1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
36 #include "coretypes.h"
44 #include "stringpool.h"
45 #include "insn-config.h"
49 #include "diagnostic-core.h"
51 #include "fold-const.h"
60 #include "stor-layout.h"
63 struct target_rtl default_target_rtl
;
65 struct target_rtl
*this_target_rtl
= &default_target_rtl
;
68 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
70 /* Commonly used modes. */
72 machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
73 machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
74 machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
75 machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
77 /* Datastructures maintained for currently processed function in RTL form. */
79 struct rtl_data x_rtl
;
81 /* Indexed by pseudo register number, gives the rtx for that pseudo.
82 Allocated in parallel with regno_pointer_align.
83 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
84 with length attribute nested in top level structures. */
88 /* This is *not* reset after each function. It gives each CODE_LABEL
89 in the entire compilation a unique label number. */
91 static GTY(()) int label_num
= 1;
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
96 is set only for MODE_INT and MODE_VECTOR_INT modes. */
98 rtx const_tiny_rtx
[4][(int) MAX_MACHINE_MODE
];
102 REAL_VALUE_TYPE dconst0
;
103 REAL_VALUE_TYPE dconst1
;
104 REAL_VALUE_TYPE dconst2
;
105 REAL_VALUE_TYPE dconstm1
;
106 REAL_VALUE_TYPE dconsthalf
;
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
110 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
117 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
119 /* Standard pieces of rtx, to be substituted directly into things. */
122 rtx simple_return_rtx
;
125 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
126 this pointer should normally never be dereferenced), but is required to be
127 distinct from NULL_RTX. Currently used by peephole2 pass. */
128 rtx_insn
*invalid_insn_rtx
;
130 /* A hash table storing CONST_INTs whose absolute value is greater
131 than MAX_SAVED_CONST_INT. */
133 struct const_int_hasher
: ggc_cache_ptr_hash
<rtx_def
>
135 typedef HOST_WIDE_INT compare_type
;
137 static hashval_t
hash (rtx i
);
138 static bool equal (rtx i
, HOST_WIDE_INT h
);
141 static GTY ((cache
)) hash_table
<const_int_hasher
> *const_int_htab
;
143 struct const_wide_int_hasher
: ggc_cache_ptr_hash
<rtx_def
>
145 static hashval_t
hash (rtx x
);
146 static bool equal (rtx x
, rtx y
);
149 static GTY ((cache
)) hash_table
<const_wide_int_hasher
> *const_wide_int_htab
;
151 /* A hash table storing register attribute structures. */
152 struct reg_attr_hasher
: ggc_cache_ptr_hash
<reg_attrs
>
154 static hashval_t
hash (reg_attrs
*x
);
155 static bool equal (reg_attrs
*a
, reg_attrs
*b
);
158 static GTY ((cache
)) hash_table
<reg_attr_hasher
> *reg_attrs_htab
;
160 /* A hash table storing all CONST_DOUBLEs. */
161 struct const_double_hasher
: ggc_cache_ptr_hash
<rtx_def
>
163 static hashval_t
hash (rtx x
);
164 static bool equal (rtx x
, rtx y
);
167 static GTY ((cache
)) hash_table
<const_double_hasher
> *const_double_htab
;
169 /* A hash table storing all CONST_FIXEDs. */
170 struct const_fixed_hasher
: ggc_cache_ptr_hash
<rtx_def
>
172 static hashval_t
hash (rtx x
);
173 static bool equal (rtx x
, rtx y
);
176 static GTY ((cache
)) hash_table
<const_fixed_hasher
> *const_fixed_htab
;
178 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
179 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
180 #define first_label_num (crtl->emit.x_first_label_num)
182 static void set_used_decls (tree
);
183 static void mark_label_nuses (rtx
);
184 #if TARGET_SUPPORTS_WIDE_INT
185 static rtx
lookup_const_wide_int (rtx
);
187 static rtx
lookup_const_double (rtx
);
188 static rtx
lookup_const_fixed (rtx
);
189 static reg_attrs
*get_reg_attrs (tree
, int);
190 static rtx
gen_const_vector (machine_mode
, int);
191 static void copy_rtx_if_shared_1 (rtx
*orig
);
193 /* Probability of the conditional branch currently proceeded by try_split.
194 Set to -1 otherwise. */
195 int split_branch_probability
= -1;
197 /* Returns a hash code for X (which is a really a CONST_INT). */
200 const_int_hasher::hash (rtx x
)
202 return (hashval_t
) INTVAL (x
);
205 /* Returns nonzero if the value represented by X (which is really a
206 CONST_INT) is the same as that given by Y (which is really a
210 const_int_hasher::equal (rtx x
, HOST_WIDE_INT y
)
212 return (INTVAL (x
) == y
);
215 #if TARGET_SUPPORTS_WIDE_INT
216 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
219 const_wide_int_hasher::hash (rtx x
)
222 unsigned HOST_WIDE_INT hash
= 0;
225 for (i
= 0; i
< CONST_WIDE_INT_NUNITS (xr
); i
++)
226 hash
+= CONST_WIDE_INT_ELT (xr
, i
);
228 return (hashval_t
) hash
;
231 /* Returns nonzero if the value represented by X (which is really a
232 CONST_WIDE_INT) is the same as that given by Y (which is really a
236 const_wide_int_hasher::equal (rtx x
, rtx y
)
241 if (CONST_WIDE_INT_NUNITS (xr
) != CONST_WIDE_INT_NUNITS (yr
))
244 for (i
= 0; i
< CONST_WIDE_INT_NUNITS (xr
); i
++)
245 if (CONST_WIDE_INT_ELT (xr
, i
) != CONST_WIDE_INT_ELT (yr
, i
))
252 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
254 const_double_hasher::hash (rtx x
)
256 const_rtx
const value
= x
;
259 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (value
) == VOIDmode
)
260 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
263 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
264 /* MODE is used in the comparison, so it should be in the hash. */
265 h
^= GET_MODE (value
);
270 /* Returns nonzero if the value represented by X (really a ...)
271 is the same as that represented by Y (really a ...) */
273 const_double_hasher::equal (rtx x
, rtx y
)
275 const_rtx
const a
= x
, b
= y
;
277 if (GET_MODE (a
) != GET_MODE (b
))
279 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (a
) == VOIDmode
)
280 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
281 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
283 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
284 CONST_DOUBLE_REAL_VALUE (b
));
287 /* Returns a hash code for X (which is really a CONST_FIXED). */
290 const_fixed_hasher::hash (rtx x
)
292 const_rtx
const value
= x
;
295 h
= fixed_hash (CONST_FIXED_VALUE (value
));
296 /* MODE is used in the comparison, so it should be in the hash. */
297 h
^= GET_MODE (value
);
301 /* Returns nonzero if the value represented by X is the same as that
305 const_fixed_hasher::equal (rtx x
, rtx y
)
307 const_rtx
const a
= x
, b
= y
;
309 if (GET_MODE (a
) != GET_MODE (b
))
311 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
314 /* Return true if the given memory attributes are equal. */
317 mem_attrs_eq_p (const struct mem_attrs
*p
, const struct mem_attrs
*q
)
323 return (p
->alias
== q
->alias
324 && p
->offset_known_p
== q
->offset_known_p
325 && (!p
->offset_known_p
|| p
->offset
== q
->offset
)
326 && p
->size_known_p
== q
->size_known_p
327 && (!p
->size_known_p
|| p
->size
== q
->size
)
328 && p
->align
== q
->align
329 && p
->addrspace
== q
->addrspace
330 && (p
->expr
== q
->expr
331 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
332 && operand_equal_p (p
->expr
, q
->expr
, 0))));
335 /* Set MEM's memory attributes so that they are the same as ATTRS. */
338 set_mem_attrs (rtx mem
, mem_attrs
*attrs
)
340 /* If everything is the default, we can just clear the attributes. */
341 if (mem_attrs_eq_p (attrs
, mode_mem_attrs
[(int) GET_MODE (mem
)]))
348 || !mem_attrs_eq_p (attrs
, MEM_ATTRS (mem
)))
350 MEM_ATTRS (mem
) = ggc_alloc
<mem_attrs
> ();
351 memcpy (MEM_ATTRS (mem
), attrs
, sizeof (mem_attrs
));
355 /* Returns a hash code for X (which is a really a reg_attrs *). */
358 reg_attr_hasher::hash (reg_attrs
*x
)
360 const reg_attrs
*const p
= x
;
362 return ((p
->offset
* 1000) ^ (intptr_t) p
->decl
);
365 /* Returns nonzero if the value represented by X is the same as that given by
369 reg_attr_hasher::equal (reg_attrs
*x
, reg_attrs
*y
)
371 const reg_attrs
*const p
= x
;
372 const reg_attrs
*const q
= y
;
374 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
376 /* Allocate a new reg_attrs structure and insert it into the hash table if
377 one identical to it is not already in the table. We are doing this for
381 get_reg_attrs (tree decl
, int offset
)
385 /* If everything is the default, we can just return zero. */
386 if (decl
== 0 && offset
== 0)
390 attrs
.offset
= offset
;
392 reg_attrs
**slot
= reg_attrs_htab
->find_slot (&attrs
, INSERT
);
395 *slot
= ggc_alloc
<reg_attrs
> ();
396 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
404 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
405 and to block register equivalences to be seen across this insn. */
410 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
411 MEM_VOLATILE_P (x
) = true;
417 /* Set the mode and register number of X to MODE and REGNO. */
420 set_mode_and_regno (rtx x
, machine_mode mode
, unsigned int regno
)
422 unsigned int nregs
= (HARD_REGISTER_NUM_P (regno
)
423 ? hard_regno_nregs
[regno
][mode
]
425 PUT_MODE_RAW (x
, mode
);
426 set_regno_raw (x
, regno
, nregs
);
429 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
430 don't attempt to share with the various global pieces of rtl (such as
431 frame_pointer_rtx). */
434 gen_raw_REG (machine_mode mode
, unsigned int regno
)
436 rtx x
= rtx_alloc_stat (REG MEM_STAT_INFO
);
437 set_mode_and_regno (x
, mode
, regno
);
438 REG_ATTRS (x
) = NULL
;
439 ORIGINAL_REGNO (x
) = regno
;
443 /* There are some RTL codes that require special attention; the generation
444 functions do the raw handling. If you add to this list, modify
445 special_rtx in gengenrtl.c as well. */
448 gen_rtx_EXPR_LIST (machine_mode mode
, rtx expr
, rtx expr_list
)
450 return as_a
<rtx_expr_list
*> (gen_rtx_fmt_ee (EXPR_LIST
, mode
, expr
,
455 gen_rtx_INSN_LIST (machine_mode mode
, rtx insn
, rtx insn_list
)
457 return as_a
<rtx_insn_list
*> (gen_rtx_fmt_ue (INSN_LIST
, mode
, insn
,
462 gen_rtx_INSN (machine_mode mode
, rtx_insn
*prev_insn
, rtx_insn
*next_insn
,
463 basic_block bb
, rtx pattern
, int location
, int code
,
466 return as_a
<rtx_insn
*> (gen_rtx_fmt_uuBeiie (INSN
, mode
,
467 prev_insn
, next_insn
,
468 bb
, pattern
, location
, code
,
473 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
475 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
476 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
478 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
479 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
480 return const_true_rtx
;
483 /* Look up the CONST_INT in the hash table. */
484 rtx
*slot
= const_int_htab
->find_slot_with_hash (arg
, (hashval_t
) arg
,
487 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
493 gen_int_mode (HOST_WIDE_INT c
, machine_mode mode
)
495 return GEN_INT (trunc_int_for_mode (c
, mode
));
498 /* CONST_DOUBLEs might be created from pairs of integers, or from
499 REAL_VALUE_TYPEs. Also, their length is known only at run time,
500 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
502 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
503 hash table. If so, return its counterpart; otherwise add it
504 to the hash table and return it. */
506 lookup_const_double (rtx real
)
508 rtx
*slot
= const_double_htab
->find_slot (real
, INSERT
);
515 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
516 VALUE in mode MODE. */
518 const_double_from_real_value (REAL_VALUE_TYPE value
, machine_mode mode
)
520 rtx real
= rtx_alloc (CONST_DOUBLE
);
521 PUT_MODE (real
, mode
);
525 return lookup_const_double (real
);
528 /* Determine whether FIXED, a CONST_FIXED, already exists in the
529 hash table. If so, return its counterpart; otherwise add it
530 to the hash table and return it. */
533 lookup_const_fixed (rtx fixed
)
535 rtx
*slot
= const_fixed_htab
->find_slot (fixed
, INSERT
);
542 /* Return a CONST_FIXED rtx for a fixed-point value specified by
543 VALUE in mode MODE. */
546 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, machine_mode mode
)
548 rtx fixed
= rtx_alloc (CONST_FIXED
);
549 PUT_MODE (fixed
, mode
);
553 return lookup_const_fixed (fixed
);
556 #if TARGET_SUPPORTS_WIDE_INT == 0
557 /* Constructs double_int from rtx CST. */
560 rtx_to_double_int (const_rtx cst
)
564 if (CONST_INT_P (cst
))
565 r
= double_int::from_shwi (INTVAL (cst
));
566 else if (CONST_DOUBLE_AS_INT_P (cst
))
568 r
.low
= CONST_DOUBLE_LOW (cst
);
569 r
.high
= CONST_DOUBLE_HIGH (cst
);
578 #if TARGET_SUPPORTS_WIDE_INT
579 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
580 If so, return its counterpart; otherwise add it to the hash table and
584 lookup_const_wide_int (rtx wint
)
586 rtx
*slot
= const_wide_int_htab
->find_slot (wint
, INSERT
);
594 /* Return an rtx constant for V, given that the constant has mode MODE.
595 The returned rtx will be a CONST_INT if V fits, otherwise it will be
596 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
597 (if TARGET_SUPPORTS_WIDE_INT). */
600 immed_wide_int_const (const wide_int_ref
&v
, machine_mode mode
)
602 unsigned int len
= v
.get_len ();
603 unsigned int prec
= GET_MODE_PRECISION (mode
);
605 /* Allow truncation but not extension since we do not know if the
606 number is signed or unsigned. */
607 gcc_assert (prec
<= v
.get_precision ());
609 if (len
< 2 || prec
<= HOST_BITS_PER_WIDE_INT
)
610 return gen_int_mode (v
.elt (0), mode
);
612 #if TARGET_SUPPORTS_WIDE_INT
616 unsigned int blocks_needed
617 = (prec
+ HOST_BITS_PER_WIDE_INT
- 1) / HOST_BITS_PER_WIDE_INT
;
619 if (len
> blocks_needed
)
622 value
= const_wide_int_alloc (len
);
624 /* It is so tempting to just put the mode in here. Must control
626 PUT_MODE (value
, VOIDmode
);
627 CWI_PUT_NUM_ELEM (value
, len
);
629 for (i
= 0; i
< len
; i
++)
630 CONST_WIDE_INT_ELT (value
, i
) = v
.elt (i
);
632 return lookup_const_wide_int (value
);
635 return immed_double_const (v
.elt (0), v
.elt (1), mode
);
639 #if TARGET_SUPPORTS_WIDE_INT == 0
640 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
641 of ints: I0 is the low-order word and I1 is the high-order word.
642 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
643 implied upper bits are copies of the high bit of i1. The value
644 itself is neither signed nor unsigned. Do not use this routine for
645 non-integer modes; convert to REAL_VALUE_TYPE and use
646 const_double_from_real_value. */
649 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, machine_mode mode
)
654 /* There are the following cases (note that there are no modes with
655 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
657 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
659 2) If the value of the integer fits into HOST_WIDE_INT anyway
660 (i.e., i1 consists only from copies of the sign bit, and sign
661 of i0 and i1 are the same), then we return a CONST_INT for i0.
662 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
663 if (mode
!= VOIDmode
)
665 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
666 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
667 /* We can get a 0 for an error mark. */
668 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
669 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
670 || GET_MODE_CLASS (mode
) == MODE_POINTER_BOUNDS
);
672 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
673 return gen_int_mode (i0
, mode
);
676 /* If this integer fits in one word, return a CONST_INT. */
677 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
680 /* We use VOIDmode for integers. */
681 value
= rtx_alloc (CONST_DOUBLE
);
682 PUT_MODE (value
, VOIDmode
);
684 CONST_DOUBLE_LOW (value
) = i0
;
685 CONST_DOUBLE_HIGH (value
) = i1
;
687 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
688 XWINT (value
, i
) = 0;
690 return lookup_const_double (value
);
695 gen_rtx_REG (machine_mode mode
, unsigned int regno
)
697 /* In case the MD file explicitly references the frame pointer, have
698 all such references point to the same frame pointer. This is
699 used during frame pointer elimination to distinguish the explicit
700 references to these registers from pseudos that happened to be
703 If we have eliminated the frame pointer or arg pointer, we will
704 be using it as a normal register, for example as a spill
705 register. In such cases, we might be accessing it in a mode that
706 is not Pmode and therefore cannot use the pre-allocated rtx.
708 Also don't do this when we are making new REGs in reload, since
709 we don't want to get confused with the real pointers. */
711 if (mode
== Pmode
&& !reload_in_progress
&& !lra_in_progress
)
713 if (regno
== FRAME_POINTER_REGNUM
714 && (!reload_completed
|| frame_pointer_needed
))
715 return frame_pointer_rtx
;
717 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
718 && regno
== HARD_FRAME_POINTER_REGNUM
719 && (!reload_completed
|| frame_pointer_needed
))
720 return hard_frame_pointer_rtx
;
721 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
722 if (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
723 && regno
== ARG_POINTER_REGNUM
)
724 return arg_pointer_rtx
;
726 #ifdef RETURN_ADDRESS_POINTER_REGNUM
727 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
728 return return_address_pointer_rtx
;
730 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
731 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
732 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
733 return pic_offset_table_rtx
;
734 if (regno
== STACK_POINTER_REGNUM
)
735 return stack_pointer_rtx
;
739 /* If the per-function register table has been set up, try to re-use
740 an existing entry in that table to avoid useless generation of RTL.
742 This code is disabled for now until we can fix the various backends
743 which depend on having non-shared hard registers in some cases. Long
744 term we want to re-enable this code as it can significantly cut down
745 on the amount of useless RTL that gets generated.
747 We'll also need to fix some code that runs after reload that wants to
748 set ORIGINAL_REGNO. */
753 && regno
< FIRST_PSEUDO_REGISTER
754 && reg_raw_mode
[regno
] == mode
)
755 return regno_reg_rtx
[regno
];
758 return gen_raw_REG (mode
, regno
);
762 gen_rtx_MEM (machine_mode mode
, rtx addr
)
764 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
766 /* This field is not cleared by the mere allocation of the rtx, so
773 /* Generate a memory referring to non-trapping constant memory. */
776 gen_const_mem (machine_mode mode
, rtx addr
)
778 rtx mem
= gen_rtx_MEM (mode
, addr
);
779 MEM_READONLY_P (mem
) = 1;
780 MEM_NOTRAP_P (mem
) = 1;
784 /* Generate a MEM referring to fixed portions of the frame, e.g., register
788 gen_frame_mem (machine_mode mode
, rtx addr
)
790 rtx mem
= gen_rtx_MEM (mode
, addr
);
791 MEM_NOTRAP_P (mem
) = 1;
792 set_mem_alias_set (mem
, get_frame_alias_set ());
796 /* Generate a MEM referring to a temporary use of the stack, not part
797 of the fixed stack frame. For example, something which is pushed
798 by a target splitter. */
800 gen_tmp_stack_mem (machine_mode mode
, rtx addr
)
802 rtx mem
= gen_rtx_MEM (mode
, addr
);
803 MEM_NOTRAP_P (mem
) = 1;
804 if (!cfun
->calls_alloca
)
805 set_mem_alias_set (mem
, get_frame_alias_set ());
809 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
810 this construct would be valid, and false otherwise. */
813 validate_subreg (machine_mode omode
, machine_mode imode
,
814 const_rtx reg
, unsigned int offset
)
816 unsigned int isize
= GET_MODE_SIZE (imode
);
817 unsigned int osize
= GET_MODE_SIZE (omode
);
819 /* All subregs must be aligned. */
820 if (offset
% osize
!= 0)
823 /* The subreg offset cannot be outside the inner object. */
827 /* ??? This should not be here. Temporarily continue to allow word_mode
828 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
829 Generally, backends are doing something sketchy but it'll take time to
831 if (omode
== word_mode
)
833 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
834 is the culprit here, and not the backends. */
835 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
837 /* Allow component subregs of complex and vector. Though given the below
838 extraction rules, it's not always clear what that means. */
839 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
840 && GET_MODE_INNER (imode
) == omode
)
842 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
843 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
844 represent this. It's questionable if this ought to be represented at
845 all -- why can't this all be hidden in post-reload splitters that make
846 arbitrarily mode changes to the registers themselves. */
847 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
849 /* Subregs involving floating point modes are not allowed to
850 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
851 (subreg:SI (reg:DF) 0) isn't. */
852 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
854 if (! (isize
== osize
855 /* LRA can use subreg to store a floating point value in
856 an integer mode. Although the floating point and the
857 integer modes need the same number of hard registers,
858 the size of floating point mode can be less than the
859 integer mode. LRA also uses subregs for a register
860 should be used in different mode in on insn. */
865 /* Paradoxical subregs must have offset zero. */
869 /* This is a normal subreg. Verify that the offset is representable. */
871 /* For hard registers, we already have most of these rules collected in
872 subreg_offset_representable_p. */
873 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
875 unsigned int regno
= REGNO (reg
);
877 #ifdef CANNOT_CHANGE_MODE_CLASS
878 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
879 && GET_MODE_INNER (imode
) == omode
)
881 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
885 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
888 /* For pseudo registers, we want most of the same checks. Namely:
889 If the register no larger than a word, the subreg must be lowpart.
890 If the register is larger than a word, the subreg must be the lowpart
891 of a subword. A subreg does *not* perform arbitrary bit extraction.
892 Given that we've already checked mode/offset alignment, we only have
893 to check subword subregs here. */
894 if (osize
< UNITS_PER_WORD
895 && ! (lra_in_progress
&& (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))))
897 machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
898 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
899 if (offset
% UNITS_PER_WORD
!= low_off
)
906 gen_rtx_SUBREG (machine_mode mode
, rtx reg
, int offset
)
908 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
909 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
912 /* Generate a SUBREG representing the least-significant part of REG if MODE
913 is smaller than mode of REG, otherwise paradoxical SUBREG. */
916 gen_lowpart_SUBREG (machine_mode mode
, rtx reg
)
920 inmode
= GET_MODE (reg
);
921 if (inmode
== VOIDmode
)
923 return gen_rtx_SUBREG (mode
, reg
,
924 subreg_lowpart_offset (mode
, inmode
));
928 gen_rtx_VAR_LOCATION (machine_mode mode
, tree decl
, rtx loc
,
929 enum var_init_status status
)
931 rtx x
= gen_rtx_fmt_te (VAR_LOCATION
, mode
, decl
, loc
);
932 PAT_VAR_LOCATION_STATUS (x
) = status
;
937 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
940 gen_rtvec (int n
, ...)
948 /* Don't allocate an empty rtvec... */
955 rt_val
= rtvec_alloc (n
);
957 for (i
= 0; i
< n
; i
++)
958 rt_val
->elem
[i
] = va_arg (p
, rtx
);
965 gen_rtvec_v (int n
, rtx
*argp
)
970 /* Don't allocate an empty rtvec... */
974 rt_val
= rtvec_alloc (n
);
976 for (i
= 0; i
< n
; i
++)
977 rt_val
->elem
[i
] = *argp
++;
983 gen_rtvec_v (int n
, rtx_insn
**argp
)
988 /* Don't allocate an empty rtvec... */
992 rt_val
= rtvec_alloc (n
);
994 for (i
= 0; i
< n
; i
++)
995 rt_val
->elem
[i
] = *argp
++;
1001 /* Return the number of bytes between the start of an OUTER_MODE
1002 in-memory value and the start of an INNER_MODE in-memory value,
1003 given that the former is a lowpart of the latter. It may be a
1004 paradoxical lowpart, in which case the offset will be negative
1005 on big-endian targets. */
1008 byte_lowpart_offset (machine_mode outer_mode
,
1009 machine_mode inner_mode
)
1011 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
1012 return subreg_lowpart_offset (outer_mode
, inner_mode
);
1014 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
1017 /* Generate a REG rtx for a new pseudo register of mode MODE.
1018 This pseudo is assigned the next sequential register number. */
1021 gen_reg_rtx (machine_mode mode
)
1024 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
1026 gcc_assert (can_create_pseudo_p ());
1028 /* If a virtual register with bigger mode alignment is generated,
1029 increase stack alignment estimation because it might be spilled
1031 if (SUPPORTS_STACK_ALIGNMENT
1032 && crtl
->stack_alignment_estimated
< align
1033 && !crtl
->stack_realign_processed
)
1035 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
1036 if (crtl
->stack_alignment_estimated
< min_align
)
1037 crtl
->stack_alignment_estimated
= min_align
;
1040 if (generating_concat_p
1041 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
1042 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
1044 /* For complex modes, don't make a single pseudo.
1045 Instead, make a CONCAT of two pseudos.
1046 This allows noncontiguous allocation of the real and imaginary parts,
1047 which makes much better code. Besides, allocating DCmode
1048 pseudos overstrains reload on some machines like the 386. */
1049 rtx realpart
, imagpart
;
1050 machine_mode partmode
= GET_MODE_INNER (mode
);
1052 realpart
= gen_reg_rtx (partmode
);
1053 imagpart
= gen_reg_rtx (partmode
);
1054 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
1057 /* Do not call gen_reg_rtx with uninitialized crtl. */
1058 gcc_assert (crtl
->emit
.regno_pointer_align_length
);
1060 /* Make sure regno_pointer_align, and regno_reg_rtx are large
1061 enough to have an element for this pseudo reg number. */
1063 if (reg_rtx_no
== crtl
->emit
.regno_pointer_align_length
)
1065 int old_size
= crtl
->emit
.regno_pointer_align_length
;
1069 tmp
= XRESIZEVEC (char, crtl
->emit
.regno_pointer_align
, old_size
* 2);
1070 memset (tmp
+ old_size
, 0, old_size
);
1071 crtl
->emit
.regno_pointer_align
= (unsigned char *) tmp
;
1073 new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, old_size
* 2);
1074 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
1075 regno_reg_rtx
= new1
;
1077 crtl
->emit
.regno_pointer_align_length
= old_size
* 2;
1080 val
= gen_raw_REG (mode
, reg_rtx_no
);
1081 regno_reg_rtx
[reg_rtx_no
++] = val
;
1085 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1088 reg_is_parm_p (rtx reg
)
1092 gcc_assert (REG_P (reg
));
1093 decl
= REG_EXPR (reg
);
1094 return (decl
&& TREE_CODE (decl
) == PARM_DECL
);
1097 /* Update NEW with the same attributes as REG, but with OFFSET added
1098 to the REG_OFFSET. */
1101 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
1103 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
1104 REG_OFFSET (reg
) + offset
);
1107 /* Generate a register with same attributes as REG, but with OFFSET
1108 added to the REG_OFFSET. */
1111 gen_rtx_REG_offset (rtx reg
, machine_mode mode
, unsigned int regno
,
1114 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
1116 update_reg_offset (new_rtx
, reg
, offset
);
1120 /* Generate a new pseudo-register with the same attributes as REG, but
1121 with OFFSET added to the REG_OFFSET. */
1124 gen_reg_rtx_offset (rtx reg
, machine_mode mode
, int offset
)
1126 rtx new_rtx
= gen_reg_rtx (mode
);
1128 update_reg_offset (new_rtx
, reg
, offset
);
1132 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1133 new register is a (possibly paradoxical) lowpart of the old one. */
1136 adjust_reg_mode (rtx reg
, machine_mode mode
)
1138 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
1139 PUT_MODE (reg
, mode
);
1142 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1143 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1146 set_reg_attrs_from_value (rtx reg
, rtx x
)
1149 bool can_be_reg_pointer
= true;
1151 /* Don't call mark_reg_pointer for incompatible pointer sign
1153 while (GET_CODE (x
) == SIGN_EXTEND
1154 || GET_CODE (x
) == ZERO_EXTEND
1155 || GET_CODE (x
) == TRUNCATE
1156 || (GET_CODE (x
) == SUBREG
&& subreg_lowpart_p (x
)))
1158 #if defined(POINTERS_EXTEND_UNSIGNED)
1159 if (((GET_CODE (x
) == SIGN_EXTEND
&& POINTERS_EXTEND_UNSIGNED
)
1160 || (GET_CODE (x
) == ZERO_EXTEND
&& ! POINTERS_EXTEND_UNSIGNED
)
1161 || (paradoxical_subreg_p (x
)
1162 && ! (SUBREG_PROMOTED_VAR_P (x
)
1163 && SUBREG_CHECK_PROMOTED_SIGN (x
,
1164 POINTERS_EXTEND_UNSIGNED
))))
1165 && !targetm
.have_ptr_extend ())
1166 can_be_reg_pointer
= false;
1171 /* Hard registers can be reused for multiple purposes within the same
1172 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1173 on them is wrong. */
1174 if (HARD_REGISTER_P (reg
))
1177 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
1180 if (MEM_OFFSET_KNOWN_P (x
))
1181 REG_ATTRS (reg
) = get_reg_attrs (MEM_EXPR (x
),
1182 MEM_OFFSET (x
) + offset
);
1183 if (can_be_reg_pointer
&& MEM_POINTER (x
))
1184 mark_reg_pointer (reg
, 0);
1189 update_reg_offset (reg
, x
, offset
);
1190 if (can_be_reg_pointer
&& REG_POINTER (x
))
1191 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
1195 /* Generate a REG rtx for a new pseudo register, copying the mode
1196 and attributes from X. */
1199 gen_reg_rtx_and_attrs (rtx x
)
1201 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1202 set_reg_attrs_from_value (reg
, x
);
1206 /* Set the register attributes for registers contained in PARM_RTX.
1207 Use needed values from memory attributes of MEM. */
1210 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1212 if (REG_P (parm_rtx
))
1213 set_reg_attrs_from_value (parm_rtx
, mem
);
1214 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1216 /* Check for a NULL entry in the first slot, used to indicate that the
1217 parameter goes both on the stack and in registers. */
1218 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1219 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1221 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1222 if (REG_P (XEXP (x
, 0)))
1223 REG_ATTRS (XEXP (x
, 0))
1224 = get_reg_attrs (MEM_EXPR (mem
),
1225 INTVAL (XEXP (x
, 1)));
1230 /* Set the REG_ATTRS for registers in value X, given that X represents
1234 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1239 if (GET_CODE (x
) == SUBREG
)
1241 gcc_assert (subreg_lowpart_p (x
));
1246 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1249 : TYPE_MODE (TREE_TYPE (tdecl
))));
1250 if (GET_CODE (x
) == CONCAT
)
1252 if (REG_P (XEXP (x
, 0)))
1253 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1254 if (REG_P (XEXP (x
, 1)))
1255 REG_ATTRS (XEXP (x
, 1))
1256 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1258 if (GET_CODE (x
) == PARALLEL
)
1262 /* Check for a NULL entry, used to indicate that the parameter goes
1263 both on the stack and in registers. */
1264 if (XEXP (XVECEXP (x
, 0, 0), 0))
1269 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1271 rtx y
= XVECEXP (x
, 0, i
);
1272 if (REG_P (XEXP (y
, 0)))
1273 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1278 /* Assign the RTX X to declaration T. */
1281 set_decl_rtl (tree t
, rtx x
)
1283 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1285 set_reg_attrs_for_decl_rtl (t
, x
);
1288 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1289 if the ABI requires the parameter to be passed by reference. */
1292 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1294 DECL_INCOMING_RTL (t
) = x
;
1295 if (x
&& !by_reference_p
)
1296 set_reg_attrs_for_decl_rtl (t
, x
);
1299 /* Identify REG (which may be a CONCAT) as a user register. */
1302 mark_user_reg (rtx reg
)
1304 if (GET_CODE (reg
) == CONCAT
)
1306 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1307 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1311 gcc_assert (REG_P (reg
));
1312 REG_USERVAR_P (reg
) = 1;
1316 /* Identify REG as a probable pointer register and show its alignment
1317 as ALIGN, if nonzero. */
1320 mark_reg_pointer (rtx reg
, int align
)
1322 if (! REG_POINTER (reg
))
1324 REG_POINTER (reg
) = 1;
1327 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1329 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1330 /* We can no-longer be sure just how aligned this pointer is. */
1331 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1334 /* Return 1 plus largest pseudo reg number used in the current function. */
1342 /* Return 1 + the largest label number used so far in the current function. */
1345 max_label_num (void)
1350 /* Return first label number used in this function (if any were used). */
1353 get_first_label_num (void)
1355 return first_label_num
;
1358 /* If the rtx for label was created during the expansion of a nested
1359 function, then first_label_num won't include this label number.
1360 Fix this now so that array indices work later. */
1363 maybe_set_first_label_num (rtx_code_label
*x
)
1365 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1366 first_label_num
= CODE_LABEL_NUMBER (x
);
1369 /* Return a value representing some low-order bits of X, where the number
1370 of low-order bits is given by MODE. Note that no conversion is done
1371 between floating-point and fixed-point values, rather, the bit
1372 representation is returned.
1374 This function handles the cases in common between gen_lowpart, below,
1375 and two variants in cse.c and combine.c. These are the cases that can
1376 be safely handled at all points in the compilation.
1378 If this is not a case we can handle, return 0. */
1381 gen_lowpart_common (machine_mode mode
, rtx x
)
1383 int msize
= GET_MODE_SIZE (mode
);
1385 machine_mode innermode
;
1387 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1388 so we have to make one up. Yuk. */
1389 innermode
= GET_MODE (x
);
1391 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1392 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1393 else if (innermode
== VOIDmode
)
1394 innermode
= mode_for_size (HOST_BITS_PER_DOUBLE_INT
, MODE_INT
, 0);
1396 xsize
= GET_MODE_SIZE (innermode
);
1398 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1400 if (innermode
== mode
)
1403 /* MODE must occupy no more words than the mode of X. */
1404 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1405 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1408 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1409 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1412 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1413 && (GET_MODE_CLASS (mode
) == MODE_INT
1414 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1416 /* If we are getting the low-order part of something that has been
1417 sign- or zero-extended, we can either just use the object being
1418 extended or make a narrower extension. If we want an even smaller
1419 piece than the size of the object being extended, call ourselves
1422 This case is used mostly by combine and cse. */
1424 if (GET_MODE (XEXP (x
, 0)) == mode
)
1426 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1427 return gen_lowpart_common (mode
, XEXP (x
, 0));
1428 else if (msize
< xsize
)
1429 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1431 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1432 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1433 || CONST_DOUBLE_AS_FLOAT_P (x
) || CONST_SCALAR_INT_P (x
))
1434 return lowpart_subreg (mode
, x
, innermode
);
1436 /* Otherwise, we can't do this. */
1441 gen_highpart (machine_mode mode
, rtx x
)
1443 unsigned int msize
= GET_MODE_SIZE (mode
);
1446 /* This case loses if X is a subreg. To catch bugs early,
1447 complain if an invalid MODE is used even in other cases. */
1448 gcc_assert (msize
<= UNITS_PER_WORD
1449 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1451 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1452 subreg_highpart_offset (mode
, GET_MODE (x
)));
1453 gcc_assert (result
);
1455 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1456 the target if we have a MEM. gen_highpart must return a valid operand,
1457 emitting code if necessary to do so. */
1460 result
= validize_mem (result
);
1461 gcc_assert (result
);
1467 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1468 be VOIDmode constant. */
1470 gen_highpart_mode (machine_mode outermode
, machine_mode innermode
, rtx exp
)
1472 if (GET_MODE (exp
) != VOIDmode
)
1474 gcc_assert (GET_MODE (exp
) == innermode
);
1475 return gen_highpart (outermode
, exp
);
1477 return simplify_gen_subreg (outermode
, exp
, innermode
,
1478 subreg_highpart_offset (outermode
, innermode
));
1481 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1482 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1485 subreg_size_lowpart_offset (unsigned int outer_bytes
, unsigned int inner_bytes
)
1487 if (outer_bytes
> inner_bytes
)
1488 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1491 if (BYTES_BIG_ENDIAN
&& WORDS_BIG_ENDIAN
)
1492 return inner_bytes
- outer_bytes
;
1493 else if (!BYTES_BIG_ENDIAN
&& !WORDS_BIG_ENDIAN
)
1496 return subreg_size_offset_from_lsb (outer_bytes
, inner_bytes
, 0);
1499 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1500 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1503 subreg_size_highpart_offset (unsigned int outer_bytes
,
1504 unsigned int inner_bytes
)
1506 gcc_assert (inner_bytes
>= outer_bytes
);
1508 if (BYTES_BIG_ENDIAN
&& WORDS_BIG_ENDIAN
)
1510 else if (!BYTES_BIG_ENDIAN
&& !WORDS_BIG_ENDIAN
)
1511 return inner_bytes
- outer_bytes
;
1513 return subreg_size_offset_from_lsb (outer_bytes
, inner_bytes
,
1514 (inner_bytes
- outer_bytes
)
1518 /* Return 1 iff X, assumed to be a SUBREG,
1519 refers to the least significant part of its containing reg.
1520 If X is not a SUBREG, always return 1 (it is its own low part!). */
1523 subreg_lowpart_p (const_rtx x
)
1525 if (GET_CODE (x
) != SUBREG
)
1527 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1530 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1531 == SUBREG_BYTE (x
));
1534 /* Return true if X is a paradoxical subreg, false otherwise. */
1536 paradoxical_subreg_p (const_rtx x
)
1538 if (GET_CODE (x
) != SUBREG
)
1540 return (GET_MODE_PRECISION (GET_MODE (x
))
1541 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
))));
1544 /* Return subword OFFSET of operand OP.
1545 The word number, OFFSET, is interpreted as the word number starting
1546 at the low-order address. OFFSET 0 is the low-order word if not
1547 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1549 If we cannot extract the required word, we return zero. Otherwise,
1550 an rtx corresponding to the requested word will be returned.
1552 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1553 reload has completed, a valid address will always be returned. After
1554 reload, if a valid address cannot be returned, we return zero.
1556 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1557 it is the responsibility of the caller.
1559 MODE is the mode of OP in case it is a CONST_INT.
1561 ??? This is still rather broken for some cases. The problem for the
1562 moment is that all callers of this thing provide no 'goal mode' to
1563 tell us to work with. This exists because all callers were written
1564 in a word based SUBREG world.
1565 Now use of this function can be deprecated by simplify_subreg in most
1570 operand_subword (rtx op
, unsigned int offset
, int validate_address
, machine_mode mode
)
1572 if (mode
== VOIDmode
)
1573 mode
= GET_MODE (op
);
1575 gcc_assert (mode
!= VOIDmode
);
1577 /* If OP is narrower than a word, fail. */
1579 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1582 /* If we want a word outside OP, return zero. */
1584 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1587 /* Form a new MEM at the requested address. */
1590 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1592 if (! validate_address
)
1595 else if (reload_completed
)
1597 if (! strict_memory_address_addr_space_p (word_mode
,
1599 MEM_ADDR_SPACE (op
)))
1603 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1606 /* Rest can be handled by simplify_subreg. */
1607 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1610 /* Similar to `operand_subword', but never return 0. If we can't
1611 extract the required subword, put OP into a register and try again.
1612 The second attempt must succeed. We always validate the address in
1615 MODE is the mode of OP, in case it is CONST_INT. */
1618 operand_subword_force (rtx op
, unsigned int offset
, machine_mode mode
)
1620 rtx result
= operand_subword (op
, offset
, 1, mode
);
1625 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1627 /* If this is a register which can not be accessed by words, copy it
1628 to a pseudo register. */
1630 op
= copy_to_reg (op
);
1632 op
= force_reg (mode
, op
);
1635 result
= operand_subword (op
, offset
, 1, mode
);
1636 gcc_assert (result
);
1641 /* Returns 1 if both MEM_EXPR can be considered equal
1645 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1650 if (! expr1
|| ! expr2
)
1653 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1656 return operand_equal_p (expr1
, expr2
, 0);
1659 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1660 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1664 get_mem_align_offset (rtx mem
, unsigned int align
)
1667 unsigned HOST_WIDE_INT offset
;
1669 /* This function can't use
1670 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1671 || (MAX (MEM_ALIGN (mem),
1672 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1676 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1678 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1679 for <variable>. get_inner_reference doesn't handle it and
1680 even if it did, the alignment in that case needs to be determined
1681 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1682 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1683 isn't sufficiently aligned, the object it is in might be. */
1684 gcc_assert (MEM_P (mem
));
1685 expr
= MEM_EXPR (mem
);
1686 if (expr
== NULL_TREE
|| !MEM_OFFSET_KNOWN_P (mem
))
1689 offset
= MEM_OFFSET (mem
);
1692 if (DECL_ALIGN (expr
) < align
)
1695 else if (INDIRECT_REF_P (expr
))
1697 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1700 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1704 tree inner
= TREE_OPERAND (expr
, 0);
1705 tree field
= TREE_OPERAND (expr
, 1);
1706 tree byte_offset
= component_ref_field_offset (expr
);
1707 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1710 || !tree_fits_uhwi_p (byte_offset
)
1711 || !tree_fits_uhwi_p (bit_offset
))
1714 offset
+= tree_to_uhwi (byte_offset
);
1715 offset
+= tree_to_uhwi (bit_offset
) / BITS_PER_UNIT
;
1717 if (inner
== NULL_TREE
)
1719 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1720 < (unsigned int) align
)
1724 else if (DECL_P (inner
))
1726 if (DECL_ALIGN (inner
) < align
)
1730 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1738 return offset
& ((align
/ BITS_PER_UNIT
) - 1);
1741 /* Given REF (a MEM) and T, either the type of X or the expression
1742 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1743 if we are making a new object of this type. BITPOS is nonzero if
1744 there is an offset outstanding on T that will be applied later. */
1747 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1748 HOST_WIDE_INT bitpos
)
1750 HOST_WIDE_INT apply_bitpos
= 0;
1752 struct mem_attrs attrs
, *defattrs
, *refattrs
;
1755 /* It can happen that type_for_mode was given a mode for which there
1756 is no language-level type. In which case it returns NULL, which
1761 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1762 if (type
== error_mark_node
)
1765 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1766 wrong answer, as it assumes that DECL_RTL already has the right alias
1767 info. Callers should not set DECL_RTL until after the call to
1768 set_mem_attributes. */
1769 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1771 memset (&attrs
, 0, sizeof (attrs
));
1773 /* Get the alias set from the expression or type (perhaps using a
1774 front-end routine) and use it. */
1775 attrs
.alias
= get_alias_set (t
);
1777 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1778 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1780 /* Default values from pre-existing memory attributes if present. */
1781 refattrs
= MEM_ATTRS (ref
);
1784 /* ??? Can this ever happen? Calling this routine on a MEM that
1785 already carries memory attributes should probably be invalid. */
1786 attrs
.expr
= refattrs
->expr
;
1787 attrs
.offset_known_p
= refattrs
->offset_known_p
;
1788 attrs
.offset
= refattrs
->offset
;
1789 attrs
.size_known_p
= refattrs
->size_known_p
;
1790 attrs
.size
= refattrs
->size
;
1791 attrs
.align
= refattrs
->align
;
1794 /* Otherwise, default values from the mode of the MEM reference. */
1797 defattrs
= mode_mem_attrs
[(int) GET_MODE (ref
)];
1798 gcc_assert (!defattrs
->expr
);
1799 gcc_assert (!defattrs
->offset_known_p
);
1801 /* Respect mode size. */
1802 attrs
.size_known_p
= defattrs
->size_known_p
;
1803 attrs
.size
= defattrs
->size
;
1804 /* ??? Is this really necessary? We probably should always get
1805 the size from the type below. */
1807 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1808 if T is an object, always compute the object alignment below. */
1810 attrs
.align
= defattrs
->align
;
1812 attrs
.align
= BITS_PER_UNIT
;
1813 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1814 e.g. if the type carries an alignment attribute. Should we be
1815 able to simply always use TYPE_ALIGN? */
1818 /* We can set the alignment from the type if we are making an object or if
1819 this is an INDIRECT_REF. */
1820 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
)
1821 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1823 /* If the size is known, we can set that. */
1824 tree new_size
= TYPE_SIZE_UNIT (type
);
1826 /* The address-space is that of the type. */
1827 as
= TYPE_ADDR_SPACE (type
);
1829 /* If T is not a type, we may be able to deduce some more information about
1835 if (TREE_THIS_VOLATILE (t
))
1836 MEM_VOLATILE_P (ref
) = 1;
1838 /* Now remove any conversions: they don't change what the underlying
1839 object is. Likewise for SAVE_EXPR. */
1840 while (CONVERT_EXPR_P (t
)
1841 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1842 || TREE_CODE (t
) == SAVE_EXPR
)
1843 t
= TREE_OPERAND (t
, 0);
1845 /* Note whether this expression can trap. */
1846 MEM_NOTRAP_P (ref
) = !tree_could_trap_p (t
);
1848 base
= get_base_address (t
);
1852 && TREE_READONLY (base
)
1853 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
))
1854 && !TREE_THIS_VOLATILE (base
))
1855 MEM_READONLY_P (ref
) = 1;
1857 /* Mark static const strings readonly as well. */
1858 if (TREE_CODE (base
) == STRING_CST
1859 && TREE_READONLY (base
)
1860 && TREE_STATIC (base
))
1861 MEM_READONLY_P (ref
) = 1;
1863 /* Address-space information is on the base object. */
1864 if (TREE_CODE (base
) == MEM_REF
1865 || TREE_CODE (base
) == TARGET_MEM_REF
)
1866 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base
,
1869 as
= TYPE_ADDR_SPACE (TREE_TYPE (base
));
1872 /* If this expression uses it's parent's alias set, mark it such
1873 that we won't change it. */
1874 if (component_uses_parent_alias_set_from (t
) != NULL_TREE
)
1875 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1877 /* If this is a decl, set the attributes of the MEM from it. */
1881 attrs
.offset_known_p
= true;
1883 apply_bitpos
= bitpos
;
1884 new_size
= DECL_SIZE_UNIT (t
);
1887 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1888 else if (CONSTANT_CLASS_P (t
))
1891 /* If this is a field reference, record it. */
1892 else if (TREE_CODE (t
) == COMPONENT_REF
)
1895 attrs
.offset_known_p
= true;
1897 apply_bitpos
= bitpos
;
1898 if (DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1899 new_size
= DECL_SIZE_UNIT (TREE_OPERAND (t
, 1));
1902 /* If this is an array reference, look for an outer field reference. */
1903 else if (TREE_CODE (t
) == ARRAY_REF
)
1905 tree off_tree
= size_zero_node
;
1906 /* We can't modify t, because we use it at the end of the
1912 tree index
= TREE_OPERAND (t2
, 1);
1913 tree low_bound
= array_ref_low_bound (t2
);
1914 tree unit_size
= array_ref_element_size (t2
);
1916 /* We assume all arrays have sizes that are a multiple of a byte.
1917 First subtract the lower bound, if any, in the type of the
1918 index, then convert to sizetype and multiply by the size of
1919 the array element. */
1920 if (! integer_zerop (low_bound
))
1921 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1924 off_tree
= size_binop (PLUS_EXPR
,
1925 size_binop (MULT_EXPR
,
1926 fold_convert (sizetype
,
1930 t2
= TREE_OPERAND (t2
, 0);
1932 while (TREE_CODE (t2
) == ARRAY_REF
);
1935 || TREE_CODE (t2
) == COMPONENT_REF
)
1938 attrs
.offset_known_p
= false;
1939 if (tree_fits_uhwi_p (off_tree
))
1941 attrs
.offset_known_p
= true;
1942 attrs
.offset
= tree_to_uhwi (off_tree
);
1943 apply_bitpos
= bitpos
;
1946 /* Else do not record a MEM_EXPR. */
1949 /* If this is an indirect reference, record it. */
1950 else if (TREE_CODE (t
) == MEM_REF
1951 || TREE_CODE (t
) == TARGET_MEM_REF
)
1954 attrs
.offset_known_p
= true;
1956 apply_bitpos
= bitpos
;
1959 /* Compute the alignment. */
1960 unsigned int obj_align
;
1961 unsigned HOST_WIDE_INT obj_bitpos
;
1962 get_object_alignment_1 (t
, &obj_align
, &obj_bitpos
);
1963 obj_bitpos
= (obj_bitpos
- bitpos
) & (obj_align
- 1);
1964 if (obj_bitpos
!= 0)
1965 obj_align
= least_bit_hwi (obj_bitpos
);
1966 attrs
.align
= MAX (attrs
.align
, obj_align
);
1969 if (tree_fits_uhwi_p (new_size
))
1971 attrs
.size_known_p
= true;
1972 attrs
.size
= tree_to_uhwi (new_size
);
1975 /* If we modified OFFSET based on T, then subtract the outstanding
1976 bit position offset. Similarly, increase the size of the accessed
1977 object to contain the negative offset. */
1980 gcc_assert (attrs
.offset_known_p
);
1981 attrs
.offset
-= apply_bitpos
/ BITS_PER_UNIT
;
1982 if (attrs
.size_known_p
)
1983 attrs
.size
+= apply_bitpos
/ BITS_PER_UNIT
;
1986 /* Now set the attributes we computed above. */
1987 attrs
.addrspace
= as
;
1988 set_mem_attrs (ref
, &attrs
);
1992 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1994 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1997 /* Set the alias set of MEM to SET. */
2000 set_mem_alias_set (rtx mem
, alias_set_type set
)
2002 struct mem_attrs attrs
;
2004 /* If the new and old alias sets don't conflict, something is wrong. */
2005 gcc_checking_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
2006 attrs
= *get_mem_attrs (mem
);
2008 set_mem_attrs (mem
, &attrs
);
2011 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2014 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
2016 struct mem_attrs attrs
;
2018 attrs
= *get_mem_attrs (mem
);
2019 attrs
.addrspace
= addrspace
;
2020 set_mem_attrs (mem
, &attrs
);
2023 /* Set the alignment of MEM to ALIGN bits. */
2026 set_mem_align (rtx mem
, unsigned int align
)
2028 struct mem_attrs attrs
;
2030 attrs
= *get_mem_attrs (mem
);
2031 attrs
.align
= align
;
2032 set_mem_attrs (mem
, &attrs
);
2035 /* Set the expr for MEM to EXPR. */
2038 set_mem_expr (rtx mem
, tree expr
)
2040 struct mem_attrs attrs
;
2042 attrs
= *get_mem_attrs (mem
);
2044 set_mem_attrs (mem
, &attrs
);
2047 /* Set the offset of MEM to OFFSET. */
2050 set_mem_offset (rtx mem
, HOST_WIDE_INT offset
)
2052 struct mem_attrs attrs
;
2054 attrs
= *get_mem_attrs (mem
);
2055 attrs
.offset_known_p
= true;
2056 attrs
.offset
= offset
;
2057 set_mem_attrs (mem
, &attrs
);
2060 /* Clear the offset of MEM. */
2063 clear_mem_offset (rtx mem
)
2065 struct mem_attrs attrs
;
2067 attrs
= *get_mem_attrs (mem
);
2068 attrs
.offset_known_p
= false;
2069 set_mem_attrs (mem
, &attrs
);
2072 /* Set the size of MEM to SIZE. */
2075 set_mem_size (rtx mem
, HOST_WIDE_INT size
)
2077 struct mem_attrs attrs
;
2079 attrs
= *get_mem_attrs (mem
);
2080 attrs
.size_known_p
= true;
2082 set_mem_attrs (mem
, &attrs
);
2085 /* Clear the size of MEM. */
2088 clear_mem_size (rtx mem
)
2090 struct mem_attrs attrs
;
2092 attrs
= *get_mem_attrs (mem
);
2093 attrs
.size_known_p
= false;
2094 set_mem_attrs (mem
, &attrs
);
2097 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2098 and its address changed to ADDR. (VOIDmode means don't change the mode.
2099 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2100 returned memory location is required to be valid. INPLACE is true if any
2101 changes can be made directly to MEMREF or false if MEMREF must be treated
2104 The memory attributes are not changed. */
2107 change_address_1 (rtx memref
, machine_mode mode
, rtx addr
, int validate
,
2113 gcc_assert (MEM_P (memref
));
2114 as
= MEM_ADDR_SPACE (memref
);
2115 if (mode
== VOIDmode
)
2116 mode
= GET_MODE (memref
);
2118 addr
= XEXP (memref
, 0);
2119 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
2120 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
2123 /* Don't validate address for LRA. LRA can make the address valid
2124 by itself in most efficient way. */
2125 if (validate
&& !lra_in_progress
)
2127 if (reload_in_progress
|| reload_completed
)
2128 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
2130 addr
= memory_address_addr_space (mode
, addr
, as
);
2133 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
2138 XEXP (memref
, 0) = addr
;
2142 new_rtx
= gen_rtx_MEM (mode
, addr
);
2143 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2147 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2148 way we are changing MEMREF, so we only preserve the alias set. */
2151 change_address (rtx memref
, machine_mode mode
, rtx addr
)
2153 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1, false);
2154 machine_mode mmode
= GET_MODE (new_rtx
);
2155 struct mem_attrs attrs
, *defattrs
;
2157 attrs
= *get_mem_attrs (memref
);
2158 defattrs
= mode_mem_attrs
[(int) mmode
];
2159 attrs
.expr
= NULL_TREE
;
2160 attrs
.offset_known_p
= false;
2161 attrs
.size_known_p
= defattrs
->size_known_p
;
2162 attrs
.size
= defattrs
->size
;
2163 attrs
.align
= defattrs
->align
;
2165 /* If there are no changes, just return the original memory reference. */
2166 if (new_rtx
== memref
)
2168 if (mem_attrs_eq_p (get_mem_attrs (memref
), &attrs
))
2171 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
2172 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2175 set_mem_attrs (new_rtx
, &attrs
);
2179 /* Return a memory reference like MEMREF, but with its mode changed
2180 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2181 nonzero, the memory address is forced to be valid.
2182 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2183 and the caller is responsible for adjusting MEMREF base register.
2184 If ADJUST_OBJECT is zero, the underlying object associated with the
2185 memory reference is left unchanged and the caller is responsible for
2186 dealing with it. Otherwise, if the new memory reference is outside
2187 the underlying object, even partially, then the object is dropped.
2188 SIZE, if nonzero, is the size of an access in cases where MODE
2189 has no inherent size. */
2192 adjust_address_1 (rtx memref
, machine_mode mode
, HOST_WIDE_INT offset
,
2193 int validate
, int adjust_address
, int adjust_object
,
2196 rtx addr
= XEXP (memref
, 0);
2198 machine_mode address_mode
;
2200 struct mem_attrs attrs
= *get_mem_attrs (memref
), *defattrs
;
2201 unsigned HOST_WIDE_INT max_align
;
2202 #ifdef POINTERS_EXTEND_UNSIGNED
2203 machine_mode pointer_mode
2204 = targetm
.addr_space
.pointer_mode (attrs
.addrspace
);
2207 /* VOIDmode means no mode change for change_address_1. */
2208 if (mode
== VOIDmode
)
2209 mode
= GET_MODE (memref
);
2211 /* Take the size of non-BLKmode accesses from the mode. */
2212 defattrs
= mode_mem_attrs
[(int) mode
];
2213 if (defattrs
->size_known_p
)
2214 size
= defattrs
->size
;
2216 /* If there are no changes, just return the original memory reference. */
2217 if (mode
== GET_MODE (memref
) && !offset
2218 && (size
== 0 || (attrs
.size_known_p
&& attrs
.size
== size
))
2219 && (!validate
|| memory_address_addr_space_p (mode
, addr
,
2223 /* ??? Prefer to create garbage instead of creating shared rtl.
2224 This may happen even if offset is nonzero -- consider
2225 (plus (plus reg reg) const_int) -- so do this always. */
2226 addr
= copy_rtx (addr
);
2228 /* Convert a possibly large offset to a signed value within the
2229 range of the target address space. */
2230 address_mode
= get_address_mode (memref
);
2231 pbits
= GET_MODE_BITSIZE (address_mode
);
2232 if (HOST_BITS_PER_WIDE_INT
> pbits
)
2234 int shift
= HOST_BITS_PER_WIDE_INT
- pbits
;
2235 offset
= (((HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) offset
<< shift
))
2241 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2242 object, we can merge it into the LO_SUM. */
2243 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2245 && (unsigned HOST_WIDE_INT
) offset
2246 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2247 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2248 plus_constant (address_mode
,
2249 XEXP (addr
, 1), offset
));
2250 #ifdef POINTERS_EXTEND_UNSIGNED
2251 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2252 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2253 the fact that pointers are not allowed to overflow. */
2254 else if (POINTERS_EXTEND_UNSIGNED
> 0
2255 && GET_CODE (addr
) == ZERO_EXTEND
2256 && GET_MODE (XEXP (addr
, 0)) == pointer_mode
2257 && trunc_int_for_mode (offset
, pointer_mode
) == offset
)
2258 addr
= gen_rtx_ZERO_EXTEND (address_mode
,
2259 plus_constant (pointer_mode
,
2260 XEXP (addr
, 0), offset
));
2263 addr
= plus_constant (address_mode
, addr
, offset
);
2266 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
, false);
2268 /* If the address is a REG, change_address_1 rightfully returns memref,
2269 but this would destroy memref's MEM_ATTRS. */
2270 if (new_rtx
== memref
&& offset
!= 0)
2271 new_rtx
= copy_rtx (new_rtx
);
2273 /* Conservatively drop the object if we don't know where we start from. */
2274 if (adjust_object
&& (!attrs
.offset_known_p
|| !attrs
.size_known_p
))
2276 attrs
.expr
= NULL_TREE
;
2280 /* Compute the new values of the memory attributes due to this adjustment.
2281 We add the offsets and update the alignment. */
2282 if (attrs
.offset_known_p
)
2284 attrs
.offset
+= offset
;
2286 /* Drop the object if the new left end is not within its bounds. */
2287 if (adjust_object
&& attrs
.offset
< 0)
2289 attrs
.expr
= NULL_TREE
;
2294 /* Compute the new alignment by taking the MIN of the alignment and the
2295 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2299 max_align
= least_bit_hwi (offset
) * BITS_PER_UNIT
;
2300 attrs
.align
= MIN (attrs
.align
, max_align
);
2305 /* Drop the object if the new right end is not within its bounds. */
2306 if (adjust_object
&& (offset
+ size
) > attrs
.size
)
2308 attrs
.expr
= NULL_TREE
;
2311 attrs
.size_known_p
= true;
2314 else if (attrs
.size_known_p
)
2316 gcc_assert (!adjust_object
);
2317 attrs
.size
-= offset
;
2318 /* ??? The store_by_pieces machinery generates negative sizes,
2319 so don't assert for that here. */
2322 set_mem_attrs (new_rtx
, &attrs
);
2327 /* Return a memory reference like MEMREF, but with its mode changed
2328 to MODE and its address changed to ADDR, which is assumed to be
2329 MEMREF offset by OFFSET bytes. If VALIDATE is
2330 nonzero, the memory address is forced to be valid. */
2333 adjust_automodify_address_1 (rtx memref
, machine_mode mode
, rtx addr
,
2334 HOST_WIDE_INT offset
, int validate
)
2336 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
, false);
2337 return adjust_address_1 (memref
, mode
, offset
, validate
, 0, 0, 0);
2340 /* Return a memory reference like MEMREF, but whose address is changed by
2341 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2342 known to be in OFFSET (possibly 1). */
2345 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2347 rtx new_rtx
, addr
= XEXP (memref
, 0);
2348 machine_mode address_mode
;
2349 struct mem_attrs attrs
, *defattrs
;
2351 attrs
= *get_mem_attrs (memref
);
2352 address_mode
= get_address_mode (memref
);
2353 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2355 /* At this point we don't know _why_ the address is invalid. It
2356 could have secondary memory references, multiplies or anything.
2358 However, if we did go and rearrange things, we can wind up not
2359 being able to recognize the magic around pic_offset_table_rtx.
2360 This stuff is fragile, and is yet another example of why it is
2361 bad to expose PIC machinery too early. */
2362 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
,
2364 && GET_CODE (addr
) == PLUS
2365 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2367 addr
= force_reg (GET_MODE (addr
), addr
);
2368 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2371 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2372 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1, false);
2374 /* If there are no changes, just return the original memory reference. */
2375 if (new_rtx
== memref
)
2378 /* Update the alignment to reflect the offset. Reset the offset, which
2380 defattrs
= mode_mem_attrs
[(int) GET_MODE (new_rtx
)];
2381 attrs
.offset_known_p
= false;
2382 attrs
.size_known_p
= defattrs
->size_known_p
;
2383 attrs
.size
= defattrs
->size
;
2384 attrs
.align
= MIN (attrs
.align
, pow2
* BITS_PER_UNIT
);
2385 set_mem_attrs (new_rtx
, &attrs
);
2389 /* Return a memory reference like MEMREF, but with its address changed to
2390 ADDR. The caller is asserting that the actual piece of memory pointed
2391 to is the same, just the form of the address is being changed, such as
2392 by putting something into a register. INPLACE is true if any changes
2393 can be made directly to MEMREF or false if MEMREF must be treated as
2397 replace_equiv_address (rtx memref
, rtx addr
, bool inplace
)
2399 /* change_address_1 copies the memory attribute structure without change
2400 and that's exactly what we want here. */
2401 update_temp_slot_address (XEXP (memref
, 0), addr
);
2402 return change_address_1 (memref
, VOIDmode
, addr
, 1, inplace
);
2405 /* Likewise, but the reference is not required to be valid. */
2408 replace_equiv_address_nv (rtx memref
, rtx addr
, bool inplace
)
2410 return change_address_1 (memref
, VOIDmode
, addr
, 0, inplace
);
2413 /* Return a memory reference like MEMREF, but with its mode widened to
2414 MODE and offset by OFFSET. This would be used by targets that e.g.
2415 cannot issue QImode memory operations and have to use SImode memory
2416 operations plus masking logic. */
2419 widen_memory_access (rtx memref
, machine_mode mode
, HOST_WIDE_INT offset
)
2421 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1, 0, 0);
2422 struct mem_attrs attrs
;
2423 unsigned int size
= GET_MODE_SIZE (mode
);
2425 /* If there are no changes, just return the original memory reference. */
2426 if (new_rtx
== memref
)
2429 attrs
= *get_mem_attrs (new_rtx
);
2431 /* If we don't know what offset we were at within the expression, then
2432 we can't know if we've overstepped the bounds. */
2433 if (! attrs
.offset_known_p
)
2434 attrs
.expr
= NULL_TREE
;
2438 if (TREE_CODE (attrs
.expr
) == COMPONENT_REF
)
2440 tree field
= TREE_OPERAND (attrs
.expr
, 1);
2441 tree offset
= component_ref_field_offset (attrs
.expr
);
2443 if (! DECL_SIZE_UNIT (field
))
2445 attrs
.expr
= NULL_TREE
;
2449 /* Is the field at least as large as the access? If so, ok,
2450 otherwise strip back to the containing structure. */
2451 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2452 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2453 && attrs
.offset
>= 0)
2456 if (! tree_fits_uhwi_p (offset
))
2458 attrs
.expr
= NULL_TREE
;
2462 attrs
.expr
= TREE_OPERAND (attrs
.expr
, 0);
2463 attrs
.offset
+= tree_to_uhwi (offset
);
2464 attrs
.offset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
2467 /* Similarly for the decl. */
2468 else if (DECL_P (attrs
.expr
)
2469 && DECL_SIZE_UNIT (attrs
.expr
)
2470 && TREE_CODE (DECL_SIZE_UNIT (attrs
.expr
)) == INTEGER_CST
2471 && compare_tree_int (DECL_SIZE_UNIT (attrs
.expr
), size
) >= 0
2472 && (! attrs
.offset_known_p
|| attrs
.offset
>= 0))
2476 /* The widened memory access overflows the expression, which means
2477 that it could alias another expression. Zap it. */
2478 attrs
.expr
= NULL_TREE
;
2484 attrs
.offset_known_p
= false;
2486 /* The widened memory may alias other stuff, so zap the alias set. */
2487 /* ??? Maybe use get_alias_set on any remaining expression. */
2489 attrs
.size_known_p
= true;
2491 set_mem_attrs (new_rtx
, &attrs
);
2495 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2496 static GTY(()) tree spill_slot_decl
;
2499 get_spill_slot_decl (bool force_build_p
)
2501 tree d
= spill_slot_decl
;
2503 struct mem_attrs attrs
;
2505 if (d
|| !force_build_p
)
2508 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2509 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2510 DECL_ARTIFICIAL (d
) = 1;
2511 DECL_IGNORED_P (d
) = 1;
2513 spill_slot_decl
= d
;
2515 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2516 MEM_NOTRAP_P (rd
) = 1;
2517 attrs
= *mode_mem_attrs
[(int) BLKmode
];
2518 attrs
.alias
= new_alias_set ();
2520 set_mem_attrs (rd
, &attrs
);
2521 SET_DECL_RTL (d
, rd
);
2526 /* Given MEM, a result from assign_stack_local, fill in the memory
2527 attributes as appropriate for a register allocator spill slot.
2528 These slots are not aliasable by other memory. We arrange for
2529 them all to use a single MEM_EXPR, so that the aliasing code can
2530 work properly in the case of shared spill slots. */
2533 set_mem_attrs_for_spill (rtx mem
)
2535 struct mem_attrs attrs
;
2538 attrs
= *get_mem_attrs (mem
);
2539 attrs
.expr
= get_spill_slot_decl (true);
2540 attrs
.alias
= MEM_ALIAS_SET (DECL_RTL (attrs
.expr
));
2541 attrs
.addrspace
= ADDR_SPACE_GENERIC
;
2543 /* We expect the incoming memory to be of the form:
2544 (mem:MODE (plus (reg sfp) (const_int offset)))
2545 with perhaps the plus missing for offset = 0. */
2546 addr
= XEXP (mem
, 0);
2547 attrs
.offset_known_p
= true;
2549 if (GET_CODE (addr
) == PLUS
2550 && CONST_INT_P (XEXP (addr
, 1)))
2551 attrs
.offset
= INTVAL (XEXP (addr
, 1));
2553 set_mem_attrs (mem
, &attrs
);
2554 MEM_NOTRAP_P (mem
) = 1;
2557 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2560 gen_label_rtx (void)
2562 return as_a
<rtx_code_label
*> (
2563 gen_rtx_CODE_LABEL (VOIDmode
, NULL_RTX
, NULL_RTX
,
2564 NULL
, label_num
++, NULL
));
2567 /* For procedure integration. */
2569 /* Install new pointers to the first and last insns in the chain.
2570 Also, set cur_insn_uid to one higher than the last in use.
2571 Used for an inline-procedure after copying the insn chain. */
2574 set_new_first_and_last_insn (rtx_insn
*first
, rtx_insn
*last
)
2578 set_first_insn (first
);
2579 set_last_insn (last
);
2582 if (MIN_NONDEBUG_INSN_UID
|| MAY_HAVE_DEBUG_INSNS
)
2584 int debug_count
= 0;
2586 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
- 1;
2587 cur_debug_insn_uid
= 0;
2589 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2590 if (INSN_UID (insn
) < MIN_NONDEBUG_INSN_UID
)
2591 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2594 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2595 if (DEBUG_INSN_P (insn
))
2600 cur_debug_insn_uid
= MIN_NONDEBUG_INSN_UID
+ debug_count
;
2602 cur_debug_insn_uid
++;
2605 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2606 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2611 /* Go through all the RTL insn bodies and copy any invalid shared
2612 structure. This routine should only be called once. */
2615 unshare_all_rtl_1 (rtx_insn
*insn
)
2617 /* Unshare just about everything else. */
2618 unshare_all_rtl_in_chain (insn
);
2620 /* Make sure the addresses of stack slots found outside the insn chain
2621 (such as, in DECL_RTL of a variable) are not shared
2622 with the insn chain.
2624 This special care is necessary when the stack slot MEM does not
2625 actually appear in the insn chain. If it does appear, its address
2626 is unshared from all else at that point. */
2629 FOR_EACH_VEC_SAFE_ELT (stack_slot_list
, i
, temp
)
2630 (*stack_slot_list
)[i
] = copy_rtx_if_shared (temp
);
2633 /* Go through all the RTL insn bodies and copy any invalid shared
2634 structure, again. This is a fairly expensive thing to do so it
2635 should be done sparingly. */
2638 unshare_all_rtl_again (rtx_insn
*insn
)
2643 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2646 reset_used_flags (PATTERN (p
));
2647 reset_used_flags (REG_NOTES (p
));
2649 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2652 /* Make sure that virtual stack slots are not shared. */
2653 set_used_decls (DECL_INITIAL (cfun
->decl
));
2655 /* Make sure that virtual parameters are not shared. */
2656 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2657 set_used_flags (DECL_RTL (decl
));
2661 FOR_EACH_VEC_SAFE_ELT (stack_slot_list
, i
, temp
)
2662 reset_used_flags (temp
);
2664 unshare_all_rtl_1 (insn
);
2668 unshare_all_rtl (void)
2670 unshare_all_rtl_1 (get_insns ());
2675 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2676 Recursively does the same for subexpressions. */
2679 verify_rtx_sharing (rtx orig
, rtx insn
)
2684 const char *format_ptr
;
2689 code
= GET_CODE (x
);
2691 /* These types may be freely shared. */
2707 /* SCRATCH must be shared because they represent distinct values. */
2710 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2711 clobbers or clobbers of hard registers that originated as pseudos.
2712 This is needed to allow safe register renaming. */
2713 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2714 && ORIGINAL_REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 0)))
2719 if (shared_const_p (orig
))
2724 /* A MEM is allowed to be shared if its address is constant. */
2725 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2726 || reload_completed
|| reload_in_progress
)
2735 /* This rtx may not be shared. If it has already been seen,
2736 replace it with a copy of itself. */
2737 if (flag_checking
&& RTX_FLAG (x
, used
))
2739 error ("invalid rtl sharing found in the insn");
2741 error ("shared rtx");
2743 internal_error ("internal consistency failure");
2745 gcc_assert (!RTX_FLAG (x
, used
));
2747 RTX_FLAG (x
, used
) = 1;
2749 /* Now scan the subexpressions recursively. */
2751 format_ptr
= GET_RTX_FORMAT (code
);
2753 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2755 switch (*format_ptr
++)
2758 verify_rtx_sharing (XEXP (x
, i
), insn
);
2762 if (XVEC (x
, i
) != NULL
)
2765 int len
= XVECLEN (x
, i
);
2767 for (j
= 0; j
< len
; j
++)
2769 /* We allow sharing of ASM_OPERANDS inside single
2771 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2772 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2774 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2776 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2785 /* Reset used-flags for INSN. */
2788 reset_insn_used_flags (rtx insn
)
2790 gcc_assert (INSN_P (insn
));
2791 reset_used_flags (PATTERN (insn
));
2792 reset_used_flags (REG_NOTES (insn
));
2794 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn
));
2797 /* Go through all the RTL insn bodies and clear all the USED bits. */
2800 reset_all_used_flags (void)
2804 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2807 rtx pat
= PATTERN (p
);
2808 if (GET_CODE (pat
) != SEQUENCE
)
2809 reset_insn_used_flags (p
);
2812 gcc_assert (REG_NOTES (p
) == NULL
);
2813 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2815 rtx insn
= XVECEXP (pat
, 0, i
);
2817 reset_insn_used_flags (insn
);
2823 /* Verify sharing in INSN. */
2826 verify_insn_sharing (rtx insn
)
2828 gcc_assert (INSN_P (insn
));
2829 reset_used_flags (PATTERN (insn
));
2830 reset_used_flags (REG_NOTES (insn
));
2832 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn
));
2835 /* Go through all the RTL insn bodies and check that there is no unexpected
2836 sharing in between the subexpressions. */
2839 verify_rtl_sharing (void)
2843 timevar_push (TV_VERIFY_RTL_SHARING
);
2845 reset_all_used_flags ();
2847 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2850 rtx pat
= PATTERN (p
);
2851 if (GET_CODE (pat
) != SEQUENCE
)
2852 verify_insn_sharing (p
);
2854 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2856 rtx insn
= XVECEXP (pat
, 0, i
);
2858 verify_insn_sharing (insn
);
2862 reset_all_used_flags ();
2864 timevar_pop (TV_VERIFY_RTL_SHARING
);
2867 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2868 Assumes the mark bits are cleared at entry. */
2871 unshare_all_rtl_in_chain (rtx_insn
*insn
)
2873 for (; insn
; insn
= NEXT_INSN (insn
))
2876 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2877 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2879 CALL_INSN_FUNCTION_USAGE (insn
)
2880 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn
));
2884 /* Go through all virtual stack slots of a function and mark them as
2885 shared. We never replace the DECL_RTLs themselves with a copy,
2886 but expressions mentioned into a DECL_RTL cannot be shared with
2887 expressions in the instruction stream.
2889 Note that reload may convert pseudo registers into memories in-place.
2890 Pseudo registers are always shared, but MEMs never are. Thus if we
2891 reset the used flags on MEMs in the instruction stream, we must set
2892 them again on MEMs that appear in DECL_RTLs. */
2895 set_used_decls (tree blk
)
2900 for (t
= BLOCK_VARS (blk
); t
; t
= DECL_CHAIN (t
))
2901 if (DECL_RTL_SET_P (t
))
2902 set_used_flags (DECL_RTL (t
));
2904 /* Now process sub-blocks. */
2905 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2909 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2910 Recursively does the same for subexpressions. Uses
2911 copy_rtx_if_shared_1 to reduce stack space. */
2914 copy_rtx_if_shared (rtx orig
)
2916 copy_rtx_if_shared_1 (&orig
);
2920 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2921 use. Recursively does the same for subexpressions. */
2924 copy_rtx_if_shared_1 (rtx
*orig1
)
2930 const char *format_ptr
;
2934 /* Repeat is used to turn tail-recursion into iteration. */
2941 code
= GET_CODE (x
);
2943 /* These types may be freely shared. */
2959 /* SCRATCH must be shared because they represent distinct values. */
2962 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2963 clobbers or clobbers of hard registers that originated as pseudos.
2964 This is needed to allow safe register renaming. */
2965 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2966 && ORIGINAL_REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 0)))
2971 if (shared_const_p (x
))
2981 /* The chain of insns is not being copied. */
2988 /* This rtx may not be shared. If it has already been seen,
2989 replace it with a copy of itself. */
2991 if (RTX_FLAG (x
, used
))
2993 x
= shallow_copy_rtx (x
);
2996 RTX_FLAG (x
, used
) = 1;
2998 /* Now scan the subexpressions recursively.
2999 We can store any replaced subexpressions directly into X
3000 since we know X is not shared! Any vectors in X
3001 must be copied if X was copied. */
3003 format_ptr
= GET_RTX_FORMAT (code
);
3004 length
= GET_RTX_LENGTH (code
);
3007 for (i
= 0; i
< length
; i
++)
3009 switch (*format_ptr
++)
3013 copy_rtx_if_shared_1 (last_ptr
);
3014 last_ptr
= &XEXP (x
, i
);
3018 if (XVEC (x
, i
) != NULL
)
3021 int len
= XVECLEN (x
, i
);
3023 /* Copy the vector iff I copied the rtx and the length
3025 if (copied
&& len
> 0)
3026 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
3028 /* Call recursively on all inside the vector. */
3029 for (j
= 0; j
< len
; j
++)
3032 copy_rtx_if_shared_1 (last_ptr
);
3033 last_ptr
= &XVECEXP (x
, i
, j
);
3048 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3051 mark_used_flags (rtx x
, int flag
)
3055 const char *format_ptr
;
3058 /* Repeat is used to turn tail-recursion into iteration. */
3063 code
= GET_CODE (x
);
3065 /* These types may be freely shared so we needn't do any resetting
3089 /* The chain of insns is not being copied. */
3096 RTX_FLAG (x
, used
) = flag
;
3098 format_ptr
= GET_RTX_FORMAT (code
);
3099 length
= GET_RTX_LENGTH (code
);
3101 for (i
= 0; i
< length
; i
++)
3103 switch (*format_ptr
++)
3111 mark_used_flags (XEXP (x
, i
), flag
);
3115 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3116 mark_used_flags (XVECEXP (x
, i
, j
), flag
);
3122 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3123 to look for shared sub-parts. */
3126 reset_used_flags (rtx x
)
3128 mark_used_flags (x
, 0);
3131 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3132 to look for shared sub-parts. */
3135 set_used_flags (rtx x
)
3137 mark_used_flags (x
, 1);
3140 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3141 Return X or the rtx for the pseudo reg the value of X was copied into.
3142 OTHER must be valid as a SET_DEST. */
3145 make_safe_from (rtx x
, rtx other
)
3148 switch (GET_CODE (other
))
3151 other
= SUBREG_REG (other
);
3153 case STRICT_LOW_PART
:
3156 other
= XEXP (other
, 0);
3165 && GET_CODE (x
) != SUBREG
)
3167 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
3168 || reg_mentioned_p (other
, x
))))
3170 rtx temp
= gen_reg_rtx (GET_MODE (x
));
3171 emit_move_insn (temp
, x
);
3177 /* Emission of insns (adding them to the doubly-linked list). */
3179 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3182 get_last_insn_anywhere (void)
3184 struct sequence_stack
*seq
;
3185 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
3191 /* Return the first nonnote insn emitted in current sequence or current
3192 function. This routine looks inside SEQUENCEs. */
3195 get_first_nonnote_insn (void)
3197 rtx_insn
*insn
= get_insns ();
3202 for (insn
= next_insn (insn
);
3203 insn
&& NOTE_P (insn
);
3204 insn
= next_insn (insn
))
3208 if (NONJUMP_INSN_P (insn
)
3209 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3210 insn
= as_a
<rtx_sequence
*> (PATTERN (insn
))->insn (0);
3217 /* Return the last nonnote insn emitted in current sequence or current
3218 function. This routine looks inside SEQUENCEs. */
3221 get_last_nonnote_insn (void)
3223 rtx_insn
*insn
= get_last_insn ();
3228 for (insn
= previous_insn (insn
);
3229 insn
&& NOTE_P (insn
);
3230 insn
= previous_insn (insn
))
3234 if (NONJUMP_INSN_P (insn
))
3235 if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
3236 insn
= seq
->insn (seq
->len () - 1);
3243 /* Return the number of actual (non-debug) insns emitted in this
3247 get_max_insn_count (void)
3249 int n
= cur_insn_uid
;
3251 /* The table size must be stable across -g, to avoid codegen
3252 differences due to debug insns, and not be affected by
3253 -fmin-insn-uid, to avoid excessive table size and to simplify
3254 debugging of -fcompare-debug failures. */
3255 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3256 n
-= cur_debug_insn_uid
;
3258 n
-= MIN_NONDEBUG_INSN_UID
;
3264 /* Return the next insn. If it is a SEQUENCE, return the first insn
3268 next_insn (rtx_insn
*insn
)
3272 insn
= NEXT_INSN (insn
);
3273 if (insn
&& NONJUMP_INSN_P (insn
)
3274 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3275 insn
= as_a
<rtx_sequence
*> (PATTERN (insn
))->insn (0);
3281 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3285 previous_insn (rtx_insn
*insn
)
3289 insn
= PREV_INSN (insn
);
3290 if (insn
&& NONJUMP_INSN_P (insn
))
3291 if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
3292 insn
= seq
->insn (seq
->len () - 1);
3298 /* Return the next insn after INSN that is not a NOTE. This routine does not
3299 look inside SEQUENCEs. */
3302 next_nonnote_insn (rtx_insn
*insn
)
3306 insn
= NEXT_INSN (insn
);
3307 if (insn
== 0 || !NOTE_P (insn
))
3314 /* Return the next insn after INSN that is not a NOTE, but stop the
3315 search before we enter another basic block. This routine does not
3316 look inside SEQUENCEs. */
3319 next_nonnote_insn_bb (rtx_insn
*insn
)
3323 insn
= NEXT_INSN (insn
);
3324 if (insn
== 0 || !NOTE_P (insn
))
3326 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3333 /* Return the previous insn before INSN that is not a NOTE. This routine does
3334 not look inside SEQUENCEs. */
3337 prev_nonnote_insn (rtx_insn
*insn
)
3341 insn
= PREV_INSN (insn
);
3342 if (insn
== 0 || !NOTE_P (insn
))
3349 /* Return the previous insn before INSN that is not a NOTE, but stop
3350 the search before we enter another basic block. This routine does
3351 not look inside SEQUENCEs. */
3354 prev_nonnote_insn_bb (rtx_insn
*insn
)
3359 insn
= PREV_INSN (insn
);
3360 if (insn
== 0 || !NOTE_P (insn
))
3362 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3369 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3370 routine does not look inside SEQUENCEs. */
3373 next_nondebug_insn (rtx_insn
*insn
)
3377 insn
= NEXT_INSN (insn
);
3378 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3385 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3386 This routine does not look inside SEQUENCEs. */
3389 prev_nondebug_insn (rtx_insn
*insn
)
3393 insn
= PREV_INSN (insn
);
3394 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3401 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3402 This routine does not look inside SEQUENCEs. */
3405 next_nonnote_nondebug_insn (rtx_insn
*insn
)
3409 insn
= NEXT_INSN (insn
);
3410 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3417 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3418 This routine does not look inside SEQUENCEs. */
3421 prev_nonnote_nondebug_insn (rtx_insn
*insn
)
3425 insn
= PREV_INSN (insn
);
3426 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3433 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3434 or 0, if there is none. This routine does not look inside
3438 next_real_insn (rtx uncast_insn
)
3440 rtx_insn
*insn
= safe_as_a
<rtx_insn
*> (uncast_insn
);
3444 insn
= NEXT_INSN (insn
);
3445 if (insn
== 0 || INSN_P (insn
))
3452 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3453 or 0, if there is none. This routine does not look inside
3457 prev_real_insn (rtx_insn
*insn
)
3461 insn
= PREV_INSN (insn
);
3462 if (insn
== 0 || INSN_P (insn
))
3469 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3470 This routine does not look inside SEQUENCEs. */
3473 last_call_insn (void)
3477 for (insn
= get_last_insn ();
3478 insn
&& !CALL_P (insn
);
3479 insn
= PREV_INSN (insn
))
3482 return safe_as_a
<rtx_call_insn
*> (insn
);
3485 /* Find the next insn after INSN that really does something. This routine
3486 does not look inside SEQUENCEs. After reload this also skips over
3487 standalone USE and CLOBBER insn. */
3490 active_insn_p (const rtx_insn
*insn
)
3492 return (CALL_P (insn
) || JUMP_P (insn
)
3493 || JUMP_TABLE_DATA_P (insn
) /* FIXME */
3494 || (NONJUMP_INSN_P (insn
)
3495 && (! reload_completed
3496 || (GET_CODE (PATTERN (insn
)) != USE
3497 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3501 next_active_insn (rtx_insn
*insn
)
3505 insn
= NEXT_INSN (insn
);
3506 if (insn
== 0 || active_insn_p (insn
))
3513 /* Find the last insn before INSN that really does something. This routine
3514 does not look inside SEQUENCEs. After reload this also skips over
3515 standalone USE and CLOBBER insn. */
3518 prev_active_insn (rtx_insn
*insn
)
3522 insn
= PREV_INSN (insn
);
3523 if (insn
== 0 || active_insn_p (insn
))
3530 /* Return the next insn that uses CC0 after INSN, which is assumed to
3531 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3532 applied to the result of this function should yield INSN).
3534 Normally, this is simply the next insn. However, if a REG_CC_USER note
3535 is present, it contains the insn that uses CC0.
3537 Return 0 if we can't find the insn. */
3540 next_cc0_user (rtx_insn
*insn
)
3542 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3545 return safe_as_a
<rtx_insn
*> (XEXP (note
, 0));
3547 insn
= next_nonnote_insn (insn
);
3548 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3549 insn
= as_a
<rtx_sequence
*> (PATTERN (insn
))->insn (0);
3551 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3557 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3558 note, it is the previous insn. */
3561 prev_cc0_setter (rtx_insn
*insn
)
3563 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3566 return safe_as_a
<rtx_insn
*> (XEXP (note
, 0));
3568 insn
= prev_nonnote_insn (insn
);
3569 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3574 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3577 find_auto_inc (const_rtx x
, const_rtx reg
)
3579 subrtx_iterator::array_type array
;
3580 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
3582 const_rtx x
= *iter
;
3583 if (GET_RTX_CLASS (GET_CODE (x
)) == RTX_AUTOINC
3584 && rtx_equal_p (reg
, XEXP (x
, 0)))
3590 /* Increment the label uses for all labels present in rtx. */
3593 mark_label_nuses (rtx x
)
3599 code
= GET_CODE (x
);
3600 if (code
== LABEL_REF
&& LABEL_P (label_ref_label (x
)))
3601 LABEL_NUSES (label_ref_label (x
))++;
3603 fmt
= GET_RTX_FORMAT (code
);
3604 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3607 mark_label_nuses (XEXP (x
, i
));
3608 else if (fmt
[i
] == 'E')
3609 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3610 mark_label_nuses (XVECEXP (x
, i
, j
));
3615 /* Try splitting insns that can be split for better scheduling.
3616 PAT is the pattern which might split.
3617 TRIAL is the insn providing PAT.
3618 LAST is nonzero if we should return the last insn of the sequence produced.
3620 If this routine succeeds in splitting, it returns the first or last
3621 replacement insn depending on the value of LAST. Otherwise, it
3622 returns TRIAL. If the insn to be returned can be split, it will be. */
3625 try_split (rtx pat
, rtx_insn
*trial
, int last
)
3627 rtx_insn
*before
= PREV_INSN (trial
);
3628 rtx_insn
*after
= NEXT_INSN (trial
);
3630 rtx_insn
*seq
, *tem
;
3632 rtx_insn
*insn_last
, *insn
;
3634 rtx_insn
*call_insn
= NULL
;
3636 /* We're not good at redistributing frame information. */
3637 if (RTX_FRAME_RELATED_P (trial
))
3640 if (any_condjump_p (trial
)
3641 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3642 split_branch_probability
= XINT (note
, 0);
3643 probability
= split_branch_probability
;
3645 seq
= split_insns (pat
, trial
);
3647 split_branch_probability
= -1;
3652 /* Avoid infinite loop if any insn of the result matches
3653 the original pattern. */
3657 if (INSN_P (insn_last
)
3658 && rtx_equal_p (PATTERN (insn_last
), pat
))
3660 if (!NEXT_INSN (insn_last
))
3662 insn_last
= NEXT_INSN (insn_last
);
3665 /* We will be adding the new sequence to the function. The splitters
3666 may have introduced invalid RTL sharing, so unshare the sequence now. */
3667 unshare_all_rtl_in_chain (seq
);
3669 /* Mark labels and copy flags. */
3670 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3675 CROSSING_JUMP_P (insn
) = CROSSING_JUMP_P (trial
);
3676 mark_jump_label (PATTERN (insn
), insn
, 0);
3678 if (probability
!= -1
3679 && any_condjump_p (insn
)
3680 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3682 /* We can preserve the REG_BR_PROB notes only if exactly
3683 one jump is created, otherwise the machine description
3684 is responsible for this step using
3685 split_branch_probability variable. */
3686 gcc_assert (njumps
== 1);
3687 add_int_reg_note (insn
, REG_BR_PROB
, probability
);
3692 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3693 in SEQ and copy any additional information across. */
3696 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3702 gcc_assert (call_insn
== NULL_RTX
);
3705 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3706 target may have explicitly specified. */
3707 p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3710 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3712 /* If the old call was a sibling call, the new one must
3714 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3716 /* If the new call is the last instruction in the sequence,
3717 it will effectively replace the old call in-situ. Otherwise
3718 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3719 so that it comes immediately after the new call. */
3720 if (NEXT_INSN (insn
))
3721 for (next
= NEXT_INSN (trial
);
3722 next
&& NOTE_P (next
);
3723 next
= NEXT_INSN (next
))
3724 if (NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
3727 add_insn_after (next
, insn
, NULL
);
3733 /* Copy notes, particularly those related to the CFG. */
3734 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3736 switch (REG_NOTE_KIND (note
))
3739 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3745 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3748 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3752 case REG_NON_LOCAL_GOTO
:
3753 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3756 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3764 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3766 rtx reg
= XEXP (note
, 0);
3767 if (!FIND_REG_INC_NOTE (insn
, reg
)
3768 && find_auto_inc (PATTERN (insn
), reg
))
3769 add_reg_note (insn
, REG_INC
, reg
);
3774 fixup_args_size_notes (NULL
, insn_last
, INTVAL (XEXP (note
, 0)));
3778 gcc_assert (call_insn
!= NULL_RTX
);
3779 add_reg_note (call_insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3787 /* If there are LABELS inside the split insns increment the
3788 usage count so we don't delete the label. */
3792 while (insn
!= NULL_RTX
)
3794 /* JUMP_P insns have already been "marked" above. */
3795 if (NONJUMP_INSN_P (insn
))
3796 mark_label_nuses (PATTERN (insn
));
3798 insn
= PREV_INSN (insn
);
3802 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATION (trial
));
3804 delete_insn (trial
);
3806 /* Recursively call try_split for each new insn created; by the
3807 time control returns here that insn will be fully split, so
3808 set LAST and continue from the insn after the one returned.
3809 We can't use next_active_insn here since AFTER may be a note.
3810 Ignore deleted insns, which can be occur if not optimizing. */
3811 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3812 if (! tem
->deleted () && INSN_P (tem
))
3813 tem
= try_split (PATTERN (tem
), tem
, 1);
3815 /* Return either the first or the last insn, depending on which was
3818 ? (after
? PREV_INSN (after
) : get_last_insn ())
3819 : NEXT_INSN (before
);
3822 /* Make and return an INSN rtx, initializing all its slots.
3823 Store PATTERN in the pattern slots. */
3826 make_insn_raw (rtx pattern
)
3830 insn
= as_a
<rtx_insn
*> (rtx_alloc (INSN
));
3832 INSN_UID (insn
) = cur_insn_uid
++;
3833 PATTERN (insn
) = pattern
;
3834 INSN_CODE (insn
) = -1;
3835 REG_NOTES (insn
) = NULL
;
3836 INSN_LOCATION (insn
) = curr_insn_location ();
3837 BLOCK_FOR_INSN (insn
) = NULL
;
3839 #ifdef ENABLE_RTL_CHECKING
3842 && (returnjump_p (insn
)
3843 || (GET_CODE (insn
) == SET
3844 && SET_DEST (insn
) == pc_rtx
)))
3846 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3854 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3857 make_debug_insn_raw (rtx pattern
)
3859 rtx_debug_insn
*insn
;
3861 insn
= as_a
<rtx_debug_insn
*> (rtx_alloc (DEBUG_INSN
));
3862 INSN_UID (insn
) = cur_debug_insn_uid
++;
3863 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3864 INSN_UID (insn
) = cur_insn_uid
++;
3866 PATTERN (insn
) = pattern
;
3867 INSN_CODE (insn
) = -1;
3868 REG_NOTES (insn
) = NULL
;
3869 INSN_LOCATION (insn
) = curr_insn_location ();
3870 BLOCK_FOR_INSN (insn
) = NULL
;
3875 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3878 make_jump_insn_raw (rtx pattern
)
3880 rtx_jump_insn
*insn
;
3882 insn
= as_a
<rtx_jump_insn
*> (rtx_alloc (JUMP_INSN
));
3883 INSN_UID (insn
) = cur_insn_uid
++;
3885 PATTERN (insn
) = pattern
;
3886 INSN_CODE (insn
) = -1;
3887 REG_NOTES (insn
) = NULL
;
3888 JUMP_LABEL (insn
) = NULL
;
3889 INSN_LOCATION (insn
) = curr_insn_location ();
3890 BLOCK_FOR_INSN (insn
) = NULL
;
3895 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3898 make_call_insn_raw (rtx pattern
)
3900 rtx_call_insn
*insn
;
3902 insn
= as_a
<rtx_call_insn
*> (rtx_alloc (CALL_INSN
));
3903 INSN_UID (insn
) = cur_insn_uid
++;
3905 PATTERN (insn
) = pattern
;
3906 INSN_CODE (insn
) = -1;
3907 REG_NOTES (insn
) = NULL
;
3908 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3909 INSN_LOCATION (insn
) = curr_insn_location ();
3910 BLOCK_FOR_INSN (insn
) = NULL
;
3915 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3918 make_note_raw (enum insn_note subtype
)
3920 /* Some notes are never created this way at all. These notes are
3921 only created by patching out insns. */
3922 gcc_assert (subtype
!= NOTE_INSN_DELETED_LABEL
3923 && subtype
!= NOTE_INSN_DELETED_DEBUG_LABEL
);
3925 rtx_note
*note
= as_a
<rtx_note
*> (rtx_alloc (NOTE
));
3926 INSN_UID (note
) = cur_insn_uid
++;
3927 NOTE_KIND (note
) = subtype
;
3928 BLOCK_FOR_INSN (note
) = NULL
;
3929 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
3933 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3934 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3935 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3938 link_insn_into_chain (rtx_insn
*insn
, rtx_insn
*prev
, rtx_insn
*next
)
3940 SET_PREV_INSN (insn
) = prev
;
3941 SET_NEXT_INSN (insn
) = next
;
3944 SET_NEXT_INSN (prev
) = insn
;
3945 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3947 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (prev
));
3948 SET_NEXT_INSN (sequence
->insn (sequence
->len () - 1)) = insn
;
3953 SET_PREV_INSN (next
) = insn
;
3954 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3956 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (next
));
3957 SET_PREV_INSN (sequence
->insn (0)) = insn
;
3961 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3963 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (insn
));
3964 SET_PREV_INSN (sequence
->insn (0)) = prev
;
3965 SET_NEXT_INSN (sequence
->insn (sequence
->len () - 1)) = next
;
3969 /* Add INSN to the end of the doubly-linked list.
3970 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3973 add_insn (rtx_insn
*insn
)
3975 rtx_insn
*prev
= get_last_insn ();
3976 link_insn_into_chain (insn
, prev
, NULL
);
3977 if (NULL
== get_insns ())
3978 set_first_insn (insn
);
3979 set_last_insn (insn
);
3982 /* Add INSN into the doubly-linked list after insn AFTER. */
3985 add_insn_after_nobb (rtx_insn
*insn
, rtx_insn
*after
)
3987 rtx_insn
*next
= NEXT_INSN (after
);
3989 gcc_assert (!optimize
|| !after
->deleted ());
3991 link_insn_into_chain (insn
, after
, next
);
3995 struct sequence_stack
*seq
;
3997 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
3998 if (after
== seq
->last
)
4006 /* Add INSN into the doubly-linked list before insn BEFORE. */
4009 add_insn_before_nobb (rtx_insn
*insn
, rtx_insn
*before
)
4011 rtx_insn
*prev
= PREV_INSN (before
);
4013 gcc_assert (!optimize
|| !before
->deleted ());
4015 link_insn_into_chain (insn
, prev
, before
);
4019 struct sequence_stack
*seq
;
4021 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
4022 if (before
== seq
->first
)
4032 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4033 If BB is NULL, an attempt is made to infer the bb from before.
4035 This and the next function should be the only functions called
4036 to insert an insn once delay slots have been filled since only
4037 they know how to update a SEQUENCE. */
4040 add_insn_after (rtx uncast_insn
, rtx uncast_after
, basic_block bb
)
4042 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
4043 rtx_insn
*after
= as_a
<rtx_insn
*> (uncast_after
);
4044 add_insn_after_nobb (insn
, after
);
4045 if (!BARRIER_P (after
)
4046 && !BARRIER_P (insn
)
4047 && (bb
= BLOCK_FOR_INSN (after
)))
4049 set_block_for_insn (insn
, bb
);
4051 df_insn_rescan (insn
);
4052 /* Should not happen as first in the BB is always
4053 either NOTE or LABEL. */
4054 if (BB_END (bb
) == after
4055 /* Avoid clobbering of structure when creating new BB. */
4056 && !BARRIER_P (insn
)
4057 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
4062 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4063 If BB is NULL, an attempt is made to infer the bb from before.
4065 This and the previous function should be the only functions called
4066 to insert an insn once delay slots have been filled since only
4067 they know how to update a SEQUENCE. */
4070 add_insn_before (rtx uncast_insn
, rtx uncast_before
, basic_block bb
)
4072 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
4073 rtx_insn
*before
= as_a
<rtx_insn
*> (uncast_before
);
4074 add_insn_before_nobb (insn
, before
);
4077 && !BARRIER_P (before
)
4078 && !BARRIER_P (insn
))
4079 bb
= BLOCK_FOR_INSN (before
);
4083 set_block_for_insn (insn
, bb
);
4085 df_insn_rescan (insn
);
4086 /* Should not happen as first in the BB is always either NOTE or
4088 gcc_assert (BB_HEAD (bb
) != insn
4089 /* Avoid clobbering of structure when creating new BB. */
4091 || NOTE_INSN_BASIC_BLOCK_P (insn
));
4095 /* Replace insn with an deleted instruction note. */
4098 set_insn_deleted (rtx insn
)
4101 df_insn_delete (as_a
<rtx_insn
*> (insn
));
4102 PUT_CODE (insn
, NOTE
);
4103 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
4107 /* Unlink INSN from the insn chain.
4109 This function knows how to handle sequences.
4111 This function does not invalidate data flow information associated with
4112 INSN (i.e. does not call df_insn_delete). That makes this function
4113 usable for only disconnecting an insn from the chain, and re-emit it
4116 To later insert INSN elsewhere in the insn chain via add_insn and
4117 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4118 the caller. Nullifying them here breaks many insn chain walks.
4120 To really delete an insn and related DF information, use delete_insn. */
4123 remove_insn (rtx uncast_insn
)
4125 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
4126 rtx_insn
*next
= NEXT_INSN (insn
);
4127 rtx_insn
*prev
= PREV_INSN (insn
);
4132 SET_NEXT_INSN (prev
) = next
;
4133 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
4135 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (prev
));
4136 SET_NEXT_INSN (sequence
->insn (sequence
->len () - 1)) = next
;
4141 struct sequence_stack
*seq
;
4143 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
4144 if (insn
== seq
->first
)
4155 SET_PREV_INSN (next
) = prev
;
4156 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
4158 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (next
));
4159 SET_PREV_INSN (sequence
->insn (0)) = prev
;
4164 struct sequence_stack
*seq
;
4166 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
4167 if (insn
== seq
->last
)
4176 /* Fix up basic block boundaries, if necessary. */
4177 if (!BARRIER_P (insn
)
4178 && (bb
= BLOCK_FOR_INSN (insn
)))
4180 if (BB_HEAD (bb
) == insn
)
4182 /* Never ever delete the basic block note without deleting whole
4184 gcc_assert (!NOTE_P (insn
));
4185 BB_HEAD (bb
) = next
;
4187 if (BB_END (bb
) == insn
)
4192 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4195 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
4197 gcc_assert (call_insn
&& CALL_P (call_insn
));
4199 /* Put the register usage information on the CALL. If there is already
4200 some usage information, put ours at the end. */
4201 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
4205 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
4206 link
= XEXP (link
, 1))
4209 XEXP (link
, 1) = call_fusage
;
4212 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
4215 /* Delete all insns made since FROM.
4216 FROM becomes the new last instruction. */
4219 delete_insns_since (rtx_insn
*from
)
4224 SET_NEXT_INSN (from
) = 0;
4225 set_last_insn (from
);
4228 /* This function is deprecated, please use sequences instead.
4230 Move a consecutive bunch of insns to a different place in the chain.
4231 The insns to be moved are those between FROM and TO.
4232 They are moved to a new position after the insn AFTER.
4233 AFTER must not be FROM or TO or any insn in between.
4235 This function does not know about SEQUENCEs and hence should not be
4236 called after delay-slot filling has been done. */
4239 reorder_insns_nobb (rtx_insn
*from
, rtx_insn
*to
, rtx_insn
*after
)
4243 for (rtx_insn
*x
= from
; x
!= to
; x
= NEXT_INSN (x
))
4244 gcc_assert (after
!= x
);
4245 gcc_assert (after
!= to
);
4248 /* Splice this bunch out of where it is now. */
4249 if (PREV_INSN (from
))
4250 SET_NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
4252 SET_PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
4253 if (get_last_insn () == to
)
4254 set_last_insn (PREV_INSN (from
));
4255 if (get_insns () == from
)
4256 set_first_insn (NEXT_INSN (to
));
4258 /* Make the new neighbors point to it and it to them. */
4259 if (NEXT_INSN (after
))
4260 SET_PREV_INSN (NEXT_INSN (after
)) = to
;
4262 SET_NEXT_INSN (to
) = NEXT_INSN (after
);
4263 SET_PREV_INSN (from
) = after
;
4264 SET_NEXT_INSN (after
) = from
;
4265 if (after
== get_last_insn ())
4269 /* Same as function above, but take care to update BB boundaries. */
4271 reorder_insns (rtx_insn
*from
, rtx_insn
*to
, rtx_insn
*after
)
4273 rtx_insn
*prev
= PREV_INSN (from
);
4274 basic_block bb
, bb2
;
4276 reorder_insns_nobb (from
, to
, after
);
4278 if (!BARRIER_P (after
)
4279 && (bb
= BLOCK_FOR_INSN (after
)))
4282 df_set_bb_dirty (bb
);
4284 if (!BARRIER_P (from
)
4285 && (bb2
= BLOCK_FOR_INSN (from
)))
4287 if (BB_END (bb2
) == to
)
4288 BB_END (bb2
) = prev
;
4289 df_set_bb_dirty (bb2
);
4292 if (BB_END (bb
) == after
)
4295 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
4297 df_insn_change_bb (x
, bb
);
4302 /* Emit insn(s) of given code and pattern
4303 at a specified place within the doubly-linked list.
4305 All of the emit_foo global entry points accept an object
4306 X which is either an insn list or a PATTERN of a single
4309 There are thus a few canonical ways to generate code and
4310 emit it at a specific place in the instruction stream. For
4311 example, consider the instruction named SPOT and the fact that
4312 we would like to emit some instructions before SPOT. We might
4316 ... emit the new instructions ...
4317 insns_head = get_insns ();
4320 emit_insn_before (insns_head, SPOT);
4322 It used to be common to generate SEQUENCE rtl instead, but that
4323 is a relic of the past which no longer occurs. The reason is that
4324 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4325 generated would almost certainly die right after it was created. */
4328 emit_pattern_before_noloc (rtx x
, rtx before
, rtx last
, basic_block bb
,
4329 rtx_insn
*(*make_raw
) (rtx
))
4333 gcc_assert (before
);
4336 return safe_as_a
<rtx_insn
*> (last
);
4338 switch (GET_CODE (x
))
4347 insn
= as_a
<rtx_insn
*> (x
);
4350 rtx_insn
*next
= NEXT_INSN (insn
);
4351 add_insn_before (insn
, before
, bb
);
4357 #ifdef ENABLE_RTL_CHECKING
4364 last
= (*make_raw
) (x
);
4365 add_insn_before (last
, before
, bb
);
4369 return safe_as_a
<rtx_insn
*> (last
);
4372 /* Make X be output before the instruction BEFORE. */
4375 emit_insn_before_noloc (rtx x
, rtx_insn
*before
, basic_block bb
)
4377 return emit_pattern_before_noloc (x
, before
, before
, bb
, make_insn_raw
);
4380 /* Make an instruction with body X and code JUMP_INSN
4381 and output it before the instruction BEFORE. */
4384 emit_jump_insn_before_noloc (rtx x
, rtx_insn
*before
)
4386 return as_a
<rtx_jump_insn
*> (
4387 emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4388 make_jump_insn_raw
));
4391 /* Make an instruction with body X and code CALL_INSN
4392 and output it before the instruction BEFORE. */
4395 emit_call_insn_before_noloc (rtx x
, rtx_insn
*before
)
4397 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4398 make_call_insn_raw
);
4401 /* Make an instruction with body X and code DEBUG_INSN
4402 and output it before the instruction BEFORE. */
4405 emit_debug_insn_before_noloc (rtx x
, rtx before
)
4407 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4408 make_debug_insn_raw
);
4411 /* Make an insn of code BARRIER
4412 and output it before the insn BEFORE. */
4415 emit_barrier_before (rtx before
)
4417 rtx_barrier
*insn
= as_a
<rtx_barrier
*> (rtx_alloc (BARRIER
));
4419 INSN_UID (insn
) = cur_insn_uid
++;
4421 add_insn_before (insn
, before
, NULL
);
4425 /* Emit the label LABEL before the insn BEFORE. */
4428 emit_label_before (rtx label
, rtx_insn
*before
)
4430 gcc_checking_assert (INSN_UID (label
) == 0);
4431 INSN_UID (label
) = cur_insn_uid
++;
4432 add_insn_before (label
, before
, NULL
);
4433 return as_a
<rtx_code_label
*> (label
);
4436 /* Helper for emit_insn_after, handles lists of instructions
4440 emit_insn_after_1 (rtx_insn
*first
, rtx uncast_after
, basic_block bb
)
4442 rtx_insn
*after
= safe_as_a
<rtx_insn
*> (uncast_after
);
4444 rtx_insn
*after_after
;
4445 if (!bb
&& !BARRIER_P (after
))
4446 bb
= BLOCK_FOR_INSN (after
);
4450 df_set_bb_dirty (bb
);
4451 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4452 if (!BARRIER_P (last
))
4454 set_block_for_insn (last
, bb
);
4455 df_insn_rescan (last
);
4457 if (!BARRIER_P (last
))
4459 set_block_for_insn (last
, bb
);
4460 df_insn_rescan (last
);
4462 if (BB_END (bb
) == after
)
4466 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4469 after_after
= NEXT_INSN (after
);
4471 SET_NEXT_INSN (after
) = first
;
4472 SET_PREV_INSN (first
) = after
;
4473 SET_NEXT_INSN (last
) = after_after
;
4475 SET_PREV_INSN (after_after
) = last
;
4477 if (after
== get_last_insn ())
4478 set_last_insn (last
);
4484 emit_pattern_after_noloc (rtx x
, rtx uncast_after
, basic_block bb
,
4485 rtx_insn
*(*make_raw
)(rtx
))
4487 rtx_insn
*after
= safe_as_a
<rtx_insn
*> (uncast_after
);
4488 rtx_insn
*last
= after
;
4495 switch (GET_CODE (x
))
4504 last
= emit_insn_after_1 (as_a
<rtx_insn
*> (x
), after
, bb
);
4507 #ifdef ENABLE_RTL_CHECKING
4514 last
= (*make_raw
) (x
);
4515 add_insn_after (last
, after
, bb
);
4522 /* Make X be output after the insn AFTER and set the BB of insn. If
4523 BB is NULL, an attempt is made to infer the BB from AFTER. */
4526 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4528 return emit_pattern_after_noloc (x
, after
, bb
, make_insn_raw
);
4532 /* Make an insn of code JUMP_INSN with body X
4533 and output it after the insn AFTER. */
4536 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4538 return as_a
<rtx_jump_insn
*> (
4539 emit_pattern_after_noloc (x
, after
, NULL
, make_jump_insn_raw
));
4542 /* Make an instruction with body X and code CALL_INSN
4543 and output it after the instruction AFTER. */
4546 emit_call_insn_after_noloc (rtx x
, rtx after
)
4548 return emit_pattern_after_noloc (x
, after
, NULL
, make_call_insn_raw
);
4551 /* Make an instruction with body X and code CALL_INSN
4552 and output it after the instruction AFTER. */
4555 emit_debug_insn_after_noloc (rtx x
, rtx after
)
4557 return emit_pattern_after_noloc (x
, after
, NULL
, make_debug_insn_raw
);
4560 /* Make an insn of code BARRIER
4561 and output it after the insn AFTER. */
4564 emit_barrier_after (rtx after
)
4566 rtx_barrier
*insn
= as_a
<rtx_barrier
*> (rtx_alloc (BARRIER
));
4568 INSN_UID (insn
) = cur_insn_uid
++;
4570 add_insn_after (insn
, after
, NULL
);
4574 /* Emit the label LABEL after the insn AFTER. */
4577 emit_label_after (rtx label
, rtx_insn
*after
)
4579 gcc_checking_assert (INSN_UID (label
) == 0);
4580 INSN_UID (label
) = cur_insn_uid
++;
4581 add_insn_after (label
, after
, NULL
);
4582 return as_a
<rtx_insn
*> (label
);
4585 /* Notes require a bit of special handling: Some notes need to have their
4586 BLOCK_FOR_INSN set, others should never have it set, and some should
4587 have it set or clear depending on the context. */
4589 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4590 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4591 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4594 note_outside_basic_block_p (enum insn_note subtype
, bool on_bb_boundary_p
)
4598 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4599 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
4602 /* Notes for var tracking and EH region markers can appear between or
4603 inside basic blocks. If the caller is emitting on the basic block
4604 boundary, do not set BLOCK_FOR_INSN on the new note. */
4605 case NOTE_INSN_VAR_LOCATION
:
4606 case NOTE_INSN_CALL_ARG_LOCATION
:
4607 case NOTE_INSN_EH_REGION_BEG
:
4608 case NOTE_INSN_EH_REGION_END
:
4609 return on_bb_boundary_p
;
4611 /* Otherwise, BLOCK_FOR_INSN must be set. */
4617 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4620 emit_note_after (enum insn_note subtype
, rtx_insn
*after
)
4622 rtx_note
*note
= make_note_raw (subtype
);
4623 basic_block bb
= BARRIER_P (after
) ? NULL
: BLOCK_FOR_INSN (after
);
4624 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_END (bb
) == after
);
4626 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4627 add_insn_after_nobb (note
, after
);
4629 add_insn_after (note
, after
, bb
);
4633 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4636 emit_note_before (enum insn_note subtype
, rtx_insn
*before
)
4638 rtx_note
*note
= make_note_raw (subtype
);
4639 basic_block bb
= BARRIER_P (before
) ? NULL
: BLOCK_FOR_INSN (before
);
4640 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_HEAD (bb
) == before
);
4642 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4643 add_insn_before_nobb (note
, before
);
4645 add_insn_before (note
, before
, bb
);
4649 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4650 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4653 emit_pattern_after_setloc (rtx pattern
, rtx uncast_after
, int loc
,
4654 rtx_insn
*(*make_raw
) (rtx
))
4656 rtx_insn
*after
= safe_as_a
<rtx_insn
*> (uncast_after
);
4657 rtx_insn
*last
= emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4659 if (pattern
== NULL_RTX
|| !loc
)
4662 after
= NEXT_INSN (after
);
4665 if (active_insn_p (after
)
4666 && !JUMP_TABLE_DATA_P (after
) /* FIXME */
4667 && !INSN_LOCATION (after
))
4668 INSN_LOCATION (after
) = loc
;
4671 after
= NEXT_INSN (after
);
4676 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4677 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4681 emit_pattern_after (rtx pattern
, rtx uncast_after
, bool skip_debug_insns
,
4682 rtx_insn
*(*make_raw
) (rtx
))
4684 rtx_insn
*after
= safe_as_a
<rtx_insn
*> (uncast_after
);
4685 rtx_insn
*prev
= after
;
4687 if (skip_debug_insns
)
4688 while (DEBUG_INSN_P (prev
))
4689 prev
= PREV_INSN (prev
);
4692 return emit_pattern_after_setloc (pattern
, after
, INSN_LOCATION (prev
),
4695 return emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4698 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4700 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4702 return emit_pattern_after_setloc (pattern
, after
, loc
, make_insn_raw
);
4705 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4707 emit_insn_after (rtx pattern
, rtx after
)
4709 return emit_pattern_after (pattern
, after
, true, make_insn_raw
);
4712 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4714 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4716 return as_a
<rtx_jump_insn
*> (
4717 emit_pattern_after_setloc (pattern
, after
, loc
, make_jump_insn_raw
));
4720 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4722 emit_jump_insn_after (rtx pattern
, rtx after
)
4724 return as_a
<rtx_jump_insn
*> (
4725 emit_pattern_after (pattern
, after
, true, make_jump_insn_raw
));
4728 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4730 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4732 return emit_pattern_after_setloc (pattern
, after
, loc
, make_call_insn_raw
);
4735 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4737 emit_call_insn_after (rtx pattern
, rtx after
)
4739 return emit_pattern_after (pattern
, after
, true, make_call_insn_raw
);
4742 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4744 emit_debug_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4746 return emit_pattern_after_setloc (pattern
, after
, loc
, make_debug_insn_raw
);
4749 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4751 emit_debug_insn_after (rtx pattern
, rtx after
)
4753 return emit_pattern_after (pattern
, after
, false, make_debug_insn_raw
);
4756 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4757 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4758 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4762 emit_pattern_before_setloc (rtx pattern
, rtx uncast_before
, int loc
, bool insnp
,
4763 rtx_insn
*(*make_raw
) (rtx
))
4765 rtx_insn
*before
= as_a
<rtx_insn
*> (uncast_before
);
4766 rtx_insn
*first
= PREV_INSN (before
);
4767 rtx_insn
*last
= emit_pattern_before_noloc (pattern
, before
,
4768 insnp
? before
: NULL_RTX
,
4771 if (pattern
== NULL_RTX
|| !loc
)
4775 first
= get_insns ();
4777 first
= NEXT_INSN (first
);
4780 if (active_insn_p (first
)
4781 && !JUMP_TABLE_DATA_P (first
) /* FIXME */
4782 && !INSN_LOCATION (first
))
4783 INSN_LOCATION (first
) = loc
;
4786 first
= NEXT_INSN (first
);
4791 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4792 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4793 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4794 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4797 emit_pattern_before (rtx pattern
, rtx uncast_before
, bool skip_debug_insns
,
4798 bool insnp
, rtx_insn
*(*make_raw
) (rtx
))
4800 rtx_insn
*before
= safe_as_a
<rtx_insn
*> (uncast_before
);
4801 rtx_insn
*next
= before
;
4803 if (skip_debug_insns
)
4804 while (DEBUG_INSN_P (next
))
4805 next
= PREV_INSN (next
);
4808 return emit_pattern_before_setloc (pattern
, before
, INSN_LOCATION (next
),
4811 return emit_pattern_before_noloc (pattern
, before
,
4812 insnp
? before
: NULL_RTX
,
4816 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4818 emit_insn_before_setloc (rtx pattern
, rtx_insn
*before
, int loc
)
4820 return emit_pattern_before_setloc (pattern
, before
, loc
, true,
4824 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4826 emit_insn_before (rtx pattern
, rtx before
)
4828 return emit_pattern_before (pattern
, before
, true, true, make_insn_raw
);
4831 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4833 emit_jump_insn_before_setloc (rtx pattern
, rtx_insn
*before
, int loc
)
4835 return as_a
<rtx_jump_insn
*> (
4836 emit_pattern_before_setloc (pattern
, before
, loc
, false,
4837 make_jump_insn_raw
));
4840 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4842 emit_jump_insn_before (rtx pattern
, rtx before
)
4844 return as_a
<rtx_jump_insn
*> (
4845 emit_pattern_before (pattern
, before
, true, false,
4846 make_jump_insn_raw
));
4849 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4851 emit_call_insn_before_setloc (rtx pattern
, rtx_insn
*before
, int loc
)
4853 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4854 make_call_insn_raw
);
4857 /* Like emit_call_insn_before_noloc,
4858 but set insn_location according to BEFORE. */
4860 emit_call_insn_before (rtx pattern
, rtx_insn
*before
)
4862 return emit_pattern_before (pattern
, before
, true, false,
4863 make_call_insn_raw
);
4866 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4868 emit_debug_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4870 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4871 make_debug_insn_raw
);
4874 /* Like emit_debug_insn_before_noloc,
4875 but set insn_location according to BEFORE. */
4877 emit_debug_insn_before (rtx pattern
, rtx_insn
*before
)
4879 return emit_pattern_before (pattern
, before
, false, false,
4880 make_debug_insn_raw
);
4883 /* Take X and emit it at the end of the doubly-linked
4886 Returns the last insn emitted. */
4891 rtx_insn
*last
= get_last_insn ();
4897 switch (GET_CODE (x
))
4906 insn
= as_a
<rtx_insn
*> (x
);
4909 rtx_insn
*next
= NEXT_INSN (insn
);
4916 #ifdef ENABLE_RTL_CHECKING
4917 case JUMP_TABLE_DATA
:
4924 last
= make_insn_raw (x
);
4932 /* Make an insn of code DEBUG_INSN with pattern X
4933 and add it to the end of the doubly-linked list. */
4936 emit_debug_insn (rtx x
)
4938 rtx_insn
*last
= get_last_insn ();
4944 switch (GET_CODE (x
))
4953 insn
= as_a
<rtx_insn
*> (x
);
4956 rtx_insn
*next
= NEXT_INSN (insn
);
4963 #ifdef ENABLE_RTL_CHECKING
4964 case JUMP_TABLE_DATA
:
4971 last
= make_debug_insn_raw (x
);
4979 /* Make an insn of code JUMP_INSN with pattern X
4980 and add it to the end of the doubly-linked list. */
4983 emit_jump_insn (rtx x
)
4985 rtx_insn
*last
= NULL
;
4988 switch (GET_CODE (x
))
4997 insn
= as_a
<rtx_insn
*> (x
);
5000 rtx_insn
*next
= NEXT_INSN (insn
);
5007 #ifdef ENABLE_RTL_CHECKING
5008 case JUMP_TABLE_DATA
:
5015 last
= make_jump_insn_raw (x
);
5023 /* Make an insn of code CALL_INSN with pattern X
5024 and add it to the end of the doubly-linked list. */
5027 emit_call_insn (rtx x
)
5031 switch (GET_CODE (x
))
5040 insn
= emit_insn (x
);
5043 #ifdef ENABLE_RTL_CHECKING
5045 case JUMP_TABLE_DATA
:
5051 insn
= make_call_insn_raw (x
);
5059 /* Add the label LABEL to the end of the doubly-linked list. */
5062 emit_label (rtx uncast_label
)
5064 rtx_code_label
*label
= as_a
<rtx_code_label
*> (uncast_label
);
5066 gcc_checking_assert (INSN_UID (label
) == 0);
5067 INSN_UID (label
) = cur_insn_uid
++;
5072 /* Make an insn of code JUMP_TABLE_DATA
5073 and add it to the end of the doubly-linked list. */
5075 rtx_jump_table_data
*
5076 emit_jump_table_data (rtx table
)
5078 rtx_jump_table_data
*jump_table_data
=
5079 as_a
<rtx_jump_table_data
*> (rtx_alloc (JUMP_TABLE_DATA
));
5080 INSN_UID (jump_table_data
) = cur_insn_uid
++;
5081 PATTERN (jump_table_data
) = table
;
5082 BLOCK_FOR_INSN (jump_table_data
) = NULL
;
5083 add_insn (jump_table_data
);
5084 return jump_table_data
;
5087 /* Make an insn of code BARRIER
5088 and add it to the end of the doubly-linked list. */
5093 rtx_barrier
*barrier
= as_a
<rtx_barrier
*> (rtx_alloc (BARRIER
));
5094 INSN_UID (barrier
) = cur_insn_uid
++;
5099 /* Emit a copy of note ORIG. */
5102 emit_note_copy (rtx_note
*orig
)
5104 enum insn_note kind
= (enum insn_note
) NOTE_KIND (orig
);
5105 rtx_note
*note
= make_note_raw (kind
);
5106 NOTE_DATA (note
) = NOTE_DATA (orig
);
5111 /* Make an insn of code NOTE or type NOTE_NO
5112 and add it to the end of the doubly-linked list. */
5115 emit_note (enum insn_note kind
)
5117 rtx_note
*note
= make_note_raw (kind
);
5122 /* Emit a clobber of lvalue X. */
5125 emit_clobber (rtx x
)
5127 /* CONCATs should not appear in the insn stream. */
5128 if (GET_CODE (x
) == CONCAT
)
5130 emit_clobber (XEXP (x
, 0));
5131 return emit_clobber (XEXP (x
, 1));
5133 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
5136 /* Return a sequence of insns to clobber lvalue X. */
5150 /* Emit a use of rvalue X. */
5155 /* CONCATs should not appear in the insn stream. */
5156 if (GET_CODE (x
) == CONCAT
)
5158 emit_use (XEXP (x
, 0));
5159 return emit_use (XEXP (x
, 1));
5161 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
5164 /* Return a sequence of insns to use rvalue X. */
5178 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5179 Return the set in INSN that such notes describe, or NULL if the notes
5180 have no meaning for INSN. */
5183 set_for_reg_notes (rtx insn
)
5190 pat
= PATTERN (insn
);
5191 if (GET_CODE (pat
) == PARALLEL
)
5193 /* We do not use single_set because that ignores SETs of unused
5194 registers. REG_EQUAL and REG_EQUIV notes really do require the
5195 PARALLEL to have a single SET. */
5196 if (multiple_sets (insn
))
5198 pat
= XVECEXP (pat
, 0, 0);
5201 if (GET_CODE (pat
) != SET
)
5204 reg
= SET_DEST (pat
);
5206 /* Notes apply to the contents of a STRICT_LOW_PART. */
5207 if (GET_CODE (reg
) == STRICT_LOW_PART
5208 || GET_CODE (reg
) == ZERO_EXTRACT
)
5209 reg
= XEXP (reg
, 0);
5211 /* Check that we have a register. */
5212 if (!(REG_P (reg
) || GET_CODE (reg
) == SUBREG
))
5218 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5219 note of this type already exists, remove it first. */
5222 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
5224 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
5230 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5231 if (!set_for_reg_notes (insn
) && GET_CODE (PATTERN (insn
)) != USE
)
5234 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5235 It serves no useful purpose and breaks eliminate_regs. */
5236 if (GET_CODE (datum
) == ASM_OPERANDS
)
5239 /* Notes with side effects are dangerous. Even if the side-effect
5240 initially mirrors one in PATTERN (INSN), later optimizations
5241 might alter the way that the final register value is calculated
5242 and so move or alter the side-effect in some way. The note would
5243 then no longer be a valid substitution for SET_SRC. */
5244 if (side_effects_p (datum
))
5253 XEXP (note
, 0) = datum
;
5256 add_reg_note (insn
, kind
, datum
);
5257 note
= REG_NOTES (insn
);
5264 df_notes_rescan (as_a
<rtx_insn
*> (insn
));
5273 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5275 set_dst_reg_note (rtx insn
, enum reg_note kind
, rtx datum
, rtx dst
)
5277 rtx set
= set_for_reg_notes (insn
);
5279 if (set
&& SET_DEST (set
) == dst
)
5280 return set_unique_reg_note (insn
, kind
, datum
);
5284 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5285 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5288 If X is a label, it is simply added into the insn chain. */
5291 emit (rtx x
, bool allow_barrier_p
)
5293 enum rtx_code code
= classify_insn (x
);
5298 return emit_label (x
);
5300 return emit_insn (x
);
5303 rtx_insn
*insn
= emit_jump_insn (x
);
5305 && (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
))
5306 return emit_barrier ();
5310 return emit_call_insn (x
);
5312 return emit_debug_insn (x
);
5318 /* Space for free sequence stack entries. */
5319 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
5321 /* Begin emitting insns to a sequence. If this sequence will contain
5322 something that might cause the compiler to pop arguments to function
5323 calls (because those pops have previously been deferred; see
5324 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5325 before calling this function. That will ensure that the deferred
5326 pops are not accidentally emitted in the middle of this sequence. */
5329 start_sequence (void)
5331 struct sequence_stack
*tem
;
5333 if (free_sequence_stack
!= NULL
)
5335 tem
= free_sequence_stack
;
5336 free_sequence_stack
= tem
->next
;
5339 tem
= ggc_alloc
<sequence_stack
> ();
5341 tem
->next
= get_current_sequence ()->next
;
5342 tem
->first
= get_insns ();
5343 tem
->last
= get_last_insn ();
5344 get_current_sequence ()->next
= tem
;
5350 /* Set up the insn chain starting with FIRST as the current sequence,
5351 saving the previously current one. See the documentation for
5352 start_sequence for more information about how to use this function. */
5355 push_to_sequence (rtx_insn
*first
)
5361 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
))
5364 set_first_insn (first
);
5365 set_last_insn (last
);
5368 /* Like push_to_sequence, but take the last insn as an argument to avoid
5369 looping through the list. */
5372 push_to_sequence2 (rtx_insn
*first
, rtx_insn
*last
)
5376 set_first_insn (first
);
5377 set_last_insn (last
);
5380 /* Set up the outer-level insn chain
5381 as the current sequence, saving the previously current one. */
5384 push_topmost_sequence (void)
5386 struct sequence_stack
*top
;
5390 top
= get_topmost_sequence ();
5391 set_first_insn (top
->first
);
5392 set_last_insn (top
->last
);
5395 /* After emitting to the outer-level insn chain, update the outer-level
5396 insn chain, and restore the previous saved state. */
5399 pop_topmost_sequence (void)
5401 struct sequence_stack
*top
;
5403 top
= get_topmost_sequence ();
5404 top
->first
= get_insns ();
5405 top
->last
= get_last_insn ();
5410 /* After emitting to a sequence, restore previous saved state.
5412 To get the contents of the sequence just made, you must call
5413 `get_insns' *before* calling here.
5415 If the compiler might have deferred popping arguments while
5416 generating this sequence, and this sequence will not be immediately
5417 inserted into the instruction stream, use do_pending_stack_adjust
5418 before calling get_insns. That will ensure that the deferred
5419 pops are inserted into this sequence, and not into some random
5420 location in the instruction stream. See INHIBIT_DEFER_POP for more
5421 information about deferred popping of arguments. */
5426 struct sequence_stack
*tem
= get_current_sequence ()->next
;
5428 set_first_insn (tem
->first
);
5429 set_last_insn (tem
->last
);
5430 get_current_sequence ()->next
= tem
->next
;
5432 memset (tem
, 0, sizeof (*tem
));
5433 tem
->next
= free_sequence_stack
;
5434 free_sequence_stack
= tem
;
5437 /* Return 1 if currently emitting into a sequence. */
5440 in_sequence_p (void)
5442 return get_current_sequence ()->next
!= 0;
5445 /* Put the various virtual registers into REGNO_REG_RTX. */
5448 init_virtual_regs (void)
5450 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5451 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5452 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5453 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5454 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5455 regno_reg_rtx
[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
]
5456 = virtual_preferred_stack_boundary_rtx
;
5460 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5461 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5462 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5463 static int copy_insn_n_scratches
;
5465 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5466 copied an ASM_OPERANDS.
5467 In that case, it is the original input-operand vector. */
5468 static rtvec orig_asm_operands_vector
;
5470 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5471 copied an ASM_OPERANDS.
5472 In that case, it is the copied input-operand vector. */
5473 static rtvec copy_asm_operands_vector
;
5475 /* Likewise for the constraints vector. */
5476 static rtvec orig_asm_constraints_vector
;
5477 static rtvec copy_asm_constraints_vector
;
5479 /* Recursively create a new copy of an rtx for copy_insn.
5480 This function differs from copy_rtx in that it handles SCRATCHes and
5481 ASM_OPERANDs properly.
5482 Normally, this function is not used directly; use copy_insn as front end.
5483 However, you could first copy an insn pattern with copy_insn and then use
5484 this function afterwards to properly copy any REG_NOTEs containing
5488 copy_insn_1 (rtx orig
)
5493 const char *format_ptr
;
5498 code
= GET_CODE (orig
);
5513 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5514 clobbers or clobbers of hard registers that originated as pseudos.
5515 This is needed to allow safe register renaming. */
5516 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
5517 && ORIGINAL_REGNO (XEXP (orig
, 0)) == REGNO (XEXP (orig
, 0)))
5522 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5523 if (copy_insn_scratch_in
[i
] == orig
)
5524 return copy_insn_scratch_out
[i
];
5528 if (shared_const_p (orig
))
5532 /* A MEM with a constant address is not sharable. The problem is that
5533 the constant address may need to be reloaded. If the mem is shared,
5534 then reloading one copy of this mem will cause all copies to appear
5535 to have been reloaded. */
5541 /* Copy the various flags, fields, and other information. We assume
5542 that all fields need copying, and then clear the fields that should
5543 not be copied. That is the sensible default behavior, and forces
5544 us to explicitly document why we are *not* copying a flag. */
5545 copy
= shallow_copy_rtx (orig
);
5547 /* We do not copy the USED flag, which is used as a mark bit during
5548 walks over the RTL. */
5549 RTX_FLAG (copy
, used
) = 0;
5551 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5554 RTX_FLAG (copy
, jump
) = 0;
5555 RTX_FLAG (copy
, call
) = 0;
5556 RTX_FLAG (copy
, frame_related
) = 0;
5559 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5561 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5562 switch (*format_ptr
++)
5565 if (XEXP (orig
, i
) != NULL
)
5566 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5571 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5572 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5573 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5574 XVEC (copy
, i
) = copy_asm_operands_vector
;
5575 else if (XVEC (orig
, i
) != NULL
)
5577 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5578 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5579 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5590 /* These are left unchanged. */
5597 if (code
== SCRATCH
)
5599 i
= copy_insn_n_scratches
++;
5600 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5601 copy_insn_scratch_in
[i
] = orig
;
5602 copy_insn_scratch_out
[i
] = copy
;
5604 else if (code
== ASM_OPERANDS
)
5606 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5607 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5608 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5609 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5615 /* Create a new copy of an rtx.
5616 This function differs from copy_rtx in that it handles SCRATCHes and
5617 ASM_OPERANDs properly.
5618 INSN doesn't really have to be a full INSN; it could be just the
5621 copy_insn (rtx insn
)
5623 copy_insn_n_scratches
= 0;
5624 orig_asm_operands_vector
= 0;
5625 orig_asm_constraints_vector
= 0;
5626 copy_asm_operands_vector
= 0;
5627 copy_asm_constraints_vector
= 0;
5628 return copy_insn_1 (insn
);
5631 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5632 on that assumption that INSN itself remains in its original place. */
5635 copy_delay_slot_insn (rtx_insn
*insn
)
5637 /* Copy INSN with its rtx_code, all its notes, location etc. */
5638 insn
= as_a
<rtx_insn
*> (copy_rtx (insn
));
5639 INSN_UID (insn
) = cur_insn_uid
++;
5643 /* Initialize data structures and variables in this file
5644 before generating rtl for each function. */
5649 set_first_insn (NULL
);
5650 set_last_insn (NULL
);
5651 if (MIN_NONDEBUG_INSN_UID
)
5652 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
;
5655 cur_debug_insn_uid
= 1;
5656 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5657 first_label_num
= label_num
;
5658 get_current_sequence ()->next
= NULL
;
5660 /* Init the tables that describe all the pseudo regs. */
5662 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5664 crtl
->emit
.regno_pointer_align
5665 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5667 regno_reg_rtx
= ggc_vec_alloc
<rtx
> (crtl
->emit
.regno_pointer_align_length
);
5669 /* Put copies of all the hard registers into regno_reg_rtx. */
5670 memcpy (regno_reg_rtx
,
5671 initial_regno_reg_rtx
,
5672 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5674 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5675 init_virtual_regs ();
5677 /* Indicate that the virtual registers and stack locations are
5679 REG_POINTER (stack_pointer_rtx
) = 1;
5680 REG_POINTER (frame_pointer_rtx
) = 1;
5681 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5682 REG_POINTER (arg_pointer_rtx
) = 1;
5684 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5685 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5686 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5687 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5688 REG_POINTER (virtual_cfa_rtx
) = 1;
5690 #ifdef STACK_BOUNDARY
5691 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5692 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5693 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5694 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5696 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5697 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5698 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5699 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5700 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5703 #ifdef INIT_EXPANDERS
5708 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5711 gen_const_vector (machine_mode mode
, int constant
)
5718 units
= GET_MODE_NUNITS (mode
);
5719 inner
= GET_MODE_INNER (mode
);
5721 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5723 v
= rtvec_alloc (units
);
5725 /* We need to call this function after we set the scalar const_tiny_rtx
5727 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5729 for (i
= 0; i
< units
; ++i
)
5730 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5732 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5736 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5737 all elements are zero, and the one vector when all elements are one. */
5739 gen_rtx_CONST_VECTOR (machine_mode mode
, rtvec v
)
5741 machine_mode inner
= GET_MODE_INNER (mode
);
5742 int nunits
= GET_MODE_NUNITS (mode
);
5746 /* Check to see if all of the elements have the same value. */
5747 x
= RTVEC_ELT (v
, nunits
- 1);
5748 for (i
= nunits
- 2; i
>= 0; i
--)
5749 if (RTVEC_ELT (v
, i
) != x
)
5752 /* If the values are all the same, check to see if we can use one of the
5753 standard constant vectors. */
5756 if (x
== CONST0_RTX (inner
))
5757 return CONST0_RTX (mode
);
5758 else if (x
== CONST1_RTX (inner
))
5759 return CONST1_RTX (mode
);
5760 else if (x
== CONSTM1_RTX (inner
))
5761 return CONSTM1_RTX (mode
);
5764 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5767 /* Initialise global register information required by all functions. */
5770 init_emit_regs (void)
5776 /* Reset register attributes */
5777 reg_attrs_htab
->empty ();
5779 /* We need reg_raw_mode, so initialize the modes now. */
5780 init_reg_modes_target ();
5782 /* Assign register numbers to the globally defined register rtx. */
5783 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5784 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5785 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5786 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5787 virtual_incoming_args_rtx
=
5788 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5789 virtual_stack_vars_rtx
=
5790 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5791 virtual_stack_dynamic_rtx
=
5792 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5793 virtual_outgoing_args_rtx
=
5794 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5795 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5796 virtual_preferred_stack_boundary_rtx
=
5797 gen_raw_REG (Pmode
, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
);
5799 /* Initialize RTL for commonly used hard registers. These are
5800 copied into regno_reg_rtx as we begin to compile each function. */
5801 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5802 initial_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5804 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5805 return_address_pointer_rtx
5806 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5809 pic_offset_table_rtx
= NULL_RTX
;
5810 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5811 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5813 for (i
= 0; i
< (int) MAX_MACHINE_MODE
; i
++)
5815 mode
= (machine_mode
) i
;
5816 attrs
= ggc_cleared_alloc
<mem_attrs
> ();
5817 attrs
->align
= BITS_PER_UNIT
;
5818 attrs
->addrspace
= ADDR_SPACE_GENERIC
;
5819 if (mode
!= BLKmode
)
5821 attrs
->size_known_p
= true;
5822 attrs
->size
= GET_MODE_SIZE (mode
);
5823 if (STRICT_ALIGNMENT
)
5824 attrs
->align
= GET_MODE_ALIGNMENT (mode
);
5826 mode_mem_attrs
[i
] = attrs
;
5830 /* Initialize global machine_mode variables. */
5833 init_derived_machine_modes (void)
5835 byte_mode
= VOIDmode
;
5836 word_mode
= VOIDmode
;
5838 for (machine_mode mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5840 mode
= GET_MODE_WIDER_MODE (mode
))
5842 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5843 && byte_mode
== VOIDmode
)
5846 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5847 && word_mode
== VOIDmode
)
5851 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5854 /* Create some permanent unique rtl objects shared between all functions. */
5857 init_emit_once (void)
5861 machine_mode double_mode
;
5863 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5864 CONST_FIXED, and memory attribute hash tables. */
5865 const_int_htab
= hash_table
<const_int_hasher
>::create_ggc (37);
5867 #if TARGET_SUPPORTS_WIDE_INT
5868 const_wide_int_htab
= hash_table
<const_wide_int_hasher
>::create_ggc (37);
5870 const_double_htab
= hash_table
<const_double_hasher
>::create_ggc (37);
5872 const_fixed_htab
= hash_table
<const_fixed_hasher
>::create_ggc (37);
5874 reg_attrs_htab
= hash_table
<reg_attr_hasher
>::create_ggc (37);
5876 #ifdef INIT_EXPANDERS
5877 /* This is to initialize {init|mark|free}_machine_status before the first
5878 call to push_function_context_to. This is needed by the Chill front
5879 end which calls push_function_context_to before the first call to
5880 init_function_start. */
5884 /* Create the unique rtx's for certain rtx codes and operand values. */
5886 /* Process stack-limiting command-line options. */
5887 if (opt_fstack_limit_symbol_arg
!= NULL
)
5889 = gen_rtx_SYMBOL_REF (Pmode
, ggc_strdup (opt_fstack_limit_symbol_arg
));
5890 if (opt_fstack_limit_register_no
>= 0)
5891 stack_limit_rtx
= gen_rtx_REG (Pmode
, opt_fstack_limit_register_no
);
5893 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5894 tries to use these variables. */
5895 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5896 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5897 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5899 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5900 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5901 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5903 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5905 double_mode
= mode_for_size (DOUBLE_TYPE_SIZE
, MODE_FLOAT
, 0);
5907 real_from_integer (&dconst0
, double_mode
, 0, SIGNED
);
5908 real_from_integer (&dconst1
, double_mode
, 1, SIGNED
);
5909 real_from_integer (&dconst2
, double_mode
, 2, SIGNED
);
5914 dconsthalf
= dconst1
;
5915 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5917 for (i
= 0; i
< 3; i
++)
5919 const REAL_VALUE_TYPE
*const r
=
5920 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5922 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5924 mode
= GET_MODE_WIDER_MODE (mode
))
5925 const_tiny_rtx
[i
][(int) mode
] =
5926 const_double_from_real_value (*r
, mode
);
5928 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5930 mode
= GET_MODE_WIDER_MODE (mode
))
5931 const_tiny_rtx
[i
][(int) mode
] =
5932 const_double_from_real_value (*r
, mode
);
5934 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5936 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5938 mode
= GET_MODE_WIDER_MODE (mode
))
5939 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5941 for (mode
= MIN_MODE_PARTIAL_INT
;
5942 mode
<= MAX_MODE_PARTIAL_INT
;
5943 mode
= (machine_mode
)((int)(mode
) + 1))
5944 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5947 const_tiny_rtx
[3][(int) VOIDmode
] = constm1_rtx
;
5949 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5951 mode
= GET_MODE_WIDER_MODE (mode
))
5952 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5954 for (mode
= MIN_MODE_PARTIAL_INT
;
5955 mode
<= MAX_MODE_PARTIAL_INT
;
5956 mode
= (machine_mode
)((int)(mode
) + 1))
5957 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5959 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5961 mode
= GET_MODE_WIDER_MODE (mode
))
5963 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5964 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5967 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
5969 mode
= GET_MODE_WIDER_MODE (mode
))
5971 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5972 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5975 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5977 mode
= GET_MODE_WIDER_MODE (mode
))
5979 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5980 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5981 const_tiny_rtx
[3][(int) mode
] = gen_const_vector (mode
, 3);
5984 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5986 mode
= GET_MODE_WIDER_MODE (mode
))
5988 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5989 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5992 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
5994 mode
= GET_MODE_WIDER_MODE (mode
))
5996 FCONST0 (mode
).data
.high
= 0;
5997 FCONST0 (mode
).data
.low
= 0;
5998 FCONST0 (mode
).mode
= mode
;
5999 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
6000 FCONST0 (mode
), mode
);
6003 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
6005 mode
= GET_MODE_WIDER_MODE (mode
))
6007 FCONST0 (mode
).data
.high
= 0;
6008 FCONST0 (mode
).data
.low
= 0;
6009 FCONST0 (mode
).mode
= mode
;
6010 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
6011 FCONST0 (mode
), mode
);
6014 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
6016 mode
= GET_MODE_WIDER_MODE (mode
))
6018 FCONST0 (mode
).data
.high
= 0;
6019 FCONST0 (mode
).data
.low
= 0;
6020 FCONST0 (mode
).mode
= mode
;
6021 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
6022 FCONST0 (mode
), mode
);
6024 /* We store the value 1. */
6025 FCONST1 (mode
).data
.high
= 0;
6026 FCONST1 (mode
).data
.low
= 0;
6027 FCONST1 (mode
).mode
= mode
;
6029 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
6030 HOST_BITS_PER_DOUBLE_INT
,
6031 SIGNED_FIXED_POINT_MODE_P (mode
));
6032 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
6033 FCONST1 (mode
), mode
);
6036 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
6038 mode
= GET_MODE_WIDER_MODE (mode
))
6040 FCONST0 (mode
).data
.high
= 0;
6041 FCONST0 (mode
).data
.low
= 0;
6042 FCONST0 (mode
).mode
= mode
;
6043 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
6044 FCONST0 (mode
), mode
);
6046 /* We store the value 1. */
6047 FCONST1 (mode
).data
.high
= 0;
6048 FCONST1 (mode
).data
.low
= 0;
6049 FCONST1 (mode
).mode
= mode
;
6051 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
6052 HOST_BITS_PER_DOUBLE_INT
,
6053 SIGNED_FIXED_POINT_MODE_P (mode
));
6054 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
6055 FCONST1 (mode
), mode
);
6058 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
6060 mode
= GET_MODE_WIDER_MODE (mode
))
6062 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6065 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
6067 mode
= GET_MODE_WIDER_MODE (mode
))
6069 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6072 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
6074 mode
= GET_MODE_WIDER_MODE (mode
))
6076 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6077 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6080 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
6082 mode
= GET_MODE_WIDER_MODE (mode
))
6084 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6085 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6088 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
6089 if (GET_MODE_CLASS ((machine_mode
) i
) == MODE_CC
)
6090 const_tiny_rtx
[0][i
] = const0_rtx
;
6092 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
6093 if (STORE_FLAG_VALUE
== 1)
6094 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
6096 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_POINTER_BOUNDS
);
6098 mode
= GET_MODE_WIDER_MODE (mode
))
6100 wide_int wi_zero
= wi::zero (GET_MODE_PRECISION (mode
));
6101 const_tiny_rtx
[0][mode
] = immed_wide_int_const (wi_zero
, mode
);
6104 pc_rtx
= gen_rtx_fmt_ (PC
, VOIDmode
);
6105 ret_rtx
= gen_rtx_fmt_ (RETURN
, VOIDmode
);
6106 simple_return_rtx
= gen_rtx_fmt_ (SIMPLE_RETURN
, VOIDmode
);
6107 cc0_rtx
= gen_rtx_fmt_ (CC0
, VOIDmode
);
6108 invalid_insn_rtx
= gen_rtx_INSN (VOIDmode
,
6112 /*pattern=*/NULL_RTX
,
6115 /*reg_notes=*/NULL_RTX
);
6118 /* Produce exact duplicate of insn INSN after AFTER.
6119 Care updating of libcall regions if present. */
6122 emit_copy_of_insn_after (rtx_insn
*insn
, rtx_insn
*after
)
6127 switch (GET_CODE (insn
))
6130 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
6134 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
6135 CROSSING_JUMP_P (new_rtx
) = CROSSING_JUMP_P (insn
);
6139 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
6143 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
6144 if (CALL_INSN_FUNCTION_USAGE (insn
))
6145 CALL_INSN_FUNCTION_USAGE (new_rtx
)
6146 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
6147 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
6148 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
6149 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
6150 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
6151 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
6158 /* Update LABEL_NUSES. */
6159 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
6161 INSN_LOCATION (new_rtx
) = INSN_LOCATION (insn
);
6163 /* If the old insn is frame related, then so is the new one. This is
6164 primarily needed for IA-64 unwind info which marks epilogue insns,
6165 which may be duplicated by the basic block reordering code. */
6166 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
6168 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6169 rtx
*ptail
= ®_NOTES (new_rtx
);
6170 while (*ptail
!= NULL_RTX
)
6171 ptail
= &XEXP (*ptail
, 1);
6173 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6174 will make them. REG_LABEL_TARGETs are created there too, but are
6175 supposed to be sticky, so we copy them. */
6176 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
6177 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
6179 *ptail
= duplicate_reg_note (link
);
6180 ptail
= &XEXP (*ptail
, 1);
6183 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
6187 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
6189 gen_hard_reg_clobber (machine_mode mode
, unsigned int regno
)
6191 if (hard_reg_clobbers
[mode
][regno
])
6192 return hard_reg_clobbers
[mode
][regno
];
6194 return (hard_reg_clobbers
[mode
][regno
] =
6195 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
6198 location_t prologue_location
;
6199 location_t epilogue_location
;
6201 /* Hold current location information and last location information, so the
6202 datastructures are built lazily only when some instructions in given
6203 place are needed. */
6204 static location_t curr_location
;
6206 /* Allocate insn location datastructure. */
6208 insn_locations_init (void)
6210 prologue_location
= epilogue_location
= 0;
6211 curr_location
= UNKNOWN_LOCATION
;
6214 /* At the end of emit stage, clear current location. */
6216 insn_locations_finalize (void)
6218 epilogue_location
= curr_location
;
6219 curr_location
= UNKNOWN_LOCATION
;
6222 /* Set current location. */
6224 set_curr_insn_location (location_t location
)
6226 curr_location
= location
;
6229 /* Get current location. */
6231 curr_insn_location (void)
6233 return curr_location
;
6236 /* Return lexical scope block insn belongs to. */
6238 insn_scope (const rtx_insn
*insn
)
6240 return LOCATION_BLOCK (INSN_LOCATION (insn
));
6243 /* Return line number of the statement that produced this insn. */
6245 insn_line (const rtx_insn
*insn
)
6247 return LOCATION_LINE (INSN_LOCATION (insn
));
6250 /* Return source file of the statement that produced this insn. */
6252 insn_file (const rtx_insn
*insn
)
6254 return LOCATION_FILE (INSN_LOCATION (insn
));
6257 /* Return expanded location of the statement that produced this insn. */
6259 insn_location (const rtx_insn
*insn
)
6261 return expand_location (INSN_LOCATION (insn
));
6264 /* Return true if memory model MODEL requires a pre-operation (release-style)
6265 barrier or a post-operation (acquire-style) barrier. While not universal,
6266 this function matches behavior of several targets. */
6269 need_atomic_barrier_p (enum memmodel model
, bool pre
)
6271 switch (model
& MEMMODEL_BASE_MASK
)
6273 case MEMMODEL_RELAXED
:
6274 case MEMMODEL_CONSUME
:
6276 case MEMMODEL_RELEASE
:
6278 case MEMMODEL_ACQUIRE
:
6280 case MEMMODEL_ACQ_REL
:
6281 case MEMMODEL_SEQ_CST
:
6288 #include "gt-emit-rtl.h"