Fix date
[official-gcc.git] / gcc / reload1.c
blob647a97bb958182e3bfbe29e937dab83a3941b727
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "recog.h"
36 #include "rtl-error.h"
37 #include "expr.h"
38 #include "addresses.h"
39 #include "cfgrtl.h"
40 #include "cfgbuild.h"
41 #include "reload.h"
42 #include "except.h"
43 #include "dumpfile.h"
44 #include "rtl-iter.h"
46 /* This file contains the reload pass of the compiler, which is
47 run after register allocation has been done. It checks that
48 each insn is valid (operands required to be in registers really
49 are in registers of the proper class) and fixes up invalid ones
50 by copying values temporarily into registers for the insns
51 that need them.
53 The results of register allocation are described by the vector
54 reg_renumber; the insns still contain pseudo regs, but reg_renumber
55 can be used to find which hard reg, if any, a pseudo reg is in.
57 The technique we always use is to free up a few hard regs that are
58 called ``reload regs'', and for each place where a pseudo reg
59 must be in a hard reg, copy it temporarily into one of the reload regs.
61 Reload regs are allocated locally for every instruction that needs
62 reloads. When there are pseudos which are allocated to a register that
63 has been chosen as a reload reg, such pseudos must be ``spilled''.
64 This means that they go to other hard regs, or to stack slots if no other
65 available hard regs can be found. Spilling can invalidate more
66 insns, requiring additional need for reloads, so we must keep checking
67 until the process stabilizes.
69 For machines with different classes of registers, we must keep track
70 of the register class needed for each reload, and make sure that
71 we allocate enough reload registers of each class.
73 The file reload.c contains the code that checks one insn for
74 validity and reports the reloads that it needs. This file
75 is in charge of scanning the entire rtl code, accumulating the
76 reload needs, spilling, assigning reload registers to use for
77 fixing up each insn, and generating the new insns to copy values
78 into the reload registers. */
80 struct target_reload default_target_reload;
81 #if SWITCHABLE_TARGET
82 struct target_reload *this_target_reload = &default_target_reload;
83 #endif
85 #define spill_indirect_levels \
86 (this_target_reload->x_spill_indirect_levels)
88 /* During reload_as_needed, element N contains a REG rtx for the hard reg
89 into which reg N has been reloaded (perhaps for a previous insn). */
90 static rtx *reg_last_reload_reg;
92 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
93 for an output reload that stores into reg N. */
94 static regset_head reg_has_output_reload;
96 /* Indicates which hard regs are reload-registers for an output reload
97 in the current insn. */
98 static HARD_REG_SET reg_is_output_reload;
100 /* Widest width in which each pseudo reg is referred to (via subreg). */
101 static unsigned int *reg_max_ref_width;
103 /* Vector to remember old contents of reg_renumber before spilling. */
104 static short *reg_old_renumber;
106 /* During reload_as_needed, element N contains the last pseudo regno reloaded
107 into hard register N. If that pseudo reg occupied more than one register,
108 reg_reloaded_contents points to that pseudo for each spill register in
109 use; all of these must remain set for an inheritance to occur. */
110 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
112 /* During reload_as_needed, element N contains the insn for which
113 hard register N was last used. Its contents are significant only
114 when reg_reloaded_valid is set for this register. */
115 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
117 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
118 static HARD_REG_SET reg_reloaded_valid;
119 /* Indicate if the register was dead at the end of the reload.
120 This is only valid if reg_reloaded_contents is set and valid. */
121 static HARD_REG_SET reg_reloaded_dead;
123 /* Indicate whether the register's current value is one that is not
124 safe to retain across a call, even for registers that are normally
125 call-saved. This is only meaningful for members of reg_reloaded_valid. */
126 static HARD_REG_SET reg_reloaded_call_part_clobbered;
128 /* Number of spill-regs so far; number of valid elements of spill_regs. */
129 static int n_spills;
131 /* In parallel with spill_regs, contains REG rtx's for those regs.
132 Holds the last rtx used for any given reg, or 0 if it has never
133 been used for spilling yet. This rtx is reused, provided it has
134 the proper mode. */
135 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
137 /* In parallel with spill_regs, contains nonzero for a spill reg
138 that was stored after the last time it was used.
139 The precise value is the insn generated to do the store. */
140 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
142 /* This is the register that was stored with spill_reg_store. This is a
143 copy of reload_out / reload_out_reg when the value was stored; if
144 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
145 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
147 /* This table is the inverse mapping of spill_regs:
148 indexed by hard reg number,
149 it contains the position of that reg in spill_regs,
150 or -1 for something that is not in spill_regs.
152 ?!? This is no longer accurate. */
153 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
155 /* This reg set indicates registers that can't be used as spill registers for
156 the currently processed insn. These are the hard registers which are live
157 during the insn, but not allocated to pseudos, as well as fixed
158 registers. */
159 static HARD_REG_SET bad_spill_regs;
161 /* These are the hard registers that can't be used as spill register for any
162 insn. This includes registers used for user variables and registers that
163 we can't eliminate. A register that appears in this set also can't be used
164 to retry register allocation. */
165 static HARD_REG_SET bad_spill_regs_global;
167 /* Describes order of use of registers for reloading
168 of spilled pseudo-registers. `n_spills' is the number of
169 elements that are actually valid; new ones are added at the end.
171 Both spill_regs and spill_reg_order are used on two occasions:
172 once during find_reload_regs, where they keep track of the spill registers
173 for a single insn, but also during reload_as_needed where they show all
174 the registers ever used by reload. For the latter case, the information
175 is calculated during finish_spills. */
176 static short spill_regs[FIRST_PSEUDO_REGISTER];
178 /* This vector of reg sets indicates, for each pseudo, which hard registers
179 may not be used for retrying global allocation because the register was
180 formerly spilled from one of them. If we allowed reallocating a pseudo to
181 a register that it was already allocated to, reload might not
182 terminate. */
183 static HARD_REG_SET *pseudo_previous_regs;
185 /* This vector of reg sets indicates, for each pseudo, which hard
186 registers may not be used for retrying global allocation because they
187 are used as spill registers during one of the insns in which the
188 pseudo is live. */
189 static HARD_REG_SET *pseudo_forbidden_regs;
191 /* All hard regs that have been used as spill registers for any insn are
192 marked in this set. */
193 static HARD_REG_SET used_spill_regs;
195 /* Index of last register assigned as a spill register. We allocate in
196 a round-robin fashion. */
197 static int last_spill_reg;
199 /* Record the stack slot for each spilled hard register. */
200 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
202 /* Width allocated so far for that stack slot. */
203 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
205 /* Record which pseudos needed to be spilled. */
206 static regset_head spilled_pseudos;
208 /* Record which pseudos changed their allocation in finish_spills. */
209 static regset_head changed_allocation_pseudos;
211 /* Used for communication between order_regs_for_reload and count_pseudo.
212 Used to avoid counting one pseudo twice. */
213 static regset_head pseudos_counted;
215 /* First uid used by insns created by reload in this function.
216 Used in find_equiv_reg. */
217 int reload_first_uid;
219 /* Flag set by local-alloc or global-alloc if anything is live in
220 a call-clobbered reg across calls. */
221 int caller_save_needed;
223 /* Set to 1 while reload_as_needed is operating.
224 Required by some machines to handle any generated moves differently. */
225 int reload_in_progress = 0;
227 /* This obstack is used for allocation of rtl during register elimination.
228 The allocated storage can be freed once find_reloads has processed the
229 insn. */
230 static struct obstack reload_obstack;
232 /* Points to the beginning of the reload_obstack. All insn_chain structures
233 are allocated first. */
234 static char *reload_startobj;
236 /* The point after all insn_chain structures. Used to quickly deallocate
237 memory allocated in copy_reloads during calculate_needs_all_insns. */
238 static char *reload_firstobj;
240 /* This points before all local rtl generated by register elimination.
241 Used to quickly free all memory after processing one insn. */
242 static char *reload_insn_firstobj;
244 /* List of insn_chain instructions, one for every insn that reload needs to
245 examine. */
246 struct insn_chain *reload_insn_chain;
248 /* TRUE if we potentially left dead insns in the insn stream and want to
249 run DCE immediately after reload, FALSE otherwise. */
250 static bool need_dce;
252 /* List of all insns needing reloads. */
253 static struct insn_chain *insns_need_reload;
255 /* This structure is used to record information about register eliminations.
256 Each array entry describes one possible way of eliminating a register
257 in favor of another. If there is more than one way of eliminating a
258 particular register, the most preferred should be specified first. */
260 struct elim_table
262 int from; /* Register number to be eliminated. */
263 int to; /* Register number used as replacement. */
264 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
265 int can_eliminate; /* Nonzero if this elimination can be done. */
266 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
267 target hook in previous scan over insns
268 made by reload. */
269 HOST_WIDE_INT offset; /* Current offset between the two regs. */
270 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
271 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
272 rtx from_rtx; /* REG rtx for the register to be eliminated.
273 We cannot simply compare the number since
274 we might then spuriously replace a hard
275 register corresponding to a pseudo
276 assigned to the reg to be eliminated. */
277 rtx to_rtx; /* REG rtx for the replacement. */
280 static struct elim_table *reg_eliminate = 0;
282 /* This is an intermediate structure to initialize the table. It has
283 exactly the members provided by ELIMINABLE_REGS. */
284 static const struct elim_table_1
286 const int from;
287 const int to;
288 } reg_eliminate_1[] =
290 ELIMINABLE_REGS;
292 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
294 /* Record the number of pending eliminations that have an offset not equal
295 to their initial offset. If nonzero, we use a new copy of each
296 replacement result in any insns encountered. */
297 int num_not_at_initial_offset;
299 /* Count the number of registers that we may be able to eliminate. */
300 static int num_eliminable;
301 /* And the number of registers that are equivalent to a constant that
302 can be eliminated to frame_pointer / arg_pointer + constant. */
303 static int num_eliminable_invariants;
305 /* For each label, we record the offset of each elimination. If we reach
306 a label by more than one path and an offset differs, we cannot do the
307 elimination. This information is indexed by the difference of the
308 number of the label and the first label number. We can't offset the
309 pointer itself as this can cause problems on machines with segmented
310 memory. The first table is an array of flags that records whether we
311 have yet encountered a label and the second table is an array of arrays,
312 one entry in the latter array for each elimination. */
314 static int first_label_num;
315 static char *offsets_known_at;
316 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
318 vec<reg_equivs_t, va_gc> *reg_equivs;
320 /* Stack of addresses where an rtx has been changed. We can undo the
321 changes by popping items off the stack and restoring the original
322 value at each location.
324 We use this simplistic undo capability rather than copy_rtx as copy_rtx
325 will not make a deep copy of a normally sharable rtx, such as
326 (const (plus (symbol_ref) (const_int))). If such an expression appears
327 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
328 rtx expression would be changed. See PR 42431. */
330 typedef rtx *rtx_p;
331 static vec<rtx_p> substitute_stack;
333 /* Number of labels in the current function. */
335 static int num_labels;
337 static void replace_pseudos_in (rtx *, machine_mode, rtx);
338 static void maybe_fix_stack_asms (void);
339 static void copy_reloads (struct insn_chain *);
340 static void calculate_needs_all_insns (int);
341 static int find_reg (struct insn_chain *, int);
342 static void find_reload_regs (struct insn_chain *);
343 static void select_reload_regs (void);
344 static void delete_caller_save_insns (void);
346 static void spill_failure (rtx_insn *, enum reg_class);
347 static void count_spilled_pseudo (int, int, int);
348 static void delete_dead_insn (rtx_insn *);
349 static void alter_reg (int, int, bool);
350 static void set_label_offsets (rtx, rtx_insn *, int);
351 static void check_eliminable_occurrences (rtx);
352 static void elimination_effects (rtx, machine_mode);
353 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
354 static int eliminate_regs_in_insn (rtx_insn *, int);
355 static void update_eliminable_offsets (void);
356 static void mark_not_eliminable (rtx, const_rtx, void *);
357 static void set_initial_elim_offsets (void);
358 static bool verify_initial_elim_offsets (void);
359 static void set_initial_label_offsets (void);
360 static void set_offsets_for_label (rtx_insn *);
361 static void init_eliminable_invariants (rtx_insn *, bool);
362 static void init_elim_table (void);
363 static void free_reg_equiv (void);
364 static void update_eliminables (HARD_REG_SET *);
365 static bool update_eliminables_and_spill (void);
366 static void elimination_costs_in_insn (rtx_insn *);
367 static void spill_hard_reg (unsigned int, int);
368 static int finish_spills (int);
369 static void scan_paradoxical_subregs (rtx);
370 static void count_pseudo (int);
371 static void order_regs_for_reload (struct insn_chain *);
372 static void reload_as_needed (int);
373 static void forget_old_reloads_1 (rtx, const_rtx, void *);
374 static void forget_marked_reloads (regset);
375 static int reload_reg_class_lower (const void *, const void *);
376 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
377 machine_mode);
378 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
379 machine_mode);
380 static int reload_reg_free_p (unsigned int, int, enum reload_type);
381 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
382 rtx, rtx, int, int);
383 static int free_for_value_p (int, machine_mode, int, enum reload_type,
384 rtx, rtx, int, int);
385 static int allocate_reload_reg (struct insn_chain *, int, int);
386 static int conflicts_with_override (rtx);
387 static void failed_reload (rtx_insn *, int);
388 static int set_reload_reg (int, int);
389 static void choose_reload_regs_init (struct insn_chain *, rtx *);
390 static void choose_reload_regs (struct insn_chain *);
391 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
392 rtx, int);
393 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
394 int);
395 static void do_input_reload (struct insn_chain *, struct reload *, int);
396 static void do_output_reload (struct insn_chain *, struct reload *, int);
397 static void emit_reload_insns (struct insn_chain *);
398 static void delete_output_reload (rtx_insn *, int, int, rtx);
399 static void delete_address_reloads (rtx_insn *, rtx_insn *);
400 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
401 static void inc_for_reload (rtx, rtx, rtx, int);
402 static void add_auto_inc_notes (rtx_insn *, rtx);
403 static void substitute (rtx *, const_rtx, rtx);
404 static bool gen_reload_chain_without_interm_reg_p (int, int);
405 static int reloads_conflict (int, int);
406 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
407 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
409 /* Initialize the reload pass. This is called at the beginning of compilation
410 and may be called again if the target is reinitialized. */
412 void
413 init_reload (void)
415 int i;
417 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
418 Set spill_indirect_levels to the number of levels such addressing is
419 permitted, zero if it is not permitted at all. */
421 rtx tem
422 = gen_rtx_MEM (Pmode,
423 gen_rtx_PLUS (Pmode,
424 gen_rtx_REG (Pmode,
425 LAST_VIRTUAL_REGISTER + 1),
426 gen_int_mode (4, Pmode)));
427 spill_indirect_levels = 0;
429 while (memory_address_p (QImode, tem))
431 spill_indirect_levels++;
432 tem = gen_rtx_MEM (Pmode, tem);
435 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
437 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
438 indirect_symref_ok = memory_address_p (QImode, tem);
440 /* See if reg+reg is a valid (and offsettable) address. */
442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
444 tem = gen_rtx_PLUS (Pmode,
445 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
446 gen_rtx_REG (Pmode, i));
448 /* This way, we make sure that reg+reg is an offsettable address. */
449 tem = plus_constant (Pmode, tem, 4);
451 for (int mode = 0; mode < MAX_MACHINE_MODE; mode++)
452 if (!double_reg_address_ok[mode]
453 && memory_address_p ((enum machine_mode)mode, tem))
454 double_reg_address_ok[mode] = 1;
457 /* Initialize obstack for our rtl allocation. */
458 if (reload_startobj == NULL)
460 gcc_obstack_init (&reload_obstack);
461 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
464 INIT_REG_SET (&spilled_pseudos);
465 INIT_REG_SET (&changed_allocation_pseudos);
466 INIT_REG_SET (&pseudos_counted);
469 /* List of insn chains that are currently unused. */
470 static struct insn_chain *unused_insn_chains = 0;
472 /* Allocate an empty insn_chain structure. */
473 struct insn_chain *
474 new_insn_chain (void)
476 struct insn_chain *c;
478 if (unused_insn_chains == 0)
480 c = XOBNEW (&reload_obstack, struct insn_chain);
481 INIT_REG_SET (&c->live_throughout);
482 INIT_REG_SET (&c->dead_or_set);
484 else
486 c = unused_insn_chains;
487 unused_insn_chains = c->next;
489 c->is_caller_save_insn = 0;
490 c->need_operand_change = 0;
491 c->need_reload = 0;
492 c->need_elim = 0;
493 return c;
496 /* Small utility function to set all regs in hard reg set TO which are
497 allocated to pseudos in regset FROM. */
499 void
500 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
502 unsigned int regno;
503 reg_set_iterator rsi;
505 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
507 int r = reg_renumber[regno];
509 if (r < 0)
511 /* reload_combine uses the information from DF_LIVE_IN,
512 which might still contain registers that have not
513 actually been allocated since they have an
514 equivalence. */
515 gcc_assert (ira_conflicts_p || reload_completed);
517 else
518 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
522 /* Replace all pseudos found in LOC with their corresponding
523 equivalences. */
525 static void
526 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
528 rtx x = *loc;
529 enum rtx_code code;
530 const char *fmt;
531 int i, j;
533 if (! x)
534 return;
536 code = GET_CODE (x);
537 if (code == REG)
539 unsigned int regno = REGNO (x);
541 if (regno < FIRST_PSEUDO_REGISTER)
542 return;
544 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
545 if (x != *loc)
547 *loc = x;
548 replace_pseudos_in (loc, mem_mode, usage);
549 return;
552 if (reg_equiv_constant (regno))
553 *loc = reg_equiv_constant (regno);
554 else if (reg_equiv_invariant (regno))
555 *loc = reg_equiv_invariant (regno);
556 else if (reg_equiv_mem (regno))
557 *loc = reg_equiv_mem (regno);
558 else if (reg_equiv_address (regno))
559 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
560 else
562 gcc_assert (!REG_P (regno_reg_rtx[regno])
563 || REGNO (regno_reg_rtx[regno]) != regno);
564 *loc = regno_reg_rtx[regno];
567 return;
569 else if (code == MEM)
571 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
572 return;
575 /* Process each of our operands recursively. */
576 fmt = GET_RTX_FORMAT (code);
577 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
578 if (*fmt == 'e')
579 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
580 else if (*fmt == 'E')
581 for (j = 0; j < XVECLEN (x, i); j++)
582 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
585 /* Determine if the current function has an exception receiver block
586 that reaches the exit block via non-exceptional edges */
588 static bool
589 has_nonexceptional_receiver (void)
591 edge e;
592 edge_iterator ei;
593 basic_block *tos, *worklist, bb;
595 /* If we're not optimizing, then just err on the safe side. */
596 if (!optimize)
597 return true;
599 /* First determine which blocks can reach exit via normal paths. */
600 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
602 FOR_EACH_BB_FN (bb, cfun)
603 bb->flags &= ~BB_REACHABLE;
605 /* Place the exit block on our worklist. */
606 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
607 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
609 /* Iterate: find everything reachable from what we've already seen. */
610 while (tos != worklist)
612 bb = *--tos;
614 FOR_EACH_EDGE (e, ei, bb->preds)
615 if (!(e->flags & EDGE_ABNORMAL))
617 basic_block src = e->src;
619 if (!(src->flags & BB_REACHABLE))
621 src->flags |= BB_REACHABLE;
622 *tos++ = src;
626 free (worklist);
628 /* Now see if there's a reachable block with an exceptional incoming
629 edge. */
630 FOR_EACH_BB_FN (bb, cfun)
631 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
632 return true;
634 /* No exceptional block reached exit unexceptionally. */
635 return false;
638 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
639 zero elements) to MAX_REG_NUM elements.
641 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
642 void
643 grow_reg_equivs (void)
645 int old_size = vec_safe_length (reg_equivs);
646 int max_regno = max_reg_num ();
647 int i;
648 reg_equivs_t ze;
650 memset (&ze, 0, sizeof (reg_equivs_t));
651 vec_safe_reserve (reg_equivs, max_regno);
652 for (i = old_size; i < max_regno; i++)
653 reg_equivs->quick_insert (i, ze);
657 /* Global variables used by reload and its subroutines. */
659 /* The current basic block while in calculate_elim_costs_all_insns. */
660 static basic_block elim_bb;
662 /* Set during calculate_needs if an insn needs register elimination. */
663 static int something_needs_elimination;
664 /* Set during calculate_needs if an insn needs an operand changed. */
665 static int something_needs_operands_changed;
666 /* Set by alter_regs if we spilled a register to the stack. */
667 static bool something_was_spilled;
669 /* Nonzero means we couldn't get enough spill regs. */
670 static int failure;
672 /* Temporary array of pseudo-register number. */
673 static int *temp_pseudo_reg_arr;
675 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
676 If that insn didn't set the register (i.e., it copied the register to
677 memory), just delete that insn instead of the equivalencing insn plus
678 anything now dead. If we call delete_dead_insn on that insn, we may
679 delete the insn that actually sets the register if the register dies
680 there and that is incorrect. */
681 static void
682 remove_init_insns ()
684 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
686 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
688 rtx list;
689 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
691 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
693 /* If we already deleted the insn or if it may trap, we can't
694 delete it. The latter case shouldn't happen, but can
695 if an insn has a variable address, gets a REG_EH_REGION
696 note added to it, and then gets converted into a load
697 from a constant address. */
698 if (NOTE_P (equiv_insn)
699 || can_throw_internal (equiv_insn))
701 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
702 delete_dead_insn (equiv_insn);
703 else
704 SET_INSN_DELETED (equiv_insn);
710 /* Return true if remove_init_insns will delete INSN. */
711 static bool
712 will_delete_init_insn_p (rtx_insn *insn)
714 rtx set = single_set (insn);
715 if (!set || !REG_P (SET_DEST (set)))
716 return false;
717 unsigned regno = REGNO (SET_DEST (set));
719 if (can_throw_internal (insn))
720 return false;
722 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
723 return false;
725 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
727 rtx equiv_insn = XEXP (list, 0);
728 if (equiv_insn == insn)
729 return true;
731 return false;
734 /* Main entry point for the reload pass.
736 FIRST is the first insn of the function being compiled.
738 GLOBAL nonzero means we were called from global_alloc
739 and should attempt to reallocate any pseudoregs that we
740 displace from hard regs we will use for reloads.
741 If GLOBAL is zero, we do not have enough information to do that,
742 so any pseudo reg that is spilled must go to the stack.
744 Return value is TRUE if reload likely left dead insns in the
745 stream and a DCE pass should be run to elimiante them. Else the
746 return value is FALSE. */
748 bool
749 reload (rtx_insn *first, int global)
751 int i, n;
752 rtx_insn *insn;
753 struct elim_table *ep;
754 basic_block bb;
755 bool inserted;
757 /* Make sure even insns with volatile mem refs are recognizable. */
758 init_recog ();
760 failure = 0;
762 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
764 /* Make sure that the last insn in the chain
765 is not something that needs reloading. */
766 emit_note (NOTE_INSN_DELETED);
768 /* Enable find_equiv_reg to distinguish insns made by reload. */
769 reload_first_uid = get_max_uid ();
771 #ifdef SECONDARY_MEMORY_NEEDED
772 /* Initialize the secondary memory table. */
773 clear_secondary_mem ();
774 #endif
776 /* We don't have a stack slot for any spill reg yet. */
777 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
778 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
780 /* Initialize the save area information for caller-save, in case some
781 are needed. */
782 init_save_areas ();
784 /* Compute which hard registers are now in use
785 as homes for pseudo registers.
786 This is done here rather than (eg) in global_alloc
787 because this point is reached even if not optimizing. */
788 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
789 mark_home_live (i);
791 /* A function that has a nonlocal label that can reach the exit
792 block via non-exceptional paths must save all call-saved
793 registers. */
794 if (cfun->has_nonlocal_label
795 && has_nonexceptional_receiver ())
796 crtl->saves_all_registers = 1;
798 if (crtl->saves_all_registers)
799 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
800 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
801 df_set_regs_ever_live (i, true);
803 /* Find all the pseudo registers that didn't get hard regs
804 but do have known equivalent constants or memory slots.
805 These include parameters (known equivalent to parameter slots)
806 and cse'd or loop-moved constant memory addresses.
808 Record constant equivalents in reg_equiv_constant
809 so they will be substituted by find_reloads.
810 Record memory equivalents in reg_mem_equiv so they can
811 be substituted eventually by altering the REG-rtx's. */
813 grow_reg_equivs ();
814 reg_old_renumber = XCNEWVEC (short, max_regno);
815 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
816 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
817 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
819 CLEAR_HARD_REG_SET (bad_spill_regs_global);
821 init_eliminable_invariants (first, true);
822 init_elim_table ();
824 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
825 stack slots to the pseudos that lack hard regs or equivalents.
826 Do not touch virtual registers. */
828 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
829 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
830 temp_pseudo_reg_arr[n++] = i;
832 if (ira_conflicts_p)
833 /* Ask IRA to order pseudo-registers for better stack slot
834 sharing. */
835 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
837 for (i = 0; i < n; i++)
838 alter_reg (temp_pseudo_reg_arr[i], -1, false);
840 /* If we have some registers we think can be eliminated, scan all insns to
841 see if there is an insn that sets one of these registers to something
842 other than itself plus a constant. If so, the register cannot be
843 eliminated. Doing this scan here eliminates an extra pass through the
844 main reload loop in the most common case where register elimination
845 cannot be done. */
846 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
847 if (INSN_P (insn))
848 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
850 maybe_fix_stack_asms ();
852 insns_need_reload = 0;
853 something_needs_elimination = 0;
855 /* Initialize to -1, which means take the first spill register. */
856 last_spill_reg = -1;
858 /* Spill any hard regs that we know we can't eliminate. */
859 CLEAR_HARD_REG_SET (used_spill_regs);
860 /* There can be multiple ways to eliminate a register;
861 they should be listed adjacently.
862 Elimination for any register fails only if all possible ways fail. */
863 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
865 int from = ep->from;
866 int can_eliminate = 0;
869 can_eliminate |= ep->can_eliminate;
870 ep++;
872 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
873 if (! can_eliminate)
874 spill_hard_reg (from, 1);
877 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
878 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
880 finish_spills (global);
882 /* From now on, we may need to generate moves differently. We may also
883 allow modifications of insns which cause them to not be recognized.
884 Any such modifications will be cleaned up during reload itself. */
885 reload_in_progress = 1;
887 /* This loop scans the entire function each go-round
888 and repeats until one repetition spills no additional hard regs. */
889 for (;;)
891 int something_changed;
892 HOST_WIDE_INT starting_frame_size;
894 starting_frame_size = get_frame_size ();
895 something_was_spilled = false;
897 set_initial_elim_offsets ();
898 set_initial_label_offsets ();
900 /* For each pseudo register that has an equivalent location defined,
901 try to eliminate any eliminable registers (such as the frame pointer)
902 assuming initial offsets for the replacement register, which
903 is the normal case.
905 If the resulting location is directly addressable, substitute
906 the MEM we just got directly for the old REG.
908 If it is not addressable but is a constant or the sum of a hard reg
909 and constant, it is probably not addressable because the constant is
910 out of range, in that case record the address; we will generate
911 hairy code to compute the address in a register each time it is
912 needed. Similarly if it is a hard register, but one that is not
913 valid as an address register.
915 If the location is not addressable, but does not have one of the
916 above forms, assign a stack slot. We have to do this to avoid the
917 potential of producing lots of reloads if, e.g., a location involves
918 a pseudo that didn't get a hard register and has an equivalent memory
919 location that also involves a pseudo that didn't get a hard register.
921 Perhaps at some point we will improve reload_when_needed handling
922 so this problem goes away. But that's very hairy. */
924 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
925 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
927 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
928 NULL_RTX);
930 if (strict_memory_address_addr_space_p
931 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
932 MEM_ADDR_SPACE (x)))
933 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
934 else if (CONSTANT_P (XEXP (x, 0))
935 || (REG_P (XEXP (x, 0))
936 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
937 || (GET_CODE (XEXP (x, 0)) == PLUS
938 && REG_P (XEXP (XEXP (x, 0), 0))
939 && (REGNO (XEXP (XEXP (x, 0), 0))
940 < FIRST_PSEUDO_REGISTER)
941 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
942 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
943 else
945 /* Make a new stack slot. Then indicate that something
946 changed so we go back and recompute offsets for
947 eliminable registers because the allocation of memory
948 below might change some offset. reg_equiv_{mem,address}
949 will be set up for this pseudo on the next pass around
950 the loop. */
951 reg_equiv_memory_loc (i) = 0;
952 reg_equiv_init (i) = 0;
953 alter_reg (i, -1, true);
957 if (caller_save_needed)
958 setup_save_areas ();
960 if (starting_frame_size && crtl->stack_alignment_needed)
962 /* If we have a stack frame, we must align it now. The
963 stack size may be a part of the offset computation for
964 register elimination. So if this changes the stack size,
965 then repeat the elimination bookkeeping. We don't
966 realign when there is no stack, as that will cause a
967 stack frame when none is needed should
968 STARTING_FRAME_OFFSET not be already aligned to
969 STACK_BOUNDARY. */
970 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
972 /* If we allocated another stack slot, redo elimination bookkeeping. */
973 if (something_was_spilled || starting_frame_size != get_frame_size ())
975 if (update_eliminables_and_spill ())
976 finish_spills (0);
977 continue;
980 if (caller_save_needed)
982 save_call_clobbered_regs ();
983 /* That might have allocated new insn_chain structures. */
984 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
987 calculate_needs_all_insns (global);
989 if (! ira_conflicts_p)
990 /* Don't do it for IRA. We need this info because we don't
991 change live_throughout and dead_or_set for chains when IRA
992 is used. */
993 CLEAR_REG_SET (&spilled_pseudos);
995 something_changed = 0;
997 /* If we allocated any new memory locations, make another pass
998 since it might have changed elimination offsets. */
999 if (something_was_spilled || starting_frame_size != get_frame_size ())
1000 something_changed = 1;
1002 /* Even if the frame size remained the same, we might still have
1003 changed elimination offsets, e.g. if find_reloads called
1004 force_const_mem requiring the back end to allocate a constant
1005 pool base register that needs to be saved on the stack. */
1006 else if (!verify_initial_elim_offsets ())
1007 something_changed = 1;
1009 if (update_eliminables_and_spill ())
1011 finish_spills (0);
1012 something_changed = 1;
1014 else
1016 select_reload_regs ();
1017 if (failure)
1018 goto failed;
1019 if (insns_need_reload)
1020 something_changed |= finish_spills (global);
1023 if (! something_changed)
1024 break;
1026 if (caller_save_needed)
1027 delete_caller_save_insns ();
1029 obstack_free (&reload_obstack, reload_firstobj);
1032 /* If global-alloc was run, notify it of any register eliminations we have
1033 done. */
1034 if (global)
1035 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1036 if (ep->can_eliminate)
1037 mark_elimination (ep->from, ep->to);
1039 remove_init_insns ();
1041 /* Use the reload registers where necessary
1042 by generating move instructions to move the must-be-register
1043 values into or out of the reload registers. */
1045 if (insns_need_reload != 0 || something_needs_elimination
1046 || something_needs_operands_changed)
1048 HOST_WIDE_INT old_frame_size = get_frame_size ();
1050 reload_as_needed (global);
1052 gcc_assert (old_frame_size == get_frame_size ());
1054 gcc_assert (verify_initial_elim_offsets ());
1057 /* If we were able to eliminate the frame pointer, show that it is no
1058 longer live at the start of any basic block. If it ls live by
1059 virtue of being in a pseudo, that pseudo will be marked live
1060 and hence the frame pointer will be known to be live via that
1061 pseudo. */
1063 if (! frame_pointer_needed)
1064 FOR_EACH_BB_FN (bb, cfun)
1065 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1067 /* Come here (with failure set nonzero) if we can't get enough spill
1068 regs. */
1069 failed:
1071 CLEAR_REG_SET (&changed_allocation_pseudos);
1072 CLEAR_REG_SET (&spilled_pseudos);
1073 reload_in_progress = 0;
1075 /* Now eliminate all pseudo regs by modifying them into
1076 their equivalent memory references.
1077 The REG-rtx's for the pseudos are modified in place,
1078 so all insns that used to refer to them now refer to memory.
1080 For a reg that has a reg_equiv_address, all those insns
1081 were changed by reloading so that no insns refer to it any longer;
1082 but the DECL_RTL of a variable decl may refer to it,
1083 and if so this causes the debugging info to mention the variable. */
1085 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1087 rtx addr = 0;
1089 if (reg_equiv_mem (i))
1090 addr = XEXP (reg_equiv_mem (i), 0);
1092 if (reg_equiv_address (i))
1093 addr = reg_equiv_address (i);
1095 if (addr)
1097 if (reg_renumber[i] < 0)
1099 rtx reg = regno_reg_rtx[i];
1101 REG_USERVAR_P (reg) = 0;
1102 PUT_CODE (reg, MEM);
1103 XEXP (reg, 0) = addr;
1104 if (reg_equiv_memory_loc (i))
1105 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1106 else
1107 MEM_ATTRS (reg) = 0;
1108 MEM_NOTRAP_P (reg) = 1;
1110 else if (reg_equiv_mem (i))
1111 XEXP (reg_equiv_mem (i), 0) = addr;
1114 /* We don't want complex addressing modes in debug insns
1115 if simpler ones will do, so delegitimize equivalences
1116 in debug insns. */
1117 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1119 rtx reg = regno_reg_rtx[i];
1120 rtx equiv = 0;
1121 df_ref use, next;
1123 if (reg_equiv_constant (i))
1124 equiv = reg_equiv_constant (i);
1125 else if (reg_equiv_invariant (i))
1126 equiv = reg_equiv_invariant (i);
1127 else if (reg && MEM_P (reg))
1128 equiv = targetm.delegitimize_address (reg);
1129 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1130 equiv = reg;
1132 if (equiv == reg)
1133 continue;
1135 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1137 insn = DF_REF_INSN (use);
1139 /* Make sure the next ref is for a different instruction,
1140 so that we're not affected by the rescan. */
1141 next = DF_REF_NEXT_REG (use);
1142 while (next && DF_REF_INSN (next) == insn)
1143 next = DF_REF_NEXT_REG (next);
1145 if (DEBUG_INSN_P (insn))
1147 if (!equiv)
1149 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1150 df_insn_rescan_debug_internal (insn);
1152 else
1153 INSN_VAR_LOCATION_LOC (insn)
1154 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1155 reg, equiv);
1161 /* We must set reload_completed now since the cleanup_subreg_operands call
1162 below will re-recognize each insn and reload may have generated insns
1163 which are only valid during and after reload. */
1164 reload_completed = 1;
1166 /* Make a pass over all the insns and delete all USEs which we inserted
1167 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1168 notes. Delete all CLOBBER insns, except those that refer to the return
1169 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1170 from misarranging variable-array code, and simplify (subreg (reg))
1171 operands. Strip and regenerate REG_INC notes that may have been moved
1172 around. */
1174 for (insn = first; insn; insn = NEXT_INSN (insn))
1175 if (INSN_P (insn))
1177 rtx *pnote;
1179 if (CALL_P (insn))
1180 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1181 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1183 if ((GET_CODE (PATTERN (insn)) == USE
1184 /* We mark with QImode USEs introduced by reload itself. */
1185 && (GET_MODE (insn) == QImode
1186 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1187 || (GET_CODE (PATTERN (insn)) == CLOBBER
1188 && (!MEM_P (XEXP (PATTERN (insn), 0))
1189 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1190 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1191 && XEXP (XEXP (PATTERN (insn), 0), 0)
1192 != stack_pointer_rtx))
1193 && (!REG_P (XEXP (PATTERN (insn), 0))
1194 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1196 delete_insn (insn);
1197 continue;
1200 /* Some CLOBBERs may survive until here and still reference unassigned
1201 pseudos with const equivalent, which may in turn cause ICE in later
1202 passes if the reference remains in place. */
1203 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1204 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1205 VOIDmode, PATTERN (insn));
1207 /* Discard obvious no-ops, even without -O. This optimization
1208 is fast and doesn't interfere with debugging. */
1209 if (NONJUMP_INSN_P (insn)
1210 && GET_CODE (PATTERN (insn)) == SET
1211 && REG_P (SET_SRC (PATTERN (insn)))
1212 && REG_P (SET_DEST (PATTERN (insn)))
1213 && (REGNO (SET_SRC (PATTERN (insn)))
1214 == REGNO (SET_DEST (PATTERN (insn)))))
1216 delete_insn (insn);
1217 continue;
1220 pnote = &REG_NOTES (insn);
1221 while (*pnote != 0)
1223 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1224 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1225 || REG_NOTE_KIND (*pnote) == REG_INC)
1226 *pnote = XEXP (*pnote, 1);
1227 else
1228 pnote = &XEXP (*pnote, 1);
1231 if (AUTO_INC_DEC)
1232 add_auto_inc_notes (insn, PATTERN (insn));
1234 /* Simplify (subreg (reg)) if it appears as an operand. */
1235 cleanup_subreg_operands (insn);
1237 /* Clean up invalid ASMs so that they don't confuse later passes.
1238 See PR 21299. */
1239 if (asm_noperands (PATTERN (insn)) >= 0)
1241 extract_insn (insn);
1242 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1244 error_for_asm (insn,
1245 "%<asm%> operand has impossible constraints");
1246 delete_insn (insn);
1247 continue;
1252 free (temp_pseudo_reg_arr);
1254 /* Indicate that we no longer have known memory locations or constants. */
1255 free_reg_equiv ();
1257 free (reg_max_ref_width);
1258 free (reg_old_renumber);
1259 free (pseudo_previous_regs);
1260 free (pseudo_forbidden_regs);
1262 CLEAR_HARD_REG_SET (used_spill_regs);
1263 for (i = 0; i < n_spills; i++)
1264 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1266 /* Free all the insn_chain structures at once. */
1267 obstack_free (&reload_obstack, reload_startobj);
1268 unused_insn_chains = 0;
1270 inserted = fixup_abnormal_edges ();
1272 /* We've possibly turned single trapping insn into multiple ones. */
1273 if (cfun->can_throw_non_call_exceptions)
1275 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
1276 bitmap_ones (blocks);
1277 find_many_sub_basic_blocks (blocks);
1280 if (inserted)
1281 commit_edge_insertions ();
1283 /* Replacing pseudos with their memory equivalents might have
1284 created shared rtx. Subsequent passes would get confused
1285 by this, so unshare everything here. */
1286 unshare_all_rtl_again (first);
1288 #ifdef STACK_BOUNDARY
1289 /* init_emit has set the alignment of the hard frame pointer
1290 to STACK_BOUNDARY. It is very likely no longer valid if
1291 the hard frame pointer was used for register allocation. */
1292 if (!frame_pointer_needed)
1293 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1294 #endif
1296 substitute_stack.release ();
1298 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1300 reload_completed = !failure;
1302 return need_dce;
1305 /* Yet another special case. Unfortunately, reg-stack forces people to
1306 write incorrect clobbers in asm statements. These clobbers must not
1307 cause the register to appear in bad_spill_regs, otherwise we'll call
1308 fatal_insn later. We clear the corresponding regnos in the live
1309 register sets to avoid this.
1310 The whole thing is rather sick, I'm afraid. */
1312 static void
1313 maybe_fix_stack_asms (void)
1315 #ifdef STACK_REGS
1316 const char *constraints[MAX_RECOG_OPERANDS];
1317 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1318 struct insn_chain *chain;
1320 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1322 int i, noperands;
1323 HARD_REG_SET clobbered, allowed;
1324 rtx pat;
1326 if (! INSN_P (chain->insn)
1327 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1328 continue;
1329 pat = PATTERN (chain->insn);
1330 if (GET_CODE (pat) != PARALLEL)
1331 continue;
1333 CLEAR_HARD_REG_SET (clobbered);
1334 CLEAR_HARD_REG_SET (allowed);
1336 /* First, make a mask of all stack regs that are clobbered. */
1337 for (i = 0; i < XVECLEN (pat, 0); i++)
1339 rtx t = XVECEXP (pat, 0, i);
1340 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1341 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1344 /* Get the operand values and constraints out of the insn. */
1345 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1346 constraints, operand_mode, NULL);
1348 /* For every operand, see what registers are allowed. */
1349 for (i = 0; i < noperands; i++)
1351 const char *p = constraints[i];
1352 /* For every alternative, we compute the class of registers allowed
1353 for reloading in CLS, and merge its contents into the reg set
1354 ALLOWED. */
1355 int cls = (int) NO_REGS;
1357 for (;;)
1359 char c = *p;
1361 if (c == '\0' || c == ',' || c == '#')
1363 /* End of one alternative - mark the regs in the current
1364 class, and reset the class. */
1365 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1366 cls = NO_REGS;
1367 p++;
1368 if (c == '#')
1369 do {
1370 c = *p++;
1371 } while (c != '\0' && c != ',');
1372 if (c == '\0')
1373 break;
1374 continue;
1377 switch (c)
1379 case 'g':
1380 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1381 break;
1383 default:
1384 enum constraint_num cn = lookup_constraint (p);
1385 if (insn_extra_address_constraint (cn))
1386 cls = (int) reg_class_subunion[cls]
1387 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1388 ADDRESS, SCRATCH)];
1389 else
1390 cls = (int) reg_class_subunion[cls]
1391 [reg_class_for_constraint (cn)];
1392 break;
1394 p += CONSTRAINT_LEN (c, p);
1397 /* Those of the registers which are clobbered, but allowed by the
1398 constraints, must be usable as reload registers. So clear them
1399 out of the life information. */
1400 AND_HARD_REG_SET (allowed, clobbered);
1401 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1402 if (TEST_HARD_REG_BIT (allowed, i))
1404 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1405 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1409 #endif
1412 /* Copy the global variables n_reloads and rld into the corresponding elts
1413 of CHAIN. */
1414 static void
1415 copy_reloads (struct insn_chain *chain)
1417 chain->n_reloads = n_reloads;
1418 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1419 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1420 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1423 /* Walk the chain of insns, and determine for each whether it needs reloads
1424 and/or eliminations. Build the corresponding insns_need_reload list, and
1425 set something_needs_elimination as appropriate. */
1426 static void
1427 calculate_needs_all_insns (int global)
1429 struct insn_chain **pprev_reload = &insns_need_reload;
1430 struct insn_chain *chain, *next = 0;
1432 something_needs_elimination = 0;
1434 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1435 for (chain = reload_insn_chain; chain != 0; chain = next)
1437 rtx_insn *insn = chain->insn;
1439 next = chain->next;
1441 /* Clear out the shortcuts. */
1442 chain->n_reloads = 0;
1443 chain->need_elim = 0;
1444 chain->need_reload = 0;
1445 chain->need_operand_change = 0;
1447 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1448 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1449 what effects this has on the known offsets at labels. */
1451 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1452 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1453 set_label_offsets (insn, insn, 0);
1455 if (INSN_P (insn))
1457 rtx old_body = PATTERN (insn);
1458 int old_code = INSN_CODE (insn);
1459 rtx old_notes = REG_NOTES (insn);
1460 int did_elimination = 0;
1461 int operands_changed = 0;
1463 /* Skip insns that only set an equivalence. */
1464 if (will_delete_init_insn_p (insn))
1465 continue;
1467 /* If needed, eliminate any eliminable registers. */
1468 if (num_eliminable || num_eliminable_invariants)
1469 did_elimination = eliminate_regs_in_insn (insn, 0);
1471 /* Analyze the instruction. */
1472 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1473 global, spill_reg_order);
1475 /* If a no-op set needs more than one reload, this is likely
1476 to be something that needs input address reloads. We
1477 can't get rid of this cleanly later, and it is of no use
1478 anyway, so discard it now.
1479 We only do this when expensive_optimizations is enabled,
1480 since this complements reload inheritance / output
1481 reload deletion, and it can make debugging harder. */
1482 if (flag_expensive_optimizations && n_reloads > 1)
1484 rtx set = single_set (insn);
1485 if (set
1487 ((SET_SRC (set) == SET_DEST (set)
1488 && REG_P (SET_SRC (set))
1489 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1490 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1491 && reg_renumber[REGNO (SET_SRC (set))] < 0
1492 && reg_renumber[REGNO (SET_DEST (set))] < 0
1493 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1494 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1495 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1496 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1498 if (ira_conflicts_p)
1499 /* Inform IRA about the insn deletion. */
1500 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1501 REGNO (SET_SRC (set)));
1502 delete_insn (insn);
1503 /* Delete it from the reload chain. */
1504 if (chain->prev)
1505 chain->prev->next = next;
1506 else
1507 reload_insn_chain = next;
1508 if (next)
1509 next->prev = chain->prev;
1510 chain->next = unused_insn_chains;
1511 unused_insn_chains = chain;
1512 continue;
1515 if (num_eliminable)
1516 update_eliminable_offsets ();
1518 /* Remember for later shortcuts which insns had any reloads or
1519 register eliminations. */
1520 chain->need_elim = did_elimination;
1521 chain->need_reload = n_reloads > 0;
1522 chain->need_operand_change = operands_changed;
1524 /* Discard any register replacements done. */
1525 if (did_elimination)
1527 obstack_free (&reload_obstack, reload_insn_firstobj);
1528 PATTERN (insn) = old_body;
1529 INSN_CODE (insn) = old_code;
1530 REG_NOTES (insn) = old_notes;
1531 something_needs_elimination = 1;
1534 something_needs_operands_changed |= operands_changed;
1536 if (n_reloads != 0)
1538 copy_reloads (chain);
1539 *pprev_reload = chain;
1540 pprev_reload = &chain->next_need_reload;
1544 *pprev_reload = 0;
1547 /* This function is called from the register allocator to set up estimates
1548 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1549 an invariant. The structure is similar to calculate_needs_all_insns. */
1551 void
1552 calculate_elim_costs_all_insns (void)
1554 int *reg_equiv_init_cost;
1555 basic_block bb;
1556 int i;
1558 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1559 init_elim_table ();
1560 init_eliminable_invariants (get_insns (), false);
1562 set_initial_elim_offsets ();
1563 set_initial_label_offsets ();
1565 FOR_EACH_BB_FN (bb, cfun)
1567 rtx_insn *insn;
1568 elim_bb = bb;
1570 FOR_BB_INSNS (bb, insn)
1572 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1573 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1574 what effects this has on the known offsets at labels. */
1576 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1577 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1578 set_label_offsets (insn, insn, 0);
1580 if (INSN_P (insn))
1582 rtx set = single_set (insn);
1584 /* Skip insns that only set an equivalence. */
1585 if (set && REG_P (SET_DEST (set))
1586 && reg_renumber[REGNO (SET_DEST (set))] < 0
1587 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1588 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1590 unsigned regno = REGNO (SET_DEST (set));
1591 rtx_insn_list *init = reg_equiv_init (regno);
1592 if (init)
1594 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1595 false, true);
1596 machine_mode mode = GET_MODE (SET_DEST (set));
1597 int cost = set_src_cost (t, mode,
1598 optimize_bb_for_speed_p (bb));
1599 int freq = REG_FREQ_FROM_BB (bb);
1601 reg_equiv_init_cost[regno] = cost * freq;
1602 continue;
1605 /* If needed, eliminate any eliminable registers. */
1606 if (num_eliminable || num_eliminable_invariants)
1607 elimination_costs_in_insn (insn);
1609 if (num_eliminable)
1610 update_eliminable_offsets ();
1614 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1616 if (reg_equiv_invariant (i))
1618 if (reg_equiv_init (i))
1620 int cost = reg_equiv_init_cost[i];
1621 if (dump_file)
1622 fprintf (dump_file,
1623 "Reg %d has equivalence, initial gains %d\n", i, cost);
1624 if (cost != 0)
1625 ira_adjust_equiv_reg_cost (i, cost);
1627 else
1629 if (dump_file)
1630 fprintf (dump_file,
1631 "Reg %d had equivalence, but can't be eliminated\n",
1633 ira_adjust_equiv_reg_cost (i, 0);
1638 free (reg_equiv_init_cost);
1639 free (offsets_known_at);
1640 free (offsets_at);
1641 offsets_at = NULL;
1642 offsets_known_at = NULL;
1645 /* Comparison function for qsort to decide which of two reloads
1646 should be handled first. *P1 and *P2 are the reload numbers. */
1648 static int
1649 reload_reg_class_lower (const void *r1p, const void *r2p)
1651 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1652 int t;
1654 /* Consider required reloads before optional ones. */
1655 t = rld[r1].optional - rld[r2].optional;
1656 if (t != 0)
1657 return t;
1659 /* Count all solitary classes before non-solitary ones. */
1660 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1661 - (reg_class_size[(int) rld[r1].rclass] == 1));
1662 if (t != 0)
1663 return t;
1665 /* Aside from solitaires, consider all multi-reg groups first. */
1666 t = rld[r2].nregs - rld[r1].nregs;
1667 if (t != 0)
1668 return t;
1670 /* Consider reloads in order of increasing reg-class number. */
1671 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1672 if (t != 0)
1673 return t;
1675 /* If reloads are equally urgent, sort by reload number,
1676 so that the results of qsort leave nothing to chance. */
1677 return r1 - r2;
1680 /* The cost of spilling each hard reg. */
1681 static int spill_cost[FIRST_PSEUDO_REGISTER];
1683 /* When spilling multiple hard registers, we use SPILL_COST for the first
1684 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1685 only the first hard reg for a multi-reg pseudo. */
1686 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1688 /* Map of hard regno to pseudo regno currently occupying the hard
1689 reg. */
1690 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1692 /* Update the spill cost arrays, considering that pseudo REG is live. */
1694 static void
1695 count_pseudo (int reg)
1697 int freq = REG_FREQ (reg);
1698 int r = reg_renumber[reg];
1699 int nregs;
1701 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1702 if (ira_conflicts_p && r < 0)
1703 return;
1705 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1706 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1707 return;
1709 SET_REGNO_REG_SET (&pseudos_counted, reg);
1711 gcc_assert (r >= 0);
1713 spill_add_cost[r] += freq;
1714 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1715 while (nregs-- > 0)
1717 hard_regno_to_pseudo_regno[r + nregs] = reg;
1718 spill_cost[r + nregs] += freq;
1722 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1723 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1725 static void
1726 order_regs_for_reload (struct insn_chain *chain)
1728 unsigned i;
1729 HARD_REG_SET used_by_pseudos;
1730 HARD_REG_SET used_by_pseudos2;
1731 reg_set_iterator rsi;
1733 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1735 memset (spill_cost, 0, sizeof spill_cost);
1736 memset (spill_add_cost, 0, sizeof spill_add_cost);
1737 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1738 hard_regno_to_pseudo_regno[i] = -1;
1740 /* Count number of uses of each hard reg by pseudo regs allocated to it
1741 and then order them by decreasing use. First exclude hard registers
1742 that are live in or across this insn. */
1744 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1745 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1746 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1747 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1749 /* Now find out which pseudos are allocated to it, and update
1750 hard_reg_n_uses. */
1751 CLEAR_REG_SET (&pseudos_counted);
1753 EXECUTE_IF_SET_IN_REG_SET
1754 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1756 count_pseudo (i);
1758 EXECUTE_IF_SET_IN_REG_SET
1759 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1761 count_pseudo (i);
1763 CLEAR_REG_SET (&pseudos_counted);
1766 /* Vector of reload-numbers showing the order in which the reloads should
1767 be processed. */
1768 static short reload_order[MAX_RELOADS];
1770 /* This is used to keep track of the spill regs used in one insn. */
1771 static HARD_REG_SET used_spill_regs_local;
1773 /* We decided to spill hard register SPILLED, which has a size of
1774 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1775 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1776 update SPILL_COST/SPILL_ADD_COST. */
1778 static void
1779 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1781 int freq = REG_FREQ (reg);
1782 int r = reg_renumber[reg];
1783 int nregs;
1785 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1786 if (ira_conflicts_p && r < 0)
1787 return;
1789 gcc_assert (r >= 0);
1791 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1793 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1794 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1795 return;
1797 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1799 spill_add_cost[r] -= freq;
1800 while (nregs-- > 0)
1802 hard_regno_to_pseudo_regno[r + nregs] = -1;
1803 spill_cost[r + nregs] -= freq;
1807 /* Find reload register to use for reload number ORDER. */
1809 static int
1810 find_reg (struct insn_chain *chain, int order)
1812 int rnum = reload_order[order];
1813 struct reload *rl = rld + rnum;
1814 int best_cost = INT_MAX;
1815 int best_reg = -1;
1816 unsigned int i, j, n;
1817 int k;
1818 HARD_REG_SET not_usable;
1819 HARD_REG_SET used_by_other_reload;
1820 reg_set_iterator rsi;
1821 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1822 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1824 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1825 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1826 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1828 CLEAR_HARD_REG_SET (used_by_other_reload);
1829 for (k = 0; k < order; k++)
1831 int other = reload_order[k];
1833 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1834 for (j = 0; j < rld[other].nregs; j++)
1835 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1838 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1840 #ifdef REG_ALLOC_ORDER
1841 unsigned int regno = reg_alloc_order[i];
1842 #else
1843 unsigned int regno = i;
1844 #endif
1846 if (! TEST_HARD_REG_BIT (not_usable, regno)
1847 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1848 && targetm.hard_regno_mode_ok (regno, rl->mode))
1850 int this_cost = spill_cost[regno];
1851 int ok = 1;
1852 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1854 for (j = 1; j < this_nregs; j++)
1856 this_cost += spill_add_cost[regno + j];
1857 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1858 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1859 ok = 0;
1861 if (! ok)
1862 continue;
1864 if (ira_conflicts_p)
1866 /* Ask IRA to find a better pseudo-register for
1867 spilling. */
1868 for (n = j = 0; j < this_nregs; j++)
1870 int r = hard_regno_to_pseudo_regno[regno + j];
1872 if (r < 0)
1873 continue;
1874 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1875 regno_pseudo_regs[n++] = r;
1877 regno_pseudo_regs[n++] = -1;
1878 if (best_reg < 0
1879 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1880 best_regno_pseudo_regs,
1881 rl->in, rl->out,
1882 chain->insn))
1884 best_reg = regno;
1885 for (j = 0;; j++)
1887 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1888 if (regno_pseudo_regs[j] < 0)
1889 break;
1892 continue;
1895 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1896 this_cost--;
1897 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1898 this_cost--;
1899 if (this_cost < best_cost
1900 /* Among registers with equal cost, prefer caller-saved ones, or
1901 use REG_ALLOC_ORDER if it is defined. */
1902 || (this_cost == best_cost
1903 #ifdef REG_ALLOC_ORDER
1904 && (inv_reg_alloc_order[regno]
1905 < inv_reg_alloc_order[best_reg])
1906 #else
1907 && call_used_regs[regno]
1908 && ! call_used_regs[best_reg]
1909 #endif
1912 best_reg = regno;
1913 best_cost = this_cost;
1917 if (best_reg == -1)
1918 return 0;
1920 if (dump_file)
1921 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1923 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1924 rl->regno = best_reg;
1926 EXECUTE_IF_SET_IN_REG_SET
1927 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1929 count_spilled_pseudo (best_reg, rl->nregs, j);
1932 EXECUTE_IF_SET_IN_REG_SET
1933 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1935 count_spilled_pseudo (best_reg, rl->nregs, j);
1938 for (i = 0; i < rl->nregs; i++)
1940 gcc_assert (spill_cost[best_reg + i] == 0);
1941 gcc_assert (spill_add_cost[best_reg + i] == 0);
1942 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1943 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1945 return 1;
1948 /* Find more reload regs to satisfy the remaining need of an insn, which
1949 is given by CHAIN.
1950 Do it by ascending class number, since otherwise a reg
1951 might be spilled for a big class and might fail to count
1952 for a smaller class even though it belongs to that class. */
1954 static void
1955 find_reload_regs (struct insn_chain *chain)
1957 int i;
1959 /* In order to be certain of getting the registers we need,
1960 we must sort the reloads into order of increasing register class.
1961 Then our grabbing of reload registers will parallel the process
1962 that provided the reload registers. */
1963 for (i = 0; i < chain->n_reloads; i++)
1965 /* Show whether this reload already has a hard reg. */
1966 if (chain->rld[i].reg_rtx)
1968 int regno = REGNO (chain->rld[i].reg_rtx);
1969 chain->rld[i].regno = regno;
1970 chain->rld[i].nregs
1971 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1973 else
1974 chain->rld[i].regno = -1;
1975 reload_order[i] = i;
1978 n_reloads = chain->n_reloads;
1979 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1981 CLEAR_HARD_REG_SET (used_spill_regs_local);
1983 if (dump_file)
1984 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1986 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1988 /* Compute the order of preference for hard registers to spill. */
1990 order_regs_for_reload (chain);
1992 for (i = 0; i < n_reloads; i++)
1994 int r = reload_order[i];
1996 /* Ignore reloads that got marked inoperative. */
1997 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1998 && ! rld[r].optional
1999 && rld[r].regno == -1)
2000 if (! find_reg (chain, i))
2002 if (dump_file)
2003 fprintf (dump_file, "reload failure for reload %d\n", r);
2004 spill_failure (chain->insn, rld[r].rclass);
2005 failure = 1;
2006 return;
2010 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2011 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2013 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2016 static void
2017 select_reload_regs (void)
2019 struct insn_chain *chain;
2021 /* Try to satisfy the needs for each insn. */
2022 for (chain = insns_need_reload; chain != 0;
2023 chain = chain->next_need_reload)
2024 find_reload_regs (chain);
2027 /* Delete all insns that were inserted by emit_caller_save_insns during
2028 this iteration. */
2029 static void
2030 delete_caller_save_insns (void)
2032 struct insn_chain *c = reload_insn_chain;
2034 while (c != 0)
2036 while (c != 0 && c->is_caller_save_insn)
2038 struct insn_chain *next = c->next;
2039 rtx_insn *insn = c->insn;
2041 if (c == reload_insn_chain)
2042 reload_insn_chain = next;
2043 delete_insn (insn);
2045 if (next)
2046 next->prev = c->prev;
2047 if (c->prev)
2048 c->prev->next = next;
2049 c->next = unused_insn_chains;
2050 unused_insn_chains = c;
2051 c = next;
2053 if (c != 0)
2054 c = c->next;
2058 /* Handle the failure to find a register to spill.
2059 INSN should be one of the insns which needed this particular spill reg. */
2061 static void
2062 spill_failure (rtx_insn *insn, enum reg_class rclass)
2064 if (asm_noperands (PATTERN (insn)) >= 0)
2065 error_for_asm (insn, "can%'t find a register in class %qs while "
2066 "reloading %<asm%>",
2067 reg_class_names[rclass]);
2068 else
2070 error ("unable to find a register to spill in class %qs",
2071 reg_class_names[rclass]);
2073 if (dump_file)
2075 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2076 debug_reload_to_stream (dump_file);
2078 fatal_insn ("this is the insn:", insn);
2082 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2083 data that is dead in INSN. */
2085 static void
2086 delete_dead_insn (rtx_insn *insn)
2088 rtx_insn *prev = prev_active_insn (insn);
2089 rtx prev_dest;
2091 /* If the previous insn sets a register that dies in our insn make
2092 a note that we want to run DCE immediately after reload.
2094 We used to delete the previous insn & recurse, but that's wrong for
2095 block local equivalences. Instead of trying to figure out the exact
2096 circumstances where we can delete the potentially dead insns, just
2097 let DCE do the job. */
2098 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2099 && GET_CODE (PATTERN (prev)) == SET
2100 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2101 && reg_mentioned_p (prev_dest, PATTERN (insn))
2102 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2103 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2104 need_dce = 1;
2106 SET_INSN_DELETED (insn);
2109 /* Modify the home of pseudo-reg I.
2110 The new home is present in reg_renumber[I].
2112 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2113 or it may be -1, meaning there is none or it is not relevant.
2114 This is used so that all pseudos spilled from a given hard reg
2115 can share one stack slot. */
2117 static void
2118 alter_reg (int i, int from_reg, bool dont_share_p)
2120 /* When outputting an inline function, this can happen
2121 for a reg that isn't actually used. */
2122 if (regno_reg_rtx[i] == 0)
2123 return;
2125 /* If the reg got changed to a MEM at rtl-generation time,
2126 ignore it. */
2127 if (!REG_P (regno_reg_rtx[i]))
2128 return;
2130 /* Modify the reg-rtx to contain the new hard reg
2131 number or else to contain its pseudo reg number. */
2132 SET_REGNO (regno_reg_rtx[i],
2133 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2135 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2136 allocate a stack slot for it. */
2138 if (reg_renumber[i] < 0
2139 && REG_N_REFS (i) > 0
2140 && reg_equiv_constant (i) == 0
2141 && (reg_equiv_invariant (i) == 0
2142 || reg_equiv_init (i) == 0)
2143 && reg_equiv_memory_loc (i) == 0)
2145 rtx x = NULL_RTX;
2146 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2147 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2148 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2149 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2150 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2151 int adjust = 0;
2153 something_was_spilled = true;
2155 if (ira_conflicts_p)
2157 /* Mark the spill for IRA. */
2158 SET_REGNO_REG_SET (&spilled_pseudos, i);
2159 if (!dont_share_p)
2160 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2163 if (x)
2166 /* Each pseudo reg has an inherent size which comes from its own mode,
2167 and a total size which provides room for paradoxical subregs
2168 which refer to the pseudo reg in wider modes.
2170 We can use a slot already allocated if it provides both
2171 enough inherent space and enough total space.
2172 Otherwise, we allocate a new slot, making sure that it has no less
2173 inherent space, and no less total space, then the previous slot. */
2174 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2176 rtx stack_slot;
2178 /* No known place to spill from => no slot to reuse. */
2179 x = assign_stack_local (mode, total_size,
2180 min_align > inherent_align
2181 || total_size > inherent_size ? -1 : 0);
2183 stack_slot = x;
2185 /* Cancel the big-endian correction done in assign_stack_local.
2186 Get the address of the beginning of the slot. This is so we
2187 can do a big-endian correction unconditionally below. */
2188 if (BYTES_BIG_ENDIAN)
2190 adjust = inherent_size - total_size;
2191 if (adjust)
2193 unsigned int total_bits = total_size * BITS_PER_UNIT;
2194 machine_mode mem_mode
2195 = int_mode_for_size (total_bits, 1).else_blk ();
2196 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2200 if (! dont_share_p && ira_conflicts_p)
2201 /* Inform IRA about allocation a new stack slot. */
2202 ira_mark_new_stack_slot (stack_slot, i, total_size);
2205 /* Reuse a stack slot if possible. */
2206 else if (spill_stack_slot[from_reg] != 0
2207 && spill_stack_slot_width[from_reg] >= total_size
2208 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2209 >= inherent_size)
2210 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2211 x = spill_stack_slot[from_reg];
2213 /* Allocate a bigger slot. */
2214 else
2216 /* Compute maximum size needed, both for inherent size
2217 and for total size. */
2218 rtx stack_slot;
2220 if (spill_stack_slot[from_reg])
2222 if (partial_subreg_p (mode,
2223 GET_MODE (spill_stack_slot[from_reg])))
2224 mode = GET_MODE (spill_stack_slot[from_reg]);
2225 if (spill_stack_slot_width[from_reg] > total_size)
2226 total_size = spill_stack_slot_width[from_reg];
2227 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2228 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2231 /* Make a slot with that size. */
2232 x = assign_stack_local (mode, total_size,
2233 min_align > inherent_align
2234 || total_size > inherent_size ? -1 : 0);
2235 stack_slot = x;
2237 /* Cancel the big-endian correction done in assign_stack_local.
2238 Get the address of the beginning of the slot. This is so we
2239 can do a big-endian correction unconditionally below. */
2240 if (BYTES_BIG_ENDIAN)
2242 adjust = GET_MODE_SIZE (mode) - total_size;
2243 if (adjust)
2245 unsigned int total_bits = total_size * BITS_PER_UNIT;
2246 machine_mode mem_mode
2247 = int_mode_for_size (total_bits, 1).else_blk ();
2248 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2252 spill_stack_slot[from_reg] = stack_slot;
2253 spill_stack_slot_width[from_reg] = total_size;
2256 /* On a big endian machine, the "address" of the slot
2257 is the address of the low part that fits its inherent mode. */
2258 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2259 adjust += (total_size - inherent_size);
2261 /* If we have any adjustment to make, or if the stack slot is the
2262 wrong mode, make a new stack slot. */
2263 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2265 /* Set all of the memory attributes as appropriate for a spill. */
2266 set_mem_attrs_for_spill (x);
2268 /* Save the stack slot for later. */
2269 reg_equiv_memory_loc (i) = x;
2273 /* Mark the slots in regs_ever_live for the hard regs used by
2274 pseudo-reg number REGNO, accessed in MODE. */
2276 static void
2277 mark_home_live_1 (int regno, machine_mode mode)
2279 int i, lim;
2281 i = reg_renumber[regno];
2282 if (i < 0)
2283 return;
2284 lim = end_hard_regno (mode, i);
2285 while (i < lim)
2286 df_set_regs_ever_live (i++, true);
2289 /* Mark the slots in regs_ever_live for the hard regs
2290 used by pseudo-reg number REGNO. */
2292 void
2293 mark_home_live (int regno)
2295 if (reg_renumber[regno] >= 0)
2296 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2299 /* This function handles the tracking of elimination offsets around branches.
2301 X is a piece of RTL being scanned.
2303 INSN is the insn that it came from, if any.
2305 INITIAL_P is nonzero if we are to set the offset to be the initial
2306 offset and zero if we are setting the offset of the label to be the
2307 current offset. */
2309 static void
2310 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2312 enum rtx_code code = GET_CODE (x);
2313 rtx tem;
2314 unsigned int i;
2315 struct elim_table *p;
2317 switch (code)
2319 case LABEL_REF:
2320 if (LABEL_REF_NONLOCAL_P (x))
2321 return;
2323 x = label_ref_label (x);
2325 /* fall through */
2327 case CODE_LABEL:
2328 /* If we know nothing about this label, set the desired offsets. Note
2329 that this sets the offset at a label to be the offset before a label
2330 if we don't know anything about the label. This is not correct for
2331 the label after a BARRIER, but is the best guess we can make. If
2332 we guessed wrong, we will suppress an elimination that might have
2333 been possible had we been able to guess correctly. */
2335 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2337 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2338 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2339 = (initial_p ? reg_eliminate[i].initial_offset
2340 : reg_eliminate[i].offset);
2341 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2344 /* Otherwise, if this is the definition of a label and it is
2345 preceded by a BARRIER, set our offsets to the known offset of
2346 that label. */
2348 else if (x == insn
2349 && (tem = prev_nonnote_insn (insn)) != 0
2350 && BARRIER_P (tem))
2351 set_offsets_for_label (insn);
2352 else
2353 /* If neither of the above cases is true, compare each offset
2354 with those previously recorded and suppress any eliminations
2355 where the offsets disagree. */
2357 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2358 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2359 != (initial_p ? reg_eliminate[i].initial_offset
2360 : reg_eliminate[i].offset))
2361 reg_eliminate[i].can_eliminate = 0;
2363 return;
2365 case JUMP_TABLE_DATA:
2366 set_label_offsets (PATTERN (insn), insn, initial_p);
2367 return;
2369 case JUMP_INSN:
2370 set_label_offsets (PATTERN (insn), insn, initial_p);
2372 /* fall through */
2374 case INSN:
2375 case CALL_INSN:
2376 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2377 to indirectly and hence must have all eliminations at their
2378 initial offsets. */
2379 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2380 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2381 set_label_offsets (XEXP (tem, 0), insn, 1);
2382 return;
2384 case PARALLEL:
2385 case ADDR_VEC:
2386 case ADDR_DIFF_VEC:
2387 /* Each of the labels in the parallel or address vector must be
2388 at their initial offsets. We want the first field for PARALLEL
2389 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2391 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2392 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2393 insn, initial_p);
2394 return;
2396 case SET:
2397 /* We only care about setting PC. If the source is not RETURN,
2398 IF_THEN_ELSE, or a label, disable any eliminations not at
2399 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2400 isn't one of those possibilities. For branches to a label,
2401 call ourselves recursively.
2403 Note that this can disable elimination unnecessarily when we have
2404 a non-local goto since it will look like a non-constant jump to
2405 someplace in the current function. This isn't a significant
2406 problem since such jumps will normally be when all elimination
2407 pairs are back to their initial offsets. */
2409 if (SET_DEST (x) != pc_rtx)
2410 return;
2412 switch (GET_CODE (SET_SRC (x)))
2414 case PC:
2415 case RETURN:
2416 return;
2418 case LABEL_REF:
2419 set_label_offsets (SET_SRC (x), insn, initial_p);
2420 return;
2422 case IF_THEN_ELSE:
2423 tem = XEXP (SET_SRC (x), 1);
2424 if (GET_CODE (tem) == LABEL_REF)
2425 set_label_offsets (label_ref_label (tem), insn, initial_p);
2426 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2427 break;
2429 tem = XEXP (SET_SRC (x), 2);
2430 if (GET_CODE (tem) == LABEL_REF)
2431 set_label_offsets (label_ref_label (tem), insn, initial_p);
2432 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2433 break;
2434 return;
2436 default:
2437 break;
2440 /* If we reach here, all eliminations must be at their initial
2441 offset because we are doing a jump to a variable address. */
2442 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2443 if (p->offset != p->initial_offset)
2444 p->can_eliminate = 0;
2445 break;
2447 default:
2448 break;
2452 /* This function examines every reg that occurs in X and adjusts the
2453 costs for its elimination which are gathered by IRA. INSN is the
2454 insn in which X occurs. We do not recurse into MEM expressions. */
2456 static void
2457 note_reg_elim_costly (const_rtx x, rtx insn)
2459 subrtx_iterator::array_type array;
2460 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2462 const_rtx x = *iter;
2463 if (MEM_P (x))
2464 iter.skip_subrtxes ();
2465 else if (REG_P (x)
2466 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2467 && reg_equiv_init (REGNO (x))
2468 && reg_equiv_invariant (REGNO (x)))
2470 rtx t = reg_equiv_invariant (REGNO (x));
2471 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2472 int cost = set_src_cost (new_rtx, Pmode,
2473 optimize_bb_for_speed_p (elim_bb));
2474 int freq = REG_FREQ_FROM_BB (elim_bb);
2476 if (cost != 0)
2477 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2482 /* Scan X and replace any eliminable registers (such as fp) with a
2483 replacement (such as sp), plus an offset.
2485 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2486 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2487 MEM, we are allowed to replace a sum of a register and the constant zero
2488 with the register, which we cannot do outside a MEM. In addition, we need
2489 to record the fact that a register is referenced outside a MEM.
2491 If INSN is an insn, it is the insn containing X. If we replace a REG
2492 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2493 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2494 the REG is being modified.
2496 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2497 That's used when we eliminate in expressions stored in notes.
2498 This means, do not set ref_outside_mem even if the reference
2499 is outside of MEMs.
2501 If FOR_COSTS is true, we are being called before reload in order to
2502 estimate the costs of keeping registers with an equivalence unallocated.
2504 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2505 replacements done assuming all offsets are at their initial values. If
2506 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2507 encounter, return the actual location so that find_reloads will do
2508 the proper thing. */
2510 static rtx
2511 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2512 bool may_use_invariant, bool for_costs)
2514 enum rtx_code code = GET_CODE (x);
2515 struct elim_table *ep;
2516 int regno;
2517 rtx new_rtx;
2518 int i, j;
2519 const char *fmt;
2520 int copied = 0;
2522 if (! current_function_decl)
2523 return x;
2525 switch (code)
2527 CASE_CONST_ANY:
2528 case CONST:
2529 case SYMBOL_REF:
2530 case CODE_LABEL:
2531 case PC:
2532 case CC0:
2533 case ASM_INPUT:
2534 case ADDR_VEC:
2535 case ADDR_DIFF_VEC:
2536 case RETURN:
2537 return x;
2539 case REG:
2540 regno = REGNO (x);
2542 /* First handle the case where we encounter a bare register that
2543 is eliminable. Replace it with a PLUS. */
2544 if (regno < FIRST_PSEUDO_REGISTER)
2546 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2547 ep++)
2548 if (ep->from_rtx == x && ep->can_eliminate)
2549 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2552 else if (reg_renumber && reg_renumber[regno] < 0
2553 && reg_equivs
2554 && reg_equiv_invariant (regno))
2556 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2557 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2558 mem_mode, insn, true, for_costs);
2559 /* There exists at least one use of REGNO that cannot be
2560 eliminated. Prevent the defining insn from being deleted. */
2561 reg_equiv_init (regno) = NULL;
2562 if (!for_costs)
2563 alter_reg (regno, -1, true);
2565 return x;
2567 /* You might think handling MINUS in a manner similar to PLUS is a
2568 good idea. It is not. It has been tried multiple times and every
2569 time the change has had to have been reverted.
2571 Other parts of reload know a PLUS is special (gen_reload for example)
2572 and require special code to handle code a reloaded PLUS operand.
2574 Also consider backends where the flags register is clobbered by a
2575 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2576 lea instruction comes to mind). If we try to reload a MINUS, we
2577 may kill the flags register that was holding a useful value.
2579 So, please before trying to handle MINUS, consider reload as a
2580 whole instead of this little section as well as the backend issues. */
2581 case PLUS:
2582 /* If this is the sum of an eliminable register and a constant, rework
2583 the sum. */
2584 if (REG_P (XEXP (x, 0))
2585 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2586 && CONSTANT_P (XEXP (x, 1)))
2588 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2589 ep++)
2590 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2592 /* The only time we want to replace a PLUS with a REG (this
2593 occurs when the constant operand of the PLUS is the negative
2594 of the offset) is when we are inside a MEM. We won't want
2595 to do so at other times because that would change the
2596 structure of the insn in a way that reload can't handle.
2597 We special-case the commonest situation in
2598 eliminate_regs_in_insn, so just replace a PLUS with a
2599 PLUS here, unless inside a MEM. */
2600 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2601 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2602 return ep->to_rtx;
2603 else
2604 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2605 plus_constant (Pmode, XEXP (x, 1),
2606 ep->previous_offset));
2609 /* If the register is not eliminable, we are done since the other
2610 operand is a constant. */
2611 return x;
2614 /* If this is part of an address, we want to bring any constant to the
2615 outermost PLUS. We will do this by doing register replacement in
2616 our operands and seeing if a constant shows up in one of them.
2618 Note that there is no risk of modifying the structure of the insn,
2619 since we only get called for its operands, thus we are either
2620 modifying the address inside a MEM, or something like an address
2621 operand of a load-address insn. */
2624 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2625 for_costs);
2626 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2627 for_costs);
2629 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2631 /* If one side is a PLUS and the other side is a pseudo that
2632 didn't get a hard register but has a reg_equiv_constant,
2633 we must replace the constant here since it may no longer
2634 be in the position of any operand. */
2635 if (GET_CODE (new0) == PLUS && REG_P (new1)
2636 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2637 && reg_renumber[REGNO (new1)] < 0
2638 && reg_equivs
2639 && reg_equiv_constant (REGNO (new1)) != 0)
2640 new1 = reg_equiv_constant (REGNO (new1));
2641 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2642 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2643 && reg_renumber[REGNO (new0)] < 0
2644 && reg_equiv_constant (REGNO (new0)) != 0)
2645 new0 = reg_equiv_constant (REGNO (new0));
2647 new_rtx = form_sum (GET_MODE (x), new0, new1);
2649 /* As above, if we are not inside a MEM we do not want to
2650 turn a PLUS into something else. We might try to do so here
2651 for an addition of 0 if we aren't optimizing. */
2652 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2653 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2654 else
2655 return new_rtx;
2658 return x;
2660 case MULT:
2661 /* If this is the product of an eliminable register and a
2662 constant, apply the distribute law and move the constant out
2663 so that we have (plus (mult ..) ..). This is needed in order
2664 to keep load-address insns valid. This case is pathological.
2665 We ignore the possibility of overflow here. */
2666 if (REG_P (XEXP (x, 0))
2667 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2668 && CONST_INT_P (XEXP (x, 1)))
2669 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2670 ep++)
2671 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2673 if (! mem_mode
2674 /* Refs inside notes or in DEBUG_INSNs don't count for
2675 this purpose. */
2676 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2677 || GET_CODE (insn) == INSN_LIST
2678 || DEBUG_INSN_P (insn))))
2679 ep->ref_outside_mem = 1;
2681 return
2682 plus_constant (Pmode,
2683 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2684 ep->previous_offset * INTVAL (XEXP (x, 1)));
2687 /* fall through */
2689 case CALL:
2690 case COMPARE:
2691 /* See comments before PLUS about handling MINUS. */
2692 case MINUS:
2693 case DIV: case UDIV:
2694 case MOD: case UMOD:
2695 case AND: case IOR: case XOR:
2696 case ROTATERT: case ROTATE:
2697 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2698 case NE: case EQ:
2699 case GE: case GT: case GEU: case GTU:
2700 case LE: case LT: case LEU: case LTU:
2702 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2703 for_costs);
2704 rtx new1 = XEXP (x, 1)
2705 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2706 for_costs) : 0;
2708 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2709 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2711 return x;
2713 case EXPR_LIST:
2714 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2715 if (XEXP (x, 0))
2717 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2718 for_costs);
2719 if (new_rtx != XEXP (x, 0))
2721 /* If this is a REG_DEAD note, it is not valid anymore.
2722 Using the eliminated version could result in creating a
2723 REG_DEAD note for the stack or frame pointer. */
2724 if (REG_NOTE_KIND (x) == REG_DEAD)
2725 return (XEXP (x, 1)
2726 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2727 for_costs)
2728 : NULL_RTX);
2730 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2734 /* fall through */
2736 case INSN_LIST:
2737 case INT_LIST:
2738 /* Now do eliminations in the rest of the chain. If this was
2739 an EXPR_LIST, this might result in allocating more memory than is
2740 strictly needed, but it simplifies the code. */
2741 if (XEXP (x, 1))
2743 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2744 for_costs);
2745 if (new_rtx != XEXP (x, 1))
2746 return
2747 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2749 return x;
2751 case PRE_INC:
2752 case POST_INC:
2753 case PRE_DEC:
2754 case POST_DEC:
2755 /* We do not support elimination of a register that is modified.
2756 elimination_effects has already make sure that this does not
2757 happen. */
2758 return x;
2760 case PRE_MODIFY:
2761 case POST_MODIFY:
2762 /* We do not support elimination of a register that is modified.
2763 elimination_effects has already make sure that this does not
2764 happen. The only remaining case we need to consider here is
2765 that the increment value may be an eliminable register. */
2766 if (GET_CODE (XEXP (x, 1)) == PLUS
2767 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2769 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2770 insn, true, for_costs);
2772 if (new_rtx != XEXP (XEXP (x, 1), 1))
2773 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2774 gen_rtx_PLUS (GET_MODE (x),
2775 XEXP (x, 0), new_rtx));
2777 return x;
2779 case STRICT_LOW_PART:
2780 case NEG: case NOT:
2781 case SIGN_EXTEND: case ZERO_EXTEND:
2782 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2783 case FLOAT: case FIX:
2784 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2785 case ABS:
2786 case SQRT:
2787 case FFS:
2788 case CLZ:
2789 case CTZ:
2790 case POPCOUNT:
2791 case PARITY:
2792 case BSWAP:
2793 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2794 for_costs);
2795 if (new_rtx != XEXP (x, 0))
2796 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2797 return x;
2799 case SUBREG:
2800 /* Similar to above processing, but preserve SUBREG_BYTE.
2801 Convert (subreg (mem)) to (mem) if not paradoxical.
2802 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2803 pseudo didn't get a hard reg, we must replace this with the
2804 eliminated version of the memory location because push_reload
2805 may do the replacement in certain circumstances. */
2806 if (REG_P (SUBREG_REG (x))
2807 && !paradoxical_subreg_p (x)
2808 && reg_equivs
2809 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2811 new_rtx = SUBREG_REG (x);
2813 else
2814 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2816 if (new_rtx != SUBREG_REG (x))
2818 int x_size = GET_MODE_SIZE (GET_MODE (x));
2819 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2821 if (MEM_P (new_rtx)
2822 && ((partial_subreg_p (GET_MODE (x), GET_MODE (new_rtx))
2823 /* On RISC machines, combine can create rtl of the form
2824 (set (subreg:m1 (reg:m2 R) 0) ...)
2825 where m1 < m2, and expects something interesting to
2826 happen to the entire word. Moreover, it will use the
2827 (reg:m2 R) later, expecting all bits to be preserved.
2828 So if the number of words is the same, preserve the
2829 subreg so that push_reload can see it. */
2830 && !(WORD_REGISTER_OPERATIONS
2831 && (x_size - 1) / UNITS_PER_WORD
2832 == (new_size -1 ) / UNITS_PER_WORD))
2833 || x_size == new_size)
2835 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2836 else if (insn && GET_CODE (insn) == DEBUG_INSN)
2837 return gen_rtx_raw_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2838 else
2839 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2842 return x;
2844 case MEM:
2845 /* Our only special processing is to pass the mode of the MEM to our
2846 recursive call and copy the flags. While we are here, handle this
2847 case more efficiently. */
2849 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2850 for_costs);
2851 if (for_costs
2852 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2853 && !memory_address_p (GET_MODE (x), new_rtx))
2854 note_reg_elim_costly (XEXP (x, 0), insn);
2856 return replace_equiv_address_nv (x, new_rtx);
2858 case USE:
2859 /* Handle insn_list USE that a call to a pure function may generate. */
2860 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2861 for_costs);
2862 if (new_rtx != XEXP (x, 0))
2863 return gen_rtx_USE (GET_MODE (x), new_rtx);
2864 return x;
2866 case CLOBBER:
2867 case ASM_OPERANDS:
2868 gcc_assert (insn && DEBUG_INSN_P (insn));
2869 break;
2871 case SET:
2872 gcc_unreachable ();
2874 default:
2875 break;
2878 /* Process each of our operands recursively. If any have changed, make a
2879 copy of the rtx. */
2880 fmt = GET_RTX_FORMAT (code);
2881 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2883 if (*fmt == 'e')
2885 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2886 for_costs);
2887 if (new_rtx != XEXP (x, i) && ! copied)
2889 x = shallow_copy_rtx (x);
2890 copied = 1;
2892 XEXP (x, i) = new_rtx;
2894 else if (*fmt == 'E')
2896 int copied_vec = 0;
2897 for (j = 0; j < XVECLEN (x, i); j++)
2899 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2900 for_costs);
2901 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2903 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2904 XVEC (x, i)->elem);
2905 if (! copied)
2907 x = shallow_copy_rtx (x);
2908 copied = 1;
2910 XVEC (x, i) = new_v;
2911 copied_vec = 1;
2913 XVECEXP (x, i, j) = new_rtx;
2918 return x;
2922 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2924 if (reg_eliminate == NULL)
2926 gcc_assert (targetm.no_register_allocation);
2927 return x;
2929 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2932 /* Scan rtx X for modifications of elimination target registers. Update
2933 the table of eliminables to reflect the changed state. MEM_MODE is
2934 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2936 static void
2937 elimination_effects (rtx x, machine_mode mem_mode)
2939 enum rtx_code code = GET_CODE (x);
2940 struct elim_table *ep;
2941 int regno;
2942 int i, j;
2943 const char *fmt;
2945 switch (code)
2947 CASE_CONST_ANY:
2948 case CONST:
2949 case SYMBOL_REF:
2950 case CODE_LABEL:
2951 case PC:
2952 case CC0:
2953 case ASM_INPUT:
2954 case ADDR_VEC:
2955 case ADDR_DIFF_VEC:
2956 case RETURN:
2957 return;
2959 case REG:
2960 regno = REGNO (x);
2962 /* First handle the case where we encounter a bare register that
2963 is eliminable. Replace it with a PLUS. */
2964 if (regno < FIRST_PSEUDO_REGISTER)
2966 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2967 ep++)
2968 if (ep->from_rtx == x && ep->can_eliminate)
2970 if (! mem_mode)
2971 ep->ref_outside_mem = 1;
2972 return;
2976 else if (reg_renumber[regno] < 0
2977 && reg_equivs
2978 && reg_equiv_constant (regno)
2979 && ! function_invariant_p (reg_equiv_constant (regno)))
2980 elimination_effects (reg_equiv_constant (regno), mem_mode);
2981 return;
2983 case PRE_INC:
2984 case POST_INC:
2985 case PRE_DEC:
2986 case POST_DEC:
2987 case POST_MODIFY:
2988 case PRE_MODIFY:
2989 /* If we modify the source of an elimination rule, disable it. */
2990 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2991 if (ep->from_rtx == XEXP (x, 0))
2992 ep->can_eliminate = 0;
2994 /* If we modify the target of an elimination rule by adding a constant,
2995 update its offset. If we modify the target in any other way, we'll
2996 have to disable the rule as well. */
2997 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2998 if (ep->to_rtx == XEXP (x, 0))
3000 int size = GET_MODE_SIZE (mem_mode);
3002 /* If more bytes than MEM_MODE are pushed, account for them. */
3003 #ifdef PUSH_ROUNDING
3004 if (ep->to_rtx == stack_pointer_rtx)
3005 size = PUSH_ROUNDING (size);
3006 #endif
3007 if (code == PRE_DEC || code == POST_DEC)
3008 ep->offset += size;
3009 else if (code == PRE_INC || code == POST_INC)
3010 ep->offset -= size;
3011 else if (code == PRE_MODIFY || code == POST_MODIFY)
3013 if (GET_CODE (XEXP (x, 1)) == PLUS
3014 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3015 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3016 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3017 else
3018 ep->can_eliminate = 0;
3022 /* These two aren't unary operators. */
3023 if (code == POST_MODIFY || code == PRE_MODIFY)
3024 break;
3026 /* Fall through to generic unary operation case. */
3027 gcc_fallthrough ();
3028 case STRICT_LOW_PART:
3029 case NEG: case NOT:
3030 case SIGN_EXTEND: case ZERO_EXTEND:
3031 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3032 case FLOAT: case FIX:
3033 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3034 case ABS:
3035 case SQRT:
3036 case FFS:
3037 case CLZ:
3038 case CTZ:
3039 case POPCOUNT:
3040 case PARITY:
3041 case BSWAP:
3042 elimination_effects (XEXP (x, 0), mem_mode);
3043 return;
3045 case SUBREG:
3046 if (REG_P (SUBREG_REG (x))
3047 && !paradoxical_subreg_p (x)
3048 && reg_equivs
3049 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3050 return;
3052 elimination_effects (SUBREG_REG (x), mem_mode);
3053 return;
3055 case USE:
3056 /* If using a register that is the source of an eliminate we still
3057 think can be performed, note it cannot be performed since we don't
3058 know how this register is used. */
3059 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3060 if (ep->from_rtx == XEXP (x, 0))
3061 ep->can_eliminate = 0;
3063 elimination_effects (XEXP (x, 0), mem_mode);
3064 return;
3066 case CLOBBER:
3067 /* If clobbering a register that is the replacement register for an
3068 elimination we still think can be performed, note that it cannot
3069 be performed. Otherwise, we need not be concerned about it. */
3070 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3071 if (ep->to_rtx == XEXP (x, 0))
3072 ep->can_eliminate = 0;
3074 elimination_effects (XEXP (x, 0), mem_mode);
3075 return;
3077 case SET:
3078 /* Check for setting a register that we know about. */
3079 if (REG_P (SET_DEST (x)))
3081 /* See if this is setting the replacement register for an
3082 elimination.
3084 If DEST is the hard frame pointer, we do nothing because we
3085 assume that all assignments to the frame pointer are for
3086 non-local gotos and are being done at a time when they are valid
3087 and do not disturb anything else. Some machines want to
3088 eliminate a fake argument pointer (or even a fake frame pointer)
3089 with either the real frame or the stack pointer. Assignments to
3090 the hard frame pointer must not prevent this elimination. */
3092 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3093 ep++)
3094 if (ep->to_rtx == SET_DEST (x)
3095 && SET_DEST (x) != hard_frame_pointer_rtx)
3097 /* If it is being incremented, adjust the offset. Otherwise,
3098 this elimination can't be done. */
3099 rtx src = SET_SRC (x);
3101 if (GET_CODE (src) == PLUS
3102 && XEXP (src, 0) == SET_DEST (x)
3103 && CONST_INT_P (XEXP (src, 1)))
3104 ep->offset -= INTVAL (XEXP (src, 1));
3105 else
3106 ep->can_eliminate = 0;
3110 elimination_effects (SET_DEST (x), VOIDmode);
3111 elimination_effects (SET_SRC (x), VOIDmode);
3112 return;
3114 case MEM:
3115 /* Our only special processing is to pass the mode of the MEM to our
3116 recursive call. */
3117 elimination_effects (XEXP (x, 0), GET_MODE (x));
3118 return;
3120 default:
3121 break;
3124 fmt = GET_RTX_FORMAT (code);
3125 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3127 if (*fmt == 'e')
3128 elimination_effects (XEXP (x, i), mem_mode);
3129 else if (*fmt == 'E')
3130 for (j = 0; j < XVECLEN (x, i); j++)
3131 elimination_effects (XVECEXP (x, i, j), mem_mode);
3135 /* Descend through rtx X and verify that no references to eliminable registers
3136 remain. If any do remain, mark the involved register as not
3137 eliminable. */
3139 static void
3140 check_eliminable_occurrences (rtx x)
3142 const char *fmt;
3143 int i;
3144 enum rtx_code code;
3146 if (x == 0)
3147 return;
3149 code = GET_CODE (x);
3151 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3153 struct elim_table *ep;
3155 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3156 if (ep->from_rtx == x)
3157 ep->can_eliminate = 0;
3158 return;
3161 fmt = GET_RTX_FORMAT (code);
3162 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3164 if (*fmt == 'e')
3165 check_eliminable_occurrences (XEXP (x, i));
3166 else if (*fmt == 'E')
3168 int j;
3169 for (j = 0; j < XVECLEN (x, i); j++)
3170 check_eliminable_occurrences (XVECEXP (x, i, j));
3175 /* Scan INSN and eliminate all eliminable registers in it.
3177 If REPLACE is nonzero, do the replacement destructively. Also
3178 delete the insn as dead it if it is setting an eliminable register.
3180 If REPLACE is zero, do all our allocations in reload_obstack.
3182 If no eliminations were done and this insn doesn't require any elimination
3183 processing (these are not identical conditions: it might be updating sp,
3184 but not referencing fp; this needs to be seen during reload_as_needed so
3185 that the offset between fp and sp can be taken into consideration), zero
3186 is returned. Otherwise, 1 is returned. */
3188 static int
3189 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3191 int icode = recog_memoized (insn);
3192 rtx old_body = PATTERN (insn);
3193 int insn_is_asm = asm_noperands (old_body) >= 0;
3194 rtx old_set = single_set (insn);
3195 rtx new_body;
3196 int val = 0;
3197 int i;
3198 rtx substed_operand[MAX_RECOG_OPERANDS];
3199 rtx orig_operand[MAX_RECOG_OPERANDS];
3200 struct elim_table *ep;
3201 rtx plus_src, plus_cst_src;
3203 if (! insn_is_asm && icode < 0)
3205 gcc_assert (DEBUG_INSN_P (insn)
3206 || GET_CODE (PATTERN (insn)) == USE
3207 || GET_CODE (PATTERN (insn)) == CLOBBER
3208 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3209 if (DEBUG_INSN_P (insn))
3210 INSN_VAR_LOCATION_LOC (insn)
3211 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3212 return 0;
3215 if (old_set != 0 && REG_P (SET_DEST (old_set))
3216 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3218 /* Check for setting an eliminable register. */
3219 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3220 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3222 /* If this is setting the frame pointer register to the
3223 hardware frame pointer register and this is an elimination
3224 that will be done (tested above), this insn is really
3225 adjusting the frame pointer downward to compensate for
3226 the adjustment done before a nonlocal goto. */
3227 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
3228 && ep->from == FRAME_POINTER_REGNUM
3229 && ep->to == HARD_FRAME_POINTER_REGNUM)
3231 rtx base = SET_SRC (old_set);
3232 rtx_insn *base_insn = insn;
3233 HOST_WIDE_INT offset = 0;
3235 while (base != ep->to_rtx)
3237 rtx_insn *prev_insn;
3238 rtx prev_set;
3240 if (GET_CODE (base) == PLUS
3241 && CONST_INT_P (XEXP (base, 1)))
3243 offset += INTVAL (XEXP (base, 1));
3244 base = XEXP (base, 0);
3246 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3247 && (prev_set = single_set (prev_insn)) != 0
3248 && rtx_equal_p (SET_DEST (prev_set), base))
3250 base = SET_SRC (prev_set);
3251 base_insn = prev_insn;
3253 else
3254 break;
3257 if (base == ep->to_rtx)
3259 rtx src = plus_constant (Pmode, ep->to_rtx,
3260 offset - ep->offset);
3262 new_body = old_body;
3263 if (! replace)
3265 new_body = copy_insn (old_body);
3266 if (REG_NOTES (insn))
3267 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3269 PATTERN (insn) = new_body;
3270 old_set = single_set (insn);
3272 /* First see if this insn remains valid when we
3273 make the change. If not, keep the INSN_CODE
3274 the same and let reload fit it up. */
3275 validate_change (insn, &SET_SRC (old_set), src, 1);
3276 validate_change (insn, &SET_DEST (old_set),
3277 ep->to_rtx, 1);
3278 if (! apply_change_group ())
3280 SET_SRC (old_set) = src;
3281 SET_DEST (old_set) = ep->to_rtx;
3284 val = 1;
3285 goto done;
3289 /* In this case this insn isn't serving a useful purpose. We
3290 will delete it in reload_as_needed once we know that this
3291 elimination is, in fact, being done.
3293 If REPLACE isn't set, we can't delete this insn, but needn't
3294 process it since it won't be used unless something changes. */
3295 if (replace)
3297 delete_dead_insn (insn);
3298 return 1;
3300 val = 1;
3301 goto done;
3305 /* We allow one special case which happens to work on all machines we
3306 currently support: a single set with the source or a REG_EQUAL
3307 note being a PLUS of an eliminable register and a constant. */
3308 plus_src = plus_cst_src = 0;
3309 if (old_set && REG_P (SET_DEST (old_set)))
3311 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3312 plus_src = SET_SRC (old_set);
3313 /* First see if the source is of the form (plus (...) CST). */
3314 if (plus_src
3315 && CONST_INT_P (XEXP (plus_src, 1)))
3316 plus_cst_src = plus_src;
3317 else if (REG_P (SET_SRC (old_set))
3318 || plus_src)
3320 /* Otherwise, see if we have a REG_EQUAL note of the form
3321 (plus (...) CST). */
3322 rtx links;
3323 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3325 if ((REG_NOTE_KIND (links) == REG_EQUAL
3326 || REG_NOTE_KIND (links) == REG_EQUIV)
3327 && GET_CODE (XEXP (links, 0)) == PLUS
3328 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3330 plus_cst_src = XEXP (links, 0);
3331 break;
3336 /* Check that the first operand of the PLUS is a hard reg or
3337 the lowpart subreg of one. */
3338 if (plus_cst_src)
3340 rtx reg = XEXP (plus_cst_src, 0);
3341 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3342 reg = SUBREG_REG (reg);
3344 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3345 plus_cst_src = 0;
3348 if (plus_cst_src)
3350 rtx reg = XEXP (plus_cst_src, 0);
3351 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3353 if (GET_CODE (reg) == SUBREG)
3354 reg = SUBREG_REG (reg);
3356 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3357 if (ep->from_rtx == reg && ep->can_eliminate)
3359 rtx to_rtx = ep->to_rtx;
3360 offset += ep->offset;
3361 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3363 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3364 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3365 to_rtx);
3366 /* If we have a nonzero offset, and the source is already
3367 a simple REG, the following transformation would
3368 increase the cost of the insn by replacing a simple REG
3369 with (plus (reg sp) CST). So try only when we already
3370 had a PLUS before. */
3371 if (offset == 0 || plus_src)
3373 rtx new_src = plus_constant (GET_MODE (to_rtx),
3374 to_rtx, offset);
3376 new_body = old_body;
3377 if (! replace)
3379 new_body = copy_insn (old_body);
3380 if (REG_NOTES (insn))
3381 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3383 PATTERN (insn) = new_body;
3384 old_set = single_set (insn);
3386 /* First see if this insn remains valid when we make the
3387 change. If not, try to replace the whole pattern with
3388 a simple set (this may help if the original insn was a
3389 PARALLEL that was only recognized as single_set due to
3390 REG_UNUSED notes). If this isn't valid either, keep
3391 the INSN_CODE the same and let reload fix it up. */
3392 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3394 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3396 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3397 SET_SRC (old_set) = new_src;
3400 else
3401 break;
3403 val = 1;
3404 /* This can't have an effect on elimination offsets, so skip right
3405 to the end. */
3406 goto done;
3410 /* Determine the effects of this insn on elimination offsets. */
3411 elimination_effects (old_body, VOIDmode);
3413 /* Eliminate all eliminable registers occurring in operands that
3414 can be handled by reload. */
3415 extract_insn (insn);
3416 for (i = 0; i < recog_data.n_operands; i++)
3418 orig_operand[i] = recog_data.operand[i];
3419 substed_operand[i] = recog_data.operand[i];
3421 /* For an asm statement, every operand is eliminable. */
3422 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3424 bool is_set_src, in_plus;
3426 /* Check for setting a register that we know about. */
3427 if (recog_data.operand_type[i] != OP_IN
3428 && REG_P (orig_operand[i]))
3430 /* If we are assigning to a register that can be eliminated, it
3431 must be as part of a PARALLEL, since the code above handles
3432 single SETs. We must indicate that we can no longer
3433 eliminate this reg. */
3434 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3435 ep++)
3436 if (ep->from_rtx == orig_operand[i])
3437 ep->can_eliminate = 0;
3440 /* Companion to the above plus substitution, we can allow
3441 invariants as the source of a plain move. */
3442 is_set_src = false;
3443 if (old_set
3444 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3445 is_set_src = true;
3446 in_plus = false;
3447 if (plus_src
3448 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3449 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3450 in_plus = true;
3452 substed_operand[i]
3453 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3454 replace ? insn : NULL_RTX,
3455 is_set_src || in_plus, false);
3456 if (substed_operand[i] != orig_operand[i])
3457 val = 1;
3458 /* Terminate the search in check_eliminable_occurrences at
3459 this point. */
3460 *recog_data.operand_loc[i] = 0;
3462 /* If an output operand changed from a REG to a MEM and INSN is an
3463 insn, write a CLOBBER insn. */
3464 if (recog_data.operand_type[i] != OP_IN
3465 && REG_P (orig_operand[i])
3466 && MEM_P (substed_operand[i])
3467 && replace)
3468 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3472 for (i = 0; i < recog_data.n_dups; i++)
3473 *recog_data.dup_loc[i]
3474 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3476 /* If any eliminable remain, they aren't eliminable anymore. */
3477 check_eliminable_occurrences (old_body);
3479 /* Substitute the operands; the new values are in the substed_operand
3480 array. */
3481 for (i = 0; i < recog_data.n_operands; i++)
3482 *recog_data.operand_loc[i] = substed_operand[i];
3483 for (i = 0; i < recog_data.n_dups; i++)
3484 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3486 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3487 re-recognize the insn. We do this in case we had a simple addition
3488 but now can do this as a load-address. This saves an insn in this
3489 common case.
3490 If re-recognition fails, the old insn code number will still be used,
3491 and some register operands may have changed into PLUS expressions.
3492 These will be handled by find_reloads by loading them into a register
3493 again. */
3495 if (val)
3497 /* If we aren't replacing things permanently and we changed something,
3498 make another copy to ensure that all the RTL is new. Otherwise
3499 things can go wrong if find_reload swaps commutative operands
3500 and one is inside RTL that has been copied while the other is not. */
3501 new_body = old_body;
3502 if (! replace)
3504 new_body = copy_insn (old_body);
3505 if (REG_NOTES (insn))
3506 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3508 PATTERN (insn) = new_body;
3510 /* If we had a move insn but now we don't, rerecognize it. This will
3511 cause spurious re-recognition if the old move had a PARALLEL since
3512 the new one still will, but we can't call single_set without
3513 having put NEW_BODY into the insn and the re-recognition won't
3514 hurt in this rare case. */
3515 /* ??? Why this huge if statement - why don't we just rerecognize the
3516 thing always? */
3517 if (! insn_is_asm
3518 && old_set != 0
3519 && ((REG_P (SET_SRC (old_set))
3520 && (GET_CODE (new_body) != SET
3521 || !REG_P (SET_SRC (new_body))))
3522 /* If this was a load from or store to memory, compare
3523 the MEM in recog_data.operand to the one in the insn.
3524 If they are not equal, then rerecognize the insn. */
3525 || (old_set != 0
3526 && ((MEM_P (SET_SRC (old_set))
3527 && SET_SRC (old_set) != recog_data.operand[1])
3528 || (MEM_P (SET_DEST (old_set))
3529 && SET_DEST (old_set) != recog_data.operand[0])))
3530 /* If this was an add insn before, rerecognize. */
3531 || GET_CODE (SET_SRC (old_set)) == PLUS))
3533 int new_icode = recog (PATTERN (insn), insn, 0);
3534 if (new_icode >= 0)
3535 INSN_CODE (insn) = new_icode;
3539 /* Restore the old body. If there were any changes to it, we made a copy
3540 of it while the changes were still in place, so we'll correctly return
3541 a modified insn below. */
3542 if (! replace)
3544 /* Restore the old body. */
3545 for (i = 0; i < recog_data.n_operands; i++)
3546 /* Restoring a top-level match_parallel would clobber the new_body
3547 we installed in the insn. */
3548 if (recog_data.operand_loc[i] != &PATTERN (insn))
3549 *recog_data.operand_loc[i] = orig_operand[i];
3550 for (i = 0; i < recog_data.n_dups; i++)
3551 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3554 /* Update all elimination pairs to reflect the status after the current
3555 insn. The changes we make were determined by the earlier call to
3556 elimination_effects.
3558 We also detect cases where register elimination cannot be done,
3559 namely, if a register would be both changed and referenced outside a MEM
3560 in the resulting insn since such an insn is often undefined and, even if
3561 not, we cannot know what meaning will be given to it. Note that it is
3562 valid to have a register used in an address in an insn that changes it
3563 (presumably with a pre- or post-increment or decrement).
3565 If anything changes, return nonzero. */
3567 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3569 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3570 ep->can_eliminate = 0;
3572 ep->ref_outside_mem = 0;
3574 if (ep->previous_offset != ep->offset)
3575 val = 1;
3578 done:
3579 /* If we changed something, perform elimination in REG_NOTES. This is
3580 needed even when REPLACE is zero because a REG_DEAD note might refer
3581 to a register that we eliminate and could cause a different number
3582 of spill registers to be needed in the final reload pass than in
3583 the pre-passes. */
3584 if (val && REG_NOTES (insn) != 0)
3585 REG_NOTES (insn)
3586 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3587 false);
3589 return val;
3592 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3593 register allocator. INSN is the instruction we need to examine, we perform
3594 eliminations in its operands and record cases where eliminating a reg with
3595 an invariant equivalence would add extra cost. */
3597 #pragma GCC diagnostic push
3598 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3599 static void
3600 elimination_costs_in_insn (rtx_insn *insn)
3602 int icode = recog_memoized (insn);
3603 rtx old_body = PATTERN (insn);
3604 int insn_is_asm = asm_noperands (old_body) >= 0;
3605 rtx old_set = single_set (insn);
3606 int i;
3607 rtx orig_operand[MAX_RECOG_OPERANDS];
3608 rtx orig_dup[MAX_RECOG_OPERANDS];
3609 struct elim_table *ep;
3610 rtx plus_src, plus_cst_src;
3611 bool sets_reg_p;
3613 if (! insn_is_asm && icode < 0)
3615 gcc_assert (DEBUG_INSN_P (insn)
3616 || GET_CODE (PATTERN (insn)) == USE
3617 || GET_CODE (PATTERN (insn)) == CLOBBER
3618 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3619 return;
3622 if (old_set != 0 && REG_P (SET_DEST (old_set))
3623 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3625 /* Check for setting an eliminable register. */
3626 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3627 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3628 return;
3631 /* We allow one special case which happens to work on all machines we
3632 currently support: a single set with the source or a REG_EQUAL
3633 note being a PLUS of an eliminable register and a constant. */
3634 plus_src = plus_cst_src = 0;
3635 sets_reg_p = false;
3636 if (old_set && REG_P (SET_DEST (old_set)))
3638 sets_reg_p = true;
3639 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3640 plus_src = SET_SRC (old_set);
3641 /* First see if the source is of the form (plus (...) CST). */
3642 if (plus_src
3643 && CONST_INT_P (XEXP (plus_src, 1)))
3644 plus_cst_src = plus_src;
3645 else if (REG_P (SET_SRC (old_set))
3646 || plus_src)
3648 /* Otherwise, see if we have a REG_EQUAL note of the form
3649 (plus (...) CST). */
3650 rtx links;
3651 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3653 if ((REG_NOTE_KIND (links) == REG_EQUAL
3654 || REG_NOTE_KIND (links) == REG_EQUIV)
3655 && GET_CODE (XEXP (links, 0)) == PLUS
3656 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3658 plus_cst_src = XEXP (links, 0);
3659 break;
3665 /* Determine the effects of this insn on elimination offsets. */
3666 elimination_effects (old_body, VOIDmode);
3668 /* Eliminate all eliminable registers occurring in operands that
3669 can be handled by reload. */
3670 extract_insn (insn);
3671 int n_dups = recog_data.n_dups;
3672 for (i = 0; i < n_dups; i++)
3673 orig_dup[i] = *recog_data.dup_loc[i];
3675 int n_operands = recog_data.n_operands;
3676 for (i = 0; i < n_operands; i++)
3678 orig_operand[i] = recog_data.operand[i];
3680 /* For an asm statement, every operand is eliminable. */
3681 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3683 bool is_set_src, in_plus;
3685 /* Check for setting a register that we know about. */
3686 if (recog_data.operand_type[i] != OP_IN
3687 && REG_P (orig_operand[i]))
3689 /* If we are assigning to a register that can be eliminated, it
3690 must be as part of a PARALLEL, since the code above handles
3691 single SETs. We must indicate that we can no longer
3692 eliminate this reg. */
3693 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3694 ep++)
3695 if (ep->from_rtx == orig_operand[i])
3696 ep->can_eliminate = 0;
3699 /* Companion to the above plus substitution, we can allow
3700 invariants as the source of a plain move. */
3701 is_set_src = false;
3702 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3703 is_set_src = true;
3704 if (is_set_src && !sets_reg_p)
3705 note_reg_elim_costly (SET_SRC (old_set), insn);
3706 in_plus = false;
3707 if (plus_src && sets_reg_p
3708 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3709 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3710 in_plus = true;
3712 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3713 NULL_RTX,
3714 is_set_src || in_plus, true);
3715 /* Terminate the search in check_eliminable_occurrences at
3716 this point. */
3717 *recog_data.operand_loc[i] = 0;
3721 for (i = 0; i < n_dups; i++)
3722 *recog_data.dup_loc[i]
3723 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3725 /* If any eliminable remain, they aren't eliminable anymore. */
3726 check_eliminable_occurrences (old_body);
3728 /* Restore the old body. */
3729 for (i = 0; i < n_operands; i++)
3730 *recog_data.operand_loc[i] = orig_operand[i];
3731 for (i = 0; i < n_dups; i++)
3732 *recog_data.dup_loc[i] = orig_dup[i];
3734 /* Update all elimination pairs to reflect the status after the current
3735 insn. The changes we make were determined by the earlier call to
3736 elimination_effects. */
3738 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3740 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3741 ep->can_eliminate = 0;
3743 ep->ref_outside_mem = 0;
3746 return;
3748 #pragma GCC diagnostic pop
3750 /* Loop through all elimination pairs.
3751 Recalculate the number not at initial offset.
3753 Compute the maximum offset (minimum offset if the stack does not
3754 grow downward) for each elimination pair. */
3756 static void
3757 update_eliminable_offsets (void)
3759 struct elim_table *ep;
3761 num_not_at_initial_offset = 0;
3762 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3764 ep->previous_offset = ep->offset;
3765 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3766 num_not_at_initial_offset++;
3770 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3771 replacement we currently believe is valid, mark it as not eliminable if X
3772 modifies DEST in any way other than by adding a constant integer to it.
3774 If DEST is the frame pointer, we do nothing because we assume that
3775 all assignments to the hard frame pointer are nonlocal gotos and are being
3776 done at a time when they are valid and do not disturb anything else.
3777 Some machines want to eliminate a fake argument pointer with either the
3778 frame or stack pointer. Assignments to the hard frame pointer must not
3779 prevent this elimination.
3781 Called via note_stores from reload before starting its passes to scan
3782 the insns of the function. */
3784 static void
3785 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3787 unsigned int i;
3789 /* A SUBREG of a hard register here is just changing its mode. We should
3790 not see a SUBREG of an eliminable hard register, but check just in
3791 case. */
3792 if (GET_CODE (dest) == SUBREG)
3793 dest = SUBREG_REG (dest);
3795 if (dest == hard_frame_pointer_rtx)
3796 return;
3798 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3799 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3800 && (GET_CODE (x) != SET
3801 || GET_CODE (SET_SRC (x)) != PLUS
3802 || XEXP (SET_SRC (x), 0) != dest
3803 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3805 reg_eliminate[i].can_eliminate_previous
3806 = reg_eliminate[i].can_eliminate = 0;
3807 num_eliminable--;
3811 /* Verify that the initial elimination offsets did not change since the
3812 last call to set_initial_elim_offsets. This is used to catch cases
3813 where something illegal happened during reload_as_needed that could
3814 cause incorrect code to be generated if we did not check for it. */
3816 static bool
3817 verify_initial_elim_offsets (void)
3819 HOST_WIDE_INT t;
3820 struct elim_table *ep;
3822 if (!num_eliminable)
3823 return true;
3825 targetm.compute_frame_layout ();
3826 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3828 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3829 if (t != ep->initial_offset)
3830 return false;
3833 return true;
3836 /* Reset all offsets on eliminable registers to their initial values. */
3838 static void
3839 set_initial_elim_offsets (void)
3841 struct elim_table *ep = reg_eliminate;
3843 targetm.compute_frame_layout ();
3844 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3846 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3847 ep->previous_offset = ep->offset = ep->initial_offset;
3850 num_not_at_initial_offset = 0;
3853 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3855 static void
3856 set_initial_eh_label_offset (rtx label)
3858 set_label_offsets (label, NULL, 1);
3861 /* Initialize the known label offsets.
3862 Set a known offset for each forced label to be at the initial offset
3863 of each elimination. We do this because we assume that all
3864 computed jumps occur from a location where each elimination is
3865 at its initial offset.
3866 For all other labels, show that we don't know the offsets. */
3868 static void
3869 set_initial_label_offsets (void)
3871 memset (offsets_known_at, 0, num_labels);
3873 unsigned int i;
3874 rtx_insn *insn;
3875 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
3876 set_label_offsets (insn, NULL, 1);
3878 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3879 if (x->insn ())
3880 set_label_offsets (x->insn (), NULL, 1);
3882 for_each_eh_label (set_initial_eh_label_offset);
3885 /* Set all elimination offsets to the known values for the code label given
3886 by INSN. */
3888 static void
3889 set_offsets_for_label (rtx_insn *insn)
3891 unsigned int i;
3892 int label_nr = CODE_LABEL_NUMBER (insn);
3893 struct elim_table *ep;
3895 num_not_at_initial_offset = 0;
3896 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3898 ep->offset = ep->previous_offset
3899 = offsets_at[label_nr - first_label_num][i];
3900 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3901 num_not_at_initial_offset++;
3905 /* See if anything that happened changes which eliminations are valid.
3906 For example, on the SPARC, whether or not the frame pointer can
3907 be eliminated can depend on what registers have been used. We need
3908 not check some conditions again (such as flag_omit_frame_pointer)
3909 since they can't have changed. */
3911 static void
3912 update_eliminables (HARD_REG_SET *pset)
3914 int previous_frame_pointer_needed = frame_pointer_needed;
3915 struct elim_table *ep;
3917 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3918 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3919 && targetm.frame_pointer_required ())
3920 || ! targetm.can_eliminate (ep->from, ep->to)
3922 ep->can_eliminate = 0;
3924 /* Look for the case where we have discovered that we can't replace
3925 register A with register B and that means that we will now be
3926 trying to replace register A with register C. This means we can
3927 no longer replace register C with register B and we need to disable
3928 such an elimination, if it exists. This occurs often with A == ap,
3929 B == sp, and C == fp. */
3931 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3933 struct elim_table *op;
3934 int new_to = -1;
3936 if (! ep->can_eliminate && ep->can_eliminate_previous)
3938 /* Find the current elimination for ep->from, if there is a
3939 new one. */
3940 for (op = reg_eliminate;
3941 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3942 if (op->from == ep->from && op->can_eliminate)
3944 new_to = op->to;
3945 break;
3948 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3949 disable it. */
3950 for (op = reg_eliminate;
3951 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3952 if (op->from == new_to && op->to == ep->to)
3953 op->can_eliminate = 0;
3957 /* See if any registers that we thought we could eliminate the previous
3958 time are no longer eliminable. If so, something has changed and we
3959 must spill the register. Also, recompute the number of eliminable
3960 registers and see if the frame pointer is needed; it is if there is
3961 no elimination of the frame pointer that we can perform. */
3963 frame_pointer_needed = 1;
3964 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3966 if (ep->can_eliminate
3967 && ep->from == FRAME_POINTER_REGNUM
3968 && ep->to != HARD_FRAME_POINTER_REGNUM
3969 && (! SUPPORTS_STACK_ALIGNMENT
3970 || ! crtl->stack_realign_needed))
3971 frame_pointer_needed = 0;
3973 if (! ep->can_eliminate && ep->can_eliminate_previous)
3975 ep->can_eliminate_previous = 0;
3976 SET_HARD_REG_BIT (*pset, ep->from);
3977 num_eliminable--;
3981 /* If we didn't need a frame pointer last time, but we do now, spill
3982 the hard frame pointer. */
3983 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3984 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3987 /* Call update_eliminables an spill any registers we can't eliminate anymore.
3988 Return true iff a register was spilled. */
3990 static bool
3991 update_eliminables_and_spill (void)
3993 int i;
3994 bool did_spill = false;
3995 HARD_REG_SET to_spill;
3996 CLEAR_HARD_REG_SET (to_spill);
3997 update_eliminables (&to_spill);
3998 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
4000 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4001 if (TEST_HARD_REG_BIT (to_spill, i))
4003 spill_hard_reg (i, 1);
4004 did_spill = true;
4006 /* Regardless of the state of spills, if we previously had
4007 a register that we thought we could eliminate, but now can
4008 not eliminate, we must run another pass.
4010 Consider pseudos which have an entry in reg_equiv_* which
4011 reference an eliminable register. We must make another pass
4012 to update reg_equiv_* so that we do not substitute in the
4013 old value from when we thought the elimination could be
4014 performed. */
4016 return did_spill;
4019 /* Return true if X is used as the target register of an elimination. */
4021 bool
4022 elimination_target_reg_p (rtx x)
4024 struct elim_table *ep;
4026 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4027 if (ep->to_rtx == x && ep->can_eliminate)
4028 return true;
4030 return false;
4033 /* Initialize the table of registers to eliminate.
4034 Pre-condition: global flag frame_pointer_needed has been set before
4035 calling this function. */
4037 static void
4038 init_elim_table (void)
4040 struct elim_table *ep;
4041 const struct elim_table_1 *ep1;
4043 if (!reg_eliminate)
4044 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4046 num_eliminable = 0;
4048 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4049 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4051 ep->from = ep1->from;
4052 ep->to = ep1->to;
4053 ep->can_eliminate = ep->can_eliminate_previous
4054 = (targetm.can_eliminate (ep->from, ep->to)
4055 && ! (ep->to == STACK_POINTER_REGNUM
4056 && frame_pointer_needed
4057 && (! SUPPORTS_STACK_ALIGNMENT
4058 || ! stack_realign_fp)));
4061 /* Count the number of eliminable registers and build the FROM and TO
4062 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4063 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4064 We depend on this. */
4065 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4067 num_eliminable += ep->can_eliminate;
4068 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4069 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4073 /* Find all the pseudo registers that didn't get hard regs
4074 but do have known equivalent constants or memory slots.
4075 These include parameters (known equivalent to parameter slots)
4076 and cse'd or loop-moved constant memory addresses.
4078 Record constant equivalents in reg_equiv_constant
4079 so they will be substituted by find_reloads.
4080 Record memory equivalents in reg_mem_equiv so they can
4081 be substituted eventually by altering the REG-rtx's. */
4083 static void
4084 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4086 int i;
4087 rtx_insn *insn;
4089 grow_reg_equivs ();
4090 if (do_subregs)
4091 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4092 else
4093 reg_max_ref_width = NULL;
4095 num_eliminable_invariants = 0;
4097 first_label_num = get_first_label_num ();
4098 num_labels = max_label_num () - first_label_num;
4100 /* Allocate the tables used to store offset information at labels. */
4101 offsets_known_at = XNEWVEC (char, num_labels);
4102 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4104 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4105 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4106 find largest such for each pseudo. FIRST is the head of the insn
4107 list. */
4109 for (insn = first; insn; insn = NEXT_INSN (insn))
4111 rtx set = single_set (insn);
4113 /* We may introduce USEs that we want to remove at the end, so
4114 we'll mark them with QImode. Make sure there are no
4115 previously-marked insns left by say regmove. */
4116 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4117 && GET_MODE (insn) != VOIDmode)
4118 PUT_MODE (insn, VOIDmode);
4120 if (do_subregs && NONDEBUG_INSN_P (insn))
4121 scan_paradoxical_subregs (PATTERN (insn));
4123 if (set != 0 && REG_P (SET_DEST (set)))
4125 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4126 rtx x;
4128 if (! note)
4129 continue;
4131 i = REGNO (SET_DEST (set));
4132 x = XEXP (note, 0);
4134 if (i <= LAST_VIRTUAL_REGISTER)
4135 continue;
4137 /* If flag_pic and we have constant, verify it's legitimate. */
4138 if (!CONSTANT_P (x)
4139 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4141 /* It can happen that a REG_EQUIV note contains a MEM
4142 that is not a legitimate memory operand. As later
4143 stages of reload assume that all addresses found
4144 in the reg_equiv_* arrays were originally legitimate,
4145 we ignore such REG_EQUIV notes. */
4146 if (memory_operand (x, VOIDmode))
4148 /* Always unshare the equivalence, so we can
4149 substitute into this insn without touching the
4150 equivalence. */
4151 reg_equiv_memory_loc (i) = copy_rtx (x);
4153 else if (function_invariant_p (x))
4155 machine_mode mode;
4157 mode = GET_MODE (SET_DEST (set));
4158 if (GET_CODE (x) == PLUS)
4160 /* This is PLUS of frame pointer and a constant,
4161 and might be shared. Unshare it. */
4162 reg_equiv_invariant (i) = copy_rtx (x);
4163 num_eliminable_invariants++;
4165 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4167 reg_equiv_invariant (i) = x;
4168 num_eliminable_invariants++;
4170 else if (targetm.legitimate_constant_p (mode, x))
4171 reg_equiv_constant (i) = x;
4172 else
4174 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4175 if (! reg_equiv_memory_loc (i))
4176 reg_equiv_init (i) = NULL;
4179 else
4181 reg_equiv_init (i) = NULL;
4182 continue;
4185 else
4186 reg_equiv_init (i) = NULL;
4190 if (dump_file)
4191 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4192 if (reg_equiv_init (i))
4194 fprintf (dump_file, "init_insns for %u: ", i);
4195 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4196 fprintf (dump_file, "\n");
4200 /* Indicate that we no longer have known memory locations or constants.
4201 Free all data involved in tracking these. */
4203 static void
4204 free_reg_equiv (void)
4206 int i;
4208 free (offsets_known_at);
4209 free (offsets_at);
4210 offsets_at = 0;
4211 offsets_known_at = 0;
4213 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4214 if (reg_equiv_alt_mem_list (i))
4215 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4216 vec_free (reg_equivs);
4219 /* Kick all pseudos out of hard register REGNO.
4221 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4222 because we found we can't eliminate some register. In the case, no pseudos
4223 are allowed to be in the register, even if they are only in a block that
4224 doesn't require spill registers, unlike the case when we are spilling this
4225 hard reg to produce another spill register.
4227 Return nonzero if any pseudos needed to be kicked out. */
4229 static void
4230 spill_hard_reg (unsigned int regno, int cant_eliminate)
4232 int i;
4234 if (cant_eliminate)
4236 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4237 df_set_regs_ever_live (regno, true);
4240 /* Spill every pseudo reg that was allocated to this reg
4241 or to something that overlaps this reg. */
4243 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4244 if (reg_renumber[i] >= 0
4245 && (unsigned int) reg_renumber[i] <= regno
4246 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4247 SET_REGNO_REG_SET (&spilled_pseudos, i);
4250 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4251 insns that need reloads, this function is used to actually spill pseudo
4252 registers and try to reallocate them. It also sets up the spill_regs
4253 array for use by choose_reload_regs.
4255 GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4256 that we displace from hard registers. */
4258 static int
4259 finish_spills (int global)
4261 struct insn_chain *chain;
4262 int something_changed = 0;
4263 unsigned i;
4264 reg_set_iterator rsi;
4266 /* Build the spill_regs array for the function. */
4267 /* If there are some registers still to eliminate and one of the spill regs
4268 wasn't ever used before, additional stack space may have to be
4269 allocated to store this register. Thus, we may have changed the offset
4270 between the stack and frame pointers, so mark that something has changed.
4272 One might think that we need only set VAL to 1 if this is a call-used
4273 register. However, the set of registers that must be saved by the
4274 prologue is not identical to the call-used set. For example, the
4275 register used by the call insn for the return PC is a call-used register,
4276 but must be saved by the prologue. */
4278 n_spills = 0;
4279 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4280 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4282 spill_reg_order[i] = n_spills;
4283 spill_regs[n_spills++] = i;
4284 if (num_eliminable && ! df_regs_ever_live_p (i))
4285 something_changed = 1;
4286 df_set_regs_ever_live (i, true);
4288 else
4289 spill_reg_order[i] = -1;
4291 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4292 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4294 /* Record the current hard register the pseudo is allocated to
4295 in pseudo_previous_regs so we avoid reallocating it to the
4296 same hard reg in a later pass. */
4297 gcc_assert (reg_renumber[i] >= 0);
4299 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4300 /* Mark it as no longer having a hard register home. */
4301 reg_renumber[i] = -1;
4302 if (ira_conflicts_p)
4303 /* Inform IRA about the change. */
4304 ira_mark_allocation_change (i);
4305 /* We will need to scan everything again. */
4306 something_changed = 1;
4309 /* Retry global register allocation if possible. */
4310 if (global && ira_conflicts_p)
4312 unsigned int n;
4314 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4315 /* For every insn that needs reloads, set the registers used as spill
4316 regs in pseudo_forbidden_regs for every pseudo live across the
4317 insn. */
4318 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4320 EXECUTE_IF_SET_IN_REG_SET
4321 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4323 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4324 chain->used_spill_regs);
4326 EXECUTE_IF_SET_IN_REG_SET
4327 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4329 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4330 chain->used_spill_regs);
4334 /* Retry allocating the pseudos spilled in IRA and the
4335 reload. For each reg, merge the various reg sets that
4336 indicate which hard regs can't be used, and call
4337 ira_reassign_pseudos. */
4338 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4339 if (reg_old_renumber[i] != reg_renumber[i])
4341 if (reg_renumber[i] < 0)
4342 temp_pseudo_reg_arr[n++] = i;
4343 else
4344 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4346 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4347 bad_spill_regs_global,
4348 pseudo_forbidden_regs, pseudo_previous_regs,
4349 &spilled_pseudos))
4350 something_changed = 1;
4352 /* Fix up the register information in the insn chain.
4353 This involves deleting those of the spilled pseudos which did not get
4354 a new hard register home from the live_{before,after} sets. */
4355 for (chain = reload_insn_chain; chain; chain = chain->next)
4357 HARD_REG_SET used_by_pseudos;
4358 HARD_REG_SET used_by_pseudos2;
4360 if (! ira_conflicts_p)
4362 /* Don't do it for IRA because IRA and the reload still can
4363 assign hard registers to the spilled pseudos on next
4364 reload iterations. */
4365 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4366 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4368 /* Mark any unallocated hard regs as available for spills. That
4369 makes inheritance work somewhat better. */
4370 if (chain->need_reload)
4372 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4373 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4374 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4376 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4377 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4378 /* Value of chain->used_spill_regs from previous iteration
4379 may be not included in the value calculated here because
4380 of possible removing caller-saves insns (see function
4381 delete_caller_save_insns. */
4382 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4383 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4387 CLEAR_REG_SET (&changed_allocation_pseudos);
4388 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4389 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4391 int regno = reg_renumber[i];
4392 if (reg_old_renumber[i] == regno)
4393 continue;
4395 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4397 alter_reg (i, reg_old_renumber[i], false);
4398 reg_old_renumber[i] = regno;
4399 if (dump_file)
4401 if (regno == -1)
4402 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4403 else
4404 fprintf (dump_file, " Register %d now in %d.\n\n",
4405 i, reg_renumber[i]);
4409 return something_changed;
4412 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4414 static void
4415 scan_paradoxical_subregs (rtx x)
4417 int i;
4418 const char *fmt;
4419 enum rtx_code code = GET_CODE (x);
4421 switch (code)
4423 case REG:
4424 case CONST:
4425 case SYMBOL_REF:
4426 case LABEL_REF:
4427 CASE_CONST_ANY:
4428 case CC0:
4429 case PC:
4430 case USE:
4431 case CLOBBER:
4432 return;
4434 case SUBREG:
4435 if (REG_P (SUBREG_REG (x))
4436 && (GET_MODE_SIZE (GET_MODE (x))
4437 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4439 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4440 = GET_MODE_SIZE (GET_MODE (x));
4441 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4443 return;
4445 default:
4446 break;
4449 fmt = GET_RTX_FORMAT (code);
4450 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4452 if (fmt[i] == 'e')
4453 scan_paradoxical_subregs (XEXP (x, i));
4454 else if (fmt[i] == 'E')
4456 int j;
4457 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4458 scan_paradoxical_subregs (XVECEXP (x, i, j));
4463 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4464 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4465 and apply the corresponding narrowing subreg to *OTHER_PTR.
4466 Return true if the operands were changed, false otherwise. */
4468 static bool
4469 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4471 rtx op, inner, other, tem;
4473 op = *op_ptr;
4474 if (!paradoxical_subreg_p (op))
4475 return false;
4476 inner = SUBREG_REG (op);
4478 other = *other_ptr;
4479 tem = gen_lowpart_common (GET_MODE (inner), other);
4480 if (!tem)
4481 return false;
4483 /* If the lowpart operation turned a hard register into a subreg,
4484 rather than simplifying it to another hard register, then the
4485 mode change cannot be properly represented. For example, OTHER
4486 might be valid in its current mode, but not in the new one. */
4487 if (GET_CODE (tem) == SUBREG
4488 && REG_P (other)
4489 && HARD_REGISTER_P (other))
4490 return false;
4492 *op_ptr = inner;
4493 *other_ptr = tem;
4494 return true;
4497 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4498 examine all of the reload insns between PREV and NEXT exclusive, and
4499 annotate all that may trap. */
4501 static void
4502 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4504 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4505 if (note == NULL)
4506 return;
4507 if (!insn_could_throw_p (insn))
4508 remove_note (insn, note);
4509 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4512 /* Reload pseudo-registers into hard regs around each insn as needed.
4513 Additional register load insns are output before the insn that needs it
4514 and perhaps store insns after insns that modify the reloaded pseudo reg.
4516 reg_last_reload_reg and reg_reloaded_contents keep track of
4517 which registers are already available in reload registers.
4518 We update these for the reloads that we perform,
4519 as the insns are scanned. */
4521 static void
4522 reload_as_needed (int live_known)
4524 struct insn_chain *chain;
4525 #if AUTO_INC_DEC
4526 int i;
4527 #endif
4528 rtx_note *marker;
4530 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4531 memset (spill_reg_store, 0, sizeof spill_reg_store);
4532 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4533 INIT_REG_SET (&reg_has_output_reload);
4534 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4535 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4537 set_initial_elim_offsets ();
4539 /* Generate a marker insn that we will move around. */
4540 marker = emit_note (NOTE_INSN_DELETED);
4541 unlink_insn_chain (marker, marker);
4543 for (chain = reload_insn_chain; chain; chain = chain->next)
4545 rtx_insn *prev = 0;
4546 rtx_insn *insn = chain->insn;
4547 rtx_insn *old_next = NEXT_INSN (insn);
4548 #if AUTO_INC_DEC
4549 rtx_insn *old_prev = PREV_INSN (insn);
4550 #endif
4552 if (will_delete_init_insn_p (insn))
4553 continue;
4555 /* If we pass a label, copy the offsets from the label information
4556 into the current offsets of each elimination. */
4557 if (LABEL_P (insn))
4558 set_offsets_for_label (insn);
4560 else if (INSN_P (insn))
4562 regset_head regs_to_forget;
4563 INIT_REG_SET (&regs_to_forget);
4564 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4566 /* If this is a USE and CLOBBER of a MEM, ensure that any
4567 references to eliminable registers have been removed. */
4569 if ((GET_CODE (PATTERN (insn)) == USE
4570 || GET_CODE (PATTERN (insn)) == CLOBBER)
4571 && MEM_P (XEXP (PATTERN (insn), 0)))
4572 XEXP (XEXP (PATTERN (insn), 0), 0)
4573 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4574 GET_MODE (XEXP (PATTERN (insn), 0)),
4575 NULL_RTX);
4577 /* If we need to do register elimination processing, do so.
4578 This might delete the insn, in which case we are done. */
4579 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4581 eliminate_regs_in_insn (insn, 1);
4582 if (NOTE_P (insn))
4584 update_eliminable_offsets ();
4585 CLEAR_REG_SET (&regs_to_forget);
4586 continue;
4590 /* If need_elim is nonzero but need_reload is zero, one might think
4591 that we could simply set n_reloads to 0. However, find_reloads
4592 could have done some manipulation of the insn (such as swapping
4593 commutative operands), and these manipulations are lost during
4594 the first pass for every insn that needs register elimination.
4595 So the actions of find_reloads must be redone here. */
4597 if (! chain->need_elim && ! chain->need_reload
4598 && ! chain->need_operand_change)
4599 n_reloads = 0;
4600 /* First find the pseudo regs that must be reloaded for this insn.
4601 This info is returned in the tables reload_... (see reload.h).
4602 Also modify the body of INSN by substituting RELOAD
4603 rtx's for those pseudo regs. */
4604 else
4606 CLEAR_REG_SET (&reg_has_output_reload);
4607 CLEAR_HARD_REG_SET (reg_is_output_reload);
4609 find_reloads (insn, 1, spill_indirect_levels, live_known,
4610 spill_reg_order);
4613 if (n_reloads > 0)
4615 rtx_insn *next = NEXT_INSN (insn);
4617 /* ??? PREV can get deleted by reload inheritance.
4618 Work around this by emitting a marker note. */
4619 prev = PREV_INSN (insn);
4620 reorder_insns_nobb (marker, marker, prev);
4622 /* Now compute which reload regs to reload them into. Perhaps
4623 reusing reload regs from previous insns, or else output
4624 load insns to reload them. Maybe output store insns too.
4625 Record the choices of reload reg in reload_reg_rtx. */
4626 choose_reload_regs (chain);
4628 /* Generate the insns to reload operands into or out of
4629 their reload regs. */
4630 emit_reload_insns (chain);
4632 /* Substitute the chosen reload regs from reload_reg_rtx
4633 into the insn's body (or perhaps into the bodies of other
4634 load and store insn that we just made for reloading
4635 and that we moved the structure into). */
4636 subst_reloads (insn);
4638 prev = PREV_INSN (marker);
4639 unlink_insn_chain (marker, marker);
4641 /* Adjust the exception region notes for loads and stores. */
4642 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4643 fixup_eh_region_note (insn, prev, next);
4645 /* Adjust the location of REG_ARGS_SIZE. */
4646 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4647 if (p)
4649 remove_note (insn, p);
4650 fixup_args_size_notes (prev, PREV_INSN (next),
4651 INTVAL (XEXP (p, 0)));
4654 /* If this was an ASM, make sure that all the reload insns
4655 we have generated are valid. If not, give an error
4656 and delete them. */
4657 if (asm_noperands (PATTERN (insn)) >= 0)
4658 for (rtx_insn *p = NEXT_INSN (prev);
4659 p != next;
4660 p = NEXT_INSN (p))
4661 if (p != insn && INSN_P (p)
4662 && GET_CODE (PATTERN (p)) != USE
4663 && (recog_memoized (p) < 0
4664 || (extract_insn (p),
4665 !(constrain_operands (1,
4666 get_enabled_alternatives (p))))))
4668 error_for_asm (insn,
4669 "%<asm%> operand requires "
4670 "impossible reload");
4671 delete_insn (p);
4675 if (num_eliminable && chain->need_elim)
4676 update_eliminable_offsets ();
4678 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4679 is no longer validly lying around to save a future reload.
4680 Note that this does not detect pseudos that were reloaded
4681 for this insn in order to be stored in
4682 (obeying register constraints). That is correct; such reload
4683 registers ARE still valid. */
4684 forget_marked_reloads (&regs_to_forget);
4685 CLEAR_REG_SET (&regs_to_forget);
4687 /* There may have been CLOBBER insns placed after INSN. So scan
4688 between INSN and NEXT and use them to forget old reloads. */
4689 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4690 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4691 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4693 #if AUTO_INC_DEC
4694 /* Likewise for regs altered by auto-increment in this insn.
4695 REG_INC notes have been changed by reloading:
4696 find_reloads_address_1 records substitutions for them,
4697 which have been performed by subst_reloads above. */
4698 for (i = n_reloads - 1; i >= 0; i--)
4700 rtx in_reg = rld[i].in_reg;
4701 if (in_reg)
4703 enum rtx_code code = GET_CODE (in_reg);
4704 /* PRE_INC / PRE_DEC will have the reload register ending up
4705 with the same value as the stack slot, but that doesn't
4706 hold true for POST_INC / POST_DEC. Either we have to
4707 convert the memory access to a true POST_INC / POST_DEC,
4708 or we can't use the reload register for inheritance. */
4709 if ((code == POST_INC || code == POST_DEC)
4710 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4711 REGNO (rld[i].reg_rtx))
4712 /* Make sure it is the inc/dec pseudo, and not
4713 some other (e.g. output operand) pseudo. */
4714 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4715 == REGNO (XEXP (in_reg, 0))))
4718 rtx reload_reg = rld[i].reg_rtx;
4719 machine_mode mode = GET_MODE (reload_reg);
4720 int n = 0;
4721 rtx_insn *p;
4723 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4725 /* We really want to ignore REG_INC notes here, so
4726 use PATTERN (p) as argument to reg_set_p . */
4727 if (reg_set_p (reload_reg, PATTERN (p)))
4728 break;
4729 n = count_occurrences (PATTERN (p), reload_reg, 0);
4730 if (! n)
4731 continue;
4732 if (n == 1)
4734 rtx replace_reg
4735 = gen_rtx_fmt_e (code, mode, reload_reg);
4737 validate_replace_rtx_group (reload_reg,
4738 replace_reg, p);
4739 n = verify_changes (0);
4741 /* We must also verify that the constraints
4742 are met after the replacement. Make sure
4743 extract_insn is only called for an insn
4744 where the replacements were found to be
4745 valid so far. */
4746 if (n)
4748 extract_insn (p);
4749 n = constrain_operands (1,
4750 get_enabled_alternatives (p));
4753 /* If the constraints were not met, then
4754 undo the replacement, else confirm it. */
4755 if (!n)
4756 cancel_changes (0);
4757 else
4758 confirm_change_group ();
4760 break;
4762 if (n == 1)
4764 add_reg_note (p, REG_INC, reload_reg);
4765 /* Mark this as having an output reload so that the
4766 REG_INC processing code below won't invalidate
4767 the reload for inheritance. */
4768 SET_HARD_REG_BIT (reg_is_output_reload,
4769 REGNO (reload_reg));
4770 SET_REGNO_REG_SET (&reg_has_output_reload,
4771 REGNO (XEXP (in_reg, 0)));
4773 else
4774 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4775 NULL);
4777 else if ((code == PRE_INC || code == PRE_DEC)
4778 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4779 REGNO (rld[i].reg_rtx))
4780 /* Make sure it is the inc/dec pseudo, and not
4781 some other (e.g. output operand) pseudo. */
4782 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4783 == REGNO (XEXP (in_reg, 0))))
4785 SET_HARD_REG_BIT (reg_is_output_reload,
4786 REGNO (rld[i].reg_rtx));
4787 SET_REGNO_REG_SET (&reg_has_output_reload,
4788 REGNO (XEXP (in_reg, 0)));
4790 else if (code == PRE_INC || code == PRE_DEC
4791 || code == POST_INC || code == POST_DEC)
4793 int in_regno = REGNO (XEXP (in_reg, 0));
4795 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4797 int in_hard_regno;
4798 bool forget_p = true;
4800 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4801 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4802 in_hard_regno))
4804 for (rtx_insn *x = (old_prev ?
4805 NEXT_INSN (old_prev) : insn);
4806 x != old_next;
4807 x = NEXT_INSN (x))
4808 if (x == reg_reloaded_insn[in_hard_regno])
4810 forget_p = false;
4811 break;
4814 /* If for some reasons, we didn't set up
4815 reg_last_reload_reg in this insn,
4816 invalidate inheritance from previous
4817 insns for the incremented/decremented
4818 register. Such registers will be not in
4819 reg_has_output_reload. Invalidate it
4820 also if the corresponding element in
4821 reg_reloaded_insn is also
4822 invalidated. */
4823 if (forget_p)
4824 forget_old_reloads_1 (XEXP (in_reg, 0),
4825 NULL_RTX, NULL);
4830 /* If a pseudo that got a hard register is auto-incremented,
4831 we must purge records of copying it into pseudos without
4832 hard registers. */
4833 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4834 if (REG_NOTE_KIND (x) == REG_INC)
4836 /* See if this pseudo reg was reloaded in this insn.
4837 If so, its last-reload info is still valid
4838 because it is based on this insn's reload. */
4839 for (i = 0; i < n_reloads; i++)
4840 if (rld[i].out == XEXP (x, 0))
4841 break;
4843 if (i == n_reloads)
4844 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4846 #endif
4848 /* A reload reg's contents are unknown after a label. */
4849 if (LABEL_P (insn))
4850 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4852 /* Don't assume a reload reg is still good after a call insn
4853 if it is a call-used reg, or if it contains a value that will
4854 be partially clobbered by the call. */
4855 else if (CALL_P (insn))
4857 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4858 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4860 /* If this is a call to a setjmp-type function, we must not
4861 reuse any reload reg contents across the call; that will
4862 just be clobbered by other uses of the register in later
4863 code, before the longjmp. */
4864 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4865 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4869 /* Clean up. */
4870 free (reg_last_reload_reg);
4871 CLEAR_REG_SET (&reg_has_output_reload);
4874 /* Discard all record of any value reloaded from X,
4875 or reloaded in X from someplace else;
4876 unless X is an output reload reg of the current insn.
4878 X may be a hard reg (the reload reg)
4879 or it may be a pseudo reg that was reloaded from.
4881 When DATA is non-NULL just mark the registers in regset
4882 to be forgotten later. */
4884 static void
4885 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4886 void *data)
4888 unsigned int regno;
4889 unsigned int nr;
4890 regset regs = (regset) data;
4892 /* note_stores does give us subregs of hard regs,
4893 subreg_regno_offset requires a hard reg. */
4894 while (GET_CODE (x) == SUBREG)
4896 /* We ignore the subreg offset when calculating the regno,
4897 because we are using the entire underlying hard register
4898 below. */
4899 x = SUBREG_REG (x);
4902 if (!REG_P (x))
4903 return;
4905 regno = REGNO (x);
4907 if (regno >= FIRST_PSEUDO_REGISTER)
4908 nr = 1;
4909 else
4911 unsigned int i;
4913 nr = hard_regno_nregs[regno][GET_MODE (x)];
4914 /* Storing into a spilled-reg invalidates its contents.
4915 This can happen if a block-local pseudo is allocated to that reg
4916 and it wasn't spilled because this block's total need is 0.
4917 Then some insn might have an optional reload and use this reg. */
4918 if (!regs)
4919 for (i = 0; i < nr; i++)
4920 /* But don't do this if the reg actually serves as an output
4921 reload reg in the current instruction. */
4922 if (n_reloads == 0
4923 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4925 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4926 spill_reg_store[regno + i] = 0;
4930 if (regs)
4931 while (nr-- > 0)
4932 SET_REGNO_REG_SET (regs, regno + nr);
4933 else
4935 /* Since value of X has changed,
4936 forget any value previously copied from it. */
4938 while (nr-- > 0)
4939 /* But don't forget a copy if this is the output reload
4940 that establishes the copy's validity. */
4941 if (n_reloads == 0
4942 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4943 reg_last_reload_reg[regno + nr] = 0;
4947 /* Forget the reloads marked in regset by previous function. */
4948 static void
4949 forget_marked_reloads (regset regs)
4951 unsigned int reg;
4952 reg_set_iterator rsi;
4953 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4955 if (reg < FIRST_PSEUDO_REGISTER
4956 /* But don't do this if the reg actually serves as an output
4957 reload reg in the current instruction. */
4958 && (n_reloads == 0
4959 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4961 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4962 spill_reg_store[reg] = 0;
4964 if (n_reloads == 0
4965 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4966 reg_last_reload_reg[reg] = 0;
4970 /* The following HARD_REG_SETs indicate when each hard register is
4971 used for a reload of various parts of the current insn. */
4973 /* If reg is unavailable for all reloads. */
4974 static HARD_REG_SET reload_reg_unavailable;
4975 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4976 static HARD_REG_SET reload_reg_used;
4977 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4978 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4979 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4980 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4981 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4982 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4983 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4984 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4985 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4986 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4987 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4988 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4989 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4990 static HARD_REG_SET reload_reg_used_in_op_addr;
4991 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4992 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4993 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4994 static HARD_REG_SET reload_reg_used_in_insn;
4995 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4996 static HARD_REG_SET reload_reg_used_in_other_addr;
4998 /* If reg is in use as a reload reg for any sort of reload. */
4999 static HARD_REG_SET reload_reg_used_at_all;
5001 /* If reg is use as an inherited reload. We just mark the first register
5002 in the group. */
5003 static HARD_REG_SET reload_reg_used_for_inherit;
5005 /* Records which hard regs are used in any way, either as explicit use or
5006 by being allocated to a pseudo during any point of the current insn. */
5007 static HARD_REG_SET reg_used_in_insn;
5009 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5010 TYPE. MODE is used to indicate how many consecutive regs are
5011 actually used. */
5013 static void
5014 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5015 machine_mode mode)
5017 switch (type)
5019 case RELOAD_OTHER:
5020 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5021 break;
5023 case RELOAD_FOR_INPUT_ADDRESS:
5024 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5025 break;
5027 case RELOAD_FOR_INPADDR_ADDRESS:
5028 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5029 break;
5031 case RELOAD_FOR_OUTPUT_ADDRESS:
5032 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5033 break;
5035 case RELOAD_FOR_OUTADDR_ADDRESS:
5036 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5037 break;
5039 case RELOAD_FOR_OPERAND_ADDRESS:
5040 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5041 break;
5043 case RELOAD_FOR_OPADDR_ADDR:
5044 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5045 break;
5047 case RELOAD_FOR_OTHER_ADDRESS:
5048 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5049 break;
5051 case RELOAD_FOR_INPUT:
5052 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5053 break;
5055 case RELOAD_FOR_OUTPUT:
5056 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5057 break;
5059 case RELOAD_FOR_INSN:
5060 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5061 break;
5064 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5067 /* Similarly, but show REGNO is no longer in use for a reload. */
5069 static void
5070 clear_reload_reg_in_use (unsigned int regno, int opnum,
5071 enum reload_type type, machine_mode mode)
5073 unsigned int nregs = hard_regno_nregs[regno][mode];
5074 unsigned int start_regno, end_regno, r;
5075 int i;
5076 /* A complication is that for some reload types, inheritance might
5077 allow multiple reloads of the same types to share a reload register.
5078 We set check_opnum if we have to check only reloads with the same
5079 operand number, and check_any if we have to check all reloads. */
5080 int check_opnum = 0;
5081 int check_any = 0;
5082 HARD_REG_SET *used_in_set;
5084 switch (type)
5086 case RELOAD_OTHER:
5087 used_in_set = &reload_reg_used;
5088 break;
5090 case RELOAD_FOR_INPUT_ADDRESS:
5091 used_in_set = &reload_reg_used_in_input_addr[opnum];
5092 break;
5094 case RELOAD_FOR_INPADDR_ADDRESS:
5095 check_opnum = 1;
5096 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5097 break;
5099 case RELOAD_FOR_OUTPUT_ADDRESS:
5100 used_in_set = &reload_reg_used_in_output_addr[opnum];
5101 break;
5103 case RELOAD_FOR_OUTADDR_ADDRESS:
5104 check_opnum = 1;
5105 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5106 break;
5108 case RELOAD_FOR_OPERAND_ADDRESS:
5109 used_in_set = &reload_reg_used_in_op_addr;
5110 break;
5112 case RELOAD_FOR_OPADDR_ADDR:
5113 check_any = 1;
5114 used_in_set = &reload_reg_used_in_op_addr_reload;
5115 break;
5117 case RELOAD_FOR_OTHER_ADDRESS:
5118 used_in_set = &reload_reg_used_in_other_addr;
5119 check_any = 1;
5120 break;
5122 case RELOAD_FOR_INPUT:
5123 used_in_set = &reload_reg_used_in_input[opnum];
5124 break;
5126 case RELOAD_FOR_OUTPUT:
5127 used_in_set = &reload_reg_used_in_output[opnum];
5128 break;
5130 case RELOAD_FOR_INSN:
5131 used_in_set = &reload_reg_used_in_insn;
5132 break;
5133 default:
5134 gcc_unreachable ();
5136 /* We resolve conflicts with remaining reloads of the same type by
5137 excluding the intervals of reload registers by them from the
5138 interval of freed reload registers. Since we only keep track of
5139 one set of interval bounds, we might have to exclude somewhat
5140 more than what would be necessary if we used a HARD_REG_SET here.
5141 But this should only happen very infrequently, so there should
5142 be no reason to worry about it. */
5144 start_regno = regno;
5145 end_regno = regno + nregs;
5146 if (check_opnum || check_any)
5148 for (i = n_reloads - 1; i >= 0; i--)
5150 if (rld[i].when_needed == type
5151 && (check_any || rld[i].opnum == opnum)
5152 && rld[i].reg_rtx)
5154 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5155 unsigned int conflict_end
5156 = end_hard_regno (rld[i].mode, conflict_start);
5158 /* If there is an overlap with the first to-be-freed register,
5159 adjust the interval start. */
5160 if (conflict_start <= start_regno && conflict_end > start_regno)
5161 start_regno = conflict_end;
5162 /* Otherwise, if there is a conflict with one of the other
5163 to-be-freed registers, adjust the interval end. */
5164 if (conflict_start > start_regno && conflict_start < end_regno)
5165 end_regno = conflict_start;
5170 for (r = start_regno; r < end_regno; r++)
5171 CLEAR_HARD_REG_BIT (*used_in_set, r);
5174 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5175 specified by OPNUM and TYPE. */
5177 static int
5178 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5180 int i;
5182 /* In use for a RELOAD_OTHER means it's not available for anything. */
5183 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5184 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5185 return 0;
5187 switch (type)
5189 case RELOAD_OTHER:
5190 /* In use for anything means we can't use it for RELOAD_OTHER. */
5191 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5192 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5193 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5194 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5195 return 0;
5197 for (i = 0; i < reload_n_operands; i++)
5198 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5199 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5200 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5201 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5202 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5203 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5204 return 0;
5206 return 1;
5208 case RELOAD_FOR_INPUT:
5209 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5210 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5211 return 0;
5213 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5214 return 0;
5216 /* If it is used for some other input, can't use it. */
5217 for (i = 0; i < reload_n_operands; i++)
5218 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5219 return 0;
5221 /* If it is used in a later operand's address, can't use it. */
5222 for (i = opnum + 1; i < reload_n_operands; i++)
5223 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5224 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5225 return 0;
5227 return 1;
5229 case RELOAD_FOR_INPUT_ADDRESS:
5230 /* Can't use a register if it is used for an input address for this
5231 operand or used as an input in an earlier one. */
5232 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5233 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5234 return 0;
5236 for (i = 0; i < opnum; i++)
5237 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5238 return 0;
5240 return 1;
5242 case RELOAD_FOR_INPADDR_ADDRESS:
5243 /* Can't use a register if it is used for an input address
5244 for this operand or used as an input in an earlier
5245 one. */
5246 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5247 return 0;
5249 for (i = 0; i < opnum; i++)
5250 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5251 return 0;
5253 return 1;
5255 case RELOAD_FOR_OUTPUT_ADDRESS:
5256 /* Can't use a register if it is used for an output address for this
5257 operand or used as an output in this or a later operand. Note
5258 that multiple output operands are emitted in reverse order, so
5259 the conflicting ones are those with lower indices. */
5260 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5261 return 0;
5263 for (i = 0; i <= opnum; i++)
5264 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5265 return 0;
5267 return 1;
5269 case RELOAD_FOR_OUTADDR_ADDRESS:
5270 /* Can't use a register if it is used for an output address
5271 for this operand or used as an output in this or a
5272 later operand. Note that multiple output operands are
5273 emitted in reverse order, so the conflicting ones are
5274 those with lower indices. */
5275 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5276 return 0;
5278 for (i = 0; i <= opnum; i++)
5279 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5280 return 0;
5282 return 1;
5284 case RELOAD_FOR_OPERAND_ADDRESS:
5285 for (i = 0; i < reload_n_operands; i++)
5286 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5287 return 0;
5289 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5290 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5292 case RELOAD_FOR_OPADDR_ADDR:
5293 for (i = 0; i < reload_n_operands; i++)
5294 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5295 return 0;
5297 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5299 case RELOAD_FOR_OUTPUT:
5300 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5301 outputs, or an operand address for this or an earlier output.
5302 Note that multiple output operands are emitted in reverse order,
5303 so the conflicting ones are those with higher indices. */
5304 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5305 return 0;
5307 for (i = 0; i < reload_n_operands; i++)
5308 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5309 return 0;
5311 for (i = opnum; i < reload_n_operands; i++)
5312 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5313 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5314 return 0;
5316 return 1;
5318 case RELOAD_FOR_INSN:
5319 for (i = 0; i < reload_n_operands; i++)
5320 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5321 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5322 return 0;
5324 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5325 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5327 case RELOAD_FOR_OTHER_ADDRESS:
5328 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5330 default:
5331 gcc_unreachable ();
5335 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5336 the number RELOADNUM, is still available in REGNO at the end of the insn.
5338 We can assume that the reload reg was already tested for availability
5339 at the time it is needed, and we should not check this again,
5340 in case the reg has already been marked in use. */
5342 static int
5343 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5345 int opnum = rld[reloadnum].opnum;
5346 enum reload_type type = rld[reloadnum].when_needed;
5347 int i;
5349 /* See if there is a reload with the same type for this operand, using
5350 the same register. This case is not handled by the code below. */
5351 for (i = reloadnum + 1; i < n_reloads; i++)
5353 rtx reg;
5354 int nregs;
5356 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5357 continue;
5358 reg = rld[i].reg_rtx;
5359 if (reg == NULL_RTX)
5360 continue;
5361 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5362 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5363 return 0;
5366 switch (type)
5368 case RELOAD_OTHER:
5369 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5370 its value must reach the end. */
5371 return 1;
5373 /* If this use is for part of the insn,
5374 its value reaches if no subsequent part uses the same register.
5375 Just like the above function, don't try to do this with lots
5376 of fallthroughs. */
5378 case RELOAD_FOR_OTHER_ADDRESS:
5379 /* Here we check for everything else, since these don't conflict
5380 with anything else and everything comes later. */
5382 for (i = 0; i < reload_n_operands; i++)
5383 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5384 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5385 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5386 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5387 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5388 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5389 return 0;
5391 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5392 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5393 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5394 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5396 case RELOAD_FOR_INPUT_ADDRESS:
5397 case RELOAD_FOR_INPADDR_ADDRESS:
5398 /* Similar, except that we check only for this and subsequent inputs
5399 and the address of only subsequent inputs and we do not need
5400 to check for RELOAD_OTHER objects since they are known not to
5401 conflict. */
5403 for (i = opnum; i < reload_n_operands; i++)
5404 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5405 return 0;
5407 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5408 could be killed if the register is also used by reload with type
5409 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5410 if (type == RELOAD_FOR_INPADDR_ADDRESS
5411 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5412 return 0;
5414 for (i = opnum + 1; i < reload_n_operands; i++)
5415 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5416 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5417 return 0;
5419 for (i = 0; i < reload_n_operands; i++)
5420 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5421 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5422 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5423 return 0;
5425 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5426 return 0;
5428 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5429 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5430 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5432 case RELOAD_FOR_INPUT:
5433 /* Similar to input address, except we start at the next operand for
5434 both input and input address and we do not check for
5435 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5436 would conflict. */
5438 for (i = opnum + 1; i < reload_n_operands; i++)
5439 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5440 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5441 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5442 return 0;
5444 /* ... fall through ... */
5446 case RELOAD_FOR_OPERAND_ADDRESS:
5447 /* Check outputs and their addresses. */
5449 for (i = 0; i < reload_n_operands; i++)
5450 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5451 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5452 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5453 return 0;
5455 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5457 case RELOAD_FOR_OPADDR_ADDR:
5458 for (i = 0; i < reload_n_operands; i++)
5459 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5460 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5461 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5462 return 0;
5464 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5465 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5466 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5468 case RELOAD_FOR_INSN:
5469 /* These conflict with other outputs with RELOAD_OTHER. So
5470 we need only check for output addresses. */
5472 opnum = reload_n_operands;
5474 /* fall through */
5476 case RELOAD_FOR_OUTPUT:
5477 case RELOAD_FOR_OUTPUT_ADDRESS:
5478 case RELOAD_FOR_OUTADDR_ADDRESS:
5479 /* We already know these can't conflict with a later output. So the
5480 only thing to check are later output addresses.
5481 Note that multiple output operands are emitted in reverse order,
5482 so the conflicting ones are those with lower indices. */
5483 for (i = 0; i < opnum; i++)
5484 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5485 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5486 return 0;
5488 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5489 could be killed if the register is also used by reload with type
5490 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5491 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5492 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5493 return 0;
5495 return 1;
5497 default:
5498 gcc_unreachable ();
5502 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5503 every register in REG. */
5505 static bool
5506 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5508 unsigned int i;
5510 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5511 if (!reload_reg_reaches_end_p (i, reloadnum))
5512 return false;
5513 return true;
5517 /* Returns whether R1 and R2 are uniquely chained: the value of one
5518 is used by the other, and that value is not used by any other
5519 reload for this insn. This is used to partially undo the decision
5520 made in find_reloads when in the case of multiple
5521 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5522 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5523 reloads. This code tries to avoid the conflict created by that
5524 change. It might be cleaner to explicitly keep track of which
5525 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5526 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5527 this after the fact. */
5528 static bool
5529 reloads_unique_chain_p (int r1, int r2)
5531 int i;
5533 /* We only check input reloads. */
5534 if (! rld[r1].in || ! rld[r2].in)
5535 return false;
5537 /* Avoid anything with output reloads. */
5538 if (rld[r1].out || rld[r2].out)
5539 return false;
5541 /* "chained" means one reload is a component of the other reload,
5542 not the same as the other reload. */
5543 if (rld[r1].opnum != rld[r2].opnum
5544 || rtx_equal_p (rld[r1].in, rld[r2].in)
5545 || rld[r1].optional || rld[r2].optional
5546 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5547 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5548 return false;
5550 /* The following loop assumes that r1 is the reload that feeds r2. */
5551 if (r1 > r2)
5552 std::swap (r1, r2);
5554 for (i = 0; i < n_reloads; i ++)
5555 /* Look for input reloads that aren't our two */
5556 if (i != r1 && i != r2 && rld[i].in)
5558 /* If our reload is mentioned at all, it isn't a simple chain. */
5559 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5560 return false;
5562 return true;
5565 /* The recursive function change all occurrences of WHAT in *WHERE
5566 to REPL. */
5567 static void
5568 substitute (rtx *where, const_rtx what, rtx repl)
5570 const char *fmt;
5571 int i;
5572 enum rtx_code code;
5574 if (*where == 0)
5575 return;
5577 if (*where == what || rtx_equal_p (*where, what))
5579 /* Record the location of the changed rtx. */
5580 substitute_stack.safe_push (where);
5581 *where = repl;
5582 return;
5585 code = GET_CODE (*where);
5586 fmt = GET_RTX_FORMAT (code);
5587 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5589 if (fmt[i] == 'E')
5591 int j;
5593 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5594 substitute (&XVECEXP (*where, i, j), what, repl);
5596 else if (fmt[i] == 'e')
5597 substitute (&XEXP (*where, i), what, repl);
5601 /* The function returns TRUE if chain of reload R1 and R2 (in any
5602 order) can be evaluated without usage of intermediate register for
5603 the reload containing another reload. It is important to see
5604 gen_reload to understand what the function is trying to do. As an
5605 example, let us have reload chain
5607 r2: const
5608 r1: <something> + const
5610 and reload R2 got reload reg HR. The function returns true if
5611 there is a correct insn HR = HR + <something>. Otherwise,
5612 gen_reload will use intermediate register (and this is the reload
5613 reg for R1) to reload <something>.
5615 We need this function to find a conflict for chain reloads. In our
5616 example, if HR = HR + <something> is incorrect insn, then we cannot
5617 use HR as a reload register for R2. If we do use it then we get a
5618 wrong code:
5620 HR = const
5621 HR = <something>
5622 HR = HR + HR
5625 static bool
5626 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5628 /* Assume other cases in gen_reload are not possible for
5629 chain reloads or do need an intermediate hard registers. */
5630 bool result = true;
5631 int regno, code;
5632 rtx out, in;
5633 rtx_insn *insn;
5634 rtx_insn *last = get_last_insn ();
5636 /* Make r2 a component of r1. */
5637 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5638 std::swap (r1, r2);
5640 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5641 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5642 gcc_assert (regno >= 0);
5643 out = gen_rtx_REG (rld[r1].mode, regno);
5644 in = rld[r1].in;
5645 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5647 /* If IN is a paradoxical SUBREG, remove it and try to put the
5648 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5649 strip_paradoxical_subreg (&in, &out);
5651 if (GET_CODE (in) == PLUS
5652 && (REG_P (XEXP (in, 0))
5653 || GET_CODE (XEXP (in, 0)) == SUBREG
5654 || MEM_P (XEXP (in, 0)))
5655 && (REG_P (XEXP (in, 1))
5656 || GET_CODE (XEXP (in, 1)) == SUBREG
5657 || CONSTANT_P (XEXP (in, 1))
5658 || MEM_P (XEXP (in, 1))))
5660 insn = emit_insn (gen_rtx_SET (out, in));
5661 code = recog_memoized (insn);
5662 result = false;
5664 if (code >= 0)
5666 extract_insn (insn);
5667 /* We want constrain operands to treat this insn strictly in
5668 its validity determination, i.e., the way it would after
5669 reload has completed. */
5670 result = constrain_operands (1, get_enabled_alternatives (insn));
5673 delete_insns_since (last);
5676 /* Restore the original value at each changed address within R1. */
5677 while (!substitute_stack.is_empty ())
5679 rtx *where = substitute_stack.pop ();
5680 *where = rld[r2].in;
5683 return result;
5686 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5687 Return 0 otherwise.
5689 This function uses the same algorithm as reload_reg_free_p above. */
5691 static int
5692 reloads_conflict (int r1, int r2)
5694 enum reload_type r1_type = rld[r1].when_needed;
5695 enum reload_type r2_type = rld[r2].when_needed;
5696 int r1_opnum = rld[r1].opnum;
5697 int r2_opnum = rld[r2].opnum;
5699 /* RELOAD_OTHER conflicts with everything. */
5700 if (r2_type == RELOAD_OTHER)
5701 return 1;
5703 /* Otherwise, check conflicts differently for each type. */
5705 switch (r1_type)
5707 case RELOAD_FOR_INPUT:
5708 return (r2_type == RELOAD_FOR_INSN
5709 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5710 || r2_type == RELOAD_FOR_OPADDR_ADDR
5711 || r2_type == RELOAD_FOR_INPUT
5712 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5713 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5714 && r2_opnum > r1_opnum));
5716 case RELOAD_FOR_INPUT_ADDRESS:
5717 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5718 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5720 case RELOAD_FOR_INPADDR_ADDRESS:
5721 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5722 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5724 case RELOAD_FOR_OUTPUT_ADDRESS:
5725 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5726 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5728 case RELOAD_FOR_OUTADDR_ADDRESS:
5729 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5730 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5732 case RELOAD_FOR_OPERAND_ADDRESS:
5733 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5734 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5735 && (!reloads_unique_chain_p (r1, r2)
5736 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5738 case RELOAD_FOR_OPADDR_ADDR:
5739 return (r2_type == RELOAD_FOR_INPUT
5740 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5742 case RELOAD_FOR_OUTPUT:
5743 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5744 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5745 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5746 && r2_opnum >= r1_opnum));
5748 case RELOAD_FOR_INSN:
5749 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5750 || r2_type == RELOAD_FOR_INSN
5751 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5753 case RELOAD_FOR_OTHER_ADDRESS:
5754 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5756 case RELOAD_OTHER:
5757 return 1;
5759 default:
5760 gcc_unreachable ();
5764 /* Indexed by reload number, 1 if incoming value
5765 inherited from previous insns. */
5766 static char reload_inherited[MAX_RELOADS];
5768 /* For an inherited reload, this is the insn the reload was inherited from,
5769 if we know it. Otherwise, this is 0. */
5770 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5772 /* If nonzero, this is a place to get the value of the reload,
5773 rather than using reload_in. */
5774 static rtx reload_override_in[MAX_RELOADS];
5776 /* For each reload, the hard register number of the register used,
5777 or -1 if we did not need a register for this reload. */
5778 static int reload_spill_index[MAX_RELOADS];
5780 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5781 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5783 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5784 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5786 /* Subroutine of free_for_value_p, used to check a single register.
5787 START_REGNO is the starting regno of the full reload register
5788 (possibly comprising multiple hard registers) that we are considering. */
5790 static int
5791 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5792 enum reload_type type, rtx value, rtx out,
5793 int reloadnum, int ignore_address_reloads)
5795 int time1;
5796 /* Set if we see an input reload that must not share its reload register
5797 with any new earlyclobber, but might otherwise share the reload
5798 register with an output or input-output reload. */
5799 int check_earlyclobber = 0;
5800 int i;
5801 int copy = 0;
5803 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5804 return 0;
5806 if (out == const0_rtx)
5808 copy = 1;
5809 out = NULL_RTX;
5812 /* We use some pseudo 'time' value to check if the lifetimes of the
5813 new register use would overlap with the one of a previous reload
5814 that is not read-only or uses a different value.
5815 The 'time' used doesn't have to be linear in any shape or form, just
5816 monotonic.
5817 Some reload types use different 'buckets' for each operand.
5818 So there are MAX_RECOG_OPERANDS different time values for each
5819 such reload type.
5820 We compute TIME1 as the time when the register for the prospective
5821 new reload ceases to be live, and TIME2 for each existing
5822 reload as the time when that the reload register of that reload
5823 becomes live.
5824 Where there is little to be gained by exact lifetime calculations,
5825 we just make conservative assumptions, i.e. a longer lifetime;
5826 this is done in the 'default:' cases. */
5827 switch (type)
5829 case RELOAD_FOR_OTHER_ADDRESS:
5830 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5831 time1 = copy ? 0 : 1;
5832 break;
5833 case RELOAD_OTHER:
5834 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5835 break;
5836 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5837 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5838 respectively, to the time values for these, we get distinct time
5839 values. To get distinct time values for each operand, we have to
5840 multiply opnum by at least three. We round that up to four because
5841 multiply by four is often cheaper. */
5842 case RELOAD_FOR_INPADDR_ADDRESS:
5843 time1 = opnum * 4 + 2;
5844 break;
5845 case RELOAD_FOR_INPUT_ADDRESS:
5846 time1 = opnum * 4 + 3;
5847 break;
5848 case RELOAD_FOR_INPUT:
5849 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5850 executes (inclusive). */
5851 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5852 break;
5853 case RELOAD_FOR_OPADDR_ADDR:
5854 /* opnum * 4 + 4
5855 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5856 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5857 break;
5858 case RELOAD_FOR_OPERAND_ADDRESS:
5859 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5860 is executed. */
5861 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5862 break;
5863 case RELOAD_FOR_OUTADDR_ADDRESS:
5864 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5865 break;
5866 case RELOAD_FOR_OUTPUT_ADDRESS:
5867 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5868 break;
5869 default:
5870 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5873 for (i = 0; i < n_reloads; i++)
5875 rtx reg = rld[i].reg_rtx;
5876 if (reg && REG_P (reg)
5877 && ((unsigned) regno - true_regnum (reg)
5878 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5879 && i != reloadnum)
5881 rtx other_input = rld[i].in;
5883 /* If the other reload loads the same input value, that
5884 will not cause a conflict only if it's loading it into
5885 the same register. */
5886 if (true_regnum (reg) != start_regno)
5887 other_input = NULL_RTX;
5888 if (! other_input || ! rtx_equal_p (other_input, value)
5889 || rld[i].out || out)
5891 int time2;
5892 switch (rld[i].when_needed)
5894 case RELOAD_FOR_OTHER_ADDRESS:
5895 time2 = 0;
5896 break;
5897 case RELOAD_FOR_INPADDR_ADDRESS:
5898 /* find_reloads makes sure that a
5899 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5900 by at most one - the first -
5901 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5902 address reload is inherited, the address address reload
5903 goes away, so we can ignore this conflict. */
5904 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5905 && ignore_address_reloads
5906 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5907 Then the address address is still needed to store
5908 back the new address. */
5909 && ! rld[reloadnum].out)
5910 continue;
5911 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5912 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5913 reloads go away. */
5914 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5915 && ignore_address_reloads
5916 /* Unless we are reloading an auto_inc expression. */
5917 && ! rld[reloadnum].out)
5918 continue;
5919 time2 = rld[i].opnum * 4 + 2;
5920 break;
5921 case RELOAD_FOR_INPUT_ADDRESS:
5922 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5923 && ignore_address_reloads
5924 && ! rld[reloadnum].out)
5925 continue;
5926 time2 = rld[i].opnum * 4 + 3;
5927 break;
5928 case RELOAD_FOR_INPUT:
5929 time2 = rld[i].opnum * 4 + 4;
5930 check_earlyclobber = 1;
5931 break;
5932 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5933 == MAX_RECOG_OPERAND * 4 */
5934 case RELOAD_FOR_OPADDR_ADDR:
5935 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5936 && ignore_address_reloads
5937 && ! rld[reloadnum].out)
5938 continue;
5939 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5940 break;
5941 case RELOAD_FOR_OPERAND_ADDRESS:
5942 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5943 check_earlyclobber = 1;
5944 break;
5945 case RELOAD_FOR_INSN:
5946 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5947 break;
5948 case RELOAD_FOR_OUTPUT:
5949 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5950 instruction is executed. */
5951 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5952 break;
5953 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5954 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5955 value. */
5956 case RELOAD_FOR_OUTADDR_ADDRESS:
5957 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5958 && ignore_address_reloads
5959 && ! rld[reloadnum].out)
5960 continue;
5961 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5962 break;
5963 case RELOAD_FOR_OUTPUT_ADDRESS:
5964 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5965 break;
5966 case RELOAD_OTHER:
5967 /* If there is no conflict in the input part, handle this
5968 like an output reload. */
5969 if (! rld[i].in || rtx_equal_p (other_input, value))
5971 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5972 /* Earlyclobbered outputs must conflict with inputs. */
5973 if (earlyclobber_operand_p (rld[i].out))
5974 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5976 break;
5978 time2 = 1;
5979 /* RELOAD_OTHER might be live beyond instruction execution,
5980 but this is not obvious when we set time2 = 1. So check
5981 here if there might be a problem with the new reload
5982 clobbering the register used by the RELOAD_OTHER. */
5983 if (out)
5984 return 0;
5985 break;
5986 default:
5987 return 0;
5989 if ((time1 >= time2
5990 && (! rld[i].in || rld[i].out
5991 || ! rtx_equal_p (other_input, value)))
5992 || (out && rld[reloadnum].out_reg
5993 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5994 return 0;
5999 /* Earlyclobbered outputs must conflict with inputs. */
6000 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6001 return 0;
6003 return 1;
6006 /* Return 1 if the value in reload reg REGNO, as used by a reload
6007 needed for the part of the insn specified by OPNUM and TYPE,
6008 may be used to load VALUE into it.
6010 MODE is the mode in which the register is used, this is needed to
6011 determine how many hard regs to test.
6013 Other read-only reloads with the same value do not conflict
6014 unless OUT is nonzero and these other reloads have to live while
6015 output reloads live.
6016 If OUT is CONST0_RTX, this is a special case: it means that the
6017 test should not be for using register REGNO as reload register, but
6018 for copying from register REGNO into the reload register.
6020 RELOADNUM is the number of the reload we want to load this value for;
6021 a reload does not conflict with itself.
6023 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6024 reloads that load an address for the very reload we are considering.
6026 The caller has to make sure that there is no conflict with the return
6027 register. */
6029 static int
6030 free_for_value_p (int regno, machine_mode mode, int opnum,
6031 enum reload_type type, rtx value, rtx out, int reloadnum,
6032 int ignore_address_reloads)
6034 int nregs = hard_regno_nregs[regno][mode];
6035 while (nregs-- > 0)
6036 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6037 value, out, reloadnum,
6038 ignore_address_reloads))
6039 return 0;
6040 return 1;
6043 /* Return nonzero if the rtx X is invariant over the current function. */
6044 /* ??? Actually, the places where we use this expect exactly what is
6045 tested here, and not everything that is function invariant. In
6046 particular, the frame pointer and arg pointer are special cased;
6047 pic_offset_table_rtx is not, and we must not spill these things to
6048 memory. */
6051 function_invariant_p (const_rtx x)
6053 if (CONSTANT_P (x))
6054 return 1;
6055 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6056 return 1;
6057 if (GET_CODE (x) == PLUS
6058 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6059 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6060 return 1;
6061 return 0;
6064 /* Determine whether the reload reg X overlaps any rtx'es used for
6065 overriding inheritance. Return nonzero if so. */
6067 static int
6068 conflicts_with_override (rtx x)
6070 int i;
6071 for (i = 0; i < n_reloads; i++)
6072 if (reload_override_in[i]
6073 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6074 return 1;
6075 return 0;
6078 /* Give an error message saying we failed to find a reload for INSN,
6079 and clear out reload R. */
6080 static void
6081 failed_reload (rtx_insn *insn, int r)
6083 if (asm_noperands (PATTERN (insn)) < 0)
6084 /* It's the compiler's fault. */
6085 fatal_insn ("could not find a spill register", insn);
6087 /* It's the user's fault; the operand's mode and constraint
6088 don't match. Disable this reload so we don't crash in final. */
6089 error_for_asm (insn,
6090 "%<asm%> operand constraint incompatible with operand size");
6091 rld[r].in = 0;
6092 rld[r].out = 0;
6093 rld[r].reg_rtx = 0;
6094 rld[r].optional = 1;
6095 rld[r].secondary_p = 1;
6098 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6099 for reload R. If it's valid, get an rtx for it. Return nonzero if
6100 successful. */
6101 static int
6102 set_reload_reg (int i, int r)
6104 int regno;
6105 rtx reg = spill_reg_rtx[i];
6107 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6108 spill_reg_rtx[i] = reg
6109 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6111 regno = true_regnum (reg);
6113 /* Detect when the reload reg can't hold the reload mode.
6114 This used to be one `if', but Sequent compiler can't handle that. */
6115 if (targetm.hard_regno_mode_ok (regno, rld[r].mode))
6117 machine_mode test_mode = VOIDmode;
6118 if (rld[r].in)
6119 test_mode = GET_MODE (rld[r].in);
6120 /* If rld[r].in has VOIDmode, it means we will load it
6121 in whatever mode the reload reg has: to wit, rld[r].mode.
6122 We have already tested that for validity. */
6123 /* Aside from that, we need to test that the expressions
6124 to reload from or into have modes which are valid for this
6125 reload register. Otherwise the reload insns would be invalid. */
6126 if (! (rld[r].in != 0 && test_mode != VOIDmode
6127 && !targetm.hard_regno_mode_ok (regno, test_mode)))
6128 if (! (rld[r].out != 0
6129 && !targetm.hard_regno_mode_ok (regno, GET_MODE (rld[r].out))))
6131 /* The reg is OK. */
6132 last_spill_reg = i;
6134 /* Mark as in use for this insn the reload regs we use
6135 for this. */
6136 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6137 rld[r].when_needed, rld[r].mode);
6139 rld[r].reg_rtx = reg;
6140 reload_spill_index[r] = spill_regs[i];
6141 return 1;
6144 return 0;
6147 /* Find a spill register to use as a reload register for reload R.
6148 LAST_RELOAD is nonzero if this is the last reload for the insn being
6149 processed.
6151 Set rld[R].reg_rtx to the register allocated.
6153 We return 1 if successful, or 0 if we couldn't find a spill reg and
6154 we didn't change anything. */
6156 static int
6157 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6158 int last_reload)
6160 int i, pass, count;
6162 /* If we put this reload ahead, thinking it is a group,
6163 then insist on finding a group. Otherwise we can grab a
6164 reg that some other reload needs.
6165 (That can happen when we have a 68000 DATA_OR_FP_REG
6166 which is a group of data regs or one fp reg.)
6167 We need not be so restrictive if there are no more reloads
6168 for this insn.
6170 ??? Really it would be nicer to have smarter handling
6171 for that kind of reg class, where a problem like this is normal.
6172 Perhaps those classes should be avoided for reloading
6173 by use of more alternatives. */
6175 int force_group = rld[r].nregs > 1 && ! last_reload;
6177 /* If we want a single register and haven't yet found one,
6178 take any reg in the right class and not in use.
6179 If we want a consecutive group, here is where we look for it.
6181 We use three passes so we can first look for reload regs to
6182 reuse, which are already in use for other reloads in this insn,
6183 and only then use additional registers which are not "bad", then
6184 finally any register.
6186 I think that maximizing reuse is needed to make sure we don't
6187 run out of reload regs. Suppose we have three reloads, and
6188 reloads A and B can share regs. These need two regs.
6189 Suppose A and B are given different regs.
6190 That leaves none for C. */
6191 for (pass = 0; pass < 3; pass++)
6193 /* I is the index in spill_regs.
6194 We advance it round-robin between insns to use all spill regs
6195 equally, so that inherited reloads have a chance
6196 of leapfrogging each other. */
6198 i = last_spill_reg;
6200 for (count = 0; count < n_spills; count++)
6202 int rclass = (int) rld[r].rclass;
6203 int regnum;
6205 i++;
6206 if (i >= n_spills)
6207 i -= n_spills;
6208 regnum = spill_regs[i];
6210 if ((reload_reg_free_p (regnum, rld[r].opnum,
6211 rld[r].when_needed)
6212 || (rld[r].in
6213 /* We check reload_reg_used to make sure we
6214 don't clobber the return register. */
6215 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6216 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6217 rld[r].when_needed, rld[r].in,
6218 rld[r].out, r, 1)))
6219 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6220 && targetm.hard_regno_mode_ok (regnum, rld[r].mode)
6221 /* Look first for regs to share, then for unshared. But
6222 don't share regs used for inherited reloads; they are
6223 the ones we want to preserve. */
6224 && (pass
6225 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6226 regnum)
6227 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6228 regnum))))
6230 int nr = hard_regno_nregs[regnum][rld[r].mode];
6232 /* During the second pass we want to avoid reload registers
6233 which are "bad" for this reload. */
6234 if (pass == 1
6235 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6236 continue;
6238 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6239 (on 68000) got us two FP regs. If NR is 1,
6240 we would reject both of them. */
6241 if (force_group)
6242 nr = rld[r].nregs;
6243 /* If we need only one reg, we have already won. */
6244 if (nr == 1)
6246 /* But reject a single reg if we demand a group. */
6247 if (force_group)
6248 continue;
6249 break;
6251 /* Otherwise check that as many consecutive regs as we need
6252 are available here. */
6253 while (nr > 1)
6255 int regno = regnum + nr - 1;
6256 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6257 && spill_reg_order[regno] >= 0
6258 && reload_reg_free_p (regno, rld[r].opnum,
6259 rld[r].when_needed)))
6260 break;
6261 nr--;
6263 if (nr == 1)
6264 break;
6268 /* If we found something on the current pass, omit later passes. */
6269 if (count < n_spills)
6270 break;
6273 /* We should have found a spill register by now. */
6274 if (count >= n_spills)
6275 return 0;
6277 /* I is the index in SPILL_REG_RTX of the reload register we are to
6278 allocate. Get an rtx for it and find its register number. */
6280 return set_reload_reg (i, r);
6283 /* Initialize all the tables needed to allocate reload registers.
6284 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6285 is the array we use to restore the reg_rtx field for every reload. */
6287 static void
6288 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6290 int i;
6292 for (i = 0; i < n_reloads; i++)
6293 rld[i].reg_rtx = save_reload_reg_rtx[i];
6295 memset (reload_inherited, 0, MAX_RELOADS);
6296 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6297 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6299 CLEAR_HARD_REG_SET (reload_reg_used);
6300 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6301 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6302 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6303 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6304 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6306 CLEAR_HARD_REG_SET (reg_used_in_insn);
6308 HARD_REG_SET tmp;
6309 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6310 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6311 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6312 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6313 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6314 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6317 for (i = 0; i < reload_n_operands; i++)
6319 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6320 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6321 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6322 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6323 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6324 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6327 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6329 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6331 for (i = 0; i < n_reloads; i++)
6332 /* If we have already decided to use a certain register,
6333 don't use it in another way. */
6334 if (rld[i].reg_rtx)
6335 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6336 rld[i].when_needed, rld[i].mode);
6339 #ifdef SECONDARY_MEMORY_NEEDED
6340 /* If X is not a subreg, return it unmodified. If it is a subreg,
6341 look up whether we made a replacement for the SUBREG_REG. Return
6342 either the replacement or the SUBREG_REG. */
6344 static rtx
6345 replaced_subreg (rtx x)
6347 if (GET_CODE (x) == SUBREG)
6348 return find_replacement (&SUBREG_REG (x));
6349 return x;
6351 #endif
6353 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6354 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6355 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6356 otherwise it is NULL. */
6358 static int
6359 compute_reload_subreg_offset (machine_mode outermode,
6360 rtx subreg,
6361 machine_mode innermode)
6363 int outer_offset;
6364 machine_mode middlemode;
6366 if (!subreg)
6367 return subreg_lowpart_offset (outermode, innermode);
6369 outer_offset = SUBREG_BYTE (subreg);
6370 middlemode = GET_MODE (SUBREG_REG (subreg));
6372 /* If SUBREG is paradoxical then return the normal lowpart offset
6373 for OUTERMODE and INNERMODE. Our caller has already checked
6374 that OUTERMODE fits in INNERMODE. */
6375 if (paradoxical_subreg_p (outermode, middlemode))
6376 return subreg_lowpart_offset (outermode, innermode);
6378 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6379 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6380 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6383 /* Assign hard reg targets for the pseudo-registers we must reload
6384 into hard regs for this insn.
6385 Also output the instructions to copy them in and out of the hard regs.
6387 For machines with register classes, we are responsible for
6388 finding a reload reg in the proper class. */
6390 static void
6391 choose_reload_regs (struct insn_chain *chain)
6393 rtx_insn *insn = chain->insn;
6394 int i, j;
6395 unsigned int max_group_size = 1;
6396 enum reg_class group_class = NO_REGS;
6397 int pass, win, inheritance;
6399 rtx save_reload_reg_rtx[MAX_RELOADS];
6401 /* In order to be certain of getting the registers we need,
6402 we must sort the reloads into order of increasing register class.
6403 Then our grabbing of reload registers will parallel the process
6404 that provided the reload registers.
6406 Also note whether any of the reloads wants a consecutive group of regs.
6407 If so, record the maximum size of the group desired and what
6408 register class contains all the groups needed by this insn. */
6410 for (j = 0; j < n_reloads; j++)
6412 reload_order[j] = j;
6413 if (rld[j].reg_rtx != NULL_RTX)
6415 gcc_assert (REG_P (rld[j].reg_rtx)
6416 && HARD_REGISTER_P (rld[j].reg_rtx));
6417 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6419 else
6420 reload_spill_index[j] = -1;
6422 if (rld[j].nregs > 1)
6424 max_group_size = MAX (rld[j].nregs, max_group_size);
6425 group_class
6426 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6429 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6432 if (n_reloads > 1)
6433 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6435 /* If -O, try first with inheritance, then turning it off.
6436 If not -O, don't do inheritance.
6437 Using inheritance when not optimizing leads to paradoxes
6438 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6439 because one side of the comparison might be inherited. */
6440 win = 0;
6441 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6443 choose_reload_regs_init (chain, save_reload_reg_rtx);
6445 /* Process the reloads in order of preference just found.
6446 Beyond this point, subregs can be found in reload_reg_rtx.
6448 This used to look for an existing reloaded home for all of the
6449 reloads, and only then perform any new reloads. But that could lose
6450 if the reloads were done out of reg-class order because a later
6451 reload with a looser constraint might have an old home in a register
6452 needed by an earlier reload with a tighter constraint.
6454 To solve this, we make two passes over the reloads, in the order
6455 described above. In the first pass we try to inherit a reload
6456 from a previous insn. If there is a later reload that needs a
6457 class that is a proper subset of the class being processed, we must
6458 also allocate a spill register during the first pass.
6460 Then make a second pass over the reloads to allocate any reloads
6461 that haven't been given registers yet. */
6463 for (j = 0; j < n_reloads; j++)
6465 int r = reload_order[j];
6466 rtx search_equiv = NULL_RTX;
6468 /* Ignore reloads that got marked inoperative. */
6469 if (rld[r].out == 0 && rld[r].in == 0
6470 && ! rld[r].secondary_p)
6471 continue;
6473 /* If find_reloads chose to use reload_in or reload_out as a reload
6474 register, we don't need to chose one. Otherwise, try even if it
6475 found one since we might save an insn if we find the value lying
6476 around.
6477 Try also when reload_in is a pseudo without a hard reg. */
6478 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6479 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6480 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6481 && !MEM_P (rld[r].in)
6482 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6483 continue;
6485 #if 0 /* No longer needed for correct operation.
6486 It might give better code, or might not; worth an experiment? */
6487 /* If this is an optional reload, we can't inherit from earlier insns
6488 until we are sure that any non-optional reloads have been allocated.
6489 The following code takes advantage of the fact that optional reloads
6490 are at the end of reload_order. */
6491 if (rld[r].optional != 0)
6492 for (i = 0; i < j; i++)
6493 if ((rld[reload_order[i]].out != 0
6494 || rld[reload_order[i]].in != 0
6495 || rld[reload_order[i]].secondary_p)
6496 && ! rld[reload_order[i]].optional
6497 && rld[reload_order[i]].reg_rtx == 0)
6498 allocate_reload_reg (chain, reload_order[i], 0);
6499 #endif
6501 /* First see if this pseudo is already available as reloaded
6502 for a previous insn. We cannot try to inherit for reloads
6503 that are smaller than the maximum number of registers needed
6504 for groups unless the register we would allocate cannot be used
6505 for the groups.
6507 We could check here to see if this is a secondary reload for
6508 an object that is already in a register of the desired class.
6509 This would avoid the need for the secondary reload register.
6510 But this is complex because we can't easily determine what
6511 objects might want to be loaded via this reload. So let a
6512 register be allocated here. In `emit_reload_insns' we suppress
6513 one of the loads in the case described above. */
6515 if (inheritance)
6517 int byte = 0;
6518 int regno = -1;
6519 machine_mode mode = VOIDmode;
6520 rtx subreg = NULL_RTX;
6522 if (rld[r].in == 0)
6524 else if (REG_P (rld[r].in))
6526 regno = REGNO (rld[r].in);
6527 mode = GET_MODE (rld[r].in);
6529 else if (REG_P (rld[r].in_reg))
6531 regno = REGNO (rld[r].in_reg);
6532 mode = GET_MODE (rld[r].in_reg);
6534 else if (GET_CODE (rld[r].in_reg) == SUBREG
6535 && REG_P (SUBREG_REG (rld[r].in_reg)))
6537 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6538 if (regno < FIRST_PSEUDO_REGISTER)
6539 regno = subreg_regno (rld[r].in_reg);
6540 else
6542 subreg = rld[r].in_reg;
6543 byte = SUBREG_BYTE (subreg);
6545 mode = GET_MODE (rld[r].in_reg);
6547 #if AUTO_INC_DEC
6548 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6549 && REG_P (XEXP (rld[r].in_reg, 0)))
6551 regno = REGNO (XEXP (rld[r].in_reg, 0));
6552 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6553 rld[r].out = rld[r].in;
6555 #endif
6556 #if 0
6557 /* This won't work, since REGNO can be a pseudo reg number.
6558 Also, it takes much more hair to keep track of all the things
6559 that can invalidate an inherited reload of part of a pseudoreg. */
6560 else if (GET_CODE (rld[r].in) == SUBREG
6561 && REG_P (SUBREG_REG (rld[r].in)))
6562 regno = subreg_regno (rld[r].in);
6563 #endif
6565 if (regno >= 0
6566 && reg_last_reload_reg[regno] != 0
6567 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6568 >= GET_MODE_SIZE (mode) + byte)
6569 #ifdef CANNOT_CHANGE_MODE_CLASS
6570 /* Verify that the register it's in can be used in
6571 mode MODE. */
6572 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6573 GET_MODE (reg_last_reload_reg[regno]),
6574 mode)
6575 #endif
6578 enum reg_class rclass = rld[r].rclass, last_class;
6579 rtx last_reg = reg_last_reload_reg[regno];
6581 i = REGNO (last_reg);
6582 byte = compute_reload_subreg_offset (mode,
6583 subreg,
6584 GET_MODE (last_reg));
6585 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6586 last_class = REGNO_REG_CLASS (i);
6588 if (reg_reloaded_contents[i] == regno
6589 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6590 && targetm.hard_regno_mode_ok (i, rld[r].mode)
6591 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6592 /* Even if we can't use this register as a reload
6593 register, we might use it for reload_override_in,
6594 if copying it to the desired class is cheap
6595 enough. */
6596 || ((register_move_cost (mode, last_class, rclass)
6597 < memory_move_cost (mode, rclass, true))
6598 && (secondary_reload_class (1, rclass, mode,
6599 last_reg)
6600 == NO_REGS)
6601 #ifdef SECONDARY_MEMORY_NEEDED
6602 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6603 mode)
6604 #endif
6607 && (rld[r].nregs == max_group_size
6608 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6610 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6611 rld[r].when_needed, rld[r].in,
6612 const0_rtx, r, 1))
6614 /* If a group is needed, verify that all the subsequent
6615 registers still have their values intact. */
6616 int nr = hard_regno_nregs[i][rld[r].mode];
6617 int k;
6619 for (k = 1; k < nr; k++)
6620 if (reg_reloaded_contents[i + k] != regno
6621 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6622 break;
6624 if (k == nr)
6626 int i1;
6627 int bad_for_class;
6629 last_reg = (GET_MODE (last_reg) == mode
6630 ? last_reg : gen_rtx_REG (mode, i));
6632 bad_for_class = 0;
6633 for (k = 0; k < nr; k++)
6634 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6635 i+k);
6637 /* We found a register that contains the
6638 value we need. If this register is the
6639 same as an `earlyclobber' operand of the
6640 current insn, just mark it as a place to
6641 reload from since we can't use it as the
6642 reload register itself. */
6644 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6645 if (reg_overlap_mentioned_for_reload_p
6646 (reg_last_reload_reg[regno],
6647 reload_earlyclobbers[i1]))
6648 break;
6650 if (i1 != n_earlyclobbers
6651 || ! (free_for_value_p (i, rld[r].mode,
6652 rld[r].opnum,
6653 rld[r].when_needed, rld[r].in,
6654 rld[r].out, r, 1))
6655 /* Don't use it if we'd clobber a pseudo reg. */
6656 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6657 && rld[r].out
6658 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6659 /* Don't clobber the frame pointer. */
6660 || (i == HARD_FRAME_POINTER_REGNUM
6661 && frame_pointer_needed
6662 && rld[r].out)
6663 /* Don't really use the inherited spill reg
6664 if we need it wider than we've got it. */
6665 || paradoxical_subreg_p (rld[r].mode, mode)
6666 || bad_for_class
6668 /* If find_reloads chose reload_out as reload
6669 register, stay with it - that leaves the
6670 inherited register for subsequent reloads. */
6671 || (rld[r].out && rld[r].reg_rtx
6672 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6674 if (! rld[r].optional)
6676 reload_override_in[r] = last_reg;
6677 reload_inheritance_insn[r]
6678 = reg_reloaded_insn[i];
6681 else
6683 int k;
6684 /* We can use this as a reload reg. */
6685 /* Mark the register as in use for this part of
6686 the insn. */
6687 mark_reload_reg_in_use (i,
6688 rld[r].opnum,
6689 rld[r].when_needed,
6690 rld[r].mode);
6691 rld[r].reg_rtx = last_reg;
6692 reload_inherited[r] = 1;
6693 reload_inheritance_insn[r]
6694 = reg_reloaded_insn[i];
6695 reload_spill_index[r] = i;
6696 for (k = 0; k < nr; k++)
6697 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6698 i + k);
6705 /* Here's another way to see if the value is already lying around. */
6706 if (inheritance
6707 && rld[r].in != 0
6708 && ! reload_inherited[r]
6709 && rld[r].out == 0
6710 && (CONSTANT_P (rld[r].in)
6711 || GET_CODE (rld[r].in) == PLUS
6712 || REG_P (rld[r].in)
6713 || MEM_P (rld[r].in))
6714 && (rld[r].nregs == max_group_size
6715 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6716 search_equiv = rld[r].in;
6718 if (search_equiv)
6720 rtx equiv
6721 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6722 -1, NULL, 0, rld[r].mode);
6723 int regno = 0;
6725 if (equiv != 0)
6727 if (REG_P (equiv))
6728 regno = REGNO (equiv);
6729 else
6731 /* This must be a SUBREG of a hard register.
6732 Make a new REG since this might be used in an
6733 address and not all machines support SUBREGs
6734 there. */
6735 gcc_assert (GET_CODE (equiv) == SUBREG);
6736 regno = subreg_regno (equiv);
6737 equiv = gen_rtx_REG (rld[r].mode, regno);
6738 /* If we choose EQUIV as the reload register, but the
6739 loop below decides to cancel the inheritance, we'll
6740 end up reloading EQUIV in rld[r].mode, not the mode
6741 it had originally. That isn't safe when EQUIV isn't
6742 available as a spill register since its value might
6743 still be live at this point. */
6744 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6745 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6746 equiv = 0;
6750 /* If we found a spill reg, reject it unless it is free
6751 and of the desired class. */
6752 if (equiv != 0)
6754 int regs_used = 0;
6755 int bad_for_class = 0;
6756 int max_regno = regno + rld[r].nregs;
6758 for (i = regno; i < max_regno; i++)
6760 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6762 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6766 if ((regs_used
6767 && ! free_for_value_p (regno, rld[r].mode,
6768 rld[r].opnum, rld[r].when_needed,
6769 rld[r].in, rld[r].out, r, 1))
6770 || bad_for_class)
6771 equiv = 0;
6774 if (equiv != 0
6775 && !targetm.hard_regno_mode_ok (regno, rld[r].mode))
6776 equiv = 0;
6778 /* We found a register that contains the value we need.
6779 If this register is the same as an `earlyclobber' operand
6780 of the current insn, just mark it as a place to reload from
6781 since we can't use it as the reload register itself. */
6783 if (equiv != 0)
6784 for (i = 0; i < n_earlyclobbers; i++)
6785 if (reg_overlap_mentioned_for_reload_p (equiv,
6786 reload_earlyclobbers[i]))
6788 if (! rld[r].optional)
6789 reload_override_in[r] = equiv;
6790 equiv = 0;
6791 break;
6794 /* If the equiv register we have found is explicitly clobbered
6795 in the current insn, it depends on the reload type if we
6796 can use it, use it for reload_override_in, or not at all.
6797 In particular, we then can't use EQUIV for a
6798 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6800 if (equiv != 0)
6802 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6803 switch (rld[r].when_needed)
6805 case RELOAD_FOR_OTHER_ADDRESS:
6806 case RELOAD_FOR_INPADDR_ADDRESS:
6807 case RELOAD_FOR_INPUT_ADDRESS:
6808 case RELOAD_FOR_OPADDR_ADDR:
6809 break;
6810 case RELOAD_OTHER:
6811 case RELOAD_FOR_INPUT:
6812 case RELOAD_FOR_OPERAND_ADDRESS:
6813 if (! rld[r].optional)
6814 reload_override_in[r] = equiv;
6815 /* Fall through. */
6816 default:
6817 equiv = 0;
6818 break;
6820 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6821 switch (rld[r].when_needed)
6823 case RELOAD_FOR_OTHER_ADDRESS:
6824 case RELOAD_FOR_INPADDR_ADDRESS:
6825 case RELOAD_FOR_INPUT_ADDRESS:
6826 case RELOAD_FOR_OPADDR_ADDR:
6827 case RELOAD_FOR_OPERAND_ADDRESS:
6828 case RELOAD_FOR_INPUT:
6829 break;
6830 case RELOAD_OTHER:
6831 if (! rld[r].optional)
6832 reload_override_in[r] = equiv;
6833 /* Fall through. */
6834 default:
6835 equiv = 0;
6836 break;
6840 /* If we found an equivalent reg, say no code need be generated
6841 to load it, and use it as our reload reg. */
6842 if (equiv != 0
6843 && (regno != HARD_FRAME_POINTER_REGNUM
6844 || !frame_pointer_needed))
6846 int nr = hard_regno_nregs[regno][rld[r].mode];
6847 int k;
6848 rld[r].reg_rtx = equiv;
6849 reload_spill_index[r] = regno;
6850 reload_inherited[r] = 1;
6852 /* If reg_reloaded_valid is not set for this register,
6853 there might be a stale spill_reg_store lying around.
6854 We must clear it, since otherwise emit_reload_insns
6855 might delete the store. */
6856 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6857 spill_reg_store[regno] = NULL;
6858 /* If any of the hard registers in EQUIV are spill
6859 registers, mark them as in use for this insn. */
6860 for (k = 0; k < nr; k++)
6862 i = spill_reg_order[regno + k];
6863 if (i >= 0)
6865 mark_reload_reg_in_use (regno, rld[r].opnum,
6866 rld[r].when_needed,
6867 rld[r].mode);
6868 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6869 regno + k);
6875 /* If we found a register to use already, or if this is an optional
6876 reload, we are done. */
6877 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6878 continue;
6880 #if 0
6881 /* No longer needed for correct operation. Might or might
6882 not give better code on the average. Want to experiment? */
6884 /* See if there is a later reload that has a class different from our
6885 class that intersects our class or that requires less register
6886 than our reload. If so, we must allocate a register to this
6887 reload now, since that reload might inherit a previous reload
6888 and take the only available register in our class. Don't do this
6889 for optional reloads since they will force all previous reloads
6890 to be allocated. Also don't do this for reloads that have been
6891 turned off. */
6893 for (i = j + 1; i < n_reloads; i++)
6895 int s = reload_order[i];
6897 if ((rld[s].in == 0 && rld[s].out == 0
6898 && ! rld[s].secondary_p)
6899 || rld[s].optional)
6900 continue;
6902 if ((rld[s].rclass != rld[r].rclass
6903 && reg_classes_intersect_p (rld[r].rclass,
6904 rld[s].rclass))
6905 || rld[s].nregs < rld[r].nregs)
6906 break;
6909 if (i == n_reloads)
6910 continue;
6912 allocate_reload_reg (chain, r, j == n_reloads - 1);
6913 #endif
6916 /* Now allocate reload registers for anything non-optional that
6917 didn't get one yet. */
6918 for (j = 0; j < n_reloads; j++)
6920 int r = reload_order[j];
6922 /* Ignore reloads that got marked inoperative. */
6923 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6924 continue;
6926 /* Skip reloads that already have a register allocated or are
6927 optional. */
6928 if (rld[r].reg_rtx != 0 || rld[r].optional)
6929 continue;
6931 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6932 break;
6935 /* If that loop got all the way, we have won. */
6936 if (j == n_reloads)
6938 win = 1;
6939 break;
6942 /* Loop around and try without any inheritance. */
6945 if (! win)
6947 /* First undo everything done by the failed attempt
6948 to allocate with inheritance. */
6949 choose_reload_regs_init (chain, save_reload_reg_rtx);
6951 /* Some sanity tests to verify that the reloads found in the first
6952 pass are identical to the ones we have now. */
6953 gcc_assert (chain->n_reloads == n_reloads);
6955 for (i = 0; i < n_reloads; i++)
6957 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6958 continue;
6959 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6960 for (j = 0; j < n_spills; j++)
6961 if (spill_regs[j] == chain->rld[i].regno)
6962 if (! set_reload_reg (j, i))
6963 failed_reload (chain->insn, i);
6967 /* If we thought we could inherit a reload, because it seemed that
6968 nothing else wanted the same reload register earlier in the insn,
6969 verify that assumption, now that all reloads have been assigned.
6970 Likewise for reloads where reload_override_in has been set. */
6972 /* If doing expensive optimizations, do one preliminary pass that doesn't
6973 cancel any inheritance, but removes reloads that have been needed only
6974 for reloads that we know can be inherited. */
6975 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6977 for (j = 0; j < n_reloads; j++)
6979 int r = reload_order[j];
6980 rtx check_reg;
6981 #ifdef SECONDARY_MEMORY_NEEDED
6982 rtx tem;
6983 #endif
6984 if (reload_inherited[r] && rld[r].reg_rtx)
6985 check_reg = rld[r].reg_rtx;
6986 else if (reload_override_in[r]
6987 && (REG_P (reload_override_in[r])
6988 || GET_CODE (reload_override_in[r]) == SUBREG))
6989 check_reg = reload_override_in[r];
6990 else
6991 continue;
6992 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6993 rld[r].opnum, rld[r].when_needed, rld[r].in,
6994 (reload_inherited[r]
6995 ? rld[r].out : const0_rtx),
6996 r, 1))
6998 if (pass)
6999 continue;
7000 reload_inherited[r] = 0;
7001 reload_override_in[r] = 0;
7003 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7004 reload_override_in, then we do not need its related
7005 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7006 likewise for other reload types.
7007 We handle this by removing a reload when its only replacement
7008 is mentioned in reload_in of the reload we are going to inherit.
7009 A special case are auto_inc expressions; even if the input is
7010 inherited, we still need the address for the output. We can
7011 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7012 If we succeeded removing some reload and we are doing a preliminary
7013 pass just to remove such reloads, make another pass, since the
7014 removal of one reload might allow us to inherit another one. */
7015 else if (rld[r].in
7016 && rld[r].out != rld[r].in
7017 && remove_address_replacements (rld[r].in))
7019 if (pass)
7020 pass = 2;
7022 #ifdef SECONDARY_MEMORY_NEEDED
7023 /* If we needed a memory location for the reload, we also have to
7024 remove its related reloads. */
7025 else if (rld[r].in
7026 && rld[r].out != rld[r].in
7027 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7028 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7029 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7030 rld[r].rclass, rld[r].inmode)
7031 && remove_address_replacements
7032 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7033 rld[r].when_needed)))
7035 if (pass)
7036 pass = 2;
7038 #endif
7042 /* Now that reload_override_in is known valid,
7043 actually override reload_in. */
7044 for (j = 0; j < n_reloads; j++)
7045 if (reload_override_in[j])
7046 rld[j].in = reload_override_in[j];
7048 /* If this reload won't be done because it has been canceled or is
7049 optional and not inherited, clear reload_reg_rtx so other
7050 routines (such as subst_reloads) don't get confused. */
7051 for (j = 0; j < n_reloads; j++)
7052 if (rld[j].reg_rtx != 0
7053 && ((rld[j].optional && ! reload_inherited[j])
7054 || (rld[j].in == 0 && rld[j].out == 0
7055 && ! rld[j].secondary_p)))
7057 int regno = true_regnum (rld[j].reg_rtx);
7059 if (spill_reg_order[regno] >= 0)
7060 clear_reload_reg_in_use (regno, rld[j].opnum,
7061 rld[j].when_needed, rld[j].mode);
7062 rld[j].reg_rtx = 0;
7063 reload_spill_index[j] = -1;
7066 /* Record which pseudos and which spill regs have output reloads. */
7067 for (j = 0; j < n_reloads; j++)
7069 int r = reload_order[j];
7071 i = reload_spill_index[r];
7073 /* I is nonneg if this reload uses a register.
7074 If rld[r].reg_rtx is 0, this is an optional reload
7075 that we opted to ignore. */
7076 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7077 && rld[r].reg_rtx != 0)
7079 int nregno = REGNO (rld[r].out_reg);
7080 int nr = 1;
7082 if (nregno < FIRST_PSEUDO_REGISTER)
7083 nr = hard_regno_nregs[nregno][rld[r].mode];
7085 while (--nr >= 0)
7086 SET_REGNO_REG_SET (&reg_has_output_reload,
7087 nregno + nr);
7089 if (i >= 0)
7090 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7092 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7093 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7094 || rld[r].when_needed == RELOAD_FOR_INSN);
7099 /* Deallocate the reload register for reload R. This is called from
7100 remove_address_replacements. */
7102 void
7103 deallocate_reload_reg (int r)
7105 int regno;
7107 if (! rld[r].reg_rtx)
7108 return;
7109 regno = true_regnum (rld[r].reg_rtx);
7110 rld[r].reg_rtx = 0;
7111 if (spill_reg_order[regno] >= 0)
7112 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7113 rld[r].mode);
7114 reload_spill_index[r] = -1;
7117 /* These arrays are filled by emit_reload_insns and its subroutines. */
7118 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7119 static rtx_insn *other_input_address_reload_insns = 0;
7120 static rtx_insn *other_input_reload_insns = 0;
7121 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7122 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7123 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7124 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7125 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7126 static rtx_insn *operand_reload_insns = 0;
7127 static rtx_insn *other_operand_reload_insns = 0;
7128 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7130 /* Values to be put in spill_reg_store are put here first. Instructions
7131 must only be placed here if the associated reload register reaches
7132 the end of the instruction's reload sequence. */
7133 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7134 static HARD_REG_SET reg_reloaded_died;
7136 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7137 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7138 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7139 adjusted register, and return true. Otherwise, return false. */
7140 static bool
7141 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7142 enum reg_class new_class,
7143 machine_mode new_mode)
7146 rtx reg;
7148 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7150 unsigned regno = REGNO (reg);
7152 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7153 continue;
7154 if (GET_MODE (reg) != new_mode)
7156 if (!targetm.hard_regno_mode_ok (regno, new_mode))
7157 continue;
7158 if (hard_regno_nregs[regno][new_mode]
7159 > hard_regno_nregs[regno][GET_MODE (reg)])
7160 continue;
7161 reg = reload_adjust_reg_for_mode (reg, new_mode);
7163 *reload_reg = reg;
7164 return true;
7166 return false;
7169 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7170 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7171 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7172 adjusted register, and return true. Otherwise, return false. */
7173 static bool
7174 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7175 enum insn_code icode)
7178 enum reg_class new_class = scratch_reload_class (icode);
7179 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7181 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7182 new_class, new_mode);
7185 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7186 has the number J. OLD contains the value to be used as input. */
7188 static void
7189 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7190 rtx old, int j)
7192 rtx_insn *insn = chain->insn;
7193 rtx reloadreg;
7194 rtx oldequiv_reg = 0;
7195 rtx oldequiv = 0;
7196 int special = 0;
7197 machine_mode mode;
7198 rtx_insn **where;
7200 /* delete_output_reload is only invoked properly if old contains
7201 the original pseudo register. Since this is replaced with a
7202 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7203 find the pseudo in RELOAD_IN_REG. This is also used to
7204 determine whether a secondary reload is needed. */
7205 if (reload_override_in[j]
7206 && (REG_P (rl->in_reg)
7207 || (GET_CODE (rl->in_reg) == SUBREG
7208 && REG_P (SUBREG_REG (rl->in_reg)))))
7210 oldequiv = old;
7211 old = rl->in_reg;
7213 if (oldequiv == 0)
7214 oldequiv = old;
7215 else if (REG_P (oldequiv))
7216 oldequiv_reg = oldequiv;
7217 else if (GET_CODE (oldequiv) == SUBREG)
7218 oldequiv_reg = SUBREG_REG (oldequiv);
7220 reloadreg = reload_reg_rtx_for_input[j];
7221 mode = GET_MODE (reloadreg);
7223 /* If we are reloading from a register that was recently stored in
7224 with an output-reload, see if we can prove there was
7225 actually no need to store the old value in it. */
7227 if (optimize && REG_P (oldequiv)
7228 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7229 && spill_reg_store[REGNO (oldequiv)]
7230 && REG_P (old)
7231 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7232 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7233 rl->out_reg)))
7234 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7236 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7237 OLDEQUIV. */
7239 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7240 oldequiv = SUBREG_REG (oldequiv);
7241 if (GET_MODE (oldequiv) != VOIDmode
7242 && mode != GET_MODE (oldequiv))
7243 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7245 /* Switch to the right place to emit the reload insns. */
7246 switch (rl->when_needed)
7248 case RELOAD_OTHER:
7249 where = &other_input_reload_insns;
7250 break;
7251 case RELOAD_FOR_INPUT:
7252 where = &input_reload_insns[rl->opnum];
7253 break;
7254 case RELOAD_FOR_INPUT_ADDRESS:
7255 where = &input_address_reload_insns[rl->opnum];
7256 break;
7257 case RELOAD_FOR_INPADDR_ADDRESS:
7258 where = &inpaddr_address_reload_insns[rl->opnum];
7259 break;
7260 case RELOAD_FOR_OUTPUT_ADDRESS:
7261 where = &output_address_reload_insns[rl->opnum];
7262 break;
7263 case RELOAD_FOR_OUTADDR_ADDRESS:
7264 where = &outaddr_address_reload_insns[rl->opnum];
7265 break;
7266 case RELOAD_FOR_OPERAND_ADDRESS:
7267 where = &operand_reload_insns;
7268 break;
7269 case RELOAD_FOR_OPADDR_ADDR:
7270 where = &other_operand_reload_insns;
7271 break;
7272 case RELOAD_FOR_OTHER_ADDRESS:
7273 where = &other_input_address_reload_insns;
7274 break;
7275 default:
7276 gcc_unreachable ();
7279 push_to_sequence (*where);
7281 /* Auto-increment addresses must be reloaded in a special way. */
7282 if (rl->out && ! rl->out_reg)
7284 /* We are not going to bother supporting the case where a
7285 incremented register can't be copied directly from
7286 OLDEQUIV since this seems highly unlikely. */
7287 gcc_assert (rl->secondary_in_reload < 0);
7289 if (reload_inherited[j])
7290 oldequiv = reloadreg;
7292 old = XEXP (rl->in_reg, 0);
7294 /* Prevent normal processing of this reload. */
7295 special = 1;
7296 /* Output a special code sequence for this case. */
7297 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7300 /* If we are reloading a pseudo-register that was set by the previous
7301 insn, see if we can get rid of that pseudo-register entirely
7302 by redirecting the previous insn into our reload register. */
7304 else if (optimize && REG_P (old)
7305 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7306 && dead_or_set_p (insn, old)
7307 /* This is unsafe if some other reload
7308 uses the same reg first. */
7309 && ! conflicts_with_override (reloadreg)
7310 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7311 rl->when_needed, old, rl->out, j, 0))
7313 rtx_insn *temp = PREV_INSN (insn);
7314 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7315 temp = PREV_INSN (temp);
7316 if (temp
7317 && NONJUMP_INSN_P (temp)
7318 && GET_CODE (PATTERN (temp)) == SET
7319 && SET_DEST (PATTERN (temp)) == old
7320 /* Make sure we can access insn_operand_constraint. */
7321 && asm_noperands (PATTERN (temp)) < 0
7322 /* This is unsafe if operand occurs more than once in current
7323 insn. Perhaps some occurrences aren't reloaded. */
7324 && count_occurrences (PATTERN (insn), old, 0) == 1)
7326 rtx old = SET_DEST (PATTERN (temp));
7327 /* Store into the reload register instead of the pseudo. */
7328 SET_DEST (PATTERN (temp)) = reloadreg;
7330 /* Verify that resulting insn is valid.
7332 Note that we have replaced the destination of TEMP with
7333 RELOADREG. If TEMP references RELOADREG within an
7334 autoincrement addressing mode, then the resulting insn
7335 is ill-formed and we must reject this optimization. */
7336 extract_insn (temp);
7337 if (constrain_operands (1, get_enabled_alternatives (temp))
7338 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7340 /* If the previous insn is an output reload, the source is
7341 a reload register, and its spill_reg_store entry will
7342 contain the previous destination. This is now
7343 invalid. */
7344 if (REG_P (SET_SRC (PATTERN (temp)))
7345 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7347 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7348 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7351 /* If these are the only uses of the pseudo reg,
7352 pretend for GDB it lives in the reload reg we used. */
7353 if (REG_N_DEATHS (REGNO (old)) == 1
7354 && REG_N_SETS (REGNO (old)) == 1)
7356 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7357 if (ira_conflicts_p)
7358 /* Inform IRA about the change. */
7359 ira_mark_allocation_change (REGNO (old));
7360 alter_reg (REGNO (old), -1, false);
7362 special = 1;
7364 /* Adjust any debug insns between temp and insn. */
7365 while ((temp = NEXT_INSN (temp)) != insn)
7366 if (DEBUG_INSN_P (temp))
7367 INSN_VAR_LOCATION_LOC (temp)
7368 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
7369 old, reloadreg);
7370 else
7371 gcc_assert (NOTE_P (temp));
7373 else
7375 SET_DEST (PATTERN (temp)) = old;
7380 /* We can't do that, so output an insn to load RELOADREG. */
7382 /* If we have a secondary reload, pick up the secondary register
7383 and icode, if any. If OLDEQUIV and OLD are different or
7384 if this is an in-out reload, recompute whether or not we
7385 still need a secondary register and what the icode should
7386 be. If we still need a secondary register and the class or
7387 icode is different, go back to reloading from OLD if using
7388 OLDEQUIV means that we got the wrong type of register. We
7389 cannot have different class or icode due to an in-out reload
7390 because we don't make such reloads when both the input and
7391 output need secondary reload registers. */
7393 if (! special && rl->secondary_in_reload >= 0)
7395 rtx second_reload_reg = 0;
7396 rtx third_reload_reg = 0;
7397 int secondary_reload = rl->secondary_in_reload;
7398 rtx real_oldequiv = oldequiv;
7399 rtx real_old = old;
7400 rtx tmp;
7401 enum insn_code icode;
7402 enum insn_code tertiary_icode = CODE_FOR_nothing;
7404 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7405 and similarly for OLD.
7406 See comments in get_secondary_reload in reload.c. */
7407 /* If it is a pseudo that cannot be replaced with its
7408 equivalent MEM, we must fall back to reload_in, which
7409 will have all the necessary substitutions registered.
7410 Likewise for a pseudo that can't be replaced with its
7411 equivalent constant.
7413 Take extra care for subregs of such pseudos. Note that
7414 we cannot use reg_equiv_mem in this case because it is
7415 not in the right mode. */
7417 tmp = oldequiv;
7418 if (GET_CODE (tmp) == SUBREG)
7419 tmp = SUBREG_REG (tmp);
7420 if (REG_P (tmp)
7421 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7422 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7423 || reg_equiv_constant (REGNO (tmp)) != 0))
7425 if (! reg_equiv_mem (REGNO (tmp))
7426 || num_not_at_initial_offset
7427 || GET_CODE (oldequiv) == SUBREG)
7428 real_oldequiv = rl->in;
7429 else
7430 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7433 tmp = old;
7434 if (GET_CODE (tmp) == SUBREG)
7435 tmp = SUBREG_REG (tmp);
7436 if (REG_P (tmp)
7437 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7438 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7439 || reg_equiv_constant (REGNO (tmp)) != 0))
7441 if (! reg_equiv_mem (REGNO (tmp))
7442 || num_not_at_initial_offset
7443 || GET_CODE (old) == SUBREG)
7444 real_old = rl->in;
7445 else
7446 real_old = reg_equiv_mem (REGNO (tmp));
7449 second_reload_reg = rld[secondary_reload].reg_rtx;
7450 if (rld[secondary_reload].secondary_in_reload >= 0)
7452 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7454 third_reload_reg = rld[tertiary_reload].reg_rtx;
7455 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7456 /* We'd have to add more code for quartary reloads. */
7457 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7459 icode = rl->secondary_in_icode;
7461 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7462 || (rl->in != 0 && rl->out != 0))
7464 secondary_reload_info sri, sri2;
7465 enum reg_class new_class, new_t_class;
7467 sri.icode = CODE_FOR_nothing;
7468 sri.prev_sri = NULL;
7469 new_class
7470 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7471 rl->rclass, mode,
7472 &sri);
7474 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7475 second_reload_reg = 0;
7476 else if (new_class == NO_REGS)
7478 if (reload_adjust_reg_for_icode (&second_reload_reg,
7479 third_reload_reg,
7480 (enum insn_code) sri.icode))
7482 icode = (enum insn_code) sri.icode;
7483 third_reload_reg = 0;
7485 else
7487 oldequiv = old;
7488 real_oldequiv = real_old;
7491 else if (sri.icode != CODE_FOR_nothing)
7492 /* We currently lack a way to express this in reloads. */
7493 gcc_unreachable ();
7494 else
7496 sri2.icode = CODE_FOR_nothing;
7497 sri2.prev_sri = &sri;
7498 new_t_class
7499 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7500 new_class, mode,
7501 &sri);
7502 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7504 if (reload_adjust_reg_for_temp (&second_reload_reg,
7505 third_reload_reg,
7506 new_class, mode))
7508 third_reload_reg = 0;
7509 tertiary_icode = (enum insn_code) sri2.icode;
7511 else
7513 oldequiv = old;
7514 real_oldequiv = real_old;
7517 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7519 rtx intermediate = second_reload_reg;
7521 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7522 new_class, mode)
7523 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7524 ((enum insn_code)
7525 sri2.icode)))
7527 second_reload_reg = intermediate;
7528 tertiary_icode = (enum insn_code) sri2.icode;
7530 else
7532 oldequiv = old;
7533 real_oldequiv = real_old;
7536 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7538 rtx intermediate = second_reload_reg;
7540 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7541 new_class, mode)
7542 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7543 new_t_class, mode))
7545 second_reload_reg = intermediate;
7546 tertiary_icode = (enum insn_code) sri2.icode;
7548 else
7550 oldequiv = old;
7551 real_oldequiv = real_old;
7554 else
7556 /* This could be handled more intelligently too. */
7557 oldequiv = old;
7558 real_oldequiv = real_old;
7563 /* If we still need a secondary reload register, check
7564 to see if it is being used as a scratch or intermediate
7565 register and generate code appropriately. If we need
7566 a scratch register, use REAL_OLDEQUIV since the form of
7567 the insn may depend on the actual address if it is
7568 a MEM. */
7570 if (second_reload_reg)
7572 if (icode != CODE_FOR_nothing)
7574 /* We'd have to add extra code to handle this case. */
7575 gcc_assert (!third_reload_reg);
7577 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7578 second_reload_reg));
7579 special = 1;
7581 else
7583 /* See if we need a scratch register to load the
7584 intermediate register (a tertiary reload). */
7585 if (tertiary_icode != CODE_FOR_nothing)
7587 emit_insn ((GEN_FCN (tertiary_icode)
7588 (second_reload_reg, real_oldequiv,
7589 third_reload_reg)));
7591 else if (third_reload_reg)
7593 gen_reload (third_reload_reg, real_oldequiv,
7594 rl->opnum,
7595 rl->when_needed);
7596 gen_reload (second_reload_reg, third_reload_reg,
7597 rl->opnum,
7598 rl->when_needed);
7600 else
7601 gen_reload (second_reload_reg, real_oldequiv,
7602 rl->opnum,
7603 rl->when_needed);
7605 oldequiv = second_reload_reg;
7610 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7612 rtx real_oldequiv = oldequiv;
7614 if ((REG_P (oldequiv)
7615 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7616 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7617 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7618 || (GET_CODE (oldequiv) == SUBREG
7619 && REG_P (SUBREG_REG (oldequiv))
7620 && (REGNO (SUBREG_REG (oldequiv))
7621 >= FIRST_PSEUDO_REGISTER)
7622 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7623 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7624 || (CONSTANT_P (oldequiv)
7625 && (targetm.preferred_reload_class (oldequiv,
7626 REGNO_REG_CLASS (REGNO (reloadreg)))
7627 == NO_REGS)))
7628 real_oldequiv = rl->in;
7629 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7630 rl->when_needed);
7633 if (cfun->can_throw_non_call_exceptions)
7634 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7636 /* End this sequence. */
7637 *where = get_insns ();
7638 end_sequence ();
7640 /* Update reload_override_in so that delete_address_reloads_1
7641 can see the actual register usage. */
7642 if (oldequiv_reg)
7643 reload_override_in[j] = oldequiv;
7646 /* Generate insns to for the output reload RL, which is for the insn described
7647 by CHAIN and has the number J. */
7648 static void
7649 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7650 int j)
7652 rtx reloadreg;
7653 rtx_insn *insn = chain->insn;
7654 int special = 0;
7655 rtx old = rl->out;
7656 machine_mode mode;
7657 rtx_insn *p;
7658 rtx rl_reg_rtx;
7660 if (rl->when_needed == RELOAD_OTHER)
7661 start_sequence ();
7662 else
7663 push_to_sequence (output_reload_insns[rl->opnum]);
7665 rl_reg_rtx = reload_reg_rtx_for_output[j];
7666 mode = GET_MODE (rl_reg_rtx);
7668 reloadreg = rl_reg_rtx;
7670 /* If we need two reload regs, set RELOADREG to the intermediate
7671 one, since it will be stored into OLD. We might need a secondary
7672 register only for an input reload, so check again here. */
7674 if (rl->secondary_out_reload >= 0)
7676 rtx real_old = old;
7677 int secondary_reload = rl->secondary_out_reload;
7678 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7680 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7681 && reg_equiv_mem (REGNO (old)) != 0)
7682 real_old = reg_equiv_mem (REGNO (old));
7684 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7686 rtx second_reloadreg = reloadreg;
7687 reloadreg = rld[secondary_reload].reg_rtx;
7689 /* See if RELOADREG is to be used as a scratch register
7690 or as an intermediate register. */
7691 if (rl->secondary_out_icode != CODE_FOR_nothing)
7693 /* We'd have to add extra code to handle this case. */
7694 gcc_assert (tertiary_reload < 0);
7696 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7697 (real_old, second_reloadreg, reloadreg)));
7698 special = 1;
7700 else
7702 /* See if we need both a scratch and intermediate reload
7703 register. */
7705 enum insn_code tertiary_icode
7706 = rld[secondary_reload].secondary_out_icode;
7708 /* We'd have to add more code for quartary reloads. */
7709 gcc_assert (tertiary_reload < 0
7710 || rld[tertiary_reload].secondary_out_reload < 0);
7712 if (GET_MODE (reloadreg) != mode)
7713 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7715 if (tertiary_icode != CODE_FOR_nothing)
7717 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7719 /* Copy primary reload reg to secondary reload reg.
7720 (Note that these have been swapped above, then
7721 secondary reload reg to OLD using our insn.) */
7723 /* If REAL_OLD is a paradoxical SUBREG, remove it
7724 and try to put the opposite SUBREG on
7725 RELOADREG. */
7726 strip_paradoxical_subreg (&real_old, &reloadreg);
7728 gen_reload (reloadreg, second_reloadreg,
7729 rl->opnum, rl->when_needed);
7730 emit_insn ((GEN_FCN (tertiary_icode)
7731 (real_old, reloadreg, third_reloadreg)));
7732 special = 1;
7735 else
7737 /* Copy between the reload regs here and then to
7738 OUT later. */
7740 gen_reload (reloadreg, second_reloadreg,
7741 rl->opnum, rl->when_needed);
7742 if (tertiary_reload >= 0)
7744 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7746 gen_reload (third_reloadreg, reloadreg,
7747 rl->opnum, rl->when_needed);
7748 reloadreg = third_reloadreg;
7755 /* Output the last reload insn. */
7756 if (! special)
7758 rtx set;
7760 /* Don't output the last reload if OLD is not the dest of
7761 INSN and is in the src and is clobbered by INSN. */
7762 if (! flag_expensive_optimizations
7763 || !REG_P (old)
7764 || !(set = single_set (insn))
7765 || rtx_equal_p (old, SET_DEST (set))
7766 || !reg_mentioned_p (old, SET_SRC (set))
7767 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7768 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7769 gen_reload (old, reloadreg, rl->opnum,
7770 rl->when_needed);
7773 /* Look at all insns we emitted, just to be safe. */
7774 for (p = get_insns (); p; p = NEXT_INSN (p))
7775 if (INSN_P (p))
7777 rtx pat = PATTERN (p);
7779 /* If this output reload doesn't come from a spill reg,
7780 clear any memory of reloaded copies of the pseudo reg.
7781 If this output reload comes from a spill reg,
7782 reg_has_output_reload will make this do nothing. */
7783 note_stores (pat, forget_old_reloads_1, NULL);
7785 if (reg_mentioned_p (rl_reg_rtx, pat))
7787 rtx set = single_set (insn);
7788 if (reload_spill_index[j] < 0
7789 && set
7790 && SET_SRC (set) == rl_reg_rtx)
7792 int src = REGNO (SET_SRC (set));
7794 reload_spill_index[j] = src;
7795 SET_HARD_REG_BIT (reg_is_output_reload, src);
7796 if (find_regno_note (insn, REG_DEAD, src))
7797 SET_HARD_REG_BIT (reg_reloaded_died, src);
7799 if (HARD_REGISTER_P (rl_reg_rtx))
7801 int s = rl->secondary_out_reload;
7802 set = single_set (p);
7803 /* If this reload copies only to the secondary reload
7804 register, the secondary reload does the actual
7805 store. */
7806 if (s >= 0 && set == NULL_RTX)
7807 /* We can't tell what function the secondary reload
7808 has and where the actual store to the pseudo is
7809 made; leave new_spill_reg_store alone. */
7811 else if (s >= 0
7812 && SET_SRC (set) == rl_reg_rtx
7813 && SET_DEST (set) == rld[s].reg_rtx)
7815 /* Usually the next instruction will be the
7816 secondary reload insn; if we can confirm
7817 that it is, setting new_spill_reg_store to
7818 that insn will allow an extra optimization. */
7819 rtx s_reg = rld[s].reg_rtx;
7820 rtx_insn *next = NEXT_INSN (p);
7821 rld[s].out = rl->out;
7822 rld[s].out_reg = rl->out_reg;
7823 set = single_set (next);
7824 if (set && SET_SRC (set) == s_reg
7825 && reload_reg_rtx_reaches_end_p (s_reg, s))
7827 SET_HARD_REG_BIT (reg_is_output_reload,
7828 REGNO (s_reg));
7829 new_spill_reg_store[REGNO (s_reg)] = next;
7832 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7833 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7838 if (rl->when_needed == RELOAD_OTHER)
7840 emit_insn (other_output_reload_insns[rl->opnum]);
7841 other_output_reload_insns[rl->opnum] = get_insns ();
7843 else
7844 output_reload_insns[rl->opnum] = get_insns ();
7846 if (cfun->can_throw_non_call_exceptions)
7847 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7849 end_sequence ();
7852 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7853 and has the number J. */
7854 static void
7855 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7857 rtx_insn *insn = chain->insn;
7858 rtx old = (rl->in && MEM_P (rl->in)
7859 ? rl->in_reg : rl->in);
7860 rtx reg_rtx = rl->reg_rtx;
7862 if (old && reg_rtx)
7864 machine_mode mode;
7866 /* Determine the mode to reload in.
7867 This is very tricky because we have three to choose from.
7868 There is the mode the insn operand wants (rl->inmode).
7869 There is the mode of the reload register RELOADREG.
7870 There is the intrinsic mode of the operand, which we could find
7871 by stripping some SUBREGs.
7872 It turns out that RELOADREG's mode is irrelevant:
7873 we can change that arbitrarily.
7875 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7876 then the reload reg may not support QImode moves, so use SImode.
7877 If foo is in memory due to spilling a pseudo reg, this is safe,
7878 because the QImode value is in the least significant part of a
7879 slot big enough for a SImode. If foo is some other sort of
7880 memory reference, then it is impossible to reload this case,
7881 so previous passes had better make sure this never happens.
7883 Then consider a one-word union which has SImode and one of its
7884 members is a float, being fetched as (SUBREG:SF union:SI).
7885 We must fetch that as SFmode because we could be loading into
7886 a float-only register. In this case OLD's mode is correct.
7888 Consider an immediate integer: it has VOIDmode. Here we need
7889 to get a mode from something else.
7891 In some cases, there is a fourth mode, the operand's
7892 containing mode. If the insn specifies a containing mode for
7893 this operand, it overrides all others.
7895 I am not sure whether the algorithm here is always right,
7896 but it does the right things in those cases. */
7898 mode = GET_MODE (old);
7899 if (mode == VOIDmode)
7900 mode = rl->inmode;
7902 /* We cannot use gen_lowpart_common since it can do the wrong thing
7903 when REG_RTX has a multi-word mode. Note that REG_RTX must
7904 always be a REG here. */
7905 if (GET_MODE (reg_rtx) != mode)
7906 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7908 reload_reg_rtx_for_input[j] = reg_rtx;
7910 if (old != 0
7911 /* AUTO_INC reloads need to be handled even if inherited. We got an
7912 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7913 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7914 && ! rtx_equal_p (reg_rtx, old)
7915 && reg_rtx != 0)
7916 emit_input_reload_insns (chain, rld + j, old, j);
7918 /* When inheriting a wider reload, we have a MEM in rl->in,
7919 e.g. inheriting a SImode output reload for
7920 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7921 if (optimize && reload_inherited[j] && rl->in
7922 && MEM_P (rl->in)
7923 && MEM_P (rl->in_reg)
7924 && reload_spill_index[j] >= 0
7925 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7926 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7928 /* If we are reloading a register that was recently stored in with an
7929 output-reload, see if we can prove there was
7930 actually no need to store the old value in it. */
7932 if (optimize
7933 && (reload_inherited[j] || reload_override_in[j])
7934 && reg_rtx
7935 && REG_P (reg_rtx)
7936 && spill_reg_store[REGNO (reg_rtx)] != 0
7937 #if 0
7938 /* There doesn't seem to be any reason to restrict this to pseudos
7939 and doing so loses in the case where we are copying from a
7940 register of the wrong class. */
7941 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7942 #endif
7943 /* The insn might have already some references to stackslots
7944 replaced by MEMs, while reload_out_reg still names the
7945 original pseudo. */
7946 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7947 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7948 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7951 /* Do output reloading for reload RL, which is for the insn described by
7952 CHAIN and has the number J.
7953 ??? At some point we need to support handling output reloads of
7954 JUMP_INSNs or insns that set cc0. */
7955 static void
7956 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7958 rtx note, old;
7959 rtx_insn *insn = chain->insn;
7960 /* If this is an output reload that stores something that is
7961 not loaded in this same reload, see if we can eliminate a previous
7962 store. */
7963 rtx pseudo = rl->out_reg;
7964 rtx reg_rtx = rl->reg_rtx;
7966 if (rl->out && reg_rtx)
7968 machine_mode mode;
7970 /* Determine the mode to reload in.
7971 See comments above (for input reloading). */
7972 mode = GET_MODE (rl->out);
7973 if (mode == VOIDmode)
7975 /* VOIDmode should never happen for an output. */
7976 if (asm_noperands (PATTERN (insn)) < 0)
7977 /* It's the compiler's fault. */
7978 fatal_insn ("VOIDmode on an output", insn);
7979 error_for_asm (insn, "output operand is constant in %<asm%>");
7980 /* Prevent crash--use something we know is valid. */
7981 mode = word_mode;
7982 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7984 if (GET_MODE (reg_rtx) != mode)
7985 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7987 reload_reg_rtx_for_output[j] = reg_rtx;
7989 if (pseudo
7990 && optimize
7991 && REG_P (pseudo)
7992 && ! rtx_equal_p (rl->in_reg, pseudo)
7993 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7994 && reg_last_reload_reg[REGNO (pseudo)])
7996 int pseudo_no = REGNO (pseudo);
7997 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7999 /* We don't need to test full validity of last_regno for
8000 inherit here; we only want to know if the store actually
8001 matches the pseudo. */
8002 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8003 && reg_reloaded_contents[last_regno] == pseudo_no
8004 && spill_reg_store[last_regno]
8005 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8006 delete_output_reload (insn, j, last_regno, reg_rtx);
8009 old = rl->out_reg;
8010 if (old == 0
8011 || reg_rtx == 0
8012 || rtx_equal_p (old, reg_rtx))
8013 return;
8015 /* An output operand that dies right away does need a reload,
8016 but need not be copied from it. Show the new location in the
8017 REG_UNUSED note. */
8018 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8019 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8021 XEXP (note, 0) = reg_rtx;
8022 return;
8024 /* Likewise for a SUBREG of an operand that dies. */
8025 else if (GET_CODE (old) == SUBREG
8026 && REG_P (SUBREG_REG (old))
8027 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8028 SUBREG_REG (old))))
8030 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8031 return;
8033 else if (GET_CODE (old) == SCRATCH)
8034 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8035 but we don't want to make an output reload. */
8036 return;
8038 /* If is a JUMP_INSN, we can't support output reloads yet. */
8039 gcc_assert (NONJUMP_INSN_P (insn));
8041 emit_output_reload_insns (chain, rld + j, j);
8044 /* A reload copies values of MODE from register SRC to register DEST.
8045 Return true if it can be treated for inheritance purposes like a
8046 group of reloads, each one reloading a single hard register. The
8047 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8048 occupy the same number of hard registers. */
8050 static bool
8051 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8052 int src ATTRIBUTE_UNUSED,
8053 machine_mode mode ATTRIBUTE_UNUSED)
8055 #ifdef CANNOT_CHANGE_MODE_CLASS
8056 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8057 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8058 #else
8059 return true;
8060 #endif
8063 /* Output insns to reload values in and out of the chosen reload regs. */
8065 static void
8066 emit_reload_insns (struct insn_chain *chain)
8068 rtx_insn *insn = chain->insn;
8070 int j;
8072 CLEAR_HARD_REG_SET (reg_reloaded_died);
8074 for (j = 0; j < reload_n_operands; j++)
8075 input_reload_insns[j] = input_address_reload_insns[j]
8076 = inpaddr_address_reload_insns[j]
8077 = output_reload_insns[j] = output_address_reload_insns[j]
8078 = outaddr_address_reload_insns[j]
8079 = other_output_reload_insns[j] = 0;
8080 other_input_address_reload_insns = 0;
8081 other_input_reload_insns = 0;
8082 operand_reload_insns = 0;
8083 other_operand_reload_insns = 0;
8085 /* Dump reloads into the dump file. */
8086 if (dump_file)
8088 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8089 debug_reload_to_stream (dump_file);
8092 for (j = 0; j < n_reloads; j++)
8093 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8095 unsigned int i;
8097 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8098 new_spill_reg_store[i] = 0;
8101 /* Now output the instructions to copy the data into and out of the
8102 reload registers. Do these in the order that the reloads were reported,
8103 since reloads of base and index registers precede reloads of operands
8104 and the operands may need the base and index registers reloaded. */
8106 for (j = 0; j < n_reloads; j++)
8108 do_input_reload (chain, rld + j, j);
8109 do_output_reload (chain, rld + j, j);
8112 /* Now write all the insns we made for reloads in the order expected by
8113 the allocation functions. Prior to the insn being reloaded, we write
8114 the following reloads:
8116 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8118 RELOAD_OTHER reloads.
8120 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8121 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8122 RELOAD_FOR_INPUT reload for the operand.
8124 RELOAD_FOR_OPADDR_ADDRS reloads.
8126 RELOAD_FOR_OPERAND_ADDRESS reloads.
8128 After the insn being reloaded, we write the following:
8130 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8131 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8132 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8133 reloads for the operand. The RELOAD_OTHER output reloads are
8134 output in descending order by reload number. */
8136 emit_insn_before (other_input_address_reload_insns, insn);
8137 emit_insn_before (other_input_reload_insns, insn);
8139 for (j = 0; j < reload_n_operands; j++)
8141 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8142 emit_insn_before (input_address_reload_insns[j], insn);
8143 emit_insn_before (input_reload_insns[j], insn);
8146 emit_insn_before (other_operand_reload_insns, insn);
8147 emit_insn_before (operand_reload_insns, insn);
8149 for (j = 0; j < reload_n_operands; j++)
8151 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8152 x = emit_insn_after (output_address_reload_insns[j], x);
8153 x = emit_insn_after (output_reload_insns[j], x);
8154 emit_insn_after (other_output_reload_insns[j], x);
8157 /* For all the spill regs newly reloaded in this instruction,
8158 record what they were reloaded from, so subsequent instructions
8159 can inherit the reloads.
8161 Update spill_reg_store for the reloads of this insn.
8162 Copy the elements that were updated in the loop above. */
8164 for (j = 0; j < n_reloads; j++)
8166 int r = reload_order[j];
8167 int i = reload_spill_index[r];
8169 /* If this is a non-inherited input reload from a pseudo, we must
8170 clear any memory of a previous store to the same pseudo. Only do
8171 something if there will not be an output reload for the pseudo
8172 being reloaded. */
8173 if (rld[r].in_reg != 0
8174 && ! (reload_inherited[r] || reload_override_in[r]))
8176 rtx reg = rld[r].in_reg;
8178 if (GET_CODE (reg) == SUBREG)
8179 reg = SUBREG_REG (reg);
8181 if (REG_P (reg)
8182 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8183 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8185 int nregno = REGNO (reg);
8187 if (reg_last_reload_reg[nregno])
8189 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8191 if (reg_reloaded_contents[last_regno] == nregno)
8192 spill_reg_store[last_regno] = 0;
8197 /* I is nonneg if this reload used a register.
8198 If rld[r].reg_rtx is 0, this is an optional reload
8199 that we opted to ignore. */
8201 if (i >= 0 && rld[r].reg_rtx != 0)
8203 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8204 int k;
8206 /* For a multi register reload, we need to check if all or part
8207 of the value lives to the end. */
8208 for (k = 0; k < nr; k++)
8209 if (reload_reg_reaches_end_p (i + k, r))
8210 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8212 /* Maybe the spill reg contains a copy of reload_out. */
8213 if (rld[r].out != 0
8214 && (REG_P (rld[r].out)
8215 || (rld[r].out_reg
8216 ? REG_P (rld[r].out_reg)
8217 /* The reload value is an auto-modification of
8218 some kind. For PRE_INC, POST_INC, PRE_DEC
8219 and POST_DEC, we record an equivalence
8220 between the reload register and the operand
8221 on the optimistic assumption that we can make
8222 the equivalence hold. reload_as_needed must
8223 then either make it hold or invalidate the
8224 equivalence.
8226 PRE_MODIFY and POST_MODIFY addresses are reloaded
8227 somewhat differently, and allowing them here leads
8228 to problems. */
8229 : (GET_CODE (rld[r].out) != POST_MODIFY
8230 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8232 rtx reg;
8234 reg = reload_reg_rtx_for_output[r];
8235 if (reload_reg_rtx_reaches_end_p (reg, r))
8237 machine_mode mode = GET_MODE (reg);
8238 int regno = REGNO (reg);
8239 int nregs = hard_regno_nregs[regno][mode];
8240 rtx out = (REG_P (rld[r].out)
8241 ? rld[r].out
8242 : rld[r].out_reg
8243 ? rld[r].out_reg
8244 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8245 int out_regno = REGNO (out);
8246 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8247 : hard_regno_nregs[out_regno][mode]);
8248 bool piecemeal;
8250 spill_reg_store[regno] = new_spill_reg_store[regno];
8251 spill_reg_stored_to[regno] = out;
8252 reg_last_reload_reg[out_regno] = reg;
8254 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8255 && nregs == out_nregs
8256 && inherit_piecemeal_p (out_regno, regno, mode));
8258 /* If OUT_REGNO is a hard register, it may occupy more than
8259 one register. If it does, say what is in the
8260 rest of the registers assuming that both registers
8261 agree on how many words the object takes. If not,
8262 invalidate the subsequent registers. */
8264 if (HARD_REGISTER_NUM_P (out_regno))
8265 for (k = 1; k < out_nregs; k++)
8266 reg_last_reload_reg[out_regno + k]
8267 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8269 /* Now do the inverse operation. */
8270 for (k = 0; k < nregs; k++)
8272 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8273 reg_reloaded_contents[regno + k]
8274 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8275 ? out_regno
8276 : out_regno + k);
8277 reg_reloaded_insn[regno + k] = insn;
8278 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8279 if (targetm.hard_regno_call_part_clobbered (regno + k,
8280 mode))
8281 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8282 regno + k);
8283 else
8284 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8285 regno + k);
8289 /* Maybe the spill reg contains a copy of reload_in. Only do
8290 something if there will not be an output reload for
8291 the register being reloaded. */
8292 else if (rld[r].out_reg == 0
8293 && rld[r].in != 0
8294 && ((REG_P (rld[r].in)
8295 && !HARD_REGISTER_P (rld[r].in)
8296 && !REGNO_REG_SET_P (&reg_has_output_reload,
8297 REGNO (rld[r].in)))
8298 || (REG_P (rld[r].in_reg)
8299 && !REGNO_REG_SET_P (&reg_has_output_reload,
8300 REGNO (rld[r].in_reg))))
8301 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8303 rtx reg;
8305 reg = reload_reg_rtx_for_input[r];
8306 if (reload_reg_rtx_reaches_end_p (reg, r))
8308 machine_mode mode;
8309 int regno;
8310 int nregs;
8311 int in_regno;
8312 int in_nregs;
8313 rtx in;
8314 bool piecemeal;
8316 mode = GET_MODE (reg);
8317 regno = REGNO (reg);
8318 nregs = hard_regno_nregs[regno][mode];
8319 if (REG_P (rld[r].in)
8320 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8321 in = rld[r].in;
8322 else if (REG_P (rld[r].in_reg))
8323 in = rld[r].in_reg;
8324 else
8325 in = XEXP (rld[r].in_reg, 0);
8326 in_regno = REGNO (in);
8328 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8329 : hard_regno_nregs[in_regno][mode]);
8331 reg_last_reload_reg[in_regno] = reg;
8333 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8334 && nregs == in_nregs
8335 && inherit_piecemeal_p (regno, in_regno, mode));
8337 if (HARD_REGISTER_NUM_P (in_regno))
8338 for (k = 1; k < in_nregs; k++)
8339 reg_last_reload_reg[in_regno + k]
8340 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8342 /* Unless we inherited this reload, show we haven't
8343 recently done a store.
8344 Previous stores of inherited auto_inc expressions
8345 also have to be discarded. */
8346 if (! reload_inherited[r]
8347 || (rld[r].out && ! rld[r].out_reg))
8348 spill_reg_store[regno] = 0;
8350 for (k = 0; k < nregs; k++)
8352 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8353 reg_reloaded_contents[regno + k]
8354 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8355 ? in_regno
8356 : in_regno + k);
8357 reg_reloaded_insn[regno + k] = insn;
8358 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8359 if (targetm.hard_regno_call_part_clobbered (regno + k,
8360 mode))
8361 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8362 regno + k);
8363 else
8364 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8365 regno + k);
8371 /* The following if-statement was #if 0'd in 1.34 (or before...).
8372 It's reenabled in 1.35 because supposedly nothing else
8373 deals with this problem. */
8375 /* If a register gets output-reloaded from a non-spill register,
8376 that invalidates any previous reloaded copy of it.
8377 But forget_old_reloads_1 won't get to see it, because
8378 it thinks only about the original insn. So invalidate it here.
8379 Also do the same thing for RELOAD_OTHER constraints where the
8380 output is discarded. */
8381 if (i < 0
8382 && ((rld[r].out != 0
8383 && (REG_P (rld[r].out)
8384 || (MEM_P (rld[r].out)
8385 && REG_P (rld[r].out_reg))))
8386 || (rld[r].out == 0 && rld[r].out_reg
8387 && REG_P (rld[r].out_reg))))
8389 rtx out = ((rld[r].out && REG_P (rld[r].out))
8390 ? rld[r].out : rld[r].out_reg);
8391 int out_regno = REGNO (out);
8392 machine_mode mode = GET_MODE (out);
8394 /* REG_RTX is now set or clobbered by the main instruction.
8395 As the comment above explains, forget_old_reloads_1 only
8396 sees the original instruction, and there is no guarantee
8397 that the original instruction also clobbered REG_RTX.
8398 For example, if find_reloads sees that the input side of
8399 a matched operand pair dies in this instruction, it may
8400 use the input register as the reload register.
8402 Calling forget_old_reloads_1 is a waste of effort if
8403 REG_RTX is also the output register.
8405 If we know that REG_RTX holds the value of a pseudo
8406 register, the code after the call will record that fact. */
8407 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8408 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8410 if (!HARD_REGISTER_NUM_P (out_regno))
8412 rtx src_reg;
8413 rtx_insn *store_insn = NULL;
8415 reg_last_reload_reg[out_regno] = 0;
8417 /* If we can find a hard register that is stored, record
8418 the storing insn so that we may delete this insn with
8419 delete_output_reload. */
8420 src_reg = reload_reg_rtx_for_output[r];
8422 if (src_reg)
8424 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8425 store_insn = new_spill_reg_store[REGNO (src_reg)];
8426 else
8427 src_reg = NULL_RTX;
8429 else
8431 /* If this is an optional reload, try to find the
8432 source reg from an input reload. */
8433 rtx set = single_set (insn);
8434 if (set && SET_DEST (set) == rld[r].out)
8436 int k;
8438 src_reg = SET_SRC (set);
8439 store_insn = insn;
8440 for (k = 0; k < n_reloads; k++)
8442 if (rld[k].in == src_reg)
8444 src_reg = reload_reg_rtx_for_input[k];
8445 break;
8450 if (src_reg && REG_P (src_reg)
8451 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8453 int src_regno, src_nregs, k;
8454 rtx note;
8456 gcc_assert (GET_MODE (src_reg) == mode);
8457 src_regno = REGNO (src_reg);
8458 src_nregs = hard_regno_nregs[src_regno][mode];
8459 /* The place where to find a death note varies with
8460 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8461 necessarily checked exactly in the code that moves
8462 notes, so just check both locations. */
8463 note = find_regno_note (insn, REG_DEAD, src_regno);
8464 if (! note && store_insn)
8465 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8466 for (k = 0; k < src_nregs; k++)
8468 spill_reg_store[src_regno + k] = store_insn;
8469 spill_reg_stored_to[src_regno + k] = out;
8470 reg_reloaded_contents[src_regno + k] = out_regno;
8471 reg_reloaded_insn[src_regno + k] = store_insn;
8472 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8473 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8474 if (targetm.hard_regno_call_part_clobbered
8475 (src_regno + k, mode))
8476 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8477 src_regno + k);
8478 else
8479 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8480 src_regno + k);
8481 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8482 if (note)
8483 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8484 else
8485 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8487 reg_last_reload_reg[out_regno] = src_reg;
8488 /* We have to set reg_has_output_reload here, or else
8489 forget_old_reloads_1 will clear reg_last_reload_reg
8490 right away. */
8491 SET_REGNO_REG_SET (&reg_has_output_reload,
8492 out_regno);
8495 else
8497 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8499 for (k = 0; k < out_nregs; k++)
8500 reg_last_reload_reg[out_regno + k] = 0;
8504 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8507 /* Go through the motions to emit INSN and test if it is strictly valid.
8508 Return the emitted insn if valid, else return NULL. */
8510 static rtx_insn *
8511 emit_insn_if_valid_for_reload (rtx pat)
8513 rtx_insn *last = get_last_insn ();
8514 int code;
8516 rtx_insn *insn = emit_insn (pat);
8517 code = recog_memoized (insn);
8519 if (code >= 0)
8521 extract_insn (insn);
8522 /* We want constrain operands to treat this insn strictly in its
8523 validity determination, i.e., the way it would after reload has
8524 completed. */
8525 if (constrain_operands (1, get_enabled_alternatives (insn)))
8526 return insn;
8529 delete_insns_since (last);
8530 return NULL;
8533 /* Emit code to perform a reload from IN (which may be a reload register) to
8534 OUT (which may also be a reload register). IN or OUT is from operand
8535 OPNUM with reload type TYPE.
8537 Returns first insn emitted. */
8539 static rtx_insn *
8540 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8542 rtx_insn *last = get_last_insn ();
8543 rtx_insn *tem;
8544 #ifdef SECONDARY_MEMORY_NEEDED
8545 rtx tem1, tem2;
8546 #endif
8548 /* If IN is a paradoxical SUBREG, remove it and try to put the
8549 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8550 if (!strip_paradoxical_subreg (&in, &out))
8551 strip_paradoxical_subreg (&out, &in);
8553 /* How to do this reload can get quite tricky. Normally, we are being
8554 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8555 register that didn't get a hard register. In that case we can just
8556 call emit_move_insn.
8558 We can also be asked to reload a PLUS that adds a register or a MEM to
8559 another register, constant or MEM. This can occur during frame pointer
8560 elimination and while reloading addresses. This case is handled by
8561 trying to emit a single insn to perform the add. If it is not valid,
8562 we use a two insn sequence.
8564 Or we can be asked to reload an unary operand that was a fragment of
8565 an addressing mode, into a register. If it isn't recognized as-is,
8566 we try making the unop operand and the reload-register the same:
8567 (set reg:X (unop:X expr:Y))
8568 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8570 Finally, we could be called to handle an 'o' constraint by putting
8571 an address into a register. In that case, we first try to do this
8572 with a named pattern of "reload_load_address". If no such pattern
8573 exists, we just emit a SET insn and hope for the best (it will normally
8574 be valid on machines that use 'o').
8576 This entire process is made complex because reload will never
8577 process the insns we generate here and so we must ensure that
8578 they will fit their constraints and also by the fact that parts of
8579 IN might be being reloaded separately and replaced with spill registers.
8580 Because of this, we are, in some sense, just guessing the right approach
8581 here. The one listed above seems to work.
8583 ??? At some point, this whole thing needs to be rethought. */
8585 if (GET_CODE (in) == PLUS
8586 && (REG_P (XEXP (in, 0))
8587 || GET_CODE (XEXP (in, 0)) == SUBREG
8588 || MEM_P (XEXP (in, 0)))
8589 && (REG_P (XEXP (in, 1))
8590 || GET_CODE (XEXP (in, 1)) == SUBREG
8591 || CONSTANT_P (XEXP (in, 1))
8592 || MEM_P (XEXP (in, 1))))
8594 /* We need to compute the sum of a register or a MEM and another
8595 register, constant, or MEM, and put it into the reload
8596 register. The best possible way of doing this is if the machine
8597 has a three-operand ADD insn that accepts the required operands.
8599 The simplest approach is to try to generate such an insn and see if it
8600 is recognized and matches its constraints. If so, it can be used.
8602 It might be better not to actually emit the insn unless it is valid,
8603 but we need to pass the insn as an operand to `recog' and
8604 `extract_insn' and it is simpler to emit and then delete the insn if
8605 not valid than to dummy things up. */
8607 rtx op0, op1, tem;
8608 rtx_insn *insn;
8609 enum insn_code code;
8611 op0 = find_replacement (&XEXP (in, 0));
8612 op1 = find_replacement (&XEXP (in, 1));
8614 /* Since constraint checking is strict, commutativity won't be
8615 checked, so we need to do that here to avoid spurious failure
8616 if the add instruction is two-address and the second operand
8617 of the add is the same as the reload reg, which is frequently
8618 the case. If the insn would be A = B + A, rearrange it so
8619 it will be A = A + B as constrain_operands expects. */
8621 if (REG_P (XEXP (in, 1))
8622 && REGNO (out) == REGNO (XEXP (in, 1)))
8623 tem = op0, op0 = op1, op1 = tem;
8625 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8626 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8628 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8629 if (insn)
8630 return insn;
8632 /* If that failed, we must use a conservative two-insn sequence.
8634 Use a move to copy one operand into the reload register. Prefer
8635 to reload a constant, MEM or pseudo since the move patterns can
8636 handle an arbitrary operand. If OP1 is not a constant, MEM or
8637 pseudo and OP1 is not a valid operand for an add instruction, then
8638 reload OP1.
8640 After reloading one of the operands into the reload register, add
8641 the reload register to the output register.
8643 If there is another way to do this for a specific machine, a
8644 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8645 we emit below. */
8647 code = optab_handler (add_optab, GET_MODE (out));
8649 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8650 || (REG_P (op1)
8651 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8652 || (code != CODE_FOR_nothing
8653 && !insn_operand_matches (code, 2, op1)))
8654 tem = op0, op0 = op1, op1 = tem;
8656 gen_reload (out, op0, opnum, type);
8658 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8659 This fixes a problem on the 32K where the stack pointer cannot
8660 be used as an operand of an add insn. */
8662 if (rtx_equal_p (op0, op1))
8663 op1 = out;
8665 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8666 if (insn)
8668 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8669 set_dst_reg_note (insn, REG_EQUIV, in, out);
8670 return insn;
8673 /* If that failed, copy the address register to the reload register.
8674 Then add the constant to the reload register. */
8676 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8677 gen_reload (out, op1, opnum, type);
8678 insn = emit_insn (gen_add2_insn (out, op0));
8679 set_dst_reg_note (insn, REG_EQUIV, in, out);
8682 #ifdef SECONDARY_MEMORY_NEEDED
8683 /* If we need a memory location to do the move, do it that way. */
8684 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8685 (REG_P (tem1) && REG_P (tem2)))
8686 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8687 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8688 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8689 REGNO_REG_CLASS (REGNO (tem2)),
8690 GET_MODE (out)))
8692 /* Get the memory to use and rewrite both registers to its mode. */
8693 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8695 if (GET_MODE (loc) != GET_MODE (out))
8696 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8698 if (GET_MODE (loc) != GET_MODE (in))
8699 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8701 gen_reload (loc, in, opnum, type);
8702 gen_reload (out, loc, opnum, type);
8704 #endif
8705 else if (REG_P (out) && UNARY_P (in))
8707 rtx op1;
8708 rtx out_moded;
8709 rtx_insn *set;
8711 op1 = find_replacement (&XEXP (in, 0));
8712 if (op1 != XEXP (in, 0))
8713 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8715 /* First, try a plain SET. */
8716 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8717 if (set)
8718 return set;
8720 /* If that failed, move the inner operand to the reload
8721 register, and try the same unop with the inner expression
8722 replaced with the reload register. */
8724 if (GET_MODE (op1) != GET_MODE (out))
8725 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8726 else
8727 out_moded = out;
8729 gen_reload (out_moded, op1, opnum, type);
8731 rtx temp = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8732 out_moded));
8733 rtx_insn *insn = emit_insn_if_valid_for_reload (temp);
8734 if (insn)
8736 set_unique_reg_note (insn, REG_EQUIV, in);
8737 return insn;
8740 fatal_insn ("failure trying to reload:", set);
8742 /* If IN is a simple operand, use gen_move_insn. */
8743 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8745 tem = emit_insn (gen_move_insn (out, in));
8746 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8747 mark_jump_label (in, tem, 0);
8750 else if (targetm.have_reload_load_address ())
8751 emit_insn (targetm.gen_reload_load_address (out, in));
8753 /* Otherwise, just write (set OUT IN) and hope for the best. */
8754 else
8755 emit_insn (gen_rtx_SET (out, in));
8757 /* Return the first insn emitted.
8758 We can not just return get_last_insn, because there may have
8759 been multiple instructions emitted. Also note that gen_move_insn may
8760 emit more than one insn itself, so we can not assume that there is one
8761 insn emitted per emit_insn_before call. */
8763 return last ? NEXT_INSN (last) : get_insns ();
8766 /* Delete a previously made output-reload whose result we now believe
8767 is not needed. First we double-check.
8769 INSN is the insn now being processed.
8770 LAST_RELOAD_REG is the hard register number for which we want to delete
8771 the last output reload.
8772 J is the reload-number that originally used REG. The caller has made
8773 certain that reload J doesn't use REG any longer for input.
8774 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8776 static void
8777 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8778 rtx new_reload_reg)
8780 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8781 rtx reg = spill_reg_stored_to[last_reload_reg];
8782 int k;
8783 int n_occurrences;
8784 int n_inherited = 0;
8785 rtx substed;
8786 unsigned regno;
8787 int nregs;
8789 /* It is possible that this reload has been only used to set another reload
8790 we eliminated earlier and thus deleted this instruction too. */
8791 if (output_reload_insn->deleted ())
8792 return;
8794 /* Get the raw pseudo-register referred to. */
8796 while (GET_CODE (reg) == SUBREG)
8797 reg = SUBREG_REG (reg);
8798 substed = reg_equiv_memory_loc (REGNO (reg));
8800 /* This is unsafe if the operand occurs more often in the current
8801 insn than it is inherited. */
8802 for (k = n_reloads - 1; k >= 0; k--)
8804 rtx reg2 = rld[k].in;
8805 if (! reg2)
8806 continue;
8807 if (MEM_P (reg2) || reload_override_in[k])
8808 reg2 = rld[k].in_reg;
8810 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8811 reg2 = XEXP (rld[k].in_reg, 0);
8813 while (GET_CODE (reg2) == SUBREG)
8814 reg2 = SUBREG_REG (reg2);
8815 if (rtx_equal_p (reg2, reg))
8817 if (reload_inherited[k] || reload_override_in[k] || k == j)
8818 n_inherited++;
8819 else
8820 return;
8823 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8824 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8825 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8826 reg, 0);
8827 if (substed)
8828 n_occurrences += count_occurrences (PATTERN (insn),
8829 eliminate_regs (substed, VOIDmode,
8830 NULL_RTX), 0);
8831 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8833 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8834 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8836 if (n_occurrences > n_inherited)
8837 return;
8839 regno = REGNO (reg);
8840 if (regno >= FIRST_PSEUDO_REGISTER)
8841 nregs = 1;
8842 else
8843 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8845 /* If the pseudo-reg we are reloading is no longer referenced
8846 anywhere between the store into it and here,
8847 and we're within the same basic block, then the value can only
8848 pass through the reload reg and end up here.
8849 Otherwise, give up--return. */
8850 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8851 i1 != insn; i1 = NEXT_INSN (i1))
8853 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8854 return;
8855 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8856 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8858 /* If this is USE in front of INSN, we only have to check that
8859 there are no more references than accounted for by inheritance. */
8860 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8862 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8863 i1 = NEXT_INSN (i1);
8865 if (n_occurrences <= n_inherited && i1 == insn)
8866 break;
8867 return;
8871 /* We will be deleting the insn. Remove the spill reg information. */
8872 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8874 spill_reg_store[last_reload_reg + k] = 0;
8875 spill_reg_stored_to[last_reload_reg + k] = 0;
8878 /* The caller has already checked that REG dies or is set in INSN.
8879 It has also checked that we are optimizing, and thus some
8880 inaccuracies in the debugging information are acceptable.
8881 So we could just delete output_reload_insn. But in some cases
8882 we can improve the debugging information without sacrificing
8883 optimization - maybe even improving the code: See if the pseudo
8884 reg has been completely replaced with reload regs. If so, delete
8885 the store insn and forget we had a stack slot for the pseudo. */
8886 if (rld[j].out != rld[j].in
8887 && REG_N_DEATHS (REGNO (reg)) == 1
8888 && REG_N_SETS (REGNO (reg)) == 1
8889 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8890 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8892 rtx_insn *i2;
8894 /* We know that it was used only between here and the beginning of
8895 the current basic block. (We also know that the last use before
8896 INSN was the output reload we are thinking of deleting, but never
8897 mind that.) Search that range; see if any ref remains. */
8898 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8900 rtx set = single_set (i2);
8902 /* Uses which just store in the pseudo don't count,
8903 since if they are the only uses, they are dead. */
8904 if (set != 0 && SET_DEST (set) == reg)
8905 continue;
8906 if (LABEL_P (i2) || JUMP_P (i2))
8907 break;
8908 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8909 && reg_mentioned_p (reg, PATTERN (i2)))
8911 /* Some other ref remains; just delete the output reload we
8912 know to be dead. */
8913 delete_address_reloads (output_reload_insn, insn);
8914 delete_insn (output_reload_insn);
8915 return;
8919 /* Delete the now-dead stores into this pseudo. Note that this
8920 loop also takes care of deleting output_reload_insn. */
8921 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8923 rtx set = single_set (i2);
8925 if (set != 0 && SET_DEST (set) == reg)
8927 delete_address_reloads (i2, insn);
8928 delete_insn (i2);
8930 if (LABEL_P (i2) || JUMP_P (i2))
8931 break;
8934 /* For the debugging info, say the pseudo lives in this reload reg. */
8935 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8936 if (ira_conflicts_p)
8937 /* Inform IRA about the change. */
8938 ira_mark_allocation_change (REGNO (reg));
8939 alter_reg (REGNO (reg), -1, false);
8941 else
8943 delete_address_reloads (output_reload_insn, insn);
8944 delete_insn (output_reload_insn);
8948 /* We are going to delete DEAD_INSN. Recursively delete loads of
8949 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8950 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8951 static void
8952 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
8954 rtx set = single_set (dead_insn);
8955 rtx set2, dst;
8956 rtx_insn *prev, *next;
8957 if (set)
8959 rtx dst = SET_DEST (set);
8960 if (MEM_P (dst))
8961 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8963 /* If we deleted the store from a reloaded post_{in,de}c expression,
8964 we can delete the matching adds. */
8965 prev = PREV_INSN (dead_insn);
8966 next = NEXT_INSN (dead_insn);
8967 if (! prev || ! next)
8968 return;
8969 set = single_set (next);
8970 set2 = single_set (prev);
8971 if (! set || ! set2
8972 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8973 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8974 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8975 return;
8976 dst = SET_DEST (set);
8977 if (! rtx_equal_p (dst, SET_DEST (set2))
8978 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8979 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8980 || (INTVAL (XEXP (SET_SRC (set), 1))
8981 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8982 return;
8983 delete_related_insns (prev);
8984 delete_related_insns (next);
8987 /* Subfunction of delete_address_reloads: process registers found in X. */
8988 static void
8989 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
8991 rtx_insn *prev, *i2;
8992 rtx set, dst;
8993 int i, j;
8994 enum rtx_code code = GET_CODE (x);
8996 if (code != REG)
8998 const char *fmt = GET_RTX_FORMAT (code);
8999 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9001 if (fmt[i] == 'e')
9002 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
9003 else if (fmt[i] == 'E')
9005 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9006 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
9007 current_insn);
9010 return;
9013 if (spill_reg_order[REGNO (x)] < 0)
9014 return;
9016 /* Scan backwards for the insn that sets x. This might be a way back due
9017 to inheritance. */
9018 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9020 code = GET_CODE (prev);
9021 if (code == CODE_LABEL || code == JUMP_INSN)
9022 return;
9023 if (!INSN_P (prev))
9024 continue;
9025 if (reg_set_p (x, PATTERN (prev)))
9026 break;
9027 if (reg_referenced_p (x, PATTERN (prev)))
9028 return;
9030 if (! prev || INSN_UID (prev) < reload_first_uid)
9031 return;
9032 /* Check that PREV only sets the reload register. */
9033 set = single_set (prev);
9034 if (! set)
9035 return;
9036 dst = SET_DEST (set);
9037 if (!REG_P (dst)
9038 || ! rtx_equal_p (dst, x))
9039 return;
9040 if (! reg_set_p (dst, PATTERN (dead_insn)))
9042 /* Check if DST was used in a later insn -
9043 it might have been inherited. */
9044 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9046 if (LABEL_P (i2))
9047 break;
9048 if (! INSN_P (i2))
9049 continue;
9050 if (reg_referenced_p (dst, PATTERN (i2)))
9052 /* If there is a reference to the register in the current insn,
9053 it might be loaded in a non-inherited reload. If no other
9054 reload uses it, that means the register is set before
9055 referenced. */
9056 if (i2 == current_insn)
9058 for (j = n_reloads - 1; j >= 0; j--)
9059 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9060 || reload_override_in[j] == dst)
9061 return;
9062 for (j = n_reloads - 1; j >= 0; j--)
9063 if (rld[j].in && rld[j].reg_rtx == dst)
9064 break;
9065 if (j >= 0)
9066 break;
9068 return;
9070 if (JUMP_P (i2))
9071 break;
9072 /* If DST is still live at CURRENT_INSN, check if it is used for
9073 any reload. Note that even if CURRENT_INSN sets DST, we still
9074 have to check the reloads. */
9075 if (i2 == current_insn)
9077 for (j = n_reloads - 1; j >= 0; j--)
9078 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9079 || reload_override_in[j] == dst)
9080 return;
9081 /* ??? We can't finish the loop here, because dst might be
9082 allocated to a pseudo in this block if no reload in this
9083 block needs any of the classes containing DST - see
9084 spill_hard_reg. There is no easy way to tell this, so we
9085 have to scan till the end of the basic block. */
9087 if (reg_set_p (dst, PATTERN (i2)))
9088 break;
9091 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9092 reg_reloaded_contents[REGNO (dst)] = -1;
9093 delete_insn (prev);
9096 /* Output reload-insns to reload VALUE into RELOADREG.
9097 VALUE is an autoincrement or autodecrement RTX whose operand
9098 is a register or memory location;
9099 so reloading involves incrementing that location.
9100 IN is either identical to VALUE, or some cheaper place to reload from.
9102 INC_AMOUNT is the number to increment or decrement by (always positive).
9103 This cannot be deduced from VALUE. */
9105 static void
9106 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9108 /* REG or MEM to be copied and incremented. */
9109 rtx incloc = find_replacement (&XEXP (value, 0));
9110 /* Nonzero if increment after copying. */
9111 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9112 || GET_CODE (value) == POST_MODIFY);
9113 rtx_insn *last;
9114 rtx inc;
9115 rtx_insn *add_insn;
9116 int code;
9117 rtx real_in = in == value ? incloc : in;
9119 /* No hard register is equivalent to this register after
9120 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9121 we could inc/dec that register as well (maybe even using it for
9122 the source), but I'm not sure it's worth worrying about. */
9123 if (REG_P (incloc))
9124 reg_last_reload_reg[REGNO (incloc)] = 0;
9126 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9128 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9129 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9131 else
9133 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9134 inc_amount = -inc_amount;
9136 inc = GEN_INT (inc_amount);
9139 /* If this is post-increment, first copy the location to the reload reg. */
9140 if (post && real_in != reloadreg)
9141 emit_insn (gen_move_insn (reloadreg, real_in));
9143 if (in == value)
9145 /* See if we can directly increment INCLOC. Use a method similar to
9146 that in gen_reload. */
9148 last = get_last_insn ();
9149 add_insn = emit_insn (gen_rtx_SET (incloc,
9150 gen_rtx_PLUS (GET_MODE (incloc),
9151 incloc, inc)));
9153 code = recog_memoized (add_insn);
9154 if (code >= 0)
9156 extract_insn (add_insn);
9157 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9159 /* If this is a pre-increment and we have incremented the value
9160 where it lives, copy the incremented value to RELOADREG to
9161 be used as an address. */
9163 if (! post)
9164 emit_insn (gen_move_insn (reloadreg, incloc));
9165 return;
9168 delete_insns_since (last);
9171 /* If couldn't do the increment directly, must increment in RELOADREG.
9172 The way we do this depends on whether this is pre- or post-increment.
9173 For pre-increment, copy INCLOC to the reload register, increment it
9174 there, then save back. */
9176 if (! post)
9178 if (in != reloadreg)
9179 emit_insn (gen_move_insn (reloadreg, real_in));
9180 emit_insn (gen_add2_insn (reloadreg, inc));
9181 emit_insn (gen_move_insn (incloc, reloadreg));
9183 else
9185 /* Postincrement.
9186 Because this might be a jump insn or a compare, and because RELOADREG
9187 may not be available after the insn in an input reload, we must do
9188 the incrementation before the insn being reloaded for.
9190 We have already copied IN to RELOADREG. Increment the copy in
9191 RELOADREG, save that back, then decrement RELOADREG so it has
9192 the original value. */
9194 emit_insn (gen_add2_insn (reloadreg, inc));
9195 emit_insn (gen_move_insn (incloc, reloadreg));
9196 if (CONST_INT_P (inc))
9197 emit_insn (gen_add2_insn (reloadreg,
9198 gen_int_mode (-INTVAL (inc),
9199 GET_MODE (reloadreg))));
9200 else
9201 emit_insn (gen_sub2_insn (reloadreg, inc));
9205 static void
9206 add_auto_inc_notes (rtx_insn *insn, rtx x)
9208 enum rtx_code code = GET_CODE (x);
9209 const char *fmt;
9210 int i, j;
9212 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9214 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9215 return;
9218 /* Scan all the operand sub-expressions. */
9219 fmt = GET_RTX_FORMAT (code);
9220 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9222 if (fmt[i] == 'e')
9223 add_auto_inc_notes (insn, XEXP (x, i));
9224 else if (fmt[i] == 'E')
9225 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9226 add_auto_inc_notes (insn, XVECEXP (x, i, j));