2011-03-21 Daniel Jacobowitz <dan@codesourcery.com>
[official-gcc.git] / gcc / tree-ssa-loop-im.c
blob4ec67cf1138eba56db012fbf4f9a77db5db3e2d9
1 /* Loop invariant motion.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "output.h"
29 #include "tree-pretty-print.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "cfgloop.h"
35 #include "domwalk.h"
36 #include "params.h"
37 #include "tree-pass.h"
38 #include "flags.h"
39 #include "hashtab.h"
40 #include "tree-affine.h"
41 #include "pointer-set.h"
42 #include "tree-ssa-propagate.h"
44 /* TODO: Support for predicated code motion. I.e.
46 while (1)
48 if (cond)
50 a = inv;
51 something;
55 Where COND and INV are is invariants, but evaluating INV may trap or be
56 invalid from some other reason if !COND. This may be transformed to
58 if (cond)
59 a = inv;
60 while (1)
62 if (cond)
63 something;
64 } */
66 /* A type for the list of statements that have to be moved in order to be able
67 to hoist an invariant computation. */
69 struct depend
71 gimple stmt;
72 struct depend *next;
75 /* The auxiliary data kept for each statement. */
77 struct lim_aux_data
79 struct loop *max_loop; /* The outermost loop in that the statement
80 is invariant. */
82 struct loop *tgt_loop; /* The loop out of that we want to move the
83 invariant. */
85 struct loop *always_executed_in;
86 /* The outermost loop for that we are sure
87 the statement is executed if the loop
88 is entered. */
90 unsigned cost; /* Cost of the computation performed by the
91 statement. */
93 struct depend *depends; /* List of statements that must be also hoisted
94 out of the loop when this statement is
95 hoisted; i.e. those that define the operands
96 of the statement and are inside of the
97 MAX_LOOP loop. */
100 /* Maps statements to their lim_aux_data. */
102 static struct pointer_map_t *lim_aux_data_map;
104 /* Description of a memory reference location. */
106 typedef struct mem_ref_loc
108 tree *ref; /* The reference itself. */
109 gimple stmt; /* The statement in that it occurs. */
110 } *mem_ref_loc_p;
112 DEF_VEC_P(mem_ref_loc_p);
113 DEF_VEC_ALLOC_P(mem_ref_loc_p, heap);
115 /* The list of memory reference locations in a loop. */
117 typedef struct mem_ref_locs
119 VEC (mem_ref_loc_p, heap) *locs;
120 } *mem_ref_locs_p;
122 DEF_VEC_P(mem_ref_locs_p);
123 DEF_VEC_ALLOC_P(mem_ref_locs_p, heap);
125 /* Description of a memory reference. */
127 typedef struct mem_ref
129 tree mem; /* The memory itself. */
130 unsigned id; /* ID assigned to the memory reference
131 (its index in memory_accesses.refs_list) */
132 hashval_t hash; /* Its hash value. */
133 bitmap stored; /* The set of loops in that this memory location
134 is stored to. */
135 VEC (mem_ref_locs_p, heap) *accesses_in_loop;
136 /* The locations of the accesses. Vector
137 indexed by the loop number. */
138 bitmap vops; /* Vops corresponding to this memory
139 location. */
141 /* The following sets are computed on demand. We keep both set and
142 its complement, so that we know whether the information was
143 already computed or not. */
144 bitmap indep_loop; /* The set of loops in that the memory
145 reference is independent, meaning:
146 If it is stored in the loop, this store
147 is independent on all other loads and
148 stores.
149 If it is only loaded, then it is independent
150 on all stores in the loop. */
151 bitmap dep_loop; /* The complement of INDEP_LOOP. */
153 bitmap indep_ref; /* The set of memory references on that
154 this reference is independent. */
155 bitmap dep_ref; /* The complement of DEP_REF. */
156 } *mem_ref_p;
158 DEF_VEC_P(mem_ref_p);
159 DEF_VEC_ALLOC_P(mem_ref_p, heap);
161 DEF_VEC_P(bitmap);
162 DEF_VEC_ALLOC_P(bitmap, heap);
164 DEF_VEC_P(htab_t);
165 DEF_VEC_ALLOC_P(htab_t, heap);
167 /* Description of memory accesses in loops. */
169 static struct
171 /* The hash table of memory references accessed in loops. */
172 htab_t refs;
174 /* The list of memory references. */
175 VEC (mem_ref_p, heap) *refs_list;
177 /* The set of memory references accessed in each loop. */
178 VEC (bitmap, heap) *refs_in_loop;
180 /* The set of memory references accessed in each loop, including
181 subloops. */
182 VEC (bitmap, heap) *all_refs_in_loop;
184 /* The set of virtual operands clobbered in a given loop. */
185 VEC (bitmap, heap) *clobbered_vops;
187 /* Map from the pair (loop, virtual operand) to the set of refs that
188 touch the virtual operand in the loop. */
189 VEC (htab_t, heap) *vop_ref_map;
191 /* Cache for expanding memory addresses. */
192 struct pointer_map_t *ttae_cache;
193 } memory_accesses;
195 static bool ref_indep_loop_p (struct loop *, mem_ref_p);
197 /* Minimum cost of an expensive expression. */
198 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
200 /* The outermost loop for that execution of the header guarantees that the
201 block will be executed. */
202 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
204 static struct lim_aux_data *
205 init_lim_data (gimple stmt)
207 void **p = pointer_map_insert (lim_aux_data_map, stmt);
209 *p = XCNEW (struct lim_aux_data);
210 return (struct lim_aux_data *) *p;
213 static struct lim_aux_data *
214 get_lim_data (gimple stmt)
216 void **p = pointer_map_contains (lim_aux_data_map, stmt);
217 if (!p)
218 return NULL;
220 return (struct lim_aux_data *) *p;
223 /* Releases the memory occupied by DATA. */
225 static void
226 free_lim_aux_data (struct lim_aux_data *data)
228 struct depend *dep, *next;
230 for (dep = data->depends; dep; dep = next)
232 next = dep->next;
233 free (dep);
235 free (data);
238 static void
239 clear_lim_data (gimple stmt)
241 void **p = pointer_map_contains (lim_aux_data_map, stmt);
242 if (!p)
243 return;
245 free_lim_aux_data ((struct lim_aux_data *) *p);
246 *p = NULL;
249 /* Calls CBCK for each index in memory reference ADDR_P. There are two
250 kinds situations handled; in each of these cases, the memory reference
251 and DATA are passed to the callback:
253 Access to an array: ARRAY_{RANGE_}REF (base, index). In this case we also
254 pass the pointer to the index to the callback.
256 Pointer dereference: INDIRECT_REF (addr). In this case we also pass the
257 pointer to addr to the callback.
259 If the callback returns false, the whole search stops and false is returned.
260 Otherwise the function returns true after traversing through the whole
261 reference *ADDR_P. */
263 bool
264 for_each_index (tree *addr_p, bool (*cbck) (tree, tree *, void *), void *data)
266 tree *nxt, *idx;
268 for (; ; addr_p = nxt)
270 switch (TREE_CODE (*addr_p))
272 case SSA_NAME:
273 return cbck (*addr_p, addr_p, data);
275 case MEM_REF:
276 nxt = &TREE_OPERAND (*addr_p, 0);
277 return cbck (*addr_p, nxt, data);
279 case BIT_FIELD_REF:
280 case VIEW_CONVERT_EXPR:
281 case REALPART_EXPR:
282 case IMAGPART_EXPR:
283 nxt = &TREE_OPERAND (*addr_p, 0);
284 break;
286 case COMPONENT_REF:
287 /* If the component has varying offset, it behaves like index
288 as well. */
289 idx = &TREE_OPERAND (*addr_p, 2);
290 if (*idx
291 && !cbck (*addr_p, idx, data))
292 return false;
294 nxt = &TREE_OPERAND (*addr_p, 0);
295 break;
297 case ARRAY_REF:
298 case ARRAY_RANGE_REF:
299 nxt = &TREE_OPERAND (*addr_p, 0);
300 if (!cbck (*addr_p, &TREE_OPERAND (*addr_p, 1), data))
301 return false;
302 break;
304 case VAR_DECL:
305 case PARM_DECL:
306 case STRING_CST:
307 case RESULT_DECL:
308 case VECTOR_CST:
309 case COMPLEX_CST:
310 case INTEGER_CST:
311 case REAL_CST:
312 case FIXED_CST:
313 case CONSTRUCTOR:
314 return true;
316 case ADDR_EXPR:
317 gcc_assert (is_gimple_min_invariant (*addr_p));
318 return true;
320 case TARGET_MEM_REF:
321 idx = &TMR_BASE (*addr_p);
322 if (*idx
323 && !cbck (*addr_p, idx, data))
324 return false;
325 idx = &TMR_INDEX (*addr_p);
326 if (*idx
327 && !cbck (*addr_p, idx, data))
328 return false;
329 idx = &TMR_INDEX2 (*addr_p);
330 if (*idx
331 && !cbck (*addr_p, idx, data))
332 return false;
333 return true;
335 default:
336 gcc_unreachable ();
341 /* If it is possible to hoist the statement STMT unconditionally,
342 returns MOVE_POSSIBLE.
343 If it is possible to hoist the statement STMT, but we must avoid making
344 it executed if it would not be executed in the original program (e.g.
345 because it may trap), return MOVE_PRESERVE_EXECUTION.
346 Otherwise return MOVE_IMPOSSIBLE. */
348 enum move_pos
349 movement_possibility (gimple stmt)
351 tree lhs;
352 enum move_pos ret = MOVE_POSSIBLE;
354 if (flag_unswitch_loops
355 && gimple_code (stmt) == GIMPLE_COND)
357 /* If we perform unswitching, force the operands of the invariant
358 condition to be moved out of the loop. */
359 return MOVE_POSSIBLE;
362 if (gimple_code (stmt) == GIMPLE_PHI
363 && gimple_phi_num_args (stmt) <= 2
364 && is_gimple_reg (gimple_phi_result (stmt))
365 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
366 return MOVE_POSSIBLE;
368 if (gimple_get_lhs (stmt) == NULL_TREE)
369 return MOVE_IMPOSSIBLE;
371 if (gimple_vdef (stmt))
372 return MOVE_IMPOSSIBLE;
374 if (stmt_ends_bb_p (stmt)
375 || gimple_has_volatile_ops (stmt)
376 || gimple_has_side_effects (stmt)
377 || stmt_could_throw_p (stmt))
378 return MOVE_IMPOSSIBLE;
380 if (is_gimple_call (stmt))
382 /* While pure or const call is guaranteed to have no side effects, we
383 cannot move it arbitrarily. Consider code like
385 char *s = something ();
387 while (1)
389 if (s)
390 t = strlen (s);
391 else
392 t = 0;
395 Here the strlen call cannot be moved out of the loop, even though
396 s is invariant. In addition to possibly creating a call with
397 invalid arguments, moving out a function call that is not executed
398 may cause performance regressions in case the call is costly and
399 not executed at all. */
400 ret = MOVE_PRESERVE_EXECUTION;
401 lhs = gimple_call_lhs (stmt);
403 else if (is_gimple_assign (stmt))
404 lhs = gimple_assign_lhs (stmt);
405 else
406 return MOVE_IMPOSSIBLE;
408 if (TREE_CODE (lhs) == SSA_NAME
409 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
410 return MOVE_IMPOSSIBLE;
412 if (TREE_CODE (lhs) != SSA_NAME
413 || gimple_could_trap_p (stmt))
414 return MOVE_PRESERVE_EXECUTION;
416 return ret;
419 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
420 loop to that we could move the expression using DEF if it did not have
421 other operands, i.e. the outermost loop enclosing LOOP in that the value
422 of DEF is invariant. */
424 static struct loop *
425 outermost_invariant_loop (tree def, struct loop *loop)
427 gimple def_stmt;
428 basic_block def_bb;
429 struct loop *max_loop;
430 struct lim_aux_data *lim_data;
432 if (!def)
433 return superloop_at_depth (loop, 1);
435 if (TREE_CODE (def) != SSA_NAME)
437 gcc_assert (is_gimple_min_invariant (def));
438 return superloop_at_depth (loop, 1);
441 def_stmt = SSA_NAME_DEF_STMT (def);
442 def_bb = gimple_bb (def_stmt);
443 if (!def_bb)
444 return superloop_at_depth (loop, 1);
446 max_loop = find_common_loop (loop, def_bb->loop_father);
448 lim_data = get_lim_data (def_stmt);
449 if (lim_data != NULL && lim_data->max_loop != NULL)
450 max_loop = find_common_loop (max_loop,
451 loop_outer (lim_data->max_loop));
452 if (max_loop == loop)
453 return NULL;
454 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
456 return max_loop;
459 /* DATA is a structure containing information associated with a statement
460 inside LOOP. DEF is one of the operands of this statement.
462 Find the outermost loop enclosing LOOP in that value of DEF is invariant
463 and record this in DATA->max_loop field. If DEF itself is defined inside
464 this loop as well (i.e. we need to hoist it out of the loop if we want
465 to hoist the statement represented by DATA), record the statement in that
466 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
467 add the cost of the computation of DEF to the DATA->cost.
469 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
471 static bool
472 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
473 bool add_cost)
475 gimple def_stmt = SSA_NAME_DEF_STMT (def);
476 basic_block def_bb = gimple_bb (def_stmt);
477 struct loop *max_loop;
478 struct depend *dep;
479 struct lim_aux_data *def_data;
481 if (!def_bb)
482 return true;
484 max_loop = outermost_invariant_loop (def, loop);
485 if (!max_loop)
486 return false;
488 if (flow_loop_nested_p (data->max_loop, max_loop))
489 data->max_loop = max_loop;
491 def_data = get_lim_data (def_stmt);
492 if (!def_data)
493 return true;
495 if (add_cost
496 /* Only add the cost if the statement defining DEF is inside LOOP,
497 i.e. if it is likely that by moving the invariants dependent
498 on it, we will be able to avoid creating a new register for
499 it (since it will be only used in these dependent invariants). */
500 && def_bb->loop_father == loop)
501 data->cost += def_data->cost;
503 dep = XNEW (struct depend);
504 dep->stmt = def_stmt;
505 dep->next = data->depends;
506 data->depends = dep;
508 return true;
511 /* Returns an estimate for a cost of statement STMT. TODO -- the values here
512 are just ad-hoc constants. The estimates should be based on target-specific
513 values. */
515 static unsigned
516 stmt_cost (gimple stmt)
518 tree fndecl;
519 unsigned cost = 1;
521 /* Always try to create possibilities for unswitching. */
522 if (gimple_code (stmt) == GIMPLE_COND
523 || gimple_code (stmt) == GIMPLE_PHI)
524 return LIM_EXPENSIVE;
526 /* Hoisting memory references out should almost surely be a win. */
527 if (gimple_references_memory_p (stmt))
528 cost += 20;
530 if (is_gimple_call (stmt))
532 /* We should be hoisting calls if possible. */
534 /* Unless the call is a builtin_constant_p; this always folds to a
535 constant, so moving it is useless. */
536 fndecl = gimple_call_fndecl (stmt);
537 if (fndecl
538 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
539 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
540 return 0;
542 return cost + 20;
545 if (gimple_code (stmt) != GIMPLE_ASSIGN)
546 return cost;
548 switch (gimple_assign_rhs_code (stmt))
550 case MULT_EXPR:
551 case TRUNC_DIV_EXPR:
552 case CEIL_DIV_EXPR:
553 case FLOOR_DIV_EXPR:
554 case ROUND_DIV_EXPR:
555 case EXACT_DIV_EXPR:
556 case CEIL_MOD_EXPR:
557 case FLOOR_MOD_EXPR:
558 case ROUND_MOD_EXPR:
559 case TRUNC_MOD_EXPR:
560 case RDIV_EXPR:
561 /* Division and multiplication are usually expensive. */
562 cost += 20;
563 break;
565 case LSHIFT_EXPR:
566 case RSHIFT_EXPR:
567 cost += 20;
568 break;
570 default:
571 break;
574 return cost;
577 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
578 REF is independent. If REF is not independent in LOOP, NULL is returned
579 instead. */
581 static struct loop *
582 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
584 struct loop *aloop;
586 if (bitmap_bit_p (ref->stored, loop->num))
587 return NULL;
589 for (aloop = outer;
590 aloop != loop;
591 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
592 if (!bitmap_bit_p (ref->stored, aloop->num)
593 && ref_indep_loop_p (aloop, ref))
594 return aloop;
596 if (ref_indep_loop_p (loop, ref))
597 return loop;
598 else
599 return NULL;
602 /* If there is a simple load or store to a memory reference in STMT, returns
603 the location of the memory reference, and sets IS_STORE according to whether
604 it is a store or load. Otherwise, returns NULL. */
606 static tree *
607 simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
609 tree *lhs;
610 enum tree_code code;
612 /* Recognize MEM = (SSA_NAME | invariant) and SSA_NAME = MEM patterns. */
613 if (gimple_code (stmt) != GIMPLE_ASSIGN)
614 return NULL;
616 code = gimple_assign_rhs_code (stmt);
618 lhs = gimple_assign_lhs_ptr (stmt);
620 if (TREE_CODE (*lhs) == SSA_NAME)
622 if (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS
623 || !is_gimple_addressable (gimple_assign_rhs1 (stmt)))
624 return NULL;
626 *is_store = false;
627 return gimple_assign_rhs1_ptr (stmt);
629 else if (code == SSA_NAME
630 || (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
631 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
633 *is_store = true;
634 return lhs;
636 else
637 return NULL;
640 /* Returns the memory reference contained in STMT. */
642 static mem_ref_p
643 mem_ref_in_stmt (gimple stmt)
645 bool store;
646 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
647 hashval_t hash;
648 mem_ref_p ref;
650 if (!mem)
651 return NULL;
652 gcc_assert (!store);
654 hash = iterative_hash_expr (*mem, 0);
655 ref = (mem_ref_p) htab_find_with_hash (memory_accesses.refs, *mem, hash);
657 gcc_assert (ref != NULL);
658 return ref;
661 /* From a controlling predicate in DOM determine the arguments from
662 the PHI node PHI that are chosen if the predicate evaluates to
663 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
664 they are non-NULL. Returns true if the arguments can be determined,
665 else return false. */
667 static bool
668 extract_true_false_args_from_phi (basic_block dom, gimple phi,
669 tree *true_arg_p, tree *false_arg_p)
671 basic_block bb = gimple_bb (phi);
672 edge true_edge, false_edge, tem;
673 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
675 /* We have to verify that one edge into the PHI node is dominated
676 by the true edge of the predicate block and the other edge
677 dominated by the false edge. This ensures that the PHI argument
678 we are going to take is completely determined by the path we
679 take from the predicate block.
680 We can only use BB dominance checks below if the destination of
681 the true/false edges are dominated by their edge, thus only
682 have a single predecessor. */
683 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
684 tem = EDGE_PRED (bb, 0);
685 if (tem == true_edge
686 || (single_pred_p (true_edge->dest)
687 && (tem->src == true_edge->dest
688 || dominated_by_p (CDI_DOMINATORS,
689 tem->src, true_edge->dest))))
690 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
691 else if (tem == false_edge
692 || (single_pred_p (false_edge->dest)
693 && (tem->src == false_edge->dest
694 || dominated_by_p (CDI_DOMINATORS,
695 tem->src, false_edge->dest))))
696 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
697 else
698 return false;
699 tem = EDGE_PRED (bb, 1);
700 if (tem == true_edge
701 || (single_pred_p (true_edge->dest)
702 && (tem->src == true_edge->dest
703 || dominated_by_p (CDI_DOMINATORS,
704 tem->src, true_edge->dest))))
705 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
706 else if (tem == false_edge
707 || (single_pred_p (false_edge->dest)
708 && (tem->src == false_edge->dest
709 || dominated_by_p (CDI_DOMINATORS,
710 tem->src, false_edge->dest))))
711 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
712 else
713 return false;
714 if (!arg0 || !arg1)
715 return false;
717 if (true_arg_p)
718 *true_arg_p = arg0;
719 if (false_arg_p)
720 *false_arg_p = arg1;
722 return true;
725 /* Determine the outermost loop to that it is possible to hoist a statement
726 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
727 the outermost loop in that the value computed by STMT is invariant.
728 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
729 we preserve the fact whether STMT is executed. It also fills other related
730 information to LIM_DATA (STMT).
732 The function returns false if STMT cannot be hoisted outside of the loop it
733 is defined in, and true otherwise. */
735 static bool
736 determine_max_movement (gimple stmt, bool must_preserve_exec)
738 basic_block bb = gimple_bb (stmt);
739 struct loop *loop = bb->loop_father;
740 struct loop *level;
741 struct lim_aux_data *lim_data = get_lim_data (stmt);
742 tree val;
743 ssa_op_iter iter;
745 if (must_preserve_exec)
746 level = ALWAYS_EXECUTED_IN (bb);
747 else
748 level = superloop_at_depth (loop, 1);
749 lim_data->max_loop = level;
751 if (gimple_code (stmt) == GIMPLE_PHI)
753 use_operand_p use_p;
754 unsigned min_cost = UINT_MAX;
755 unsigned total_cost = 0;
756 struct lim_aux_data *def_data;
758 /* We will end up promoting dependencies to be unconditionally
759 evaluated. For this reason the PHI cost (and thus the
760 cost we remove from the loop by doing the invariant motion)
761 is that of the cheapest PHI argument dependency chain. */
762 FOR_EACH_PHI_ARG (use_p, stmt, iter, SSA_OP_USE)
764 val = USE_FROM_PTR (use_p);
765 if (TREE_CODE (val) != SSA_NAME)
766 continue;
767 if (!add_dependency (val, lim_data, loop, false))
768 return false;
769 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
770 if (def_data)
772 min_cost = MIN (min_cost, def_data->cost);
773 total_cost += def_data->cost;
777 lim_data->cost += min_cost;
779 if (gimple_phi_num_args (stmt) > 1)
781 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
782 gimple cond;
783 if (gsi_end_p (gsi_last_bb (dom)))
784 return false;
785 cond = gsi_stmt (gsi_last_bb (dom));
786 if (gimple_code (cond) != GIMPLE_COND)
787 return false;
788 /* Verify that this is an extended form of a diamond and
789 the PHI arguments are completely controlled by the
790 predicate in DOM. */
791 if (!extract_true_false_args_from_phi (dom, stmt, NULL, NULL))
792 return false;
794 /* Fold in dependencies and cost of the condition. */
795 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
797 if (!add_dependency (val, lim_data, loop, false))
798 return false;
799 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
800 if (def_data)
801 total_cost += def_data->cost;
804 /* We want to avoid unconditionally executing very expensive
805 operations. As costs for our dependencies cannot be
806 negative just claim we are not invariand for this case.
807 We also are not sure whether the control-flow inside the
808 loop will vanish. */
809 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
810 && !(min_cost != 0
811 && total_cost / min_cost <= 2))
812 return false;
814 /* Assume that the control-flow in the loop will vanish.
815 ??? We should verify this and not artificially increase
816 the cost if that is not the case. */
817 lim_data->cost += stmt_cost (stmt);
820 return true;
822 else
823 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
824 if (!add_dependency (val, lim_data, loop, true))
825 return false;
827 if (gimple_vuse (stmt))
829 mem_ref_p ref = mem_ref_in_stmt (stmt);
831 if (ref)
833 lim_data->max_loop
834 = outermost_indep_loop (lim_data->max_loop, loop, ref);
835 if (!lim_data->max_loop)
836 return false;
838 else
840 if ((val = gimple_vuse (stmt)) != NULL_TREE)
842 if (!add_dependency (val, lim_data, loop, false))
843 return false;
848 lim_data->cost += stmt_cost (stmt);
850 return true;
853 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
854 and that one of the operands of this statement is computed by STMT.
855 Ensure that STMT (together with all the statements that define its
856 operands) is hoisted at least out of the loop LEVEL. */
858 static void
859 set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
861 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
862 struct depend *dep;
863 struct lim_aux_data *lim_data;
865 stmt_loop = find_common_loop (orig_loop, stmt_loop);
866 lim_data = get_lim_data (stmt);
867 if (lim_data != NULL && lim_data->tgt_loop != NULL)
868 stmt_loop = find_common_loop (stmt_loop,
869 loop_outer (lim_data->tgt_loop));
870 if (flow_loop_nested_p (stmt_loop, level))
871 return;
873 gcc_assert (level == lim_data->max_loop
874 || flow_loop_nested_p (lim_data->max_loop, level));
876 lim_data->tgt_loop = level;
877 for (dep = lim_data->depends; dep; dep = dep->next)
878 set_level (dep->stmt, orig_loop, level);
881 /* Determines an outermost loop from that we want to hoist the statement STMT.
882 For now we chose the outermost possible loop. TODO -- use profiling
883 information to set it more sanely. */
885 static void
886 set_profitable_level (gimple stmt)
888 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
891 /* Returns true if STMT is a call that has side effects. */
893 static bool
894 nonpure_call_p (gimple stmt)
896 if (gimple_code (stmt) != GIMPLE_CALL)
897 return false;
899 return gimple_has_side_effects (stmt);
902 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
904 static gimple
905 rewrite_reciprocal (gimple_stmt_iterator *bsi)
907 gimple stmt, stmt1, stmt2;
908 tree var, name, lhs, type;
909 tree real_one;
910 gimple_stmt_iterator gsi;
912 stmt = gsi_stmt (*bsi);
913 lhs = gimple_assign_lhs (stmt);
914 type = TREE_TYPE (lhs);
916 var = create_tmp_var (type, "reciptmp");
917 add_referenced_var (var);
918 DECL_GIMPLE_REG_P (var) = 1;
920 real_one = build_one_cst (type);
922 stmt1 = gimple_build_assign_with_ops (RDIV_EXPR,
923 var, real_one, gimple_assign_rhs2 (stmt));
924 name = make_ssa_name (var, stmt1);
925 gimple_assign_set_lhs (stmt1, name);
927 stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
928 gimple_assign_rhs1 (stmt));
930 /* Replace division stmt with reciprocal and multiply stmts.
931 The multiply stmt is not invariant, so update iterator
932 and avoid rescanning. */
933 gsi = *bsi;
934 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
935 gsi_replace (&gsi, stmt2, true);
937 /* Continue processing with invariant reciprocal statement. */
938 return stmt1;
941 /* Check if the pattern at *BSI is a bittest of the form
942 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
944 static gimple
945 rewrite_bittest (gimple_stmt_iterator *bsi)
947 gimple stmt, use_stmt, stmt1, stmt2;
948 tree lhs, var, name, t, a, b;
949 use_operand_p use;
951 stmt = gsi_stmt (*bsi);
952 lhs = gimple_assign_lhs (stmt);
954 /* Verify that the single use of lhs is a comparison against zero. */
955 if (TREE_CODE (lhs) != SSA_NAME
956 || !single_imm_use (lhs, &use, &use_stmt)
957 || gimple_code (use_stmt) != GIMPLE_COND)
958 return stmt;
959 if (gimple_cond_lhs (use_stmt) != lhs
960 || (gimple_cond_code (use_stmt) != NE_EXPR
961 && gimple_cond_code (use_stmt) != EQ_EXPR)
962 || !integer_zerop (gimple_cond_rhs (use_stmt)))
963 return stmt;
965 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
966 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
967 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
968 return stmt;
970 /* There is a conversion in between possibly inserted by fold. */
971 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
973 t = gimple_assign_rhs1 (stmt1);
974 if (TREE_CODE (t) != SSA_NAME
975 || !has_single_use (t))
976 return stmt;
977 stmt1 = SSA_NAME_DEF_STMT (t);
978 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
979 return stmt;
982 /* Verify that B is loop invariant but A is not. Verify that with
983 all the stmt walking we are still in the same loop. */
984 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
985 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
986 return stmt;
988 a = gimple_assign_rhs1 (stmt1);
989 b = gimple_assign_rhs2 (stmt1);
991 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
992 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
994 gimple_stmt_iterator rsi;
996 /* 1 << B */
997 var = create_tmp_var (TREE_TYPE (a), "shifttmp");
998 add_referenced_var (var);
999 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
1000 build_int_cst (TREE_TYPE (a), 1), b);
1001 stmt1 = gimple_build_assign (var, t);
1002 name = make_ssa_name (var, stmt1);
1003 gimple_assign_set_lhs (stmt1, name);
1005 /* A & (1 << B) */
1006 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
1007 stmt2 = gimple_build_assign (var, t);
1008 name = make_ssa_name (var, stmt2);
1009 gimple_assign_set_lhs (stmt2, name);
1011 /* Replace the SSA_NAME we compare against zero. Adjust
1012 the type of zero accordingly. */
1013 SET_USE (use, name);
1014 gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0));
1016 /* Don't use gsi_replace here, none of the new assignments sets
1017 the variable originally set in stmt. Move bsi to stmt1, and
1018 then remove the original stmt, so that we get a chance to
1019 retain debug info for it. */
1020 rsi = *bsi;
1021 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
1022 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
1023 gsi_remove (&rsi, true);
1025 return stmt1;
1028 return stmt;
1032 /* Determine the outermost loops in that statements in basic block BB are
1033 invariant, and record them to the LIM_DATA associated with the statements.
1034 Callback for walk_dominator_tree. */
1036 static void
1037 determine_invariantness_stmt (struct dom_walk_data *dw_data ATTRIBUTE_UNUSED,
1038 basic_block bb)
1040 enum move_pos pos;
1041 gimple_stmt_iterator bsi;
1042 gimple stmt;
1043 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1044 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
1045 struct lim_aux_data *lim_data;
1047 if (!loop_outer (bb->loop_father))
1048 return;
1050 if (dump_file && (dump_flags & TDF_DETAILS))
1051 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1052 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1054 /* Look at PHI nodes, but only if there is at most two.
1055 ??? We could relax this further by post-processing the inserted
1056 code and transforming adjacent cond-exprs with the same predicate
1057 to control flow again. */
1058 bsi = gsi_start_phis (bb);
1059 if (!gsi_end_p (bsi)
1060 && ((gsi_next (&bsi), gsi_end_p (bsi))
1061 || (gsi_next (&bsi), gsi_end_p (bsi))))
1062 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1064 stmt = gsi_stmt (bsi);
1066 pos = movement_possibility (stmt);
1067 if (pos == MOVE_IMPOSSIBLE)
1068 continue;
1070 lim_data = init_lim_data (stmt);
1071 lim_data->always_executed_in = outermost;
1073 if (!determine_max_movement (stmt, false))
1075 lim_data->max_loop = NULL;
1076 continue;
1079 if (dump_file && (dump_flags & TDF_DETAILS))
1081 print_gimple_stmt (dump_file, stmt, 2, 0);
1082 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1083 loop_depth (lim_data->max_loop),
1084 lim_data->cost);
1087 if (lim_data->cost >= LIM_EXPENSIVE)
1088 set_profitable_level (stmt);
1091 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1093 stmt = gsi_stmt (bsi);
1095 pos = movement_possibility (stmt);
1096 if (pos == MOVE_IMPOSSIBLE)
1098 if (nonpure_call_p (stmt))
1100 maybe_never = true;
1101 outermost = NULL;
1103 /* Make sure to note always_executed_in for stores to make
1104 store-motion work. */
1105 else if (stmt_makes_single_store (stmt))
1107 struct lim_aux_data *lim_data = init_lim_data (stmt);
1108 lim_data->always_executed_in = outermost;
1110 continue;
1113 if (is_gimple_assign (stmt)
1114 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1115 == GIMPLE_BINARY_RHS))
1117 tree op0 = gimple_assign_rhs1 (stmt);
1118 tree op1 = gimple_assign_rhs2 (stmt);
1119 struct loop *ol1 = outermost_invariant_loop (op1,
1120 loop_containing_stmt (stmt));
1122 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1123 to be hoisted out of loop, saving expensive divide. */
1124 if (pos == MOVE_POSSIBLE
1125 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1126 && flag_unsafe_math_optimizations
1127 && !flag_trapping_math
1128 && ol1 != NULL
1129 && outermost_invariant_loop (op0, ol1) == NULL)
1130 stmt = rewrite_reciprocal (&bsi);
1132 /* If the shift count is invariant, convert (A >> B) & 1 to
1133 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1134 saving an expensive shift. */
1135 if (pos == MOVE_POSSIBLE
1136 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1137 && integer_onep (op1)
1138 && TREE_CODE (op0) == SSA_NAME
1139 && has_single_use (op0))
1140 stmt = rewrite_bittest (&bsi);
1143 lim_data = init_lim_data (stmt);
1144 lim_data->always_executed_in = outermost;
1146 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1147 continue;
1149 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1151 lim_data->max_loop = NULL;
1152 continue;
1155 if (dump_file && (dump_flags & TDF_DETAILS))
1157 print_gimple_stmt (dump_file, stmt, 2, 0);
1158 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1159 loop_depth (lim_data->max_loop),
1160 lim_data->cost);
1163 if (lim_data->cost >= LIM_EXPENSIVE)
1164 set_profitable_level (stmt);
1168 /* For each statement determines the outermost loop in that it is invariant,
1169 statements on whose motion it depends and the cost of the computation.
1170 This information is stored to the LIM_DATA structure associated with
1171 each statement. */
1173 static void
1174 determine_invariantness (void)
1176 struct dom_walk_data walk_data;
1178 memset (&walk_data, 0, sizeof (struct dom_walk_data));
1179 walk_data.dom_direction = CDI_DOMINATORS;
1180 walk_data.before_dom_children = determine_invariantness_stmt;
1182 init_walk_dominator_tree (&walk_data);
1183 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1184 fini_walk_dominator_tree (&walk_data);
1187 /* Hoist the statements in basic block BB out of the loops prescribed by
1188 data stored in LIM_DATA structures associated with each statement. Callback
1189 for walk_dominator_tree. */
1191 static void
1192 move_computations_stmt (struct dom_walk_data *dw_data,
1193 basic_block bb)
1195 struct loop *level;
1196 gimple_stmt_iterator bsi;
1197 gimple stmt;
1198 unsigned cost = 0;
1199 struct lim_aux_data *lim_data;
1201 if (!loop_outer (bb->loop_father))
1202 return;
1204 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1206 gimple new_stmt;
1207 stmt = gsi_stmt (bsi);
1209 lim_data = get_lim_data (stmt);
1210 if (lim_data == NULL)
1212 gsi_next (&bsi);
1213 continue;
1216 cost = lim_data->cost;
1217 level = lim_data->tgt_loop;
1218 clear_lim_data (stmt);
1220 if (!level)
1222 gsi_next (&bsi);
1223 continue;
1226 if (dump_file && (dump_flags & TDF_DETAILS))
1228 fprintf (dump_file, "Moving PHI node\n");
1229 print_gimple_stmt (dump_file, stmt, 0, 0);
1230 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1231 cost, level->num);
1234 if (gimple_phi_num_args (stmt) == 1)
1236 tree arg = PHI_ARG_DEF (stmt, 0);
1237 new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg),
1238 gimple_phi_result (stmt),
1239 arg, NULL_TREE);
1240 SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
1242 else
1244 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1245 gimple cond = gsi_stmt (gsi_last_bb (dom));
1246 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1247 /* Get the PHI arguments corresponding to the true and false
1248 edges of COND. */
1249 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1250 gcc_assert (arg0 && arg1);
1251 t = build2 (gimple_cond_code (cond), boolean_type_node,
1252 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1253 t = build3 (COND_EXPR, TREE_TYPE (gimple_phi_result (stmt)),
1254 t, arg0, arg1);
1255 new_stmt = gimple_build_assign_with_ops (COND_EXPR,
1256 gimple_phi_result (stmt),
1257 t, NULL_TREE);
1258 SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
1259 *((unsigned int *)(dw_data->global_data)) |= TODO_cleanup_cfg;
1261 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1262 remove_phi_node (&bsi, false);
1265 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1267 stmt = gsi_stmt (bsi);
1269 lim_data = get_lim_data (stmt);
1270 if (lim_data == NULL)
1272 gsi_next (&bsi);
1273 continue;
1276 cost = lim_data->cost;
1277 level = lim_data->tgt_loop;
1278 clear_lim_data (stmt);
1280 if (!level)
1282 gsi_next (&bsi);
1283 continue;
1286 /* We do not really want to move conditionals out of the loop; we just
1287 placed it here to force its operands to be moved if necessary. */
1288 if (gimple_code (stmt) == GIMPLE_COND)
1289 continue;
1291 if (dump_file && (dump_flags & TDF_DETAILS))
1293 fprintf (dump_file, "Moving statement\n");
1294 print_gimple_stmt (dump_file, stmt, 0, 0);
1295 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1296 cost, level->num);
1299 mark_virtual_ops_for_renaming (stmt);
1300 gsi_insert_on_edge (loop_preheader_edge (level), stmt);
1301 gsi_remove (&bsi, false);
1305 /* Hoist the statements out of the loops prescribed by data stored in
1306 LIM_DATA structures associated with each statement.*/
1308 static unsigned int
1309 move_computations (void)
1311 struct dom_walk_data walk_data;
1312 unsigned int todo = 0;
1314 memset (&walk_data, 0, sizeof (struct dom_walk_data));
1315 walk_data.global_data = &todo;
1316 walk_data.dom_direction = CDI_DOMINATORS;
1317 walk_data.before_dom_children = move_computations_stmt;
1319 init_walk_dominator_tree (&walk_data);
1320 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1321 fini_walk_dominator_tree (&walk_data);
1323 gsi_commit_edge_inserts ();
1324 if (need_ssa_update_p (cfun))
1325 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1327 return todo;
1330 /* Checks whether the statement defining variable *INDEX can be hoisted
1331 out of the loop passed in DATA. Callback for for_each_index. */
1333 static bool
1334 may_move_till (tree ref, tree *index, void *data)
1336 struct loop *loop = (struct loop *) data, *max_loop;
1338 /* If REF is an array reference, check also that the step and the lower
1339 bound is invariant in LOOP. */
1340 if (TREE_CODE (ref) == ARRAY_REF)
1342 tree step = TREE_OPERAND (ref, 3);
1343 tree lbound = TREE_OPERAND (ref, 2);
1345 max_loop = outermost_invariant_loop (step, loop);
1346 if (!max_loop)
1347 return false;
1349 max_loop = outermost_invariant_loop (lbound, loop);
1350 if (!max_loop)
1351 return false;
1354 max_loop = outermost_invariant_loop (*index, loop);
1355 if (!max_loop)
1356 return false;
1358 return true;
1361 /* If OP is SSA NAME, force the statement that defines it to be
1362 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1364 static void
1365 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1367 gimple stmt;
1369 if (!op
1370 || is_gimple_min_invariant (op))
1371 return;
1373 gcc_assert (TREE_CODE (op) == SSA_NAME);
1375 stmt = SSA_NAME_DEF_STMT (op);
1376 if (gimple_nop_p (stmt))
1377 return;
1379 set_level (stmt, orig_loop, loop);
1382 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1383 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1384 for_each_index. */
1386 struct fmt_data
1388 struct loop *loop;
1389 struct loop *orig_loop;
1392 static bool
1393 force_move_till (tree ref, tree *index, void *data)
1395 struct fmt_data *fmt_data = (struct fmt_data *) data;
1397 if (TREE_CODE (ref) == ARRAY_REF)
1399 tree step = TREE_OPERAND (ref, 3);
1400 tree lbound = TREE_OPERAND (ref, 2);
1402 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1403 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1406 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1408 return true;
1411 /* A hash function for struct mem_ref object OBJ. */
1413 static hashval_t
1414 memref_hash (const void *obj)
1416 const struct mem_ref *const mem = (const struct mem_ref *) obj;
1418 return mem->hash;
1421 /* An equality function for struct mem_ref object OBJ1 with
1422 memory reference OBJ2. */
1424 static int
1425 memref_eq (const void *obj1, const void *obj2)
1427 const struct mem_ref *const mem1 = (const struct mem_ref *) obj1;
1429 return operand_equal_p (mem1->mem, (const_tree) obj2, 0);
1432 /* Releases list of memory reference locations ACCS. */
1434 static void
1435 free_mem_ref_locs (mem_ref_locs_p accs)
1437 unsigned i;
1438 mem_ref_loc_p loc;
1440 if (!accs)
1441 return;
1443 FOR_EACH_VEC_ELT (mem_ref_loc_p, accs->locs, i, loc)
1444 free (loc);
1445 VEC_free (mem_ref_loc_p, heap, accs->locs);
1446 free (accs);
1449 /* A function to free the mem_ref object OBJ. */
1451 static void
1452 memref_free (void *obj)
1454 struct mem_ref *const mem = (struct mem_ref *) obj;
1455 unsigned i;
1456 mem_ref_locs_p accs;
1458 BITMAP_FREE (mem->stored);
1459 BITMAP_FREE (mem->indep_loop);
1460 BITMAP_FREE (mem->dep_loop);
1461 BITMAP_FREE (mem->indep_ref);
1462 BITMAP_FREE (mem->dep_ref);
1464 FOR_EACH_VEC_ELT (mem_ref_locs_p, mem->accesses_in_loop, i, accs)
1465 free_mem_ref_locs (accs);
1466 VEC_free (mem_ref_locs_p, heap, mem->accesses_in_loop);
1468 BITMAP_FREE (mem->vops);
1469 free (mem);
1472 /* Allocates and returns a memory reference description for MEM whose hash
1473 value is HASH and id is ID. */
1475 static mem_ref_p
1476 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1478 mem_ref_p ref = XNEW (struct mem_ref);
1479 ref->mem = mem;
1480 ref->id = id;
1481 ref->hash = hash;
1482 ref->stored = BITMAP_ALLOC (NULL);
1483 ref->indep_loop = BITMAP_ALLOC (NULL);
1484 ref->dep_loop = BITMAP_ALLOC (NULL);
1485 ref->indep_ref = BITMAP_ALLOC (NULL);
1486 ref->dep_ref = BITMAP_ALLOC (NULL);
1487 ref->accesses_in_loop = NULL;
1488 ref->vops = BITMAP_ALLOC (NULL);
1490 return ref;
1493 /* Allocates and returns the new list of locations. */
1495 static mem_ref_locs_p
1496 mem_ref_locs_alloc (void)
1498 mem_ref_locs_p accs = XNEW (struct mem_ref_locs);
1499 accs->locs = NULL;
1500 return accs;
1503 /* Records memory reference location *LOC in LOOP to the memory reference
1504 description REF. The reference occurs in statement STMT. */
1506 static void
1507 record_mem_ref_loc (mem_ref_p ref, struct loop *loop, gimple stmt, tree *loc)
1509 mem_ref_loc_p aref = XNEW (struct mem_ref_loc);
1510 mem_ref_locs_p accs;
1511 bitmap ril = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1513 if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
1514 <= (unsigned) loop->num)
1515 VEC_safe_grow_cleared (mem_ref_locs_p, heap, ref->accesses_in_loop,
1516 loop->num + 1);
1517 accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
1518 if (!accs)
1520 accs = mem_ref_locs_alloc ();
1521 VEC_replace (mem_ref_locs_p, ref->accesses_in_loop, loop->num, accs);
1524 aref->stmt = stmt;
1525 aref->ref = loc;
1527 VEC_safe_push (mem_ref_loc_p, heap, accs->locs, aref);
1528 bitmap_set_bit (ril, ref->id);
1531 /* Marks reference REF as stored in LOOP. */
1533 static void
1534 mark_ref_stored (mem_ref_p ref, struct loop *loop)
1536 for (;
1537 loop != current_loops->tree_root
1538 && !bitmap_bit_p (ref->stored, loop->num);
1539 loop = loop_outer (loop))
1540 bitmap_set_bit (ref->stored, loop->num);
1543 /* Gathers memory references in statement STMT in LOOP, storing the
1544 information about them in the memory_accesses structure. Marks
1545 the vops accessed through unrecognized statements there as
1546 well. */
1548 static void
1549 gather_mem_refs_stmt (struct loop *loop, gimple stmt)
1551 tree *mem = NULL;
1552 hashval_t hash;
1553 PTR *slot;
1554 mem_ref_p ref;
1555 tree vname;
1556 bool is_stored;
1557 bitmap clvops;
1558 unsigned id;
1560 if (!gimple_vuse (stmt))
1561 return;
1563 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1564 if (!mem)
1565 goto fail;
1567 hash = iterative_hash_expr (*mem, 0);
1568 slot = htab_find_slot_with_hash (memory_accesses.refs, *mem, hash, INSERT);
1570 if (*slot)
1572 ref = (mem_ref_p) *slot;
1573 id = ref->id;
1575 else
1577 id = VEC_length (mem_ref_p, memory_accesses.refs_list);
1578 ref = mem_ref_alloc (*mem, hash, id);
1579 VEC_safe_push (mem_ref_p, heap, memory_accesses.refs_list, ref);
1580 *slot = ref;
1582 if (dump_file && (dump_flags & TDF_DETAILS))
1584 fprintf (dump_file, "Memory reference %u: ", id);
1585 print_generic_expr (dump_file, ref->mem, TDF_SLIM);
1586 fprintf (dump_file, "\n");
1589 if (is_stored)
1590 mark_ref_stored (ref, loop);
1592 if ((vname = gimple_vuse (stmt)) != NULL_TREE)
1593 bitmap_set_bit (ref->vops, DECL_UID (SSA_NAME_VAR (vname)));
1594 record_mem_ref_loc (ref, loop, stmt, mem);
1595 return;
1597 fail:
1598 clvops = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num);
1599 if ((vname = gimple_vuse (stmt)) != NULL_TREE)
1600 bitmap_set_bit (clvops, DECL_UID (SSA_NAME_VAR (vname)));
1603 /* Gathers memory references in loops. */
1605 static void
1606 gather_mem_refs_in_loops (void)
1608 gimple_stmt_iterator bsi;
1609 basic_block bb;
1610 struct loop *loop;
1611 loop_iterator li;
1612 bitmap clvo, clvi;
1613 bitmap lrefs, alrefs, alrefso;
1615 FOR_EACH_BB (bb)
1617 loop = bb->loop_father;
1618 if (loop == current_loops->tree_root)
1619 continue;
1621 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1622 gather_mem_refs_stmt (loop, gsi_stmt (bsi));
1625 /* Propagate the information about clobbered vops and accessed memory
1626 references up the loop hierarchy. */
1627 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1629 lrefs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1630 alrefs = VEC_index (bitmap, memory_accesses.all_refs_in_loop, loop->num);
1631 bitmap_ior_into (alrefs, lrefs);
1633 if (loop_outer (loop) == current_loops->tree_root)
1634 continue;
1636 clvi = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num);
1637 clvo = VEC_index (bitmap, memory_accesses.clobbered_vops,
1638 loop_outer (loop)->num);
1639 bitmap_ior_into (clvo, clvi);
1641 alrefso = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
1642 loop_outer (loop)->num);
1643 bitmap_ior_into (alrefso, alrefs);
1647 /* Element of the hash table that maps vops to memory references. */
1649 struct vop_to_refs_elt
1651 /* DECL_UID of the vop. */
1652 unsigned uid;
1654 /* List of the all references. */
1655 bitmap refs_all;
1657 /* List of stored references. */
1658 bitmap refs_stored;
1661 /* A hash function for struct vop_to_refs_elt object OBJ. */
1663 static hashval_t
1664 vtoe_hash (const void *obj)
1666 const struct vop_to_refs_elt *const vtoe =
1667 (const struct vop_to_refs_elt *) obj;
1669 return vtoe->uid;
1672 /* An equality function for struct vop_to_refs_elt object OBJ1 with
1673 uid of a vop OBJ2. */
1675 static int
1676 vtoe_eq (const void *obj1, const void *obj2)
1678 const struct vop_to_refs_elt *const vtoe =
1679 (const struct vop_to_refs_elt *) obj1;
1680 const unsigned *const uid = (const unsigned *) obj2;
1682 return vtoe->uid == *uid;
1685 /* A function to free the struct vop_to_refs_elt object. */
1687 static void
1688 vtoe_free (void *obj)
1690 struct vop_to_refs_elt *const vtoe =
1691 (struct vop_to_refs_elt *) obj;
1693 BITMAP_FREE (vtoe->refs_all);
1694 BITMAP_FREE (vtoe->refs_stored);
1695 free (vtoe);
1698 /* Records REF to hashtable VOP_TO_REFS for the index VOP. STORED is true
1699 if the reference REF is stored. */
1701 static void
1702 record_vop_access (htab_t vop_to_refs, unsigned vop, unsigned ref, bool stored)
1704 void **slot = htab_find_slot_with_hash (vop_to_refs, &vop, vop, INSERT);
1705 struct vop_to_refs_elt *vtoe;
1707 if (!*slot)
1709 vtoe = XNEW (struct vop_to_refs_elt);
1710 vtoe->uid = vop;
1711 vtoe->refs_all = BITMAP_ALLOC (NULL);
1712 vtoe->refs_stored = BITMAP_ALLOC (NULL);
1713 *slot = vtoe;
1715 else
1716 vtoe = (struct vop_to_refs_elt *) *slot;
1718 bitmap_set_bit (vtoe->refs_all, ref);
1719 if (stored)
1720 bitmap_set_bit (vtoe->refs_stored, ref);
1723 /* Returns the set of references that access VOP according to the table
1724 VOP_TO_REFS. */
1726 static bitmap
1727 get_vop_accesses (htab_t vop_to_refs, unsigned vop)
1729 struct vop_to_refs_elt *const vtoe =
1730 (struct vop_to_refs_elt *) htab_find_with_hash (vop_to_refs, &vop, vop);
1731 return vtoe->refs_all;
1734 /* Returns the set of stores that access VOP according to the table
1735 VOP_TO_REFS. */
1737 static bitmap
1738 get_vop_stores (htab_t vop_to_refs, unsigned vop)
1740 struct vop_to_refs_elt *const vtoe =
1741 (struct vop_to_refs_elt *) htab_find_with_hash (vop_to_refs, &vop, vop);
1742 return vtoe->refs_stored;
1745 /* Adds REF to mapping from virtual operands to references in LOOP. */
1747 static void
1748 add_vop_ref_mapping (struct loop *loop, mem_ref_p ref)
1750 htab_t map = VEC_index (htab_t, memory_accesses.vop_ref_map, loop->num);
1751 bool stored = bitmap_bit_p (ref->stored, loop->num);
1752 bitmap clobbers = VEC_index (bitmap, memory_accesses.clobbered_vops,
1753 loop->num);
1754 bitmap_iterator bi;
1755 unsigned vop;
1757 EXECUTE_IF_AND_COMPL_IN_BITMAP (ref->vops, clobbers, 0, vop, bi)
1759 record_vop_access (map, vop, ref->id, stored);
1763 /* Create a mapping from virtual operands to references that touch them
1764 in LOOP. */
1766 static void
1767 create_vop_ref_mapping_loop (struct loop *loop)
1769 bitmap refs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1770 struct loop *sloop;
1771 bitmap_iterator bi;
1772 unsigned i;
1773 mem_ref_p ref;
1775 EXECUTE_IF_SET_IN_BITMAP (refs, 0, i, bi)
1777 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
1778 for (sloop = loop; sloop != current_loops->tree_root; sloop = loop_outer (sloop))
1779 add_vop_ref_mapping (sloop, ref);
1783 /* For each non-clobbered virtual operand and each loop, record the memory
1784 references in this loop that touch the operand. */
1786 static void
1787 create_vop_ref_mapping (void)
1789 loop_iterator li;
1790 struct loop *loop;
1792 FOR_EACH_LOOP (li, loop, 0)
1794 create_vop_ref_mapping_loop (loop);
1798 /* Gathers information about memory accesses in the loops. */
1800 static void
1801 analyze_memory_references (void)
1803 unsigned i;
1804 bitmap empty;
1805 htab_t hempty;
1807 memory_accesses.refs
1808 = htab_create (100, memref_hash, memref_eq, memref_free);
1809 memory_accesses.refs_list = NULL;
1810 memory_accesses.refs_in_loop = VEC_alloc (bitmap, heap,
1811 number_of_loops ());
1812 memory_accesses.all_refs_in_loop = VEC_alloc (bitmap, heap,
1813 number_of_loops ());
1814 memory_accesses.clobbered_vops = VEC_alloc (bitmap, heap,
1815 number_of_loops ());
1816 memory_accesses.vop_ref_map = VEC_alloc (htab_t, heap,
1817 number_of_loops ());
1819 for (i = 0; i < number_of_loops (); i++)
1821 empty = BITMAP_ALLOC (NULL);
1822 VEC_quick_push (bitmap, memory_accesses.refs_in_loop, empty);
1823 empty = BITMAP_ALLOC (NULL);
1824 VEC_quick_push (bitmap, memory_accesses.all_refs_in_loop, empty);
1825 empty = BITMAP_ALLOC (NULL);
1826 VEC_quick_push (bitmap, memory_accesses.clobbered_vops, empty);
1827 hempty = htab_create (10, vtoe_hash, vtoe_eq, vtoe_free);
1828 VEC_quick_push (htab_t, memory_accesses.vop_ref_map, hempty);
1831 memory_accesses.ttae_cache = NULL;
1833 gather_mem_refs_in_loops ();
1834 create_vop_ref_mapping ();
1837 /* Returns true if a region of size SIZE1 at position 0 and a region of
1838 size SIZE2 at position DIFF cannot overlap. */
1840 static bool
1841 cannot_overlap_p (aff_tree *diff, double_int size1, double_int size2)
1843 double_int d, bound;
1845 /* Unless the difference is a constant, we fail. */
1846 if (diff->n != 0)
1847 return false;
1849 d = diff->offset;
1850 if (double_int_negative_p (d))
1852 /* The second object is before the first one, we succeed if the last
1853 element of the second object is before the start of the first one. */
1854 bound = double_int_add (d, double_int_add (size2, double_int_minus_one));
1855 return double_int_negative_p (bound);
1857 else
1859 /* We succeed if the second object starts after the first one ends. */
1860 return double_int_scmp (size1, d) <= 0;
1864 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1865 tree_to_aff_combination_expand. */
1867 static bool
1868 mem_refs_may_alias_p (tree mem1, tree mem2, struct pointer_map_t **ttae_cache)
1870 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1871 object and their offset differ in such a way that the locations cannot
1872 overlap, then they cannot alias. */
1873 double_int size1, size2;
1874 aff_tree off1, off2;
1876 /* Perform basic offset and type-based disambiguation. */
1877 if (!refs_may_alias_p (mem1, mem2))
1878 return false;
1880 /* The expansion of addresses may be a bit expensive, thus we only do
1881 the check at -O2 and higher optimization levels. */
1882 if (optimize < 2)
1883 return true;
1885 get_inner_reference_aff (mem1, &off1, &size1);
1886 get_inner_reference_aff (mem2, &off2, &size2);
1887 aff_combination_expand (&off1, ttae_cache);
1888 aff_combination_expand (&off2, ttae_cache);
1889 aff_combination_scale (&off1, double_int_minus_one);
1890 aff_combination_add (&off2, &off1);
1892 if (cannot_overlap_p (&off2, size1, size2))
1893 return false;
1895 return true;
1898 /* Rewrites location LOC by TMP_VAR. */
1900 static void
1901 rewrite_mem_ref_loc (mem_ref_loc_p loc, tree tmp_var)
1903 mark_virtual_ops_for_renaming (loc->stmt);
1904 *loc->ref = tmp_var;
1905 update_stmt (loc->stmt);
1908 /* Adds all locations of REF in LOOP and its subloops to LOCS. */
1910 static void
1911 get_all_locs_in_loop (struct loop *loop, mem_ref_p ref,
1912 VEC (mem_ref_loc_p, heap) **locs)
1914 mem_ref_locs_p accs;
1915 unsigned i;
1916 mem_ref_loc_p loc;
1917 bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
1918 loop->num);
1919 struct loop *subloop;
1921 if (!bitmap_bit_p (refs, ref->id))
1922 return;
1924 if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
1925 > (unsigned) loop->num)
1927 accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
1928 if (accs)
1930 FOR_EACH_VEC_ELT (mem_ref_loc_p, accs->locs, i, loc)
1931 VEC_safe_push (mem_ref_loc_p, heap, *locs, loc);
1935 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
1936 get_all_locs_in_loop (subloop, ref, locs);
1939 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1941 static void
1942 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
1944 unsigned i;
1945 mem_ref_loc_p loc;
1946 VEC (mem_ref_loc_p, heap) *locs = NULL;
1948 get_all_locs_in_loop (loop, ref, &locs);
1949 FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
1950 rewrite_mem_ref_loc (loc, tmp_var);
1951 VEC_free (mem_ref_loc_p, heap, locs);
1954 /* The name and the length of the currently generated variable
1955 for lsm. */
1956 #define MAX_LSM_NAME_LENGTH 40
1957 static char lsm_tmp_name[MAX_LSM_NAME_LENGTH + 1];
1958 static int lsm_tmp_name_length;
1960 /* Adds S to lsm_tmp_name. */
1962 static void
1963 lsm_tmp_name_add (const char *s)
1965 int l = strlen (s) + lsm_tmp_name_length;
1966 if (l > MAX_LSM_NAME_LENGTH)
1967 return;
1969 strcpy (lsm_tmp_name + lsm_tmp_name_length, s);
1970 lsm_tmp_name_length = l;
1973 /* Stores the name for temporary variable that replaces REF to
1974 lsm_tmp_name. */
1976 static void
1977 gen_lsm_tmp_name (tree ref)
1979 const char *name;
1981 switch (TREE_CODE (ref))
1983 case MEM_REF:
1984 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1985 lsm_tmp_name_add ("_");
1986 break;
1988 case ADDR_EXPR:
1989 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1990 break;
1992 case BIT_FIELD_REF:
1993 case VIEW_CONVERT_EXPR:
1994 case ARRAY_RANGE_REF:
1995 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1996 break;
1998 case REALPART_EXPR:
1999 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
2000 lsm_tmp_name_add ("_RE");
2001 break;
2003 case IMAGPART_EXPR:
2004 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
2005 lsm_tmp_name_add ("_IM");
2006 break;
2008 case COMPONENT_REF:
2009 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
2010 lsm_tmp_name_add ("_");
2011 name = get_name (TREE_OPERAND (ref, 1));
2012 if (!name)
2013 name = "F";
2014 lsm_tmp_name_add (name);
2015 break;
2017 case ARRAY_REF:
2018 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
2019 lsm_tmp_name_add ("_I");
2020 break;
2022 case SSA_NAME:
2023 ref = SSA_NAME_VAR (ref);
2024 /* Fallthru. */
2026 case VAR_DECL:
2027 case PARM_DECL:
2028 name = get_name (ref);
2029 if (!name)
2030 name = "D";
2031 lsm_tmp_name_add (name);
2032 break;
2034 case STRING_CST:
2035 lsm_tmp_name_add ("S");
2036 break;
2038 case RESULT_DECL:
2039 lsm_tmp_name_add ("R");
2040 break;
2042 case INTEGER_CST:
2043 /* Nothing. */
2044 break;
2046 default:
2047 gcc_unreachable ();
2051 /* Determines name for temporary variable that replaces REF.
2052 The name is accumulated into the lsm_tmp_name variable.
2053 N is added to the name of the temporary. */
2055 char *
2056 get_lsm_tmp_name (tree ref, unsigned n)
2058 char ns[2];
2060 lsm_tmp_name_length = 0;
2061 gen_lsm_tmp_name (ref);
2062 lsm_tmp_name_add ("_lsm");
2063 if (n < 10)
2065 ns[0] = '0' + n;
2066 ns[1] = 0;
2067 lsm_tmp_name_add (ns);
2069 return lsm_tmp_name;
2072 /* Executes store motion of memory reference REF from LOOP.
2073 Exits from the LOOP are stored in EXITS. The initialization of the
2074 temporary variable is put to the preheader of the loop, and assignments
2075 to the reference from the temporary variable are emitted to exits. */
2077 static void
2078 execute_sm (struct loop *loop, VEC (edge, heap) *exits, mem_ref_p ref)
2080 tree tmp_var;
2081 unsigned i;
2082 gimple load, store;
2083 struct fmt_data fmt_data;
2084 edge ex;
2085 struct lim_aux_data *lim_data;
2087 if (dump_file && (dump_flags & TDF_DETAILS))
2089 fprintf (dump_file, "Executing store motion of ");
2090 print_generic_expr (dump_file, ref->mem, 0);
2091 fprintf (dump_file, " from loop %d\n", loop->num);
2094 tmp_var = make_rename_temp (TREE_TYPE (ref->mem),
2095 get_lsm_tmp_name (ref->mem, ~0));
2097 fmt_data.loop = loop;
2098 fmt_data.orig_loop = loop;
2099 for_each_index (&ref->mem, force_move_till, &fmt_data);
2101 rewrite_mem_refs (loop, ref, tmp_var);
2103 /* Emit the load & stores. */
2104 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem));
2105 lim_data = init_lim_data (load);
2106 lim_data->max_loop = loop;
2107 lim_data->tgt_loop = loop;
2109 /* Put this into the latch, so that we are sure it will be processed after
2110 all dependencies. */
2111 gsi_insert_on_edge (loop_latch_edge (loop), load);
2113 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2115 store = gimple_build_assign (unshare_expr (ref->mem), tmp_var);
2116 gsi_insert_on_edge (ex, store);
2120 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2121 edges of the LOOP. */
2123 static void
2124 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2125 VEC (edge, heap) *exits)
2127 mem_ref_p ref;
2128 unsigned i;
2129 bitmap_iterator bi;
2131 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2133 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2134 execute_sm (loop, exits, ref);
2138 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2139 make sure REF is always stored to in LOOP. */
2141 static bool
2142 ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
2144 VEC (mem_ref_loc_p, heap) *locs = NULL;
2145 unsigned i;
2146 mem_ref_loc_p loc;
2147 bool ret = false;
2148 struct loop *must_exec;
2149 tree base;
2151 base = get_base_address (ref->mem);
2152 if (INDIRECT_REF_P (base)
2153 || TREE_CODE (base) == MEM_REF)
2154 base = TREE_OPERAND (base, 0);
2156 get_all_locs_in_loop (loop, ref, &locs);
2157 FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
2159 if (!get_lim_data (loc->stmt))
2160 continue;
2162 /* If we require an always executed store make sure the statement
2163 stores to the reference. */
2164 if (stored_p)
2166 tree lhs;
2167 if (!gimple_get_lhs (loc->stmt))
2168 continue;
2169 lhs = get_base_address (gimple_get_lhs (loc->stmt));
2170 if (!lhs)
2171 continue;
2172 if (INDIRECT_REF_P (lhs)
2173 || TREE_CODE (lhs) == MEM_REF)
2174 lhs = TREE_OPERAND (lhs, 0);
2175 if (lhs != base)
2176 continue;
2179 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2180 if (!must_exec)
2181 continue;
2183 if (must_exec == loop
2184 || flow_loop_nested_p (must_exec, loop))
2186 ret = true;
2187 break;
2190 VEC_free (mem_ref_loc_p, heap, locs);
2192 return ret;
2195 /* Returns true if REF1 and REF2 are independent. */
2197 static bool
2198 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
2200 if (ref1 == ref2
2201 || bitmap_bit_p (ref1->indep_ref, ref2->id))
2202 return true;
2203 if (bitmap_bit_p (ref1->dep_ref, ref2->id))
2204 return false;
2206 if (dump_file && (dump_flags & TDF_DETAILS))
2207 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2208 ref1->id, ref2->id);
2210 if (mem_refs_may_alias_p (ref1->mem, ref2->mem,
2211 &memory_accesses.ttae_cache))
2213 bitmap_set_bit (ref1->dep_ref, ref2->id);
2214 bitmap_set_bit (ref2->dep_ref, ref1->id);
2215 if (dump_file && (dump_flags & TDF_DETAILS))
2216 fprintf (dump_file, "dependent.\n");
2217 return false;
2219 else
2221 bitmap_set_bit (ref1->indep_ref, ref2->id);
2222 bitmap_set_bit (ref2->indep_ref, ref1->id);
2223 if (dump_file && (dump_flags & TDF_DETAILS))
2224 fprintf (dump_file, "independent.\n");
2225 return true;
2229 /* Records the information whether REF is independent in LOOP (according
2230 to INDEP). */
2232 static void
2233 record_indep_loop (struct loop *loop, mem_ref_p ref, bool indep)
2235 if (indep)
2236 bitmap_set_bit (ref->indep_loop, loop->num);
2237 else
2238 bitmap_set_bit (ref->dep_loop, loop->num);
2241 /* Returns true if REF is independent on all other memory references in
2242 LOOP. */
2244 static bool
2245 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref)
2247 bitmap clobbers, refs_to_check, refs;
2248 unsigned i;
2249 bitmap_iterator bi;
2250 bool ret = true, stored = bitmap_bit_p (ref->stored, loop->num);
2251 htab_t map;
2252 mem_ref_p aref;
2254 /* If the reference is clobbered, it is not independent. */
2255 clobbers = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num);
2256 if (bitmap_intersect_p (ref->vops, clobbers))
2257 return false;
2259 refs_to_check = BITMAP_ALLOC (NULL);
2261 map = VEC_index (htab_t, memory_accesses.vop_ref_map, loop->num);
2262 EXECUTE_IF_AND_COMPL_IN_BITMAP (ref->vops, clobbers, 0, i, bi)
2264 if (stored)
2265 refs = get_vop_accesses (map, i);
2266 else
2267 refs = get_vop_stores (map, i);
2269 bitmap_ior_into (refs_to_check, refs);
2272 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2274 aref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2275 if (!refs_independent_p (ref, aref))
2277 ret = false;
2278 record_indep_loop (loop, aref, false);
2279 break;
2283 BITMAP_FREE (refs_to_check);
2284 return ret;
2287 /* Returns true if REF is independent on all other memory references in
2288 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2290 static bool
2291 ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
2293 bool ret;
2295 if (bitmap_bit_p (ref->indep_loop, loop->num))
2296 return true;
2297 if (bitmap_bit_p (ref->dep_loop, loop->num))
2298 return false;
2300 ret = ref_indep_loop_p_1 (loop, ref);
2302 if (dump_file && (dump_flags & TDF_DETAILS))
2303 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2304 ref->id, loop->num, ret ? "independent" : "dependent");
2306 record_indep_loop (loop, ref, ret);
2308 return ret;
2311 /* Returns true if we can perform store motion of REF from LOOP. */
2313 static bool
2314 can_sm_ref_p (struct loop *loop, mem_ref_p ref)
2316 tree base;
2318 /* Unless the reference is stored in the loop, there is nothing to do. */
2319 if (!bitmap_bit_p (ref->stored, loop->num))
2320 return false;
2322 /* It should be movable. */
2323 if (!is_gimple_reg_type (TREE_TYPE (ref->mem))
2324 || TREE_THIS_VOLATILE (ref->mem)
2325 || !for_each_index (&ref->mem, may_move_till, loop))
2326 return false;
2328 /* If it can throw fail, we do not properly update EH info. */
2329 if (tree_could_throw_p (ref->mem))
2330 return false;
2332 /* If it can trap, it must be always executed in LOOP.
2333 Readonly memory locations may trap when storing to them, but
2334 tree_could_trap_p is a predicate for rvalues, so check that
2335 explicitly. */
2336 base = get_base_address (ref->mem);
2337 if ((tree_could_trap_p (ref->mem)
2338 || (DECL_P (base) && TREE_READONLY (base)))
2339 && !ref_always_accessed_p (loop, ref, true))
2340 return false;
2342 /* And it must be independent on all other memory references
2343 in LOOP. */
2344 if (!ref_indep_loop_p (loop, ref))
2345 return false;
2347 return true;
2350 /* Marks the references in LOOP for that store motion should be performed
2351 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2352 motion was performed in one of the outer loops. */
2354 static void
2355 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2357 bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
2358 loop->num);
2359 unsigned i;
2360 bitmap_iterator bi;
2361 mem_ref_p ref;
2363 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2365 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2366 if (can_sm_ref_p (loop, ref))
2367 bitmap_set_bit (refs_to_sm, i);
2371 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2372 for a store motion optimization (i.e. whether we can insert statement
2373 on its exits). */
2375 static bool
2376 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2377 VEC (edge, heap) *exits)
2379 unsigned i;
2380 edge ex;
2382 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2383 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2384 return false;
2386 return true;
2389 /* Try to perform store motion for all memory references modified inside
2390 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2391 store motion was executed in one of the outer loops. */
2393 static void
2394 store_motion_loop (struct loop *loop, bitmap sm_executed)
2396 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
2397 struct loop *subloop;
2398 bitmap sm_in_loop = BITMAP_ALLOC (NULL);
2400 if (loop_suitable_for_sm (loop, exits))
2402 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2403 hoist_memory_references (loop, sm_in_loop, exits);
2405 VEC_free (edge, heap, exits);
2407 bitmap_ior_into (sm_executed, sm_in_loop);
2408 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2409 store_motion_loop (subloop, sm_executed);
2410 bitmap_and_compl_into (sm_executed, sm_in_loop);
2411 BITMAP_FREE (sm_in_loop);
2414 /* Try to perform store motion for all memory references modified inside
2415 loops. */
2417 static void
2418 store_motion (void)
2420 struct loop *loop;
2421 bitmap sm_executed = BITMAP_ALLOC (NULL);
2423 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2424 store_motion_loop (loop, sm_executed);
2426 BITMAP_FREE (sm_executed);
2427 gsi_commit_edge_inserts ();
2430 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2431 for each such basic block bb records the outermost loop for that execution
2432 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2433 blocks that contain a nonpure call. */
2435 static void
2436 fill_always_executed_in (struct loop *loop, sbitmap contains_call)
2438 basic_block bb = NULL, *bbs, last = NULL;
2439 unsigned i;
2440 edge e;
2441 struct loop *inn_loop = loop;
2443 if (!loop->header->aux)
2445 bbs = get_loop_body_in_dom_order (loop);
2447 for (i = 0; i < loop->num_nodes; i++)
2449 edge_iterator ei;
2450 bb = bbs[i];
2452 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2453 last = bb;
2455 if (TEST_BIT (contains_call, bb->index))
2456 break;
2458 FOR_EACH_EDGE (e, ei, bb->succs)
2459 if (!flow_bb_inside_loop_p (loop, e->dest))
2460 break;
2461 if (e)
2462 break;
2464 /* A loop might be infinite (TODO use simple loop analysis
2465 to disprove this if possible). */
2466 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2467 break;
2469 if (!flow_bb_inside_loop_p (inn_loop, bb))
2470 break;
2472 if (bb->loop_father->header == bb)
2474 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2475 break;
2477 /* In a loop that is always entered we may proceed anyway.
2478 But record that we entered it and stop once we leave it. */
2479 inn_loop = bb->loop_father;
2483 while (1)
2485 last->aux = loop;
2486 if (last == loop->header)
2487 break;
2488 last = get_immediate_dominator (CDI_DOMINATORS, last);
2491 free (bbs);
2494 for (loop = loop->inner; loop; loop = loop->next)
2495 fill_always_executed_in (loop, contains_call);
2498 /* Compute the global information needed by the loop invariant motion pass. */
2500 static void
2501 tree_ssa_lim_initialize (void)
2503 sbitmap contains_call = sbitmap_alloc (last_basic_block);
2504 gimple_stmt_iterator bsi;
2505 struct loop *loop;
2506 basic_block bb;
2508 sbitmap_zero (contains_call);
2509 FOR_EACH_BB (bb)
2511 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2513 if (nonpure_call_p (gsi_stmt (bsi)))
2514 break;
2517 if (!gsi_end_p (bsi))
2518 SET_BIT (contains_call, bb->index);
2521 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2522 fill_always_executed_in (loop, contains_call);
2524 sbitmap_free (contains_call);
2526 lim_aux_data_map = pointer_map_create ();
2529 /* Cleans up after the invariant motion pass. */
2531 static void
2532 tree_ssa_lim_finalize (void)
2534 basic_block bb;
2535 unsigned i;
2536 bitmap b;
2537 htab_t h;
2539 FOR_EACH_BB (bb)
2541 bb->aux = NULL;
2544 pointer_map_destroy (lim_aux_data_map);
2546 VEC_free (mem_ref_p, heap, memory_accesses.refs_list);
2547 htab_delete (memory_accesses.refs);
2549 FOR_EACH_VEC_ELT (bitmap, memory_accesses.refs_in_loop, i, b)
2550 BITMAP_FREE (b);
2551 VEC_free (bitmap, heap, memory_accesses.refs_in_loop);
2553 FOR_EACH_VEC_ELT (bitmap, memory_accesses.all_refs_in_loop, i, b)
2554 BITMAP_FREE (b);
2555 VEC_free (bitmap, heap, memory_accesses.all_refs_in_loop);
2557 FOR_EACH_VEC_ELT (bitmap, memory_accesses.clobbered_vops, i, b)
2558 BITMAP_FREE (b);
2559 VEC_free (bitmap, heap, memory_accesses.clobbered_vops);
2561 FOR_EACH_VEC_ELT (htab_t, memory_accesses.vop_ref_map, i, h)
2562 htab_delete (h);
2563 VEC_free (htab_t, heap, memory_accesses.vop_ref_map);
2565 if (memory_accesses.ttae_cache)
2566 pointer_map_destroy (memory_accesses.ttae_cache);
2569 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2570 i.e. those that are likely to be win regardless of the register pressure. */
2572 unsigned int
2573 tree_ssa_lim (void)
2575 unsigned int todo;
2577 tree_ssa_lim_initialize ();
2579 /* Gathers information about memory accesses in the loops. */
2580 analyze_memory_references ();
2582 /* For each statement determine the outermost loop in that it is
2583 invariant and cost for computing the invariant. */
2584 determine_invariantness ();
2586 /* Execute store motion. Force the necessary invariants to be moved
2587 out of the loops as well. */
2588 store_motion ();
2590 /* Move the expressions that are expensive enough. */
2591 todo = move_computations ();
2593 tree_ssa_lim_finalize ();
2595 return todo;