lto-streamer-out.c (hash_tree): Use cl_optimization_hash.
[official-gcc.git] / gcc / hash-table.h
blob2493f2e983a26f99b68f9d980452682a8306e024
1 /* A type-safe hash table template.
2 Copyright (C) 2012-2014 Free Software Foundation, Inc.
3 Contributed by Lawrence Crowl <crowl@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file implements a typed hash table.
23 The implementation borrows from libiberty's htab_t in hashtab.h.
26 INTRODUCTION TO TYPES
28 Users of the hash table generally need to be aware of three types.
30 1. The type being placed into the hash table. This type is called
31 the value type.
33 2. The type used to describe how to handle the value type within
34 the hash table. This descriptor type provides the hash table with
35 several things.
37 - A typedef named 'value_type' to the value type (from above).
39 - A static member function named 'hash' that takes a value_type
40 pointer and returns a hashval_t value.
42 - A typedef named 'compare_type' that is used to test when an value
43 is found. This type is the comparison type. Usually, it will be the
44 same as value_type. If it is not the same type, you must generally
45 explicitly compute hash values and pass them to the hash table.
47 - A static member function named 'equal' that takes a value_type
48 pointer and a compare_type pointer, and returns a bool.
50 - A static function named 'remove' that takes an value_type pointer
51 and frees the memory allocated by it. This function is used when
52 individual elements of the table need to be disposed of (e.g.,
53 when deleting a hash table, removing elements from the table, etc).
55 3. The type of the hash table itself. (More later.)
57 In very special circumstances, users may need to know about a fourth type.
59 4. The template type used to describe how hash table memory
60 is allocated. This type is called the allocator type. It is
61 parameterized on the value type. It provides four functions.
63 - A static member function named 'data_alloc'. This function
64 allocates the data elements in the table.
66 - A static member function named 'data_free'. This function
67 deallocates the data elements in the table.
69 Hash table are instantiated with two type arguments.
71 * The descriptor type, (2) above.
73 * The allocator type, (4) above. In general, you will not need to
74 provide your own allocator type. By default, hash tables will use
75 the class template xcallocator, which uses malloc/free for allocation.
78 DEFINING A DESCRIPTOR TYPE
80 The first task in using the hash table is to describe the element type.
81 We compose this into a few steps.
83 1. Decide on a removal policy for values stored in the table.
84 This header provides class templates for the two most common
85 policies.
87 * typed_free_remove implements the static 'remove' member function
88 by calling free().
90 * typed_noop_remove implements the static 'remove' member function
91 by doing nothing.
93 You can use these policies by simply deriving the descriptor type
94 from one of those class template, with the appropriate argument.
96 Otherwise, you need to write the static 'remove' member function
97 in the descriptor class.
99 2. Choose a hash function. Write the static 'hash' member function.
101 3. Choose an equality testing function. In most cases, its two
102 arguments will be value_type pointers. If not, the first argument must
103 be a value_type pointer, and the second argument a compare_type pointer.
106 AN EXAMPLE DESCRIPTOR TYPE
108 Suppose you want to put some_type into the hash table. You could define
109 the descriptor type as follows.
111 struct some_type_hasher : typed_noop_remove <some_type>
112 // Deriving from typed_noop_remove means that we get a 'remove' that does
113 // nothing. This choice is good for raw values.
115 typedef some_type value_type;
116 typedef some_type compare_type;
117 static inline hashval_t hash (const value_type *);
118 static inline bool equal (const value_type *, const compare_type *);
121 inline hashval_t
122 some_type_hasher::hash (const value_type *e)
123 { ... compute and return a hash value for E ... }
125 inline bool
126 some_type_hasher::equal (const value_type *p1, const compare_type *p2)
127 { ... compare P1 vs P2. Return true if they are the 'same' ... }
130 AN EXAMPLE HASH_TABLE DECLARATION
132 To instantiate a hash table for some_type:
134 hash_table <some_type_hasher> some_type_hash_table;
136 There is no need to mention some_type directly, as the hash table will
137 obtain it using some_type_hasher::value_type.
139 You can then used any of the functions in hash_table's public interface.
140 See hash_table for details. The interface is very similar to libiberty's
141 htab_t.
144 EASY DESCRIPTORS FOR POINTERS
146 The class template pointer_hash provides everything you need to hash
147 pointers (as opposed to what they point to). So, to instantiate a hash
148 table over pointers to whatever_type,
150 hash_table <pointer_hash <whatever_type>> whatever_type_hash_table;
153 HASH TABLE ITERATORS
155 The hash table provides standard C++ iterators. For example, consider a
156 hash table of some_info. We wish to consume each element of the table:
158 extern void consume (some_info *);
160 We define a convenience typedef and the hash table:
162 typedef hash_table <some_info_hasher> info_table_type;
163 info_table_type info_table;
165 Then we write the loop in typical C++ style:
167 for (info_table_type::iterator iter = info_table.begin ();
168 iter != info_table.end ();
169 ++iter)
170 if ((*iter).status == INFO_READY)
171 consume (&*iter);
173 Or with common sub-expression elimination:
175 for (info_table_type::iterator iter = info_table.begin ();
176 iter != info_table.end ();
177 ++iter)
179 some_info &elem = *iter;
180 if (elem.status == INFO_READY)
181 consume (&elem);
184 One can also use a more typical GCC style:
186 typedef some_info *some_info_p;
187 some_info *elem_ptr;
188 info_table_type::iterator iter;
189 FOR_EACH_HASH_TABLE_ELEMENT (info_table, elem_ptr, some_info_p, iter)
190 if (elem_ptr->status == INFO_READY)
191 consume (elem_ptr);
196 #ifndef TYPED_HASHTAB_H
197 #define TYPED_HASHTAB_H
199 #include "ggc.h"
200 #include "hashtab.h"
201 #include <new>
203 template<typename, typename, typename> class hash_map;
204 template<typename, typename> class hash_set;
206 /* The ordinary memory allocator. */
207 /* FIXME (crowl): This allocator may be extracted for wider sharing later. */
209 template <typename Type>
210 struct xcallocator
212 static Type *data_alloc (size_t count);
213 static void data_free (Type *memory);
217 /* Allocate memory for COUNT data blocks. */
219 template <typename Type>
220 inline Type *
221 xcallocator <Type>::data_alloc (size_t count)
223 return static_cast <Type *> (xcalloc (count, sizeof (Type)));
227 /* Free memory for data blocks. */
229 template <typename Type>
230 inline void
231 xcallocator <Type>::data_free (Type *memory)
233 return ::free (memory);
237 /* Helpful type for removing with free. */
239 template <typename Type>
240 struct typed_free_remove
242 static inline void remove (Type *p);
246 /* Remove with free. */
248 template <typename Type>
249 inline void
250 typed_free_remove <Type>::remove (Type *p)
252 free (p);
256 /* Helpful type for a no-op remove. */
258 template <typename Type>
259 struct typed_noop_remove
261 static inline void remove (Type *p);
265 /* Remove doing nothing. */
267 template <typename Type>
268 inline void
269 typed_noop_remove <Type>::remove (Type *p ATTRIBUTE_UNUSED)
274 /* Pointer hash with a no-op remove method. */
276 template <typename Type>
277 struct pointer_hash : typed_noop_remove <Type>
279 typedef Type *value_type;
280 typedef Type *compare_type;
281 typedef int store_values_directly;
283 static inline hashval_t hash (const value_type &);
285 static inline bool equal (const value_type &existing, const compare_type &candidate);
288 template <typename Type>
289 inline hashval_t
290 pointer_hash <Type>::hash (const value_type &candidate)
292 /* This is a really poor hash function, but it is what the current code uses,
293 so I am reusing it to avoid an additional axis in testing. */
294 return (hashval_t) ((intptr_t)candidate >> 3);
297 template <typename Type>
298 inline bool
299 pointer_hash <Type>::equal (const value_type &existing,
300 const compare_type &candidate)
302 return existing == candidate;
305 /* Hasher for entry in gc memory. */
307 template<typename T>
308 struct ggc_hasher
310 typedef T value_type;
311 typedef T compare_type;
312 typedef int store_values_directly;
314 static void remove (T) {}
316 static void
317 ggc_mx (T p)
319 extern void gt_ggc_mx (T &);
320 gt_ggc_mx (p);
323 static void
324 pch_nx (T &p)
326 extern void gt_pch_nx (T &);
327 gt_pch_nx (p);
330 static void
331 pch_nx (T &p, gt_pointer_operator op, void *cookie)
333 op (&p, cookie);
338 /* Table of primes and their inversion information. */
340 struct prime_ent
342 hashval_t prime;
343 hashval_t inv;
344 hashval_t inv_m2; /* inverse of prime-2 */
345 hashval_t shift;
348 extern struct prime_ent const prime_tab[];
351 /* Functions for computing hash table indexes. */
353 extern unsigned int hash_table_higher_prime_index (unsigned long n);
354 extern hashval_t hash_table_mod1 (hashval_t hash, unsigned int index);
355 extern hashval_t hash_table_mod2 (hashval_t hash, unsigned int index);
357 /* The below is some template meta programming to decide if we should use the
358 hash table partial specialization that directly stores value_type instead of
359 pointers to value_type. If the Descriptor type defines the type
360 Descriptor::store_values_directly then values are stored directly otherwise
361 pointers to them are stored. */
362 template<typename T> struct notype { typedef void type; };
364 template<typename T, typename = void>
365 struct storage_tester
367 static const bool value = false;
370 template<typename T>
371 struct storage_tester<T, typename notype<typename
372 T::store_values_directly>::type>
374 static const bool value = true;
377 template<typename Traits>
378 struct has_is_deleted
380 template<typename U, bool (*)(U &)> struct helper {};
381 template<typename U> static char test (helper<U, U::is_deleted> *);
382 template<typename U> static int test (...);
383 static const bool value = sizeof (test<Traits> (0)) == sizeof (char);
386 template<typename Type, typename Traits, bool = has_is_deleted<Traits>::value>
387 struct is_deleted_helper
389 static inline bool
390 call (Type &v)
392 return Traits::is_deleted (v);
396 template<typename Type, typename Traits>
397 struct is_deleted_helper<Type *, Traits, false>
399 static inline bool
400 call (Type *v)
402 return v == HTAB_DELETED_ENTRY;
406 template<typename Traits>
407 struct has_is_empty
409 template<typename U, bool (*)(U &)> struct helper {};
410 template<typename U> static char test (helper<U, U::is_empty> *);
411 template<typename U> static int test (...);
412 static const bool value = sizeof (test<Traits> (0)) == sizeof (char);
415 template<typename Type, typename Traits, bool = has_is_deleted<Traits>::value>
416 struct is_empty_helper
418 static inline bool
419 call (Type &v)
421 return Traits::is_empty (v);
425 template<typename Type, typename Traits>
426 struct is_empty_helper<Type *, Traits, false>
428 static inline bool
429 call (Type *v)
431 return v == HTAB_EMPTY_ENTRY;
435 template<typename Traits>
436 struct has_mark_deleted
438 template<typename U, void (*)(U &)> struct helper {};
439 template<typename U> static char test (helper<U, U::mark_deleted> *);
440 template<typename U> static int test (...);
441 static const bool value = sizeof (test<Traits> (0)) == sizeof (char);
444 template<typename Type, typename Traits, bool = has_is_deleted<Traits>::value>
445 struct mark_deleted_helper
447 static inline void
448 call (Type &v)
450 Traits::mark_deleted (v);
454 template<typename Type, typename Traits>
455 struct mark_deleted_helper<Type *, Traits, false>
457 static inline void
458 call (Type *&v)
460 v = static_cast<Type *> (HTAB_DELETED_ENTRY);
464 template<typename Traits>
465 struct has_mark_empty
467 template<typename U, void (*)(U &)> struct helper {};
468 template<typename U> static char test (helper<U, U::mark_empty> *);
469 template<typename U> static int test (...);
470 static const bool value = sizeof (test<Traits> (0)) == sizeof (char);
473 template<typename Type, typename Traits, bool = has_is_deleted<Traits>::value>
474 struct mark_empty_helper
476 static inline void
477 call (Type &v)
479 Traits::mark_empty (v);
483 template<typename Type, typename Traits>
484 struct mark_empty_helper<Type *, Traits, false>
486 static inline void
487 call (Type *&v)
489 v = static_cast<Type *> (HTAB_EMPTY_ENTRY);
493 /* User-facing hash table type.
495 The table stores elements of type Descriptor::value_type, or pointers to
496 objects of type value_type if the descriptor does not define the type
497 store_values_directly.
499 It hashes values with the hash member function.
500 The table currently works with relatively weak hash functions.
501 Use typed_pointer_hash <Value> when hashing pointers instead of objects.
503 It compares elements with the equal member function.
504 Two elements with the same hash may not be equal.
505 Use typed_pointer_equal <Value> when hashing pointers instead of objects.
507 It removes elements with the remove member function.
508 This feature is useful for freeing memory.
509 Derive from typed_null_remove <Value> when not freeing objects.
510 Derive from typed_free_remove <Value> when doing a simple object free.
512 Specify the template Allocator to allocate and free memory.
513 The default is xcallocator.
515 Storage is an implementation detail and should not be used outside the
516 hash table code.
519 template <typename Descriptor,
520 template<typename Type> class Allocator= xcallocator,
521 bool Storage = storage_tester<Descriptor>::value>
522 class hash_table
526 template <typename Descriptor,
527 template<typename Type> class Allocator>
528 class hash_table<Descriptor, Allocator, false>
530 typedef typename Descriptor::value_type value_type;
531 typedef typename Descriptor::compare_type compare_type;
533 public:
534 hash_table (size_t);
535 ~hash_table ();
537 /* Current size (in entries) of the hash table. */
538 size_t size () const { return m_size; }
540 /* Return the current number of elements in this hash table. */
541 size_t elements () const { return m_n_elements - m_n_deleted; }
543 /* Return the current number of elements in this hash table. */
544 size_t elements_with_deleted () const { return m_n_elements; }
546 /* This function clears all entries in the given hash table. */
547 void empty ();
549 /* This function clears a specified SLOT in a hash table. It is
550 useful when you've already done the lookup and don't want to do it
551 again. */
553 void clear_slot (value_type **);
555 /* This function searches for a hash table entry equal to the given
556 COMPARABLE element starting with the given HASH value. It cannot
557 be used to insert or delete an element. */
558 value_type *find_with_hash (const compare_type *, hashval_t);
560 /* Like find_slot_with_hash, but compute the hash value from the element. */
561 value_type *find (const value_type *value)
563 return find_with_hash (value, Descriptor::hash (value));
566 value_type **find_slot (const value_type *value, insert_option insert)
568 return find_slot_with_hash (value, Descriptor::hash (value), insert);
571 /* This function searches for a hash table slot containing an entry
572 equal to the given COMPARABLE element and starting with the given
573 HASH. To delete an entry, call this with insert=NO_INSERT, then
574 call clear_slot on the slot returned (possibly after doing some
575 checks). To insert an entry, call this with insert=INSERT, then
576 write the value you want into the returned slot. When inserting an
577 entry, NULL may be returned if memory allocation fails. */
578 value_type **find_slot_with_hash (const compare_type *comparable,
579 hashval_t hash, enum insert_option insert);
581 /* This function deletes an element with the given COMPARABLE value
582 from hash table starting with the given HASH. If there is no
583 matching element in the hash table, this function does nothing. */
584 void remove_elt_with_hash (const compare_type *, hashval_t);
586 /* Like remove_elt_with_hash, but compute the hash value from the element. */
587 void remove_elt (const value_type *value)
589 remove_elt_with_hash (value, Descriptor::hash (value));
592 /* This function scans over the entire hash table calling CALLBACK for
593 each live entry. If CALLBACK returns false, the iteration stops.
594 ARGUMENT is passed as CALLBACK's second argument. */
595 template <typename Argument,
596 int (*Callback) (value_type **slot, Argument argument)>
597 void traverse_noresize (Argument argument);
599 /* Like traverse_noresize, but does resize the table when it is too empty
600 to improve effectivity of subsequent calls. */
601 template <typename Argument,
602 int (*Callback) (value_type **slot, Argument argument)>
603 void traverse (Argument argument);
605 class iterator
607 public:
608 iterator () : m_slot (NULL), m_limit (NULL) {}
610 iterator (value_type **slot, value_type **limit) :
611 m_slot (slot), m_limit (limit) {}
613 inline value_type *operator * () { return *m_slot; }
614 void slide ();
615 inline iterator &operator ++ ();
616 bool operator != (const iterator &other) const
618 return m_slot != other.m_slot || m_limit != other.m_limit;
621 private:
622 value_type **m_slot;
623 value_type **m_limit;
626 iterator begin () const
628 iterator iter (m_entries, m_entries + m_size);
629 iter.slide ();
630 return iter;
633 iterator end () const { return iterator (); }
635 double collisions () const
637 return m_searches ? static_cast <double> (m_collisions) / m_searches : 0;
640 private:
642 value_type **find_empty_slot_for_expand (hashval_t);
643 void expand ();
645 /* Table itself. */
646 typename Descriptor::value_type **m_entries;
648 size_t m_size;
650 /* Current number of elements including also deleted elements. */
651 size_t m_n_elements;
653 /* Current number of deleted elements in the table. */
654 size_t m_n_deleted;
656 /* The following member is used for debugging. Its value is number
657 of all calls of `htab_find_slot' for the hash table. */
658 unsigned int m_searches;
660 /* The following member is used for debugging. Its value is number
661 of collisions fixed for time of work with the hash table. */
662 unsigned int m_collisions;
664 /* Current size (in entries) of the hash table, as an index into the
665 table of primes. */
666 unsigned int m_size_prime_index;
669 template<typename Descriptor, template<typename Type> class Allocator>
670 hash_table<Descriptor, Allocator, false>::hash_table (size_t size) :
671 m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0)
673 unsigned int size_prime_index;
675 size_prime_index = hash_table_higher_prime_index (size);
676 size = prime_tab[size_prime_index].prime;
678 m_entries = Allocator <value_type*> ::data_alloc (size);
679 gcc_assert (m_entries != NULL);
680 m_size = size;
681 m_size_prime_index = size_prime_index;
684 template<typename Descriptor, template<typename Type> class Allocator>
685 hash_table<Descriptor, Allocator, false>::~hash_table ()
687 for (size_t i = m_size - 1; i < m_size; i--)
688 if (m_entries[i] != HTAB_EMPTY_ENTRY && m_entries[i] != HTAB_DELETED_ENTRY)
689 Descriptor::remove (m_entries[i]);
691 Allocator <value_type *> ::data_free (m_entries);
694 /* Similar to find_slot, but without several unwanted side effects:
695 - Does not call equal when it finds an existing entry.
696 - Does not change the count of elements/searches/collisions in the
697 hash table.
698 This function also assumes there are no deleted entries in the table.
699 HASH is the hash value for the element to be inserted. */
701 template<typename Descriptor, template<typename Type> class Allocator>
702 typename hash_table<Descriptor, Allocator, false>::value_type **
703 hash_table<Descriptor, Allocator, false>
704 ::find_empty_slot_for_expand (hashval_t hash)
706 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
707 size_t size = m_size;
708 value_type **slot = m_entries + index;
709 hashval_t hash2;
711 if (*slot == HTAB_EMPTY_ENTRY)
712 return slot;
713 else if (*slot == HTAB_DELETED_ENTRY)
714 abort ();
716 hash2 = hash_table_mod2 (hash, m_size_prime_index);
717 for (;;)
719 index += hash2;
720 if (index >= size)
721 index -= size;
723 slot = m_entries + index;
724 if (*slot == HTAB_EMPTY_ENTRY)
725 return slot;
726 else if (*slot == HTAB_DELETED_ENTRY)
727 abort ();
731 /* The following function changes size of memory allocated for the
732 entries and repeatedly inserts the table elements. The occupancy
733 of the table after the call will be about 50%. Naturally the hash
734 table must already exist. Remember also that the place of the
735 table entries is changed. If memory allocation fails, this function
736 will abort. */
738 template<typename Descriptor, template<typename Type> class Allocator>
739 void
740 hash_table<Descriptor, Allocator, false>::expand ()
742 value_type **oentries = m_entries;
743 unsigned int oindex = m_size_prime_index;
744 size_t osize = size ();
745 value_type **olimit = oentries + osize;
746 size_t elts = elements ();
748 /* Resize only when table after removal of unused elements is either
749 too full or too empty. */
750 unsigned int nindex;
751 size_t nsize;
752 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
754 nindex = hash_table_higher_prime_index (elts * 2);
755 nsize = prime_tab[nindex].prime;
757 else
759 nindex = oindex;
760 nsize = osize;
763 value_type **nentries = Allocator <value_type *> ::data_alloc (nsize);
764 gcc_assert (nentries != NULL);
765 m_entries = nentries;
766 m_size = nsize;
767 m_size_prime_index = nindex;
768 m_n_elements -= m_n_deleted;
769 m_n_deleted = 0;
771 value_type **p = oentries;
774 value_type *x = *p;
776 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
778 value_type **q = find_empty_slot_for_expand (Descriptor::hash (x));
780 *q = x;
783 p++;
785 while (p < olimit);
787 Allocator <value_type *> ::data_free (oentries);
790 template<typename Descriptor, template<typename Type> class Allocator>
791 void
792 hash_table<Descriptor, Allocator, false>::empty ()
794 size_t size = m_size;
795 value_type **entries = m_entries;
796 int i;
798 for (i = size - 1; i >= 0; i--)
799 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
800 Descriptor::remove (entries[i]);
802 /* Instead of clearing megabyte, downsize the table. */
803 if (size > 1024*1024 / sizeof (PTR))
805 int nindex = hash_table_higher_prime_index (1024 / sizeof (PTR));
806 int nsize = prime_tab[nindex].prime;
808 Allocator <value_type *> ::data_free (m_entries);
809 m_entries = Allocator <value_type *> ::data_alloc (nsize);
810 m_size = nsize;
811 m_size_prime_index = nindex;
813 else
814 memset (entries, 0, size * sizeof (value_type *));
815 m_n_deleted = 0;
816 m_n_elements = 0;
819 /* This function clears a specified SLOT in a hash table. It is
820 useful when you've already done the lookup and don't want to do it
821 again. */
823 template<typename Descriptor, template<typename Type> class Allocator>
824 void
825 hash_table<Descriptor, Allocator, false>::clear_slot (value_type **slot)
827 if (slot < m_entries || slot >= m_entries + size ()
828 || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
829 abort ();
831 Descriptor::remove (*slot);
833 *slot = static_cast <value_type *> (HTAB_DELETED_ENTRY);
834 m_n_deleted++;
837 /* This function searches for a hash table entry equal to the given
838 COMPARABLE element starting with the given HASH value. It cannot
839 be used to insert or delete an element. */
841 template<typename Descriptor, template<typename Type> class Allocator>
842 typename hash_table<Descriptor, Allocator, false>::value_type *
843 hash_table<Descriptor, Allocator, false>
844 ::find_with_hash (const compare_type *comparable, hashval_t hash)
846 m_searches++;
847 size_t size = m_size;
848 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
850 value_type *entry = m_entries[index];
851 if (entry == HTAB_EMPTY_ENTRY
852 || (entry != HTAB_DELETED_ENTRY && Descriptor::equal (entry, comparable)))
853 return entry;
855 hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
856 for (;;)
858 m_collisions++;
859 index += hash2;
860 if (index >= size)
861 index -= size;
863 entry = m_entries[index];
864 if (entry == HTAB_EMPTY_ENTRY
865 || (entry != HTAB_DELETED_ENTRY
866 && Descriptor::equal (entry, comparable)))
867 return entry;
871 /* This function searches for a hash table slot containing an entry
872 equal to the given COMPARABLE element and starting with the given
873 HASH. To delete an entry, call this with insert=NO_INSERT, then
874 call clear_slot on the slot returned (possibly after doing some
875 checks). To insert an entry, call this with insert=INSERT, then
876 write the value you want into the returned slot. When inserting an
877 entry, NULL may be returned if memory allocation fails. */
879 template<typename Descriptor, template<typename Type> class Allocator>
880 typename hash_table<Descriptor, Allocator, false>::value_type **
881 hash_table<Descriptor, Allocator, false>
882 ::find_slot_with_hash (const compare_type *comparable, hashval_t hash,
883 enum insert_option insert)
885 if (insert == INSERT && m_size * 3 <= m_n_elements * 4)
886 expand ();
888 m_searches++;
890 value_type **first_deleted_slot = NULL;
891 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
892 hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
893 value_type *entry = m_entries[index];
894 size_t size = m_size;
895 if (entry == HTAB_EMPTY_ENTRY)
896 goto empty_entry;
897 else if (entry == HTAB_DELETED_ENTRY)
898 first_deleted_slot = &m_entries[index];
899 else if (Descriptor::equal (entry, comparable))
900 return &m_entries[index];
902 for (;;)
904 m_collisions++;
905 index += hash2;
906 if (index >= size)
907 index -= size;
909 entry = m_entries[index];
910 if (entry == HTAB_EMPTY_ENTRY)
911 goto empty_entry;
912 else if (entry == HTAB_DELETED_ENTRY)
914 if (!first_deleted_slot)
915 first_deleted_slot = &m_entries[index];
917 else if (Descriptor::equal (entry, comparable))
918 return &m_entries[index];
921 empty_entry:
922 if (insert == NO_INSERT)
923 return NULL;
925 if (first_deleted_slot)
927 m_n_deleted--;
928 *first_deleted_slot = static_cast <value_type *> (HTAB_EMPTY_ENTRY);
929 return first_deleted_slot;
932 m_n_elements++;
933 return &m_entries[index];
936 /* This function deletes an element with the given COMPARABLE value
937 from hash table starting with the given HASH. If there is no
938 matching element in the hash table, this function does nothing. */
940 template<typename Descriptor, template<typename Type> class Allocator>
941 void
942 hash_table<Descriptor, Allocator, false>
943 ::remove_elt_with_hash (const compare_type *comparable, hashval_t hash)
945 value_type **slot = find_slot_with_hash (comparable, hash, NO_INSERT);
946 if (*slot == HTAB_EMPTY_ENTRY)
947 return;
949 Descriptor::remove (*slot);
951 *slot = static_cast <value_type *> (HTAB_DELETED_ENTRY);
952 m_n_deleted++;
955 /* This function scans over the entire hash table calling CALLBACK for
956 each live entry. If CALLBACK returns false, the iteration stops.
957 ARGUMENT is passed as CALLBACK's second argument. */
959 template<typename Descriptor, template<typename Type> class Allocator>
960 template<typename Argument,
961 int (*Callback) (typename hash_table<Descriptor, Allocator,
962 false>::value_type **slot,
963 Argument argument)>
964 void
965 hash_table<Descriptor, Allocator, false>::traverse_noresize (Argument argument)
967 value_type **slot = m_entries;
968 value_type **limit = slot + size ();
972 value_type *x = *slot;
974 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
975 if (! Callback (slot, argument))
976 break;
978 while (++slot < limit);
981 /* Like traverse_noresize, but does resize the table when it is too empty
982 to improve effectivity of subsequent calls. */
984 template <typename Descriptor,
985 template <typename Type> class Allocator>
986 template <typename Argument,
987 int (*Callback) (typename hash_table<Descriptor, Allocator,
988 false>::value_type **slot,
989 Argument argument)>
990 void
991 hash_table<Descriptor, Allocator, false>::traverse (Argument argument)
993 size_t size = m_size;
994 if (elements () * 8 < size && size > 32)
995 expand ();
997 traverse_noresize <Argument, Callback> (argument);
1000 /* Slide down the iterator slots until an active entry is found. */
1002 template<typename Descriptor, template<typename Type> class Allocator>
1003 void
1004 hash_table<Descriptor, Allocator, false>::iterator::slide ()
1006 for ( ; m_slot < m_limit; ++m_slot )
1008 value_type *x = *m_slot;
1009 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
1010 return;
1012 m_slot = NULL;
1013 m_limit = NULL;
1016 /* Bump the iterator. */
1018 template<typename Descriptor, template<typename Type> class Allocator>
1019 inline typename hash_table<Descriptor, Allocator, false>::iterator &
1020 hash_table<Descriptor, Allocator, false>::iterator::operator ++ ()
1022 ++m_slot;
1023 slide ();
1024 return *this;
1027 /* A partial specialization used when values should be stored directly. */
1029 template <typename Descriptor,
1030 template<typename Type> class Allocator>
1031 class hash_table<Descriptor, Allocator, true>
1033 typedef typename Descriptor::value_type value_type;
1034 typedef typename Descriptor::compare_type compare_type;
1036 public:
1037 explicit hash_table (size_t, bool ggc = false);
1038 ~hash_table ();
1040 /* Create a hash_table in gc memory. */
1042 static hash_table *
1043 create_ggc (size_t n)
1045 hash_table *table = ggc_alloc<hash_table> ();
1046 new (table) hash_table (n, true);
1047 return table;
1050 /* Current size (in entries) of the hash table. */
1051 size_t size () const { return m_size; }
1053 /* Return the current number of elements in this hash table. */
1054 size_t elements () const { return m_n_elements - m_n_deleted; }
1056 /* Return the current number of elements in this hash table. */
1057 size_t elements_with_deleted () const { return m_n_elements; }
1059 /* This function clears all entries in the given hash table. */
1060 void empty ();
1062 /* This function clears a specified SLOT in a hash table. It is
1063 useful when you've already done the lookup and don't want to do it
1064 again. */
1066 void clear_slot (value_type *);
1068 /* This function searches for a hash table entry equal to the given
1069 COMPARABLE element starting with the given HASH value. It cannot
1070 be used to insert or delete an element. */
1071 value_type &find_with_hash (const compare_type &, hashval_t);
1073 /* Like find_slot_with_hash, but compute the hash value from the element. */
1074 value_type &find (const value_type &value)
1076 return find_with_hash (value, Descriptor::hash (value));
1079 value_type *find_slot (const value_type &value, insert_option insert)
1081 return find_slot_with_hash (value, Descriptor::hash (value), insert);
1084 /* This function searches for a hash table slot containing an entry
1085 equal to the given COMPARABLE element and starting with the given
1086 HASH. To delete an entry, call this with insert=NO_INSERT, then
1087 call clear_slot on the slot returned (possibly after doing some
1088 checks). To insert an entry, call this with insert=INSERT, then
1089 write the value you want into the returned slot. When inserting an
1090 entry, NULL may be returned if memory allocation fails. */
1091 value_type *find_slot_with_hash (const compare_type &comparable,
1092 hashval_t hash, enum insert_option insert);
1094 /* This function deletes an element with the given COMPARABLE value
1095 from hash table starting with the given HASH. If there is no
1096 matching element in the hash table, this function does nothing. */
1097 void remove_elt_with_hash (const compare_type &, hashval_t);
1099 /* Like remove_elt_with_hash, but compute the hash value from the element. */
1100 void remove_elt (const value_type &value)
1102 remove_elt_with_hash (value, Descriptor::hash (value));
1105 /* This function scans over the entire hash table calling CALLBACK for
1106 each live entry. If CALLBACK returns false, the iteration stops.
1107 ARGUMENT is passed as CALLBACK's second argument. */
1108 template <typename Argument,
1109 int (*Callback) (value_type *slot, Argument argument)>
1110 void traverse_noresize (Argument argument);
1112 /* Like traverse_noresize, but does resize the table when it is too empty
1113 to improve effectivity of subsequent calls. */
1114 template <typename Argument,
1115 int (*Callback) (value_type *slot, Argument argument)>
1116 void traverse (Argument argument);
1118 class iterator
1120 public:
1121 iterator () : m_slot (NULL), m_limit (NULL) {}
1123 iterator (value_type *slot, value_type *limit) :
1124 m_slot (slot), m_limit (limit) {}
1126 inline value_type &operator * () { return *m_slot; }
1127 void slide ();
1128 inline iterator &operator ++ ();
1129 bool operator != (const iterator &other) const
1131 return m_slot != other.m_slot || m_limit != other.m_limit;
1134 private:
1135 value_type *m_slot;
1136 value_type *m_limit;
1139 iterator begin () const
1141 iterator iter (m_entries, m_entries + m_size);
1142 iter.slide ();
1143 return iter;
1146 iterator end () const { return iterator (); }
1148 double collisions () const
1150 return m_searches ? static_cast <double> (m_collisions) / m_searches : 0;
1153 private:
1154 template<typename T> friend void gt_ggc_mx (hash_table<T> *);
1155 template<typename T> friend void gt_pch_nx (hash_table<T> *);
1156 template<typename T> friend void
1157 hashtab_entry_note_pointers (void *, void *, gt_pointer_operator, void *);
1158 template<typename T, typename U, typename V> friend void
1159 gt_pch_nx (hash_map<T, U, V> *, gt_pointer_operator, void *);
1160 template<typename T, typename U> friend void gt_pch_nx (hash_set<T, U> *,
1161 gt_pointer_operator,
1162 void *);
1163 template<typename T> friend void gt_pch_nx (hash_table<T> *,
1164 gt_pointer_operator, void *);
1166 value_type *find_empty_slot_for_expand (hashval_t);
1167 void expand ();
1168 static bool is_deleted (value_type &v)
1170 return is_deleted_helper<value_type, Descriptor>::call (v);
1172 static bool is_empty (value_type &v)
1174 return is_empty_helper<value_type, Descriptor>::call (v);
1177 static void mark_deleted (value_type &v)
1179 return mark_deleted_helper<value_type, Descriptor>::call (v);
1182 static void mark_empty (value_type &v)
1184 return mark_empty_helper<value_type, Descriptor>::call (v);
1187 /* Table itself. */
1188 typename Descriptor::value_type *m_entries;
1190 size_t m_size;
1192 /* Current number of elements including also deleted elements. */
1193 size_t m_n_elements;
1195 /* Current number of deleted elements in the table. */
1196 size_t m_n_deleted;
1198 /* The following member is used for debugging. Its value is number
1199 of all calls of `htab_find_slot' for the hash table. */
1200 unsigned int m_searches;
1202 /* The following member is used for debugging. Its value is number
1203 of collisions fixed for time of work with the hash table. */
1204 unsigned int m_collisions;
1206 /* Current size (in entries) of the hash table, as an index into the
1207 table of primes. */
1208 unsigned int m_size_prime_index;
1210 /* if m_entries is stored in ggc memory. */
1211 bool m_ggc;
1214 template<typename Descriptor, template<typename Type> class Allocator>
1215 hash_table<Descriptor, Allocator, true>::hash_table (size_t size, bool ggc) :
1216 m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0),
1217 m_ggc (ggc)
1219 unsigned int size_prime_index;
1221 size_prime_index = hash_table_higher_prime_index (size);
1222 size = prime_tab[size_prime_index].prime;
1224 if (!m_ggc)
1225 m_entries = Allocator <value_type> ::data_alloc (size);
1226 else
1227 m_entries = ggc_cleared_vec_alloc<value_type> (size);
1229 gcc_assert (m_entries != NULL);
1230 m_size = size;
1231 m_size_prime_index = size_prime_index;
1234 template<typename Descriptor, template<typename Type> class Allocator>
1235 hash_table<Descriptor, Allocator, true>::~hash_table ()
1237 for (size_t i = m_size - 1; i < m_size; i--)
1238 if (!is_empty (m_entries[i]) && !is_deleted (m_entries[i]))
1239 Descriptor::remove (m_entries[i]);
1241 if (!m_ggc)
1242 Allocator <value_type> ::data_free (m_entries);
1243 else
1244 ggc_free (m_entries);
1247 /* Similar to find_slot, but without several unwanted side effects:
1248 - Does not call equal when it finds an existing entry.
1249 - Does not change the count of elements/searches/collisions in the
1250 hash table.
1251 This function also assumes there are no deleted entries in the table.
1252 HASH is the hash value for the element to be inserted. */
1254 template<typename Descriptor, template<typename Type> class Allocator>
1255 typename hash_table<Descriptor, Allocator, true>::value_type *
1256 hash_table<Descriptor, Allocator, true>
1257 ::find_empty_slot_for_expand (hashval_t hash)
1259 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
1260 size_t size = m_size;
1261 value_type *slot = m_entries + index;
1262 hashval_t hash2;
1264 if (is_empty (*slot))
1265 return slot;
1266 else if (is_deleted (*slot))
1267 abort ();
1269 hash2 = hash_table_mod2 (hash, m_size_prime_index);
1270 for (;;)
1272 index += hash2;
1273 if (index >= size)
1274 index -= size;
1276 slot = m_entries + index;
1277 if (is_empty (*slot))
1278 return slot;
1279 else if (is_deleted (*slot))
1280 abort ();
1284 /* The following function changes size of memory allocated for the
1285 entries and repeatedly inserts the table elements. The occupancy
1286 of the table after the call will be about 50%. Naturally the hash
1287 table must already exist. Remember also that the place of the
1288 table entries is changed. If memory allocation fails, this function
1289 will abort. */
1291 template<typename Descriptor, template<typename Type> class Allocator>
1292 void
1293 hash_table<Descriptor, Allocator, true>::expand ()
1295 value_type *oentries = m_entries;
1296 unsigned int oindex = m_size_prime_index;
1297 size_t osize = size ();
1298 value_type *olimit = oentries + osize;
1299 size_t elts = elements ();
1301 /* Resize only when table after removal of unused elements is either
1302 too full or too empty. */
1303 unsigned int nindex;
1304 size_t nsize;
1305 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
1307 nindex = hash_table_higher_prime_index (elts * 2);
1308 nsize = prime_tab[nindex].prime;
1310 else
1312 nindex = oindex;
1313 nsize = osize;
1316 value_type *nentries;
1317 if (!m_ggc)
1318 nentries = Allocator <value_type> ::data_alloc (nsize);
1319 else
1320 nentries = ggc_cleared_vec_alloc<value_type> (nsize);
1322 gcc_assert (nentries != NULL);
1323 m_entries = nentries;
1324 m_size = nsize;
1325 m_size_prime_index = nindex;
1326 m_n_elements -= m_n_deleted;
1327 m_n_deleted = 0;
1329 value_type *p = oentries;
1332 value_type &x = *p;
1334 if (!is_empty (x) && !is_deleted (x))
1336 value_type *q = find_empty_slot_for_expand (Descriptor::hash (x));
1338 *q = x;
1341 p++;
1343 while (p < olimit);
1345 if (!m_ggc)
1346 Allocator <value_type> ::data_free (oentries);
1347 else
1348 ggc_free (oentries);
1351 template<typename Descriptor, template<typename Type> class Allocator>
1352 void
1353 hash_table<Descriptor, Allocator, true>::empty ()
1355 size_t size = m_size;
1356 value_type *entries = m_entries;
1357 int i;
1359 for (i = size - 1; i >= 0; i--)
1360 if (!is_empty (entries[i]) && !is_deleted (entries[i]))
1361 Descriptor::remove (entries[i]);
1363 /* Instead of clearing megabyte, downsize the table. */
1364 if (size > 1024*1024 / sizeof (PTR))
1366 int nindex = hash_table_higher_prime_index (1024 / sizeof (PTR));
1367 int nsize = prime_tab[nindex].prime;
1369 if (!m_ggc)
1371 Allocator <value_type> ::data_free (m_entries);
1372 m_entries = Allocator <value_type> ::data_alloc (nsize);
1374 else
1376 ggc_free (m_entries);
1377 m_entries = ggc_cleared_vec_alloc<value_type> (nsize);
1380 m_size = nsize;
1381 m_size_prime_index = nindex;
1383 else
1384 memset (entries, 0, size * sizeof (value_type));
1385 m_n_deleted = 0;
1386 m_n_elements = 0;
1389 /* This function clears a specified SLOT in a hash table. It is
1390 useful when you've already done the lookup and don't want to do it
1391 again. */
1393 template<typename Descriptor, template<typename Type> class Allocator>
1394 void
1395 hash_table<Descriptor, Allocator, true>::clear_slot (value_type *slot)
1397 if (slot < m_entries || slot >= m_entries + size ()
1398 || is_empty (*slot) || is_deleted (*slot))
1399 abort ();
1401 Descriptor::remove (*slot);
1403 mark_deleted (*slot);
1404 m_n_deleted++;
1407 /* This function searches for a hash table entry equal to the given
1408 COMPARABLE element starting with the given HASH value. It cannot
1409 be used to insert or delete an element. */
1411 template<typename Descriptor, template<typename Type> class Allocator>
1412 typename hash_table<Descriptor, Allocator, true>::value_type &
1413 hash_table<Descriptor, Allocator, true>
1414 ::find_with_hash (const compare_type &comparable, hashval_t hash)
1416 m_searches++;
1417 size_t size = m_size;
1418 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
1420 value_type *entry = &m_entries[index];
1421 if (is_empty (*entry)
1422 || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
1423 return *entry;
1425 hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
1426 for (;;)
1428 m_collisions++;
1429 index += hash2;
1430 if (index >= size)
1431 index -= size;
1433 entry = &m_entries[index];
1434 if (is_empty (*entry)
1435 || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
1436 return *entry;
1440 /* This function searches for a hash table slot containing an entry
1441 equal to the given COMPARABLE element and starting with the given
1442 HASH. To delete an entry, call this with insert=NO_INSERT, then
1443 call clear_slot on the slot returned (possibly after doing some
1444 checks). To insert an entry, call this with insert=INSERT, then
1445 write the value you want into the returned slot. When inserting an
1446 entry, NULL may be returned if memory allocation fails. */
1448 template<typename Descriptor, template<typename Type> class Allocator>
1449 typename hash_table<Descriptor, Allocator, true>::value_type *
1450 hash_table<Descriptor, Allocator, true>
1451 ::find_slot_with_hash (const compare_type &comparable, hashval_t hash,
1452 enum insert_option insert)
1454 if (insert == INSERT && m_size * 3 <= m_n_elements * 4)
1455 expand ();
1457 m_searches++;
1459 value_type *first_deleted_slot = NULL;
1460 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
1461 hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
1462 value_type *entry = &m_entries[index];
1463 size_t size = m_size;
1464 if (is_empty (*entry))
1465 goto empty_entry;
1466 else if (is_deleted (*entry))
1467 first_deleted_slot = &m_entries[index];
1468 else if (Descriptor::equal (*entry, comparable))
1469 return &m_entries[index];
1471 for (;;)
1473 m_collisions++;
1474 index += hash2;
1475 if (index >= size)
1476 index -= size;
1478 entry = &m_entries[index];
1479 if (is_empty (*entry))
1480 goto empty_entry;
1481 else if (is_deleted (*entry))
1483 if (!first_deleted_slot)
1484 first_deleted_slot = &m_entries[index];
1486 else if (Descriptor::equal (*entry, comparable))
1487 return &m_entries[index];
1490 empty_entry:
1491 if (insert == NO_INSERT)
1492 return NULL;
1494 if (first_deleted_slot)
1496 m_n_deleted--;
1497 mark_empty (*first_deleted_slot);
1498 return first_deleted_slot;
1501 m_n_elements++;
1502 return &m_entries[index];
1505 /* This function deletes an element with the given COMPARABLE value
1506 from hash table starting with the given HASH. If there is no
1507 matching element in the hash table, this function does nothing. */
1509 template<typename Descriptor, template<typename Type> class Allocator>
1510 void
1511 hash_table<Descriptor, Allocator, true>
1512 ::remove_elt_with_hash (const compare_type &comparable, hashval_t hash)
1514 value_type *slot = find_slot_with_hash (comparable, hash, NO_INSERT);
1515 if (is_empty (*slot))
1516 return;
1518 Descriptor::remove (*slot);
1520 mark_deleted (*slot);
1521 m_n_deleted++;
1524 /* This function scans over the entire hash table calling CALLBACK for
1525 each live entry. If CALLBACK returns false, the iteration stops.
1526 ARGUMENT is passed as CALLBACK's second argument. */
1528 template<typename Descriptor,
1529 template<typename Type> class Allocator>
1530 template<typename Argument,
1531 int (*Callback) (typename hash_table<Descriptor, Allocator,
1532 true>::value_type *slot,
1533 Argument argument)>
1534 void
1535 hash_table<Descriptor, Allocator, true>::traverse_noresize (Argument argument)
1537 value_type *slot = m_entries;
1538 value_type *limit = slot + size ();
1542 value_type &x = *slot;
1544 if (!is_empty (x) && !is_deleted (x))
1545 if (! Callback (slot, argument))
1546 break;
1548 while (++slot < limit);
1551 /* Like traverse_noresize, but does resize the table when it is too empty
1552 to improve effectivity of subsequent calls. */
1554 template <typename Descriptor,
1555 template <typename Type> class Allocator>
1556 template <typename Argument,
1557 int (*Callback) (typename hash_table<Descriptor, Allocator,
1558 true>::value_type *slot,
1559 Argument argument)>
1560 void
1561 hash_table<Descriptor, Allocator, true>::traverse (Argument argument)
1563 size_t size = m_size;
1564 if (elements () * 8 < size && size > 32)
1565 expand ();
1567 traverse_noresize <Argument, Callback> (argument);
1570 /* Slide down the iterator slots until an active entry is found. */
1572 template<typename Descriptor, template<typename Type> class Allocator>
1573 void
1574 hash_table<Descriptor, Allocator, true>::iterator::slide ()
1576 for ( ; m_slot < m_limit; ++m_slot )
1578 value_type &x = *m_slot;
1579 if (!is_empty (x) && !is_deleted (x))
1580 return;
1582 m_slot = NULL;
1583 m_limit = NULL;
1586 /* Bump the iterator. */
1588 template<typename Descriptor, template<typename Type> class Allocator>
1589 inline typename hash_table<Descriptor, Allocator, true>::iterator &
1590 hash_table<Descriptor, Allocator, true>::iterator::operator ++ ()
1592 ++m_slot;
1593 slide ();
1594 return *this;
1598 /* Iterate through the elements of hash_table HTAB,
1599 using hash_table <....>::iterator ITER,
1600 storing each element in RESULT, which is of type TYPE. */
1602 #define FOR_EACH_HASH_TABLE_ELEMENT(HTAB, RESULT, TYPE, ITER) \
1603 for ((ITER) = (HTAB).begin (); \
1604 (ITER) != (HTAB).end () ? (RESULT = *(ITER) , true) : false; \
1605 ++(ITER))
1607 /* ggc walking routines. */
1609 template<typename E>
1610 static inline void
1611 gt_ggc_mx (hash_table<E> *h)
1613 typedef hash_table<E> table;
1615 if (!ggc_test_and_set_mark (h->m_entries))
1616 return;
1618 for (size_t i = 0; i < h->m_size; i++)
1620 if (table::is_empty (h->m_entries[i])
1621 || table::is_deleted (h->m_entries[i]))
1622 continue;
1624 E::ggc_mx (h->m_entries[i]);
1628 template<typename D>
1629 static inline void
1630 hashtab_entry_note_pointers (void *obj, void *h, gt_pointer_operator op,
1631 void *cookie)
1633 hash_table<D> *map = static_cast<hash_table<D> *> (h);
1634 gcc_checking_assert (map->m_entries == obj);
1635 for (size_t i = 0; i < map->m_size; i++)
1637 typedef hash_table<D> table;
1638 if (table::is_empty (map->m_entries[i])
1639 || table::is_deleted (map->m_entries[i]))
1640 continue;
1642 D::pch_nx (map->m_entries[i], op, cookie);
1646 template<typename D>
1647 static void
1648 gt_pch_nx (hash_table<D> *h)
1650 bool success
1651 = gt_pch_note_object (h->m_entries, h, hashtab_entry_note_pointers<D>);
1652 gcc_checking_assert (success);
1653 for (size_t i = 0; i < h->m_size; i++)
1655 if (hash_table<D>::is_empty (h->m_entries[i])
1656 || hash_table<D>::is_deleted (h->m_entries[i]))
1657 continue;
1659 D::pch_nx (h->m_entries[i]);
1663 template<typename D>
1664 static inline void
1665 gt_pch_nx (hash_table<D> *h, gt_pointer_operator op, void *cookie)
1667 op (&h->m_entries, cookie);
1670 #endif /* TYPED_HASHTAB_H */