Fix date
[official-gcc.git] / gcc / reginfo.c
blob6f699eb0fb7c0cae152d27698da4803ae852d4a5
1 /* Compute different info about registers.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* This file contains regscan pass of the compiler and passes for
22 dealing with info about modes of pseudo-registers inside
23 subregisters. It also defines some tables of information about the
24 hardware registers, function init_reg_sets to initialize the
25 tables, and other auxiliary functions to deal with info about
26 registers and their classes. */
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "backend.h"
32 #include "target.h"
33 #include "rtl.h"
34 #include "tree.h"
35 #include "df.h"
36 #include "memmodel.h"
37 #include "tm_p.h"
38 #include "insn-config.h"
39 #include "regs.h"
40 #include "ira.h"
41 #include "recog.h"
42 #include "diagnostic-core.h"
43 #include "reload.h"
44 #include "output.h"
45 #include "tree-pass.h"
47 /* Maximum register number used in this function, plus one. */
49 int max_regno;
51 /* Used to cache the results of simplifiable_subregs. SHAPE is the input
52 parameter and SIMPLIFIABLE_REGS is the result. */
53 struct simplifiable_subreg
55 simplifiable_subreg (const subreg_shape &);
57 subreg_shape shape;
58 HARD_REG_SET simplifiable_regs;
61 struct target_hard_regs default_target_hard_regs;
62 struct target_regs default_target_regs;
63 #if SWITCHABLE_TARGET
64 struct target_hard_regs *this_target_hard_regs = &default_target_hard_regs;
65 struct target_regs *this_target_regs = &default_target_regs;
66 #endif
68 /* Data for initializing fixed_regs. */
69 static const char initial_fixed_regs[] = FIXED_REGISTERS;
71 /* Data for initializing call_used_regs. */
72 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
74 #ifdef CALL_REALLY_USED_REGISTERS
75 /* Data for initializing call_really_used_regs. */
76 static const char initial_call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
77 #endif
79 #ifdef CALL_REALLY_USED_REGISTERS
80 #define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
81 #else
82 #define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
83 #endif
85 /* Indexed by hard register number, contains 1 for registers
86 that are being used for global register decls.
87 These must be exempt from ordinary flow analysis
88 and are also considered fixed. */
89 char global_regs[FIRST_PSEUDO_REGISTER];
91 /* Declaration for the global register. */
92 tree global_regs_decl[FIRST_PSEUDO_REGISTER];
94 /* Same information as REGS_INVALIDATED_BY_CALL but in regset form to be used
95 in dataflow more conveniently. */
96 regset regs_invalidated_by_call_regset;
98 /* Same information as FIXED_REG_SET but in regset form. */
99 regset fixed_reg_set_regset;
101 /* The bitmap_obstack is used to hold some static variables that
102 should not be reset after each function is compiled. */
103 static bitmap_obstack persistent_obstack;
105 /* Used to initialize reg_alloc_order. */
106 #ifdef REG_ALLOC_ORDER
107 static int initial_reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
108 #endif
110 /* The same information, but as an array of unsigned ints. We copy from
111 these unsigned ints to the table above. We do this so the tm.h files
112 do not have to be aware of the wordsize for machines with <= 64 regs.
113 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
114 #define N_REG_INTS \
115 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
117 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
118 = REG_CLASS_CONTENTS;
120 /* Array containing all of the register names. */
121 static const char *const initial_reg_names[] = REGISTER_NAMES;
123 /* Array containing all of the register class names. */
124 const char * reg_class_names[] = REG_CLASS_NAMES;
126 /* No more global register variables may be declared; true once
127 reginfo has been initialized. */
128 static int no_global_reg_vars = 0;
130 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
131 correspond to the hard registers, if any, set in that map. This
132 could be done far more efficiently by having all sorts of special-cases
133 with moving single words, but probably isn't worth the trouble. */
134 void
135 reg_set_to_hard_reg_set (HARD_REG_SET *to, const_bitmap from)
137 unsigned i;
138 bitmap_iterator bi;
140 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
142 if (i >= FIRST_PSEUDO_REGISTER)
143 return;
144 SET_HARD_REG_BIT (*to, i);
148 /* Function called only once per target_globals to initialize the
149 target_hard_regs structure. Once this is done, various switches
150 may override. */
151 void
152 init_reg_sets (void)
154 int i, j;
156 /* First copy the register information from the initial int form into
157 the regsets. */
159 for (i = 0; i < N_REG_CLASSES; i++)
161 CLEAR_HARD_REG_SET (reg_class_contents[i]);
163 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
164 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
165 if (int_reg_class_contents[i][j / 32]
166 & ((unsigned) 1 << (j % 32)))
167 SET_HARD_REG_BIT (reg_class_contents[i], j);
170 /* Sanity check: make sure the target macros FIXED_REGISTERS and
171 CALL_USED_REGISTERS had the right number of initializers. */
172 gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
173 gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
174 #ifdef CALL_REALLY_USED_REGISTERS
175 gcc_assert (sizeof call_really_used_regs
176 == sizeof initial_call_really_used_regs);
177 #endif
178 #ifdef REG_ALLOC_ORDER
179 gcc_assert (sizeof reg_alloc_order == sizeof initial_reg_alloc_order);
180 #endif
181 gcc_assert (sizeof reg_names == sizeof initial_reg_names);
183 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
184 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
185 #ifdef CALL_REALLY_USED_REGISTERS
186 memcpy (call_really_used_regs, initial_call_really_used_regs,
187 sizeof call_really_used_regs);
188 #endif
189 #ifdef REG_ALLOC_ORDER
190 memcpy (reg_alloc_order, initial_reg_alloc_order, sizeof reg_alloc_order);
191 #endif
192 memcpy (reg_names, initial_reg_names, sizeof reg_names);
194 SET_HARD_REG_SET (accessible_reg_set);
195 SET_HARD_REG_SET (operand_reg_set);
198 /* We need to save copies of some of the register information which
199 can be munged by command-line switches so we can restore it during
200 subsequent back-end reinitialization. */
201 static char saved_fixed_regs[FIRST_PSEUDO_REGISTER];
202 static char saved_call_used_regs[FIRST_PSEUDO_REGISTER];
203 #ifdef CALL_REALLY_USED_REGISTERS
204 static char saved_call_really_used_regs[FIRST_PSEUDO_REGISTER];
205 #endif
206 static const char *saved_reg_names[FIRST_PSEUDO_REGISTER];
207 static HARD_REG_SET saved_accessible_reg_set;
208 static HARD_REG_SET saved_operand_reg_set;
210 /* Save the register information. */
211 void
212 save_register_info (void)
214 /* Sanity check: make sure the target macros FIXED_REGISTERS and
215 CALL_USED_REGISTERS had the right number of initializers. */
216 gcc_assert (sizeof fixed_regs == sizeof saved_fixed_regs);
217 gcc_assert (sizeof call_used_regs == sizeof saved_call_used_regs);
218 memcpy (saved_fixed_regs, fixed_regs, sizeof fixed_regs);
219 memcpy (saved_call_used_regs, call_used_regs, sizeof call_used_regs);
221 /* Likewise for call_really_used_regs. */
222 #ifdef CALL_REALLY_USED_REGISTERS
223 gcc_assert (sizeof call_really_used_regs
224 == sizeof saved_call_really_used_regs);
225 memcpy (saved_call_really_used_regs, call_really_used_regs,
226 sizeof call_really_used_regs);
227 #endif
229 /* And similarly for reg_names. */
230 gcc_assert (sizeof reg_names == sizeof saved_reg_names);
231 memcpy (saved_reg_names, reg_names, sizeof reg_names);
232 COPY_HARD_REG_SET (saved_accessible_reg_set, accessible_reg_set);
233 COPY_HARD_REG_SET (saved_operand_reg_set, operand_reg_set);
236 /* Restore the register information. */
237 static void
238 restore_register_info (void)
240 memcpy (fixed_regs, saved_fixed_regs, sizeof fixed_regs);
241 memcpy (call_used_regs, saved_call_used_regs, sizeof call_used_regs);
243 #ifdef CALL_REALLY_USED_REGISTERS
244 memcpy (call_really_used_regs, saved_call_really_used_regs,
245 sizeof call_really_used_regs);
246 #endif
248 memcpy (reg_names, saved_reg_names, sizeof reg_names);
249 COPY_HARD_REG_SET (accessible_reg_set, saved_accessible_reg_set);
250 COPY_HARD_REG_SET (operand_reg_set, saved_operand_reg_set);
253 /* After switches have been processed, which perhaps alter
254 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
255 static void
256 init_reg_sets_1 (void)
258 unsigned int i, j;
259 unsigned int /* machine_mode */ m;
261 restore_register_info ();
263 #ifdef REG_ALLOC_ORDER
264 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
265 inv_reg_alloc_order[reg_alloc_order[i]] = i;
266 #endif
268 /* Let the target tweak things if necessary. */
270 targetm.conditional_register_usage ();
272 /* Compute number of hard regs in each class. */
274 memset (reg_class_size, 0, sizeof reg_class_size);
275 for (i = 0; i < N_REG_CLASSES; i++)
277 bool any_nonfixed = false;
278 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
279 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
281 reg_class_size[i]++;
282 if (!fixed_regs[j])
283 any_nonfixed = true;
285 class_only_fixed_regs[i] = !any_nonfixed;
288 /* Initialize the table of subunions.
289 reg_class_subunion[I][J] gets the largest-numbered reg-class
290 that is contained in the union of classes I and J. */
292 memset (reg_class_subunion, 0, sizeof reg_class_subunion);
293 for (i = 0; i < N_REG_CLASSES; i++)
295 for (j = 0; j < N_REG_CLASSES; j++)
297 HARD_REG_SET c;
298 int k;
300 COPY_HARD_REG_SET (c, reg_class_contents[i]);
301 IOR_HARD_REG_SET (c, reg_class_contents[j]);
302 for (k = 0; k < N_REG_CLASSES; k++)
303 if (hard_reg_set_subset_p (reg_class_contents[k], c)
304 && !hard_reg_set_subset_p (reg_class_contents[k],
305 reg_class_contents
306 [(int) reg_class_subunion[i][j]]))
307 reg_class_subunion[i][j] = (enum reg_class) k;
311 /* Initialize the table of superunions.
312 reg_class_superunion[I][J] gets the smallest-numbered reg-class
313 containing the union of classes I and J. */
315 memset (reg_class_superunion, 0, sizeof reg_class_superunion);
316 for (i = 0; i < N_REG_CLASSES; i++)
318 for (j = 0; j < N_REG_CLASSES; j++)
320 HARD_REG_SET c;
321 int k;
323 COPY_HARD_REG_SET (c, reg_class_contents[i]);
324 IOR_HARD_REG_SET (c, reg_class_contents[j]);
325 for (k = 0; k < N_REG_CLASSES; k++)
326 if (hard_reg_set_subset_p (c, reg_class_contents[k]))
327 break;
329 reg_class_superunion[i][j] = (enum reg_class) k;
333 /* Initialize the tables of subclasses and superclasses of each reg class.
334 First clear the whole table, then add the elements as they are found. */
336 for (i = 0; i < N_REG_CLASSES; i++)
338 for (j = 0; j < N_REG_CLASSES; j++)
339 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
342 for (i = 0; i < N_REG_CLASSES; i++)
344 if (i == (int) NO_REGS)
345 continue;
347 for (j = i + 1; j < N_REG_CLASSES; j++)
348 if (hard_reg_set_subset_p (reg_class_contents[i],
349 reg_class_contents[j]))
351 /* Reg class I is a subclass of J.
352 Add J to the table of superclasses of I. */
353 enum reg_class *p;
355 /* Add I to the table of superclasses of J. */
356 p = &reg_class_subclasses[j][0];
357 while (*p != LIM_REG_CLASSES) p++;
358 *p = (enum reg_class) i;
362 /* Initialize "constant" tables. */
364 CLEAR_HARD_REG_SET (fixed_reg_set);
365 CLEAR_HARD_REG_SET (call_used_reg_set);
366 CLEAR_HARD_REG_SET (call_fixed_reg_set);
367 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
368 if (!regs_invalidated_by_call_regset)
370 bitmap_obstack_initialize (&persistent_obstack);
371 regs_invalidated_by_call_regset = ALLOC_REG_SET (&persistent_obstack);
373 else
374 CLEAR_REG_SET (regs_invalidated_by_call_regset);
375 if (!fixed_reg_set_regset)
376 fixed_reg_set_regset = ALLOC_REG_SET (&persistent_obstack);
377 else
378 CLEAR_REG_SET (fixed_reg_set_regset);
380 AND_HARD_REG_SET (operand_reg_set, accessible_reg_set);
381 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
383 /* As a special exception, registers whose class is NO_REGS are
384 not accepted by `register_operand'. The reason for this change
385 is to allow the representation of special architecture artifacts
386 (such as a condition code register) without extending the rtl
387 definitions. Since registers of class NO_REGS cannot be used
388 as registers in any case where register classes are examined,
389 it is better to apply this exception in a target-independent way. */
390 if (REGNO_REG_CLASS (i) == NO_REGS)
391 CLEAR_HARD_REG_BIT (operand_reg_set, i);
393 /* If a register is too limited to be treated as a register operand,
394 then it should never be allocated to a pseudo. */
395 if (!TEST_HARD_REG_BIT (operand_reg_set, i))
397 fixed_regs[i] = 1;
398 call_used_regs[i] = 1;
401 /* call_used_regs must include fixed_regs. */
402 gcc_assert (!fixed_regs[i] || call_used_regs[i]);
403 #ifdef CALL_REALLY_USED_REGISTERS
404 /* call_used_regs must include call_really_used_regs. */
405 gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
406 #endif
408 if (fixed_regs[i])
410 SET_HARD_REG_BIT (fixed_reg_set, i);
411 SET_REGNO_REG_SET (fixed_reg_set_regset, i);
414 if (call_used_regs[i])
415 SET_HARD_REG_BIT (call_used_reg_set, i);
417 /* There are a couple of fixed registers that we know are safe to
418 exclude from being clobbered by calls:
420 The frame pointer is always preserved across calls. The arg
421 pointer is if it is fixed. The stack pointer usually is,
422 unless TARGET_RETURN_POPS_ARGS, in which case an explicit
423 CLOBBER will be present. If we are generating PIC code, the
424 PIC offset table register is preserved across calls, though the
425 target can override that. */
427 if (i == STACK_POINTER_REGNUM)
429 else if (global_regs[i])
431 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
432 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
434 else if (i == FRAME_POINTER_REGNUM)
436 else if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
437 && i == HARD_FRAME_POINTER_REGNUM)
439 else if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
440 && i == ARG_POINTER_REGNUM && fixed_regs[i])
442 else if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
443 && i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
445 else if (CALL_REALLY_USED_REGNO_P (i))
447 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
448 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
452 COPY_HARD_REG_SET (call_fixed_reg_set, fixed_reg_set);
453 COPY_HARD_REG_SET (fixed_nonglobal_reg_set, fixed_reg_set);
455 /* Preserve global registers if called more than once. */
456 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
458 if (global_regs[i])
460 fixed_regs[i] = call_used_regs[i] = 1;
461 SET_HARD_REG_BIT (fixed_reg_set, i);
462 SET_HARD_REG_BIT (call_used_reg_set, i);
463 SET_HARD_REG_BIT (call_fixed_reg_set, i);
467 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
468 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
469 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
471 HARD_REG_SET ok_regs, ok_regs2;
472 CLEAR_HARD_REG_SET (ok_regs);
473 CLEAR_HARD_REG_SET (ok_regs2);
474 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
475 if (!TEST_HARD_REG_BIT (fixed_nonglobal_reg_set, j)
476 && targetm.hard_regno_mode_ok (j, (machine_mode) m))
478 SET_HARD_REG_BIT (ok_regs, j);
479 if (!fixed_regs[j])
480 SET_HARD_REG_BIT (ok_regs2, j);
483 for (i = 0; i < N_REG_CLASSES; i++)
484 if ((targetm.class_max_nregs ((reg_class_t) i, (machine_mode) m)
485 <= reg_class_size[i])
486 && hard_reg_set_intersect_p (ok_regs, reg_class_contents[i]))
488 contains_reg_of_mode[i][m] = 1;
489 if (hard_reg_set_intersect_p (ok_regs2, reg_class_contents[i]))
491 have_regs_of_mode[m] = 1;
492 contains_allocatable_reg_of_mode[i][m] = 1;
498 /* Compute the table of register modes.
499 These values are used to record death information for individual registers
500 (as opposed to a multi-register mode).
501 This function might be invoked more than once, if the target has support
502 for changing register usage conventions on a per-function basis.
504 void
505 init_reg_modes_target (void)
507 int i, j;
509 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
510 for (j = 0; j < MAX_MACHINE_MODE; j++)
511 hard_regno_nregs[i][j] = HARD_REGNO_NREGS (i, (machine_mode)j);
513 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
515 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
517 /* If we couldn't find a valid mode, just use the previous mode
518 if it is suitable, otherwise fall back on word_mode. */
519 if (reg_raw_mode[i] == VOIDmode)
521 if (i > 0 && hard_regno_nregs[i][reg_raw_mode[i - 1]] == 1)
522 reg_raw_mode[i] = reg_raw_mode[i - 1];
523 else
524 reg_raw_mode[i] = word_mode;
529 /* Finish initializing the register sets and initialize the register modes.
530 This function might be invoked more than once, if the target has support
531 for changing register usage conventions on a per-function basis.
533 void
534 init_regs (void)
536 /* This finishes what was started by init_reg_sets, but couldn't be done
537 until after register usage was specified. */
538 init_reg_sets_1 ();
541 /* The same as previous function plus initializing IRA. */
542 void
543 reinit_regs (void)
545 init_regs ();
546 /* caller_save needs to be re-initialized. */
547 caller_save_initialized_p = false;
548 if (this_target_rtl->target_specific_initialized)
550 ira_init ();
551 recog_init ();
555 /* Initialize some fake stack-frame MEM references for use in
556 memory_move_secondary_cost. */
557 void
558 init_fake_stack_mems (void)
560 int i;
562 for (i = 0; i < MAX_MACHINE_MODE; i++)
563 top_of_stack[i] = gen_rtx_MEM ((machine_mode) i, stack_pointer_rtx);
567 /* Compute cost of moving data from a register of class FROM to one of
568 TO, using MODE. */
571 register_move_cost (machine_mode mode, reg_class_t from, reg_class_t to)
573 return targetm.register_move_cost (mode, from, to);
576 /* Compute cost of moving registers to/from memory. */
579 memory_move_cost (machine_mode mode, reg_class_t rclass, bool in)
581 return targetm.memory_move_cost (mode, rclass, in);
584 /* Compute extra cost of moving registers to/from memory due to reloads.
585 Only needed if secondary reloads are required for memory moves. */
587 memory_move_secondary_cost (machine_mode mode, reg_class_t rclass,
588 bool in)
590 reg_class_t altclass;
591 int partial_cost = 0;
592 /* We need a memory reference to feed to SECONDARY... macros. */
593 /* mem may be unused even if the SECONDARY_ macros are defined. */
594 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
596 altclass = secondary_reload_class (in ? 1 : 0, rclass, mode, mem);
598 if (altclass == NO_REGS)
599 return 0;
601 if (in)
602 partial_cost = register_move_cost (mode, altclass, rclass);
603 else
604 partial_cost = register_move_cost (mode, rclass, altclass);
606 if (rclass == altclass)
607 /* This isn't simply a copy-to-temporary situation. Can't guess
608 what it is, so TARGET_MEMORY_MOVE_COST really ought not to be
609 calling here in that case.
611 I'm tempted to put in an assert here, but returning this will
612 probably only give poor estimates, which is what we would've
613 had before this code anyways. */
614 return partial_cost;
616 /* Check if the secondary reload register will also need a
617 secondary reload. */
618 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
621 /* Return a machine mode that is legitimate for hard reg REGNO and large
622 enough to save nregs. If we can't find one, return VOIDmode.
623 If CALL_SAVED is true, only consider modes that are call saved. */
624 machine_mode
625 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
626 unsigned int nregs, bool call_saved)
628 unsigned int /* machine_mode */ m;
629 machine_mode found_mode = VOIDmode, mode;
631 /* We first look for the largest integer mode that can be validly
632 held in REGNO. If none, we look for the largest floating-point mode.
633 If we still didn't find a valid mode, try CCmode. */
635 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
636 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
637 && targetm.hard_regno_mode_ok (regno, mode)
638 && (!call_saved
639 || !targetm.hard_regno_call_part_clobbered (regno, mode))
640 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (found_mode))
641 found_mode = mode;
643 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
644 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
645 && targetm.hard_regno_mode_ok (regno, mode)
646 && (!call_saved
647 || !targetm.hard_regno_call_part_clobbered (regno, mode))
648 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (found_mode))
649 found_mode = mode;
651 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
652 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
653 && targetm.hard_regno_mode_ok (regno, mode)
654 && (!call_saved
655 || !targetm.hard_regno_call_part_clobbered (regno, mode))
656 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (found_mode))
657 found_mode = mode;
659 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
660 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
661 && targetm.hard_regno_mode_ok (regno, mode)
662 && (!call_saved
663 || !targetm.hard_regno_call_part_clobbered (regno, mode))
664 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (found_mode))
665 found_mode = mode;
667 if (found_mode != VOIDmode)
668 return found_mode;
670 /* Iterate over all of the CCmodes. */
671 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
673 mode = (machine_mode) m;
674 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
675 && targetm.hard_regno_mode_ok (regno, mode)
676 && (!call_saved
677 || !targetm.hard_regno_call_part_clobbered (regno, mode)))
678 return mode;
681 /* We can't find a mode valid for this register. */
682 return VOIDmode;
685 /* Specify the usage characteristics of the register named NAME.
686 It should be a fixed register if FIXED and a
687 call-used register if CALL_USED. */
688 void
689 fix_register (const char *name, int fixed, int call_used)
691 int i;
692 int reg, nregs;
694 /* Decode the name and update the primary form of
695 the register info. */
697 if ((reg = decode_reg_name_and_count (name, &nregs)) >= 0)
699 gcc_assert (nregs >= 1);
700 for (i = reg; i < reg + nregs; i++)
702 if ((i == STACK_POINTER_REGNUM
703 #ifdef HARD_FRAME_POINTER_REGNUM
704 || i == HARD_FRAME_POINTER_REGNUM
705 #else
706 || i == FRAME_POINTER_REGNUM
707 #endif
709 && (fixed == 0 || call_used == 0))
711 switch (fixed)
713 case 0:
714 switch (call_used)
716 case 0:
717 error ("can%'t use %qs as a call-saved register", name);
718 break;
720 case 1:
721 error ("can%'t use %qs as a call-used register", name);
722 break;
724 default:
725 gcc_unreachable ();
727 break;
729 case 1:
730 switch (call_used)
732 case 1:
733 error ("can%'t use %qs as a fixed register", name);
734 break;
736 case 0:
737 default:
738 gcc_unreachable ();
740 break;
742 default:
743 gcc_unreachable ();
746 else
748 fixed_regs[i] = fixed;
749 call_used_regs[i] = call_used;
750 #ifdef CALL_REALLY_USED_REGISTERS
751 if (fixed == 0)
752 call_really_used_regs[i] = call_used;
753 #endif
757 else
759 warning (0, "unknown register name: %s", name);
763 /* Mark register number I as global. */
764 void
765 globalize_reg (tree decl, int i)
767 location_t loc = DECL_SOURCE_LOCATION (decl);
769 #ifdef STACK_REGS
770 if (IN_RANGE (i, FIRST_STACK_REG, LAST_STACK_REG))
772 error ("stack register used for global register variable");
773 return;
775 #endif
777 if (fixed_regs[i] == 0 && no_global_reg_vars)
778 error_at (loc, "global register variable follows a function definition");
780 if (global_regs[i])
782 warning_at (loc, 0,
783 "register of %qD used for multiple global register variables",
784 decl);
785 inform (DECL_SOURCE_LOCATION (global_regs_decl[i]),
786 "conflicts with %qD", global_regs_decl[i]);
787 return;
790 if (call_used_regs[i] && ! fixed_regs[i])
791 warning_at (loc, 0, "call-clobbered register used for global register variable");
793 global_regs[i] = 1;
794 global_regs_decl[i] = decl;
796 /* If we're globalizing the frame pointer, we need to set the
797 appropriate regs_invalidated_by_call bit, even if it's already
798 set in fixed_regs. */
799 if (i != STACK_POINTER_REGNUM)
801 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
802 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
805 /* If already fixed, nothing else to do. */
806 if (fixed_regs[i])
807 return;
809 fixed_regs[i] = call_used_regs[i] = 1;
810 #ifdef CALL_REALLY_USED_REGISTERS
811 call_really_used_regs[i] = 1;
812 #endif
814 SET_HARD_REG_BIT (fixed_reg_set, i);
815 SET_HARD_REG_BIT (call_used_reg_set, i);
816 SET_HARD_REG_BIT (call_fixed_reg_set, i);
818 reinit_regs ();
822 /* Structure used to record preferences of given pseudo. */
823 struct reg_pref
825 /* (enum reg_class) prefclass is the preferred class. May be
826 NO_REGS if no class is better than memory. */
827 char prefclass;
829 /* altclass is a register class that we should use for allocating
830 pseudo if no register in the preferred class is available.
831 If no register in this class is available, memory is preferred.
833 It might appear to be more general to have a bitmask of classes here,
834 but since it is recommended that there be a class corresponding to the
835 union of most major pair of classes, that generality is not required. */
836 char altclass;
838 /* allocnoclass is a register class that IRA uses for allocating
839 the pseudo. */
840 char allocnoclass;
843 /* Record preferences of each pseudo. This is available after RA is
844 run. */
845 static struct reg_pref *reg_pref;
847 /* Current size of reg_info. */
848 static int reg_info_size;
849 /* Max_reg_num still last resize_reg_info call. */
850 static int max_regno_since_last_resize;
852 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
853 This function is sometimes called before the info has been computed.
854 When that happens, just return GENERAL_REGS, which is innocuous. */
855 enum reg_class
856 reg_preferred_class (int regno)
858 if (reg_pref == 0)
859 return GENERAL_REGS;
861 gcc_assert (regno < reg_info_size);
862 return (enum reg_class) reg_pref[regno].prefclass;
865 enum reg_class
866 reg_alternate_class (int regno)
868 if (reg_pref == 0)
869 return ALL_REGS;
871 gcc_assert (regno < reg_info_size);
872 return (enum reg_class) reg_pref[regno].altclass;
875 /* Return the reg_class which is used by IRA for its allocation. */
876 enum reg_class
877 reg_allocno_class (int regno)
879 if (reg_pref == 0)
880 return NO_REGS;
882 gcc_assert (regno < reg_info_size);
883 return (enum reg_class) reg_pref[regno].allocnoclass;
888 /* Allocate space for reg info and initilize it. */
889 static void
890 allocate_reg_info (void)
892 int i;
894 max_regno_since_last_resize = max_reg_num ();
895 reg_info_size = max_regno_since_last_resize * 3 / 2 + 1;
896 gcc_assert (! reg_pref && ! reg_renumber);
897 reg_renumber = XNEWVEC (short, reg_info_size);
898 reg_pref = XCNEWVEC (struct reg_pref, reg_info_size);
899 memset (reg_renumber, -1, reg_info_size * sizeof (short));
900 for (i = 0; i < reg_info_size; i++)
902 reg_pref[i].prefclass = GENERAL_REGS;
903 reg_pref[i].altclass = ALL_REGS;
904 reg_pref[i].allocnoclass = GENERAL_REGS;
909 /* Resize reg info. The new elements will be initialized. Return TRUE
910 if new pseudos were added since the last call. */
911 bool
912 resize_reg_info (void)
914 int old, i;
915 bool change_p;
917 if (reg_pref == NULL)
919 allocate_reg_info ();
920 return true;
922 change_p = max_regno_since_last_resize != max_reg_num ();
923 max_regno_since_last_resize = max_reg_num ();
924 if (reg_info_size >= max_reg_num ())
925 return change_p;
926 old = reg_info_size;
927 reg_info_size = max_reg_num () * 3 / 2 + 1;
928 gcc_assert (reg_pref && reg_renumber);
929 reg_renumber = XRESIZEVEC (short, reg_renumber, reg_info_size);
930 reg_pref = XRESIZEVEC (struct reg_pref, reg_pref, reg_info_size);
931 memset (reg_pref + old, -1,
932 (reg_info_size - old) * sizeof (struct reg_pref));
933 memset (reg_renumber + old, -1, (reg_info_size - old) * sizeof (short));
934 for (i = old; i < reg_info_size; i++)
936 reg_pref[i].prefclass = GENERAL_REGS;
937 reg_pref[i].altclass = ALL_REGS;
938 reg_pref[i].allocnoclass = GENERAL_REGS;
940 return true;
944 /* Free up the space allocated by allocate_reg_info. */
945 void
946 free_reg_info (void)
948 if (reg_pref)
950 free (reg_pref);
951 reg_pref = NULL;
954 if (reg_renumber)
956 free (reg_renumber);
957 reg_renumber = NULL;
961 /* Initialize some global data for this pass. */
962 static unsigned int
963 reginfo_init (void)
965 if (df)
966 df_compute_regs_ever_live (true);
968 /* This prevents dump_reg_info from losing if called
969 before reginfo is run. */
970 reg_pref = NULL;
971 reg_info_size = max_regno_since_last_resize = 0;
972 /* No more global register variables may be declared. */
973 no_global_reg_vars = 1;
974 return 1;
977 namespace {
979 const pass_data pass_data_reginfo_init =
981 RTL_PASS, /* type */
982 "reginfo", /* name */
983 OPTGROUP_NONE, /* optinfo_flags */
984 TV_NONE, /* tv_id */
985 0, /* properties_required */
986 0, /* properties_provided */
987 0, /* properties_destroyed */
988 0, /* todo_flags_start */
989 0, /* todo_flags_finish */
992 class pass_reginfo_init : public rtl_opt_pass
994 public:
995 pass_reginfo_init (gcc::context *ctxt)
996 : rtl_opt_pass (pass_data_reginfo_init, ctxt)
999 /* opt_pass methods: */
1000 virtual unsigned int execute (function *) { return reginfo_init (); }
1002 }; // class pass_reginfo_init
1004 } // anon namespace
1006 rtl_opt_pass *
1007 make_pass_reginfo_init (gcc::context *ctxt)
1009 return new pass_reginfo_init (ctxt);
1014 /* Set up preferred, alternate, and allocno classes for REGNO as
1015 PREFCLASS, ALTCLASS, and ALLOCNOCLASS. */
1016 void
1017 setup_reg_classes (int regno,
1018 enum reg_class prefclass, enum reg_class altclass,
1019 enum reg_class allocnoclass)
1021 if (reg_pref == NULL)
1022 return;
1023 gcc_assert (reg_info_size >= max_reg_num ());
1024 reg_pref[regno].prefclass = prefclass;
1025 reg_pref[regno].altclass = altclass;
1026 reg_pref[regno].allocnoclass = allocnoclass;
1030 /* This is the `regscan' pass of the compiler, run just before cse and
1031 again just before loop. It finds the first and last use of each
1032 pseudo-register. */
1034 static void reg_scan_mark_refs (rtx, rtx_insn *);
1036 void
1037 reg_scan (rtx_insn *f, unsigned int nregs ATTRIBUTE_UNUSED)
1039 rtx_insn *insn;
1041 timevar_push (TV_REG_SCAN);
1043 for (insn = f; insn; insn = NEXT_INSN (insn))
1044 if (INSN_P (insn))
1046 reg_scan_mark_refs (PATTERN (insn), insn);
1047 if (REG_NOTES (insn))
1048 reg_scan_mark_refs (REG_NOTES (insn), insn);
1051 timevar_pop (TV_REG_SCAN);
1055 /* X is the expression to scan. INSN is the insn it appears in.
1056 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
1057 We should only record information for REGs with numbers
1058 greater than or equal to MIN_REGNO. */
1059 static void
1060 reg_scan_mark_refs (rtx x, rtx_insn *insn)
1062 enum rtx_code code;
1063 rtx dest;
1064 rtx note;
1066 if (!x)
1067 return;
1068 code = GET_CODE (x);
1069 switch (code)
1071 case CONST:
1072 CASE_CONST_ANY:
1073 case CC0:
1074 case PC:
1075 case SYMBOL_REF:
1076 case LABEL_REF:
1077 case ADDR_VEC:
1078 case ADDR_DIFF_VEC:
1079 case REG:
1080 return;
1082 case EXPR_LIST:
1083 if (XEXP (x, 0))
1084 reg_scan_mark_refs (XEXP (x, 0), insn);
1085 if (XEXP (x, 1))
1086 reg_scan_mark_refs (XEXP (x, 1), insn);
1087 break;
1089 case INSN_LIST:
1090 case INT_LIST:
1091 if (XEXP (x, 1))
1092 reg_scan_mark_refs (XEXP (x, 1), insn);
1093 break;
1095 case CLOBBER:
1096 if (MEM_P (XEXP (x, 0)))
1097 reg_scan_mark_refs (XEXP (XEXP (x, 0), 0), insn);
1098 break;
1100 case SET:
1101 /* Count a set of the destination if it is a register. */
1102 for (dest = SET_DEST (x);
1103 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
1104 || GET_CODE (dest) == ZERO_EXTRACT;
1105 dest = XEXP (dest, 0))
1108 /* If this is setting a pseudo from another pseudo or the sum of a
1109 pseudo and a constant integer and the other pseudo is known to be
1110 a pointer, set the destination to be a pointer as well.
1112 Likewise if it is setting the destination from an address or from a
1113 value equivalent to an address or to the sum of an address and
1114 something else.
1116 But don't do any of this if the pseudo corresponds to a user
1117 variable since it should have already been set as a pointer based
1118 on the type. */
1120 if (REG_P (SET_DEST (x))
1121 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
1122 /* If the destination pseudo is set more than once, then other
1123 sets might not be to a pointer value (consider access to a
1124 union in two threads of control in the presence of global
1125 optimizations). So only set REG_POINTER on the destination
1126 pseudo if this is the only set of that pseudo. */
1127 && DF_REG_DEF_COUNT (REGNO (SET_DEST (x))) == 1
1128 && ! REG_USERVAR_P (SET_DEST (x))
1129 && ! REG_POINTER (SET_DEST (x))
1130 && ((REG_P (SET_SRC (x))
1131 && REG_POINTER (SET_SRC (x)))
1132 || ((GET_CODE (SET_SRC (x)) == PLUS
1133 || GET_CODE (SET_SRC (x)) == LO_SUM)
1134 && CONST_INT_P (XEXP (SET_SRC (x), 1))
1135 && REG_P (XEXP (SET_SRC (x), 0))
1136 && REG_POINTER (XEXP (SET_SRC (x), 0)))
1137 || GET_CODE (SET_SRC (x)) == CONST
1138 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
1139 || GET_CODE (SET_SRC (x)) == LABEL_REF
1140 || (GET_CODE (SET_SRC (x)) == HIGH
1141 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
1142 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
1143 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
1144 || ((GET_CODE (SET_SRC (x)) == PLUS
1145 || GET_CODE (SET_SRC (x)) == LO_SUM)
1146 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
1147 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
1148 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
1149 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
1150 && (GET_CODE (XEXP (note, 0)) == CONST
1151 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
1152 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
1153 REG_POINTER (SET_DEST (x)) = 1;
1155 /* If this is setting a register from a register or from a simple
1156 conversion of a register, propagate REG_EXPR. */
1157 if (REG_P (dest) && !REG_ATTRS (dest))
1158 set_reg_attrs_from_value (dest, SET_SRC (x));
1160 /* fall through */
1162 default:
1164 const char *fmt = GET_RTX_FORMAT (code);
1165 int i;
1166 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1168 if (fmt[i] == 'e')
1169 reg_scan_mark_refs (XEXP (x, i), insn);
1170 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
1172 int j;
1173 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1174 reg_scan_mark_refs (XVECEXP (x, i, j), insn);
1182 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
1183 is also in C2. */
1185 reg_class_subset_p (reg_class_t c1, reg_class_t c2)
1187 return (c1 == c2
1188 || c2 == ALL_REGS
1189 || hard_reg_set_subset_p (reg_class_contents[(int) c1],
1190 reg_class_contents[(int) c2]));
1193 /* Return nonzero if there is a register that is in both C1 and C2. */
1195 reg_classes_intersect_p (reg_class_t c1, reg_class_t c2)
1197 return (c1 == c2
1198 || c1 == ALL_REGS
1199 || c2 == ALL_REGS
1200 || hard_reg_set_intersect_p (reg_class_contents[(int) c1],
1201 reg_class_contents[(int) c2]));
1205 inline hashval_t
1206 simplifiable_subregs_hasher::hash (const simplifiable_subreg *value)
1208 return value->shape.unique_id ();
1211 inline bool
1212 simplifiable_subregs_hasher::equal (const simplifiable_subreg *value,
1213 const subreg_shape *compare)
1215 return value->shape == *compare;
1218 inline simplifiable_subreg::simplifiable_subreg (const subreg_shape &shape_in)
1219 : shape (shape_in)
1221 CLEAR_HARD_REG_SET (simplifiable_regs);
1224 /* Return the set of hard registers that are able to form the subreg
1225 described by SHAPE. */
1227 const HARD_REG_SET &
1228 simplifiable_subregs (const subreg_shape &shape)
1230 if (!this_target_hard_regs->x_simplifiable_subregs)
1231 this_target_hard_regs->x_simplifiable_subregs
1232 = new hash_table <simplifiable_subregs_hasher> (30);
1233 simplifiable_subreg **slot
1234 = (this_target_hard_regs->x_simplifiable_subregs
1235 ->find_slot_with_hash (&shape, shape.unique_id (), INSERT));
1237 if (!*slot)
1239 simplifiable_subreg *info = new simplifiable_subreg (shape);
1240 for (unsigned int i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1241 if (targetm.hard_regno_mode_ok (i, shape.inner_mode)
1242 && simplify_subreg_regno (i, shape.inner_mode, shape.offset,
1243 shape.outer_mode) >= 0)
1244 SET_HARD_REG_BIT (info->simplifiable_regs, i);
1245 *slot = info;
1247 return (*slot)->simplifiable_regs;
1250 /* Passes for keeping and updating info about modes of registers
1251 inside subregisters. */
1253 static HARD_REG_SET **valid_mode_changes;
1254 static obstack valid_mode_changes_obstack;
1256 /* Restrict the choice of register for SUBREG_REG (SUBREG) based
1257 on information about SUBREG.
1259 If PARTIAL_DEF, SUBREG is a partial definition of a multipart inner
1260 register and we want to ensure that the other parts of the inner
1261 register are correctly preserved. If !PARTIAL_DEF we need to
1262 ensure that SUBREG itself can be formed. */
1264 static void
1265 record_subregs_of_mode (rtx subreg, bool partial_def)
1267 unsigned int regno;
1269 if (!REG_P (SUBREG_REG (subreg)))
1270 return;
1272 regno = REGNO (SUBREG_REG (subreg));
1273 if (regno < FIRST_PSEUDO_REGISTER)
1274 return;
1276 subreg_shape shape (shape_of_subreg (subreg));
1277 if (partial_def)
1279 /* The number of independently-accessible SHAPE.outer_mode values
1280 in SHAPE.inner_mode is GET_MODE_SIZE (SHAPE.inner_mode) / SIZE.
1281 We need to check that the assignment will preserve all the other
1282 SIZE-byte chunks in the inner register besides the one that
1283 includes SUBREG.
1285 In practice it is enough to check whether an equivalent
1286 SHAPE.inner_mode value in an adjacent SIZE-byte chunk can be formed.
1287 If the underlying registers are small enough, both subregs will
1288 be valid. If the underlying registers are too large, one of the
1289 subregs will be invalid.
1291 This relies on the fact that we've already been passed
1292 SUBREG with PARTIAL_DEF set to false. */
1293 unsigned int size = MAX (REGMODE_NATURAL_SIZE (shape.inner_mode),
1294 GET_MODE_SIZE (shape.outer_mode));
1295 gcc_checking_assert (size < GET_MODE_SIZE (shape.inner_mode));
1296 if (shape.offset >= size)
1297 shape.offset -= size;
1298 else
1299 shape.offset += size;
1302 if (valid_mode_changes[regno])
1303 AND_HARD_REG_SET (*valid_mode_changes[regno],
1304 simplifiable_subregs (shape));
1305 else
1307 valid_mode_changes[regno]
1308 = XOBNEW (&valid_mode_changes_obstack, HARD_REG_SET);
1309 COPY_HARD_REG_SET (*valid_mode_changes[regno],
1310 simplifiable_subregs (shape));
1314 /* Call record_subregs_of_mode for all the subregs in X. */
1315 static void
1316 find_subregs_of_mode (rtx x)
1318 enum rtx_code code = GET_CODE (x);
1319 const char * const fmt = GET_RTX_FORMAT (code);
1320 int i;
1322 if (code == SUBREG)
1323 record_subregs_of_mode (x, false);
1325 /* Time for some deep diving. */
1326 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1328 if (fmt[i] == 'e')
1329 find_subregs_of_mode (XEXP (x, i));
1330 else if (fmt[i] == 'E')
1332 int j;
1333 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1334 find_subregs_of_mode (XVECEXP (x, i, j));
1339 void
1340 init_subregs_of_mode (void)
1342 basic_block bb;
1343 rtx_insn *insn;
1345 gcc_obstack_init (&valid_mode_changes_obstack);
1346 valid_mode_changes = XCNEWVEC (HARD_REG_SET *, max_reg_num ());
1348 FOR_EACH_BB_FN (bb, cfun)
1349 FOR_BB_INSNS (bb, insn)
1350 if (NONDEBUG_INSN_P (insn))
1352 find_subregs_of_mode (PATTERN (insn));
1353 df_ref def;
1354 FOR_EACH_INSN_DEF (def, insn)
1355 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
1356 && read_modify_subreg_p (DF_REF_REG (def)))
1357 record_subregs_of_mode (DF_REF_REG (def), true);
1361 const HARD_REG_SET *
1362 valid_mode_changes_for_regno (unsigned int regno)
1364 return valid_mode_changes[regno];
1367 void
1368 finish_subregs_of_mode (void)
1370 XDELETEVEC (valid_mode_changes);
1371 obstack_free (&valid_mode_changes_obstack, NULL);
1374 /* Free all data attached to the structure. This isn't a destructor because
1375 we don't want to run on exit. */
1377 void
1378 target_hard_regs::finalize ()
1380 delete x_simplifiable_subregs;