND (other) = const_true_rtx;
3046 /* If the current insn is conditional, we can't free any
3047 of the lists. */
3048 if (sched_has_condition_p (insn))
3050 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3052 struct deps_reg *reg_last = &deps->reg_last[i];
3053 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
3054 add_dependence_list (insn, reg_last->implicit_sets, 0,
3055 REG_DEP_ANTI);
3056 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3057 add_dependence_list (insn, reg_last->control_uses, 0,
3058 REG_DEP_CONTROL);
3060 if (!deps->readonly)
3062 reg_last->clobbers
3063 = alloc_INSN_LIST (insn, reg_last->clobbers);
3064 reg_last->clobbers_length++;
3067 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3069 struct deps_reg *reg_last = &deps->reg_last[i];
3070 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
3071 add_dependence_list (insn, reg_last->implicit_sets, 0,
3072 REG_DEP_ANTI);
3073 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT);
3074 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3075 add_dependence_list (insn, reg_last->control_uses, 0,
3076 REG_DEP_CONTROL);
3078 if (!deps->readonly)
3079 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3082 else
3084 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3086 struct deps_reg *reg_last = &deps->reg_last[i];
3087 if (reg_last->uses_length > MAX_PENDING_LIST_LENGTH
3088 || reg_last->clobbers_length > MAX_PENDING_LIST_LENGTH)
3090 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3091 REG_DEP_OUTPUT);
3092 add_dependence_list_and_free (deps, insn,
3093 &reg_last->implicit_sets, 0,
3094 REG_DEP_ANTI);
3095 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3096 REG_DEP_ANTI);
3097 add_dependence_list_and_free (deps, insn,
3098 &reg_last->control_uses, 0,
3099 REG_DEP_ANTI);
3100 add_dependence_list_and_free
3101 (deps, insn, &reg_last->clobbers, 0, REG_DEP_OUTPUT);
3103 if (!deps->readonly)
3105 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3106 reg_last->clobbers_length = 0;
3107 reg_last->uses_length = 0;
3110 else
3112 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
3113 add_dependence_list (insn, reg_last->implicit_sets, 0,
3114 REG_DEP_ANTI);
3115 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3116 add_dependence_list (insn, reg_last->control_uses, 0,
3117 REG_DEP_CONTROL);
3120 if (!deps->readonly)
3122 reg_last->clobbers_length++;
3123 reg_last->clobbers
3124 = alloc_INSN_LIST (insn, reg_last->clobbers);
3127 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3129 struct deps_reg *reg_last = &deps->reg_last[i];
3131 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3132 REG_DEP_OUTPUT);
3133 add_dependence_list_and_free (deps, insn,
3134 &reg_last->implicit_sets,
3135 0, REG_DEP_ANTI);
3136 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3137 REG_DEP_OUTPUT);
3138 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3139 REG_DEP_ANTI);
3140 add_dependence_list (insn, reg_last->control_uses, 0,
3141 REG_DEP_CONTROL);
3143 if (!deps->readonly)
3145 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3146 reg_last->uses_length = 0;
3147 reg_last->clobbers_length = 0;
3151 if (!deps->readonly)
3153 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3155 struct deps_reg *reg_last = &deps->reg_last[i];
3156 reg_last->control_uses
3157 = alloc_INSN_LIST (insn, reg_last->control_uses);
3162 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3163 if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3165 struct deps_reg *reg_last = &deps->reg_last[i];
3166 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI);
3167 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI);
3168 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3169 add_dependence_list (insn, reg_last->control_uses, 0, REG_DEP_ANTI);
3171 if (!deps->readonly)
3172 reg_last->implicit_sets
3173 = alloc_INSN_LIST (insn, reg_last->implicit_sets);
3176 if (!deps->readonly)
3178 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
3179 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
3180 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
3181 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3182 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i)
3183 || TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3184 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3186 /* Set up the pending barrier found. */
3187 deps->last_reg_pending_barrier = reg_pending_barrier;
3190 CLEAR_REG_SET (reg_pending_uses);
3191 CLEAR_REG_SET (reg_pending_clobbers);
3192 CLEAR_REG_SET (reg_pending_sets);
3193 CLEAR_REG_SET (reg_pending_control_uses);
3194 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3195 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3197 /* Add dependencies if a scheduling barrier was found. */
3198 if (reg_pending_barrier)
3200 /* In the case of barrier the most added dependencies are not
3201 real, so we use anti-dependence here. */
3202 if (sched_has_condition_p (insn))
3204 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3206 struct deps_reg *reg_last = &deps->reg_last[i];
3207 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3208 add_dependence_list (insn, reg_last->sets, 0,
3209 reg_pending_barrier == TRUE_BARRIER
3210 ? REG_DEP_TRUE : REG_DEP_ANTI);
3211 add_dependence_list (insn, reg_last->implicit_sets, 0,
3212 REG_DEP_ANTI);
3213 add_dependence_list (insn, reg_last->clobbers, 0,
3214 reg_pending_barrier == TRUE_BARRIER
3215 ? REG_DEP_TRUE : REG_DEP_ANTI);
3218 else
3220 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3222 struct deps_reg *reg_last = &deps->reg_last[i];
3223 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3224 REG_DEP_ANTI);
3225 add_dependence_list_and_free (deps, insn,
3226 &reg_last->control_uses, 0,
3227 REG_DEP_CONTROL);
3228 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3229 reg_pending_barrier == TRUE_BARRIER
3230 ? REG_DEP_TRUE : REG_DEP_ANTI);
3231 add_dependence_list_and_free (deps, insn,
3232 &reg_last->implicit_sets, 0,
3233 REG_DEP_ANTI);
3234 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3235 reg_pending_barrier == TRUE_BARRIER
3236 ? REG_DEP_TRUE : REG_DEP_ANTI);
3238 if (!deps->readonly)
3240 reg_last->uses_length = 0;
3241 reg_last->clobbers_length = 0;
3246 if (!deps->readonly)
3247 for (i = 0; i < (unsigned)deps->max_reg; i++)
3249 struct deps_reg *reg_last = &deps->reg_last[i];
3250 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3251 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3254 /* Flush pending lists on jumps, but not on speculative checks. */
3255 if (JUMP_P (insn) && !(sel_sched_p ()
3256 && sel_insn_is_speculation_check (insn)))
3257 flush_pending_lists (deps, insn, true, true);
3259 reg_pending_barrier = NOT_A_BARRIER;
3262 /* If a post-call group is still open, see if it should remain so.
3263 This insn must be a simple move of a hard reg to a pseudo or
3264 vice-versa.
3266 We must avoid moving these insns for correctness on targets
3267 with small register classes, and for special registers like
3268 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
3269 hard regs for all targets. */
3271 if (deps->in_post_call_group_p)
3273 rtx tmp, set = single_set (insn);
3274 int src_regno, dest_regno;
3276 if (set == NULL)
3278 if (DEBUG_INSN_P (insn))
3279 /* We don't want to mark debug insns as part of the same
3280 sched group. We know they really aren't, but if we use
3281 debug insns to tell that a call group is over, we'll
3282 get different code if debug insns are not there and
3283 instructions that follow seem like they should be part
3284 of the call group.
3286 Also, if we did, fixup_sched_groups() would move the
3287 deps of the debug insn to the call insn, modifying
3288 non-debug post-dependency counts of the debug insn
3289 dependencies and otherwise messing with the scheduling
3290 order.
3292 Instead, let such debug insns be scheduled freely, but
3293 keep the call group open in case there are insns that
3294 should be part of it afterwards. Since we grant debug
3295 insns higher priority than even sched group insns, it
3296 will all turn out all right. */
3297 goto debug_dont_end_call_group;
3298 else
3299 goto end_call_group;
3302 tmp = SET_DEST (set);
3303 if (GET_CODE (tmp) == SUBREG)
3304 tmp = SUBREG_REG (tmp);
3305 if (REG_P (tmp))
3306 dest_regno = REGNO (tmp);
3307 else
3308 goto end_call_group;
3310 tmp = SET_SRC (set);
3311 if (GET_CODE (tmp) == SUBREG)
3312 tmp = SUBREG_REG (tmp);
3313 if ((GET_CODE (tmp) == PLUS
3314 || GET_CODE (tmp) == MINUS)
3315 && REG_P (XEXP (tmp, 0))
3316 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
3317 && dest_regno == STACK_POINTER_REGNUM)
3318 src_regno = STACK_POINTER_REGNUM;
3319 else if (REG_P (tmp))
3320 src_regno = REGNO (tmp);
3321 else
3322 goto end_call_group;
3324 if (src_regno < FIRST_PSEUDO_REGISTER
3325 || dest_regno < FIRST_PSEUDO_REGISTER)
3327 if (!deps->readonly
3328 && deps->in_post_call_group_p == post_call_initial)
3329 deps->in_post_call_group_p = post_call;
3331 if (!sel_sched_p () || sched_emulate_haifa_p)
3333 SCHED_GROUP_P (insn) = 1;
3334 CANT_MOVE (insn) = 1;
3337 else
3339 end_call_group:
3340 if (!deps->readonly)
3341 deps->in_post_call_group_p = not_post_call;
3345 debug_dont_end_call_group:
3346 if ((current_sched_info->flags & DO_SPECULATION)
3347 && !sched_insn_is_legitimate_for_speculation_p (insn, 0))
3348 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3349 be speculated. */
3351 if (sel_sched_p ())
3352 sel_mark_hard_insn (insn);
3353 else
3355 sd_iterator_def sd_it;
3356 dep_t dep;
3358 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3359 sd_iterator_cond (&sd_it, &dep);)
3360 change_spec_dep_to_hard (sd_it);
3365 /* Return TRUE if INSN might not always return normally (e.g. call exit,
3366 longjmp, loop forever, ...). */
3367 static bool
3368 call_may_noreturn_p (rtx insn)
3370 rtx call;
3372 /* const or pure calls that aren't looping will always return. */
3373 if (RTL_CONST_OR_PURE_CALL_P (insn)
3374 && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
3375 return false;
3377 call = PATTERN (insn);
3378 if (GET_CODE (call) == PARALLEL)
3379 call = XVECEXP (call, 0, 0);
3380 if (GET_CODE (call) == SET)
3381 call = SET_SRC (call);
3382 if (GET_CODE (call) == CALL
3383 && MEM_P (XEXP (call, 0))
3384 && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
3386 rtx symbol = XEXP (XEXP (call, 0), 0);
3387 if (SYMBOL_REF_DECL (symbol)
3388 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
3390 if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
3391 == BUILT_IN_NORMAL)
3392 switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
3394 case BUILT_IN_BCMP:
3395 case BUILT_IN_BCOPY:
3396 case BUILT_IN_BZERO:
3397 case BUILT_IN_INDEX:
3398 case BUILT_IN_MEMCHR:
3399 case BUILT_IN_MEMCMP:
3400 case BUILT_IN_MEMCPY:
3401 case BUILT_IN_MEMMOVE:
3402 case BUILT_IN_MEMPCPY:
3403 case BUILT_IN_MEMSET:
3404 case BUILT_IN_RINDEX:
3405 case BUILT_IN_STPCPY:
3406 case BUILT_IN_STPNCPY:
3407 case BUILT_IN_STRCAT:
3408 case BUILT_IN_STRCHR:
3409 case BUILT_IN_STRCMP:
3410 case BUILT_IN_STRCPY:
3411 case BUILT_IN_STRCSPN:
3412 case BUILT_IN_STRLEN:
3413 case BUILT_IN_STRNCAT:
3414 case BUILT_IN_STRNCMP:
3415 case BUILT_IN_STRNCPY:
3416 case BUILT_IN_STRPBRK:
3417 case BUILT_IN_STRRCHR:
3418 case BUILT_IN_STRSPN:
3419 case BUILT_IN_STRSTR:
3420 /* Assume certain string/memory builtins always return. */
3421 return false;
3422 default:
3423 break;
3428 /* For all other calls assume that they might not always return. */
3429 return true;
3432 /* Analyze INSN with DEPS as a context. */
3433 void
3434 deps_analyze_insn (struct deps_desc *deps, rtx insn)
3436 if (sched_deps_info->start_insn)
3437 sched_deps_info->start_insn (insn);
3439 /* Record the condition for this insn. */
3440 if (NONDEBUG_INSN_P (insn))
3442 rtx t;
3443 sched_get_condition_with_rev (insn, NULL);
3444 t = INSN_CACHED_COND (insn);
3445 INSN_COND_DEPS (insn) = NULL_RTX;
3446 if (reload_completed
3447 && (current_sched_info->flags & DO_PREDICATION)
3448 && COMPARISON_P (t)
3449 && REG_P (XEXP (t, 0))
3450 && CONSTANT_P (XEXP (t, 1)))
3452 unsigned int regno;
3453 int nregs;
3454 t = XEXP (t, 0);
3455 regno = REGNO (t);
3456 nregs = hard_regno_nregs[regno][GET_MODE (t)];
3457 t = NULL_RTX;
3458 while (nregs-- > 0)
3460 struct deps_reg *reg_last = &deps->reg_last[regno + nregs];
3461 t = concat_INSN_LIST (reg_last->sets, t);
3462 t = concat_INSN_LIST (reg_last->clobbers, t);
3463 t = concat_INSN_LIST (reg_last->implicit_sets, t);
3465 INSN_COND_DEPS (insn) = t;
3469 if (JUMP_P (insn))
3471 /* Make each JUMP_INSN (but not a speculative check)
3472 a scheduling barrier for memory references. */
3473 if (!deps->readonly
3474 && !(sel_sched_p ()
3475 && sel_insn_is_speculation_check (insn)))
3477 /* Keep the list a reasonable size. */
3478 if (deps->pending_flush_length++ > MAX_PENDING_LIST_LENGTH)
3479 flush_pending_lists (deps, insn, true, true);
3480 else
3481 deps->pending_jump_insns
3482 = alloc_INSN_LIST (insn, deps->pending_jump_insns);
3485 /* For each insn which shouldn't cross a jump, add a dependence. */
3486 add_dependence_list_and_free (deps, insn,
3487 &deps->sched_before_next_jump, 1,
3488 REG_DEP_ANTI);
3490 sched_analyze_insn (deps, PATTERN (insn), insn);
3492 else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
3494 sched_analyze_insn (deps, PATTERN (insn), insn);
3496 else if (CALL_P (insn))
3498 int i;
3500 CANT_MOVE (insn) = 1;
3502 if (find_reg_note (insn, REG_SETJMP, NULL))
3504 /* This is setjmp. Assume that all registers, not just
3505 hard registers, may be clobbered by this call. */
3506 reg_pending_barrier = MOVE_BARRIER;
3508 else
3510 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3511 /* A call may read and modify global register variables. */
3512 if (global_regs[i])
3514 SET_REGNO_REG_SET (reg_pending_sets, i);
3515 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3517 /* Other call-clobbered hard regs may be clobbered.
3518 Since we only have a choice between 'might be clobbered'
3519 and 'definitely not clobbered', we must include all
3520 partly call-clobbered registers here. */
3521 else if (HARD_REGNO_CALL_PART_CLOBBERED (i, reg_raw_mode[i])
3522 || TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
3523 SET_REGNO_REG_SET (reg_pending_clobbers, i);
3524 /* We don't know what set of fixed registers might be used
3525 by the function, but it is certain that the stack pointer
3526 is among them, but be conservative. */
3527 else if (fixed_regs[i])
3528 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3529 /* The frame pointer is normally not used by the function
3530 itself, but by the debugger. */
3531 /* ??? MIPS o32 is an exception. It uses the frame pointer
3532 in the macro expansion of jal but does not represent this
3533 fact in the call_insn rtl. */
3534 else if (i == FRAME_POINTER_REGNUM
3535 || (i == HARD_FRAME_POINTER_REGNUM
3536 && (! reload_completed || frame_pointer_needed)))
3537 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3540 /* For each insn which shouldn't cross a call, add a dependence
3541 between that insn and this call insn. */
3542 add_dependence_list_and_free (deps, insn,
3543 &deps->sched_before_next_call, 1,
3544 REG_DEP_ANTI);
3546 sched_analyze_insn (deps, PATTERN (insn), insn);
3548 /* If CALL would be in a sched group, then this will violate
3549 convention that sched group insns have dependencies only on the
3550 previous instruction.
3552 Of course one can say: "Hey! What about head of the sched group?"
3553 And I will answer: "Basic principles (one dep per insn) are always
3554 the same." */
3555 gcc_assert (!SCHED_GROUP_P (insn));
3557 /* In the absence of interprocedural alias analysis, we must flush
3558 all pending reads and writes, and start new dependencies starting
3559 from here. But only flush writes for constant calls (which may
3560 be passed a pointer to something we haven't written yet). */
3561 flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
3563 if (!deps->readonly)
3565 /* Remember the last function call for limiting lifetimes. */
3566 free_INSN_LIST_list (&deps->last_function_call);
3567 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
3569 if (call_may_noreturn_p (insn))
3571 /* Remember the last function call that might not always return
3572 normally for limiting moves of trapping insns. */
3573 free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
3574 deps->last_function_call_may_noreturn
3575 = alloc_INSN_LIST (insn, NULL_RTX);
3578 /* Before reload, begin a post-call group, so as to keep the
3579 lifetimes of hard registers correct. */
3580 if (! reload_completed)
3581 deps->in_post_call_group_p = post_call;
3585 if (sched_deps_info->use_cselib)
3586 cselib_process_insn (insn);
3588 /* EH_REGION insn notes can not appear until well after we complete
3589 scheduling. */
3590 if (NOTE_P (insn))
3591 gcc_assert (NOTE_KIND (insn) != NOTE_INSN_EH_REGION_BEG
3592 && NOTE_KIND (insn) != NOTE_INSN_EH_REGION_END);
3594 if (sched_deps_info->finish_insn)
3595 sched_deps_info->finish_insn ();
3597 /* Fixup the dependencies in the sched group. */
3598 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
3599 && SCHED_GROUP_P (insn) && !sel_sched_p ())
3600 fixup_sched_groups (insn);
3603 /* Initialize DEPS for the new block beginning with HEAD. */
3604 void
3605 deps_start_bb (struct deps_desc *deps, rtx head)
3607 gcc_assert (!deps->readonly);
3609 /* Before reload, if the previous block ended in a call, show that
3610 we are inside a post-call group, so as to keep the lifetimes of
3611 hard registers correct. */
3612 if (! reload_completed && !LABEL_P (head))
3614 rtx insn = prev_nonnote_nondebug_insn (head);
3616 if (insn && CALL_P (insn))
3617 deps->in_post_call_group_p = post_call_initial;
3621 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
3622 dependencies for each insn. */
3623 void
3624 sched_analyze (struct deps_desc *deps, rtx head, rtx tail)
3626 rtx insn;
3628 if (sched_deps_info->use_cselib)
3629 cselib_init (CSELIB_RECORD_MEMORY);
3631 deps_start_bb (deps, head);
3633 for (insn = head;; insn = NEXT_INSN (insn))
3636 if (INSN_P (insn))
3638 /* And initialize deps_lists. */
3639 sd_init_insn (insn);
3642 deps_analyze_insn (deps, insn);
3644 if (insn == tail)
3646 if (sched_deps_info->use_cselib)
3647 cselib_finish ();
3648 return;
3651 gcc_unreachable ();
3654 /* Helper for sched_free_deps ().
3655 Delete INSN's (RESOLVED_P) backward dependencies. */
3656 static void
3657 delete_dep_nodes_in_back_deps (rtx insn, bool resolved_p)
3659 sd_iterator_def sd_it;
3660 dep_t dep;
3661 sd_list_types_def types;
3663 if (resolved_p)
3664 types = SD_LIST_RES_BACK;
3665 else
3666 types = SD_LIST_BACK;
3668 for (sd_it = sd_iterator_start (insn, types);
3669 sd_iterator_cond (&sd_it, &dep);)
3671 dep_link_t link = *sd_it.linkp;
3672 dep_node_t node = DEP_LINK_NODE (link);
3673 deps_list_t back_list;
3674 deps_list_t forw_list;
3676 get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
3677 remove_from_deps_list (link, back_list);
3678 delete_dep_node (node);
3682 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3683 deps_lists. */
3684 void
3685 sched_free_deps (rtx head, rtx tail, bool resolved_p)
3687 rtx insn;
3688 rtx next_tail = NEXT_INSN (tail);
3690 /* We make two passes since some insns may be scheduled before their
3691 dependencies are resolved. */
3692 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3693 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3695 /* Clear forward deps and leave the dep_nodes to the
3696 corresponding back_deps list. */
3697 if (resolved_p)
3698 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
3699 else
3700 clear_deps_list (INSN_FORW_DEPS (insn));
3702 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3703 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3705 /* Clear resolved back deps together with its dep_nodes. */
3706 delete_dep_nodes_in_back_deps (insn, resolved_p);
3708 sd_finish_insn (insn);
3712 /* Initialize variables for region data dependence analysis.
3713 When LAZY_REG_LAST is true, do not allocate reg_last array
3714 of struct deps_desc immediately. */
3716 void
3717 init_deps (struct deps_desc *deps, bool lazy_reg_last)
3719 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
3721 deps->max_reg = max_reg;
3722 if (lazy_reg_last)
3723 deps->reg_last = NULL;
3724 else
3725 deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
3726 INIT_REG_SET (&deps->reg_last_in_use);
3728 deps->pending_read_insns = 0;
3729 deps->pending_read_mems = 0;
3730 deps->pending_write_insns = 0;
3731 deps->pending_write_mems = 0;
3732 deps->pending_jump_insns = 0;
3733 deps->pending_read_list_length = 0;
3734 deps->pending_write_list_length = 0;
3735 deps->pending_flush_length = 0;
3736 deps->last_pending_memory_flush = 0;
3737 deps->last_function_call = 0;
3738 deps->last_function_call_may_noreturn = 0;
3739 deps->sched_before_next_call = 0;
3740 deps->sched_before_next_jump = 0;
3741 deps->in_post_call_group_p = not_post_call;
3742 deps->last_debug_insn = 0;
3743 deps->last_reg_pending_barrier = NOT_A_BARRIER;
3744 deps->readonly = 0;
3747 /* Init only reg_last field of DEPS, which was not allocated before as
3748 we inited DEPS lazily. */
3749 void
3750 init_deps_reg_last (struct deps_desc *deps)
3752 gcc_assert (deps && deps->max_reg > 0);
3753 gcc_assert (deps->reg_last == NULL);
3755 deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
3759 /* Free insn lists found in DEPS. */
3761 void
3762 free_deps (struct deps_desc *deps)
3764 unsigned i;
3765 reg_set_iterator rsi;
3767 /* We set max_reg to 0 when this context was already freed. */
3768 if (deps->max_reg == 0)
3770 gcc_assert (deps->reg_last == NULL);
3771 return;
3773 deps->max_reg = 0;
3775 free_INSN_LIST_list (&deps->pending_read_insns);
3776 free_EXPR_LIST_list (&deps->pending_read_mems);
3777 free_INSN_LIST_list (&deps->pending_write_insns);
3778 free_EXPR_LIST_list (&deps->pending_write_mems);
3779 free_INSN_LIST_list (&deps->last_pending_memory_flush);
3781 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
3782 times. For a testcase with 42000 regs and 8000 small basic blocks,
3783 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
3784 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3786 struct deps_reg *reg_last = &deps->reg_last[i];
3787 if (reg_last->uses)
3788 free_INSN_LIST_list (&reg_last->uses);
3789 if (reg_last->sets)
3790 free_INSN_LIST_list (&reg_last->sets);
3791 if (reg_last->implicit_sets)
3792 free_INSN_LIST_list (&reg_last->implicit_sets);
3793 if (reg_last->control_uses)
3794 free_INSN_LIST_list (&reg_last->control_uses);
3795 if (reg_last->clobbers)
3796 free_INSN_LIST_list (&reg_last->clobbers);
3798 CLEAR_REG_SET (&deps->reg_last_in_use);
3800 /* As we initialize reg_last lazily, it is possible that we didn't allocate
3801 it at all. */
3802 free (deps->reg_last);
3803 deps->reg_last = NULL;
3805 deps = NULL;
3808 /* Remove INSN from dependence contexts DEPS. */
3809 void
3810 remove_from_deps (struct deps_desc *deps, rtx insn)
3812 int removed;
3813 unsigned i;
3814 reg_set_iterator rsi;
3816 removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
3817 &deps->pending_read_mems);
3818 if (!DEBUG_INSN_P (insn))
3819 deps->pending_read_list_length -= removed;
3820 removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
3821 &deps->pending_write_mems);
3822 deps->pending_write_list_length -= removed;
3824 removed = remove_from_dependence_list (insn, &deps->pending_jump_insns);
3825 deps->pending_flush_length -= removed;
3826 removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
3827 deps->pending_flush_length -= removed;
3829 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3831 struct deps_reg *reg_last = &deps->reg_last[i];
3832 if (reg_last->uses)
3833 remove_from_dependence_list (insn, &reg_last->uses);
3834 if (reg_last->sets)
3835 remove_from_dependence_list (insn, &reg_last->sets);
3836 if (reg_last->implicit_sets)
3837 remove_from_dependence_list (insn, &reg_last->implicit_sets);
3838 if (reg_last->clobbers)
3839 remove_from_dependence_list (insn, &reg_last->clobbers);
3840 if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
3841 && !reg_last->clobbers)
3842 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, i);
3845 if (CALL_P (insn))
3847 remove_from_dependence_list (insn, &deps->last_function_call);
3848 remove_from_dependence_list (insn,
3849 &deps->last_function_call_may_noreturn);
3851 remove_from_dependence_list (insn, &deps->sched_before_next_call);
3854 /* Init deps data vector. */
3855 static void
3856 init_deps_data_vector (void)
3858 int reserve = (sched_max_luid + 1
3859 - VEC_length (haifa_deps_insn_data_def, h_d_i_d));
3860 if (reserve > 0
3861 && ! VEC_space (haifa_deps_insn_data_def, h_d_i_d, reserve))
3862 VEC_safe_grow_cleared (haifa_deps_insn_data_def, heap, h_d_i_d,
3863 3 * sched_max_luid / 2);
3866 /* If it is profitable to use them, initialize or extend (depending on
3867 GLOBAL_P) dependency data. */
3868 void
3869 sched_deps_init (bool global_p)
3871 /* Average number of insns in the basic block.
3872 '+ 1' is used to make it nonzero. */
3873 int insns_in_block = sched_max_luid / n_basic_blocks + 1;
3875 init_deps_data_vector ();
3877 /* We use another caching mechanism for selective scheduling, so
3878 we don't use this one. */
3879 if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
3881 /* ?!? We could save some memory by computing a per-region luid mapping
3882 which could reduce both the number of vectors in the cache and the
3883 size of each vector. Instead we just avoid the cache entirely unless
3884 the average number of instructions in a basic block is very high. See
3885 the comment before the declaration of true_dependency_cache for
3886 what we consider "very high". */
3887 cache_size = 0;
3888 extend_dependency_caches (sched_max_luid, true);
3891 if (global_p)
3893 dl_pool = create_alloc_pool ("deps_list", sizeof (struct _deps_list),
3894 /* Allocate lists for one block at a time. */
3895 insns_in_block);
3896 dn_pool = create_alloc_pool ("dep_node", sizeof (struct _dep_node),
3897 /* Allocate nodes for one block at a time.
3898 We assume that average insn has
3899 5 producers. */
3900 5 * insns_in_block);
3905 /* Create or extend (depending on CREATE_P) dependency caches to
3906 size N. */
3907 void
3908 extend_dependency_caches (int n, bool create_p)
3910 if (create_p || true_dependency_cache)
3912 int i, luid = cache_size + n;
3914 true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
3915 luid);
3916 output_dependency_cache = XRESIZEVEC (bitmap_head,
3917 output_dependency_cache, luid);
3918 anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
3919 luid);
3920 control_dependency_cache = XRESIZEVEC (bitmap_head, control_dependency_cache,
3921 luid);
3923 if (current_sched_info->flags & DO_SPECULATION)
3924 spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
3925 luid);
3927 for (i = cache_size; i < luid; i++)
3929 bitmap_initialize (&true_dependency_cache[i], 0);
3930 bitmap_initialize (&output_dependency_cache[i], 0);
3931 bitmap_initialize (&anti_dependency_cache[i], 0);
3932 bitmap_initialize (&control_dependency_cache[i], 0);
3934 if (current_sched_info->flags & DO_SPECULATION)
3935 bitmap_initialize (&spec_dependency_cache[i], 0);
3937 cache_size = luid;
3941 /* Finalize dependency information for the whole function. */
3942 void
3943 sched_deps_finish (void)
3945 gcc_assert (deps_pools_are_empty_p ());
3946 free_alloc_pool_if_empty (&dn_pool);
3947 free_alloc_pool_if_empty (&dl_pool);
3948 gcc_assert (dn_pool == NULL && dl_pool == NULL);
3950 VEC_free (haifa_deps_insn_data_def, heap, h_d_i_d);
3951 cache_size = 0;
3953 if (true_dependency_cache)
3955 int i;
3957 for (i = 0; i < cache_size; i++)
3959 bitmap_clear (&true_dependency_cache[i]);
3960 bitmap_clear (&output_dependency_cache[i]);
3961 bitmap_clear (&anti_dependency_cache[i]);
3962 bitmap_clear (&control_dependency_cache[i]);
3964 if (sched_deps_info->generate_spec_deps)
3965 bitmap_clear (&spec_dependency_cache[i]);
3967 free (true_dependency_cache);
3968 true_dependency_cache = NULL;
3969 free (output_dependency_cache);
3970 output_dependency_cache = NULL;
3971 free (anti_dependency_cache);
3972 anti_dependency_cache = NULL;
3973 free (control_dependency_cache);
3974 control_dependency_cache = NULL;
3976 if (sched_deps_info->generate_spec_deps)
3978 free (spec_dependency_cache);
3979 spec_dependency_cache = NULL;
3985 /* Initialize some global variables needed by the dependency analysis
3986 code. */
3988 void
3989 init_deps_global (void)
3991 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3992 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3993 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
3994 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
3995 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
3996 reg_pending_control_uses = ALLOC_REG_SET (&reg_obstack);
3997 reg_pending_barrier = NOT_A_BARRIER;
3999 if (!sel_sched_p () || sched_emulate_haifa_p)
4001 sched_deps_info->start_insn = haifa_start_insn;
4002 sched_deps_info->finish_insn = haifa_finish_insn;
4004 sched_deps_info->note_reg_set = haifa_note_reg_set;
4005 sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
4006 sched_deps_info->note_reg_use = haifa_note_reg_use;
4008 sched_deps_info->note_mem_dep = haifa_note_mem_dep;
4009 sched_deps_info->note_dep = haifa_note_dep;
4013 /* Free everything used by the dependency analysis code. */
4015 void
4016 finish_deps_global (void)
4018 FREE_REG_SET (reg_pending_sets);
4019 FREE_REG_SET (reg_pending_clobbers);
4020 FREE_REG_SET (reg_pending_uses);
4021 FREE_REG_SET (reg_pending_control_uses);
4024 /* Estimate the weakness of dependence between MEM1 and MEM2. */
4025 dw_t
4026 estimate_dep_weak (rtx mem1, rtx mem2)
4028 rtx r1, r2;
4030 if (mem1 == mem2)
4031 /* MEMs are the same - don't speculate. */
4032 return MIN_DEP_WEAK;
4034 r1 = XEXP (mem1, 0);
4035 r2 = XEXP (mem2, 0);
4037 if (r1 == r2
4038 || (REG_P (r1) && REG_P (r2)
4039 && REGNO (r1) == REGNO (r2)))
4040 /* Again, MEMs are the same. */
4041 return MIN_DEP_WEAK;
4042 else if ((REG_P (r1) && !REG_P (r2))
4043 || (!REG_P (r1) && REG_P (r2)))
4044 /* Different addressing modes - reason to be more speculative,
4045 than usual. */
4046 return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
4047 else
4048 /* We can't say anything about the dependence. */
4049 return UNCERTAIN_DEP_WEAK;
4052 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
4053 This function can handle same INSN and ELEM (INSN == ELEM).
4054 It is a convenience wrapper. */
4055 static void
4056 add_dependence_1 (rtx insn, rtx elem, enum reg_note dep_type)
4058 ds_t ds;
4059 bool internal;
4061 if (dep_type == REG_DEP_TRUE)
4062 ds = DEP_TRUE;
4063 else if (dep_type == REG_DEP_OUTPUT)
4064 ds = DEP_OUTPUT;
4065 else if (dep_type == REG_DEP_CONTROL)
4066 ds = DEP_CONTROL;
4067 else
4069 gcc_assert (dep_type == REG_DEP_ANTI);
4070 ds = DEP_ANTI;
4073 /* When add_dependence is called from inside sched-deps.c, we expect
4074 cur_insn to be non-null. */
4075 internal = cur_insn != NULL;
4076 if (internal)
4077 gcc_assert (insn == cur_insn);
4078 else
4079 cur_insn = insn;
4081 note_dep (elem, ds);
4082 if (!internal)
4083 cur_insn = NULL;
4086 /* Return weakness of speculative type TYPE in the dep_status DS. */
4087 dw_t
4088 get_dep_weak_1 (ds_t ds, ds_t type)
4090 ds = ds & type;
4092 switch (type)
4094 case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
4095 case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
4096 case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
4097 case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
4098 default: gcc_unreachable ();
4101 return (dw_t) ds;
4104 dw_t
4105 get_dep_weak (ds_t ds, ds_t type)
4107 dw_t dw = get_dep_weak_1 (ds, type);
4109 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4110 return dw;
4113 /* Return the dep_status, which has the same parameters as DS, except for
4114 speculative type TYPE, that will have weakness DW. */
4115 ds_t
4116 set_dep_weak (ds_t ds, ds_t type, dw_t dw)
4118 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4120 ds &= ~type;
4121 switch (type)
4123 case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
4124 case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
4125 case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
4126 case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
4127 default: gcc_unreachable ();
4129 return ds;
4132 /* Return the join of two dep_statuses DS1 and DS2.
4133 If MAX_P is true then choose the greater probability,
4134 otherwise multiply probabilities.
4135 This function assumes that both DS1 and DS2 contain speculative bits. */
4136 static ds_t
4137 ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
4139 ds_t ds, t;
4141 gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
4143 ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
4145 t = FIRST_SPEC_TYPE;
4148 if ((ds1 & t) && !(ds2 & t))
4149 ds |= ds1 & t;
4150 else if (!(ds1 & t) && (ds2 & t))
4151 ds |= ds2 & t;
4152 else if ((ds1 & t) && (ds2 & t))
4154 dw_t dw1 = get_dep_weak (ds1, t);
4155 dw_t dw2 = get_dep_weak (ds2, t);
4156 ds_t dw;
4158 if (!max_p)
4160 dw = ((ds_t) dw1) * ((ds_t) dw2);
4161 dw /= MAX_DEP_WEAK;
4162 if (dw < MIN_DEP_WEAK)
4163 dw = MIN_DEP_WEAK;
4165 else
4167 if (dw1 >= dw2)
4168 dw = dw1;
4169 else
4170 dw = dw2;
4173 ds = set_dep_weak (ds, t, (dw_t) dw);
4176 if (t == LAST_SPEC_TYPE)
4177 break;
4178 t <<= SPEC_TYPE_SHIFT;
4180 while (1);
4182 return ds;
4185 /* Return the join of two dep_statuses DS1 and DS2.
4186 This function assumes that both DS1 and DS2 contain speculative bits. */
4187 ds_t
4188 ds_merge (ds_t ds1, ds_t ds2)
4190 return ds_merge_1 (ds1, ds2, false);
4193 /* Return the join of two dep_statuses DS1 and DS2. */
4194 ds_t
4195 ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
4197 ds_t new_status = ds | ds2;
4199 if (new_status & SPECULATIVE)
4201 if ((ds && !(ds & SPECULATIVE))
4202 || (ds2 && !(ds2 & SPECULATIVE)))
4203 /* Then this dep can't be speculative. */
4204 new_status &= ~SPECULATIVE;
4205 else
4207 /* Both are speculative. Merging probabilities. */
4208 if (mem1)
4210 dw_t dw;
4212 dw = estimate_dep_weak (mem1, mem2);
4213 ds = set_dep_weak (ds, BEGIN_DATA, dw);
4216 if (!ds)
4217 new_status = ds2;
4218 else if (!ds2)
4219 new_status = ds;
4220 else
4221 new_status = ds_merge (ds2, ds);
4225 return new_status;
4228 /* Return the join of DS1 and DS2. Use maximum instead of multiplying
4229 probabilities. */
4230 ds_t
4231 ds_max_merge (ds_t ds1, ds_t ds2)
4233 if (ds1 == 0 && ds2 == 0)
4234 return 0;
4236 if (ds1 == 0 && ds2 != 0)
4237 return ds2;
4239 if (ds1 != 0 && ds2 == 0)
4240 return ds1;
4242 return ds_merge_1 (ds1, ds2, true);
4245 /* Return the probability of speculation success for the speculation
4246 status DS. */
4247 dw_t
4248 ds_weak (ds_t ds)
4250 ds_t res = 1, dt;
4251 int n = 0;
4253 dt = FIRST_SPEC_TYPE;
4256 if (ds & dt)
4258 res *= (ds_t) get_dep_weak (ds, dt);
4259 n++;
4262 if (dt == LAST_SPEC_TYPE)
4263 break;
4264 dt <<= SPEC_TYPE_SHIFT;
4266 while (1);
4268 gcc_assert (n);
4269 while (--n)
4270 res /= MAX_DEP_WEAK;
4272 if (res < MIN_DEP_WEAK)
4273 res = MIN_DEP_WEAK;
4275 gcc_assert (res <= MAX_DEP_WEAK);
4277 return (dw_t) res;
4280 /* Return a dep status that contains all speculation types of DS. */
4281 ds_t
4282 ds_get_speculation_types (ds_t ds)
4284 if (ds & BEGIN_DATA)
4285 ds |= BEGIN_DATA;
4286 if (ds & BE_IN_DATA)
4287 ds |= BE_IN_DATA;
4288 if (ds & BEGIN_CONTROL)
4289 ds |= BEGIN_CONTROL;
4290 if (ds & BE_IN_CONTROL)
4291 ds |= BE_IN_CONTROL;
4293 return ds & SPECULATIVE;
4296 /* Return a dep status that contains maximal weakness for each speculation
4297 type present in DS. */
4298 ds_t
4299 ds_get_max_dep_weak (ds_t ds)
4301 if (ds & BEGIN_DATA)
4302 ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
4303 if (ds & BE_IN_DATA)
4304 ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
4305 if (ds & BEGIN_CONTROL)
4306 ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
4307 if (ds & BE_IN_CONTROL)
4308 ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
4310 return ds;
4313 /* Dump information about the dependence status S. */
4314 static void
4315 dump_ds (FILE *f, ds_t s)
4317 fprintf (f, "{");
4319 if (s & BEGIN_DATA)
4320 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
4321 if (s & BE_IN_DATA)
4322 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
4323 if (s & BEGIN_CONTROL)
4324 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
4325 if (s & BE_IN_CONTROL)
4326 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
4328 if (s & HARD_DEP)
4329 fprintf (f, "HARD_DEP; ");
4331 if (s & DEP_TRUE)
4332 fprintf (f, "DEP_TRUE; ");
4333 if (s & DEP_OUTPUT)
4334 fprintf (f, "DEP_OUTPUT; ");
4335 if (s & DEP_ANTI)
4336 fprintf (f, "DEP_ANTI; ");
4337 if (s & DEP_CONTROL)
4338 fprintf (f, "DEP_CONTROL; ");
4340 fprintf (f, "}");
4343 DEBUG_FUNCTION void
4344 debug_ds (ds_t s)
4346 dump_ds (stderr, s);
4347 fprintf (stderr, "\n");
4350 #ifdef ENABLE_CHECKING
4351 /* Verify that dependence type and status are consistent.
4352 If RELAXED_P is true, then skip dep_weakness checks. */
4353 static void
4354 check_dep (dep_t dep, bool relaxed_p)
4356 enum reg_note dt = DEP_TYPE (dep);
4357 ds_t ds = DEP_STATUS (dep);
4359 gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
4361 if (!(current_sched_info->flags & USE_DEPS_LIST))
4363 gcc_assert (ds == 0);
4364 return;
4367 /* Check that dependence type contains the same bits as the status. */
4368 if (dt == REG_DEP_TRUE)
4369 gcc_assert (ds & DEP_TRUE);
4370 else if (dt == REG_DEP_OUTPUT)
4371 gcc_assert ((ds & DEP_OUTPUT)
4372 && !(ds & DEP_TRUE));
4373 else if (dt == REG_DEP_ANTI)
4374 gcc_assert ((ds & DEP_ANTI)
4375 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
4376 else
4377 gcc_assert (dt == REG_DEP_CONTROL
4378 && (ds & DEP_CONTROL)
4379 && !(ds & (DEP_OUTPUT | DEP_ANTI | DEP_TRUE)));
4381 /* HARD_DEP can not appear in dep_status of a link. */
4382 gcc_assert (!(ds & HARD_DEP));
4384 /* Check that dependence status is set correctly when speculation is not
4385 supported. */
4386 if (!sched_deps_info->generate_spec_deps)
4387 gcc_assert (!(ds & SPECULATIVE));
4388 else if (ds & SPECULATIVE)
4390 if (!relaxed_p)
4392 ds_t type = FIRST_SPEC_TYPE;
4394 /* Check that dependence weakness is in proper range. */
4397 if (ds & type)
4398 get_dep_weak (ds, type);
4400 if (type == LAST_SPEC_TYPE)
4401 break;
4402 type <<= SPEC_TYPE_SHIFT;
4404 while (1);
4407 if (ds & BEGIN_SPEC)
4409 /* Only true dependence can be data speculative. */
4410 if (ds & BEGIN_DATA)
4411 gcc_assert (ds & DEP_TRUE);
4413 /* Control dependencies in the insn scheduler are represented by
4414 anti-dependencies, therefore only anti dependence can be
4415 control speculative. */
4416 if (ds & BEGIN_CONTROL)
4417 gcc_assert (ds & DEP_ANTI);
4419 else
4421 /* Subsequent speculations should resolve true dependencies. */
4422 gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
4425 /* Check that true and anti dependencies can't have other speculative
4426 statuses. */
4427 if (ds & DEP_TRUE)
4428 gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
4429 /* An output dependence can't be speculative at all. */
4430 gcc_assert (!(ds & DEP_OUTPUT));
4431 if (ds & DEP_ANTI)
4432 gcc_assert (ds & BEGIN_CONTROL);
4435 #endif /* ENABLE_CHECKING */
4437 #endif /* INSN_SCHEDULING */