[AArch64] PR target/68129: Define TARGET_SUPPORTS_WIDE_INT
[official-gcc.git] / gcc / var-tracking.c
blob388b5348e5b535eeadbb280e8e99c0bbaba79655
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "backend.h"
92 #include "target.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "cfghooks.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "tm_p.h"
99 #include "insn-config.h"
100 #include "regs.h"
101 #include "emit-rtl.h"
102 #include "recog.h"
103 #include "diagnostic.h"
104 #include "varasm.h"
105 #include "stor-layout.h"
106 #include "cfgrtl.h"
107 #include "cfganal.h"
108 #include "reload.h"
109 #include "calls.h"
110 #include "tree-dfa.h"
111 #include "tree-ssa.h"
112 #include "cselib.h"
113 #include "params.h"
114 #include "tree-pretty-print.h"
115 #include "rtl-iter.h"
116 #include "fibonacci_heap.h"
118 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
119 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
121 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
122 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
123 Currently the value is the same as IDENTIFIER_NODE, which has such
124 a property. If this compile time assertion ever fails, make sure that
125 the new tree code that equals (int) VALUE has the same property. */
126 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
128 /* Type of micro operation. */
129 enum micro_operation_type
131 MO_USE, /* Use location (REG or MEM). */
132 MO_USE_NO_VAR,/* Use location which is not associated with a variable
133 or the variable is not trackable. */
134 MO_VAL_USE, /* Use location which is associated with a value. */
135 MO_VAL_LOC, /* Use location which appears in a debug insn. */
136 MO_VAL_SET, /* Set location associated with a value. */
137 MO_SET, /* Set location. */
138 MO_COPY, /* Copy the same portion of a variable from one
139 location to another. */
140 MO_CLOBBER, /* Clobber location. */
141 MO_CALL, /* Call insn. */
142 MO_ADJUST /* Adjust stack pointer. */
146 static const char * const ATTRIBUTE_UNUSED
147 micro_operation_type_name[] = {
148 "MO_USE",
149 "MO_USE_NO_VAR",
150 "MO_VAL_USE",
151 "MO_VAL_LOC",
152 "MO_VAL_SET",
153 "MO_SET",
154 "MO_COPY",
155 "MO_CLOBBER",
156 "MO_CALL",
157 "MO_ADJUST"
160 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
161 Notes emitted as AFTER_CALL are to take effect during the call,
162 rather than after the call. */
163 enum emit_note_where
165 EMIT_NOTE_BEFORE_INSN,
166 EMIT_NOTE_AFTER_INSN,
167 EMIT_NOTE_AFTER_CALL_INSN
170 /* Structure holding information about micro operation. */
171 struct micro_operation
173 /* Type of micro operation. */
174 enum micro_operation_type type;
176 /* The instruction which the micro operation is in, for MO_USE,
177 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
178 instruction or note in the original flow (before any var-tracking
179 notes are inserted, to simplify emission of notes), for MO_SET
180 and MO_CLOBBER. */
181 rtx_insn *insn;
183 union {
184 /* Location. For MO_SET and MO_COPY, this is the SET that
185 performs the assignment, if known, otherwise it is the target
186 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
187 CONCAT of the VALUE and the LOC associated with it. For
188 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
189 associated with it. */
190 rtx loc;
192 /* Stack adjustment. */
193 HOST_WIDE_INT adjust;
194 } u;
198 /* A declaration of a variable, or an RTL value being handled like a
199 declaration. */
200 typedef void *decl_or_value;
202 /* Return true if a decl_or_value DV is a DECL or NULL. */
203 static inline bool
204 dv_is_decl_p (decl_or_value dv)
206 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
209 /* Return true if a decl_or_value is a VALUE rtl. */
210 static inline bool
211 dv_is_value_p (decl_or_value dv)
213 return dv && !dv_is_decl_p (dv);
216 /* Return the decl in the decl_or_value. */
217 static inline tree
218 dv_as_decl (decl_or_value dv)
220 gcc_checking_assert (dv_is_decl_p (dv));
221 return (tree) dv;
224 /* Return the value in the decl_or_value. */
225 static inline rtx
226 dv_as_value (decl_or_value dv)
228 gcc_checking_assert (dv_is_value_p (dv));
229 return (rtx)dv;
232 /* Return the opaque pointer in the decl_or_value. */
233 static inline void *
234 dv_as_opaque (decl_or_value dv)
236 return dv;
240 /* Description of location of a part of a variable. The content of a physical
241 register is described by a chain of these structures.
242 The chains are pretty short (usually 1 or 2 elements) and thus
243 chain is the best data structure. */
244 struct attrs
246 /* Pointer to next member of the list. */
247 attrs *next;
249 /* The rtx of register. */
250 rtx loc;
252 /* The declaration corresponding to LOC. */
253 decl_or_value dv;
255 /* Offset from start of DECL. */
256 HOST_WIDE_INT offset;
259 /* Structure for chaining the locations. */
260 struct location_chain
262 /* Next element in the chain. */
263 location_chain *next;
265 /* The location (REG, MEM or VALUE). */
266 rtx loc;
268 /* The "value" stored in this location. */
269 rtx set_src;
271 /* Initialized? */
272 enum var_init_status init;
275 /* A vector of loc_exp_dep holds the active dependencies of a one-part
276 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
277 location of DV. Each entry is also part of VALUE' s linked-list of
278 backlinks back to DV. */
279 struct loc_exp_dep
281 /* The dependent DV. */
282 decl_or_value dv;
283 /* The dependency VALUE or DECL_DEBUG. */
284 rtx value;
285 /* The next entry in VALUE's backlinks list. */
286 struct loc_exp_dep *next;
287 /* A pointer to the pointer to this entry (head or prev's next) in
288 the doubly-linked list. */
289 struct loc_exp_dep **pprev;
293 /* This data structure holds information about the depth of a variable
294 expansion. */
295 struct expand_depth
297 /* This measures the complexity of the expanded expression. It
298 grows by one for each level of expansion that adds more than one
299 operand. */
300 int complexity;
301 /* This counts the number of ENTRY_VALUE expressions in an
302 expansion. We want to minimize their use. */
303 int entryvals;
306 /* This data structure is allocated for one-part variables at the time
307 of emitting notes. */
308 struct onepart_aux
310 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
311 computation used the expansion of this variable, and that ought
312 to be notified should this variable change. If the DV's cur_loc
313 expanded to NULL, all components of the loc list are regarded as
314 active, so that any changes in them give us a chance to get a
315 location. Otherwise, only components of the loc that expanded to
316 non-NULL are regarded as active dependencies. */
317 loc_exp_dep *backlinks;
318 /* This holds the LOC that was expanded into cur_loc. We need only
319 mark a one-part variable as changed if the FROM loc is removed,
320 or if it has no known location and a loc is added, or if it gets
321 a change notification from any of its active dependencies. */
322 rtx from;
323 /* The depth of the cur_loc expression. */
324 expand_depth depth;
325 /* Dependencies actively used when expand FROM into cur_loc. */
326 vec<loc_exp_dep, va_heap, vl_embed> deps;
329 /* Structure describing one part of variable. */
330 struct variable_part
332 /* Chain of locations of the part. */
333 location_chain *loc_chain;
335 /* Location which was last emitted to location list. */
336 rtx cur_loc;
338 union variable_aux
340 /* The offset in the variable, if !var->onepart. */
341 HOST_WIDE_INT offset;
343 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
344 struct onepart_aux *onepaux;
345 } aux;
348 /* Maximum number of location parts. */
349 #define MAX_VAR_PARTS 16
351 /* Enumeration type used to discriminate various types of one-part
352 variables. */
353 enum onepart_enum
355 /* Not a one-part variable. */
356 NOT_ONEPART = 0,
357 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
358 ONEPART_VDECL = 1,
359 /* A DEBUG_EXPR_DECL. */
360 ONEPART_DEXPR = 2,
361 /* A VALUE. */
362 ONEPART_VALUE = 3
365 /* Structure describing where the variable is located. */
366 struct variable
368 /* The declaration of the variable, or an RTL value being handled
369 like a declaration. */
370 decl_or_value dv;
372 /* Reference count. */
373 int refcount;
375 /* Number of variable parts. */
376 char n_var_parts;
378 /* What type of DV this is, according to enum onepart_enum. */
379 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
381 /* True if this variable_def struct is currently in the
382 changed_variables hash table. */
383 bool in_changed_variables;
385 /* The variable parts. */
386 variable_part var_part[1];
389 /* Pointer to the BB's information specific to variable tracking pass. */
390 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
392 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
393 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
395 #if CHECKING_P && (GCC_VERSION >= 2007)
397 /* Access VAR's Ith part's offset, checking that it's not a one-part
398 variable. */
399 #define VAR_PART_OFFSET(var, i) __extension__ \
400 (*({ variable *const __v = (var); \
401 gcc_checking_assert (!__v->onepart); \
402 &__v->var_part[(i)].aux.offset; }))
404 /* Access VAR's one-part auxiliary data, checking that it is a
405 one-part variable. */
406 #define VAR_LOC_1PAUX(var) __extension__ \
407 (*({ variable *const __v = (var); \
408 gcc_checking_assert (__v->onepart); \
409 &__v->var_part[0].aux.onepaux; }))
411 #else
412 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
413 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
414 #endif
416 /* These are accessor macros for the one-part auxiliary data. When
417 convenient for users, they're guarded by tests that the data was
418 allocated. */
419 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
420 ? VAR_LOC_1PAUX (var)->backlinks \
421 : NULL)
422 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
423 ? &VAR_LOC_1PAUX (var)->backlinks \
424 : NULL)
425 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
426 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
427 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
428 ? &VAR_LOC_1PAUX (var)->deps \
429 : NULL)
433 typedef unsigned int dvuid;
435 /* Return the uid of DV. */
437 static inline dvuid
438 dv_uid (decl_or_value dv)
440 if (dv_is_value_p (dv))
441 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
442 else
443 return DECL_UID (dv_as_decl (dv));
446 /* Compute the hash from the uid. */
448 static inline hashval_t
449 dv_uid2hash (dvuid uid)
451 return uid;
454 /* The hash function for a mask table in a shared_htab chain. */
456 static inline hashval_t
457 dv_htab_hash (decl_or_value dv)
459 return dv_uid2hash (dv_uid (dv));
462 static void variable_htab_free (void *);
464 /* Variable hashtable helpers. */
466 struct variable_hasher : pointer_hash <variable>
468 typedef void *compare_type;
469 static inline hashval_t hash (const variable *);
470 static inline bool equal (const variable *, const void *);
471 static inline void remove (variable *);
474 /* The hash function for variable_htab, computes the hash value
475 from the declaration of variable X. */
477 inline hashval_t
478 variable_hasher::hash (const variable *v)
480 return dv_htab_hash (v->dv);
483 /* Compare the declaration of variable X with declaration Y. */
485 inline bool
486 variable_hasher::equal (const variable *v, const void *y)
488 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
490 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
493 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
495 inline void
496 variable_hasher::remove (variable *var)
498 variable_htab_free (var);
501 typedef hash_table<variable_hasher> variable_table_type;
502 typedef variable_table_type::iterator variable_iterator_type;
504 /* Structure for passing some other parameters to function
505 emit_note_insn_var_location. */
506 struct emit_note_data
508 /* The instruction which the note will be emitted before/after. */
509 rtx_insn *insn;
511 /* Where the note will be emitted (before/after insn)? */
512 enum emit_note_where where;
514 /* The variables and values active at this point. */
515 variable_table_type *vars;
518 /* Structure holding a refcounted hash table. If refcount > 1,
519 it must be first unshared before modified. */
520 struct shared_hash
522 /* Reference count. */
523 int refcount;
525 /* Actual hash table. */
526 variable_table_type *htab;
529 /* Structure holding the IN or OUT set for a basic block. */
530 struct dataflow_set
532 /* Adjustment of stack offset. */
533 HOST_WIDE_INT stack_adjust;
535 /* Attributes for registers (lists of attrs). */
536 attrs *regs[FIRST_PSEUDO_REGISTER];
538 /* Variable locations. */
539 shared_hash *vars;
541 /* Vars that is being traversed. */
542 shared_hash *traversed_vars;
545 /* The structure (one for each basic block) containing the information
546 needed for variable tracking. */
547 struct variable_tracking_info
549 /* The vector of micro operations. */
550 vec<micro_operation> mos;
552 /* The IN and OUT set for dataflow analysis. */
553 dataflow_set in;
554 dataflow_set out;
556 /* The permanent-in dataflow set for this block. This is used to
557 hold values for which we had to compute entry values. ??? This
558 should probably be dynamically allocated, to avoid using more
559 memory in non-debug builds. */
560 dataflow_set *permp;
562 /* Has the block been visited in DFS? */
563 bool visited;
565 /* Has the block been flooded in VTA? */
566 bool flooded;
570 /* Alloc pool for struct attrs_def. */
571 object_allocator<attrs> attrs_pool ("attrs pool");
573 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
575 static pool_allocator var_pool
576 ("variable_def pool", sizeof (variable) +
577 (MAX_VAR_PARTS - 1) * sizeof (((variable *)NULL)->var_part[0]));
579 /* Alloc pool for struct variable_def with a single var_part entry. */
580 static pool_allocator valvar_pool
581 ("small variable_def pool", sizeof (variable));
583 /* Alloc pool for struct location_chain. */
584 static object_allocator<location_chain> location_chain_pool
585 ("location_chain pool");
587 /* Alloc pool for struct shared_hash. */
588 static object_allocator<shared_hash> shared_hash_pool ("shared_hash pool");
590 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
591 object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool");
593 /* Changed variables, notes will be emitted for them. */
594 static variable_table_type *changed_variables;
596 /* Shall notes be emitted? */
597 static bool emit_notes;
599 /* Values whose dynamic location lists have gone empty, but whose
600 cselib location lists are still usable. Use this to hold the
601 current location, the backlinks, etc, during emit_notes. */
602 static variable_table_type *dropped_values;
604 /* Empty shared hashtable. */
605 static shared_hash *empty_shared_hash;
607 /* Scratch register bitmap used by cselib_expand_value_rtx. */
608 static bitmap scratch_regs = NULL;
610 #ifdef HAVE_window_save
611 struct GTY(()) parm_reg {
612 rtx outgoing;
613 rtx incoming;
617 /* Vector of windowed parameter registers, if any. */
618 static vec<parm_reg, va_gc> *windowed_parm_regs = NULL;
619 #endif
621 /* Variable used to tell whether cselib_process_insn called our hook. */
622 static bool cselib_hook_called;
624 /* Local function prototypes. */
625 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
626 HOST_WIDE_INT *);
627 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
628 HOST_WIDE_INT *);
629 static bool vt_stack_adjustments (void);
631 static void init_attrs_list_set (attrs **);
632 static void attrs_list_clear (attrs **);
633 static attrs *attrs_list_member (attrs *, decl_or_value, HOST_WIDE_INT);
634 static void attrs_list_insert (attrs **, decl_or_value, HOST_WIDE_INT, rtx);
635 static void attrs_list_copy (attrs **, attrs *);
636 static void attrs_list_union (attrs **, attrs *);
638 static variable **unshare_variable (dataflow_set *set, variable **slot,
639 variable *var, enum var_init_status);
640 static void vars_copy (variable_table_type *, variable_table_type *);
641 static tree var_debug_decl (tree);
642 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
643 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
644 enum var_init_status, rtx);
645 static void var_reg_delete (dataflow_set *, rtx, bool);
646 static void var_regno_delete (dataflow_set *, int);
647 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
648 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
649 enum var_init_status, rtx);
650 static void var_mem_delete (dataflow_set *, rtx, bool);
652 static void dataflow_set_init (dataflow_set *);
653 static void dataflow_set_clear (dataflow_set *);
654 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
655 static int variable_union_info_cmp_pos (const void *, const void *);
656 static void dataflow_set_union (dataflow_set *, dataflow_set *);
657 static location_chain *find_loc_in_1pdv (rtx, variable *,
658 variable_table_type *);
659 static bool canon_value_cmp (rtx, rtx);
660 static int loc_cmp (rtx, rtx);
661 static bool variable_part_different_p (variable_part *, variable_part *);
662 static bool onepart_variable_different_p (variable *, variable *);
663 static bool variable_different_p (variable *, variable *);
664 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
665 static void dataflow_set_destroy (dataflow_set *);
667 static bool track_expr_p (tree, bool);
668 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
669 static void add_uses_1 (rtx *, void *);
670 static void add_stores (rtx, const_rtx, void *);
671 static bool compute_bb_dataflow (basic_block);
672 static bool vt_find_locations (void);
674 static void dump_attrs_list (attrs *);
675 static void dump_var (variable *);
676 static void dump_vars (variable_table_type *);
677 static void dump_dataflow_set (dataflow_set *);
678 static void dump_dataflow_sets (void);
680 static void set_dv_changed (decl_or_value, bool);
681 static void variable_was_changed (variable *, dataflow_set *);
682 static variable **set_slot_part (dataflow_set *, rtx, variable **,
683 decl_or_value, HOST_WIDE_INT,
684 enum var_init_status, rtx);
685 static void set_variable_part (dataflow_set *, rtx,
686 decl_or_value, HOST_WIDE_INT,
687 enum var_init_status, rtx, enum insert_option);
688 static variable **clobber_slot_part (dataflow_set *, rtx,
689 variable **, HOST_WIDE_INT, rtx);
690 static void clobber_variable_part (dataflow_set *, rtx,
691 decl_or_value, HOST_WIDE_INT, rtx);
692 static variable **delete_slot_part (dataflow_set *, rtx, variable **,
693 HOST_WIDE_INT);
694 static void delete_variable_part (dataflow_set *, rtx,
695 decl_or_value, HOST_WIDE_INT);
696 static void emit_notes_in_bb (basic_block, dataflow_set *);
697 static void vt_emit_notes (void);
699 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
700 static void vt_add_function_parameters (void);
701 static bool vt_initialize (void);
702 static void vt_finalize (void);
704 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
706 static int
707 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
708 void *arg)
710 if (dest != stack_pointer_rtx)
711 return 0;
713 switch (GET_CODE (op))
715 case PRE_INC:
716 case PRE_DEC:
717 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
718 return 0;
719 case POST_INC:
720 case POST_DEC:
721 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
722 return 0;
723 case PRE_MODIFY:
724 case POST_MODIFY:
725 /* We handle only adjustments by constant amount. */
726 gcc_assert (GET_CODE (src) == PLUS
727 && CONST_INT_P (XEXP (src, 1))
728 && XEXP (src, 0) == stack_pointer_rtx);
729 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
730 -= INTVAL (XEXP (src, 1));
731 return 0;
732 default:
733 gcc_unreachable ();
737 /* Given a SET, calculate the amount of stack adjustment it contains
738 PRE- and POST-modifying stack pointer.
739 This function is similar to stack_adjust_offset. */
741 static void
742 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
743 HOST_WIDE_INT *post)
745 rtx src = SET_SRC (pattern);
746 rtx dest = SET_DEST (pattern);
747 enum rtx_code code;
749 if (dest == stack_pointer_rtx)
751 /* (set (reg sp) (plus (reg sp) (const_int))) */
752 code = GET_CODE (src);
753 if (! (code == PLUS || code == MINUS)
754 || XEXP (src, 0) != stack_pointer_rtx
755 || !CONST_INT_P (XEXP (src, 1)))
756 return;
758 if (code == MINUS)
759 *post += INTVAL (XEXP (src, 1));
760 else
761 *post -= INTVAL (XEXP (src, 1));
762 return;
764 HOST_WIDE_INT res[2] = { 0, 0 };
765 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
766 *pre += res[0];
767 *post += res[1];
770 /* Given an INSN, calculate the amount of stack adjustment it contains
771 PRE- and POST-modifying stack pointer. */
773 static void
774 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
775 HOST_WIDE_INT *post)
777 rtx pattern;
779 *pre = 0;
780 *post = 0;
782 pattern = PATTERN (insn);
783 if (RTX_FRAME_RELATED_P (insn))
785 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
786 if (expr)
787 pattern = XEXP (expr, 0);
790 if (GET_CODE (pattern) == SET)
791 stack_adjust_offset_pre_post (pattern, pre, post);
792 else if (GET_CODE (pattern) == PARALLEL
793 || GET_CODE (pattern) == SEQUENCE)
795 int i;
797 /* There may be stack adjustments inside compound insns. Search
798 for them. */
799 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
800 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
801 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
805 /* Compute stack adjustments for all blocks by traversing DFS tree.
806 Return true when the adjustments on all incoming edges are consistent.
807 Heavily borrowed from pre_and_rev_post_order_compute. */
809 static bool
810 vt_stack_adjustments (void)
812 edge_iterator *stack;
813 int sp;
815 /* Initialize entry block. */
816 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
817 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
818 = INCOMING_FRAME_SP_OFFSET;
819 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
820 = INCOMING_FRAME_SP_OFFSET;
822 /* Allocate stack for back-tracking up CFG. */
823 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
824 sp = 0;
826 /* Push the first edge on to the stack. */
827 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
829 while (sp)
831 edge_iterator ei;
832 basic_block src;
833 basic_block dest;
835 /* Look at the edge on the top of the stack. */
836 ei = stack[sp - 1];
837 src = ei_edge (ei)->src;
838 dest = ei_edge (ei)->dest;
840 /* Check if the edge destination has been visited yet. */
841 if (!VTI (dest)->visited)
843 rtx_insn *insn;
844 HOST_WIDE_INT pre, post, offset;
845 VTI (dest)->visited = true;
846 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
848 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
849 for (insn = BB_HEAD (dest);
850 insn != NEXT_INSN (BB_END (dest));
851 insn = NEXT_INSN (insn))
852 if (INSN_P (insn))
854 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
855 offset += pre + post;
858 VTI (dest)->out.stack_adjust = offset;
860 if (EDGE_COUNT (dest->succs) > 0)
861 /* Since the DEST node has been visited for the first
862 time, check its successors. */
863 stack[sp++] = ei_start (dest->succs);
865 else
867 /* We can end up with different stack adjustments for the exit block
868 of a shrink-wrapped function if stack_adjust_offset_pre_post
869 doesn't understand the rtx pattern used to restore the stack
870 pointer in the epilogue. For example, on s390(x), the stack
871 pointer is often restored via a load-multiple instruction
872 and so no stack_adjust offset is recorded for it. This means
873 that the stack offset at the end of the epilogue block is the
874 the same as the offset before the epilogue, whereas other paths
875 to the exit block will have the correct stack_adjust.
877 It is safe to ignore these differences because (a) we never
878 use the stack_adjust for the exit block in this pass and
879 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
880 function are correct.
882 We must check whether the adjustments on other edges are
883 the same though. */
884 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
885 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
887 free (stack);
888 return false;
891 if (! ei_one_before_end_p (ei))
892 /* Go to the next edge. */
893 ei_next (&stack[sp - 1]);
894 else
895 /* Return to previous level if there are no more edges. */
896 sp--;
900 free (stack);
901 return true;
904 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
905 hard_frame_pointer_rtx is being mapped to it and offset for it. */
906 static rtx cfa_base_rtx;
907 static HOST_WIDE_INT cfa_base_offset;
909 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
910 or hard_frame_pointer_rtx. */
912 static inline rtx
913 compute_cfa_pointer (HOST_WIDE_INT adjustment)
915 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
918 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
919 or -1 if the replacement shouldn't be done. */
920 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
922 /* Data for adjust_mems callback. */
924 struct adjust_mem_data
926 bool store;
927 machine_mode mem_mode;
928 HOST_WIDE_INT stack_adjust;
929 rtx_expr_list *side_effects;
932 /* Helper for adjust_mems. Return true if X is suitable for
933 transformation of wider mode arithmetics to narrower mode. */
935 static bool
936 use_narrower_mode_test (rtx x, const_rtx subreg)
938 subrtx_var_iterator::array_type array;
939 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
941 rtx x = *iter;
942 if (CONSTANT_P (x))
943 iter.skip_subrtxes ();
944 else
945 switch (GET_CODE (x))
947 case REG:
948 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
949 return false;
950 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
951 subreg_lowpart_offset (GET_MODE (subreg),
952 GET_MODE (x))))
953 return false;
954 break;
955 case PLUS:
956 case MINUS:
957 case MULT:
958 break;
959 case ASHIFT:
960 iter.substitute (XEXP (x, 0));
961 break;
962 default:
963 return false;
966 return true;
969 /* Transform X into narrower mode MODE from wider mode WMODE. */
971 static rtx
972 use_narrower_mode (rtx x, machine_mode mode, machine_mode wmode)
974 rtx op0, op1;
975 if (CONSTANT_P (x))
976 return lowpart_subreg (mode, x, wmode);
977 switch (GET_CODE (x))
979 case REG:
980 return lowpart_subreg (mode, x, wmode);
981 case PLUS:
982 case MINUS:
983 case MULT:
984 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
985 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
986 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
987 case ASHIFT:
988 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
989 op1 = XEXP (x, 1);
990 /* Ensure shift amount is not wider than mode. */
991 if (GET_MODE (op1) == VOIDmode)
992 op1 = lowpart_subreg (mode, op1, wmode);
993 else if (GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (op1)))
994 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
995 return simplify_gen_binary (ASHIFT, mode, op0, op1);
996 default:
997 gcc_unreachable ();
1001 /* Helper function for adjusting used MEMs. */
1003 static rtx
1004 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1006 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1007 rtx mem, addr = loc, tem;
1008 machine_mode mem_mode_save;
1009 bool store_save;
1010 switch (GET_CODE (loc))
1012 case REG:
1013 /* Don't do any sp or fp replacements outside of MEM addresses
1014 on the LHS. */
1015 if (amd->mem_mode == VOIDmode && amd->store)
1016 return loc;
1017 if (loc == stack_pointer_rtx
1018 && !frame_pointer_needed
1019 && cfa_base_rtx)
1020 return compute_cfa_pointer (amd->stack_adjust);
1021 else if (loc == hard_frame_pointer_rtx
1022 && frame_pointer_needed
1023 && hard_frame_pointer_adjustment != -1
1024 && cfa_base_rtx)
1025 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1026 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1027 return loc;
1028 case MEM:
1029 mem = loc;
1030 if (!amd->store)
1032 mem = targetm.delegitimize_address (mem);
1033 if (mem != loc && !MEM_P (mem))
1034 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1037 addr = XEXP (mem, 0);
1038 mem_mode_save = amd->mem_mode;
1039 amd->mem_mode = GET_MODE (mem);
1040 store_save = amd->store;
1041 amd->store = false;
1042 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1043 amd->store = store_save;
1044 amd->mem_mode = mem_mode_save;
1045 if (mem == loc)
1046 addr = targetm.delegitimize_address (addr);
1047 if (addr != XEXP (mem, 0))
1048 mem = replace_equiv_address_nv (mem, addr);
1049 if (!amd->store)
1050 mem = avoid_constant_pool_reference (mem);
1051 return mem;
1052 case PRE_INC:
1053 case PRE_DEC:
1054 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1055 gen_int_mode (GET_CODE (loc) == PRE_INC
1056 ? GET_MODE_SIZE (amd->mem_mode)
1057 : -GET_MODE_SIZE (amd->mem_mode),
1058 GET_MODE (loc)));
1059 case POST_INC:
1060 case POST_DEC:
1061 if (addr == loc)
1062 addr = XEXP (loc, 0);
1063 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1064 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1065 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1066 gen_int_mode ((GET_CODE (loc) == PRE_INC
1067 || GET_CODE (loc) == POST_INC)
1068 ? GET_MODE_SIZE (amd->mem_mode)
1069 : -GET_MODE_SIZE (amd->mem_mode),
1070 GET_MODE (loc)));
1071 store_save = amd->store;
1072 amd->store = false;
1073 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1074 amd->store = store_save;
1075 amd->side_effects = alloc_EXPR_LIST (0,
1076 gen_rtx_SET (XEXP (loc, 0), tem),
1077 amd->side_effects);
1078 return addr;
1079 case PRE_MODIFY:
1080 addr = XEXP (loc, 1);
1081 case POST_MODIFY:
1082 if (addr == loc)
1083 addr = XEXP (loc, 0);
1084 gcc_assert (amd->mem_mode != VOIDmode);
1085 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1086 store_save = amd->store;
1087 amd->store = false;
1088 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1089 adjust_mems, data);
1090 amd->store = store_save;
1091 amd->side_effects = alloc_EXPR_LIST (0,
1092 gen_rtx_SET (XEXP (loc, 0), tem),
1093 amd->side_effects);
1094 return addr;
1095 case SUBREG:
1096 /* First try without delegitimization of whole MEMs and
1097 avoid_constant_pool_reference, which is more likely to succeed. */
1098 store_save = amd->store;
1099 amd->store = true;
1100 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1101 data);
1102 amd->store = store_save;
1103 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1104 if (mem == SUBREG_REG (loc))
1106 tem = loc;
1107 goto finish_subreg;
1109 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1110 GET_MODE (SUBREG_REG (loc)),
1111 SUBREG_BYTE (loc));
1112 if (tem)
1113 goto finish_subreg;
1114 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1115 GET_MODE (SUBREG_REG (loc)),
1116 SUBREG_BYTE (loc));
1117 if (tem == NULL_RTX)
1118 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1119 finish_subreg:
1120 if (MAY_HAVE_DEBUG_INSNS
1121 && GET_CODE (tem) == SUBREG
1122 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1123 || GET_CODE (SUBREG_REG (tem)) == MINUS
1124 || GET_CODE (SUBREG_REG (tem)) == MULT
1125 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1126 && (GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1127 || GET_MODE_CLASS (GET_MODE (tem)) == MODE_PARTIAL_INT)
1128 && (GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1129 || GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_PARTIAL_INT)
1130 && GET_MODE_PRECISION (GET_MODE (tem))
1131 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (tem)))
1132 && subreg_lowpart_p (tem)
1133 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1134 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1135 GET_MODE (SUBREG_REG (tem)));
1136 return tem;
1137 case ASM_OPERANDS:
1138 /* Don't do any replacements in second and following
1139 ASM_OPERANDS of inline-asm with multiple sets.
1140 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1141 and ASM_OPERANDS_LABEL_VEC need to be equal between
1142 all the ASM_OPERANDs in the insn and adjust_insn will
1143 fix this up. */
1144 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1145 return loc;
1146 break;
1147 default:
1148 break;
1150 return NULL_RTX;
1153 /* Helper function for replacement of uses. */
1155 static void
1156 adjust_mem_uses (rtx *x, void *data)
1158 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1159 if (new_x != *x)
1160 validate_change (NULL_RTX, x, new_x, true);
1163 /* Helper function for replacement of stores. */
1165 static void
1166 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1168 if (MEM_P (loc))
1170 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1171 adjust_mems, data);
1172 if (new_dest != SET_DEST (expr))
1174 rtx xexpr = CONST_CAST_RTX (expr);
1175 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1180 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1181 replace them with their value in the insn and add the side-effects
1182 as other sets to the insn. */
1184 static void
1185 adjust_insn (basic_block bb, rtx_insn *insn)
1187 struct adjust_mem_data amd;
1188 rtx set;
1190 #ifdef HAVE_window_save
1191 /* If the target machine has an explicit window save instruction, the
1192 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1193 if (RTX_FRAME_RELATED_P (insn)
1194 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1196 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1197 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1198 parm_reg *p;
1200 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1202 XVECEXP (rtl, 0, i * 2)
1203 = gen_rtx_SET (p->incoming, p->outgoing);
1204 /* Do not clobber the attached DECL, but only the REG. */
1205 XVECEXP (rtl, 0, i * 2 + 1)
1206 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1207 gen_raw_REG (GET_MODE (p->outgoing),
1208 REGNO (p->outgoing)));
1211 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1212 return;
1214 #endif
1216 amd.mem_mode = VOIDmode;
1217 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1218 amd.side_effects = NULL;
1220 amd.store = true;
1221 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1223 amd.store = false;
1224 if (GET_CODE (PATTERN (insn)) == PARALLEL
1225 && asm_noperands (PATTERN (insn)) > 0
1226 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1228 rtx body, set0;
1229 int i;
1231 /* inline-asm with multiple sets is tiny bit more complicated,
1232 because the 3 vectors in ASM_OPERANDS need to be shared between
1233 all ASM_OPERANDS in the instruction. adjust_mems will
1234 not touch ASM_OPERANDS other than the first one, asm_noperands
1235 test above needs to be called before that (otherwise it would fail)
1236 and afterwards this code fixes it up. */
1237 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1238 body = PATTERN (insn);
1239 set0 = XVECEXP (body, 0, 0);
1240 gcc_checking_assert (GET_CODE (set0) == SET
1241 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1242 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1243 for (i = 1; i < XVECLEN (body, 0); i++)
1244 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1245 break;
1246 else
1248 set = XVECEXP (body, 0, i);
1249 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1250 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1251 == i);
1252 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1253 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1254 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1255 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1256 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1257 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1259 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1260 ASM_OPERANDS_INPUT_VEC (newsrc)
1261 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1262 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1263 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1264 ASM_OPERANDS_LABEL_VEC (newsrc)
1265 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1266 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1270 else
1271 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1273 /* For read-only MEMs containing some constant, prefer those
1274 constants. */
1275 set = single_set (insn);
1276 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1278 rtx note = find_reg_equal_equiv_note (insn);
1280 if (note && CONSTANT_P (XEXP (note, 0)))
1281 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1284 if (amd.side_effects)
1286 rtx *pat, new_pat, s;
1287 int i, oldn, newn;
1289 pat = &PATTERN (insn);
1290 if (GET_CODE (*pat) == COND_EXEC)
1291 pat = &COND_EXEC_CODE (*pat);
1292 if (GET_CODE (*pat) == PARALLEL)
1293 oldn = XVECLEN (*pat, 0);
1294 else
1295 oldn = 1;
1296 for (s = amd.side_effects, newn = 0; s; newn++)
1297 s = XEXP (s, 1);
1298 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1299 if (GET_CODE (*pat) == PARALLEL)
1300 for (i = 0; i < oldn; i++)
1301 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1302 else
1303 XVECEXP (new_pat, 0, 0) = *pat;
1304 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1305 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1306 free_EXPR_LIST_list (&amd.side_effects);
1307 validate_change (NULL_RTX, pat, new_pat, true);
1311 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1312 static inline rtx
1313 dv_as_rtx (decl_or_value dv)
1315 tree decl;
1317 if (dv_is_value_p (dv))
1318 return dv_as_value (dv);
1320 decl = dv_as_decl (dv);
1322 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1323 return DECL_RTL_KNOWN_SET (decl);
1326 /* Return nonzero if a decl_or_value must not have more than one
1327 variable part. The returned value discriminates among various
1328 kinds of one-part DVs ccording to enum onepart_enum. */
1329 static inline onepart_enum
1330 dv_onepart_p (decl_or_value dv)
1332 tree decl;
1334 if (!MAY_HAVE_DEBUG_INSNS)
1335 return NOT_ONEPART;
1337 if (dv_is_value_p (dv))
1338 return ONEPART_VALUE;
1340 decl = dv_as_decl (dv);
1342 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1343 return ONEPART_DEXPR;
1345 if (target_for_debug_bind (decl) != NULL_TREE)
1346 return ONEPART_VDECL;
1348 return NOT_ONEPART;
1351 /* Return the variable pool to be used for a dv of type ONEPART. */
1352 static inline pool_allocator &
1353 onepart_pool (onepart_enum onepart)
1355 return onepart ? valvar_pool : var_pool;
1358 /* Allocate a variable_def from the corresponding variable pool. */
1359 static inline variable *
1360 onepart_pool_allocate (onepart_enum onepart)
1362 return (variable*) onepart_pool (onepart).allocate ();
1365 /* Build a decl_or_value out of a decl. */
1366 static inline decl_or_value
1367 dv_from_decl (tree decl)
1369 decl_or_value dv;
1370 dv = decl;
1371 gcc_checking_assert (dv_is_decl_p (dv));
1372 return dv;
1375 /* Build a decl_or_value out of a value. */
1376 static inline decl_or_value
1377 dv_from_value (rtx value)
1379 decl_or_value dv;
1380 dv = value;
1381 gcc_checking_assert (dv_is_value_p (dv));
1382 return dv;
1385 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1386 static inline decl_or_value
1387 dv_from_rtx (rtx x)
1389 decl_or_value dv;
1391 switch (GET_CODE (x))
1393 case DEBUG_EXPR:
1394 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1395 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1396 break;
1398 case VALUE:
1399 dv = dv_from_value (x);
1400 break;
1402 default:
1403 gcc_unreachable ();
1406 return dv;
1409 extern void debug_dv (decl_or_value dv);
1411 DEBUG_FUNCTION void
1412 debug_dv (decl_or_value dv)
1414 if (dv_is_value_p (dv))
1415 debug_rtx (dv_as_value (dv));
1416 else
1417 debug_generic_stmt (dv_as_decl (dv));
1420 static void loc_exp_dep_clear (variable *var);
1422 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1424 static void
1425 variable_htab_free (void *elem)
1427 int i;
1428 variable *var = (variable *) elem;
1429 location_chain *node, *next;
1431 gcc_checking_assert (var->refcount > 0);
1433 var->refcount--;
1434 if (var->refcount > 0)
1435 return;
1437 for (i = 0; i < var->n_var_parts; i++)
1439 for (node = var->var_part[i].loc_chain; node; node = next)
1441 next = node->next;
1442 delete node;
1444 var->var_part[i].loc_chain = NULL;
1446 if (var->onepart && VAR_LOC_1PAUX (var))
1448 loc_exp_dep_clear (var);
1449 if (VAR_LOC_DEP_LST (var))
1450 VAR_LOC_DEP_LST (var)->pprev = NULL;
1451 XDELETE (VAR_LOC_1PAUX (var));
1452 /* These may be reused across functions, so reset
1453 e.g. NO_LOC_P. */
1454 if (var->onepart == ONEPART_DEXPR)
1455 set_dv_changed (var->dv, true);
1457 onepart_pool (var->onepart).remove (var);
1460 /* Initialize the set (array) SET of attrs to empty lists. */
1462 static void
1463 init_attrs_list_set (attrs **set)
1465 int i;
1467 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1468 set[i] = NULL;
1471 /* Make the list *LISTP empty. */
1473 static void
1474 attrs_list_clear (attrs **listp)
1476 attrs *list, *next;
1478 for (list = *listp; list; list = next)
1480 next = list->next;
1481 delete list;
1483 *listp = NULL;
1486 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1488 static attrs *
1489 attrs_list_member (attrs *list, decl_or_value dv, HOST_WIDE_INT offset)
1491 for (; list; list = list->next)
1492 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1493 return list;
1494 return NULL;
1497 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1499 static void
1500 attrs_list_insert (attrs **listp, decl_or_value dv,
1501 HOST_WIDE_INT offset, rtx loc)
1503 attrs *list = new attrs;
1504 list->loc = loc;
1505 list->dv = dv;
1506 list->offset = offset;
1507 list->next = *listp;
1508 *listp = list;
1511 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1513 static void
1514 attrs_list_copy (attrs **dstp, attrs *src)
1516 attrs_list_clear (dstp);
1517 for (; src; src = src->next)
1519 attrs *n = new attrs;
1520 n->loc = src->loc;
1521 n->dv = src->dv;
1522 n->offset = src->offset;
1523 n->next = *dstp;
1524 *dstp = n;
1528 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1530 static void
1531 attrs_list_union (attrs **dstp, attrs *src)
1533 for (; src; src = src->next)
1535 if (!attrs_list_member (*dstp, src->dv, src->offset))
1536 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1540 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1541 *DSTP. */
1543 static void
1544 attrs_list_mpdv_union (attrs **dstp, attrs *src, attrs *src2)
1546 gcc_assert (!*dstp);
1547 for (; src; src = src->next)
1549 if (!dv_onepart_p (src->dv))
1550 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1552 for (src = src2; src; src = src->next)
1554 if (!dv_onepart_p (src->dv)
1555 && !attrs_list_member (*dstp, src->dv, src->offset))
1556 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1560 /* Shared hashtable support. */
1562 /* Return true if VARS is shared. */
1564 static inline bool
1565 shared_hash_shared (shared_hash *vars)
1567 return vars->refcount > 1;
1570 /* Return the hash table for VARS. */
1572 static inline variable_table_type *
1573 shared_hash_htab (shared_hash *vars)
1575 return vars->htab;
1578 /* Return true if VAR is shared, or maybe because VARS is shared. */
1580 static inline bool
1581 shared_var_p (variable *var, shared_hash *vars)
1583 /* Don't count an entry in the changed_variables table as a duplicate. */
1584 return ((var->refcount > 1 + (int) var->in_changed_variables)
1585 || shared_hash_shared (vars));
1588 /* Copy variables into a new hash table. */
1590 static shared_hash *
1591 shared_hash_unshare (shared_hash *vars)
1593 shared_hash *new_vars = new shared_hash;
1594 gcc_assert (vars->refcount > 1);
1595 new_vars->refcount = 1;
1596 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1597 vars_copy (new_vars->htab, vars->htab);
1598 vars->refcount--;
1599 return new_vars;
1602 /* Increment reference counter on VARS and return it. */
1604 static inline shared_hash *
1605 shared_hash_copy (shared_hash *vars)
1607 vars->refcount++;
1608 return vars;
1611 /* Decrement reference counter and destroy hash table if not shared
1612 anymore. */
1614 static void
1615 shared_hash_destroy (shared_hash *vars)
1617 gcc_checking_assert (vars->refcount > 0);
1618 if (--vars->refcount == 0)
1620 delete vars->htab;
1621 delete vars;
1625 /* Unshare *PVARS if shared and return slot for DV. If INS is
1626 INSERT, insert it if not already present. */
1628 static inline variable **
1629 shared_hash_find_slot_unshare_1 (shared_hash **pvars, decl_or_value dv,
1630 hashval_t dvhash, enum insert_option ins)
1632 if (shared_hash_shared (*pvars))
1633 *pvars = shared_hash_unshare (*pvars);
1634 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1637 static inline variable **
1638 shared_hash_find_slot_unshare (shared_hash **pvars, decl_or_value dv,
1639 enum insert_option ins)
1641 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1644 /* Return slot for DV, if it is already present in the hash table.
1645 If it is not present, insert it only VARS is not shared, otherwise
1646 return NULL. */
1648 static inline variable **
1649 shared_hash_find_slot_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1651 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1652 shared_hash_shared (vars)
1653 ? NO_INSERT : INSERT);
1656 static inline variable **
1657 shared_hash_find_slot (shared_hash *vars, decl_or_value dv)
1659 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1662 /* Return slot for DV only if it is already present in the hash table. */
1664 static inline variable **
1665 shared_hash_find_slot_noinsert_1 (shared_hash *vars, decl_or_value dv,
1666 hashval_t dvhash)
1668 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1671 static inline variable **
1672 shared_hash_find_slot_noinsert (shared_hash *vars, decl_or_value dv)
1674 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1677 /* Return variable for DV or NULL if not already present in the hash
1678 table. */
1680 static inline variable *
1681 shared_hash_find_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1683 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1686 static inline variable *
1687 shared_hash_find (shared_hash *vars, decl_or_value dv)
1689 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1692 /* Return true if TVAL is better than CVAL as a canonival value. We
1693 choose lowest-numbered VALUEs, using the RTX address as a
1694 tie-breaker. The idea is to arrange them into a star topology,
1695 such that all of them are at most one step away from the canonical
1696 value, and the canonical value has backlinks to all of them, in
1697 addition to all the actual locations. We don't enforce this
1698 topology throughout the entire dataflow analysis, though.
1701 static inline bool
1702 canon_value_cmp (rtx tval, rtx cval)
1704 return !cval
1705 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1708 static bool dst_can_be_shared;
1710 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1712 static variable **
1713 unshare_variable (dataflow_set *set, variable **slot, variable *var,
1714 enum var_init_status initialized)
1716 variable *new_var;
1717 int i;
1719 new_var = onepart_pool_allocate (var->onepart);
1720 new_var->dv = var->dv;
1721 new_var->refcount = 1;
1722 var->refcount--;
1723 new_var->n_var_parts = var->n_var_parts;
1724 new_var->onepart = var->onepart;
1725 new_var->in_changed_variables = false;
1727 if (! flag_var_tracking_uninit)
1728 initialized = VAR_INIT_STATUS_INITIALIZED;
1730 for (i = 0; i < var->n_var_parts; i++)
1732 location_chain *node;
1733 location_chain **nextp;
1735 if (i == 0 && var->onepart)
1737 /* One-part auxiliary data is only used while emitting
1738 notes, so propagate it to the new variable in the active
1739 dataflow set. If we're not emitting notes, this will be
1740 a no-op. */
1741 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1742 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1743 VAR_LOC_1PAUX (var) = NULL;
1745 else
1746 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1747 nextp = &new_var->var_part[i].loc_chain;
1748 for (node = var->var_part[i].loc_chain; node; node = node->next)
1750 location_chain *new_lc;
1752 new_lc = new location_chain;
1753 new_lc->next = NULL;
1754 if (node->init > initialized)
1755 new_lc->init = node->init;
1756 else
1757 new_lc->init = initialized;
1758 if (node->set_src && !(MEM_P (node->set_src)))
1759 new_lc->set_src = node->set_src;
1760 else
1761 new_lc->set_src = NULL;
1762 new_lc->loc = node->loc;
1764 *nextp = new_lc;
1765 nextp = &new_lc->next;
1768 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1771 dst_can_be_shared = false;
1772 if (shared_hash_shared (set->vars))
1773 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1774 else if (set->traversed_vars && set->vars != set->traversed_vars)
1775 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1776 *slot = new_var;
1777 if (var->in_changed_variables)
1779 variable **cslot
1780 = changed_variables->find_slot_with_hash (var->dv,
1781 dv_htab_hash (var->dv),
1782 NO_INSERT);
1783 gcc_assert (*cslot == (void *) var);
1784 var->in_changed_variables = false;
1785 variable_htab_free (var);
1786 *cslot = new_var;
1787 new_var->in_changed_variables = true;
1789 return slot;
1792 /* Copy all variables from hash table SRC to hash table DST. */
1794 static void
1795 vars_copy (variable_table_type *dst, variable_table_type *src)
1797 variable_iterator_type hi;
1798 variable *var;
1800 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1802 variable **dstp;
1803 var->refcount++;
1804 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1805 INSERT);
1806 *dstp = var;
1810 /* Map a decl to its main debug decl. */
1812 static inline tree
1813 var_debug_decl (tree decl)
1815 if (decl && TREE_CODE (decl) == VAR_DECL
1816 && DECL_HAS_DEBUG_EXPR_P (decl))
1818 tree debugdecl = DECL_DEBUG_EXPR (decl);
1819 if (DECL_P (debugdecl))
1820 decl = debugdecl;
1823 return decl;
1826 /* Set the register LOC to contain DV, OFFSET. */
1828 static void
1829 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1830 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1831 enum insert_option iopt)
1833 attrs *node;
1834 bool decl_p = dv_is_decl_p (dv);
1836 if (decl_p)
1837 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1839 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1840 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1841 && node->offset == offset)
1842 break;
1843 if (!node)
1844 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1845 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1848 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1850 static void
1851 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1852 rtx set_src)
1854 tree decl = REG_EXPR (loc);
1855 HOST_WIDE_INT offset = REG_OFFSET (loc);
1857 var_reg_decl_set (set, loc, initialized,
1858 dv_from_decl (decl), offset, set_src, INSERT);
1861 static enum var_init_status
1862 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1864 variable *var;
1865 int i;
1866 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1868 if (! flag_var_tracking_uninit)
1869 return VAR_INIT_STATUS_INITIALIZED;
1871 var = shared_hash_find (set->vars, dv);
1872 if (var)
1874 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1876 location_chain *nextp;
1877 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1878 if (rtx_equal_p (nextp->loc, loc))
1880 ret_val = nextp->init;
1881 break;
1886 return ret_val;
1889 /* Delete current content of register LOC in dataflow set SET and set
1890 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1891 MODIFY is true, any other live copies of the same variable part are
1892 also deleted from the dataflow set, otherwise the variable part is
1893 assumed to be copied from another location holding the same
1894 part. */
1896 static void
1897 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1898 enum var_init_status initialized, rtx set_src)
1900 tree decl = REG_EXPR (loc);
1901 HOST_WIDE_INT offset = REG_OFFSET (loc);
1902 attrs *node, *next;
1903 attrs **nextp;
1905 decl = var_debug_decl (decl);
1907 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1908 initialized = get_init_value (set, loc, dv_from_decl (decl));
1910 nextp = &set->regs[REGNO (loc)];
1911 for (node = *nextp; node; node = next)
1913 next = node->next;
1914 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1916 delete_variable_part (set, node->loc, node->dv, node->offset);
1917 delete node;
1918 *nextp = next;
1920 else
1922 node->loc = loc;
1923 nextp = &node->next;
1926 if (modify)
1927 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1928 var_reg_set (set, loc, initialized, set_src);
1931 /* Delete the association of register LOC in dataflow set SET with any
1932 variables that aren't onepart. If CLOBBER is true, also delete any
1933 other live copies of the same variable part, and delete the
1934 association with onepart dvs too. */
1936 static void
1937 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1939 attrs **nextp = &set->regs[REGNO (loc)];
1940 attrs *node, *next;
1942 if (clobber)
1944 tree decl = REG_EXPR (loc);
1945 HOST_WIDE_INT offset = REG_OFFSET (loc);
1947 decl = var_debug_decl (decl);
1949 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1952 for (node = *nextp; node; node = next)
1954 next = node->next;
1955 if (clobber || !dv_onepart_p (node->dv))
1957 delete_variable_part (set, node->loc, node->dv, node->offset);
1958 delete node;
1959 *nextp = next;
1961 else
1962 nextp = &node->next;
1966 /* Delete content of register with number REGNO in dataflow set SET. */
1968 static void
1969 var_regno_delete (dataflow_set *set, int regno)
1971 attrs **reg = &set->regs[regno];
1972 attrs *node, *next;
1974 for (node = *reg; node; node = next)
1976 next = node->next;
1977 delete_variable_part (set, node->loc, node->dv, node->offset);
1978 delete node;
1980 *reg = NULL;
1983 /* Return true if I is the negated value of a power of two. */
1984 static bool
1985 negative_power_of_two_p (HOST_WIDE_INT i)
1987 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1988 return x == (x & -x);
1991 /* Strip constant offsets and alignments off of LOC. Return the base
1992 expression. */
1994 static rtx
1995 vt_get_canonicalize_base (rtx loc)
1997 while ((GET_CODE (loc) == PLUS
1998 || GET_CODE (loc) == AND)
1999 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2000 && (GET_CODE (loc) != AND
2001 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2002 loc = XEXP (loc, 0);
2004 return loc;
2007 /* This caches canonicalized addresses for VALUEs, computed using
2008 information in the global cselib table. */
2009 static hash_map<rtx, rtx> *global_get_addr_cache;
2011 /* This caches canonicalized addresses for VALUEs, computed using
2012 information from the global cache and information pertaining to a
2013 basic block being analyzed. */
2014 static hash_map<rtx, rtx> *local_get_addr_cache;
2016 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2018 /* Return the canonical address for LOC, that must be a VALUE, using a
2019 cached global equivalence or computing it and storing it in the
2020 global cache. */
2022 static rtx
2023 get_addr_from_global_cache (rtx const loc)
2025 rtx x;
2027 gcc_checking_assert (GET_CODE (loc) == VALUE);
2029 bool existed;
2030 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2031 if (existed)
2032 return *slot;
2034 x = canon_rtx (get_addr (loc));
2036 /* Tentative, avoiding infinite recursion. */
2037 *slot = x;
2039 if (x != loc)
2041 rtx nx = vt_canonicalize_addr (NULL, x);
2042 if (nx != x)
2044 /* The table may have moved during recursion, recompute
2045 SLOT. */
2046 *global_get_addr_cache->get (loc) = x = nx;
2050 return x;
2053 /* Return the canonical address for LOC, that must be a VALUE, using a
2054 cached local equivalence or computing it and storing it in the
2055 local cache. */
2057 static rtx
2058 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2060 rtx x;
2061 decl_or_value dv;
2062 variable *var;
2063 location_chain *l;
2065 gcc_checking_assert (GET_CODE (loc) == VALUE);
2067 bool existed;
2068 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2069 if (existed)
2070 return *slot;
2072 x = get_addr_from_global_cache (loc);
2074 /* Tentative, avoiding infinite recursion. */
2075 *slot = x;
2077 /* Recurse to cache local expansion of X, or if we need to search
2078 for a VALUE in the expansion. */
2079 if (x != loc)
2081 rtx nx = vt_canonicalize_addr (set, x);
2082 if (nx != x)
2084 slot = local_get_addr_cache->get (loc);
2085 *slot = x = nx;
2087 return x;
2090 dv = dv_from_rtx (x);
2091 var = shared_hash_find (set->vars, dv);
2092 if (!var)
2093 return x;
2095 /* Look for an improved equivalent expression. */
2096 for (l = var->var_part[0].loc_chain; l; l = l->next)
2098 rtx base = vt_get_canonicalize_base (l->loc);
2099 if (GET_CODE (base) == VALUE
2100 && canon_value_cmp (base, loc))
2102 rtx nx = vt_canonicalize_addr (set, l->loc);
2103 if (x != nx)
2105 slot = local_get_addr_cache->get (loc);
2106 *slot = x = nx;
2108 break;
2112 return x;
2115 /* Canonicalize LOC using equivalences from SET in addition to those
2116 in the cselib static table. It expects a VALUE-based expression,
2117 and it will only substitute VALUEs with other VALUEs or
2118 function-global equivalences, so that, if two addresses have base
2119 VALUEs that are locally or globally related in ways that
2120 memrefs_conflict_p cares about, they will both canonicalize to
2121 expressions that have the same base VALUE.
2123 The use of VALUEs as canonical base addresses enables the canonical
2124 RTXs to remain unchanged globally, if they resolve to a constant,
2125 or throughout a basic block otherwise, so that they can be cached
2126 and the cache needs not be invalidated when REGs, MEMs or such
2127 change. */
2129 static rtx
2130 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2132 HOST_WIDE_INT ofst = 0;
2133 machine_mode mode = GET_MODE (oloc);
2134 rtx loc = oloc;
2135 rtx x;
2136 bool retry = true;
2138 while (retry)
2140 while (GET_CODE (loc) == PLUS
2141 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2143 ofst += INTVAL (XEXP (loc, 1));
2144 loc = XEXP (loc, 0);
2147 /* Alignment operations can't normally be combined, so just
2148 canonicalize the base and we're done. We'll normally have
2149 only one stack alignment anyway. */
2150 if (GET_CODE (loc) == AND
2151 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2152 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2154 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2155 if (x != XEXP (loc, 0))
2156 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2157 retry = false;
2160 if (GET_CODE (loc) == VALUE)
2162 if (set)
2163 loc = get_addr_from_local_cache (set, loc);
2164 else
2165 loc = get_addr_from_global_cache (loc);
2167 /* Consolidate plus_constants. */
2168 while (ofst && GET_CODE (loc) == PLUS
2169 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2171 ofst += INTVAL (XEXP (loc, 1));
2172 loc = XEXP (loc, 0);
2175 retry = false;
2177 else
2179 x = canon_rtx (loc);
2180 if (retry)
2181 retry = (x != loc);
2182 loc = x;
2186 /* Add OFST back in. */
2187 if (ofst)
2189 /* Don't build new RTL if we can help it. */
2190 if (GET_CODE (oloc) == PLUS
2191 && XEXP (oloc, 0) == loc
2192 && INTVAL (XEXP (oloc, 1)) == ofst)
2193 return oloc;
2195 loc = plus_constant (mode, loc, ofst);
2198 return loc;
2201 /* Return true iff there's a true dependence between MLOC and LOC.
2202 MADDR must be a canonicalized version of MLOC's address. */
2204 static inline bool
2205 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2207 if (GET_CODE (loc) != MEM)
2208 return false;
2210 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2211 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2212 return false;
2214 return true;
2217 /* Hold parameters for the hashtab traversal function
2218 drop_overlapping_mem_locs, see below. */
2220 struct overlapping_mems
2222 dataflow_set *set;
2223 rtx loc, addr;
2226 /* Remove all MEMs that overlap with COMS->LOC from the location list
2227 of a hash table entry for a value. COMS->ADDR must be a
2228 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2229 canonicalized itself. */
2232 drop_overlapping_mem_locs (variable **slot, overlapping_mems *coms)
2234 dataflow_set *set = coms->set;
2235 rtx mloc = coms->loc, addr = coms->addr;
2236 variable *var = *slot;
2238 if (var->onepart == ONEPART_VALUE)
2240 location_chain *loc, **locp;
2241 bool changed = false;
2242 rtx cur_loc;
2244 gcc_assert (var->n_var_parts == 1);
2246 if (shared_var_p (var, set->vars))
2248 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2249 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2250 break;
2252 if (!loc)
2253 return 1;
2255 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2256 var = *slot;
2257 gcc_assert (var->n_var_parts == 1);
2260 if (VAR_LOC_1PAUX (var))
2261 cur_loc = VAR_LOC_FROM (var);
2262 else
2263 cur_loc = var->var_part[0].cur_loc;
2265 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2266 loc; loc = *locp)
2268 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2270 locp = &loc->next;
2271 continue;
2274 *locp = loc->next;
2275 /* If we have deleted the location which was last emitted
2276 we have to emit new location so add the variable to set
2277 of changed variables. */
2278 if (cur_loc == loc->loc)
2280 changed = true;
2281 var->var_part[0].cur_loc = NULL;
2282 if (VAR_LOC_1PAUX (var))
2283 VAR_LOC_FROM (var) = NULL;
2285 delete loc;
2288 if (!var->var_part[0].loc_chain)
2290 var->n_var_parts--;
2291 changed = true;
2293 if (changed)
2294 variable_was_changed (var, set);
2297 return 1;
2300 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2302 static void
2303 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2305 struct overlapping_mems coms;
2307 gcc_checking_assert (GET_CODE (loc) == MEM);
2309 coms.set = set;
2310 coms.loc = canon_rtx (loc);
2311 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2313 set->traversed_vars = set->vars;
2314 shared_hash_htab (set->vars)
2315 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2316 set->traversed_vars = NULL;
2319 /* Set the location of DV, OFFSET as the MEM LOC. */
2321 static void
2322 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2323 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2324 enum insert_option iopt)
2326 if (dv_is_decl_p (dv))
2327 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2329 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2332 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2333 SET to LOC.
2334 Adjust the address first if it is stack pointer based. */
2336 static void
2337 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2338 rtx set_src)
2340 tree decl = MEM_EXPR (loc);
2341 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2343 var_mem_decl_set (set, loc, initialized,
2344 dv_from_decl (decl), offset, set_src, INSERT);
2347 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2348 dataflow set SET to LOC. If MODIFY is true, any other live copies
2349 of the same variable part are also deleted from the dataflow set,
2350 otherwise the variable part is assumed to be copied from another
2351 location holding the same part.
2352 Adjust the address first if it is stack pointer based. */
2354 static void
2355 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2356 enum var_init_status initialized, rtx set_src)
2358 tree decl = MEM_EXPR (loc);
2359 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2361 clobber_overlapping_mems (set, loc);
2362 decl = var_debug_decl (decl);
2364 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2365 initialized = get_init_value (set, loc, dv_from_decl (decl));
2367 if (modify)
2368 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2369 var_mem_set (set, loc, initialized, set_src);
2372 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2373 true, also delete any other live copies of the same variable part.
2374 Adjust the address first if it is stack pointer based. */
2376 static void
2377 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2379 tree decl = MEM_EXPR (loc);
2380 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2382 clobber_overlapping_mems (set, loc);
2383 decl = var_debug_decl (decl);
2384 if (clobber)
2385 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2386 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2389 /* Return true if LOC should not be expanded for location expressions,
2390 or used in them. */
2392 static inline bool
2393 unsuitable_loc (rtx loc)
2395 switch (GET_CODE (loc))
2397 case PC:
2398 case SCRATCH:
2399 case CC0:
2400 case ASM_INPUT:
2401 case ASM_OPERANDS:
2402 return true;
2404 default:
2405 return false;
2409 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2410 bound to it. */
2412 static inline void
2413 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2415 if (REG_P (loc))
2417 if (modified)
2418 var_regno_delete (set, REGNO (loc));
2419 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2420 dv_from_value (val), 0, NULL_RTX, INSERT);
2422 else if (MEM_P (loc))
2424 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2426 if (modified)
2427 clobber_overlapping_mems (set, loc);
2429 if (l && GET_CODE (l->loc) == VALUE)
2430 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2432 /* If this MEM is a global constant, we don't need it in the
2433 dynamic tables. ??? We should test this before emitting the
2434 micro-op in the first place. */
2435 while (l)
2436 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2437 break;
2438 else
2439 l = l->next;
2441 if (!l)
2442 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2443 dv_from_value (val), 0, NULL_RTX, INSERT);
2445 else
2447 /* Other kinds of equivalences are necessarily static, at least
2448 so long as we do not perform substitutions while merging
2449 expressions. */
2450 gcc_unreachable ();
2451 set_variable_part (set, loc, dv_from_value (val), 0,
2452 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2456 /* Bind a value to a location it was just stored in. If MODIFIED
2457 holds, assume the location was modified, detaching it from any
2458 values bound to it. */
2460 static void
2461 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2462 bool modified)
2464 cselib_val *v = CSELIB_VAL_PTR (val);
2466 gcc_assert (cselib_preserved_value_p (v));
2468 if (dump_file)
2470 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2471 print_inline_rtx (dump_file, loc, 0);
2472 fprintf (dump_file, " evaluates to ");
2473 print_inline_rtx (dump_file, val, 0);
2474 if (v->locs)
2476 struct elt_loc_list *l;
2477 for (l = v->locs; l; l = l->next)
2479 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2480 print_inline_rtx (dump_file, l->loc, 0);
2483 fprintf (dump_file, "\n");
2486 gcc_checking_assert (!unsuitable_loc (loc));
2488 val_bind (set, val, loc, modified);
2491 /* Clear (canonical address) slots that reference X. */
2493 bool
2494 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2496 if (vt_get_canonicalize_base (*slot) == x)
2497 *slot = NULL;
2498 return true;
2501 /* Reset this node, detaching all its equivalences. Return the slot
2502 in the variable hash table that holds dv, if there is one. */
2504 static void
2505 val_reset (dataflow_set *set, decl_or_value dv)
2507 variable *var = shared_hash_find (set->vars, dv) ;
2508 location_chain *node;
2509 rtx cval;
2511 if (!var || !var->n_var_parts)
2512 return;
2514 gcc_assert (var->n_var_parts == 1);
2516 if (var->onepart == ONEPART_VALUE)
2518 rtx x = dv_as_value (dv);
2520 /* Relationships in the global cache don't change, so reset the
2521 local cache entry only. */
2522 rtx *slot = local_get_addr_cache->get (x);
2523 if (slot)
2525 /* If the value resolved back to itself, odds are that other
2526 values may have cached it too. These entries now refer
2527 to the old X, so detach them too. Entries that used the
2528 old X but resolved to something else remain ok as long as
2529 that something else isn't also reset. */
2530 if (*slot == x)
2531 local_get_addr_cache
2532 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2533 *slot = NULL;
2537 cval = NULL;
2538 for (node = var->var_part[0].loc_chain; node; node = node->next)
2539 if (GET_CODE (node->loc) == VALUE
2540 && canon_value_cmp (node->loc, cval))
2541 cval = node->loc;
2543 for (node = var->var_part[0].loc_chain; node; node = node->next)
2544 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2546 /* Redirect the equivalence link to the new canonical
2547 value, or simply remove it if it would point at
2548 itself. */
2549 if (cval)
2550 set_variable_part (set, cval, dv_from_value (node->loc),
2551 0, node->init, node->set_src, NO_INSERT);
2552 delete_variable_part (set, dv_as_value (dv),
2553 dv_from_value (node->loc), 0);
2556 if (cval)
2558 decl_or_value cdv = dv_from_value (cval);
2560 /* Keep the remaining values connected, accummulating links
2561 in the canonical value. */
2562 for (node = var->var_part[0].loc_chain; node; node = node->next)
2564 if (node->loc == cval)
2565 continue;
2566 else if (GET_CODE (node->loc) == REG)
2567 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2568 node->set_src, NO_INSERT);
2569 else if (GET_CODE (node->loc) == MEM)
2570 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2571 node->set_src, NO_INSERT);
2572 else
2573 set_variable_part (set, node->loc, cdv, 0,
2574 node->init, node->set_src, NO_INSERT);
2578 /* We remove this last, to make sure that the canonical value is not
2579 removed to the point of requiring reinsertion. */
2580 if (cval)
2581 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2583 clobber_variable_part (set, NULL, dv, 0, NULL);
2586 /* Find the values in a given location and map the val to another
2587 value, if it is unique, or add the location as one holding the
2588 value. */
2590 static void
2591 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2593 decl_or_value dv = dv_from_value (val);
2595 if (dump_file && (dump_flags & TDF_DETAILS))
2597 if (insn)
2598 fprintf (dump_file, "%i: ", INSN_UID (insn));
2599 else
2600 fprintf (dump_file, "head: ");
2601 print_inline_rtx (dump_file, val, 0);
2602 fputs (" is at ", dump_file);
2603 print_inline_rtx (dump_file, loc, 0);
2604 fputc ('\n', dump_file);
2607 val_reset (set, dv);
2609 gcc_checking_assert (!unsuitable_loc (loc));
2611 if (REG_P (loc))
2613 attrs *node, *found = NULL;
2615 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2616 if (dv_is_value_p (node->dv)
2617 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2619 found = node;
2621 /* Map incoming equivalences. ??? Wouldn't it be nice if
2622 we just started sharing the location lists? Maybe a
2623 circular list ending at the value itself or some
2624 such. */
2625 set_variable_part (set, dv_as_value (node->dv),
2626 dv_from_value (val), node->offset,
2627 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2628 set_variable_part (set, val, node->dv, node->offset,
2629 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2632 /* If we didn't find any equivalence, we need to remember that
2633 this value is held in the named register. */
2634 if (found)
2635 return;
2637 /* ??? Attempt to find and merge equivalent MEMs or other
2638 expressions too. */
2640 val_bind (set, val, loc, false);
2643 /* Initialize dataflow set SET to be empty.
2644 VARS_SIZE is the initial size of hash table VARS. */
2646 static void
2647 dataflow_set_init (dataflow_set *set)
2649 init_attrs_list_set (set->regs);
2650 set->vars = shared_hash_copy (empty_shared_hash);
2651 set->stack_adjust = 0;
2652 set->traversed_vars = NULL;
2655 /* Delete the contents of dataflow set SET. */
2657 static void
2658 dataflow_set_clear (dataflow_set *set)
2660 int i;
2662 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2663 attrs_list_clear (&set->regs[i]);
2665 shared_hash_destroy (set->vars);
2666 set->vars = shared_hash_copy (empty_shared_hash);
2669 /* Copy the contents of dataflow set SRC to DST. */
2671 static void
2672 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2674 int i;
2676 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2677 attrs_list_copy (&dst->regs[i], src->regs[i]);
2679 shared_hash_destroy (dst->vars);
2680 dst->vars = shared_hash_copy (src->vars);
2681 dst->stack_adjust = src->stack_adjust;
2684 /* Information for merging lists of locations for a given offset of variable.
2686 struct variable_union_info
2688 /* Node of the location chain. */
2689 location_chain *lc;
2691 /* The sum of positions in the input chains. */
2692 int pos;
2694 /* The position in the chain of DST dataflow set. */
2695 int pos_dst;
2698 /* Buffer for location list sorting and its allocated size. */
2699 static struct variable_union_info *vui_vec;
2700 static int vui_allocated;
2702 /* Compare function for qsort, order the structures by POS element. */
2704 static int
2705 variable_union_info_cmp_pos (const void *n1, const void *n2)
2707 const struct variable_union_info *const i1 =
2708 (const struct variable_union_info *) n1;
2709 const struct variable_union_info *const i2 =
2710 ( const struct variable_union_info *) n2;
2712 if (i1->pos != i2->pos)
2713 return i1->pos - i2->pos;
2715 return (i1->pos_dst - i2->pos_dst);
2718 /* Compute union of location parts of variable *SLOT and the same variable
2719 from hash table DATA. Compute "sorted" union of the location chains
2720 for common offsets, i.e. the locations of a variable part are sorted by
2721 a priority where the priority is the sum of the positions in the 2 chains
2722 (if a location is only in one list the position in the second list is
2723 defined to be larger than the length of the chains).
2724 When we are updating the location parts the newest location is in the
2725 beginning of the chain, so when we do the described "sorted" union
2726 we keep the newest locations in the beginning. */
2728 static int
2729 variable_union (variable *src, dataflow_set *set)
2731 variable *dst;
2732 variable **dstp;
2733 int i, j, k;
2735 dstp = shared_hash_find_slot (set->vars, src->dv);
2736 if (!dstp || !*dstp)
2738 src->refcount++;
2740 dst_can_be_shared = false;
2741 if (!dstp)
2742 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2744 *dstp = src;
2746 /* Continue traversing the hash table. */
2747 return 1;
2749 else
2750 dst = *dstp;
2752 gcc_assert (src->n_var_parts);
2753 gcc_checking_assert (src->onepart == dst->onepart);
2755 /* We can combine one-part variables very efficiently, because their
2756 entries are in canonical order. */
2757 if (src->onepart)
2759 location_chain **nodep, *dnode, *snode;
2761 gcc_assert (src->n_var_parts == 1
2762 && dst->n_var_parts == 1);
2764 snode = src->var_part[0].loc_chain;
2765 gcc_assert (snode);
2767 restart_onepart_unshared:
2768 nodep = &dst->var_part[0].loc_chain;
2769 dnode = *nodep;
2770 gcc_assert (dnode);
2772 while (snode)
2774 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2776 if (r > 0)
2778 location_chain *nnode;
2780 if (shared_var_p (dst, set->vars))
2782 dstp = unshare_variable (set, dstp, dst,
2783 VAR_INIT_STATUS_INITIALIZED);
2784 dst = *dstp;
2785 goto restart_onepart_unshared;
2788 *nodep = nnode = new location_chain;
2789 nnode->loc = snode->loc;
2790 nnode->init = snode->init;
2791 if (!snode->set_src || MEM_P (snode->set_src))
2792 nnode->set_src = NULL;
2793 else
2794 nnode->set_src = snode->set_src;
2795 nnode->next = dnode;
2796 dnode = nnode;
2798 else if (r == 0)
2799 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2801 if (r >= 0)
2802 snode = snode->next;
2804 nodep = &dnode->next;
2805 dnode = *nodep;
2808 return 1;
2811 gcc_checking_assert (!src->onepart);
2813 /* Count the number of location parts, result is K. */
2814 for (i = 0, j = 0, k = 0;
2815 i < src->n_var_parts && j < dst->n_var_parts; k++)
2817 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2819 i++;
2820 j++;
2822 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2823 i++;
2824 else
2825 j++;
2827 k += src->n_var_parts - i;
2828 k += dst->n_var_parts - j;
2830 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2831 thus there are at most MAX_VAR_PARTS different offsets. */
2832 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2834 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2836 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2837 dst = *dstp;
2840 i = src->n_var_parts - 1;
2841 j = dst->n_var_parts - 1;
2842 dst->n_var_parts = k;
2844 for (k--; k >= 0; k--)
2846 location_chain *node, *node2;
2848 if (i >= 0 && j >= 0
2849 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2851 /* Compute the "sorted" union of the chains, i.e. the locations which
2852 are in both chains go first, they are sorted by the sum of
2853 positions in the chains. */
2854 int dst_l, src_l;
2855 int ii, jj, n;
2856 struct variable_union_info *vui;
2858 /* If DST is shared compare the location chains.
2859 If they are different we will modify the chain in DST with
2860 high probability so make a copy of DST. */
2861 if (shared_var_p (dst, set->vars))
2863 for (node = src->var_part[i].loc_chain,
2864 node2 = dst->var_part[j].loc_chain; node && node2;
2865 node = node->next, node2 = node2->next)
2867 if (!((REG_P (node2->loc)
2868 && REG_P (node->loc)
2869 && REGNO (node2->loc) == REGNO (node->loc))
2870 || rtx_equal_p (node2->loc, node->loc)))
2872 if (node2->init < node->init)
2873 node2->init = node->init;
2874 break;
2877 if (node || node2)
2879 dstp = unshare_variable (set, dstp, dst,
2880 VAR_INIT_STATUS_UNKNOWN);
2881 dst = (variable *)*dstp;
2885 src_l = 0;
2886 for (node = src->var_part[i].loc_chain; node; node = node->next)
2887 src_l++;
2888 dst_l = 0;
2889 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2890 dst_l++;
2892 if (dst_l == 1)
2894 /* The most common case, much simpler, no qsort is needed. */
2895 location_chain *dstnode = dst->var_part[j].loc_chain;
2896 dst->var_part[k].loc_chain = dstnode;
2897 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2898 node2 = dstnode;
2899 for (node = src->var_part[i].loc_chain; node; node = node->next)
2900 if (!((REG_P (dstnode->loc)
2901 && REG_P (node->loc)
2902 && REGNO (dstnode->loc) == REGNO (node->loc))
2903 || rtx_equal_p (dstnode->loc, node->loc)))
2905 location_chain *new_node;
2907 /* Copy the location from SRC. */
2908 new_node = new location_chain;
2909 new_node->loc = node->loc;
2910 new_node->init = node->init;
2911 if (!node->set_src || MEM_P (node->set_src))
2912 new_node->set_src = NULL;
2913 else
2914 new_node->set_src = node->set_src;
2915 node2->next = new_node;
2916 node2 = new_node;
2918 node2->next = NULL;
2920 else
2922 if (src_l + dst_l > vui_allocated)
2924 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2925 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2926 vui_allocated);
2928 vui = vui_vec;
2930 /* Fill in the locations from DST. */
2931 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2932 node = node->next, jj++)
2934 vui[jj].lc = node;
2935 vui[jj].pos_dst = jj;
2937 /* Pos plus value larger than a sum of 2 valid positions. */
2938 vui[jj].pos = jj + src_l + dst_l;
2941 /* Fill in the locations from SRC. */
2942 n = dst_l;
2943 for (node = src->var_part[i].loc_chain, ii = 0; node;
2944 node = node->next, ii++)
2946 /* Find location from NODE. */
2947 for (jj = 0; jj < dst_l; jj++)
2949 if ((REG_P (vui[jj].lc->loc)
2950 && REG_P (node->loc)
2951 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2952 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2954 vui[jj].pos = jj + ii;
2955 break;
2958 if (jj >= dst_l) /* The location has not been found. */
2960 location_chain *new_node;
2962 /* Copy the location from SRC. */
2963 new_node = new location_chain;
2964 new_node->loc = node->loc;
2965 new_node->init = node->init;
2966 if (!node->set_src || MEM_P (node->set_src))
2967 new_node->set_src = NULL;
2968 else
2969 new_node->set_src = node->set_src;
2970 vui[n].lc = new_node;
2971 vui[n].pos_dst = src_l + dst_l;
2972 vui[n].pos = ii + src_l + dst_l;
2973 n++;
2977 if (dst_l == 2)
2979 /* Special case still very common case. For dst_l == 2
2980 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2981 vui[i].pos == i + src_l + dst_l. */
2982 if (vui[0].pos > vui[1].pos)
2984 /* Order should be 1, 0, 2... */
2985 dst->var_part[k].loc_chain = vui[1].lc;
2986 vui[1].lc->next = vui[0].lc;
2987 if (n >= 3)
2989 vui[0].lc->next = vui[2].lc;
2990 vui[n - 1].lc->next = NULL;
2992 else
2993 vui[0].lc->next = NULL;
2994 ii = 3;
2996 else
2998 dst->var_part[k].loc_chain = vui[0].lc;
2999 if (n >= 3 && vui[2].pos < vui[1].pos)
3001 /* Order should be 0, 2, 1, 3... */
3002 vui[0].lc->next = vui[2].lc;
3003 vui[2].lc->next = vui[1].lc;
3004 if (n >= 4)
3006 vui[1].lc->next = vui[3].lc;
3007 vui[n - 1].lc->next = NULL;
3009 else
3010 vui[1].lc->next = NULL;
3011 ii = 4;
3013 else
3015 /* Order should be 0, 1, 2... */
3016 ii = 1;
3017 vui[n - 1].lc->next = NULL;
3020 for (; ii < n; ii++)
3021 vui[ii - 1].lc->next = vui[ii].lc;
3023 else
3025 qsort (vui, n, sizeof (struct variable_union_info),
3026 variable_union_info_cmp_pos);
3028 /* Reconnect the nodes in sorted order. */
3029 for (ii = 1; ii < n; ii++)
3030 vui[ii - 1].lc->next = vui[ii].lc;
3031 vui[n - 1].lc->next = NULL;
3032 dst->var_part[k].loc_chain = vui[0].lc;
3035 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3037 i--;
3038 j--;
3040 else if ((i >= 0 && j >= 0
3041 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3042 || i < 0)
3044 dst->var_part[k] = dst->var_part[j];
3045 j--;
3047 else if ((i >= 0 && j >= 0
3048 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3049 || j < 0)
3051 location_chain **nextp;
3053 /* Copy the chain from SRC. */
3054 nextp = &dst->var_part[k].loc_chain;
3055 for (node = src->var_part[i].loc_chain; node; node = node->next)
3057 location_chain *new_lc;
3059 new_lc = new location_chain;
3060 new_lc->next = NULL;
3061 new_lc->init = node->init;
3062 if (!node->set_src || MEM_P (node->set_src))
3063 new_lc->set_src = NULL;
3064 else
3065 new_lc->set_src = node->set_src;
3066 new_lc->loc = node->loc;
3068 *nextp = new_lc;
3069 nextp = &new_lc->next;
3072 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3073 i--;
3075 dst->var_part[k].cur_loc = NULL;
3078 if (flag_var_tracking_uninit)
3079 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3081 location_chain *node, *node2;
3082 for (node = src->var_part[i].loc_chain; node; node = node->next)
3083 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3084 if (rtx_equal_p (node->loc, node2->loc))
3086 if (node->init > node2->init)
3087 node2->init = node->init;
3091 /* Continue traversing the hash table. */
3092 return 1;
3095 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3097 static void
3098 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3100 int i;
3102 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3103 attrs_list_union (&dst->regs[i], src->regs[i]);
3105 if (dst->vars == empty_shared_hash)
3107 shared_hash_destroy (dst->vars);
3108 dst->vars = shared_hash_copy (src->vars);
3110 else
3112 variable_iterator_type hi;
3113 variable *var;
3115 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3116 var, variable, hi)
3117 variable_union (var, dst);
3121 /* Whether the value is currently being expanded. */
3122 #define VALUE_RECURSED_INTO(x) \
3123 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3125 /* Whether no expansion was found, saving useless lookups.
3126 It must only be set when VALUE_CHANGED is clear. */
3127 #define NO_LOC_P(x) \
3128 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3130 /* Whether cur_loc in the value needs to be (re)computed. */
3131 #define VALUE_CHANGED(x) \
3132 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3133 /* Whether cur_loc in the decl needs to be (re)computed. */
3134 #define DECL_CHANGED(x) TREE_VISITED (x)
3136 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3137 user DECLs, this means they're in changed_variables. Values and
3138 debug exprs may be left with this flag set if no user variable
3139 requires them to be evaluated. */
3141 static inline void
3142 set_dv_changed (decl_or_value dv, bool newv)
3144 switch (dv_onepart_p (dv))
3146 case ONEPART_VALUE:
3147 if (newv)
3148 NO_LOC_P (dv_as_value (dv)) = false;
3149 VALUE_CHANGED (dv_as_value (dv)) = newv;
3150 break;
3152 case ONEPART_DEXPR:
3153 if (newv)
3154 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3155 /* Fall through... */
3157 default:
3158 DECL_CHANGED (dv_as_decl (dv)) = newv;
3159 break;
3163 /* Return true if DV needs to have its cur_loc recomputed. */
3165 static inline bool
3166 dv_changed_p (decl_or_value dv)
3168 return (dv_is_value_p (dv)
3169 ? VALUE_CHANGED (dv_as_value (dv))
3170 : DECL_CHANGED (dv_as_decl (dv)));
3173 /* Return a location list node whose loc is rtx_equal to LOC, in the
3174 location list of a one-part variable or value VAR, or in that of
3175 any values recursively mentioned in the location lists. VARS must
3176 be in star-canonical form. */
3178 static location_chain *
3179 find_loc_in_1pdv (rtx loc, variable *var, variable_table_type *vars)
3181 location_chain *node;
3182 enum rtx_code loc_code;
3184 if (!var)
3185 return NULL;
3187 gcc_checking_assert (var->onepart);
3189 if (!var->n_var_parts)
3190 return NULL;
3192 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3194 loc_code = GET_CODE (loc);
3195 for (node = var->var_part[0].loc_chain; node; node = node->next)
3197 decl_or_value dv;
3198 variable *rvar;
3200 if (GET_CODE (node->loc) != loc_code)
3202 if (GET_CODE (node->loc) != VALUE)
3203 continue;
3205 else if (loc == node->loc)
3206 return node;
3207 else if (loc_code != VALUE)
3209 if (rtx_equal_p (loc, node->loc))
3210 return node;
3211 continue;
3214 /* Since we're in star-canonical form, we don't need to visit
3215 non-canonical nodes: one-part variables and non-canonical
3216 values would only point back to the canonical node. */
3217 if (dv_is_value_p (var->dv)
3218 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3220 /* Skip all subsequent VALUEs. */
3221 while (node->next && GET_CODE (node->next->loc) == VALUE)
3223 node = node->next;
3224 gcc_checking_assert (!canon_value_cmp (node->loc,
3225 dv_as_value (var->dv)));
3226 if (loc == node->loc)
3227 return node;
3229 continue;
3232 gcc_checking_assert (node == var->var_part[0].loc_chain);
3233 gcc_checking_assert (!node->next);
3235 dv = dv_from_value (node->loc);
3236 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3237 return find_loc_in_1pdv (loc, rvar, vars);
3240 /* ??? Gotta look in cselib_val locations too. */
3242 return NULL;
3245 /* Hash table iteration argument passed to variable_merge. */
3246 struct dfset_merge
3248 /* The set in which the merge is to be inserted. */
3249 dataflow_set *dst;
3250 /* The set that we're iterating in. */
3251 dataflow_set *cur;
3252 /* The set that may contain the other dv we are to merge with. */
3253 dataflow_set *src;
3254 /* Number of onepart dvs in src. */
3255 int src_onepart_cnt;
3258 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3259 loc_cmp order, and it is maintained as such. */
3261 static void
3262 insert_into_intersection (location_chain **nodep, rtx loc,
3263 enum var_init_status status)
3265 location_chain *node;
3266 int r;
3268 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3269 if ((r = loc_cmp (node->loc, loc)) == 0)
3271 node->init = MIN (node->init, status);
3272 return;
3274 else if (r > 0)
3275 break;
3277 node = new location_chain;
3279 node->loc = loc;
3280 node->set_src = NULL;
3281 node->init = status;
3282 node->next = *nodep;
3283 *nodep = node;
3286 /* Insert in DEST the intersection of the locations present in both
3287 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3288 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3289 DSM->dst. */
3291 static void
3292 intersect_loc_chains (rtx val, location_chain **dest, struct dfset_merge *dsm,
3293 location_chain *s1node, variable *s2var)
3295 dataflow_set *s1set = dsm->cur;
3296 dataflow_set *s2set = dsm->src;
3297 location_chain *found;
3299 if (s2var)
3301 location_chain *s2node;
3303 gcc_checking_assert (s2var->onepart);
3305 if (s2var->n_var_parts)
3307 s2node = s2var->var_part[0].loc_chain;
3309 for (; s1node && s2node;
3310 s1node = s1node->next, s2node = s2node->next)
3311 if (s1node->loc != s2node->loc)
3312 break;
3313 else if (s1node->loc == val)
3314 continue;
3315 else
3316 insert_into_intersection (dest, s1node->loc,
3317 MIN (s1node->init, s2node->init));
3321 for (; s1node; s1node = s1node->next)
3323 if (s1node->loc == val)
3324 continue;
3326 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3327 shared_hash_htab (s2set->vars))))
3329 insert_into_intersection (dest, s1node->loc,
3330 MIN (s1node->init, found->init));
3331 continue;
3334 if (GET_CODE (s1node->loc) == VALUE
3335 && !VALUE_RECURSED_INTO (s1node->loc))
3337 decl_or_value dv = dv_from_value (s1node->loc);
3338 variable *svar = shared_hash_find (s1set->vars, dv);
3339 if (svar)
3341 if (svar->n_var_parts == 1)
3343 VALUE_RECURSED_INTO (s1node->loc) = true;
3344 intersect_loc_chains (val, dest, dsm,
3345 svar->var_part[0].loc_chain,
3346 s2var);
3347 VALUE_RECURSED_INTO (s1node->loc) = false;
3352 /* ??? gotta look in cselib_val locations too. */
3354 /* ??? if the location is equivalent to any location in src,
3355 searched recursively
3357 add to dst the values needed to represent the equivalence
3359 telling whether locations S is equivalent to another dv's
3360 location list:
3362 for each location D in the list
3364 if S and D satisfy rtx_equal_p, then it is present
3366 else if D is a value, recurse without cycles
3368 else if S and D have the same CODE and MODE
3370 for each operand oS and the corresponding oD
3372 if oS and oD are not equivalent, then S an D are not equivalent
3374 else if they are RTX vectors
3376 if any vector oS element is not equivalent to its respective oD,
3377 then S and D are not equivalent
3385 /* Return -1 if X should be before Y in a location list for a 1-part
3386 variable, 1 if Y should be before X, and 0 if they're equivalent
3387 and should not appear in the list. */
3389 static int
3390 loc_cmp (rtx x, rtx y)
3392 int i, j, r;
3393 RTX_CODE code = GET_CODE (x);
3394 const char *fmt;
3396 if (x == y)
3397 return 0;
3399 if (REG_P (x))
3401 if (!REG_P (y))
3402 return -1;
3403 gcc_assert (GET_MODE (x) == GET_MODE (y));
3404 if (REGNO (x) == REGNO (y))
3405 return 0;
3406 else if (REGNO (x) < REGNO (y))
3407 return -1;
3408 else
3409 return 1;
3412 if (REG_P (y))
3413 return 1;
3415 if (MEM_P (x))
3417 if (!MEM_P (y))
3418 return -1;
3419 gcc_assert (GET_MODE (x) == GET_MODE (y));
3420 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3423 if (MEM_P (y))
3424 return 1;
3426 if (GET_CODE (x) == VALUE)
3428 if (GET_CODE (y) != VALUE)
3429 return -1;
3430 /* Don't assert the modes are the same, that is true only
3431 when not recursing. (subreg:QI (value:SI 1:1) 0)
3432 and (subreg:QI (value:DI 2:2) 0) can be compared,
3433 even when the modes are different. */
3434 if (canon_value_cmp (x, y))
3435 return -1;
3436 else
3437 return 1;
3440 if (GET_CODE (y) == VALUE)
3441 return 1;
3443 /* Entry value is the least preferable kind of expression. */
3444 if (GET_CODE (x) == ENTRY_VALUE)
3446 if (GET_CODE (y) != ENTRY_VALUE)
3447 return 1;
3448 gcc_assert (GET_MODE (x) == GET_MODE (y));
3449 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3452 if (GET_CODE (y) == ENTRY_VALUE)
3453 return -1;
3455 if (GET_CODE (x) == GET_CODE (y))
3456 /* Compare operands below. */;
3457 else if (GET_CODE (x) < GET_CODE (y))
3458 return -1;
3459 else
3460 return 1;
3462 gcc_assert (GET_MODE (x) == GET_MODE (y));
3464 if (GET_CODE (x) == DEBUG_EXPR)
3466 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3467 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3468 return -1;
3469 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3470 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3471 return 1;
3474 fmt = GET_RTX_FORMAT (code);
3475 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3476 switch (fmt[i])
3478 case 'w':
3479 if (XWINT (x, i) == XWINT (y, i))
3480 break;
3481 else if (XWINT (x, i) < XWINT (y, i))
3482 return -1;
3483 else
3484 return 1;
3486 case 'n':
3487 case 'i':
3488 if (XINT (x, i) == XINT (y, i))
3489 break;
3490 else if (XINT (x, i) < XINT (y, i))
3491 return -1;
3492 else
3493 return 1;
3495 case 'V':
3496 case 'E':
3497 /* Compare the vector length first. */
3498 if (XVECLEN (x, i) == XVECLEN (y, i))
3499 /* Compare the vectors elements. */;
3500 else if (XVECLEN (x, i) < XVECLEN (y, i))
3501 return -1;
3502 else
3503 return 1;
3505 for (j = 0; j < XVECLEN (x, i); j++)
3506 if ((r = loc_cmp (XVECEXP (x, i, j),
3507 XVECEXP (y, i, j))))
3508 return r;
3509 break;
3511 case 'e':
3512 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3513 return r;
3514 break;
3516 case 'S':
3517 case 's':
3518 if (XSTR (x, i) == XSTR (y, i))
3519 break;
3520 if (!XSTR (x, i))
3521 return -1;
3522 if (!XSTR (y, i))
3523 return 1;
3524 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3525 break;
3526 else if (r < 0)
3527 return -1;
3528 else
3529 return 1;
3531 case 'u':
3532 /* These are just backpointers, so they don't matter. */
3533 break;
3535 case '0':
3536 case 't':
3537 break;
3539 /* It is believed that rtx's at this level will never
3540 contain anything but integers and other rtx's,
3541 except for within LABEL_REFs and SYMBOL_REFs. */
3542 default:
3543 gcc_unreachable ();
3545 if (CONST_WIDE_INT_P (x))
3547 /* Compare the vector length first. */
3548 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3549 return 1;
3550 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3551 return -1;
3553 /* Compare the vectors elements. */;
3554 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3556 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3557 return -1;
3558 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3559 return 1;
3563 return 0;
3566 /* Check the order of entries in one-part variables. */
3569 canonicalize_loc_order_check (variable **slot,
3570 dataflow_set *data ATTRIBUTE_UNUSED)
3572 variable *var = *slot;
3573 location_chain *node, *next;
3575 #ifdef ENABLE_RTL_CHECKING
3576 int i;
3577 for (i = 0; i < var->n_var_parts; i++)
3578 gcc_assert (var->var_part[0].cur_loc == NULL);
3579 gcc_assert (!var->in_changed_variables);
3580 #endif
3582 if (!var->onepart)
3583 return 1;
3585 gcc_assert (var->n_var_parts == 1);
3586 node = var->var_part[0].loc_chain;
3587 gcc_assert (node);
3589 while ((next = node->next))
3591 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3592 node = next;
3595 return 1;
3598 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3599 more likely to be chosen as canonical for an equivalence set.
3600 Ensure less likely values can reach more likely neighbors, making
3601 the connections bidirectional. */
3604 canonicalize_values_mark (variable **slot, dataflow_set *set)
3606 variable *var = *slot;
3607 decl_or_value dv = var->dv;
3608 rtx val;
3609 location_chain *node;
3611 if (!dv_is_value_p (dv))
3612 return 1;
3614 gcc_checking_assert (var->n_var_parts == 1);
3616 val = dv_as_value (dv);
3618 for (node = var->var_part[0].loc_chain; node; node = node->next)
3619 if (GET_CODE (node->loc) == VALUE)
3621 if (canon_value_cmp (node->loc, val))
3622 VALUE_RECURSED_INTO (val) = true;
3623 else
3625 decl_or_value odv = dv_from_value (node->loc);
3626 variable **oslot;
3627 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3629 set_slot_part (set, val, oslot, odv, 0,
3630 node->init, NULL_RTX);
3632 VALUE_RECURSED_INTO (node->loc) = true;
3636 return 1;
3639 /* Remove redundant entries from equivalence lists in onepart
3640 variables, canonicalizing equivalence sets into star shapes. */
3643 canonicalize_values_star (variable **slot, dataflow_set *set)
3645 variable *var = *slot;
3646 decl_or_value dv = var->dv;
3647 location_chain *node;
3648 decl_or_value cdv;
3649 rtx val, cval;
3650 variable **cslot;
3651 bool has_value;
3652 bool has_marks;
3654 if (!var->onepart)
3655 return 1;
3657 gcc_checking_assert (var->n_var_parts == 1);
3659 if (dv_is_value_p (dv))
3661 cval = dv_as_value (dv);
3662 if (!VALUE_RECURSED_INTO (cval))
3663 return 1;
3664 VALUE_RECURSED_INTO (cval) = false;
3666 else
3667 cval = NULL_RTX;
3669 restart:
3670 val = cval;
3671 has_value = false;
3672 has_marks = false;
3674 gcc_assert (var->n_var_parts == 1);
3676 for (node = var->var_part[0].loc_chain; node; node = node->next)
3677 if (GET_CODE (node->loc) == VALUE)
3679 has_value = true;
3680 if (VALUE_RECURSED_INTO (node->loc))
3681 has_marks = true;
3682 if (canon_value_cmp (node->loc, cval))
3683 cval = node->loc;
3686 if (!has_value)
3687 return 1;
3689 if (cval == val)
3691 if (!has_marks || dv_is_decl_p (dv))
3692 return 1;
3694 /* Keep it marked so that we revisit it, either after visiting a
3695 child node, or after visiting a new parent that might be
3696 found out. */
3697 VALUE_RECURSED_INTO (val) = true;
3699 for (node = var->var_part[0].loc_chain; node; node = node->next)
3700 if (GET_CODE (node->loc) == VALUE
3701 && VALUE_RECURSED_INTO (node->loc))
3703 cval = node->loc;
3704 restart_with_cval:
3705 VALUE_RECURSED_INTO (cval) = false;
3706 dv = dv_from_value (cval);
3707 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3708 if (!slot)
3710 gcc_assert (dv_is_decl_p (var->dv));
3711 /* The canonical value was reset and dropped.
3712 Remove it. */
3713 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3714 return 1;
3716 var = *slot;
3717 gcc_assert (dv_is_value_p (var->dv));
3718 if (var->n_var_parts == 0)
3719 return 1;
3720 gcc_assert (var->n_var_parts == 1);
3721 goto restart;
3724 VALUE_RECURSED_INTO (val) = false;
3726 return 1;
3729 /* Push values to the canonical one. */
3730 cdv = dv_from_value (cval);
3731 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3733 for (node = var->var_part[0].loc_chain; node; node = node->next)
3734 if (node->loc != cval)
3736 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3737 node->init, NULL_RTX);
3738 if (GET_CODE (node->loc) == VALUE)
3740 decl_or_value ndv = dv_from_value (node->loc);
3742 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3743 NO_INSERT);
3745 if (canon_value_cmp (node->loc, val))
3747 /* If it could have been a local minimum, it's not any more,
3748 since it's now neighbor to cval, so it may have to push
3749 to it. Conversely, if it wouldn't have prevailed over
3750 val, then whatever mark it has is fine: if it was to
3751 push, it will now push to a more canonical node, but if
3752 it wasn't, then it has already pushed any values it might
3753 have to. */
3754 VALUE_RECURSED_INTO (node->loc) = true;
3755 /* Make sure we visit node->loc by ensuring we cval is
3756 visited too. */
3757 VALUE_RECURSED_INTO (cval) = true;
3759 else if (!VALUE_RECURSED_INTO (node->loc))
3760 /* If we have no need to "recurse" into this node, it's
3761 already "canonicalized", so drop the link to the old
3762 parent. */
3763 clobber_variable_part (set, cval, ndv, 0, NULL);
3765 else if (GET_CODE (node->loc) == REG)
3767 attrs *list = set->regs[REGNO (node->loc)], **listp;
3769 /* Change an existing attribute referring to dv so that it
3770 refers to cdv, removing any duplicate this might
3771 introduce, and checking that no previous duplicates
3772 existed, all in a single pass. */
3774 while (list)
3776 if (list->offset == 0
3777 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3778 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3779 break;
3781 list = list->next;
3784 gcc_assert (list);
3785 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3787 list->dv = cdv;
3788 for (listp = &list->next; (list = *listp); listp = &list->next)
3790 if (list->offset)
3791 continue;
3793 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3795 *listp = list->next;
3796 delete list;
3797 list = *listp;
3798 break;
3801 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3804 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3806 for (listp = &list->next; (list = *listp); listp = &list->next)
3808 if (list->offset)
3809 continue;
3811 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3813 *listp = list->next;
3814 delete list;
3815 list = *listp;
3816 break;
3819 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3822 else
3823 gcc_unreachable ();
3825 if (flag_checking)
3826 while (list)
3828 if (list->offset == 0
3829 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3830 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3831 gcc_unreachable ();
3833 list = list->next;
3838 if (val)
3839 set_slot_part (set, val, cslot, cdv, 0,
3840 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3842 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3844 /* Variable may have been unshared. */
3845 var = *slot;
3846 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3847 && var->var_part[0].loc_chain->next == NULL);
3849 if (VALUE_RECURSED_INTO (cval))
3850 goto restart_with_cval;
3852 return 1;
3855 /* Bind one-part variables to the canonical value in an equivalence
3856 set. Not doing this causes dataflow convergence failure in rare
3857 circumstances, see PR42873. Unfortunately we can't do this
3858 efficiently as part of canonicalize_values_star, since we may not
3859 have determined or even seen the canonical value of a set when we
3860 get to a variable that references another member of the set. */
3863 canonicalize_vars_star (variable **slot, dataflow_set *set)
3865 variable *var = *slot;
3866 decl_or_value dv = var->dv;
3867 location_chain *node;
3868 rtx cval;
3869 decl_or_value cdv;
3870 variable **cslot;
3871 variable *cvar;
3872 location_chain *cnode;
3874 if (!var->onepart || var->onepart == ONEPART_VALUE)
3875 return 1;
3877 gcc_assert (var->n_var_parts == 1);
3879 node = var->var_part[0].loc_chain;
3881 if (GET_CODE (node->loc) != VALUE)
3882 return 1;
3884 gcc_assert (!node->next);
3885 cval = node->loc;
3887 /* Push values to the canonical one. */
3888 cdv = dv_from_value (cval);
3889 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3890 if (!cslot)
3891 return 1;
3892 cvar = *cslot;
3893 gcc_assert (cvar->n_var_parts == 1);
3895 cnode = cvar->var_part[0].loc_chain;
3897 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3898 that are not “more canonical” than it. */
3899 if (GET_CODE (cnode->loc) != VALUE
3900 || !canon_value_cmp (cnode->loc, cval))
3901 return 1;
3903 /* CVAL was found to be non-canonical. Change the variable to point
3904 to the canonical VALUE. */
3905 gcc_assert (!cnode->next);
3906 cval = cnode->loc;
3908 slot = set_slot_part (set, cval, slot, dv, 0,
3909 node->init, node->set_src);
3910 clobber_slot_part (set, cval, slot, 0, node->set_src);
3912 return 1;
3915 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3916 corresponding entry in DSM->src. Multi-part variables are combined
3917 with variable_union, whereas onepart dvs are combined with
3918 intersection. */
3920 static int
3921 variable_merge_over_cur (variable *s1var, struct dfset_merge *dsm)
3923 dataflow_set *dst = dsm->dst;
3924 variable **dstslot;
3925 variable *s2var, *dvar = NULL;
3926 decl_or_value dv = s1var->dv;
3927 onepart_enum onepart = s1var->onepart;
3928 rtx val;
3929 hashval_t dvhash;
3930 location_chain *node, **nodep;
3932 /* If the incoming onepart variable has an empty location list, then
3933 the intersection will be just as empty. For other variables,
3934 it's always union. */
3935 gcc_checking_assert (s1var->n_var_parts
3936 && s1var->var_part[0].loc_chain);
3938 if (!onepart)
3939 return variable_union (s1var, dst);
3941 gcc_checking_assert (s1var->n_var_parts == 1);
3943 dvhash = dv_htab_hash (dv);
3944 if (dv_is_value_p (dv))
3945 val = dv_as_value (dv);
3946 else
3947 val = NULL;
3949 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3950 if (!s2var)
3952 dst_can_be_shared = false;
3953 return 1;
3956 dsm->src_onepart_cnt--;
3957 gcc_assert (s2var->var_part[0].loc_chain
3958 && s2var->onepart == onepart
3959 && s2var->n_var_parts == 1);
3961 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3962 if (dstslot)
3964 dvar = *dstslot;
3965 gcc_assert (dvar->refcount == 1
3966 && dvar->onepart == onepart
3967 && dvar->n_var_parts == 1);
3968 nodep = &dvar->var_part[0].loc_chain;
3970 else
3972 nodep = &node;
3973 node = NULL;
3976 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3978 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3979 dvhash, INSERT);
3980 *dstslot = dvar = s2var;
3981 dvar->refcount++;
3983 else
3985 dst_can_be_shared = false;
3987 intersect_loc_chains (val, nodep, dsm,
3988 s1var->var_part[0].loc_chain, s2var);
3990 if (!dstslot)
3992 if (node)
3994 dvar = onepart_pool_allocate (onepart);
3995 dvar->dv = dv;
3996 dvar->refcount = 1;
3997 dvar->n_var_parts = 1;
3998 dvar->onepart = onepart;
3999 dvar->in_changed_variables = false;
4000 dvar->var_part[0].loc_chain = node;
4001 dvar->var_part[0].cur_loc = NULL;
4002 if (onepart)
4003 VAR_LOC_1PAUX (dvar) = NULL;
4004 else
4005 VAR_PART_OFFSET (dvar, 0) = 0;
4007 dstslot
4008 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4009 INSERT);
4010 gcc_assert (!*dstslot);
4011 *dstslot = dvar;
4013 else
4014 return 1;
4018 nodep = &dvar->var_part[0].loc_chain;
4019 while ((node = *nodep))
4021 location_chain **nextp = &node->next;
4023 if (GET_CODE (node->loc) == REG)
4025 attrs *list;
4027 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4028 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4029 && dv_is_value_p (list->dv))
4030 break;
4032 if (!list)
4033 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4034 dv, 0, node->loc);
4035 /* If this value became canonical for another value that had
4036 this register, we want to leave it alone. */
4037 else if (dv_as_value (list->dv) != val)
4039 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4040 dstslot, dv, 0,
4041 node->init, NULL_RTX);
4042 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4044 /* Since nextp points into the removed node, we can't
4045 use it. The pointer to the next node moved to nodep.
4046 However, if the variable we're walking is unshared
4047 during our walk, we'll keep walking the location list
4048 of the previously-shared variable, in which case the
4049 node won't have been removed, and we'll want to skip
4050 it. That's why we test *nodep here. */
4051 if (*nodep != node)
4052 nextp = nodep;
4055 else
4056 /* Canonicalization puts registers first, so we don't have to
4057 walk it all. */
4058 break;
4059 nodep = nextp;
4062 if (dvar != *dstslot)
4063 dvar = *dstslot;
4064 nodep = &dvar->var_part[0].loc_chain;
4066 if (val)
4068 /* Mark all referenced nodes for canonicalization, and make sure
4069 we have mutual equivalence links. */
4070 VALUE_RECURSED_INTO (val) = true;
4071 for (node = *nodep; node; node = node->next)
4072 if (GET_CODE (node->loc) == VALUE)
4074 VALUE_RECURSED_INTO (node->loc) = true;
4075 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4076 node->init, NULL, INSERT);
4079 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4080 gcc_assert (*dstslot == dvar);
4081 canonicalize_values_star (dstslot, dst);
4082 gcc_checking_assert (dstslot
4083 == shared_hash_find_slot_noinsert_1 (dst->vars,
4084 dv, dvhash));
4085 dvar = *dstslot;
4087 else
4089 bool has_value = false, has_other = false;
4091 /* If we have one value and anything else, we're going to
4092 canonicalize this, so make sure all values have an entry in
4093 the table and are marked for canonicalization. */
4094 for (node = *nodep; node; node = node->next)
4096 if (GET_CODE (node->loc) == VALUE)
4098 /* If this was marked during register canonicalization,
4099 we know we have to canonicalize values. */
4100 if (has_value)
4101 has_other = true;
4102 has_value = true;
4103 if (has_other)
4104 break;
4106 else
4108 has_other = true;
4109 if (has_value)
4110 break;
4114 if (has_value && has_other)
4116 for (node = *nodep; node; node = node->next)
4118 if (GET_CODE (node->loc) == VALUE)
4120 decl_or_value dv = dv_from_value (node->loc);
4121 variable **slot = NULL;
4123 if (shared_hash_shared (dst->vars))
4124 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4125 if (!slot)
4126 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4127 INSERT);
4128 if (!*slot)
4130 variable *var = onepart_pool_allocate (ONEPART_VALUE);
4131 var->dv = dv;
4132 var->refcount = 1;
4133 var->n_var_parts = 1;
4134 var->onepart = ONEPART_VALUE;
4135 var->in_changed_variables = false;
4136 var->var_part[0].loc_chain = NULL;
4137 var->var_part[0].cur_loc = NULL;
4138 VAR_LOC_1PAUX (var) = NULL;
4139 *slot = var;
4142 VALUE_RECURSED_INTO (node->loc) = true;
4146 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4147 gcc_assert (*dstslot == dvar);
4148 canonicalize_values_star (dstslot, dst);
4149 gcc_checking_assert (dstslot
4150 == shared_hash_find_slot_noinsert_1 (dst->vars,
4151 dv, dvhash));
4152 dvar = *dstslot;
4156 if (!onepart_variable_different_p (dvar, s2var))
4158 variable_htab_free (dvar);
4159 *dstslot = dvar = s2var;
4160 dvar->refcount++;
4162 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4164 variable_htab_free (dvar);
4165 *dstslot = dvar = s1var;
4166 dvar->refcount++;
4167 dst_can_be_shared = false;
4169 else
4170 dst_can_be_shared = false;
4172 return 1;
4175 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4176 multi-part variable. Unions of multi-part variables and
4177 intersections of one-part ones will be handled in
4178 variable_merge_over_cur(). */
4180 static int
4181 variable_merge_over_src (variable *s2var, struct dfset_merge *dsm)
4183 dataflow_set *dst = dsm->dst;
4184 decl_or_value dv = s2var->dv;
4186 if (!s2var->onepart)
4188 variable **dstp = shared_hash_find_slot (dst->vars, dv);
4189 *dstp = s2var;
4190 s2var->refcount++;
4191 return 1;
4194 dsm->src_onepart_cnt++;
4195 return 1;
4198 /* Combine dataflow set information from SRC2 into DST, using PDST
4199 to carry over information across passes. */
4201 static void
4202 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4204 dataflow_set cur = *dst;
4205 dataflow_set *src1 = &cur;
4206 struct dfset_merge dsm;
4207 int i;
4208 size_t src1_elems, src2_elems;
4209 variable_iterator_type hi;
4210 variable *var;
4212 src1_elems = shared_hash_htab (src1->vars)->elements ();
4213 src2_elems = shared_hash_htab (src2->vars)->elements ();
4214 dataflow_set_init (dst);
4215 dst->stack_adjust = cur.stack_adjust;
4216 shared_hash_destroy (dst->vars);
4217 dst->vars = new shared_hash;
4218 dst->vars->refcount = 1;
4219 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4221 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4222 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4224 dsm.dst = dst;
4225 dsm.src = src2;
4226 dsm.cur = src1;
4227 dsm.src_onepart_cnt = 0;
4229 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4230 var, variable, hi)
4231 variable_merge_over_src (var, &dsm);
4232 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4233 var, variable, hi)
4234 variable_merge_over_cur (var, &dsm);
4236 if (dsm.src_onepart_cnt)
4237 dst_can_be_shared = false;
4239 dataflow_set_destroy (src1);
4242 /* Mark register equivalences. */
4244 static void
4245 dataflow_set_equiv_regs (dataflow_set *set)
4247 int i;
4248 attrs *list, **listp;
4250 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4252 rtx canon[NUM_MACHINE_MODES];
4254 /* If the list is empty or one entry, no need to canonicalize
4255 anything. */
4256 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4257 continue;
4259 memset (canon, 0, sizeof (canon));
4261 for (list = set->regs[i]; list; list = list->next)
4262 if (list->offset == 0 && dv_is_value_p (list->dv))
4264 rtx val = dv_as_value (list->dv);
4265 rtx *cvalp = &canon[(int)GET_MODE (val)];
4266 rtx cval = *cvalp;
4268 if (canon_value_cmp (val, cval))
4269 *cvalp = val;
4272 for (list = set->regs[i]; list; list = list->next)
4273 if (list->offset == 0 && dv_onepart_p (list->dv))
4275 rtx cval = canon[(int)GET_MODE (list->loc)];
4277 if (!cval)
4278 continue;
4280 if (dv_is_value_p (list->dv))
4282 rtx val = dv_as_value (list->dv);
4284 if (val == cval)
4285 continue;
4287 VALUE_RECURSED_INTO (val) = true;
4288 set_variable_part (set, val, dv_from_value (cval), 0,
4289 VAR_INIT_STATUS_INITIALIZED,
4290 NULL, NO_INSERT);
4293 VALUE_RECURSED_INTO (cval) = true;
4294 set_variable_part (set, cval, list->dv, 0,
4295 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4298 for (listp = &set->regs[i]; (list = *listp);
4299 listp = list ? &list->next : listp)
4300 if (list->offset == 0 && dv_onepart_p (list->dv))
4302 rtx cval = canon[(int)GET_MODE (list->loc)];
4303 variable **slot;
4305 if (!cval)
4306 continue;
4308 if (dv_is_value_p (list->dv))
4310 rtx val = dv_as_value (list->dv);
4311 if (!VALUE_RECURSED_INTO (val))
4312 continue;
4315 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4316 canonicalize_values_star (slot, set);
4317 if (*listp != list)
4318 list = NULL;
4323 /* Remove any redundant values in the location list of VAR, which must
4324 be unshared and 1-part. */
4326 static void
4327 remove_duplicate_values (variable *var)
4329 location_chain *node, **nodep;
4331 gcc_assert (var->onepart);
4332 gcc_assert (var->n_var_parts == 1);
4333 gcc_assert (var->refcount == 1);
4335 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4337 if (GET_CODE (node->loc) == VALUE)
4339 if (VALUE_RECURSED_INTO (node->loc))
4341 /* Remove duplicate value node. */
4342 *nodep = node->next;
4343 delete node;
4344 continue;
4346 else
4347 VALUE_RECURSED_INTO (node->loc) = true;
4349 nodep = &node->next;
4352 for (node = var->var_part[0].loc_chain; node; node = node->next)
4353 if (GET_CODE (node->loc) == VALUE)
4355 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4356 VALUE_RECURSED_INTO (node->loc) = false;
4361 /* Hash table iteration argument passed to variable_post_merge. */
4362 struct dfset_post_merge
4364 /* The new input set for the current block. */
4365 dataflow_set *set;
4366 /* Pointer to the permanent input set for the current block, or
4367 NULL. */
4368 dataflow_set **permp;
4371 /* Create values for incoming expressions associated with one-part
4372 variables that don't have value numbers for them. */
4375 variable_post_merge_new_vals (variable **slot, dfset_post_merge *dfpm)
4377 dataflow_set *set = dfpm->set;
4378 variable *var = *slot;
4379 location_chain *node;
4381 if (!var->onepart || !var->n_var_parts)
4382 return 1;
4384 gcc_assert (var->n_var_parts == 1);
4386 if (dv_is_decl_p (var->dv))
4388 bool check_dupes = false;
4390 restart:
4391 for (node = var->var_part[0].loc_chain; node; node = node->next)
4393 if (GET_CODE (node->loc) == VALUE)
4394 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4395 else if (GET_CODE (node->loc) == REG)
4397 attrs *att, **attp, **curp = NULL;
4399 if (var->refcount != 1)
4401 slot = unshare_variable (set, slot, var,
4402 VAR_INIT_STATUS_INITIALIZED);
4403 var = *slot;
4404 goto restart;
4407 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4408 attp = &att->next)
4409 if (att->offset == 0
4410 && GET_MODE (att->loc) == GET_MODE (node->loc))
4412 if (dv_is_value_p (att->dv))
4414 rtx cval = dv_as_value (att->dv);
4415 node->loc = cval;
4416 check_dupes = true;
4417 break;
4419 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4420 curp = attp;
4423 if (!curp)
4425 curp = attp;
4426 while (*curp)
4427 if ((*curp)->offset == 0
4428 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4429 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4430 break;
4431 else
4432 curp = &(*curp)->next;
4433 gcc_assert (*curp);
4436 if (!att)
4438 decl_or_value cdv;
4439 rtx cval;
4441 if (!*dfpm->permp)
4443 *dfpm->permp = XNEW (dataflow_set);
4444 dataflow_set_init (*dfpm->permp);
4447 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4448 att; att = att->next)
4449 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4451 gcc_assert (att->offset == 0
4452 && dv_is_value_p (att->dv));
4453 val_reset (set, att->dv);
4454 break;
4457 if (att)
4459 cdv = att->dv;
4460 cval = dv_as_value (cdv);
4462 else
4464 /* Create a unique value to hold this register,
4465 that ought to be found and reused in
4466 subsequent rounds. */
4467 cselib_val *v;
4468 gcc_assert (!cselib_lookup (node->loc,
4469 GET_MODE (node->loc), 0,
4470 VOIDmode));
4471 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4472 VOIDmode);
4473 cselib_preserve_value (v);
4474 cselib_invalidate_rtx (node->loc);
4475 cval = v->val_rtx;
4476 cdv = dv_from_value (cval);
4477 if (dump_file)
4478 fprintf (dump_file,
4479 "Created new value %u:%u for reg %i\n",
4480 v->uid, v->hash, REGNO (node->loc));
4483 var_reg_decl_set (*dfpm->permp, node->loc,
4484 VAR_INIT_STATUS_INITIALIZED,
4485 cdv, 0, NULL, INSERT);
4487 node->loc = cval;
4488 check_dupes = true;
4491 /* Remove attribute referring to the decl, which now
4492 uses the value for the register, already existing or
4493 to be added when we bring perm in. */
4494 att = *curp;
4495 *curp = att->next;
4496 delete att;
4500 if (check_dupes)
4501 remove_duplicate_values (var);
4504 return 1;
4507 /* Reset values in the permanent set that are not associated with the
4508 chosen expression. */
4511 variable_post_merge_perm_vals (variable **pslot, dfset_post_merge *dfpm)
4513 dataflow_set *set = dfpm->set;
4514 variable *pvar = *pslot, *var;
4515 location_chain *pnode;
4516 decl_or_value dv;
4517 attrs *att;
4519 gcc_assert (dv_is_value_p (pvar->dv)
4520 && pvar->n_var_parts == 1);
4521 pnode = pvar->var_part[0].loc_chain;
4522 gcc_assert (pnode
4523 && !pnode->next
4524 && REG_P (pnode->loc));
4526 dv = pvar->dv;
4528 var = shared_hash_find (set->vars, dv);
4529 if (var)
4531 /* Although variable_post_merge_new_vals may have made decls
4532 non-star-canonical, values that pre-existed in canonical form
4533 remain canonical, and newly-created values reference a single
4534 REG, so they are canonical as well. Since VAR has the
4535 location list for a VALUE, using find_loc_in_1pdv for it is
4536 fine, since VALUEs don't map back to DECLs. */
4537 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4538 return 1;
4539 val_reset (set, dv);
4542 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4543 if (att->offset == 0
4544 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4545 && dv_is_value_p (att->dv))
4546 break;
4548 /* If there is a value associated with this register already, create
4549 an equivalence. */
4550 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4552 rtx cval = dv_as_value (att->dv);
4553 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4554 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4555 NULL, INSERT);
4557 else if (!att)
4559 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4560 dv, 0, pnode->loc);
4561 variable_union (pvar, set);
4564 return 1;
4567 /* Just checking stuff and registering register attributes for
4568 now. */
4570 static void
4571 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4573 struct dfset_post_merge dfpm;
4575 dfpm.set = set;
4576 dfpm.permp = permp;
4578 shared_hash_htab (set->vars)
4579 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4580 if (*permp)
4581 shared_hash_htab ((*permp)->vars)
4582 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4583 shared_hash_htab (set->vars)
4584 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4585 shared_hash_htab (set->vars)
4586 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4589 /* Return a node whose loc is a MEM that refers to EXPR in the
4590 location list of a one-part variable or value VAR, or in that of
4591 any values recursively mentioned in the location lists. */
4593 static location_chain *
4594 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4596 location_chain *node;
4597 decl_or_value dv;
4598 variable *var;
4599 location_chain *where = NULL;
4601 if (!val)
4602 return NULL;
4604 gcc_assert (GET_CODE (val) == VALUE
4605 && !VALUE_RECURSED_INTO (val));
4607 dv = dv_from_value (val);
4608 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4610 if (!var)
4611 return NULL;
4613 gcc_assert (var->onepart);
4615 if (!var->n_var_parts)
4616 return NULL;
4618 VALUE_RECURSED_INTO (val) = true;
4620 for (node = var->var_part[0].loc_chain; node; node = node->next)
4621 if (MEM_P (node->loc)
4622 && MEM_EXPR (node->loc) == expr
4623 && INT_MEM_OFFSET (node->loc) == 0)
4625 where = node;
4626 break;
4628 else if (GET_CODE (node->loc) == VALUE
4629 && !VALUE_RECURSED_INTO (node->loc)
4630 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4631 break;
4633 VALUE_RECURSED_INTO (val) = false;
4635 return where;
4638 /* Return TRUE if the value of MEM may vary across a call. */
4640 static bool
4641 mem_dies_at_call (rtx mem)
4643 tree expr = MEM_EXPR (mem);
4644 tree decl;
4646 if (!expr)
4647 return true;
4649 decl = get_base_address (expr);
4651 if (!decl)
4652 return true;
4654 if (!DECL_P (decl))
4655 return true;
4657 return (may_be_aliased (decl)
4658 || (!TREE_READONLY (decl) && is_global_var (decl)));
4661 /* Remove all MEMs from the location list of a hash table entry for a
4662 one-part variable, except those whose MEM attributes map back to
4663 the variable itself, directly or within a VALUE. */
4666 dataflow_set_preserve_mem_locs (variable **slot, dataflow_set *set)
4668 variable *var = *slot;
4670 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4672 tree decl = dv_as_decl (var->dv);
4673 location_chain *loc, **locp;
4674 bool changed = false;
4676 if (!var->n_var_parts)
4677 return 1;
4679 gcc_assert (var->n_var_parts == 1);
4681 if (shared_var_p (var, set->vars))
4683 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4685 /* We want to remove dying MEMs that doesn't refer to DECL. */
4686 if (GET_CODE (loc->loc) == MEM
4687 && (MEM_EXPR (loc->loc) != decl
4688 || INT_MEM_OFFSET (loc->loc) != 0)
4689 && !mem_dies_at_call (loc->loc))
4690 break;
4691 /* We want to move here MEMs that do refer to DECL. */
4692 else if (GET_CODE (loc->loc) == VALUE
4693 && find_mem_expr_in_1pdv (decl, loc->loc,
4694 shared_hash_htab (set->vars)))
4695 break;
4698 if (!loc)
4699 return 1;
4701 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4702 var = *slot;
4703 gcc_assert (var->n_var_parts == 1);
4706 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4707 loc; loc = *locp)
4709 rtx old_loc = loc->loc;
4710 if (GET_CODE (old_loc) == VALUE)
4712 location_chain *mem_node
4713 = find_mem_expr_in_1pdv (decl, loc->loc,
4714 shared_hash_htab (set->vars));
4716 /* ??? This picks up only one out of multiple MEMs that
4717 refer to the same variable. Do we ever need to be
4718 concerned about dealing with more than one, or, given
4719 that they should all map to the same variable
4720 location, their addresses will have been merged and
4721 they will be regarded as equivalent? */
4722 if (mem_node)
4724 loc->loc = mem_node->loc;
4725 loc->set_src = mem_node->set_src;
4726 loc->init = MIN (loc->init, mem_node->init);
4730 if (GET_CODE (loc->loc) != MEM
4731 || (MEM_EXPR (loc->loc) == decl
4732 && INT_MEM_OFFSET (loc->loc) == 0)
4733 || !mem_dies_at_call (loc->loc))
4735 if (old_loc != loc->loc && emit_notes)
4737 if (old_loc == var->var_part[0].cur_loc)
4739 changed = true;
4740 var->var_part[0].cur_loc = NULL;
4743 locp = &loc->next;
4744 continue;
4747 if (emit_notes)
4749 if (old_loc == var->var_part[0].cur_loc)
4751 changed = true;
4752 var->var_part[0].cur_loc = NULL;
4755 *locp = loc->next;
4756 delete loc;
4759 if (!var->var_part[0].loc_chain)
4761 var->n_var_parts--;
4762 changed = true;
4764 if (changed)
4765 variable_was_changed (var, set);
4768 return 1;
4771 /* Remove all MEMs from the location list of a hash table entry for a
4772 value. */
4775 dataflow_set_remove_mem_locs (variable **slot, dataflow_set *set)
4777 variable *var = *slot;
4779 if (var->onepart == ONEPART_VALUE)
4781 location_chain *loc, **locp;
4782 bool changed = false;
4783 rtx cur_loc;
4785 gcc_assert (var->n_var_parts == 1);
4787 if (shared_var_p (var, set->vars))
4789 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4790 if (GET_CODE (loc->loc) == MEM
4791 && mem_dies_at_call (loc->loc))
4792 break;
4794 if (!loc)
4795 return 1;
4797 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4798 var = *slot;
4799 gcc_assert (var->n_var_parts == 1);
4802 if (VAR_LOC_1PAUX (var))
4803 cur_loc = VAR_LOC_FROM (var);
4804 else
4805 cur_loc = var->var_part[0].cur_loc;
4807 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4808 loc; loc = *locp)
4810 if (GET_CODE (loc->loc) != MEM
4811 || !mem_dies_at_call (loc->loc))
4813 locp = &loc->next;
4814 continue;
4817 *locp = loc->next;
4818 /* If we have deleted the location which was last emitted
4819 we have to emit new location so add the variable to set
4820 of changed variables. */
4821 if (cur_loc == loc->loc)
4823 changed = true;
4824 var->var_part[0].cur_loc = NULL;
4825 if (VAR_LOC_1PAUX (var))
4826 VAR_LOC_FROM (var) = NULL;
4828 delete loc;
4831 if (!var->var_part[0].loc_chain)
4833 var->n_var_parts--;
4834 changed = true;
4836 if (changed)
4837 variable_was_changed (var, set);
4840 return 1;
4843 /* Remove all variable-location information about call-clobbered
4844 registers, as well as associations between MEMs and VALUEs. */
4846 static void
4847 dataflow_set_clear_at_call (dataflow_set *set, rtx_insn *call_insn)
4849 unsigned int r;
4850 hard_reg_set_iterator hrsi;
4851 HARD_REG_SET invalidated_regs;
4853 get_call_reg_set_usage (call_insn, &invalidated_regs,
4854 regs_invalidated_by_call);
4856 EXECUTE_IF_SET_IN_HARD_REG_SET (invalidated_regs, 0, r, hrsi)
4857 var_regno_delete (set, r);
4859 if (MAY_HAVE_DEBUG_INSNS)
4861 set->traversed_vars = set->vars;
4862 shared_hash_htab (set->vars)
4863 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4864 set->traversed_vars = set->vars;
4865 shared_hash_htab (set->vars)
4866 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4867 set->traversed_vars = NULL;
4871 static bool
4872 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4874 location_chain *lc1, *lc2;
4876 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4878 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4880 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4882 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4883 break;
4885 if (rtx_equal_p (lc1->loc, lc2->loc))
4886 break;
4888 if (!lc2)
4889 return true;
4891 return false;
4894 /* Return true if one-part variables VAR1 and VAR2 are different.
4895 They must be in canonical order. */
4897 static bool
4898 onepart_variable_different_p (variable *var1, variable *var2)
4900 location_chain *lc1, *lc2;
4902 if (var1 == var2)
4903 return false;
4905 gcc_assert (var1->n_var_parts == 1
4906 && var2->n_var_parts == 1);
4908 lc1 = var1->var_part[0].loc_chain;
4909 lc2 = var2->var_part[0].loc_chain;
4911 gcc_assert (lc1 && lc2);
4913 while (lc1 && lc2)
4915 if (loc_cmp (lc1->loc, lc2->loc))
4916 return true;
4917 lc1 = lc1->next;
4918 lc2 = lc2->next;
4921 return lc1 != lc2;
4924 /* Return true if variables VAR1 and VAR2 are different. */
4926 static bool
4927 variable_different_p (variable *var1, variable *var2)
4929 int i;
4931 if (var1 == var2)
4932 return false;
4934 if (var1->onepart != var2->onepart)
4935 return true;
4937 if (var1->n_var_parts != var2->n_var_parts)
4938 return true;
4940 if (var1->onepart && var1->n_var_parts)
4942 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4943 && var1->n_var_parts == 1);
4944 /* One-part values have locations in a canonical order. */
4945 return onepart_variable_different_p (var1, var2);
4948 for (i = 0; i < var1->n_var_parts; i++)
4950 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4951 return true;
4952 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4953 return true;
4954 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4955 return true;
4957 return false;
4960 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4962 static bool
4963 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4965 variable_iterator_type hi;
4966 variable *var1;
4968 if (old_set->vars == new_set->vars)
4969 return false;
4971 if (shared_hash_htab (old_set->vars)->elements ()
4972 != shared_hash_htab (new_set->vars)->elements ())
4973 return true;
4975 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
4976 var1, variable, hi)
4978 variable_table_type *htab = shared_hash_htab (new_set->vars);
4979 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4980 if (!var2)
4982 if (dump_file && (dump_flags & TDF_DETAILS))
4984 fprintf (dump_file, "dataflow difference found: removal of:\n");
4985 dump_var (var1);
4987 return true;
4990 if (variable_different_p (var1, var2))
4992 if (dump_file && (dump_flags & TDF_DETAILS))
4994 fprintf (dump_file, "dataflow difference found: "
4995 "old and new follow:\n");
4996 dump_var (var1);
4997 dump_var (var2);
4999 return true;
5003 /* No need to traverse the second hashtab, if both have the same number
5004 of elements and the second one had all entries found in the first one,
5005 then it can't have any extra entries. */
5006 return false;
5009 /* Free the contents of dataflow set SET. */
5011 static void
5012 dataflow_set_destroy (dataflow_set *set)
5014 int i;
5016 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5017 attrs_list_clear (&set->regs[i]);
5019 shared_hash_destroy (set->vars);
5020 set->vars = NULL;
5023 /* Shall EXPR be tracked? */
5025 static bool
5026 track_expr_p (tree expr, bool need_rtl)
5028 rtx decl_rtl;
5029 tree realdecl;
5031 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5032 return DECL_RTL_SET_P (expr);
5034 /* If EXPR is not a parameter or a variable do not track it. */
5035 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5036 return 0;
5038 /* It also must have a name... */
5039 if (!DECL_NAME (expr) && need_rtl)
5040 return 0;
5042 /* ... and a RTL assigned to it. */
5043 decl_rtl = DECL_RTL_IF_SET (expr);
5044 if (!decl_rtl && need_rtl)
5045 return 0;
5047 /* If this expression is really a debug alias of some other declaration, we
5048 don't need to track this expression if the ultimate declaration is
5049 ignored. */
5050 realdecl = expr;
5051 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5053 realdecl = DECL_DEBUG_EXPR (realdecl);
5054 if (!DECL_P (realdecl))
5056 if (handled_component_p (realdecl)
5057 || (TREE_CODE (realdecl) == MEM_REF
5058 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5060 HOST_WIDE_INT bitsize, bitpos, maxsize;
5061 bool reverse;
5062 tree innerdecl
5063 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5064 &maxsize, &reverse);
5065 if (!DECL_P (innerdecl)
5066 || DECL_IGNORED_P (innerdecl)
5067 /* Do not track declarations for parts of tracked parameters
5068 since we want to track them as a whole instead. */
5069 || (TREE_CODE (innerdecl) == PARM_DECL
5070 && DECL_MODE (innerdecl) != BLKmode
5071 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5072 || TREE_STATIC (innerdecl)
5073 || bitsize <= 0
5074 || bitpos + bitsize > 256
5075 || bitsize != maxsize)
5076 return 0;
5077 else
5078 realdecl = expr;
5080 else
5081 return 0;
5085 /* Do not track EXPR if REALDECL it should be ignored for debugging
5086 purposes. */
5087 if (DECL_IGNORED_P (realdecl))
5088 return 0;
5090 /* Do not track global variables until we are able to emit correct location
5091 list for them. */
5092 if (TREE_STATIC (realdecl))
5093 return 0;
5095 /* When the EXPR is a DECL for alias of some variable (see example)
5096 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5097 DECL_RTL contains SYMBOL_REF.
5099 Example:
5100 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5101 char **_dl_argv;
5103 if (decl_rtl && MEM_P (decl_rtl)
5104 && contains_symbol_ref_p (XEXP (decl_rtl, 0)))
5105 return 0;
5107 /* If RTX is a memory it should not be very large (because it would be
5108 an array or struct). */
5109 if (decl_rtl && MEM_P (decl_rtl))
5111 /* Do not track structures and arrays. */
5112 if (GET_MODE (decl_rtl) == BLKmode
5113 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5114 return 0;
5115 if (MEM_SIZE_KNOWN_P (decl_rtl)
5116 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5117 return 0;
5120 DECL_CHANGED (expr) = 0;
5121 DECL_CHANGED (realdecl) = 0;
5122 return 1;
5125 /* Determine whether a given LOC refers to the same variable part as
5126 EXPR+OFFSET. */
5128 static bool
5129 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5131 tree expr2;
5132 HOST_WIDE_INT offset2;
5134 if (! DECL_P (expr))
5135 return false;
5137 if (REG_P (loc))
5139 expr2 = REG_EXPR (loc);
5140 offset2 = REG_OFFSET (loc);
5142 else if (MEM_P (loc))
5144 expr2 = MEM_EXPR (loc);
5145 offset2 = INT_MEM_OFFSET (loc);
5147 else
5148 return false;
5150 if (! expr2 || ! DECL_P (expr2))
5151 return false;
5153 expr = var_debug_decl (expr);
5154 expr2 = var_debug_decl (expr2);
5156 return (expr == expr2 && offset == offset2);
5159 /* LOC is a REG or MEM that we would like to track if possible.
5160 If EXPR is null, we don't know what expression LOC refers to,
5161 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5162 LOC is an lvalue register.
5164 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5165 is something we can track. When returning true, store the mode of
5166 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5167 from EXPR in *OFFSET_OUT (if nonnull). */
5169 static bool
5170 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5171 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5173 machine_mode mode;
5175 if (expr == NULL || !track_expr_p (expr, true))
5176 return false;
5178 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5179 whole subreg, but only the old inner part is really relevant. */
5180 mode = GET_MODE (loc);
5181 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5183 machine_mode pseudo_mode;
5185 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5186 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5188 offset += byte_lowpart_offset (pseudo_mode, mode);
5189 mode = pseudo_mode;
5193 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5194 Do the same if we are storing to a register and EXPR occupies
5195 the whole of register LOC; in that case, the whole of EXPR is
5196 being changed. We exclude complex modes from the second case
5197 because the real and imaginary parts are represented as separate
5198 pseudo registers, even if the whole complex value fits into one
5199 hard register. */
5200 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5201 || (store_reg_p
5202 && !COMPLEX_MODE_P (DECL_MODE (expr))
5203 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5204 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5206 mode = DECL_MODE (expr);
5207 offset = 0;
5210 if (offset < 0 || offset >= MAX_VAR_PARTS)
5211 return false;
5213 if (mode_out)
5214 *mode_out = mode;
5215 if (offset_out)
5216 *offset_out = offset;
5217 return true;
5220 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5221 want to track. When returning nonnull, make sure that the attributes
5222 on the returned value are updated. */
5224 static rtx
5225 var_lowpart (machine_mode mode, rtx loc)
5227 unsigned int offset, reg_offset, regno;
5229 if (GET_MODE (loc) == mode)
5230 return loc;
5232 if (!REG_P (loc) && !MEM_P (loc))
5233 return NULL;
5235 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5237 if (MEM_P (loc))
5238 return adjust_address_nv (loc, mode, offset);
5240 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5241 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5242 reg_offset, mode);
5243 return gen_rtx_REG_offset (loc, mode, regno, offset);
5246 /* Carry information about uses and stores while walking rtx. */
5248 struct count_use_info
5250 /* The insn where the RTX is. */
5251 rtx_insn *insn;
5253 /* The basic block where insn is. */
5254 basic_block bb;
5256 /* The array of n_sets sets in the insn, as determined by cselib. */
5257 struct cselib_set *sets;
5258 int n_sets;
5260 /* True if we're counting stores, false otherwise. */
5261 bool store_p;
5264 /* Find a VALUE corresponding to X. */
5266 static inline cselib_val *
5267 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5269 int i;
5271 if (cui->sets)
5273 /* This is called after uses are set up and before stores are
5274 processed by cselib, so it's safe to look up srcs, but not
5275 dsts. So we look up expressions that appear in srcs or in
5276 dest expressions, but we search the sets array for dests of
5277 stores. */
5278 if (cui->store_p)
5280 /* Some targets represent memset and memcpy patterns
5281 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5282 (set (mem:BLK ...) (const_int ...)) or
5283 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5284 in that case, otherwise we end up with mode mismatches. */
5285 if (mode == BLKmode && MEM_P (x))
5286 return NULL;
5287 for (i = 0; i < cui->n_sets; i++)
5288 if (cui->sets[i].dest == x)
5289 return cui->sets[i].src_elt;
5291 else
5292 return cselib_lookup (x, mode, 0, VOIDmode);
5295 return NULL;
5298 /* Replace all registers and addresses in an expression with VALUE
5299 expressions that map back to them, unless the expression is a
5300 register. If no mapping is or can be performed, returns NULL. */
5302 static rtx
5303 replace_expr_with_values (rtx loc)
5305 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5306 return NULL;
5307 else if (MEM_P (loc))
5309 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5310 get_address_mode (loc), 0,
5311 GET_MODE (loc));
5312 if (addr)
5313 return replace_equiv_address_nv (loc, addr->val_rtx);
5314 else
5315 return NULL;
5317 else
5318 return cselib_subst_to_values (loc, VOIDmode);
5321 /* Return true if X contains a DEBUG_EXPR. */
5323 static bool
5324 rtx_debug_expr_p (const_rtx x)
5326 subrtx_iterator::array_type array;
5327 FOR_EACH_SUBRTX (iter, array, x, ALL)
5328 if (GET_CODE (*iter) == DEBUG_EXPR)
5329 return true;
5330 return false;
5333 /* Determine what kind of micro operation to choose for a USE. Return
5334 MO_CLOBBER if no micro operation is to be generated. */
5336 static enum micro_operation_type
5337 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5339 tree expr;
5341 if (cui && cui->sets)
5343 if (GET_CODE (loc) == VAR_LOCATION)
5345 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5347 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5348 if (! VAR_LOC_UNKNOWN_P (ploc))
5350 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5351 VOIDmode);
5353 /* ??? flag_float_store and volatile mems are never
5354 given values, but we could in theory use them for
5355 locations. */
5356 gcc_assert (val || 1);
5358 return MO_VAL_LOC;
5360 else
5361 return MO_CLOBBER;
5364 if (REG_P (loc) || MEM_P (loc))
5366 if (modep)
5367 *modep = GET_MODE (loc);
5368 if (cui->store_p)
5370 if (REG_P (loc)
5371 || (find_use_val (loc, GET_MODE (loc), cui)
5372 && cselib_lookup (XEXP (loc, 0),
5373 get_address_mode (loc), 0,
5374 GET_MODE (loc))))
5375 return MO_VAL_SET;
5377 else
5379 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5381 if (val && !cselib_preserved_value_p (val))
5382 return MO_VAL_USE;
5387 if (REG_P (loc))
5389 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5391 if (loc == cfa_base_rtx)
5392 return MO_CLOBBER;
5393 expr = REG_EXPR (loc);
5395 if (!expr)
5396 return MO_USE_NO_VAR;
5397 else if (target_for_debug_bind (var_debug_decl (expr)))
5398 return MO_CLOBBER;
5399 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5400 false, modep, NULL))
5401 return MO_USE;
5402 else
5403 return MO_USE_NO_VAR;
5405 else if (MEM_P (loc))
5407 expr = MEM_EXPR (loc);
5409 if (!expr)
5410 return MO_CLOBBER;
5411 else if (target_for_debug_bind (var_debug_decl (expr)))
5412 return MO_CLOBBER;
5413 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5414 false, modep, NULL)
5415 /* Multi-part variables shouldn't refer to one-part
5416 variable names such as VALUEs (never happens) or
5417 DEBUG_EXPRs (only happens in the presence of debug
5418 insns). */
5419 && (!MAY_HAVE_DEBUG_INSNS
5420 || !rtx_debug_expr_p (XEXP (loc, 0))))
5421 return MO_USE;
5422 else
5423 return MO_CLOBBER;
5426 return MO_CLOBBER;
5429 /* Log to OUT information about micro-operation MOPT involving X in
5430 INSN of BB. */
5432 static inline void
5433 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5434 enum micro_operation_type mopt, FILE *out)
5436 fprintf (out, "bb %i op %i insn %i %s ",
5437 bb->index, VTI (bb)->mos.length (),
5438 INSN_UID (insn), micro_operation_type_name[mopt]);
5439 print_inline_rtx (out, x, 2);
5440 fputc ('\n', out);
5443 /* Tell whether the CONCAT used to holds a VALUE and its location
5444 needs value resolution, i.e., an attempt of mapping the location
5445 back to other incoming values. */
5446 #define VAL_NEEDS_RESOLUTION(x) \
5447 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5448 /* Whether the location in the CONCAT is a tracked expression, that
5449 should also be handled like a MO_USE. */
5450 #define VAL_HOLDS_TRACK_EXPR(x) \
5451 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5452 /* Whether the location in the CONCAT should be handled like a MO_COPY
5453 as well. */
5454 #define VAL_EXPR_IS_COPIED(x) \
5455 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5456 /* Whether the location in the CONCAT should be handled like a
5457 MO_CLOBBER as well. */
5458 #define VAL_EXPR_IS_CLOBBERED(x) \
5459 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5461 /* All preserved VALUEs. */
5462 static vec<rtx> preserved_values;
5464 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5466 static void
5467 preserve_value (cselib_val *val)
5469 cselib_preserve_value (val);
5470 preserved_values.safe_push (val->val_rtx);
5473 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5474 any rtxes not suitable for CONST use not replaced by VALUEs
5475 are discovered. */
5477 static bool
5478 non_suitable_const (const_rtx x)
5480 subrtx_iterator::array_type array;
5481 FOR_EACH_SUBRTX (iter, array, x, ALL)
5483 const_rtx x = *iter;
5484 switch (GET_CODE (x))
5486 case REG:
5487 case DEBUG_EXPR:
5488 case PC:
5489 case SCRATCH:
5490 case CC0:
5491 case ASM_INPUT:
5492 case ASM_OPERANDS:
5493 return true;
5494 case MEM:
5495 if (!MEM_READONLY_P (x))
5496 return true;
5497 break;
5498 default:
5499 break;
5502 return false;
5505 /* Add uses (register and memory references) LOC which will be tracked
5506 to VTI (bb)->mos. */
5508 static void
5509 add_uses (rtx loc, struct count_use_info *cui)
5511 machine_mode mode = VOIDmode;
5512 enum micro_operation_type type = use_type (loc, cui, &mode);
5514 if (type != MO_CLOBBER)
5516 basic_block bb = cui->bb;
5517 micro_operation mo;
5519 mo.type = type;
5520 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5521 mo.insn = cui->insn;
5523 if (type == MO_VAL_LOC)
5525 rtx oloc = loc;
5526 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5527 cselib_val *val;
5529 gcc_assert (cui->sets);
5531 if (MEM_P (vloc)
5532 && !REG_P (XEXP (vloc, 0))
5533 && !MEM_P (XEXP (vloc, 0)))
5535 rtx mloc = vloc;
5536 machine_mode address_mode = get_address_mode (mloc);
5537 cselib_val *val
5538 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5539 GET_MODE (mloc));
5541 if (val && !cselib_preserved_value_p (val))
5542 preserve_value (val);
5545 if (CONSTANT_P (vloc)
5546 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5547 /* For constants don't look up any value. */;
5548 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5549 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5551 machine_mode mode2;
5552 enum micro_operation_type type2;
5553 rtx nloc = NULL;
5554 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5556 if (resolvable)
5557 nloc = replace_expr_with_values (vloc);
5559 if (nloc)
5561 oloc = shallow_copy_rtx (oloc);
5562 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5565 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5567 type2 = use_type (vloc, 0, &mode2);
5569 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5570 || type2 == MO_CLOBBER);
5572 if (type2 == MO_CLOBBER
5573 && !cselib_preserved_value_p (val))
5575 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5576 preserve_value (val);
5579 else if (!VAR_LOC_UNKNOWN_P (vloc))
5581 oloc = shallow_copy_rtx (oloc);
5582 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5585 mo.u.loc = oloc;
5587 else if (type == MO_VAL_USE)
5589 machine_mode mode2 = VOIDmode;
5590 enum micro_operation_type type2;
5591 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5592 rtx vloc, oloc = loc, nloc;
5594 gcc_assert (cui->sets);
5596 if (MEM_P (oloc)
5597 && !REG_P (XEXP (oloc, 0))
5598 && !MEM_P (XEXP (oloc, 0)))
5600 rtx mloc = oloc;
5601 machine_mode address_mode = get_address_mode (mloc);
5602 cselib_val *val
5603 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5604 GET_MODE (mloc));
5606 if (val && !cselib_preserved_value_p (val))
5607 preserve_value (val);
5610 type2 = use_type (loc, 0, &mode2);
5612 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5613 || type2 == MO_CLOBBER);
5615 if (type2 == MO_USE)
5616 vloc = var_lowpart (mode2, loc);
5617 else
5618 vloc = oloc;
5620 /* The loc of a MO_VAL_USE may have two forms:
5622 (concat val src): val is at src, a value-based
5623 representation.
5625 (concat (concat val use) src): same as above, with use as
5626 the MO_USE tracked value, if it differs from src.
5630 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5631 nloc = replace_expr_with_values (loc);
5632 if (!nloc)
5633 nloc = oloc;
5635 if (vloc != nloc)
5636 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5637 else
5638 oloc = val->val_rtx;
5640 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5642 if (type2 == MO_USE)
5643 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5644 if (!cselib_preserved_value_p (val))
5646 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5647 preserve_value (val);
5650 else
5651 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5653 if (dump_file && (dump_flags & TDF_DETAILS))
5654 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5655 VTI (bb)->mos.safe_push (mo);
5659 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5661 static void
5662 add_uses_1 (rtx *x, void *cui)
5664 subrtx_var_iterator::array_type array;
5665 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5666 add_uses (*iter, (struct count_use_info *) cui);
5669 /* This is the value used during expansion of locations. We want it
5670 to be unbounded, so that variables expanded deep in a recursion
5671 nest are fully evaluated, so that their values are cached
5672 correctly. We avoid recursion cycles through other means, and we
5673 don't unshare RTL, so excess complexity is not a problem. */
5674 #define EXPR_DEPTH (INT_MAX)
5675 /* We use this to keep too-complex expressions from being emitted as
5676 location notes, and then to debug information. Users can trade
5677 compile time for ridiculously complex expressions, although they're
5678 seldom useful, and they may often have to be discarded as not
5679 representable anyway. */
5680 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5682 /* Attempt to reverse the EXPR operation in the debug info and record
5683 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5684 no longer live we can express its value as VAL - 6. */
5686 static void
5687 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5689 rtx src, arg, ret;
5690 cselib_val *v;
5691 struct elt_loc_list *l;
5692 enum rtx_code code;
5693 int count;
5695 if (GET_CODE (expr) != SET)
5696 return;
5698 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5699 return;
5701 src = SET_SRC (expr);
5702 switch (GET_CODE (src))
5704 case PLUS:
5705 case MINUS:
5706 case XOR:
5707 case NOT:
5708 case NEG:
5709 if (!REG_P (XEXP (src, 0)))
5710 return;
5711 break;
5712 case SIGN_EXTEND:
5713 case ZERO_EXTEND:
5714 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5715 return;
5716 break;
5717 default:
5718 return;
5721 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5722 return;
5724 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5725 if (!v || !cselib_preserved_value_p (v))
5726 return;
5728 /* Use canonical V to avoid creating multiple redundant expressions
5729 for different VALUES equivalent to V. */
5730 v = canonical_cselib_val (v);
5732 /* Adding a reverse op isn't useful if V already has an always valid
5733 location. Ignore ENTRY_VALUE, while it is always constant, we should
5734 prefer non-ENTRY_VALUE locations whenever possible. */
5735 for (l = v->locs, count = 0; l; l = l->next, count++)
5736 if (CONSTANT_P (l->loc)
5737 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5738 return;
5739 /* Avoid creating too large locs lists. */
5740 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5741 return;
5743 switch (GET_CODE (src))
5745 case NOT:
5746 case NEG:
5747 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5748 return;
5749 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5750 break;
5751 case SIGN_EXTEND:
5752 case ZERO_EXTEND:
5753 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5754 break;
5755 case XOR:
5756 code = XOR;
5757 goto binary;
5758 case PLUS:
5759 code = MINUS;
5760 goto binary;
5761 case MINUS:
5762 code = PLUS;
5763 goto binary;
5764 binary:
5765 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5766 return;
5767 arg = XEXP (src, 1);
5768 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5770 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5771 if (arg == NULL_RTX)
5772 return;
5773 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5774 return;
5776 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5777 if (ret == val)
5778 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5779 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5780 breaks a lot of routines during var-tracking. */
5781 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5782 break;
5783 default:
5784 gcc_unreachable ();
5787 cselib_add_permanent_equiv (v, ret, insn);
5790 /* Add stores (register and memory references) LOC which will be tracked
5791 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5792 CUIP->insn is instruction which the LOC is part of. */
5794 static void
5795 add_stores (rtx loc, const_rtx expr, void *cuip)
5797 machine_mode mode = VOIDmode, mode2;
5798 struct count_use_info *cui = (struct count_use_info *)cuip;
5799 basic_block bb = cui->bb;
5800 micro_operation mo;
5801 rtx oloc = loc, nloc, src = NULL;
5802 enum micro_operation_type type = use_type (loc, cui, &mode);
5803 bool track_p = false;
5804 cselib_val *v;
5805 bool resolve, preserve;
5807 if (type == MO_CLOBBER)
5808 return;
5810 mode2 = mode;
5812 if (REG_P (loc))
5814 gcc_assert (loc != cfa_base_rtx);
5815 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5816 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5817 || GET_CODE (expr) == CLOBBER)
5819 mo.type = MO_CLOBBER;
5820 mo.u.loc = loc;
5821 if (GET_CODE (expr) == SET
5822 && SET_DEST (expr) == loc
5823 && !unsuitable_loc (SET_SRC (expr))
5824 && find_use_val (loc, mode, cui))
5826 gcc_checking_assert (type == MO_VAL_SET);
5827 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5830 else
5832 if (GET_CODE (expr) == SET
5833 && SET_DEST (expr) == loc
5834 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5835 src = var_lowpart (mode2, SET_SRC (expr));
5836 loc = var_lowpart (mode2, loc);
5838 if (src == NULL)
5840 mo.type = MO_SET;
5841 mo.u.loc = loc;
5843 else
5845 rtx xexpr = gen_rtx_SET (loc, src);
5846 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5848 /* If this is an instruction copying (part of) a parameter
5849 passed by invisible reference to its register location,
5850 pretend it's a SET so that the initial memory location
5851 is discarded, as the parameter register can be reused
5852 for other purposes and we do not track locations based
5853 on generic registers. */
5854 if (MEM_P (src)
5855 && REG_EXPR (loc)
5856 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5857 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5858 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5859 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5860 != arg_pointer_rtx)
5861 mo.type = MO_SET;
5862 else
5863 mo.type = MO_COPY;
5865 else
5866 mo.type = MO_SET;
5867 mo.u.loc = xexpr;
5870 mo.insn = cui->insn;
5872 else if (MEM_P (loc)
5873 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5874 || cui->sets))
5876 if (MEM_P (loc) && type == MO_VAL_SET
5877 && !REG_P (XEXP (loc, 0))
5878 && !MEM_P (XEXP (loc, 0)))
5880 rtx mloc = loc;
5881 machine_mode address_mode = get_address_mode (mloc);
5882 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5883 address_mode, 0,
5884 GET_MODE (mloc));
5886 if (val && !cselib_preserved_value_p (val))
5887 preserve_value (val);
5890 if (GET_CODE (expr) == CLOBBER || !track_p)
5892 mo.type = MO_CLOBBER;
5893 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5895 else
5897 if (GET_CODE (expr) == SET
5898 && SET_DEST (expr) == loc
5899 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5900 src = var_lowpart (mode2, SET_SRC (expr));
5901 loc = var_lowpart (mode2, loc);
5903 if (src == NULL)
5905 mo.type = MO_SET;
5906 mo.u.loc = loc;
5908 else
5910 rtx xexpr = gen_rtx_SET (loc, src);
5911 if (same_variable_part_p (SET_SRC (xexpr),
5912 MEM_EXPR (loc),
5913 INT_MEM_OFFSET (loc)))
5914 mo.type = MO_COPY;
5915 else
5916 mo.type = MO_SET;
5917 mo.u.loc = xexpr;
5920 mo.insn = cui->insn;
5922 else
5923 return;
5925 if (type != MO_VAL_SET)
5926 goto log_and_return;
5928 v = find_use_val (oloc, mode, cui);
5930 if (!v)
5931 goto log_and_return;
5933 resolve = preserve = !cselib_preserved_value_p (v);
5935 /* We cannot track values for multiple-part variables, so we track only
5936 locations for tracked parameters passed either by invisible reference
5937 or directly in multiple locations. */
5938 if (track_p
5939 && REG_P (loc)
5940 && REG_EXPR (loc)
5941 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5942 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5943 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5944 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5945 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
5946 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
5947 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
5949 /* Although we don't use the value here, it could be used later by the
5950 mere virtue of its existence as the operand of the reverse operation
5951 that gave rise to it (typically extension/truncation). Make sure it
5952 is preserved as required by vt_expand_var_loc_chain. */
5953 if (preserve)
5954 preserve_value (v);
5955 goto log_and_return;
5958 if (loc == stack_pointer_rtx
5959 && hard_frame_pointer_adjustment != -1
5960 && preserve)
5961 cselib_set_value_sp_based (v);
5963 nloc = replace_expr_with_values (oloc);
5964 if (nloc)
5965 oloc = nloc;
5967 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5969 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
5971 if (oval == v)
5972 return;
5973 gcc_assert (REG_P (oloc) || MEM_P (oloc));
5975 if (oval && !cselib_preserved_value_p (oval))
5977 micro_operation moa;
5979 preserve_value (oval);
5981 moa.type = MO_VAL_USE;
5982 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
5983 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
5984 moa.insn = cui->insn;
5986 if (dump_file && (dump_flags & TDF_DETAILS))
5987 log_op_type (moa.u.loc, cui->bb, cui->insn,
5988 moa.type, dump_file);
5989 VTI (bb)->mos.safe_push (moa);
5992 resolve = false;
5994 else if (resolve && GET_CODE (mo.u.loc) == SET)
5996 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
5997 nloc = replace_expr_with_values (SET_SRC (expr));
5998 else
5999 nloc = NULL_RTX;
6001 /* Avoid the mode mismatch between oexpr and expr. */
6002 if (!nloc && mode != mode2)
6004 nloc = SET_SRC (expr);
6005 gcc_assert (oloc == SET_DEST (expr));
6008 if (nloc && nloc != SET_SRC (mo.u.loc))
6009 oloc = gen_rtx_SET (oloc, nloc);
6010 else
6012 if (oloc == SET_DEST (mo.u.loc))
6013 /* No point in duplicating. */
6014 oloc = mo.u.loc;
6015 if (!REG_P (SET_SRC (mo.u.loc)))
6016 resolve = false;
6019 else if (!resolve)
6021 if (GET_CODE (mo.u.loc) == SET
6022 && oloc == SET_DEST (mo.u.loc))
6023 /* No point in duplicating. */
6024 oloc = mo.u.loc;
6026 else
6027 resolve = false;
6029 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6031 if (mo.u.loc != oloc)
6032 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6034 /* The loc of a MO_VAL_SET may have various forms:
6036 (concat val dst): dst now holds val
6038 (concat val (set dst src)): dst now holds val, copied from src
6040 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6041 after replacing mems and non-top-level regs with values.
6043 (concat (concat val dstv) (set dst src)): dst now holds val,
6044 copied from src. dstv is a value-based representation of dst, if
6045 it differs from dst. If resolution is needed, src is a REG, and
6046 its mode is the same as that of val.
6048 (concat (concat val (set dstv srcv)) (set dst src)): src
6049 copied to dst, holding val. dstv and srcv are value-based
6050 representations of dst and src, respectively.
6054 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6055 reverse_op (v->val_rtx, expr, cui->insn);
6057 mo.u.loc = loc;
6059 if (track_p)
6060 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6061 if (preserve)
6063 VAL_NEEDS_RESOLUTION (loc) = resolve;
6064 preserve_value (v);
6066 if (mo.type == MO_CLOBBER)
6067 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6068 if (mo.type == MO_COPY)
6069 VAL_EXPR_IS_COPIED (loc) = 1;
6071 mo.type = MO_VAL_SET;
6073 log_and_return:
6074 if (dump_file && (dump_flags & TDF_DETAILS))
6075 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6076 VTI (bb)->mos.safe_push (mo);
6079 /* Arguments to the call. */
6080 static rtx call_arguments;
6082 /* Compute call_arguments. */
6084 static void
6085 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6087 rtx link, x, call;
6088 rtx prev, cur, next;
6089 rtx this_arg = NULL_RTX;
6090 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6091 tree obj_type_ref = NULL_TREE;
6092 CUMULATIVE_ARGS args_so_far_v;
6093 cumulative_args_t args_so_far;
6095 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6096 args_so_far = pack_cumulative_args (&args_so_far_v);
6097 call = get_call_rtx_from (insn);
6098 if (call)
6100 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6102 rtx symbol = XEXP (XEXP (call, 0), 0);
6103 if (SYMBOL_REF_DECL (symbol))
6104 fndecl = SYMBOL_REF_DECL (symbol);
6106 if (fndecl == NULL_TREE)
6107 fndecl = MEM_EXPR (XEXP (call, 0));
6108 if (fndecl
6109 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6110 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6111 fndecl = NULL_TREE;
6112 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6113 type = TREE_TYPE (fndecl);
6114 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6116 if (TREE_CODE (fndecl) == INDIRECT_REF
6117 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6118 obj_type_ref = TREE_OPERAND (fndecl, 0);
6119 fndecl = NULL_TREE;
6121 if (type)
6123 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6124 t = TREE_CHAIN (t))
6125 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6126 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6127 break;
6128 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6129 type = NULL;
6130 else
6132 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6133 link = CALL_INSN_FUNCTION_USAGE (insn);
6134 #ifndef PCC_STATIC_STRUCT_RETURN
6135 if (aggregate_value_p (TREE_TYPE (type), type)
6136 && targetm.calls.struct_value_rtx (type, 0) == 0)
6138 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6139 machine_mode mode = TYPE_MODE (struct_addr);
6140 rtx reg;
6141 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6142 nargs + 1);
6143 reg = targetm.calls.function_arg (args_so_far, mode,
6144 struct_addr, true);
6145 targetm.calls.function_arg_advance (args_so_far, mode,
6146 struct_addr, true);
6147 if (reg == NULL_RTX)
6149 for (; link; link = XEXP (link, 1))
6150 if (GET_CODE (XEXP (link, 0)) == USE
6151 && MEM_P (XEXP (XEXP (link, 0), 0)))
6153 link = XEXP (link, 1);
6154 break;
6158 else
6159 #endif
6160 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6161 nargs);
6162 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6164 machine_mode mode;
6165 t = TYPE_ARG_TYPES (type);
6166 mode = TYPE_MODE (TREE_VALUE (t));
6167 this_arg = targetm.calls.function_arg (args_so_far, mode,
6168 TREE_VALUE (t), true);
6169 if (this_arg && !REG_P (this_arg))
6170 this_arg = NULL_RTX;
6171 else if (this_arg == NULL_RTX)
6173 for (; link; link = XEXP (link, 1))
6174 if (GET_CODE (XEXP (link, 0)) == USE
6175 && MEM_P (XEXP (XEXP (link, 0), 0)))
6177 this_arg = XEXP (XEXP (link, 0), 0);
6178 break;
6185 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6187 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6188 if (GET_CODE (XEXP (link, 0)) == USE)
6190 rtx item = NULL_RTX;
6191 x = XEXP (XEXP (link, 0), 0);
6192 if (GET_MODE (link) == VOIDmode
6193 || GET_MODE (link) == BLKmode
6194 || (GET_MODE (link) != GET_MODE (x)
6195 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6196 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6197 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6198 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6199 /* Can't do anything for these, if the original type mode
6200 isn't known or can't be converted. */;
6201 else if (REG_P (x))
6203 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6204 if (val && cselib_preserved_value_p (val))
6205 item = val->val_rtx;
6206 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
6207 || GET_MODE_CLASS (GET_MODE (x)) == MODE_PARTIAL_INT)
6209 machine_mode mode = GET_MODE (x);
6211 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6212 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6214 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6216 if (reg == NULL_RTX || !REG_P (reg))
6217 continue;
6218 val = cselib_lookup (reg, mode, 0, VOIDmode);
6219 if (val && cselib_preserved_value_p (val))
6221 item = val->val_rtx;
6222 break;
6227 else if (MEM_P (x))
6229 rtx mem = x;
6230 cselib_val *val;
6232 if (!frame_pointer_needed)
6234 struct adjust_mem_data amd;
6235 amd.mem_mode = VOIDmode;
6236 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6237 amd.side_effects = NULL;
6238 amd.store = true;
6239 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6240 &amd);
6241 gcc_assert (amd.side_effects == NULL_RTX);
6243 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6244 if (val && cselib_preserved_value_p (val))
6245 item = val->val_rtx;
6246 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6247 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6249 /* For non-integer stack argument see also if they weren't
6250 initialized by integers. */
6251 machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6252 if (imode != GET_MODE (mem) && imode != BLKmode)
6254 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6255 imode, 0, VOIDmode);
6256 if (val && cselib_preserved_value_p (val))
6257 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6258 imode);
6262 if (item)
6264 rtx x2 = x;
6265 if (GET_MODE (item) != GET_MODE (link))
6266 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6267 if (GET_MODE (x2) != GET_MODE (link))
6268 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6269 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6270 call_arguments
6271 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6273 if (t && t != void_list_node)
6275 tree argtype = TREE_VALUE (t);
6276 machine_mode mode = TYPE_MODE (argtype);
6277 rtx reg;
6278 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6280 argtype = build_pointer_type (argtype);
6281 mode = TYPE_MODE (argtype);
6283 reg = targetm.calls.function_arg (args_so_far, mode,
6284 argtype, true);
6285 if (TREE_CODE (argtype) == REFERENCE_TYPE
6286 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6287 && reg
6288 && REG_P (reg)
6289 && GET_MODE (reg) == mode
6290 && (GET_MODE_CLASS (mode) == MODE_INT
6291 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6292 && REG_P (x)
6293 && REGNO (x) == REGNO (reg)
6294 && GET_MODE (x) == mode
6295 && item)
6297 machine_mode indmode
6298 = TYPE_MODE (TREE_TYPE (argtype));
6299 rtx mem = gen_rtx_MEM (indmode, x);
6300 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6301 if (val && cselib_preserved_value_p (val))
6303 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6304 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6305 call_arguments);
6307 else
6309 struct elt_loc_list *l;
6310 tree initial;
6312 /* Try harder, when passing address of a constant
6313 pool integer it can be easily read back. */
6314 item = XEXP (item, 1);
6315 if (GET_CODE (item) == SUBREG)
6316 item = SUBREG_REG (item);
6317 gcc_assert (GET_CODE (item) == VALUE);
6318 val = CSELIB_VAL_PTR (item);
6319 for (l = val->locs; l; l = l->next)
6320 if (GET_CODE (l->loc) == SYMBOL_REF
6321 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6322 && SYMBOL_REF_DECL (l->loc)
6323 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6325 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6326 if (tree_fits_shwi_p (initial))
6328 item = GEN_INT (tree_to_shwi (initial));
6329 item = gen_rtx_CONCAT (indmode, mem, item);
6330 call_arguments
6331 = gen_rtx_EXPR_LIST (VOIDmode, item,
6332 call_arguments);
6334 break;
6338 targetm.calls.function_arg_advance (args_so_far, mode,
6339 argtype, true);
6340 t = TREE_CHAIN (t);
6344 /* Add debug arguments. */
6345 if (fndecl
6346 && TREE_CODE (fndecl) == FUNCTION_DECL
6347 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6349 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6350 if (debug_args)
6352 unsigned int ix;
6353 tree param;
6354 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6356 rtx item;
6357 tree dtemp = (**debug_args)[ix + 1];
6358 machine_mode mode = DECL_MODE (dtemp);
6359 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6360 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6361 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6362 call_arguments);
6367 /* Reverse call_arguments chain. */
6368 prev = NULL_RTX;
6369 for (cur = call_arguments; cur; cur = next)
6371 next = XEXP (cur, 1);
6372 XEXP (cur, 1) = prev;
6373 prev = cur;
6375 call_arguments = prev;
6377 x = get_call_rtx_from (insn);
6378 if (x)
6380 x = XEXP (XEXP (x, 0), 0);
6381 if (GET_CODE (x) == SYMBOL_REF)
6382 /* Don't record anything. */;
6383 else if (CONSTANT_P (x))
6385 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6386 pc_rtx, x);
6387 call_arguments
6388 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6390 else
6392 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6393 if (val && cselib_preserved_value_p (val))
6395 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6396 call_arguments
6397 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6401 if (this_arg)
6403 machine_mode mode
6404 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6405 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6406 HOST_WIDE_INT token
6407 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6408 if (token)
6409 clobbered = plus_constant (mode, clobbered,
6410 token * GET_MODE_SIZE (mode));
6411 clobbered = gen_rtx_MEM (mode, clobbered);
6412 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6413 call_arguments
6414 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6418 /* Callback for cselib_record_sets_hook, that records as micro
6419 operations uses and stores in an insn after cselib_record_sets has
6420 analyzed the sets in an insn, but before it modifies the stored
6421 values in the internal tables, unless cselib_record_sets doesn't
6422 call it directly (perhaps because we're not doing cselib in the
6423 first place, in which case sets and n_sets will be 0). */
6425 static void
6426 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6428 basic_block bb = BLOCK_FOR_INSN (insn);
6429 int n1, n2;
6430 struct count_use_info cui;
6431 micro_operation *mos;
6433 cselib_hook_called = true;
6435 cui.insn = insn;
6436 cui.bb = bb;
6437 cui.sets = sets;
6438 cui.n_sets = n_sets;
6440 n1 = VTI (bb)->mos.length ();
6441 cui.store_p = false;
6442 note_uses (&PATTERN (insn), add_uses_1, &cui);
6443 n2 = VTI (bb)->mos.length () - 1;
6444 mos = VTI (bb)->mos.address ();
6446 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6447 MO_VAL_LOC last. */
6448 while (n1 < n2)
6450 while (n1 < n2 && mos[n1].type == MO_USE)
6451 n1++;
6452 while (n1 < n2 && mos[n2].type != MO_USE)
6453 n2--;
6454 if (n1 < n2)
6455 std::swap (mos[n1], mos[n2]);
6458 n2 = VTI (bb)->mos.length () - 1;
6459 while (n1 < n2)
6461 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6462 n1++;
6463 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6464 n2--;
6465 if (n1 < n2)
6466 std::swap (mos[n1], mos[n2]);
6469 if (CALL_P (insn))
6471 micro_operation mo;
6473 mo.type = MO_CALL;
6474 mo.insn = insn;
6475 mo.u.loc = call_arguments;
6476 call_arguments = NULL_RTX;
6478 if (dump_file && (dump_flags & TDF_DETAILS))
6479 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6480 VTI (bb)->mos.safe_push (mo);
6483 n1 = VTI (bb)->mos.length ();
6484 /* This will record NEXT_INSN (insn), such that we can
6485 insert notes before it without worrying about any
6486 notes that MO_USEs might emit after the insn. */
6487 cui.store_p = true;
6488 note_stores (PATTERN (insn), add_stores, &cui);
6489 n2 = VTI (bb)->mos.length () - 1;
6490 mos = VTI (bb)->mos.address ();
6492 /* Order the MO_VAL_USEs first (note_stores does nothing
6493 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6494 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6495 while (n1 < n2)
6497 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6498 n1++;
6499 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6500 n2--;
6501 if (n1 < n2)
6502 std::swap (mos[n1], mos[n2]);
6505 n2 = VTI (bb)->mos.length () - 1;
6506 while (n1 < n2)
6508 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6509 n1++;
6510 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6511 n2--;
6512 if (n1 < n2)
6513 std::swap (mos[n1], mos[n2]);
6517 static enum var_init_status
6518 find_src_status (dataflow_set *in, rtx src)
6520 tree decl = NULL_TREE;
6521 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6523 if (! flag_var_tracking_uninit)
6524 status = VAR_INIT_STATUS_INITIALIZED;
6526 if (src && REG_P (src))
6527 decl = var_debug_decl (REG_EXPR (src));
6528 else if (src && MEM_P (src))
6529 decl = var_debug_decl (MEM_EXPR (src));
6531 if (src && decl)
6532 status = get_init_value (in, src, dv_from_decl (decl));
6534 return status;
6537 /* SRC is the source of an assignment. Use SET to try to find what
6538 was ultimately assigned to SRC. Return that value if known,
6539 otherwise return SRC itself. */
6541 static rtx
6542 find_src_set_src (dataflow_set *set, rtx src)
6544 tree decl = NULL_TREE; /* The variable being copied around. */
6545 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6546 variable *var;
6547 location_chain *nextp;
6548 int i;
6549 bool found;
6551 if (src && REG_P (src))
6552 decl = var_debug_decl (REG_EXPR (src));
6553 else if (src && MEM_P (src))
6554 decl = var_debug_decl (MEM_EXPR (src));
6556 if (src && decl)
6558 decl_or_value dv = dv_from_decl (decl);
6560 var = shared_hash_find (set->vars, dv);
6561 if (var)
6563 found = false;
6564 for (i = 0; i < var->n_var_parts && !found; i++)
6565 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6566 nextp = nextp->next)
6567 if (rtx_equal_p (nextp->loc, src))
6569 set_src = nextp->set_src;
6570 found = true;
6576 return set_src;
6579 /* Compute the changes of variable locations in the basic block BB. */
6581 static bool
6582 compute_bb_dataflow (basic_block bb)
6584 unsigned int i;
6585 micro_operation *mo;
6586 bool changed;
6587 dataflow_set old_out;
6588 dataflow_set *in = &VTI (bb)->in;
6589 dataflow_set *out = &VTI (bb)->out;
6591 dataflow_set_init (&old_out);
6592 dataflow_set_copy (&old_out, out);
6593 dataflow_set_copy (out, in);
6595 if (MAY_HAVE_DEBUG_INSNS)
6596 local_get_addr_cache = new hash_map<rtx, rtx>;
6598 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6600 rtx_insn *insn = mo->insn;
6602 switch (mo->type)
6604 case MO_CALL:
6605 dataflow_set_clear_at_call (out, insn);
6606 break;
6608 case MO_USE:
6610 rtx loc = mo->u.loc;
6612 if (REG_P (loc))
6613 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6614 else if (MEM_P (loc))
6615 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6617 break;
6619 case MO_VAL_LOC:
6621 rtx loc = mo->u.loc;
6622 rtx val, vloc;
6623 tree var;
6625 if (GET_CODE (loc) == CONCAT)
6627 val = XEXP (loc, 0);
6628 vloc = XEXP (loc, 1);
6630 else
6632 val = NULL_RTX;
6633 vloc = loc;
6636 var = PAT_VAR_LOCATION_DECL (vloc);
6638 clobber_variable_part (out, NULL_RTX,
6639 dv_from_decl (var), 0, NULL_RTX);
6640 if (val)
6642 if (VAL_NEEDS_RESOLUTION (loc))
6643 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6644 set_variable_part (out, val, dv_from_decl (var), 0,
6645 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6646 INSERT);
6648 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6649 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6650 dv_from_decl (var), 0,
6651 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6652 INSERT);
6654 break;
6656 case MO_VAL_USE:
6658 rtx loc = mo->u.loc;
6659 rtx val, vloc, uloc;
6661 vloc = uloc = XEXP (loc, 1);
6662 val = XEXP (loc, 0);
6664 if (GET_CODE (val) == CONCAT)
6666 uloc = XEXP (val, 1);
6667 val = XEXP (val, 0);
6670 if (VAL_NEEDS_RESOLUTION (loc))
6671 val_resolve (out, val, vloc, insn);
6672 else
6673 val_store (out, val, uloc, insn, false);
6675 if (VAL_HOLDS_TRACK_EXPR (loc))
6677 if (GET_CODE (uloc) == REG)
6678 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6679 NULL);
6680 else if (GET_CODE (uloc) == MEM)
6681 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6682 NULL);
6685 break;
6687 case MO_VAL_SET:
6689 rtx loc = mo->u.loc;
6690 rtx val, vloc, uloc;
6691 rtx dstv, srcv;
6693 vloc = loc;
6694 uloc = XEXP (vloc, 1);
6695 val = XEXP (vloc, 0);
6696 vloc = uloc;
6698 if (GET_CODE (uloc) == SET)
6700 dstv = SET_DEST (uloc);
6701 srcv = SET_SRC (uloc);
6703 else
6705 dstv = uloc;
6706 srcv = NULL;
6709 if (GET_CODE (val) == CONCAT)
6711 dstv = vloc = XEXP (val, 1);
6712 val = XEXP (val, 0);
6715 if (GET_CODE (vloc) == SET)
6717 srcv = SET_SRC (vloc);
6719 gcc_assert (val != srcv);
6720 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6722 dstv = vloc = SET_DEST (vloc);
6724 if (VAL_NEEDS_RESOLUTION (loc))
6725 val_resolve (out, val, srcv, insn);
6727 else if (VAL_NEEDS_RESOLUTION (loc))
6729 gcc_assert (GET_CODE (uloc) == SET
6730 && GET_CODE (SET_SRC (uloc)) == REG);
6731 val_resolve (out, val, SET_SRC (uloc), insn);
6734 if (VAL_HOLDS_TRACK_EXPR (loc))
6736 if (VAL_EXPR_IS_CLOBBERED (loc))
6738 if (REG_P (uloc))
6739 var_reg_delete (out, uloc, true);
6740 else if (MEM_P (uloc))
6742 gcc_assert (MEM_P (dstv));
6743 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6744 var_mem_delete (out, dstv, true);
6747 else
6749 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6750 rtx src = NULL, dst = uloc;
6751 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6753 if (GET_CODE (uloc) == SET)
6755 src = SET_SRC (uloc);
6756 dst = SET_DEST (uloc);
6759 if (copied_p)
6761 if (flag_var_tracking_uninit)
6763 status = find_src_status (in, src);
6765 if (status == VAR_INIT_STATUS_UNKNOWN)
6766 status = find_src_status (out, src);
6769 src = find_src_set_src (in, src);
6772 if (REG_P (dst))
6773 var_reg_delete_and_set (out, dst, !copied_p,
6774 status, srcv);
6775 else if (MEM_P (dst))
6777 gcc_assert (MEM_P (dstv));
6778 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6779 var_mem_delete_and_set (out, dstv, !copied_p,
6780 status, srcv);
6784 else if (REG_P (uloc))
6785 var_regno_delete (out, REGNO (uloc));
6786 else if (MEM_P (uloc))
6788 gcc_checking_assert (GET_CODE (vloc) == MEM);
6789 gcc_checking_assert (dstv == vloc);
6790 if (dstv != vloc)
6791 clobber_overlapping_mems (out, vloc);
6794 val_store (out, val, dstv, insn, true);
6796 break;
6798 case MO_SET:
6800 rtx loc = mo->u.loc;
6801 rtx set_src = NULL;
6803 if (GET_CODE (loc) == SET)
6805 set_src = SET_SRC (loc);
6806 loc = SET_DEST (loc);
6809 if (REG_P (loc))
6810 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6811 set_src);
6812 else if (MEM_P (loc))
6813 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6814 set_src);
6816 break;
6818 case MO_COPY:
6820 rtx loc = mo->u.loc;
6821 enum var_init_status src_status;
6822 rtx set_src = NULL;
6824 if (GET_CODE (loc) == SET)
6826 set_src = SET_SRC (loc);
6827 loc = SET_DEST (loc);
6830 if (! flag_var_tracking_uninit)
6831 src_status = VAR_INIT_STATUS_INITIALIZED;
6832 else
6834 src_status = find_src_status (in, set_src);
6836 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6837 src_status = find_src_status (out, set_src);
6840 set_src = find_src_set_src (in, set_src);
6842 if (REG_P (loc))
6843 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6844 else if (MEM_P (loc))
6845 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6847 break;
6849 case MO_USE_NO_VAR:
6851 rtx loc = mo->u.loc;
6853 if (REG_P (loc))
6854 var_reg_delete (out, loc, false);
6855 else if (MEM_P (loc))
6856 var_mem_delete (out, loc, false);
6858 break;
6860 case MO_CLOBBER:
6862 rtx loc = mo->u.loc;
6864 if (REG_P (loc))
6865 var_reg_delete (out, loc, true);
6866 else if (MEM_P (loc))
6867 var_mem_delete (out, loc, true);
6869 break;
6871 case MO_ADJUST:
6872 out->stack_adjust += mo->u.adjust;
6873 break;
6877 if (MAY_HAVE_DEBUG_INSNS)
6879 delete local_get_addr_cache;
6880 local_get_addr_cache = NULL;
6882 dataflow_set_equiv_regs (out);
6883 shared_hash_htab (out->vars)
6884 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6885 shared_hash_htab (out->vars)
6886 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6887 if (flag_checking)
6888 shared_hash_htab (out->vars)
6889 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6891 changed = dataflow_set_different (&old_out, out);
6892 dataflow_set_destroy (&old_out);
6893 return changed;
6896 /* Find the locations of variables in the whole function. */
6898 static bool
6899 vt_find_locations (void)
6901 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
6902 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
6903 sbitmap visited, in_worklist, in_pending;
6904 basic_block bb;
6905 edge e;
6906 int *bb_order;
6907 int *rc_order;
6908 int i;
6909 int htabsz = 0;
6910 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6911 bool success = true;
6913 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6914 /* Compute reverse completion order of depth first search of the CFG
6915 so that the data-flow runs faster. */
6916 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6917 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6918 pre_and_rev_post_order_compute (NULL, rc_order, false);
6919 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6920 bb_order[rc_order[i]] = i;
6921 free (rc_order);
6923 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
6924 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
6925 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
6926 bitmap_clear (in_worklist);
6928 FOR_EACH_BB_FN (bb, cfun)
6929 pending->insert (bb_order[bb->index], bb);
6930 bitmap_ones (in_pending);
6932 while (success && !pending->empty ())
6934 std::swap (worklist, pending);
6935 std::swap (in_worklist, in_pending);
6937 bitmap_clear (visited);
6939 while (!worklist->empty ())
6941 bb = worklist->extract_min ();
6942 bitmap_clear_bit (in_worklist, bb->index);
6943 gcc_assert (!bitmap_bit_p (visited, bb->index));
6944 if (!bitmap_bit_p (visited, bb->index))
6946 bool changed;
6947 edge_iterator ei;
6948 int oldinsz, oldoutsz;
6950 bitmap_set_bit (visited, bb->index);
6952 if (VTI (bb)->in.vars)
6954 htabsz
6955 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
6956 + shared_hash_htab (VTI (bb)->out.vars)->size ();
6957 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
6958 oldoutsz
6959 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
6961 else
6962 oldinsz = oldoutsz = 0;
6964 if (MAY_HAVE_DEBUG_INSNS)
6966 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
6967 bool first = true, adjust = false;
6969 /* Calculate the IN set as the intersection of
6970 predecessor OUT sets. */
6972 dataflow_set_clear (in);
6973 dst_can_be_shared = true;
6975 FOR_EACH_EDGE (e, ei, bb->preds)
6976 if (!VTI (e->src)->flooded)
6977 gcc_assert (bb_order[bb->index]
6978 <= bb_order[e->src->index]);
6979 else if (first)
6981 dataflow_set_copy (in, &VTI (e->src)->out);
6982 first_out = &VTI (e->src)->out;
6983 first = false;
6985 else
6987 dataflow_set_merge (in, &VTI (e->src)->out);
6988 adjust = true;
6991 if (adjust)
6993 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
6995 if (flag_checking)
6996 /* Merge and merge_adjust should keep entries in
6997 canonical order. */
6998 shared_hash_htab (in->vars)
6999 ->traverse <dataflow_set *,
7000 canonicalize_loc_order_check> (in);
7002 if (dst_can_be_shared)
7004 shared_hash_destroy (in->vars);
7005 in->vars = shared_hash_copy (first_out->vars);
7009 VTI (bb)->flooded = true;
7011 else
7013 /* Calculate the IN set as union of predecessor OUT sets. */
7014 dataflow_set_clear (&VTI (bb)->in);
7015 FOR_EACH_EDGE (e, ei, bb->preds)
7016 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7019 changed = compute_bb_dataflow (bb);
7020 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7021 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7023 if (htabmax && htabsz > htabmax)
7025 if (MAY_HAVE_DEBUG_INSNS)
7026 inform (DECL_SOURCE_LOCATION (cfun->decl),
7027 "variable tracking size limit exceeded with "
7028 "-fvar-tracking-assignments, retrying without");
7029 else
7030 inform (DECL_SOURCE_LOCATION (cfun->decl),
7031 "variable tracking size limit exceeded");
7032 success = false;
7033 break;
7036 if (changed)
7038 FOR_EACH_EDGE (e, ei, bb->succs)
7040 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7041 continue;
7043 if (bitmap_bit_p (visited, e->dest->index))
7045 if (!bitmap_bit_p (in_pending, e->dest->index))
7047 /* Send E->DEST to next round. */
7048 bitmap_set_bit (in_pending, e->dest->index);
7049 pending->insert (bb_order[e->dest->index],
7050 e->dest);
7053 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7055 /* Add E->DEST to current round. */
7056 bitmap_set_bit (in_worklist, e->dest->index);
7057 worklist->insert (bb_order[e->dest->index],
7058 e->dest);
7063 if (dump_file)
7064 fprintf (dump_file,
7065 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7066 bb->index,
7067 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7068 oldinsz,
7069 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7070 oldoutsz,
7071 (int)worklist->nodes (), (int)pending->nodes (),
7072 htabsz);
7074 if (dump_file && (dump_flags & TDF_DETAILS))
7076 fprintf (dump_file, "BB %i IN:\n", bb->index);
7077 dump_dataflow_set (&VTI (bb)->in);
7078 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7079 dump_dataflow_set (&VTI (bb)->out);
7085 if (success && MAY_HAVE_DEBUG_INSNS)
7086 FOR_EACH_BB_FN (bb, cfun)
7087 gcc_assert (VTI (bb)->flooded);
7089 free (bb_order);
7090 delete worklist;
7091 delete pending;
7092 sbitmap_free (visited);
7093 sbitmap_free (in_worklist);
7094 sbitmap_free (in_pending);
7096 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7097 return success;
7100 /* Print the content of the LIST to dump file. */
7102 static void
7103 dump_attrs_list (attrs *list)
7105 for (; list; list = list->next)
7107 if (dv_is_decl_p (list->dv))
7108 print_mem_expr (dump_file, dv_as_decl (list->dv));
7109 else
7110 print_rtl_single (dump_file, dv_as_value (list->dv));
7111 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7113 fprintf (dump_file, "\n");
7116 /* Print the information about variable *SLOT to dump file. */
7119 dump_var_tracking_slot (variable **slot, void *data ATTRIBUTE_UNUSED)
7121 variable *var = *slot;
7123 dump_var (var);
7125 /* Continue traversing the hash table. */
7126 return 1;
7129 /* Print the information about variable VAR to dump file. */
7131 static void
7132 dump_var (variable *var)
7134 int i;
7135 location_chain *node;
7137 if (dv_is_decl_p (var->dv))
7139 const_tree decl = dv_as_decl (var->dv);
7141 if (DECL_NAME (decl))
7143 fprintf (dump_file, " name: %s",
7144 IDENTIFIER_POINTER (DECL_NAME (decl)));
7145 if (dump_flags & TDF_UID)
7146 fprintf (dump_file, "D.%u", DECL_UID (decl));
7148 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7149 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7150 else
7151 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7152 fprintf (dump_file, "\n");
7154 else
7156 fputc (' ', dump_file);
7157 print_rtl_single (dump_file, dv_as_value (var->dv));
7160 for (i = 0; i < var->n_var_parts; i++)
7162 fprintf (dump_file, " offset %ld\n",
7163 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7164 for (node = var->var_part[i].loc_chain; node; node = node->next)
7166 fprintf (dump_file, " ");
7167 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7168 fprintf (dump_file, "[uninit]");
7169 print_rtl_single (dump_file, node->loc);
7174 /* Print the information about variables from hash table VARS to dump file. */
7176 static void
7177 dump_vars (variable_table_type *vars)
7179 if (vars->elements () > 0)
7181 fprintf (dump_file, "Variables:\n");
7182 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7186 /* Print the dataflow set SET to dump file. */
7188 static void
7189 dump_dataflow_set (dataflow_set *set)
7191 int i;
7193 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7194 set->stack_adjust);
7195 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7197 if (set->regs[i])
7199 fprintf (dump_file, "Reg %d:", i);
7200 dump_attrs_list (set->regs[i]);
7203 dump_vars (shared_hash_htab (set->vars));
7204 fprintf (dump_file, "\n");
7207 /* Print the IN and OUT sets for each basic block to dump file. */
7209 static void
7210 dump_dataflow_sets (void)
7212 basic_block bb;
7214 FOR_EACH_BB_FN (bb, cfun)
7216 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7217 fprintf (dump_file, "IN:\n");
7218 dump_dataflow_set (&VTI (bb)->in);
7219 fprintf (dump_file, "OUT:\n");
7220 dump_dataflow_set (&VTI (bb)->out);
7224 /* Return the variable for DV in dropped_values, inserting one if
7225 requested with INSERT. */
7227 static inline variable *
7228 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7230 variable **slot;
7231 variable *empty_var;
7232 onepart_enum onepart;
7234 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7236 if (!slot)
7237 return NULL;
7239 if (*slot)
7240 return *slot;
7242 gcc_checking_assert (insert == INSERT);
7244 onepart = dv_onepart_p (dv);
7246 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7248 empty_var = onepart_pool_allocate (onepart);
7249 empty_var->dv = dv;
7250 empty_var->refcount = 1;
7251 empty_var->n_var_parts = 0;
7252 empty_var->onepart = onepart;
7253 empty_var->in_changed_variables = false;
7254 empty_var->var_part[0].loc_chain = NULL;
7255 empty_var->var_part[0].cur_loc = NULL;
7256 VAR_LOC_1PAUX (empty_var) = NULL;
7257 set_dv_changed (dv, true);
7259 *slot = empty_var;
7261 return empty_var;
7264 /* Recover the one-part aux from dropped_values. */
7266 static struct onepart_aux *
7267 recover_dropped_1paux (variable *var)
7269 variable *dvar;
7271 gcc_checking_assert (var->onepart);
7273 if (VAR_LOC_1PAUX (var))
7274 return VAR_LOC_1PAUX (var);
7276 if (var->onepart == ONEPART_VDECL)
7277 return NULL;
7279 dvar = variable_from_dropped (var->dv, NO_INSERT);
7281 if (!dvar)
7282 return NULL;
7284 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7285 VAR_LOC_1PAUX (dvar) = NULL;
7287 return VAR_LOC_1PAUX (var);
7290 /* Add variable VAR to the hash table of changed variables and
7291 if it has no locations delete it from SET's hash table. */
7293 static void
7294 variable_was_changed (variable *var, dataflow_set *set)
7296 hashval_t hash = dv_htab_hash (var->dv);
7298 if (emit_notes)
7300 variable **slot;
7302 /* Remember this decl or VALUE has been added to changed_variables. */
7303 set_dv_changed (var->dv, true);
7305 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7307 if (*slot)
7309 variable *old_var = *slot;
7310 gcc_assert (old_var->in_changed_variables);
7311 old_var->in_changed_variables = false;
7312 if (var != old_var && var->onepart)
7314 /* Restore the auxiliary info from an empty variable
7315 previously created for changed_variables, so it is
7316 not lost. */
7317 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7318 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7319 VAR_LOC_1PAUX (old_var) = NULL;
7321 variable_htab_free (*slot);
7324 if (set && var->n_var_parts == 0)
7326 onepart_enum onepart = var->onepart;
7327 variable *empty_var = NULL;
7328 variable **dslot = NULL;
7330 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7332 dslot = dropped_values->find_slot_with_hash (var->dv,
7333 dv_htab_hash (var->dv),
7334 INSERT);
7335 empty_var = *dslot;
7337 if (empty_var)
7339 gcc_checking_assert (!empty_var->in_changed_variables);
7340 if (!VAR_LOC_1PAUX (var))
7342 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7343 VAR_LOC_1PAUX (empty_var) = NULL;
7345 else
7346 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7350 if (!empty_var)
7352 empty_var = onepart_pool_allocate (onepart);
7353 empty_var->dv = var->dv;
7354 empty_var->refcount = 1;
7355 empty_var->n_var_parts = 0;
7356 empty_var->onepart = onepart;
7357 if (dslot)
7359 empty_var->refcount++;
7360 *dslot = empty_var;
7363 else
7364 empty_var->refcount++;
7365 empty_var->in_changed_variables = true;
7366 *slot = empty_var;
7367 if (onepart)
7369 empty_var->var_part[0].loc_chain = NULL;
7370 empty_var->var_part[0].cur_loc = NULL;
7371 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7372 VAR_LOC_1PAUX (var) = NULL;
7374 goto drop_var;
7376 else
7378 if (var->onepart && !VAR_LOC_1PAUX (var))
7379 recover_dropped_1paux (var);
7380 var->refcount++;
7381 var->in_changed_variables = true;
7382 *slot = var;
7385 else
7387 gcc_assert (set);
7388 if (var->n_var_parts == 0)
7390 variable **slot;
7392 drop_var:
7393 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7394 if (slot)
7396 if (shared_hash_shared (set->vars))
7397 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7398 NO_INSERT);
7399 shared_hash_htab (set->vars)->clear_slot (slot);
7405 /* Look for the index in VAR->var_part corresponding to OFFSET.
7406 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7407 referenced int will be set to the index that the part has or should
7408 have, if it should be inserted. */
7410 static inline int
7411 find_variable_location_part (variable *var, HOST_WIDE_INT offset,
7412 int *insertion_point)
7414 int pos, low, high;
7416 if (var->onepart)
7418 if (offset != 0)
7419 return -1;
7421 if (insertion_point)
7422 *insertion_point = 0;
7424 return var->n_var_parts - 1;
7427 /* Find the location part. */
7428 low = 0;
7429 high = var->n_var_parts;
7430 while (low != high)
7432 pos = (low + high) / 2;
7433 if (VAR_PART_OFFSET (var, pos) < offset)
7434 low = pos + 1;
7435 else
7436 high = pos;
7438 pos = low;
7440 if (insertion_point)
7441 *insertion_point = pos;
7443 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7444 return pos;
7446 return -1;
7449 static variable **
7450 set_slot_part (dataflow_set *set, rtx loc, variable **slot,
7451 decl_or_value dv, HOST_WIDE_INT offset,
7452 enum var_init_status initialized, rtx set_src)
7454 int pos;
7455 location_chain *node, *next;
7456 location_chain **nextp;
7457 variable *var;
7458 onepart_enum onepart;
7460 var = *slot;
7462 if (var)
7463 onepart = var->onepart;
7464 else
7465 onepart = dv_onepart_p (dv);
7467 gcc_checking_assert (offset == 0 || !onepart);
7468 gcc_checking_assert (loc != dv_as_opaque (dv));
7470 if (! flag_var_tracking_uninit)
7471 initialized = VAR_INIT_STATUS_INITIALIZED;
7473 if (!var)
7475 /* Create new variable information. */
7476 var = onepart_pool_allocate (onepart);
7477 var->dv = dv;
7478 var->refcount = 1;
7479 var->n_var_parts = 1;
7480 var->onepart = onepart;
7481 var->in_changed_variables = false;
7482 if (var->onepart)
7483 VAR_LOC_1PAUX (var) = NULL;
7484 else
7485 VAR_PART_OFFSET (var, 0) = offset;
7486 var->var_part[0].loc_chain = NULL;
7487 var->var_part[0].cur_loc = NULL;
7488 *slot = var;
7489 pos = 0;
7490 nextp = &var->var_part[0].loc_chain;
7492 else if (onepart)
7494 int r = -1, c = 0;
7496 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7498 pos = 0;
7500 if (GET_CODE (loc) == VALUE)
7502 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7503 nextp = &node->next)
7504 if (GET_CODE (node->loc) == VALUE)
7506 if (node->loc == loc)
7508 r = 0;
7509 break;
7511 if (canon_value_cmp (node->loc, loc))
7512 c++;
7513 else
7515 r = 1;
7516 break;
7519 else if (REG_P (node->loc) || MEM_P (node->loc))
7520 c++;
7521 else
7523 r = 1;
7524 break;
7527 else if (REG_P (loc))
7529 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7530 nextp = &node->next)
7531 if (REG_P (node->loc))
7533 if (REGNO (node->loc) < REGNO (loc))
7534 c++;
7535 else
7537 if (REGNO (node->loc) == REGNO (loc))
7538 r = 0;
7539 else
7540 r = 1;
7541 break;
7544 else
7546 r = 1;
7547 break;
7550 else if (MEM_P (loc))
7552 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7553 nextp = &node->next)
7554 if (REG_P (node->loc))
7555 c++;
7556 else if (MEM_P (node->loc))
7558 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7559 break;
7560 else
7561 c++;
7563 else
7565 r = 1;
7566 break;
7569 else
7570 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7571 nextp = &node->next)
7572 if ((r = loc_cmp (node->loc, loc)) >= 0)
7573 break;
7574 else
7575 c++;
7577 if (r == 0)
7578 return slot;
7580 if (shared_var_p (var, set->vars))
7582 slot = unshare_variable (set, slot, var, initialized);
7583 var = *slot;
7584 for (nextp = &var->var_part[0].loc_chain; c;
7585 nextp = &(*nextp)->next)
7586 c--;
7587 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7590 else
7592 int inspos = 0;
7594 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7596 pos = find_variable_location_part (var, offset, &inspos);
7598 if (pos >= 0)
7600 node = var->var_part[pos].loc_chain;
7602 if (node
7603 && ((REG_P (node->loc) && REG_P (loc)
7604 && REGNO (node->loc) == REGNO (loc))
7605 || rtx_equal_p (node->loc, loc)))
7607 /* LOC is in the beginning of the chain so we have nothing
7608 to do. */
7609 if (node->init < initialized)
7610 node->init = initialized;
7611 if (set_src != NULL)
7612 node->set_src = set_src;
7614 return slot;
7616 else
7618 /* We have to make a copy of a shared variable. */
7619 if (shared_var_p (var, set->vars))
7621 slot = unshare_variable (set, slot, var, initialized);
7622 var = *slot;
7626 else
7628 /* We have not found the location part, new one will be created. */
7630 /* We have to make a copy of the shared variable. */
7631 if (shared_var_p (var, set->vars))
7633 slot = unshare_variable (set, slot, var, initialized);
7634 var = *slot;
7637 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7638 thus there are at most MAX_VAR_PARTS different offsets. */
7639 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7640 && (!var->n_var_parts || !onepart));
7642 /* We have to move the elements of array starting at index
7643 inspos to the next position. */
7644 for (pos = var->n_var_parts; pos > inspos; pos--)
7645 var->var_part[pos] = var->var_part[pos - 1];
7647 var->n_var_parts++;
7648 gcc_checking_assert (!onepart);
7649 VAR_PART_OFFSET (var, pos) = offset;
7650 var->var_part[pos].loc_chain = NULL;
7651 var->var_part[pos].cur_loc = NULL;
7654 /* Delete the location from the list. */
7655 nextp = &var->var_part[pos].loc_chain;
7656 for (node = var->var_part[pos].loc_chain; node; node = next)
7658 next = node->next;
7659 if ((REG_P (node->loc) && REG_P (loc)
7660 && REGNO (node->loc) == REGNO (loc))
7661 || rtx_equal_p (node->loc, loc))
7663 /* Save these values, to assign to the new node, before
7664 deleting this one. */
7665 if (node->init > initialized)
7666 initialized = node->init;
7667 if (node->set_src != NULL && set_src == NULL)
7668 set_src = node->set_src;
7669 if (var->var_part[pos].cur_loc == node->loc)
7670 var->var_part[pos].cur_loc = NULL;
7671 delete node;
7672 *nextp = next;
7673 break;
7675 else
7676 nextp = &node->next;
7679 nextp = &var->var_part[pos].loc_chain;
7682 /* Add the location to the beginning. */
7683 node = new location_chain;
7684 node->loc = loc;
7685 node->init = initialized;
7686 node->set_src = set_src;
7687 node->next = *nextp;
7688 *nextp = node;
7690 /* If no location was emitted do so. */
7691 if (var->var_part[pos].cur_loc == NULL)
7692 variable_was_changed (var, set);
7694 return slot;
7697 /* Set the part of variable's location in the dataflow set SET. The
7698 variable part is specified by variable's declaration in DV and
7699 offset OFFSET and the part's location by LOC. IOPT should be
7700 NO_INSERT if the variable is known to be in SET already and the
7701 variable hash table must not be resized, and INSERT otherwise. */
7703 static void
7704 set_variable_part (dataflow_set *set, rtx loc,
7705 decl_or_value dv, HOST_WIDE_INT offset,
7706 enum var_init_status initialized, rtx set_src,
7707 enum insert_option iopt)
7709 variable **slot;
7711 if (iopt == NO_INSERT)
7712 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7713 else
7715 slot = shared_hash_find_slot (set->vars, dv);
7716 if (!slot)
7717 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7719 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7722 /* Remove all recorded register locations for the given variable part
7723 from dataflow set SET, except for those that are identical to loc.
7724 The variable part is specified by variable's declaration or value
7725 DV and offset OFFSET. */
7727 static variable **
7728 clobber_slot_part (dataflow_set *set, rtx loc, variable **slot,
7729 HOST_WIDE_INT offset, rtx set_src)
7731 variable *var = *slot;
7732 int pos = find_variable_location_part (var, offset, NULL);
7734 if (pos >= 0)
7736 location_chain *node, *next;
7738 /* Remove the register locations from the dataflow set. */
7739 next = var->var_part[pos].loc_chain;
7740 for (node = next; node; node = next)
7742 next = node->next;
7743 if (node->loc != loc
7744 && (!flag_var_tracking_uninit
7745 || !set_src
7746 || MEM_P (set_src)
7747 || !rtx_equal_p (set_src, node->set_src)))
7749 if (REG_P (node->loc))
7751 attrs *anode, *anext;
7752 attrs **anextp;
7754 /* Remove the variable part from the register's
7755 list, but preserve any other variable parts
7756 that might be regarded as live in that same
7757 register. */
7758 anextp = &set->regs[REGNO (node->loc)];
7759 for (anode = *anextp; anode; anode = anext)
7761 anext = anode->next;
7762 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7763 && anode->offset == offset)
7765 delete anode;
7766 *anextp = anext;
7768 else
7769 anextp = &anode->next;
7773 slot = delete_slot_part (set, node->loc, slot, offset);
7778 return slot;
7781 /* Remove all recorded register locations for the given variable part
7782 from dataflow set SET, except for those that are identical to loc.
7783 The variable part is specified by variable's declaration or value
7784 DV and offset OFFSET. */
7786 static void
7787 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7788 HOST_WIDE_INT offset, rtx set_src)
7790 variable **slot;
7792 if (!dv_as_opaque (dv)
7793 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7794 return;
7796 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7797 if (!slot)
7798 return;
7800 clobber_slot_part (set, loc, slot, offset, set_src);
7803 /* Delete the part of variable's location from dataflow set SET. The
7804 variable part is specified by its SET->vars slot SLOT and offset
7805 OFFSET and the part's location by LOC. */
7807 static variable **
7808 delete_slot_part (dataflow_set *set, rtx loc, variable **slot,
7809 HOST_WIDE_INT offset)
7811 variable *var = *slot;
7812 int pos = find_variable_location_part (var, offset, NULL);
7814 if (pos >= 0)
7816 location_chain *node, *next;
7817 location_chain **nextp;
7818 bool changed;
7819 rtx cur_loc;
7821 if (shared_var_p (var, set->vars))
7823 /* If the variable contains the location part we have to
7824 make a copy of the variable. */
7825 for (node = var->var_part[pos].loc_chain; node;
7826 node = node->next)
7828 if ((REG_P (node->loc) && REG_P (loc)
7829 && REGNO (node->loc) == REGNO (loc))
7830 || rtx_equal_p (node->loc, loc))
7832 slot = unshare_variable (set, slot, var,
7833 VAR_INIT_STATUS_UNKNOWN);
7834 var = *slot;
7835 break;
7840 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7841 cur_loc = VAR_LOC_FROM (var);
7842 else
7843 cur_loc = var->var_part[pos].cur_loc;
7845 /* Delete the location part. */
7846 changed = false;
7847 nextp = &var->var_part[pos].loc_chain;
7848 for (node = *nextp; node; node = next)
7850 next = node->next;
7851 if ((REG_P (node->loc) && REG_P (loc)
7852 && REGNO (node->loc) == REGNO (loc))
7853 || rtx_equal_p (node->loc, loc))
7855 /* If we have deleted the location which was last emitted
7856 we have to emit new location so add the variable to set
7857 of changed variables. */
7858 if (cur_loc == node->loc)
7860 changed = true;
7861 var->var_part[pos].cur_loc = NULL;
7862 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7863 VAR_LOC_FROM (var) = NULL;
7865 delete node;
7866 *nextp = next;
7867 break;
7869 else
7870 nextp = &node->next;
7873 if (var->var_part[pos].loc_chain == NULL)
7875 changed = true;
7876 var->n_var_parts--;
7877 while (pos < var->n_var_parts)
7879 var->var_part[pos] = var->var_part[pos + 1];
7880 pos++;
7883 if (changed)
7884 variable_was_changed (var, set);
7887 return slot;
7890 /* Delete the part of variable's location from dataflow set SET. The
7891 variable part is specified by variable's declaration or value DV
7892 and offset OFFSET and the part's location by LOC. */
7894 static void
7895 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7896 HOST_WIDE_INT offset)
7898 variable **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7899 if (!slot)
7900 return;
7902 delete_slot_part (set, loc, slot, offset);
7906 /* Structure for passing some other parameters to function
7907 vt_expand_loc_callback. */
7908 struct expand_loc_callback_data
7910 /* The variables and values active at this point. */
7911 variable_table_type *vars;
7913 /* Stack of values and debug_exprs under expansion, and their
7914 children. */
7915 auto_vec<rtx, 4> expanding;
7917 /* Stack of values and debug_exprs whose expansion hit recursion
7918 cycles. They will have VALUE_RECURSED_INTO marked when added to
7919 this list. This flag will be cleared if any of its dependencies
7920 resolves to a valid location. So, if the flag remains set at the
7921 end of the search, we know no valid location for this one can
7922 possibly exist. */
7923 auto_vec<rtx, 4> pending;
7925 /* The maximum depth among the sub-expressions under expansion.
7926 Zero indicates no expansion so far. */
7927 expand_depth depth;
7930 /* Allocate the one-part auxiliary data structure for VAR, with enough
7931 room for COUNT dependencies. */
7933 static void
7934 loc_exp_dep_alloc (variable *var, int count)
7936 size_t allocsize;
7938 gcc_checking_assert (var->onepart);
7940 /* We can be called with COUNT == 0 to allocate the data structure
7941 without any dependencies, e.g. for the backlinks only. However,
7942 if we are specifying a COUNT, then the dependency list must have
7943 been emptied before. It would be possible to adjust pointers or
7944 force it empty here, but this is better done at an earlier point
7945 in the algorithm, so we instead leave an assertion to catch
7946 errors. */
7947 gcc_checking_assert (!count
7948 || VAR_LOC_DEP_VEC (var) == NULL
7949 || VAR_LOC_DEP_VEC (var)->is_empty ());
7951 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
7952 return;
7954 allocsize = offsetof (struct onepart_aux, deps)
7955 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
7957 if (VAR_LOC_1PAUX (var))
7959 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
7960 VAR_LOC_1PAUX (var), allocsize);
7961 /* If the reallocation moves the onepaux structure, the
7962 back-pointer to BACKLINKS in the first list member will still
7963 point to its old location. Adjust it. */
7964 if (VAR_LOC_DEP_LST (var))
7965 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
7967 else
7969 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
7970 *VAR_LOC_DEP_LSTP (var) = NULL;
7971 VAR_LOC_FROM (var) = NULL;
7972 VAR_LOC_DEPTH (var).complexity = 0;
7973 VAR_LOC_DEPTH (var).entryvals = 0;
7975 VAR_LOC_DEP_VEC (var)->embedded_init (count);
7978 /* Remove all entries from the vector of active dependencies of VAR,
7979 removing them from the back-links lists too. */
7981 static void
7982 loc_exp_dep_clear (variable *var)
7984 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
7986 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
7987 if (led->next)
7988 led->next->pprev = led->pprev;
7989 if (led->pprev)
7990 *led->pprev = led->next;
7991 VAR_LOC_DEP_VEC (var)->pop ();
7995 /* Insert an active dependency from VAR on X to the vector of
7996 dependencies, and add the corresponding back-link to X's list of
7997 back-links in VARS. */
7999 static void
8000 loc_exp_insert_dep (variable *var, rtx x, variable_table_type *vars)
8002 decl_or_value dv;
8003 variable *xvar;
8004 loc_exp_dep *led;
8006 dv = dv_from_rtx (x);
8008 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8009 an additional look up? */
8010 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8012 if (!xvar)
8014 xvar = variable_from_dropped (dv, NO_INSERT);
8015 gcc_checking_assert (xvar);
8018 /* No point in adding the same backlink more than once. This may
8019 arise if say the same value appears in two complex expressions in
8020 the same loc_list, or even more than once in a single
8021 expression. */
8022 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8023 return;
8025 if (var->onepart == NOT_ONEPART)
8026 led = new loc_exp_dep;
8027 else
8029 loc_exp_dep empty;
8030 memset (&empty, 0, sizeof (empty));
8031 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8032 led = &VAR_LOC_DEP_VEC (var)->last ();
8034 led->dv = var->dv;
8035 led->value = x;
8037 loc_exp_dep_alloc (xvar, 0);
8038 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8039 led->next = *led->pprev;
8040 if (led->next)
8041 led->next->pprev = &led->next;
8042 *led->pprev = led;
8045 /* Create active dependencies of VAR on COUNT values starting at
8046 VALUE, and corresponding back-links to the entries in VARS. Return
8047 true if we found any pending-recursion results. */
8049 static bool
8050 loc_exp_dep_set (variable *var, rtx result, rtx *value, int count,
8051 variable_table_type *vars)
8053 bool pending_recursion = false;
8055 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8056 || VAR_LOC_DEP_VEC (var)->is_empty ());
8058 /* Set up all dependencies from last_child (as set up at the end of
8059 the loop above) to the end. */
8060 loc_exp_dep_alloc (var, count);
8062 while (count--)
8064 rtx x = *value++;
8066 if (!pending_recursion)
8067 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8069 loc_exp_insert_dep (var, x, vars);
8072 return pending_recursion;
8075 /* Notify the back-links of IVAR that are pending recursion that we
8076 have found a non-NIL value for it, so they are cleared for another
8077 attempt to compute a current location. */
8079 static void
8080 notify_dependents_of_resolved_value (variable *ivar, variable_table_type *vars)
8082 loc_exp_dep *led, *next;
8084 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8086 decl_or_value dv = led->dv;
8087 variable *var;
8089 next = led->next;
8091 if (dv_is_value_p (dv))
8093 rtx value = dv_as_value (dv);
8095 /* If we have already resolved it, leave it alone. */
8096 if (!VALUE_RECURSED_INTO (value))
8097 continue;
8099 /* Check that VALUE_RECURSED_INTO, true from the test above,
8100 implies NO_LOC_P. */
8101 gcc_checking_assert (NO_LOC_P (value));
8103 /* We won't notify variables that are being expanded,
8104 because their dependency list is cleared before
8105 recursing. */
8106 NO_LOC_P (value) = false;
8107 VALUE_RECURSED_INTO (value) = false;
8109 gcc_checking_assert (dv_changed_p (dv));
8111 else
8113 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8114 if (!dv_changed_p (dv))
8115 continue;
8118 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8120 if (!var)
8121 var = variable_from_dropped (dv, NO_INSERT);
8123 if (var)
8124 notify_dependents_of_resolved_value (var, vars);
8126 if (next)
8127 next->pprev = led->pprev;
8128 if (led->pprev)
8129 *led->pprev = next;
8130 led->next = NULL;
8131 led->pprev = NULL;
8135 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8136 int max_depth, void *data);
8138 /* Return the combined depth, when one sub-expression evaluated to
8139 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8141 static inline expand_depth
8142 update_depth (expand_depth saved_depth, expand_depth best_depth)
8144 /* If we didn't find anything, stick with what we had. */
8145 if (!best_depth.complexity)
8146 return saved_depth;
8148 /* If we found hadn't found anything, use the depth of the current
8149 expression. Do NOT add one extra level, we want to compute the
8150 maximum depth among sub-expressions. We'll increment it later,
8151 if appropriate. */
8152 if (!saved_depth.complexity)
8153 return best_depth;
8155 /* Combine the entryval count so that regardless of which one we
8156 return, the entryval count is accurate. */
8157 best_depth.entryvals = saved_depth.entryvals
8158 = best_depth.entryvals + saved_depth.entryvals;
8160 if (saved_depth.complexity < best_depth.complexity)
8161 return best_depth;
8162 else
8163 return saved_depth;
8166 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8167 DATA for cselib expand callback. If PENDRECP is given, indicate in
8168 it whether any sub-expression couldn't be fully evaluated because
8169 it is pending recursion resolution. */
8171 static inline rtx
8172 vt_expand_var_loc_chain (variable *var, bitmap regs, void *data,
8173 bool *pendrecp)
8175 struct expand_loc_callback_data *elcd
8176 = (struct expand_loc_callback_data *) data;
8177 location_chain *loc, *next;
8178 rtx result = NULL;
8179 int first_child, result_first_child, last_child;
8180 bool pending_recursion;
8181 rtx loc_from = NULL;
8182 struct elt_loc_list *cloc = NULL;
8183 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8184 int wanted_entryvals, found_entryvals = 0;
8186 /* Clear all backlinks pointing at this, so that we're not notified
8187 while we're active. */
8188 loc_exp_dep_clear (var);
8190 retry:
8191 if (var->onepart == ONEPART_VALUE)
8193 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8195 gcc_checking_assert (cselib_preserved_value_p (val));
8197 cloc = val->locs;
8200 first_child = result_first_child = last_child
8201 = elcd->expanding.length ();
8203 wanted_entryvals = found_entryvals;
8205 /* Attempt to expand each available location in turn. */
8206 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8207 loc || cloc; loc = next)
8209 result_first_child = last_child;
8211 if (!loc)
8213 loc_from = cloc->loc;
8214 next = loc;
8215 cloc = cloc->next;
8216 if (unsuitable_loc (loc_from))
8217 continue;
8219 else
8221 loc_from = loc->loc;
8222 next = loc->next;
8225 gcc_checking_assert (!unsuitable_loc (loc_from));
8227 elcd->depth.complexity = elcd->depth.entryvals = 0;
8228 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8229 vt_expand_loc_callback, data);
8230 last_child = elcd->expanding.length ();
8232 if (result)
8234 depth = elcd->depth;
8236 gcc_checking_assert (depth.complexity
8237 || result_first_child == last_child);
8239 if (last_child - result_first_child != 1)
8241 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8242 depth.entryvals++;
8243 depth.complexity++;
8246 if (depth.complexity <= EXPR_USE_DEPTH)
8248 if (depth.entryvals <= wanted_entryvals)
8249 break;
8250 else if (!found_entryvals || depth.entryvals < found_entryvals)
8251 found_entryvals = depth.entryvals;
8254 result = NULL;
8257 /* Set it up in case we leave the loop. */
8258 depth.complexity = depth.entryvals = 0;
8259 loc_from = NULL;
8260 result_first_child = first_child;
8263 if (!loc_from && wanted_entryvals < found_entryvals)
8265 /* We found entries with ENTRY_VALUEs and skipped them. Since
8266 we could not find any expansions without ENTRY_VALUEs, but we
8267 found at least one with them, go back and get an entry with
8268 the minimum number ENTRY_VALUE count that we found. We could
8269 avoid looping, but since each sub-loc is already resolved,
8270 the re-expansion should be trivial. ??? Should we record all
8271 attempted locs as dependencies, so that we retry the
8272 expansion should any of them change, in the hope it can give
8273 us a new entry without an ENTRY_VALUE? */
8274 elcd->expanding.truncate (first_child);
8275 goto retry;
8278 /* Register all encountered dependencies as active. */
8279 pending_recursion = loc_exp_dep_set
8280 (var, result, elcd->expanding.address () + result_first_child,
8281 last_child - result_first_child, elcd->vars);
8283 elcd->expanding.truncate (first_child);
8285 /* Record where the expansion came from. */
8286 gcc_checking_assert (!result || !pending_recursion);
8287 VAR_LOC_FROM (var) = loc_from;
8288 VAR_LOC_DEPTH (var) = depth;
8290 gcc_checking_assert (!depth.complexity == !result);
8292 elcd->depth = update_depth (saved_depth, depth);
8294 /* Indicate whether any of the dependencies are pending recursion
8295 resolution. */
8296 if (pendrecp)
8297 *pendrecp = pending_recursion;
8299 if (!pendrecp || !pending_recursion)
8300 var->var_part[0].cur_loc = result;
8302 return result;
8305 /* Callback for cselib_expand_value, that looks for expressions
8306 holding the value in the var-tracking hash tables. Return X for
8307 standard processing, anything else is to be used as-is. */
8309 static rtx
8310 vt_expand_loc_callback (rtx x, bitmap regs,
8311 int max_depth ATTRIBUTE_UNUSED,
8312 void *data)
8314 struct expand_loc_callback_data *elcd
8315 = (struct expand_loc_callback_data *) data;
8316 decl_or_value dv;
8317 variable *var;
8318 rtx result, subreg;
8319 bool pending_recursion = false;
8320 bool from_empty = false;
8322 switch (GET_CODE (x))
8324 case SUBREG:
8325 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8326 EXPR_DEPTH,
8327 vt_expand_loc_callback, data);
8329 if (!subreg)
8330 return NULL;
8332 result = simplify_gen_subreg (GET_MODE (x), subreg,
8333 GET_MODE (SUBREG_REG (x)),
8334 SUBREG_BYTE (x));
8336 /* Invalid SUBREGs are ok in debug info. ??? We could try
8337 alternate expansions for the VALUE as well. */
8338 if (!result)
8339 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8341 return result;
8343 case DEBUG_EXPR:
8344 case VALUE:
8345 dv = dv_from_rtx (x);
8346 break;
8348 default:
8349 return x;
8352 elcd->expanding.safe_push (x);
8354 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8355 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8357 if (NO_LOC_P (x))
8359 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8360 return NULL;
8363 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8365 if (!var)
8367 from_empty = true;
8368 var = variable_from_dropped (dv, INSERT);
8371 gcc_checking_assert (var);
8373 if (!dv_changed_p (dv))
8375 gcc_checking_assert (!NO_LOC_P (x));
8376 gcc_checking_assert (var->var_part[0].cur_loc);
8377 gcc_checking_assert (VAR_LOC_1PAUX (var));
8378 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8380 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8382 return var->var_part[0].cur_loc;
8385 VALUE_RECURSED_INTO (x) = true;
8386 /* This is tentative, but it makes some tests simpler. */
8387 NO_LOC_P (x) = true;
8389 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8391 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8393 if (pending_recursion)
8395 gcc_checking_assert (!result);
8396 elcd->pending.safe_push (x);
8398 else
8400 NO_LOC_P (x) = !result;
8401 VALUE_RECURSED_INTO (x) = false;
8402 set_dv_changed (dv, false);
8404 if (result)
8405 notify_dependents_of_resolved_value (var, elcd->vars);
8408 return result;
8411 /* While expanding variables, we may encounter recursion cycles
8412 because of mutual (possibly indirect) dependencies between two
8413 particular variables (or values), say A and B. If we're trying to
8414 expand A when we get to B, which in turn attempts to expand A, if
8415 we can't find any other expansion for B, we'll add B to this
8416 pending-recursion stack, and tentatively return NULL for its
8417 location. This tentative value will be used for any other
8418 occurrences of B, unless A gets some other location, in which case
8419 it will notify B that it is worth another try at computing a
8420 location for it, and it will use the location computed for A then.
8421 At the end of the expansion, the tentative NULL locations become
8422 final for all members of PENDING that didn't get a notification.
8423 This function performs this finalization of NULL locations. */
8425 static void
8426 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8428 while (!pending->is_empty ())
8430 rtx x = pending->pop ();
8431 decl_or_value dv;
8433 if (!VALUE_RECURSED_INTO (x))
8434 continue;
8436 gcc_checking_assert (NO_LOC_P (x));
8437 VALUE_RECURSED_INTO (x) = false;
8438 dv = dv_from_rtx (x);
8439 gcc_checking_assert (dv_changed_p (dv));
8440 set_dv_changed (dv, false);
8444 /* Initialize expand_loc_callback_data D with variable hash table V.
8445 It must be a macro because of alloca (vec stack). */
8446 #define INIT_ELCD(d, v) \
8447 do \
8449 (d).vars = (v); \
8450 (d).depth.complexity = (d).depth.entryvals = 0; \
8452 while (0)
8453 /* Finalize expand_loc_callback_data D, resolved to location L. */
8454 #define FINI_ELCD(d, l) \
8455 do \
8457 resolve_expansions_pending_recursion (&(d).pending); \
8458 (d).pending.release (); \
8459 (d).expanding.release (); \
8461 if ((l) && MEM_P (l)) \
8462 (l) = targetm.delegitimize_address (l); \
8464 while (0)
8466 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8467 equivalences in VARS, updating their CUR_LOCs in the process. */
8469 static rtx
8470 vt_expand_loc (rtx loc, variable_table_type *vars)
8472 struct expand_loc_callback_data data;
8473 rtx result;
8475 if (!MAY_HAVE_DEBUG_INSNS)
8476 return loc;
8478 INIT_ELCD (data, vars);
8480 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8481 vt_expand_loc_callback, &data);
8483 FINI_ELCD (data, result);
8485 return result;
8488 /* Expand the one-part VARiable to a location, using the equivalences
8489 in VARS, updating their CUR_LOCs in the process. */
8491 static rtx
8492 vt_expand_1pvar (variable *var, variable_table_type *vars)
8494 struct expand_loc_callback_data data;
8495 rtx loc;
8497 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8499 if (!dv_changed_p (var->dv))
8500 return var->var_part[0].cur_loc;
8502 INIT_ELCD (data, vars);
8504 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8506 gcc_checking_assert (data.expanding.is_empty ());
8508 FINI_ELCD (data, loc);
8510 return loc;
8513 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8514 additional parameters: WHERE specifies whether the note shall be emitted
8515 before or after instruction INSN. */
8518 emit_note_insn_var_location (variable **varp, emit_note_data *data)
8520 variable *var = *varp;
8521 rtx_insn *insn = data->insn;
8522 enum emit_note_where where = data->where;
8523 variable_table_type *vars = data->vars;
8524 rtx_note *note;
8525 rtx note_vl;
8526 int i, j, n_var_parts;
8527 bool complete;
8528 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8529 HOST_WIDE_INT last_limit;
8530 tree type_size_unit;
8531 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8532 rtx loc[MAX_VAR_PARTS];
8533 tree decl;
8534 location_chain *lc;
8536 gcc_checking_assert (var->onepart == NOT_ONEPART
8537 || var->onepart == ONEPART_VDECL);
8539 decl = dv_as_decl (var->dv);
8541 complete = true;
8542 last_limit = 0;
8543 n_var_parts = 0;
8544 if (!var->onepart)
8545 for (i = 0; i < var->n_var_parts; i++)
8546 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8547 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8548 for (i = 0; i < var->n_var_parts; i++)
8550 machine_mode mode, wider_mode;
8551 rtx loc2;
8552 HOST_WIDE_INT offset;
8554 if (i == 0 && var->onepart)
8556 gcc_checking_assert (var->n_var_parts == 1);
8557 offset = 0;
8558 initialized = VAR_INIT_STATUS_INITIALIZED;
8559 loc2 = vt_expand_1pvar (var, vars);
8561 else
8563 if (last_limit < VAR_PART_OFFSET (var, i))
8565 complete = false;
8566 break;
8568 else if (last_limit > VAR_PART_OFFSET (var, i))
8569 continue;
8570 offset = VAR_PART_OFFSET (var, i);
8571 loc2 = var->var_part[i].cur_loc;
8572 if (loc2 && GET_CODE (loc2) == MEM
8573 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8575 rtx depval = XEXP (loc2, 0);
8577 loc2 = vt_expand_loc (loc2, vars);
8579 if (loc2)
8580 loc_exp_insert_dep (var, depval, vars);
8582 if (!loc2)
8584 complete = false;
8585 continue;
8587 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8588 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8589 if (var->var_part[i].cur_loc == lc->loc)
8591 initialized = lc->init;
8592 break;
8594 gcc_assert (lc);
8597 offsets[n_var_parts] = offset;
8598 if (!loc2)
8600 complete = false;
8601 continue;
8603 loc[n_var_parts] = loc2;
8604 mode = GET_MODE (var->var_part[i].cur_loc);
8605 if (mode == VOIDmode && var->onepart)
8606 mode = DECL_MODE (decl);
8607 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8609 /* Attempt to merge adjacent registers or memory. */
8610 wider_mode = GET_MODE_WIDER_MODE (mode);
8611 for (j = i + 1; j < var->n_var_parts; j++)
8612 if (last_limit <= VAR_PART_OFFSET (var, j))
8613 break;
8614 if (j < var->n_var_parts
8615 && wider_mode != VOIDmode
8616 && var->var_part[j].cur_loc
8617 && mode == GET_MODE (var->var_part[j].cur_loc)
8618 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8619 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8620 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8621 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8623 rtx new_loc = NULL;
8625 if (REG_P (loc[n_var_parts])
8626 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8627 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8628 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8629 == REGNO (loc2))
8631 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8632 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8633 mode, 0);
8634 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8635 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8636 if (new_loc)
8638 if (!REG_P (new_loc)
8639 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8640 new_loc = NULL;
8641 else
8642 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8645 else if (MEM_P (loc[n_var_parts])
8646 && GET_CODE (XEXP (loc2, 0)) == PLUS
8647 && REG_P (XEXP (XEXP (loc2, 0), 0))
8648 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8650 if ((REG_P (XEXP (loc[n_var_parts], 0))
8651 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8652 XEXP (XEXP (loc2, 0), 0))
8653 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8654 == GET_MODE_SIZE (mode))
8655 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8656 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8657 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8658 XEXP (XEXP (loc2, 0), 0))
8659 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8660 + GET_MODE_SIZE (mode)
8661 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8662 new_loc = adjust_address_nv (loc[n_var_parts],
8663 wider_mode, 0);
8666 if (new_loc)
8668 loc[n_var_parts] = new_loc;
8669 mode = wider_mode;
8670 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8671 i = j;
8674 ++n_var_parts;
8676 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8677 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8678 complete = false;
8680 if (! flag_var_tracking_uninit)
8681 initialized = VAR_INIT_STATUS_INITIALIZED;
8683 note_vl = NULL_RTX;
8684 if (!complete)
8685 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8686 else if (n_var_parts == 1)
8688 rtx expr_list;
8690 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8691 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8692 else
8693 expr_list = loc[0];
8695 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8697 else if (n_var_parts)
8699 rtx parallel;
8701 for (i = 0; i < n_var_parts; i++)
8702 loc[i]
8703 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8705 parallel = gen_rtx_PARALLEL (VOIDmode,
8706 gen_rtvec_v (n_var_parts, loc));
8707 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8708 parallel, initialized);
8711 if (where != EMIT_NOTE_BEFORE_INSN)
8713 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8714 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8715 NOTE_DURING_CALL_P (note) = true;
8717 else
8719 /* Make sure that the call related notes come first. */
8720 while (NEXT_INSN (insn)
8721 && NOTE_P (insn)
8722 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8723 && NOTE_DURING_CALL_P (insn))
8724 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8725 insn = NEXT_INSN (insn);
8726 if (NOTE_P (insn)
8727 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8728 && NOTE_DURING_CALL_P (insn))
8729 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8730 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8731 else
8732 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8734 NOTE_VAR_LOCATION (note) = note_vl;
8736 set_dv_changed (var->dv, false);
8737 gcc_assert (var->in_changed_variables);
8738 var->in_changed_variables = false;
8739 changed_variables->clear_slot (varp);
8741 /* Continue traversing the hash table. */
8742 return 1;
8745 /* While traversing changed_variables, push onto DATA (a stack of RTX
8746 values) entries that aren't user variables. */
8749 var_track_values_to_stack (variable **slot,
8750 vec<rtx, va_heap> *changed_values_stack)
8752 variable *var = *slot;
8754 if (var->onepart == ONEPART_VALUE)
8755 changed_values_stack->safe_push (dv_as_value (var->dv));
8756 else if (var->onepart == ONEPART_DEXPR)
8757 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8759 return 1;
8762 /* Remove from changed_variables the entry whose DV corresponds to
8763 value or debug_expr VAL. */
8764 static void
8765 remove_value_from_changed_variables (rtx val)
8767 decl_or_value dv = dv_from_rtx (val);
8768 variable **slot;
8769 variable *var;
8771 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8772 NO_INSERT);
8773 var = *slot;
8774 var->in_changed_variables = false;
8775 changed_variables->clear_slot (slot);
8778 /* If VAL (a value or debug_expr) has backlinks to variables actively
8779 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8780 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8781 have dependencies of their own to notify. */
8783 static void
8784 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8785 vec<rtx, va_heap> *changed_values_stack)
8787 variable **slot;
8788 variable *var;
8789 loc_exp_dep *led;
8790 decl_or_value dv = dv_from_rtx (val);
8792 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8793 NO_INSERT);
8794 if (!slot)
8795 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8796 if (!slot)
8797 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8798 NO_INSERT);
8799 var = *slot;
8801 while ((led = VAR_LOC_DEP_LST (var)))
8803 decl_or_value ldv = led->dv;
8804 variable *ivar;
8806 /* Deactivate and remove the backlink, as it was “used up”. It
8807 makes no sense to attempt to notify the same entity again:
8808 either it will be recomputed and re-register an active
8809 dependency, or it will still have the changed mark. */
8810 if (led->next)
8811 led->next->pprev = led->pprev;
8812 if (led->pprev)
8813 *led->pprev = led->next;
8814 led->next = NULL;
8815 led->pprev = NULL;
8817 if (dv_changed_p (ldv))
8818 continue;
8820 switch (dv_onepart_p (ldv))
8822 case ONEPART_VALUE:
8823 case ONEPART_DEXPR:
8824 set_dv_changed (ldv, true);
8825 changed_values_stack->safe_push (dv_as_rtx (ldv));
8826 break;
8828 case ONEPART_VDECL:
8829 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8830 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8831 variable_was_changed (ivar, NULL);
8832 break;
8834 case NOT_ONEPART:
8835 delete led;
8836 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8837 if (ivar)
8839 int i = ivar->n_var_parts;
8840 while (i--)
8842 rtx loc = ivar->var_part[i].cur_loc;
8844 if (loc && GET_CODE (loc) == MEM
8845 && XEXP (loc, 0) == val)
8847 variable_was_changed (ivar, NULL);
8848 break;
8852 break;
8854 default:
8855 gcc_unreachable ();
8860 /* Take out of changed_variables any entries that don't refer to use
8861 variables. Back-propagate change notifications from values and
8862 debug_exprs to their active dependencies in HTAB or in
8863 CHANGED_VARIABLES. */
8865 static void
8866 process_changed_values (variable_table_type *htab)
8868 int i, n;
8869 rtx val;
8870 auto_vec<rtx, 20> changed_values_stack;
8872 /* Move values from changed_variables to changed_values_stack. */
8873 changed_variables
8874 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8875 (&changed_values_stack);
8877 /* Back-propagate change notifications in values while popping
8878 them from the stack. */
8879 for (n = i = changed_values_stack.length ();
8880 i > 0; i = changed_values_stack.length ())
8882 val = changed_values_stack.pop ();
8883 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8885 /* This condition will hold when visiting each of the entries
8886 originally in changed_variables. We can't remove them
8887 earlier because this could drop the backlinks before we got a
8888 chance to use them. */
8889 if (i == n)
8891 remove_value_from_changed_variables (val);
8892 n--;
8897 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8898 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8899 the notes shall be emitted before of after instruction INSN. */
8901 static void
8902 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
8903 shared_hash *vars)
8905 emit_note_data data;
8906 variable_table_type *htab = shared_hash_htab (vars);
8908 if (!changed_variables->elements ())
8909 return;
8911 if (MAY_HAVE_DEBUG_INSNS)
8912 process_changed_values (htab);
8914 data.insn = insn;
8915 data.where = where;
8916 data.vars = htab;
8918 changed_variables
8919 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8922 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8923 same variable in hash table DATA or is not there at all. */
8926 emit_notes_for_differences_1 (variable **slot, variable_table_type *new_vars)
8928 variable *old_var, *new_var;
8930 old_var = *slot;
8931 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
8933 if (!new_var)
8935 /* Variable has disappeared. */
8936 variable *empty_var = NULL;
8938 if (old_var->onepart == ONEPART_VALUE
8939 || old_var->onepart == ONEPART_DEXPR)
8941 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
8942 if (empty_var)
8944 gcc_checking_assert (!empty_var->in_changed_variables);
8945 if (!VAR_LOC_1PAUX (old_var))
8947 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
8948 VAR_LOC_1PAUX (empty_var) = NULL;
8950 else
8951 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
8955 if (!empty_var)
8957 empty_var = onepart_pool_allocate (old_var->onepart);
8958 empty_var->dv = old_var->dv;
8959 empty_var->refcount = 0;
8960 empty_var->n_var_parts = 0;
8961 empty_var->onepart = old_var->onepart;
8962 empty_var->in_changed_variables = false;
8965 if (empty_var->onepart)
8967 /* Propagate the auxiliary data to (ultimately)
8968 changed_variables. */
8969 empty_var->var_part[0].loc_chain = NULL;
8970 empty_var->var_part[0].cur_loc = NULL;
8971 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
8972 VAR_LOC_1PAUX (old_var) = NULL;
8974 variable_was_changed (empty_var, NULL);
8975 /* Continue traversing the hash table. */
8976 return 1;
8978 /* Update cur_loc and one-part auxiliary data, before new_var goes
8979 through variable_was_changed. */
8980 if (old_var != new_var && new_var->onepart)
8982 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
8983 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
8984 VAR_LOC_1PAUX (old_var) = NULL;
8985 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
8987 if (variable_different_p (old_var, new_var))
8988 variable_was_changed (new_var, NULL);
8990 /* Continue traversing the hash table. */
8991 return 1;
8994 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
8995 table DATA. */
8998 emit_notes_for_differences_2 (variable **slot, variable_table_type *old_vars)
9000 variable *old_var, *new_var;
9002 new_var = *slot;
9003 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9004 if (!old_var)
9006 int i;
9007 for (i = 0; i < new_var->n_var_parts; i++)
9008 new_var->var_part[i].cur_loc = NULL;
9009 variable_was_changed (new_var, NULL);
9012 /* Continue traversing the hash table. */
9013 return 1;
9016 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9017 NEW_SET. */
9019 static void
9020 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9021 dataflow_set *new_set)
9023 shared_hash_htab (old_set->vars)
9024 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9025 (shared_hash_htab (new_set->vars));
9026 shared_hash_htab (new_set->vars)
9027 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9028 (shared_hash_htab (old_set->vars));
9029 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9032 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9034 static rtx_insn *
9035 next_non_note_insn_var_location (rtx_insn *insn)
9037 while (insn)
9039 insn = NEXT_INSN (insn);
9040 if (insn == 0
9041 || !NOTE_P (insn)
9042 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9043 break;
9046 return insn;
9049 /* Emit the notes for changes of location parts in the basic block BB. */
9051 static void
9052 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9054 unsigned int i;
9055 micro_operation *mo;
9057 dataflow_set_clear (set);
9058 dataflow_set_copy (set, &VTI (bb)->in);
9060 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9062 rtx_insn *insn = mo->insn;
9063 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9065 switch (mo->type)
9067 case MO_CALL:
9068 dataflow_set_clear_at_call (set, insn);
9069 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9071 rtx arguments = mo->u.loc, *p = &arguments;
9072 rtx_note *note;
9073 while (*p)
9075 XEXP (XEXP (*p, 0), 1)
9076 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9077 shared_hash_htab (set->vars));
9078 /* If expansion is successful, keep it in the list. */
9079 if (XEXP (XEXP (*p, 0), 1))
9080 p = &XEXP (*p, 1);
9081 /* Otherwise, if the following item is data_value for it,
9082 drop it too too. */
9083 else if (XEXP (*p, 1)
9084 && REG_P (XEXP (XEXP (*p, 0), 0))
9085 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9086 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9088 && REGNO (XEXP (XEXP (*p, 0), 0))
9089 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9090 0), 0)))
9091 *p = XEXP (XEXP (*p, 1), 1);
9092 /* Just drop this item. */
9093 else
9094 *p = XEXP (*p, 1);
9096 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9097 NOTE_VAR_LOCATION (note) = arguments;
9099 break;
9101 case MO_USE:
9103 rtx loc = mo->u.loc;
9105 if (REG_P (loc))
9106 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9107 else
9108 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9110 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9112 break;
9114 case MO_VAL_LOC:
9116 rtx loc = mo->u.loc;
9117 rtx val, vloc;
9118 tree var;
9120 if (GET_CODE (loc) == CONCAT)
9122 val = XEXP (loc, 0);
9123 vloc = XEXP (loc, 1);
9125 else
9127 val = NULL_RTX;
9128 vloc = loc;
9131 var = PAT_VAR_LOCATION_DECL (vloc);
9133 clobber_variable_part (set, NULL_RTX,
9134 dv_from_decl (var), 0, NULL_RTX);
9135 if (val)
9137 if (VAL_NEEDS_RESOLUTION (loc))
9138 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9139 set_variable_part (set, val, dv_from_decl (var), 0,
9140 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9141 INSERT);
9143 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9144 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9145 dv_from_decl (var), 0,
9146 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9147 INSERT);
9149 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9151 break;
9153 case MO_VAL_USE:
9155 rtx loc = mo->u.loc;
9156 rtx val, vloc, uloc;
9158 vloc = uloc = XEXP (loc, 1);
9159 val = XEXP (loc, 0);
9161 if (GET_CODE (val) == CONCAT)
9163 uloc = XEXP (val, 1);
9164 val = XEXP (val, 0);
9167 if (VAL_NEEDS_RESOLUTION (loc))
9168 val_resolve (set, val, vloc, insn);
9169 else
9170 val_store (set, val, uloc, insn, false);
9172 if (VAL_HOLDS_TRACK_EXPR (loc))
9174 if (GET_CODE (uloc) == REG)
9175 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9176 NULL);
9177 else if (GET_CODE (uloc) == MEM)
9178 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9179 NULL);
9182 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9184 break;
9186 case MO_VAL_SET:
9188 rtx loc = mo->u.loc;
9189 rtx val, vloc, uloc;
9190 rtx dstv, srcv;
9192 vloc = loc;
9193 uloc = XEXP (vloc, 1);
9194 val = XEXP (vloc, 0);
9195 vloc = uloc;
9197 if (GET_CODE (uloc) == SET)
9199 dstv = SET_DEST (uloc);
9200 srcv = SET_SRC (uloc);
9202 else
9204 dstv = uloc;
9205 srcv = NULL;
9208 if (GET_CODE (val) == CONCAT)
9210 dstv = vloc = XEXP (val, 1);
9211 val = XEXP (val, 0);
9214 if (GET_CODE (vloc) == SET)
9216 srcv = SET_SRC (vloc);
9218 gcc_assert (val != srcv);
9219 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9221 dstv = vloc = SET_DEST (vloc);
9223 if (VAL_NEEDS_RESOLUTION (loc))
9224 val_resolve (set, val, srcv, insn);
9226 else if (VAL_NEEDS_RESOLUTION (loc))
9228 gcc_assert (GET_CODE (uloc) == SET
9229 && GET_CODE (SET_SRC (uloc)) == REG);
9230 val_resolve (set, val, SET_SRC (uloc), insn);
9233 if (VAL_HOLDS_TRACK_EXPR (loc))
9235 if (VAL_EXPR_IS_CLOBBERED (loc))
9237 if (REG_P (uloc))
9238 var_reg_delete (set, uloc, true);
9239 else if (MEM_P (uloc))
9241 gcc_assert (MEM_P (dstv));
9242 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9243 var_mem_delete (set, dstv, true);
9246 else
9248 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9249 rtx src = NULL, dst = uloc;
9250 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9252 if (GET_CODE (uloc) == SET)
9254 src = SET_SRC (uloc);
9255 dst = SET_DEST (uloc);
9258 if (copied_p)
9260 status = find_src_status (set, src);
9262 src = find_src_set_src (set, src);
9265 if (REG_P (dst))
9266 var_reg_delete_and_set (set, dst, !copied_p,
9267 status, srcv);
9268 else if (MEM_P (dst))
9270 gcc_assert (MEM_P (dstv));
9271 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9272 var_mem_delete_and_set (set, dstv, !copied_p,
9273 status, srcv);
9277 else if (REG_P (uloc))
9278 var_regno_delete (set, REGNO (uloc));
9279 else if (MEM_P (uloc))
9281 gcc_checking_assert (GET_CODE (vloc) == MEM);
9282 gcc_checking_assert (vloc == dstv);
9283 if (vloc != dstv)
9284 clobber_overlapping_mems (set, vloc);
9287 val_store (set, val, dstv, insn, true);
9289 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9290 set->vars);
9292 break;
9294 case MO_SET:
9296 rtx loc = mo->u.loc;
9297 rtx set_src = NULL;
9299 if (GET_CODE (loc) == SET)
9301 set_src = SET_SRC (loc);
9302 loc = SET_DEST (loc);
9305 if (REG_P (loc))
9306 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9307 set_src);
9308 else
9309 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9310 set_src);
9312 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9313 set->vars);
9315 break;
9317 case MO_COPY:
9319 rtx loc = mo->u.loc;
9320 enum var_init_status src_status;
9321 rtx set_src = NULL;
9323 if (GET_CODE (loc) == SET)
9325 set_src = SET_SRC (loc);
9326 loc = SET_DEST (loc);
9329 src_status = find_src_status (set, set_src);
9330 set_src = find_src_set_src (set, set_src);
9332 if (REG_P (loc))
9333 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9334 else
9335 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9337 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9338 set->vars);
9340 break;
9342 case MO_USE_NO_VAR:
9344 rtx loc = mo->u.loc;
9346 if (REG_P (loc))
9347 var_reg_delete (set, loc, false);
9348 else
9349 var_mem_delete (set, loc, false);
9351 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9353 break;
9355 case MO_CLOBBER:
9357 rtx loc = mo->u.loc;
9359 if (REG_P (loc))
9360 var_reg_delete (set, loc, true);
9361 else
9362 var_mem_delete (set, loc, true);
9364 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9365 set->vars);
9367 break;
9369 case MO_ADJUST:
9370 set->stack_adjust += mo->u.adjust;
9371 break;
9376 /* Emit notes for the whole function. */
9378 static void
9379 vt_emit_notes (void)
9381 basic_block bb;
9382 dataflow_set cur;
9384 gcc_assert (!changed_variables->elements ());
9386 /* Free memory occupied by the out hash tables, as they aren't used
9387 anymore. */
9388 FOR_EACH_BB_FN (bb, cfun)
9389 dataflow_set_clear (&VTI (bb)->out);
9391 /* Enable emitting notes by functions (mainly by set_variable_part and
9392 delete_variable_part). */
9393 emit_notes = true;
9395 if (MAY_HAVE_DEBUG_INSNS)
9397 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9400 dataflow_set_init (&cur);
9402 FOR_EACH_BB_FN (bb, cfun)
9404 /* Emit the notes for changes of variable locations between two
9405 subsequent basic blocks. */
9406 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9408 if (MAY_HAVE_DEBUG_INSNS)
9409 local_get_addr_cache = new hash_map<rtx, rtx>;
9411 /* Emit the notes for the changes in the basic block itself. */
9412 emit_notes_in_bb (bb, &cur);
9414 if (MAY_HAVE_DEBUG_INSNS)
9415 delete local_get_addr_cache;
9416 local_get_addr_cache = NULL;
9418 /* Free memory occupied by the in hash table, we won't need it
9419 again. */
9420 dataflow_set_clear (&VTI (bb)->in);
9423 if (flag_checking)
9424 shared_hash_htab (cur.vars)
9425 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9426 (shared_hash_htab (empty_shared_hash));
9428 dataflow_set_destroy (&cur);
9430 if (MAY_HAVE_DEBUG_INSNS)
9431 delete dropped_values;
9432 dropped_values = NULL;
9434 emit_notes = false;
9437 /* If there is a declaration and offset associated with register/memory RTL
9438 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9440 static bool
9441 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9443 if (REG_P (rtl))
9445 if (REG_ATTRS (rtl))
9447 *declp = REG_EXPR (rtl);
9448 *offsetp = REG_OFFSET (rtl);
9449 return true;
9452 else if (GET_CODE (rtl) == PARALLEL)
9454 tree decl = NULL_TREE;
9455 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9456 int len = XVECLEN (rtl, 0), i;
9458 for (i = 0; i < len; i++)
9460 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9461 if (!REG_P (reg) || !REG_ATTRS (reg))
9462 break;
9463 if (!decl)
9464 decl = REG_EXPR (reg);
9465 if (REG_EXPR (reg) != decl)
9466 break;
9467 if (REG_OFFSET (reg) < offset)
9468 offset = REG_OFFSET (reg);
9471 if (i == len)
9473 *declp = decl;
9474 *offsetp = offset;
9475 return true;
9478 else if (MEM_P (rtl))
9480 if (MEM_ATTRS (rtl))
9482 *declp = MEM_EXPR (rtl);
9483 *offsetp = INT_MEM_OFFSET (rtl);
9484 return true;
9487 return false;
9490 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9491 of VAL. */
9493 static void
9494 record_entry_value (cselib_val *val, rtx rtl)
9496 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9498 ENTRY_VALUE_EXP (ev) = rtl;
9500 cselib_add_permanent_equiv (val, ev, get_insns ());
9503 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9505 static void
9506 vt_add_function_parameter (tree parm)
9508 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9509 rtx incoming = DECL_INCOMING_RTL (parm);
9510 tree decl;
9511 machine_mode mode;
9512 HOST_WIDE_INT offset;
9513 dataflow_set *out;
9514 decl_or_value dv;
9516 if (TREE_CODE (parm) != PARM_DECL)
9517 return;
9519 if (!decl_rtl || !incoming)
9520 return;
9522 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9523 return;
9525 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9526 rewrite the incoming location of parameters passed on the stack
9527 into MEMs based on the argument pointer, so that incoming doesn't
9528 depend on a pseudo. */
9529 if (MEM_P (incoming)
9530 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9531 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9532 && XEXP (XEXP (incoming, 0), 0)
9533 == crtl->args.internal_arg_pointer
9534 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9536 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9537 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9538 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9539 incoming
9540 = replace_equiv_address_nv (incoming,
9541 plus_constant (Pmode,
9542 arg_pointer_rtx, off));
9545 #ifdef HAVE_window_save
9546 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9547 If the target machine has an explicit window save instruction, the
9548 actual entry value is the corresponding OUTGOING_REGNO instead. */
9549 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9551 if (REG_P (incoming)
9552 && HARD_REGISTER_P (incoming)
9553 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9555 parm_reg p;
9556 p.incoming = incoming;
9557 incoming
9558 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9559 OUTGOING_REGNO (REGNO (incoming)), 0);
9560 p.outgoing = incoming;
9561 vec_safe_push (windowed_parm_regs, p);
9563 else if (GET_CODE (incoming) == PARALLEL)
9565 rtx outgoing
9566 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9567 int i;
9569 for (i = 0; i < XVECLEN (incoming, 0); i++)
9571 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9572 parm_reg p;
9573 p.incoming = reg;
9574 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9575 OUTGOING_REGNO (REGNO (reg)), 0);
9576 p.outgoing = reg;
9577 XVECEXP (outgoing, 0, i)
9578 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9579 XEXP (XVECEXP (incoming, 0, i), 1));
9580 vec_safe_push (windowed_parm_regs, p);
9583 incoming = outgoing;
9585 else if (MEM_P (incoming)
9586 && REG_P (XEXP (incoming, 0))
9587 && HARD_REGISTER_P (XEXP (incoming, 0)))
9589 rtx reg = XEXP (incoming, 0);
9590 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9592 parm_reg p;
9593 p.incoming = reg;
9594 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9595 p.outgoing = reg;
9596 vec_safe_push (windowed_parm_regs, p);
9597 incoming = replace_equiv_address_nv (incoming, reg);
9601 #endif
9603 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9605 if (MEM_P (incoming))
9607 /* This means argument is passed by invisible reference. */
9608 offset = 0;
9609 decl = parm;
9611 else
9613 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9614 return;
9615 offset += byte_lowpart_offset (GET_MODE (incoming),
9616 GET_MODE (decl_rtl));
9620 if (!decl)
9621 return;
9623 if (parm != decl)
9625 /* If that DECL_RTL wasn't a pseudo that got spilled to
9626 memory, bail out. Otherwise, the spill slot sharing code
9627 will force the memory to reference spill_slot_decl (%sfp),
9628 so we don't match above. That's ok, the pseudo must have
9629 referenced the entire parameter, so just reset OFFSET. */
9630 if (decl != get_spill_slot_decl (false))
9631 return;
9632 offset = 0;
9635 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9636 return;
9638 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9640 dv = dv_from_decl (parm);
9642 if (target_for_debug_bind (parm)
9643 /* We can't deal with these right now, because this kind of
9644 variable is single-part. ??? We could handle parallels
9645 that describe multiple locations for the same single
9646 value, but ATM we don't. */
9647 && GET_CODE (incoming) != PARALLEL)
9649 cselib_val *val;
9650 rtx lowpart;
9652 /* ??? We shouldn't ever hit this, but it may happen because
9653 arguments passed by invisible reference aren't dealt with
9654 above: incoming-rtl will have Pmode rather than the
9655 expected mode for the type. */
9656 if (offset)
9657 return;
9659 lowpart = var_lowpart (mode, incoming);
9660 if (!lowpart)
9661 return;
9663 val = cselib_lookup_from_insn (lowpart, mode, true,
9664 VOIDmode, get_insns ());
9666 /* ??? Float-typed values in memory are not handled by
9667 cselib. */
9668 if (val)
9670 preserve_value (val);
9671 set_variable_part (out, val->val_rtx, dv, offset,
9672 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9673 dv = dv_from_value (val->val_rtx);
9676 if (MEM_P (incoming))
9678 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9679 VOIDmode, get_insns ());
9680 if (val)
9682 preserve_value (val);
9683 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9688 if (REG_P (incoming))
9690 incoming = var_lowpart (mode, incoming);
9691 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9692 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9693 incoming);
9694 set_variable_part (out, incoming, dv, offset,
9695 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9696 if (dv_is_value_p (dv))
9698 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9699 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9700 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9702 machine_mode indmode
9703 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9704 rtx mem = gen_rtx_MEM (indmode, incoming);
9705 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9706 VOIDmode,
9707 get_insns ());
9708 if (val)
9710 preserve_value (val);
9711 record_entry_value (val, mem);
9712 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9713 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9718 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9720 int i;
9722 for (i = 0; i < XVECLEN (incoming, 0); i++)
9724 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9725 offset = REG_OFFSET (reg);
9726 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9727 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9728 set_variable_part (out, reg, dv, offset,
9729 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9732 else if (MEM_P (incoming))
9734 incoming = var_lowpart (mode, incoming);
9735 set_variable_part (out, incoming, dv, offset,
9736 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9740 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9742 static void
9743 vt_add_function_parameters (void)
9745 tree parm;
9747 for (parm = DECL_ARGUMENTS (current_function_decl);
9748 parm; parm = DECL_CHAIN (parm))
9749 if (!POINTER_BOUNDS_P (parm))
9750 vt_add_function_parameter (parm);
9752 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9754 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9756 if (TREE_CODE (vexpr) == INDIRECT_REF)
9757 vexpr = TREE_OPERAND (vexpr, 0);
9759 if (TREE_CODE (vexpr) == PARM_DECL
9760 && DECL_ARTIFICIAL (vexpr)
9761 && !DECL_IGNORED_P (vexpr)
9762 && DECL_NAMELESS (vexpr))
9763 vt_add_function_parameter (vexpr);
9767 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9768 ensure it isn't flushed during cselib_reset_table.
9769 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9770 has been eliminated. */
9772 static void
9773 vt_init_cfa_base (void)
9775 cselib_val *val;
9777 #ifdef FRAME_POINTER_CFA_OFFSET
9778 cfa_base_rtx = frame_pointer_rtx;
9779 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9780 #else
9781 cfa_base_rtx = arg_pointer_rtx;
9782 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9783 #endif
9784 if (cfa_base_rtx == hard_frame_pointer_rtx
9785 || !fixed_regs[REGNO (cfa_base_rtx)])
9787 cfa_base_rtx = NULL_RTX;
9788 return;
9790 if (!MAY_HAVE_DEBUG_INSNS)
9791 return;
9793 /* Tell alias analysis that cfa_base_rtx should share
9794 find_base_term value with stack pointer or hard frame pointer. */
9795 if (!frame_pointer_needed)
9796 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9797 else if (!crtl->stack_realign_tried)
9798 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9800 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9801 VOIDmode, get_insns ());
9802 preserve_value (val);
9803 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9806 /* Allocate and initialize the data structures for variable tracking
9807 and parse the RTL to get the micro operations. */
9809 static bool
9810 vt_initialize (void)
9812 basic_block bb;
9813 HOST_WIDE_INT fp_cfa_offset = -1;
9815 alloc_aux_for_blocks (sizeof (variable_tracking_info));
9817 empty_shared_hash = new shared_hash;
9818 empty_shared_hash->refcount = 1;
9819 empty_shared_hash->htab = new variable_table_type (1);
9820 changed_variables = new variable_table_type (10);
9822 /* Init the IN and OUT sets. */
9823 FOR_ALL_BB_FN (bb, cfun)
9825 VTI (bb)->visited = false;
9826 VTI (bb)->flooded = false;
9827 dataflow_set_init (&VTI (bb)->in);
9828 dataflow_set_init (&VTI (bb)->out);
9829 VTI (bb)->permp = NULL;
9832 if (MAY_HAVE_DEBUG_INSNS)
9834 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9835 scratch_regs = BITMAP_ALLOC (NULL);
9836 preserved_values.create (256);
9837 global_get_addr_cache = new hash_map<rtx, rtx>;
9839 else
9841 scratch_regs = NULL;
9842 global_get_addr_cache = NULL;
9845 if (MAY_HAVE_DEBUG_INSNS)
9847 rtx reg, expr;
9848 int ofst;
9849 cselib_val *val;
9851 #ifdef FRAME_POINTER_CFA_OFFSET
9852 reg = frame_pointer_rtx;
9853 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9854 #else
9855 reg = arg_pointer_rtx;
9856 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9857 #endif
9859 ofst -= INCOMING_FRAME_SP_OFFSET;
9861 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9862 VOIDmode, get_insns ());
9863 preserve_value (val);
9864 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9865 cselib_preserve_cfa_base_value (val, REGNO (reg));
9866 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9867 stack_pointer_rtx, -ofst);
9868 cselib_add_permanent_equiv (val, expr, get_insns ());
9870 if (ofst)
9872 val = cselib_lookup_from_insn (stack_pointer_rtx,
9873 GET_MODE (stack_pointer_rtx), 1,
9874 VOIDmode, get_insns ());
9875 preserve_value (val);
9876 expr = plus_constant (GET_MODE (reg), reg, ofst);
9877 cselib_add_permanent_equiv (val, expr, get_insns ());
9881 /* In order to factor out the adjustments made to the stack pointer or to
9882 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9883 instead of individual location lists, we're going to rewrite MEMs based
9884 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9885 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9886 resp. arg_pointer_rtx. We can do this either when there is no frame
9887 pointer in the function and stack adjustments are consistent for all
9888 basic blocks or when there is a frame pointer and no stack realignment.
9889 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9890 has been eliminated. */
9891 if (!frame_pointer_needed)
9893 rtx reg, elim;
9895 if (!vt_stack_adjustments ())
9896 return false;
9898 #ifdef FRAME_POINTER_CFA_OFFSET
9899 reg = frame_pointer_rtx;
9900 #else
9901 reg = arg_pointer_rtx;
9902 #endif
9903 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9904 if (elim != reg)
9906 if (GET_CODE (elim) == PLUS)
9907 elim = XEXP (elim, 0);
9908 if (elim == stack_pointer_rtx)
9909 vt_init_cfa_base ();
9912 else if (!crtl->stack_realign_tried)
9914 rtx reg, elim;
9916 #ifdef FRAME_POINTER_CFA_OFFSET
9917 reg = frame_pointer_rtx;
9918 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9919 #else
9920 reg = arg_pointer_rtx;
9921 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
9922 #endif
9923 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9924 if (elim != reg)
9926 if (GET_CODE (elim) == PLUS)
9928 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
9929 elim = XEXP (elim, 0);
9931 if (elim != hard_frame_pointer_rtx)
9932 fp_cfa_offset = -1;
9934 else
9935 fp_cfa_offset = -1;
9938 /* If the stack is realigned and a DRAP register is used, we're going to
9939 rewrite MEMs based on it representing incoming locations of parameters
9940 passed on the stack into MEMs based on the argument pointer. Although
9941 we aren't going to rewrite other MEMs, we still need to initialize the
9942 virtual CFA pointer in order to ensure that the argument pointer will
9943 be seen as a constant throughout the function.
9945 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
9946 else if (stack_realign_drap)
9948 rtx reg, elim;
9950 #ifdef FRAME_POINTER_CFA_OFFSET
9951 reg = frame_pointer_rtx;
9952 #else
9953 reg = arg_pointer_rtx;
9954 #endif
9955 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9956 if (elim != reg)
9958 if (GET_CODE (elim) == PLUS)
9959 elim = XEXP (elim, 0);
9960 if (elim == hard_frame_pointer_rtx)
9961 vt_init_cfa_base ();
9965 hard_frame_pointer_adjustment = -1;
9967 vt_add_function_parameters ();
9969 FOR_EACH_BB_FN (bb, cfun)
9971 rtx_insn *insn;
9972 HOST_WIDE_INT pre, post = 0;
9973 basic_block first_bb, last_bb;
9975 if (MAY_HAVE_DEBUG_INSNS)
9977 cselib_record_sets_hook = add_with_sets;
9978 if (dump_file && (dump_flags & TDF_DETAILS))
9979 fprintf (dump_file, "first value: %i\n",
9980 cselib_get_next_uid ());
9983 first_bb = bb;
9984 for (;;)
9986 edge e;
9987 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
9988 || ! single_pred_p (bb->next_bb))
9989 break;
9990 e = find_edge (bb, bb->next_bb);
9991 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
9992 break;
9993 bb = bb->next_bb;
9995 last_bb = bb;
9997 /* Add the micro-operations to the vector. */
9998 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10000 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10001 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10002 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10003 insn = NEXT_INSN (insn))
10005 if (INSN_P (insn))
10007 if (!frame_pointer_needed)
10009 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10010 if (pre)
10012 micro_operation mo;
10013 mo.type = MO_ADJUST;
10014 mo.u.adjust = pre;
10015 mo.insn = insn;
10016 if (dump_file && (dump_flags & TDF_DETAILS))
10017 log_op_type (PATTERN (insn), bb, insn,
10018 MO_ADJUST, dump_file);
10019 VTI (bb)->mos.safe_push (mo);
10020 VTI (bb)->out.stack_adjust += pre;
10024 cselib_hook_called = false;
10025 adjust_insn (bb, insn);
10026 if (MAY_HAVE_DEBUG_INSNS)
10028 if (CALL_P (insn))
10029 prepare_call_arguments (bb, insn);
10030 cselib_process_insn (insn);
10031 if (dump_file && (dump_flags & TDF_DETAILS))
10033 print_rtl_single (dump_file, insn);
10034 dump_cselib_table (dump_file);
10037 if (!cselib_hook_called)
10038 add_with_sets (insn, 0, 0);
10039 cancel_changes (0);
10041 if (!frame_pointer_needed && post)
10043 micro_operation mo;
10044 mo.type = MO_ADJUST;
10045 mo.u.adjust = post;
10046 mo.insn = insn;
10047 if (dump_file && (dump_flags & TDF_DETAILS))
10048 log_op_type (PATTERN (insn), bb, insn,
10049 MO_ADJUST, dump_file);
10050 VTI (bb)->mos.safe_push (mo);
10051 VTI (bb)->out.stack_adjust += post;
10054 if (fp_cfa_offset != -1
10055 && hard_frame_pointer_adjustment == -1
10056 && fp_setter_insn (insn))
10058 vt_init_cfa_base ();
10059 hard_frame_pointer_adjustment = fp_cfa_offset;
10060 /* Disassociate sp from fp now. */
10061 if (MAY_HAVE_DEBUG_INSNS)
10063 cselib_val *v;
10064 cselib_invalidate_rtx (stack_pointer_rtx);
10065 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10066 VOIDmode);
10067 if (v && !cselib_preserved_value_p (v))
10069 cselib_set_value_sp_based (v);
10070 preserve_value (v);
10076 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10079 bb = last_bb;
10081 if (MAY_HAVE_DEBUG_INSNS)
10083 cselib_preserve_only_values ();
10084 cselib_reset_table (cselib_get_next_uid ());
10085 cselib_record_sets_hook = NULL;
10089 hard_frame_pointer_adjustment = -1;
10090 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10091 cfa_base_rtx = NULL_RTX;
10092 return true;
10095 /* This is *not* reset after each function. It gives each
10096 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10097 a unique label number. */
10099 static int debug_label_num = 1;
10101 /* Get rid of all debug insns from the insn stream. */
10103 static void
10104 delete_debug_insns (void)
10106 basic_block bb;
10107 rtx_insn *insn, *next;
10109 if (!MAY_HAVE_DEBUG_INSNS)
10110 return;
10112 FOR_EACH_BB_FN (bb, cfun)
10114 FOR_BB_INSNS_SAFE (bb, insn, next)
10115 if (DEBUG_INSN_P (insn))
10117 tree decl = INSN_VAR_LOCATION_DECL (insn);
10118 if (TREE_CODE (decl) == LABEL_DECL
10119 && DECL_NAME (decl)
10120 && !DECL_RTL_SET_P (decl))
10122 PUT_CODE (insn, NOTE);
10123 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10124 NOTE_DELETED_LABEL_NAME (insn)
10125 = IDENTIFIER_POINTER (DECL_NAME (decl));
10126 SET_DECL_RTL (decl, insn);
10127 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10129 else
10130 delete_insn (insn);
10135 /* Run a fast, BB-local only version of var tracking, to take care of
10136 information that we don't do global analysis on, such that not all
10137 information is lost. If SKIPPED holds, we're skipping the global
10138 pass entirely, so we should try to use information it would have
10139 handled as well.. */
10141 static void
10142 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10144 /* ??? Just skip it all for now. */
10145 delete_debug_insns ();
10148 /* Free the data structures needed for variable tracking. */
10150 static void
10151 vt_finalize (void)
10153 basic_block bb;
10155 FOR_EACH_BB_FN (bb, cfun)
10157 VTI (bb)->mos.release ();
10160 FOR_ALL_BB_FN (bb, cfun)
10162 dataflow_set_destroy (&VTI (bb)->in);
10163 dataflow_set_destroy (&VTI (bb)->out);
10164 if (VTI (bb)->permp)
10166 dataflow_set_destroy (VTI (bb)->permp);
10167 XDELETE (VTI (bb)->permp);
10170 free_aux_for_blocks ();
10171 delete empty_shared_hash->htab;
10172 empty_shared_hash->htab = NULL;
10173 delete changed_variables;
10174 changed_variables = NULL;
10175 attrs_pool.release ();
10176 var_pool.release ();
10177 location_chain_pool.release ();
10178 shared_hash_pool.release ();
10180 if (MAY_HAVE_DEBUG_INSNS)
10182 if (global_get_addr_cache)
10183 delete global_get_addr_cache;
10184 global_get_addr_cache = NULL;
10185 loc_exp_dep_pool.release ();
10186 valvar_pool.release ();
10187 preserved_values.release ();
10188 cselib_finish ();
10189 BITMAP_FREE (scratch_regs);
10190 scratch_regs = NULL;
10193 #ifdef HAVE_window_save
10194 vec_free (windowed_parm_regs);
10195 #endif
10197 if (vui_vec)
10198 XDELETEVEC (vui_vec);
10199 vui_vec = NULL;
10200 vui_allocated = 0;
10203 /* The entry point to variable tracking pass. */
10205 static inline unsigned int
10206 variable_tracking_main_1 (void)
10208 bool success;
10210 if (flag_var_tracking_assignments < 0
10211 /* Var-tracking right now assumes the IR doesn't contain
10212 any pseudos at this point. */
10213 || targetm.no_register_allocation)
10215 delete_debug_insns ();
10216 return 0;
10219 if (n_basic_blocks_for_fn (cfun) > 500 &&
10220 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10222 vt_debug_insns_local (true);
10223 return 0;
10226 mark_dfs_back_edges ();
10227 if (!vt_initialize ())
10229 vt_finalize ();
10230 vt_debug_insns_local (true);
10231 return 0;
10234 success = vt_find_locations ();
10236 if (!success && flag_var_tracking_assignments > 0)
10238 vt_finalize ();
10240 delete_debug_insns ();
10242 /* This is later restored by our caller. */
10243 flag_var_tracking_assignments = 0;
10245 success = vt_initialize ();
10246 gcc_assert (success);
10248 success = vt_find_locations ();
10251 if (!success)
10253 vt_finalize ();
10254 vt_debug_insns_local (false);
10255 return 0;
10258 if (dump_file && (dump_flags & TDF_DETAILS))
10260 dump_dataflow_sets ();
10261 dump_reg_info (dump_file);
10262 dump_flow_info (dump_file, dump_flags);
10265 timevar_push (TV_VAR_TRACKING_EMIT);
10266 vt_emit_notes ();
10267 timevar_pop (TV_VAR_TRACKING_EMIT);
10269 vt_finalize ();
10270 vt_debug_insns_local (false);
10271 return 0;
10274 unsigned int
10275 variable_tracking_main (void)
10277 unsigned int ret;
10278 int save = flag_var_tracking_assignments;
10280 ret = variable_tracking_main_1 ();
10282 flag_var_tracking_assignments = save;
10284 return ret;
10287 namespace {
10289 const pass_data pass_data_variable_tracking =
10291 RTL_PASS, /* type */
10292 "vartrack", /* name */
10293 OPTGROUP_NONE, /* optinfo_flags */
10294 TV_VAR_TRACKING, /* tv_id */
10295 0, /* properties_required */
10296 0, /* properties_provided */
10297 0, /* properties_destroyed */
10298 0, /* todo_flags_start */
10299 0, /* todo_flags_finish */
10302 class pass_variable_tracking : public rtl_opt_pass
10304 public:
10305 pass_variable_tracking (gcc::context *ctxt)
10306 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10309 /* opt_pass methods: */
10310 virtual bool gate (function *)
10312 return (flag_var_tracking && !targetm.delay_vartrack);
10315 virtual unsigned int execute (function *)
10317 return variable_tracking_main ();
10320 }; // class pass_variable_tracking
10322 } // anon namespace
10324 rtl_opt_pass *
10325 make_pass_variable_tracking (gcc::context *ctxt)
10327 return new pass_variable_tracking (ctxt);