[AArch64] PR target/68129: Define TARGET_SUPPORTS_WIDE_INT
[official-gcc.git] / gcc / tree-ssa-uninit.c
bloba439363d42fcc27ba5135ba829740f7bda0be6f8
1 /* Predicate aware uninitialized variable warning.
2 Copyright (C) 2001-2015 Free Software Foundation, Inc.
3 Contributed by Xinliang David Li <davidxl@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "diagnostic-core.h"
31 #include "fold-const.h"
32 #include "gimple-iterator.h"
33 #include "tree-ssa.h"
34 #include "params.h"
35 #include "tree-cfg.h"
37 /* This implements the pass that does predicate aware warning on uses of
38 possibly uninitialized variables. The pass first collects the set of
39 possibly uninitialized SSA names. For each such name, it walks through
40 all its immediate uses. For each immediate use, it rebuilds the condition
41 expression (the predicate) that guards the use. The predicate is then
42 examined to see if the variable is always defined under that same condition.
43 This is done either by pruning the unrealizable paths that lead to the
44 default definitions or by checking if the predicate set that guards the
45 defining paths is a superset of the use predicate. */
48 /* Pointer set of potentially undefined ssa names, i.e.,
49 ssa names that are defined by phi with operands that
50 are not defined or potentially undefined. */
51 static hash_set<tree> *possibly_undefined_names = 0;
53 /* Bit mask handling macros. */
54 #define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
55 #define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
56 #define MASK_EMPTY(mask) (mask == 0)
58 /* Returns the first bit position (starting from LSB)
59 in mask that is non zero. Returns -1 if the mask is empty. */
60 static int
61 get_mask_first_set_bit (unsigned mask)
63 int pos = 0;
64 if (mask == 0)
65 return -1;
67 while ((mask & (1 << pos)) == 0)
68 pos++;
70 return pos;
72 #define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
74 /* Return true if T, an SSA_NAME, has an undefined value. */
75 static bool
76 has_undefined_value_p (tree t)
78 return (ssa_undefined_value_p (t)
79 || (possibly_undefined_names
80 && possibly_undefined_names->contains (t)));
85 /* Like has_undefined_value_p, but don't return true if TREE_NO_WARNING
86 is set on SSA_NAME_VAR. */
88 static inline bool
89 uninit_undefined_value_p (tree t) {
90 if (!has_undefined_value_p (t))
91 return false;
92 if (SSA_NAME_VAR (t) && TREE_NO_WARNING (SSA_NAME_VAR (t)))
93 return false;
94 return true;
97 /* Emit warnings for uninitialized variables. This is done in two passes.
99 The first pass notices real uses of SSA names with undefined values.
100 Such uses are unconditionally uninitialized, and we can be certain that
101 such a use is a mistake. This pass is run before most optimizations,
102 so that we catch as many as we can.
104 The second pass follows PHI nodes to find uses that are potentially
105 uninitialized. In this case we can't necessarily prove that the use
106 is really uninitialized. This pass is run after most optimizations,
107 so that we thread as many jumps and possible, and delete as much dead
108 code as possible, in order to reduce false positives. We also look
109 again for plain uninitialized variables, since optimization may have
110 changed conditionally uninitialized to unconditionally uninitialized. */
112 /* Emit a warning for EXPR based on variable VAR at the point in the
113 program T, an SSA_NAME, is used being uninitialized. The exact
114 warning text is in MSGID and DATA is the gimple stmt with info about
115 the location in source code. When DATA is a GIMPLE_PHI, PHIARG_IDX
116 gives which argument of the phi node to take the location from. WC
117 is the warning code. */
119 static void
120 warn_uninit (enum opt_code wc, tree t, tree expr, tree var,
121 const char *gmsgid, void *data, location_t phiarg_loc)
123 gimple *context = (gimple *) data;
124 location_t location, cfun_loc;
125 expanded_location xloc, floc;
127 /* Ignore COMPLEX_EXPR as initializing only a part of a complex
128 turns in a COMPLEX_EXPR with the not initialized part being
129 set to its previous (undefined) value. */
130 if (is_gimple_assign (context)
131 && gimple_assign_rhs_code (context) == COMPLEX_EXPR)
132 return;
133 if (!has_undefined_value_p (t))
134 return;
136 /* TREE_NO_WARNING either means we already warned, or the front end
137 wishes to suppress the warning. */
138 if ((context
139 && (gimple_no_warning_p (context)
140 || (gimple_assign_single_p (context)
141 && TREE_NO_WARNING (gimple_assign_rhs1 (context)))))
142 || TREE_NO_WARNING (expr))
143 return;
145 if (context != NULL && gimple_has_location (context))
146 location = gimple_location (context);
147 else if (phiarg_loc != UNKNOWN_LOCATION)
148 location = phiarg_loc;
149 else
150 location = DECL_SOURCE_LOCATION (var);
151 location = linemap_resolve_location (line_table, location,
152 LRK_SPELLING_LOCATION,
153 NULL);
154 cfun_loc = DECL_SOURCE_LOCATION (cfun->decl);
155 xloc = expand_location (location);
156 floc = expand_location (cfun_loc);
157 if (warning_at (location, wc, gmsgid, expr))
159 TREE_NO_WARNING (expr) = 1;
161 if (location == DECL_SOURCE_LOCATION (var))
162 return;
163 if (xloc.file != floc.file
164 || linemap_location_before_p (line_table,
165 location, cfun_loc)
166 || linemap_location_before_p (line_table,
167 cfun->function_end_locus,
168 location))
169 inform (DECL_SOURCE_LOCATION (var), "%qD was declared here", var);
173 static unsigned int
174 warn_uninitialized_vars (bool warn_possibly_uninitialized)
176 gimple_stmt_iterator gsi;
177 basic_block bb;
179 FOR_EACH_BB_FN (bb, cfun)
181 bool always_executed = dominated_by_p (CDI_POST_DOMINATORS,
182 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)), bb);
183 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
185 gimple *stmt = gsi_stmt (gsi);
186 use_operand_p use_p;
187 ssa_op_iter op_iter;
188 tree use;
190 if (is_gimple_debug (stmt))
191 continue;
193 /* We only do data flow with SSA_NAMEs, so that's all we
194 can warn about. */
195 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, op_iter, SSA_OP_USE)
197 use = USE_FROM_PTR (use_p);
198 if (always_executed)
199 warn_uninit (OPT_Wuninitialized, use,
200 SSA_NAME_VAR (use), SSA_NAME_VAR (use),
201 "%qD is used uninitialized in this function",
202 stmt, UNKNOWN_LOCATION);
203 else if (warn_possibly_uninitialized)
204 warn_uninit (OPT_Wmaybe_uninitialized, use,
205 SSA_NAME_VAR (use), SSA_NAME_VAR (use),
206 "%qD may be used uninitialized in this function",
207 stmt, UNKNOWN_LOCATION);
210 /* For memory the only cheap thing we can do is see if we
211 have a use of the default def of the virtual operand.
212 ??? Not so cheap would be to use the alias oracle via
213 walk_aliased_vdefs, if we don't find any aliasing vdef
214 warn as is-used-uninitialized, if we don't find an aliasing
215 vdef that kills our use (stmt_kills_ref_p), warn as
216 may-be-used-uninitialized. But this walk is quadratic and
217 so must be limited which means we would miss warning
218 opportunities. */
219 use = gimple_vuse (stmt);
220 if (use
221 && gimple_assign_single_p (stmt)
222 && !gimple_vdef (stmt)
223 && SSA_NAME_IS_DEFAULT_DEF (use))
225 tree rhs = gimple_assign_rhs1 (stmt);
226 tree base = get_base_address (rhs);
228 /* Do not warn if it can be initialized outside this function. */
229 if (TREE_CODE (base) != VAR_DECL
230 || DECL_HARD_REGISTER (base)
231 || is_global_var (base))
232 continue;
234 if (always_executed)
235 warn_uninit (OPT_Wuninitialized, use,
236 gimple_assign_rhs1 (stmt), base,
237 "%qE is used uninitialized in this function",
238 stmt, UNKNOWN_LOCATION);
239 else if (warn_possibly_uninitialized)
240 warn_uninit (OPT_Wmaybe_uninitialized, use,
241 gimple_assign_rhs1 (stmt), base,
242 "%qE may be used uninitialized in this function",
243 stmt, UNKNOWN_LOCATION);
248 return 0;
251 /* Checks if the operand OPND of PHI is defined by
252 another phi with one operand defined by this PHI,
253 but the rest operands are all defined. If yes,
254 returns true to skip this operand as being
255 redundant. Can be enhanced to be more general. */
257 static bool
258 can_skip_redundant_opnd (tree opnd, gimple *phi)
260 gimple *op_def;
261 tree phi_def;
262 int i, n;
264 phi_def = gimple_phi_result (phi);
265 op_def = SSA_NAME_DEF_STMT (opnd);
266 if (gimple_code (op_def) != GIMPLE_PHI)
267 return false;
268 n = gimple_phi_num_args (op_def);
269 for (i = 0; i < n; ++i)
271 tree op = gimple_phi_arg_def (op_def, i);
272 if (TREE_CODE (op) != SSA_NAME)
273 continue;
274 if (op != phi_def && uninit_undefined_value_p (op))
275 return false;
278 return true;
281 /* Returns a bit mask holding the positions of arguments in PHI
282 that have empty (or possibly empty) definitions. */
284 static unsigned
285 compute_uninit_opnds_pos (gphi *phi)
287 size_t i, n;
288 unsigned uninit_opnds = 0;
290 n = gimple_phi_num_args (phi);
291 /* Bail out for phi with too many args. */
292 if (n > 32)
293 return 0;
295 for (i = 0; i < n; ++i)
297 tree op = gimple_phi_arg_def (phi, i);
298 if (TREE_CODE (op) == SSA_NAME
299 && uninit_undefined_value_p (op)
300 && !can_skip_redundant_opnd (op, phi))
302 if (cfun->has_nonlocal_label || cfun->calls_setjmp)
304 /* Ignore SSA_NAMEs that appear on abnormal edges
305 somewhere. */
306 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
307 continue;
309 MASK_SET_BIT (uninit_opnds, i);
312 return uninit_opnds;
315 /* Find the immediate postdominator PDOM of the specified
316 basic block BLOCK. */
318 static inline basic_block
319 find_pdom (basic_block block)
321 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
322 return EXIT_BLOCK_PTR_FOR_FN (cfun);
323 else
325 basic_block bb
326 = get_immediate_dominator (CDI_POST_DOMINATORS, block);
327 if (! bb)
328 return EXIT_BLOCK_PTR_FOR_FN (cfun);
329 return bb;
333 /* Find the immediate DOM of the specified
334 basic block BLOCK. */
336 static inline basic_block
337 find_dom (basic_block block)
339 if (block == ENTRY_BLOCK_PTR_FOR_FN (cfun))
340 return ENTRY_BLOCK_PTR_FOR_FN (cfun);
341 else
343 basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
344 if (! bb)
345 return ENTRY_BLOCK_PTR_FOR_FN (cfun);
346 return bb;
350 /* Returns true if BB1 is postdominating BB2 and BB1 is
351 not a loop exit bb. The loop exit bb check is simple and does
352 not cover all cases. */
354 static bool
355 is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2)
357 if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1))
358 return false;
360 if (single_pred_p (bb1) && !single_succ_p (bb2))
361 return false;
363 return true;
366 /* Find the closest postdominator of a specified BB, which is control
367 equivalent to BB. */
369 static inline basic_block
370 find_control_equiv_block (basic_block bb)
372 basic_block pdom;
374 pdom = find_pdom (bb);
376 /* Skip the postdominating bb that is also loop exit. */
377 if (!is_non_loop_exit_postdominating (pdom, bb))
378 return NULL;
380 if (dominated_by_p (CDI_DOMINATORS, pdom, bb))
381 return pdom;
383 return NULL;
386 #define MAX_NUM_CHAINS 8
387 #define MAX_CHAIN_LEN 5
388 #define MAX_POSTDOM_CHECK 8
389 #define MAX_SWITCH_CASES 40
391 /* Computes the control dependence chains (paths of edges)
392 for DEP_BB up to the dominating basic block BB (the head node of a
393 chain should be dominated by it). CD_CHAINS is pointer to an
394 array holding the result chains. CUR_CD_CHAIN is the current
395 chain being computed. *NUM_CHAINS is total number of chains. The
396 function returns true if the information is successfully computed,
397 return false if there is no control dependence or not computed. */
399 static bool
400 compute_control_dep_chain (basic_block bb, basic_block dep_bb,
401 vec<edge> *cd_chains,
402 size_t *num_chains,
403 vec<edge> *cur_cd_chain,
404 int *num_calls)
406 edge_iterator ei;
407 edge e;
408 size_t i;
409 bool found_cd_chain = false;
410 size_t cur_chain_len = 0;
412 if (EDGE_COUNT (bb->succs) < 2)
413 return false;
415 if (*num_calls > PARAM_VALUE (PARAM_UNINIT_CONTROL_DEP_ATTEMPTS))
416 return false;
417 ++*num_calls;
419 /* Could use a set instead. */
420 cur_chain_len = cur_cd_chain->length ();
421 if (cur_chain_len > MAX_CHAIN_LEN)
422 return false;
424 for (i = 0; i < cur_chain_len; i++)
426 edge e = (*cur_cd_chain)[i];
427 /* Cycle detected. */
428 if (e->src == bb)
429 return false;
432 FOR_EACH_EDGE (e, ei, bb->succs)
434 basic_block cd_bb;
435 int post_dom_check = 0;
436 if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL))
437 continue;
439 cd_bb = e->dest;
440 cur_cd_chain->safe_push (e);
441 while (!is_non_loop_exit_postdominating (cd_bb, bb))
443 if (cd_bb == dep_bb)
445 /* Found a direct control dependence. */
446 if (*num_chains < MAX_NUM_CHAINS)
448 cd_chains[*num_chains] = cur_cd_chain->copy ();
449 (*num_chains)++;
451 found_cd_chain = true;
452 /* Check path from next edge. */
453 break;
456 /* Now check if DEP_BB is indirectly control dependent on BB. */
457 if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains,
458 num_chains, cur_cd_chain, num_calls))
460 found_cd_chain = true;
461 break;
464 cd_bb = find_pdom (cd_bb);
465 post_dom_check++;
466 if (cd_bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || post_dom_check >
467 MAX_POSTDOM_CHECK)
468 break;
470 cur_cd_chain->pop ();
471 gcc_assert (cur_cd_chain->length () == cur_chain_len);
473 gcc_assert (cur_cd_chain->length () == cur_chain_len);
475 return found_cd_chain;
478 /* The type to represent a simple predicate */
480 struct pred_info
482 tree pred_lhs;
483 tree pred_rhs;
484 enum tree_code cond_code;
485 bool invert;
488 /* The type to represent a sequence of predicates grouped
489 with .AND. operation. */
491 typedef vec<pred_info, va_heap, vl_ptr> pred_chain;
493 /* The type to represent a sequence of pred_chains grouped
494 with .OR. operation. */
496 typedef vec<pred_chain, va_heap, vl_ptr> pred_chain_union;
498 /* Converts the chains of control dependence edges into a set of
499 predicates. A control dependence chain is represented by a vector
500 edges. DEP_CHAINS points to an array of dependence chains.
501 NUM_CHAINS is the size of the chain array. One edge in a dependence
502 chain is mapped to predicate expression represented by pred_info
503 type. One dependence chain is converted to a composite predicate that
504 is the result of AND operation of pred_info mapped to each edge.
505 A composite predicate is presented by a vector of pred_info. On
506 return, *PREDS points to the resulting array of composite predicates.
507 *NUM_PREDS is the number of composite predictes. */
509 static bool
510 convert_control_dep_chain_into_preds (vec<edge> *dep_chains,
511 size_t num_chains,
512 pred_chain_union *preds)
514 bool has_valid_pred = false;
515 size_t i, j;
516 if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS)
517 return false;
519 /* Now convert the control dep chain into a set
520 of predicates. */
521 preds->reserve (num_chains);
523 for (i = 0; i < num_chains; i++)
525 vec<edge> one_cd_chain = dep_chains[i];
527 has_valid_pred = false;
528 pred_chain t_chain = vNULL;
529 for (j = 0; j < one_cd_chain.length (); j++)
531 gimple *cond_stmt;
532 gimple_stmt_iterator gsi;
533 basic_block guard_bb;
534 pred_info one_pred;
535 edge e;
537 e = one_cd_chain[j];
538 guard_bb = e->src;
539 gsi = gsi_last_bb (guard_bb);
540 if (gsi_end_p (gsi))
542 has_valid_pred = false;
543 break;
545 cond_stmt = gsi_stmt (gsi);
546 if (is_gimple_call (cond_stmt)
547 && EDGE_COUNT (e->src->succs) >= 2)
549 /* Ignore EH edge. Can add assertion
550 on the other edge's flag. */
551 continue;
553 /* Skip if there is essentially one succesor. */
554 if (EDGE_COUNT (e->src->succs) == 2)
556 edge e1;
557 edge_iterator ei1;
558 bool skip = false;
560 FOR_EACH_EDGE (e1, ei1, e->src->succs)
562 if (EDGE_COUNT (e1->dest->succs) == 0)
564 skip = true;
565 break;
568 if (skip)
569 continue;
571 if (gimple_code (cond_stmt) == GIMPLE_COND)
573 one_pred.pred_lhs = gimple_cond_lhs (cond_stmt);
574 one_pred.pred_rhs = gimple_cond_rhs (cond_stmt);
575 one_pred.cond_code = gimple_cond_code (cond_stmt);
576 one_pred.invert = !!(e->flags & EDGE_FALSE_VALUE);
577 t_chain.safe_push (one_pred);
578 has_valid_pred = true;
580 else if (gswitch *gs = dyn_cast <gswitch *> (cond_stmt))
582 /* Avoid quadratic behavior. */
583 if (gimple_switch_num_labels (gs) > MAX_SWITCH_CASES)
585 has_valid_pred = false;
586 break;
588 /* Find the case label. */
589 tree l = NULL_TREE;
590 unsigned idx;
591 for (idx = 0; idx < gimple_switch_num_labels (gs); ++idx)
593 tree tl = gimple_switch_label (gs, idx);
594 if (e->dest == label_to_block (CASE_LABEL (tl)))
596 if (!l)
597 l = tl;
598 else
600 l = NULL_TREE;
601 break;
605 /* If more than one label reaches this block or the case
606 label doesn't have a single value (like the default one)
607 fail. */
608 if (!l
609 || !CASE_LOW (l)
610 || (CASE_HIGH (l) && !operand_equal_p (CASE_LOW (l),
611 CASE_HIGH (l), 0)))
613 has_valid_pred = false;
614 break;
616 one_pred.pred_lhs = gimple_switch_index (gs);
617 one_pred.pred_rhs = CASE_LOW (l);
618 one_pred.cond_code = EQ_EXPR;
619 one_pred.invert = false;
620 t_chain.safe_push (one_pred);
621 has_valid_pred = true;
623 else
625 has_valid_pred = false;
626 break;
630 if (!has_valid_pred)
631 break;
632 else
633 preds->safe_push (t_chain);
635 return has_valid_pred;
638 /* Computes all control dependence chains for USE_BB. The control
639 dependence chains are then converted to an array of composite
640 predicates pointed to by PREDS. PHI_BB is the basic block of
641 the phi whose result is used in USE_BB. */
643 static bool
644 find_predicates (pred_chain_union *preds,
645 basic_block phi_bb,
646 basic_block use_bb)
648 size_t num_chains = 0, i;
649 int num_calls = 0;
650 vec<edge> dep_chains[MAX_NUM_CHAINS];
651 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
652 bool has_valid_pred = false;
653 basic_block cd_root = 0;
655 /* First find the closest bb that is control equivalent to PHI_BB
656 that also dominates USE_BB. */
657 cd_root = phi_bb;
658 while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root))
660 basic_block ctrl_eq_bb = find_control_equiv_block (cd_root);
661 if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb))
662 cd_root = ctrl_eq_bb;
663 else
664 break;
667 compute_control_dep_chain (cd_root, use_bb, dep_chains, &num_chains,
668 &cur_chain, &num_calls);
670 has_valid_pred
671 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
672 for (i = 0; i < num_chains; i++)
673 dep_chains[i].release ();
674 return has_valid_pred;
677 /* Computes the set of incoming edges of PHI that have non empty
678 definitions of a phi chain. The collection will be done
679 recursively on operands that are defined by phis. CD_ROOT
680 is the control dependence root. *EDGES holds the result, and
681 VISITED_PHIS is a pointer set for detecting cycles. */
683 static void
684 collect_phi_def_edges (gphi *phi, basic_block cd_root,
685 vec<edge> *edges,
686 hash_set<gimple *> *visited_phis)
688 size_t i, n;
689 edge opnd_edge;
690 tree opnd;
692 if (visited_phis->add (phi))
693 return;
695 n = gimple_phi_num_args (phi);
696 for (i = 0; i < n; i++)
698 opnd_edge = gimple_phi_arg_edge (phi, i);
699 opnd = gimple_phi_arg_def (phi, i);
701 if (TREE_CODE (opnd) != SSA_NAME)
703 if (dump_file && (dump_flags & TDF_DETAILS))
705 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
706 print_gimple_stmt (dump_file, phi, 0, 0);
708 edges->safe_push (opnd_edge);
710 else
712 gimple *def = SSA_NAME_DEF_STMT (opnd);
714 if (gimple_code (def) == GIMPLE_PHI
715 && dominated_by_p (CDI_DOMINATORS,
716 gimple_bb (def), cd_root))
717 collect_phi_def_edges (as_a <gphi *> (def), cd_root, edges,
718 visited_phis);
719 else if (!uninit_undefined_value_p (opnd))
721 if (dump_file && (dump_flags & TDF_DETAILS))
723 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
724 print_gimple_stmt (dump_file, phi, 0, 0);
726 edges->safe_push (opnd_edge);
732 /* For each use edge of PHI, computes all control dependence chains.
733 The control dependence chains are then converted to an array of
734 composite predicates pointed to by PREDS. */
736 static bool
737 find_def_preds (pred_chain_union *preds, gphi *phi)
739 size_t num_chains = 0, i, n;
740 vec<edge> dep_chains[MAX_NUM_CHAINS];
741 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
742 vec<edge> def_edges = vNULL;
743 bool has_valid_pred = false;
744 basic_block phi_bb, cd_root = 0;
746 phi_bb = gimple_bb (phi);
747 /* First find the closest dominating bb to be
748 the control dependence root */
749 cd_root = find_dom (phi_bb);
750 if (!cd_root)
751 return false;
753 hash_set<gimple *> visited_phis;
754 collect_phi_def_edges (phi, cd_root, &def_edges, &visited_phis);
756 n = def_edges.length ();
757 if (n == 0)
758 return false;
760 for (i = 0; i < n; i++)
762 size_t prev_nc, j;
763 int num_calls = 0;
764 edge opnd_edge;
766 opnd_edge = def_edges[i];
767 prev_nc = num_chains;
768 compute_control_dep_chain (cd_root, opnd_edge->src, dep_chains,
769 &num_chains, &cur_chain, &num_calls);
771 /* Now update the newly added chains with
772 the phi operand edge: */
773 if (EDGE_COUNT (opnd_edge->src->succs) > 1)
775 if (prev_nc == num_chains && num_chains < MAX_NUM_CHAINS)
776 dep_chains[num_chains++] = vNULL;
777 for (j = prev_nc; j < num_chains; j++)
778 dep_chains[j].safe_push (opnd_edge);
782 has_valid_pred
783 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
784 for (i = 0; i < num_chains; i++)
785 dep_chains[i].release ();
786 return has_valid_pred;
789 /* Dumps the predicates (PREDS) for USESTMT. */
791 static void
792 dump_predicates (gimple *usestmt, pred_chain_union preds,
793 const char* msg)
795 size_t i, j;
796 pred_chain one_pred_chain = vNULL;
797 fprintf (dump_file, "%s", msg);
798 print_gimple_stmt (dump_file, usestmt, 0, 0);
799 fprintf (dump_file, "is guarded by :\n\n");
800 size_t num_preds = preds.length ();
801 /* Do some dumping here: */
802 for (i = 0; i < num_preds; i++)
804 size_t np;
806 one_pred_chain = preds[i];
807 np = one_pred_chain.length ();
809 for (j = 0; j < np; j++)
811 pred_info one_pred = one_pred_chain[j];
812 if (one_pred.invert)
813 fprintf (dump_file, " (.NOT.) ");
814 print_generic_expr (dump_file, one_pred.pred_lhs, 0);
815 fprintf (dump_file, " %s ", op_symbol_code (one_pred.cond_code));
816 print_generic_expr (dump_file, one_pred.pred_rhs, 0);
817 if (j < np - 1)
818 fprintf (dump_file, " (.AND.) ");
819 else
820 fprintf (dump_file, "\n");
822 if (i < num_preds - 1)
823 fprintf (dump_file, "(.OR.)\n");
824 else
825 fprintf (dump_file, "\n\n");
829 /* Destroys the predicate set *PREDS. */
831 static void
832 destroy_predicate_vecs (pred_chain_union preds)
834 size_t i;
836 size_t n = preds.length ();
837 for (i = 0; i < n; i++)
838 preds[i].release ();
839 preds.release ();
843 /* Computes the 'normalized' conditional code with operand
844 swapping and condition inversion. */
846 static enum tree_code
847 get_cmp_code (enum tree_code orig_cmp_code,
848 bool swap_cond, bool invert)
850 enum tree_code tc = orig_cmp_code;
852 if (swap_cond)
853 tc = swap_tree_comparison (orig_cmp_code);
854 if (invert)
855 tc = invert_tree_comparison (tc, false);
857 switch (tc)
859 case LT_EXPR:
860 case LE_EXPR:
861 case GT_EXPR:
862 case GE_EXPR:
863 case EQ_EXPR:
864 case NE_EXPR:
865 break;
866 default:
867 return ERROR_MARK;
869 return tc;
872 /* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
873 all values in the range satisfies (x CMPC BOUNDARY) == true. */
875 static bool
876 is_value_included_in (tree val, tree boundary, enum tree_code cmpc)
878 bool inverted = false;
879 bool is_unsigned;
880 bool result;
882 /* Only handle integer constant here. */
883 if (TREE_CODE (val) != INTEGER_CST
884 || TREE_CODE (boundary) != INTEGER_CST)
885 return true;
887 is_unsigned = TYPE_UNSIGNED (TREE_TYPE (val));
889 if (cmpc == GE_EXPR || cmpc == GT_EXPR
890 || cmpc == NE_EXPR)
892 cmpc = invert_tree_comparison (cmpc, false);
893 inverted = true;
896 if (is_unsigned)
898 if (cmpc == EQ_EXPR)
899 result = tree_int_cst_equal (val, boundary);
900 else if (cmpc == LT_EXPR)
901 result = tree_int_cst_lt (val, boundary);
902 else
904 gcc_assert (cmpc == LE_EXPR);
905 result = tree_int_cst_le (val, boundary);
908 else
910 if (cmpc == EQ_EXPR)
911 result = tree_int_cst_equal (val, boundary);
912 else if (cmpc == LT_EXPR)
913 result = tree_int_cst_lt (val, boundary);
914 else
916 gcc_assert (cmpc == LE_EXPR);
917 result = (tree_int_cst_equal (val, boundary)
918 || tree_int_cst_lt (val, boundary));
922 if (inverted)
923 result ^= 1;
925 return result;
928 /* Returns true if PRED is common among all the predicate
929 chains (PREDS) (and therefore can be factored out).
930 NUM_PRED_CHAIN is the size of array PREDS. */
932 static bool
933 find_matching_predicate_in_rest_chains (pred_info pred,
934 pred_chain_union preds,
935 size_t num_pred_chains)
937 size_t i, j, n;
939 /* Trival case. */
940 if (num_pred_chains == 1)
941 return true;
943 for (i = 1; i < num_pred_chains; i++)
945 bool found = false;
946 pred_chain one_chain = preds[i];
947 n = one_chain.length ();
948 for (j = 0; j < n; j++)
950 pred_info pred2 = one_chain[j];
951 /* Can relax the condition comparison to not
952 use address comparison. However, the most common
953 case is that multiple control dependent paths share
954 a common path prefix, so address comparison should
955 be ok. */
957 if (operand_equal_p (pred2.pred_lhs, pred.pred_lhs, 0)
958 && operand_equal_p (pred2.pred_rhs, pred.pred_rhs, 0)
959 && pred2.invert == pred.invert)
961 found = true;
962 break;
965 if (!found)
966 return false;
968 return true;
971 /* Forward declaration. */
972 static bool
973 is_use_properly_guarded (gimple *use_stmt,
974 basic_block use_bb,
975 gphi *phi,
976 unsigned uninit_opnds,
977 pred_chain_union *def_preds,
978 hash_set<gphi *> *visited_phis);
980 /* Returns true if all uninitialized opnds are pruned. Returns false
981 otherwise. PHI is the phi node with uninitialized operands,
982 UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
983 FLAG_DEF is the statement defining the flag guarding the use of the
984 PHI output, BOUNDARY_CST is the const value used in the predicate
985 associated with the flag, CMP_CODE is the comparison code used in
986 the predicate, VISITED_PHIS is the pointer set of phis visited, and
987 VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
988 that are also phis.
990 Example scenario:
992 BB1:
993 flag_1 = phi <0, 1> // (1)
994 var_1 = phi <undef, some_val>
997 BB2:
998 flag_2 = phi <0, flag_1, flag_1> // (2)
999 var_2 = phi <undef, var_1, var_1>
1000 if (flag_2 == 1)
1001 goto BB3;
1003 BB3:
1004 use of var_2 // (3)
1006 Because some flag arg in (1) is not constant, if we do not look into the
1007 flag phis recursively, it is conservatively treated as unknown and var_1
1008 is thought to be flowed into use at (3). Since var_1 is potentially uninitialized
1009 a false warning will be emitted. Checking recursively into (1), the compiler can
1010 find out that only some_val (which is defined) can flow into (3) which is OK.
1014 static bool
1015 prune_uninit_phi_opnds_in_unrealizable_paths (gphi *phi,
1016 unsigned uninit_opnds,
1017 gphi *flag_def,
1018 tree boundary_cst,
1019 enum tree_code cmp_code,
1020 hash_set<gphi *> *visited_phis,
1021 bitmap *visited_flag_phis)
1023 unsigned i;
1025 for (i = 0; i < MIN (32, gimple_phi_num_args (flag_def)); i++)
1027 tree flag_arg;
1029 if (!MASK_TEST_BIT (uninit_opnds, i))
1030 continue;
1032 flag_arg = gimple_phi_arg_def (flag_def, i);
1033 if (!is_gimple_constant (flag_arg))
1035 gphi *flag_arg_def, *phi_arg_def;
1036 tree phi_arg;
1037 unsigned uninit_opnds_arg_phi;
1039 if (TREE_CODE (flag_arg) != SSA_NAME)
1040 return false;
1041 flag_arg_def = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (flag_arg));
1042 if (!flag_arg_def)
1043 return false;
1045 phi_arg = gimple_phi_arg_def (phi, i);
1046 if (TREE_CODE (phi_arg) != SSA_NAME)
1047 return false;
1049 phi_arg_def = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (phi_arg));
1050 if (!phi_arg_def)
1051 return false;
1053 if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def))
1054 return false;
1056 if (!*visited_flag_phis)
1057 *visited_flag_phis = BITMAP_ALLOC (NULL);
1059 if (bitmap_bit_p (*visited_flag_phis,
1060 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def))))
1061 return false;
1063 bitmap_set_bit (*visited_flag_phis,
1064 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
1066 /* Now recursively prune the uninitialized phi args. */
1067 uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def);
1068 if (!prune_uninit_phi_opnds_in_unrealizable_paths
1069 (phi_arg_def, uninit_opnds_arg_phi, flag_arg_def,
1070 boundary_cst, cmp_code, visited_phis, visited_flag_phis))
1071 return false;
1073 bitmap_clear_bit (*visited_flag_phis,
1074 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
1075 continue;
1078 /* Now check if the constant is in the guarded range. */
1079 if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
1081 tree opnd;
1082 gimple *opnd_def;
1084 /* Now that we know that this undefined edge is not
1085 pruned. If the operand is defined by another phi,
1086 we can further prune the incoming edges of that
1087 phi by checking the predicates of this operands. */
1089 opnd = gimple_phi_arg_def (phi, i);
1090 opnd_def = SSA_NAME_DEF_STMT (opnd);
1091 if (gphi *opnd_def_phi = dyn_cast <gphi *> (opnd_def))
1093 edge opnd_edge;
1094 unsigned uninit_opnds2
1095 = compute_uninit_opnds_pos (opnd_def_phi);
1096 pred_chain_union def_preds = vNULL;
1097 bool ok;
1098 gcc_assert (!MASK_EMPTY (uninit_opnds2));
1099 opnd_edge = gimple_phi_arg_edge (phi, i);
1100 ok = is_use_properly_guarded (phi,
1101 opnd_edge->src,
1102 opnd_def_phi,
1103 uninit_opnds2,
1104 &def_preds,
1105 visited_phis);
1106 destroy_predicate_vecs (def_preds);
1107 if (!ok)
1108 return false;
1110 else
1111 return false;
1115 return true;
1118 /* A helper function that determines if the predicate set
1119 of the use is not overlapping with that of the uninit paths.
1120 The most common senario of guarded use is in Example 1:
1121 Example 1:
1122 if (some_cond)
1124 x = ...;
1125 flag = true;
1128 ... some code ...
1130 if (flag)
1131 use (x);
1133 The real world examples are usually more complicated, but similar
1134 and usually result from inlining:
1136 bool init_func (int * x)
1138 if (some_cond)
1139 return false;
1140 *x = ..
1141 return true;
1144 void foo(..)
1146 int x;
1148 if (!init_func(&x))
1149 return;
1151 .. some_code ...
1152 use (x);
1155 Another possible use scenario is in the following trivial example:
1157 Example 2:
1158 if (n > 0)
1159 x = 1;
1161 if (n > 0)
1163 if (m < 2)
1164 .. = x;
1167 Predicate analysis needs to compute the composite predicate:
1169 1) 'x' use predicate: (n > 0) .AND. (m < 2)
1170 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
1171 (the predicate chain for phi operand defs can be computed
1172 starting from a bb that is control equivalent to the phi's
1173 bb and is dominating the operand def.)
1175 and check overlapping:
1176 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
1177 <==> false
1179 This implementation provides framework that can handle
1180 scenarios. (Note that many simple cases are handled properly
1181 without the predicate analysis -- this is due to jump threading
1182 transformation which eliminates the merge point thus makes
1183 path sensitive analysis unnecessary.)
1185 NUM_PREDS is the number is the number predicate chains, PREDS is
1186 the array of chains, PHI is the phi node whose incoming (undefined)
1187 paths need to be pruned, and UNINIT_OPNDS is the bitmap holding
1188 uninit operand positions. VISITED_PHIS is the pointer set of phi
1189 stmts being checked. */
1192 static bool
1193 use_pred_not_overlap_with_undef_path_pred (pred_chain_union preds,
1194 gphi *phi, unsigned uninit_opnds,
1195 hash_set<gphi *> *visited_phis)
1197 unsigned int i, n;
1198 gimple *flag_def = 0;
1199 tree boundary_cst = 0;
1200 enum tree_code cmp_code;
1201 bool swap_cond = false;
1202 bool invert = false;
1203 pred_chain the_pred_chain = vNULL;
1204 bitmap visited_flag_phis = NULL;
1205 bool all_pruned = false;
1206 size_t num_preds = preds.length ();
1208 gcc_assert (num_preds > 0);
1209 /* Find within the common prefix of multiple predicate chains
1210 a predicate that is a comparison of a flag variable against
1211 a constant. */
1212 the_pred_chain = preds[0];
1213 n = the_pred_chain.length ();
1214 for (i = 0; i < n; i++)
1216 tree cond_lhs, cond_rhs, flag = 0;
1218 pred_info the_pred = the_pred_chain[i];
1220 invert = the_pred.invert;
1221 cond_lhs = the_pred.pred_lhs;
1222 cond_rhs = the_pred.pred_rhs;
1223 cmp_code = the_pred.cond_code;
1225 if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME
1226 && cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs))
1228 boundary_cst = cond_rhs;
1229 flag = cond_lhs;
1231 else if (cond_rhs != NULL_TREE && TREE_CODE (cond_rhs) == SSA_NAME
1232 && cond_lhs != NULL_TREE && is_gimple_constant (cond_lhs))
1234 boundary_cst = cond_lhs;
1235 flag = cond_rhs;
1236 swap_cond = true;
1239 if (!flag)
1240 continue;
1242 flag_def = SSA_NAME_DEF_STMT (flag);
1244 if (!flag_def)
1245 continue;
1247 if ((gimple_code (flag_def) == GIMPLE_PHI)
1248 && (gimple_bb (flag_def) == gimple_bb (phi))
1249 && find_matching_predicate_in_rest_chains (the_pred, preds,
1250 num_preds))
1251 break;
1253 flag_def = 0;
1256 if (!flag_def)
1257 return false;
1259 /* Now check all the uninit incoming edge has a constant flag value
1260 that is in conflict with the use guard/predicate. */
1261 cmp_code = get_cmp_code (cmp_code, swap_cond, invert);
1263 if (cmp_code == ERROR_MARK)
1264 return false;
1266 all_pruned = prune_uninit_phi_opnds_in_unrealizable_paths (phi,
1267 uninit_opnds,
1268 as_a <gphi *> (flag_def),
1269 boundary_cst,
1270 cmp_code,
1271 visited_phis,
1272 &visited_flag_phis);
1274 if (visited_flag_phis)
1275 BITMAP_FREE (visited_flag_phis);
1277 return all_pruned;
1280 /* The helper function returns true if two predicates X1 and X2
1281 are equivalent. It assumes the expressions have already
1282 properly re-associated. */
1284 static inline bool
1285 pred_equal_p (pred_info x1, pred_info x2)
1287 enum tree_code c1, c2;
1288 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
1289 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
1290 return false;
1292 c1 = x1.cond_code;
1293 if (x1.invert != x2.invert
1294 && TREE_CODE_CLASS (x2.cond_code) == tcc_comparison)
1295 c2 = invert_tree_comparison (x2.cond_code, false);
1296 else
1297 c2 = x2.cond_code;
1299 return c1 == c2;
1302 /* Returns true if the predication is testing !=. */
1304 static inline bool
1305 is_neq_relop_p (pred_info pred)
1308 return (pred.cond_code == NE_EXPR && !pred.invert)
1309 || (pred.cond_code == EQ_EXPR && pred.invert);
1312 /* Returns true if pred is of the form X != 0. */
1314 static inline bool
1315 is_neq_zero_form_p (pred_info pred)
1317 if (!is_neq_relop_p (pred) || !integer_zerop (pred.pred_rhs)
1318 || TREE_CODE (pred.pred_lhs) != SSA_NAME)
1319 return false;
1320 return true;
1323 /* The helper function returns true if two predicates X1
1324 is equivalent to X2 != 0. */
1326 static inline bool
1327 pred_expr_equal_p (pred_info x1, tree x2)
1329 if (!is_neq_zero_form_p (x1))
1330 return false;
1332 return operand_equal_p (x1.pred_lhs, x2, 0);
1335 /* Returns true of the domain of single predicate expression
1336 EXPR1 is a subset of that of EXPR2. Returns false if it
1337 can not be proved. */
1339 static bool
1340 is_pred_expr_subset_of (pred_info expr1, pred_info expr2)
1342 enum tree_code code1, code2;
1344 if (pred_equal_p (expr1, expr2))
1345 return true;
1347 if ((TREE_CODE (expr1.pred_rhs) != INTEGER_CST)
1348 || (TREE_CODE (expr2.pred_rhs) != INTEGER_CST))
1349 return false;
1351 if (!operand_equal_p (expr1.pred_lhs, expr2.pred_lhs, 0))
1352 return false;
1354 code1 = expr1.cond_code;
1355 if (expr1.invert)
1356 code1 = invert_tree_comparison (code1, false);
1357 code2 = expr2.cond_code;
1358 if (expr2.invert)
1359 code2 = invert_tree_comparison (code2, false);
1361 if ((code1 == EQ_EXPR || code1 == BIT_AND_EXPR)
1362 && code2 == BIT_AND_EXPR)
1363 return wi::eq_p (expr1.pred_rhs,
1364 wi::bit_and (expr1.pred_rhs, expr2.pred_rhs));
1366 if (code1 != code2 && code2 != NE_EXPR)
1367 return false;
1369 if (is_value_included_in (expr1.pred_rhs, expr2.pred_rhs, code2))
1370 return true;
1372 return false;
1375 /* Returns true if the domain of PRED1 is a subset
1376 of that of PRED2. Returns false if it can not be proved so. */
1378 static bool
1379 is_pred_chain_subset_of (pred_chain pred1,
1380 pred_chain pred2)
1382 size_t np1, np2, i1, i2;
1384 np1 = pred1.length ();
1385 np2 = pred2.length ();
1387 for (i2 = 0; i2 < np2; i2++)
1389 bool found = false;
1390 pred_info info2 = pred2[i2];
1391 for (i1 = 0; i1 < np1; i1++)
1393 pred_info info1 = pred1[i1];
1394 if (is_pred_expr_subset_of (info1, info2))
1396 found = true;
1397 break;
1400 if (!found)
1401 return false;
1403 return true;
1406 /* Returns true if the domain defined by
1407 one pred chain ONE_PRED is a subset of the domain
1408 of *PREDS. It returns false if ONE_PRED's domain is
1409 not a subset of any of the sub-domains of PREDS
1410 (corresponding to each individual chains in it), even
1411 though it may be still be a subset of whole domain
1412 of PREDS which is the union (ORed) of all its subdomains.
1413 In other words, the result is conservative. */
1415 static bool
1416 is_included_in (pred_chain one_pred, pred_chain_union preds)
1418 size_t i;
1419 size_t n = preds.length ();
1421 for (i = 0; i < n; i++)
1423 if (is_pred_chain_subset_of (one_pred, preds[i]))
1424 return true;
1427 return false;
1430 /* Compares two predicate sets PREDS1 and PREDS2 and returns
1431 true if the domain defined by PREDS1 is a superset
1432 of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
1433 PREDS2 respectively. The implementation chooses not to build
1434 generic trees (and relying on the folding capability of the
1435 compiler), but instead performs brute force comparison of
1436 individual predicate chains (won't be a compile time problem
1437 as the chains are pretty short). When the function returns
1438 false, it does not necessarily mean *PREDS1 is not a superset
1439 of *PREDS2, but mean it may not be so since the analysis can
1440 not prove it. In such cases, false warnings may still be
1441 emitted. */
1443 static bool
1444 is_superset_of (pred_chain_union preds1, pred_chain_union preds2)
1446 size_t i, n2;
1447 pred_chain one_pred_chain = vNULL;
1449 n2 = preds2.length ();
1451 for (i = 0; i < n2; i++)
1453 one_pred_chain = preds2[i];
1454 if (!is_included_in (one_pred_chain, preds1))
1455 return false;
1458 return true;
1461 /* Returns true if TC is AND or OR. */
1463 static inline bool
1464 is_and_or_or_p (enum tree_code tc, tree type)
1466 return (tc == BIT_IOR_EXPR
1467 || (tc == BIT_AND_EXPR
1468 && (type == 0 || TREE_CODE (type) == BOOLEAN_TYPE)));
1471 /* Returns true if X1 is the negate of X2. */
1473 static inline bool
1474 pred_neg_p (pred_info x1, pred_info x2)
1476 enum tree_code c1, c2;
1477 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
1478 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
1479 return false;
1481 c1 = x1.cond_code;
1482 if (x1.invert == x2.invert)
1483 c2 = invert_tree_comparison (x2.cond_code, false);
1484 else
1485 c2 = x2.cond_code;
1487 return c1 == c2;
1490 /* 1) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
1491 2) (X AND Y) OR (!X AND Y) is equivalent to Y;
1492 3) X OR (!X AND Y) is equivalent to (X OR Y);
1493 4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
1494 (x != 0 AND y != 0)
1495 5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
1496 (X AND Y) OR Z
1498 PREDS is the predicate chains, and N is the number of chains. */
1500 /* Helper function to implement rule 1 above. ONE_CHAIN is
1501 the AND predication to be simplified. */
1503 static void
1504 simplify_pred (pred_chain *one_chain)
1506 size_t i, j, n;
1507 bool simplified = false;
1508 pred_chain s_chain = vNULL;
1510 n = one_chain->length ();
1512 for (i = 0; i < n; i++)
1514 pred_info *a_pred = &(*one_chain)[i];
1516 if (!a_pred->pred_lhs)
1517 continue;
1518 if (!is_neq_zero_form_p (*a_pred))
1519 continue;
1521 gimple *def_stmt = SSA_NAME_DEF_STMT (a_pred->pred_lhs);
1522 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1523 continue;
1524 if (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
1526 for (j = 0; j < n; j++)
1528 pred_info *b_pred = &(*one_chain)[j];
1530 if (!b_pred->pred_lhs)
1531 continue;
1532 if (!is_neq_zero_form_p (*b_pred))
1533 continue;
1535 if (pred_expr_equal_p (*b_pred, gimple_assign_rhs1 (def_stmt))
1536 || pred_expr_equal_p (*b_pred, gimple_assign_rhs2 (def_stmt)))
1538 /* Mark a_pred for removal. */
1539 a_pred->pred_lhs = NULL;
1540 a_pred->pred_rhs = NULL;
1541 simplified = true;
1542 break;
1548 if (!simplified)
1549 return;
1551 for (i = 0; i < n; i++)
1553 pred_info *a_pred = &(*one_chain)[i];
1554 if (!a_pred->pred_lhs)
1555 continue;
1556 s_chain.safe_push (*a_pred);
1559 one_chain->release ();
1560 *one_chain = s_chain;
1563 /* The helper function implements the rule 2 for the
1564 OR predicate PREDS.
1566 2) (X AND Y) OR (!X AND Y) is equivalent to Y. */
1568 static bool
1569 simplify_preds_2 (pred_chain_union *preds)
1571 size_t i, j, n;
1572 bool simplified = false;
1573 pred_chain_union s_preds = vNULL;
1575 /* (X AND Y) OR (!X AND Y) is equivalent to Y.
1576 (X AND Y) OR (X AND !Y) is equivalent to X. */
1578 n = preds->length ();
1579 for (i = 0; i < n; i++)
1581 pred_info x, y;
1582 pred_chain *a_chain = &(*preds)[i];
1584 if (a_chain->length () != 2)
1585 continue;
1587 x = (*a_chain)[0];
1588 y = (*a_chain)[1];
1590 for (j = 0; j < n; j++)
1592 pred_chain *b_chain;
1593 pred_info x2, y2;
1595 if (j == i)
1596 continue;
1598 b_chain = &(*preds)[j];
1599 if (b_chain->length () != 2)
1600 continue;
1602 x2 = (*b_chain)[0];
1603 y2 = (*b_chain)[1];
1605 if (pred_equal_p (x, x2) && pred_neg_p (y, y2))
1607 /* Kill a_chain. */
1608 a_chain->release ();
1609 b_chain->release ();
1610 b_chain->safe_push (x);
1611 simplified = true;
1612 break;
1614 if (pred_neg_p (x, x2) && pred_equal_p (y, y2))
1616 /* Kill a_chain. */
1617 a_chain->release ();
1618 b_chain->release ();
1619 b_chain->safe_push (y);
1620 simplified = true;
1621 break;
1625 /* Now clean up the chain. */
1626 if (simplified)
1628 for (i = 0; i < n; i++)
1630 if ((*preds)[i].is_empty ())
1631 continue;
1632 s_preds.safe_push ((*preds)[i]);
1634 preds->release ();
1635 (*preds) = s_preds;
1636 s_preds = vNULL;
1639 return simplified;
1642 /* The helper function implements the rule 2 for the
1643 OR predicate PREDS.
1645 3) x OR (!x AND y) is equivalent to x OR y. */
1647 static bool
1648 simplify_preds_3 (pred_chain_union *preds)
1650 size_t i, j, n;
1651 bool simplified = false;
1653 /* Now iteratively simplify X OR (!X AND Z ..)
1654 into X OR (Z ...). */
1656 n = preds->length ();
1657 if (n < 2)
1658 return false;
1660 for (i = 0; i < n; i++)
1662 pred_info x;
1663 pred_chain *a_chain = &(*preds)[i];
1665 if (a_chain->length () != 1)
1666 continue;
1668 x = (*a_chain)[0];
1670 for (j = 0; j < n; j++)
1672 pred_chain *b_chain;
1673 pred_info x2;
1674 size_t k;
1676 if (j == i)
1677 continue;
1679 b_chain = &(*preds)[j];
1680 if (b_chain->length () < 2)
1681 continue;
1683 for (k = 0; k < b_chain->length (); k++)
1685 x2 = (*b_chain)[k];
1686 if (pred_neg_p (x, x2))
1688 b_chain->unordered_remove (k);
1689 simplified = true;
1690 break;
1695 return simplified;
1698 /* The helper function implements the rule 4 for the
1699 OR predicate PREDS.
1701 2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
1702 (x != 0 ANd y != 0). */
1704 static bool
1705 simplify_preds_4 (pred_chain_union *preds)
1707 size_t i, j, n;
1708 bool simplified = false;
1709 pred_chain_union s_preds = vNULL;
1710 gimple *def_stmt;
1712 n = preds->length ();
1713 for (i = 0; i < n; i++)
1715 pred_info z;
1716 pred_chain *a_chain = &(*preds)[i];
1718 if (a_chain->length () != 1)
1719 continue;
1721 z = (*a_chain)[0];
1723 if (!is_neq_zero_form_p (z))
1724 continue;
1726 def_stmt = SSA_NAME_DEF_STMT (z.pred_lhs);
1727 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1728 continue;
1730 if (gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
1731 continue;
1733 for (j = 0; j < n; j++)
1735 pred_chain *b_chain;
1736 pred_info x2, y2;
1738 if (j == i)
1739 continue;
1741 b_chain = &(*preds)[j];
1742 if (b_chain->length () != 2)
1743 continue;
1745 x2 = (*b_chain)[0];
1746 y2 = (*b_chain)[1];
1747 if (!is_neq_zero_form_p (x2)
1748 || !is_neq_zero_form_p (y2))
1749 continue;
1751 if ((pred_expr_equal_p (x2, gimple_assign_rhs1 (def_stmt))
1752 && pred_expr_equal_p (y2, gimple_assign_rhs2 (def_stmt)))
1753 || (pred_expr_equal_p (x2, gimple_assign_rhs2 (def_stmt))
1754 && pred_expr_equal_p (y2, gimple_assign_rhs1 (def_stmt))))
1756 /* Kill a_chain. */
1757 a_chain->release ();
1758 simplified = true;
1759 break;
1763 /* Now clean up the chain. */
1764 if (simplified)
1766 for (i = 0; i < n; i++)
1768 if ((*preds)[i].is_empty ())
1769 continue;
1770 s_preds.safe_push ((*preds)[i]);
1772 preds->release ();
1773 (*preds) = s_preds;
1774 s_preds = vNULL;
1777 return simplified;
1781 /* This function simplifies predicates in PREDS. */
1783 static void
1784 simplify_preds (pred_chain_union *preds, gimple *use_or_def, bool is_use)
1786 size_t i, n;
1787 bool changed = false;
1789 if (dump_file && dump_flags & TDF_DETAILS)
1791 fprintf (dump_file, "[BEFORE SIMPLICATION -- ");
1792 dump_predicates (use_or_def, *preds, is_use ? "[USE]:\n" : "[DEF]:\n");
1795 for (i = 0; i < preds->length (); i++)
1796 simplify_pred (&(*preds)[i]);
1798 n = preds->length ();
1799 if (n < 2)
1800 return;
1804 changed = false;
1805 if (simplify_preds_2 (preds))
1806 changed = true;
1808 /* Now iteratively simplify X OR (!X AND Z ..)
1809 into X OR (Z ...). */
1810 if (simplify_preds_3 (preds))
1811 changed = true;
1813 if (simplify_preds_4 (preds))
1814 changed = true;
1816 } while (changed);
1818 return;
1821 /* This is a helper function which attempts to normalize predicate chains
1822 by following UD chains. It basically builds up a big tree of either IOR
1823 operations or AND operations, and convert the IOR tree into a
1824 pred_chain_union or BIT_AND tree into a pred_chain.
1825 Example:
1827 _3 = _2 RELOP1 _1;
1828 _6 = _5 RELOP2 _4;
1829 _9 = _8 RELOP3 _7;
1830 _10 = _3 | _6;
1831 _12 = _9 | _0;
1832 _t = _10 | _12;
1834 then _t != 0 will be normalized into a pred_chain_union
1836 (_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)
1838 Similarly given,
1840 _3 = _2 RELOP1 _1;
1841 _6 = _5 RELOP2 _4;
1842 _9 = _8 RELOP3 _7;
1843 _10 = _3 & _6;
1844 _12 = _9 & _0;
1846 then _t != 0 will be normalized into a pred_chain:
1847 (_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
1851 /* This is a helper function that stores a PRED into NORM_PREDS. */
1853 inline static void
1854 push_pred (pred_chain_union *norm_preds, pred_info pred)
1856 pred_chain pred_chain = vNULL;
1857 pred_chain.safe_push (pred);
1858 norm_preds->safe_push (pred_chain);
1861 /* A helper function that creates a predicate of the form
1862 OP != 0 and push it WORK_LIST. */
1864 inline static void
1865 push_to_worklist (tree op, vec<pred_info, va_heap, vl_ptr> *work_list,
1866 hash_set<tree> *mark_set)
1868 if (mark_set->contains (op))
1869 return;
1870 mark_set->add (op);
1872 pred_info arg_pred;
1873 arg_pred.pred_lhs = op;
1874 arg_pred.pred_rhs = integer_zero_node;
1875 arg_pred.cond_code = NE_EXPR;
1876 arg_pred.invert = false;
1877 work_list->safe_push (arg_pred);
1880 /* A helper that generates a pred_info from a gimple assignment
1881 CMP_ASSIGN with comparison rhs. */
1883 static pred_info
1884 get_pred_info_from_cmp (gimple *cmp_assign)
1886 pred_info n_pred;
1887 n_pred.pred_lhs = gimple_assign_rhs1 (cmp_assign);
1888 n_pred.pred_rhs = gimple_assign_rhs2 (cmp_assign);
1889 n_pred.cond_code = gimple_assign_rhs_code (cmp_assign);
1890 n_pred.invert = false;
1891 return n_pred;
1894 /* Returns true if the PHI is a degenerated phi with
1895 all args with the same value (relop). In that case, *PRED
1896 will be updated to that value. */
1898 static bool
1899 is_degenerated_phi (gimple *phi, pred_info *pred_p)
1901 int i, n;
1902 tree op0;
1903 gimple *def0;
1904 pred_info pred0;
1906 n = gimple_phi_num_args (phi);
1907 op0 = gimple_phi_arg_def (phi, 0);
1909 if (TREE_CODE (op0) != SSA_NAME)
1910 return false;
1912 def0 = SSA_NAME_DEF_STMT (op0);
1913 if (gimple_code (def0) != GIMPLE_ASSIGN)
1914 return false;
1915 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0))
1916 != tcc_comparison)
1917 return false;
1918 pred0 = get_pred_info_from_cmp (def0);
1920 for (i = 1; i < n; ++i)
1922 gimple *def;
1923 pred_info pred;
1924 tree op = gimple_phi_arg_def (phi, i);
1926 if (TREE_CODE (op) != SSA_NAME)
1927 return false;
1929 def = SSA_NAME_DEF_STMT (op);
1930 if (gimple_code (def) != GIMPLE_ASSIGN)
1931 return false;
1932 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def))
1933 != tcc_comparison)
1934 return false;
1935 pred = get_pred_info_from_cmp (def);
1936 if (!pred_equal_p (pred, pred0))
1937 return false;
1940 *pred_p = pred0;
1941 return true;
1944 /* Normalize one predicate PRED
1945 1) if PRED can no longer be normlized, put it into NORM_PREDS.
1946 2) otherwise if PRED is of the form x != 0, follow x's definition
1947 and put normalized predicates into WORK_LIST. */
1949 static void
1950 normalize_one_pred_1 (pred_chain_union *norm_preds,
1951 pred_chain *norm_chain,
1952 pred_info pred,
1953 enum tree_code and_or_code,
1954 vec<pred_info, va_heap, vl_ptr> *work_list,
1955 hash_set<tree> *mark_set)
1957 if (!is_neq_zero_form_p (pred))
1959 if (and_or_code == BIT_IOR_EXPR)
1960 push_pred (norm_preds, pred);
1961 else
1962 norm_chain->safe_push (pred);
1963 return;
1966 gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
1968 if (gimple_code (def_stmt) == GIMPLE_PHI
1969 && is_degenerated_phi (def_stmt, &pred))
1970 work_list->safe_push (pred);
1971 else if (gimple_code (def_stmt) == GIMPLE_PHI
1972 && and_or_code == BIT_IOR_EXPR)
1974 int i, n;
1975 n = gimple_phi_num_args (def_stmt);
1977 /* If we see non zero constant, we should punt. The predicate
1978 * should be one guarding the phi edge. */
1979 for (i = 0; i < n; ++i)
1981 tree op = gimple_phi_arg_def (def_stmt, i);
1982 if (TREE_CODE (op) == INTEGER_CST && !integer_zerop (op))
1984 push_pred (norm_preds, pred);
1985 return;
1989 for (i = 0; i < n; ++i)
1991 tree op = gimple_phi_arg_def (def_stmt, i);
1992 if (integer_zerop (op))
1993 continue;
1995 push_to_worklist (op, work_list, mark_set);
1998 else if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
2000 if (and_or_code == BIT_IOR_EXPR)
2001 push_pred (norm_preds, pred);
2002 else
2003 norm_chain->safe_push (pred);
2005 else if (gimple_assign_rhs_code (def_stmt) == and_or_code)
2007 /* Avoid splitting up bit manipulations like x & 3 or y | 1. */
2008 if (is_gimple_min_invariant (gimple_assign_rhs2 (def_stmt)))
2010 /* But treat x & 3 as condition. */
2011 if (and_or_code == BIT_AND_EXPR)
2013 pred_info n_pred;
2014 n_pred.pred_lhs = gimple_assign_rhs1 (def_stmt);
2015 n_pred.pred_rhs = gimple_assign_rhs2 (def_stmt);
2016 n_pred.cond_code = and_or_code;
2017 n_pred.invert = false;
2018 norm_chain->safe_push (n_pred);
2021 else
2023 push_to_worklist (gimple_assign_rhs1 (def_stmt), work_list, mark_set);
2024 push_to_worklist (gimple_assign_rhs2 (def_stmt), work_list, mark_set);
2027 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
2028 == tcc_comparison)
2030 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
2031 if (and_or_code == BIT_IOR_EXPR)
2032 push_pred (norm_preds, n_pred);
2033 else
2034 norm_chain->safe_push (n_pred);
2036 else
2038 if (and_or_code == BIT_IOR_EXPR)
2039 push_pred (norm_preds, pred);
2040 else
2041 norm_chain->safe_push (pred);
2045 /* Normalize PRED and store the normalized predicates into NORM_PREDS. */
2047 static void
2048 normalize_one_pred (pred_chain_union *norm_preds,
2049 pred_info pred)
2051 vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
2052 enum tree_code and_or_code = ERROR_MARK;
2053 pred_chain norm_chain = vNULL;
2055 if (!is_neq_zero_form_p (pred))
2057 push_pred (norm_preds, pred);
2058 return;
2061 gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
2062 if (gimple_code (def_stmt) == GIMPLE_ASSIGN)
2063 and_or_code = gimple_assign_rhs_code (def_stmt);
2064 if (and_or_code != BIT_IOR_EXPR
2065 && and_or_code != BIT_AND_EXPR)
2067 if (TREE_CODE_CLASS (and_or_code)
2068 == tcc_comparison)
2070 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
2071 push_pred (norm_preds, n_pred);
2073 else
2074 push_pred (norm_preds, pred);
2075 return;
2078 work_list.safe_push (pred);
2079 hash_set<tree> mark_set;
2081 while (!work_list.is_empty ())
2083 pred_info a_pred = work_list.pop ();
2084 normalize_one_pred_1 (norm_preds, &norm_chain, a_pred,
2085 and_or_code, &work_list, &mark_set);
2087 if (and_or_code == BIT_AND_EXPR)
2088 norm_preds->safe_push (norm_chain);
2090 work_list.release ();
2093 static void
2094 normalize_one_pred_chain (pred_chain_union *norm_preds,
2095 pred_chain one_chain)
2097 vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
2098 hash_set<tree> mark_set;
2099 pred_chain norm_chain = vNULL;
2100 size_t i;
2102 for (i = 0; i < one_chain.length (); i++)
2104 work_list.safe_push (one_chain[i]);
2105 mark_set.add (one_chain[i].pred_lhs);
2108 while (!work_list.is_empty ())
2110 pred_info a_pred = work_list.pop ();
2111 normalize_one_pred_1 (0, &norm_chain, a_pred,
2112 BIT_AND_EXPR, &work_list, &mark_set);
2115 norm_preds->safe_push (norm_chain);
2116 work_list.release ();
2119 /* Normalize predicate chains PREDS and returns the normalized one. */
2121 static pred_chain_union
2122 normalize_preds (pred_chain_union preds, gimple *use_or_def, bool is_use)
2124 pred_chain_union norm_preds = vNULL;
2125 size_t n = preds.length ();
2126 size_t i;
2128 if (dump_file && dump_flags & TDF_DETAILS)
2130 fprintf (dump_file, "[BEFORE NORMALIZATION --");
2131 dump_predicates (use_or_def, preds, is_use ? "[USE]:\n" : "[DEF]:\n");
2134 for (i = 0; i < n; i++)
2136 if (preds[i].length () != 1)
2137 normalize_one_pred_chain (&norm_preds, preds[i]);
2138 else
2140 normalize_one_pred (&norm_preds, preds[i][0]);
2141 preds[i].release ();
2145 if (dump_file)
2147 fprintf (dump_file, "[AFTER NORMALIZATION -- ");
2148 dump_predicates (use_or_def, norm_preds, is_use ? "[USE]:\n" : "[DEF]:\n");
2151 preds.release ();
2152 return norm_preds;
2156 /* Computes the predicates that guard the use and checks
2157 if the incoming paths that have empty (or possibly
2158 empty) definition can be pruned/filtered. The function returns
2159 true if it can be determined that the use of PHI's def in
2160 USE_STMT is guarded with a predicate set not overlapping with
2161 predicate sets of all runtime paths that do not have a definition.
2163 Returns false if it is not or it can not be determined. USE_BB is
2164 the bb of the use (for phi operand use, the bb is not the bb of
2165 the phi stmt, but the src bb of the operand edge).
2167 UNINIT_OPNDS is a bit vector. If an operand of PHI is uninitialized, the
2168 corresponding bit in the vector is 1. VISITED_PHIS is a pointer
2169 set of phis being visited.
2171 *DEF_PREDS contains the (memoized) defining predicate chains of PHI.
2172 If *DEF_PREDS is the empty vector, the defining predicate chains of
2173 PHI will be computed and stored into *DEF_PREDS as needed.
2175 VISITED_PHIS is a pointer set of phis being visited. */
2177 static bool
2178 is_use_properly_guarded (gimple *use_stmt,
2179 basic_block use_bb,
2180 gphi *phi,
2181 unsigned uninit_opnds,
2182 pred_chain_union *def_preds,
2183 hash_set<gphi *> *visited_phis)
2185 basic_block phi_bb;
2186 pred_chain_union preds = vNULL;
2187 bool has_valid_preds = false;
2188 bool is_properly_guarded = false;
2190 if (visited_phis->add (phi))
2191 return false;
2193 phi_bb = gimple_bb (phi);
2195 if (is_non_loop_exit_postdominating (use_bb, phi_bb))
2196 return false;
2198 has_valid_preds = find_predicates (&preds, phi_bb, use_bb);
2200 if (!has_valid_preds)
2202 destroy_predicate_vecs (preds);
2203 return false;
2206 /* Try to prune the dead incoming phi edges. */
2207 is_properly_guarded
2208 = use_pred_not_overlap_with_undef_path_pred (preds, phi, uninit_opnds,
2209 visited_phis);
2211 if (is_properly_guarded)
2213 destroy_predicate_vecs (preds);
2214 return true;
2217 if (def_preds->is_empty ())
2219 has_valid_preds = find_def_preds (def_preds, phi);
2221 if (!has_valid_preds)
2223 destroy_predicate_vecs (preds);
2224 return false;
2227 simplify_preds (def_preds, phi, false);
2228 *def_preds = normalize_preds (*def_preds, phi, false);
2231 simplify_preds (&preds, use_stmt, true);
2232 preds = normalize_preds (preds, use_stmt, true);
2234 is_properly_guarded = is_superset_of (*def_preds, preds);
2236 destroy_predicate_vecs (preds);
2237 return is_properly_guarded;
2240 /* Searches through all uses of a potentially
2241 uninitialized variable defined by PHI and returns a use
2242 statement if the use is not properly guarded. It returns
2243 NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
2244 holding the position(s) of uninit PHI operands. WORKLIST
2245 is the vector of candidate phis that may be updated by this
2246 function. ADDED_TO_WORKLIST is the pointer set tracking
2247 if the new phi is already in the worklist. */
2249 static gimple *
2250 find_uninit_use (gphi *phi, unsigned uninit_opnds,
2251 vec<gphi *> *worklist,
2252 hash_set<gphi *> *added_to_worklist)
2254 tree phi_result;
2255 use_operand_p use_p;
2256 gimple *use_stmt;
2257 imm_use_iterator iter;
2258 pred_chain_union def_preds = vNULL;
2259 gimple *ret = NULL;
2261 phi_result = gimple_phi_result (phi);
2263 FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result)
2265 basic_block use_bb;
2267 use_stmt = USE_STMT (use_p);
2268 if (is_gimple_debug (use_stmt))
2269 continue;
2271 if (gphi *use_phi = dyn_cast <gphi *> (use_stmt))
2272 use_bb = gimple_phi_arg_edge (use_phi,
2273 PHI_ARG_INDEX_FROM_USE (use_p))->src;
2274 else
2275 use_bb = gimple_bb (use_stmt);
2277 hash_set<gphi *> visited_phis;
2278 if (is_use_properly_guarded (use_stmt, use_bb, phi, uninit_opnds,
2279 &def_preds, &visited_phis))
2280 continue;
2282 if (dump_file && (dump_flags & TDF_DETAILS))
2284 fprintf (dump_file, "[CHECK]: Found unguarded use: ");
2285 print_gimple_stmt (dump_file, use_stmt, 0, 0);
2287 /* Found one real use, return. */
2288 if (gimple_code (use_stmt) != GIMPLE_PHI)
2290 ret = use_stmt;
2291 break;
2294 /* Found a phi use that is not guarded,
2295 add the phi to the worklist. */
2296 if (!added_to_worklist->add (as_a <gphi *> (use_stmt)))
2298 if (dump_file && (dump_flags & TDF_DETAILS))
2300 fprintf (dump_file, "[WORKLIST]: Update worklist with phi: ");
2301 print_gimple_stmt (dump_file, use_stmt, 0, 0);
2304 worklist->safe_push (as_a <gphi *> (use_stmt));
2305 possibly_undefined_names->add (phi_result);
2309 destroy_predicate_vecs (def_preds);
2310 return ret;
2313 /* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
2314 and gives warning if there exists a runtime path from the entry to a
2315 use of the PHI def that does not contain a definition. In other words,
2316 the warning is on the real use. The more dead paths that can be pruned
2317 by the compiler, the fewer false positives the warning is. WORKLIST
2318 is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
2319 a pointer set tracking if the new phi is added to the worklist or not. */
2321 static void
2322 warn_uninitialized_phi (gphi *phi, vec<gphi *> *worklist,
2323 hash_set<gphi *> *added_to_worklist)
2325 unsigned uninit_opnds;
2326 gimple *uninit_use_stmt = 0;
2327 tree uninit_op;
2328 int phiarg_index;
2329 location_t loc;
2331 /* Don't look at virtual operands. */
2332 if (virtual_operand_p (gimple_phi_result (phi)))
2333 return;
2335 uninit_opnds = compute_uninit_opnds_pos (phi);
2337 if (MASK_EMPTY (uninit_opnds))
2338 return;
2340 if (dump_file && (dump_flags & TDF_DETAILS))
2342 fprintf (dump_file, "[CHECK]: examining phi: ");
2343 print_gimple_stmt (dump_file, phi, 0, 0);
2346 /* Now check if we have any use of the value without proper guard. */
2347 uninit_use_stmt = find_uninit_use (phi, uninit_opnds,
2348 worklist, added_to_worklist);
2350 /* All uses are properly guarded. */
2351 if (!uninit_use_stmt)
2352 return;
2354 phiarg_index = MASK_FIRST_SET_BIT (uninit_opnds);
2355 uninit_op = gimple_phi_arg_def (phi, phiarg_index);
2356 if (SSA_NAME_VAR (uninit_op) == NULL_TREE)
2357 return;
2358 if (gimple_phi_arg_has_location (phi, phiarg_index))
2359 loc = gimple_phi_arg_location (phi, phiarg_index);
2360 else
2361 loc = UNKNOWN_LOCATION;
2362 warn_uninit (OPT_Wmaybe_uninitialized, uninit_op, SSA_NAME_VAR (uninit_op),
2363 SSA_NAME_VAR (uninit_op),
2364 "%qD may be used uninitialized in this function",
2365 uninit_use_stmt, loc);
2369 static bool
2370 gate_warn_uninitialized (void)
2372 return warn_uninitialized || warn_maybe_uninitialized;
2375 namespace {
2377 const pass_data pass_data_late_warn_uninitialized =
2379 GIMPLE_PASS, /* type */
2380 "uninit", /* name */
2381 OPTGROUP_NONE, /* optinfo_flags */
2382 TV_NONE, /* tv_id */
2383 PROP_ssa, /* properties_required */
2384 0, /* properties_provided */
2385 0, /* properties_destroyed */
2386 0, /* todo_flags_start */
2387 0, /* todo_flags_finish */
2390 class pass_late_warn_uninitialized : public gimple_opt_pass
2392 public:
2393 pass_late_warn_uninitialized (gcc::context *ctxt)
2394 : gimple_opt_pass (pass_data_late_warn_uninitialized, ctxt)
2397 /* opt_pass methods: */
2398 opt_pass * clone () { return new pass_late_warn_uninitialized (m_ctxt); }
2399 virtual bool gate (function *) { return gate_warn_uninitialized (); }
2400 virtual unsigned int execute (function *);
2402 }; // class pass_late_warn_uninitialized
2404 unsigned int
2405 pass_late_warn_uninitialized::execute (function *fun)
2407 basic_block bb;
2408 gphi_iterator gsi;
2409 vec<gphi *> worklist = vNULL;
2411 calculate_dominance_info (CDI_DOMINATORS);
2412 calculate_dominance_info (CDI_POST_DOMINATORS);
2413 /* Re-do the plain uninitialized variable check, as optimization may have
2414 straightened control flow. Do this first so that we don't accidentally
2415 get a "may be" warning when we'd have seen an "is" warning later. */
2416 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
2418 timevar_push (TV_TREE_UNINIT);
2420 possibly_undefined_names = new hash_set<tree>;
2421 hash_set<gphi *> added_to_worklist;
2423 /* Initialize worklist */
2424 FOR_EACH_BB_FN (bb, fun)
2425 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2427 gphi *phi = gsi.phi ();
2428 size_t n, i;
2430 n = gimple_phi_num_args (phi);
2432 /* Don't look at virtual operands. */
2433 if (virtual_operand_p (gimple_phi_result (phi)))
2434 continue;
2436 for (i = 0; i < n; ++i)
2438 tree op = gimple_phi_arg_def (phi, i);
2439 if (TREE_CODE (op) == SSA_NAME
2440 && uninit_undefined_value_p (op))
2442 worklist.safe_push (phi);
2443 added_to_worklist.add (phi);
2444 if (dump_file && (dump_flags & TDF_DETAILS))
2446 fprintf (dump_file, "[WORKLIST]: add to initial list: ");
2447 print_gimple_stmt (dump_file, phi, 0, 0);
2449 break;
2454 while (worklist.length () != 0)
2456 gphi *cur_phi = 0;
2457 cur_phi = worklist.pop ();
2458 warn_uninitialized_phi (cur_phi, &worklist, &added_to_worklist);
2461 worklist.release ();
2462 delete possibly_undefined_names;
2463 possibly_undefined_names = NULL;
2464 free_dominance_info (CDI_POST_DOMINATORS);
2465 timevar_pop (TV_TREE_UNINIT);
2466 return 0;
2469 } // anon namespace
2471 gimple_opt_pass *
2472 make_pass_late_warn_uninitialized (gcc::context *ctxt)
2474 return new pass_late_warn_uninitialized (ctxt);
2478 static unsigned int
2479 execute_early_warn_uninitialized (void)
2481 /* Currently, this pass runs always but
2482 execute_late_warn_uninitialized only runs with optimization. With
2483 optimization we want to warn about possible uninitialized as late
2484 as possible, thus don't do it here. However, without
2485 optimization we need to warn here about "may be uninitialized". */
2486 calculate_dominance_info (CDI_POST_DOMINATORS);
2488 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/!optimize);
2490 /* Post-dominator information can not be reliably updated. Free it
2491 after the use. */
2493 free_dominance_info (CDI_POST_DOMINATORS);
2494 return 0;
2498 namespace {
2500 const pass_data pass_data_early_warn_uninitialized =
2502 GIMPLE_PASS, /* type */
2503 "*early_warn_uninitialized", /* name */
2504 OPTGROUP_NONE, /* optinfo_flags */
2505 TV_TREE_UNINIT, /* tv_id */
2506 PROP_ssa, /* properties_required */
2507 0, /* properties_provided */
2508 0, /* properties_destroyed */
2509 0, /* todo_flags_start */
2510 0, /* todo_flags_finish */
2513 class pass_early_warn_uninitialized : public gimple_opt_pass
2515 public:
2516 pass_early_warn_uninitialized (gcc::context *ctxt)
2517 : gimple_opt_pass (pass_data_early_warn_uninitialized, ctxt)
2520 /* opt_pass methods: */
2521 virtual bool gate (function *) { return gate_warn_uninitialized (); }
2522 virtual unsigned int execute (function *)
2524 return execute_early_warn_uninitialized ();
2527 }; // class pass_early_warn_uninitialized
2529 } // anon namespace
2531 gimple_opt_pass *
2532 make_pass_early_warn_uninitialized (gcc::context *ctxt)
2534 return new pass_early_warn_uninitialized (ctxt);