* Makefile.in (OBJS): Add dwarf2asm.o.
[official-gcc.git] / gcc / emit-rtl.c
blob2d4e7c283891acb31fb3d47763be963b0c6270b1
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
38 #include "config.h"
39 #include "system.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "obstack.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
58 /* Commonly used modes. */
60 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
61 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
62 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
63 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
66 /* This is *not* reset after each function. It gives each CODE_LABEL
67 in the entire compilation a unique label number. */
69 static int label_num = 1;
71 /* Highest label number in current function.
72 Zero means use the value of label_num instead.
73 This is nonzero only when belatedly compiling an inline function. */
75 static int last_label_num;
77 /* Value label_num had when set_new_first_and_last_label_number was called.
78 If label_num has not changed since then, last_label_num is valid. */
80 static int base_label_num;
82 /* Nonzero means do not generate NOTEs for source line numbers. */
84 static int no_line_numbers;
86 /* Commonly used rtx's, so that we only need space for one copy.
87 These are initialized once for the entire compilation.
88 All of these except perhaps the floating-point CONST_DOUBLEs
89 are unique; no other rtx-object will be equal to any of these. */
91 rtx global_rtl[GR_MAX];
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx. */
97 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
99 rtx const_true_rtx;
101 REAL_VALUE_TYPE dconst0;
102 REAL_VALUE_TYPE dconst1;
103 REAL_VALUE_TYPE dconst2;
104 REAL_VALUE_TYPE dconstm1;
106 /* All references to the following fixed hard registers go through
107 these unique rtl objects. On machines where the frame-pointer and
108 arg-pointer are the same register, they use the same unique object.
110 After register allocation, other rtl objects which used to be pseudo-regs
111 may be clobbered to refer to the frame-pointer register.
112 But references that were originally to the frame-pointer can be
113 distinguished from the others because they contain frame_pointer_rtx.
115 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
116 tricky: until register elimination has taken place hard_frame_pointer_rtx
117 should be used if it is being set, and frame_pointer_rtx otherwise. After
118 register elimination hard_frame_pointer_rtx should always be used.
119 On machines where the two registers are same (most) then these are the
120 same.
122 In an inline procedure, the stack and frame pointer rtxs may not be
123 used for anything else. */
124 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
125 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
126 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
127 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
128 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
130 /* This is used to implement __builtin_return_address for some machines.
131 See for instance the MIPS port. */
132 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
134 /* We make one copy of (const_int C) where C is in
135 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
136 to save space during the compilation and simplify comparisons of
137 integers. */
139 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
141 /* A hash table storing CONST_INTs whose absolute value is greater
142 than MAX_SAVED_CONST_INT. */
144 static htab_t const_int_htab;
146 /* start_sequence and gen_sequence can make a lot of rtx expressions which are
147 shortly thrown away. We use two mechanisms to prevent this waste:
149 For sizes up to 5 elements, we keep a SEQUENCE and its associated
150 rtvec for use by gen_sequence. One entry for each size is
151 sufficient because most cases are calls to gen_sequence followed by
152 immediately emitting the SEQUENCE. Reuse is safe since emitting a
153 sequence is destructive on the insn in it anyway and hence can't be
154 redone.
156 We do not bother to save this cached data over nested function calls.
157 Instead, we just reinitialize them. */
159 #define SEQUENCE_RESULT_SIZE 5
161 static rtx sequence_result[SEQUENCE_RESULT_SIZE];
163 /* During RTL generation, we also keep a list of free INSN rtl codes. */
164 static rtx free_insn;
166 #define first_insn (cfun->emit->x_first_insn)
167 #define last_insn (cfun->emit->x_last_insn)
168 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
169 #define last_linenum (cfun->emit->x_last_linenum)
170 #define last_filename (cfun->emit->x_last_filename)
171 #define first_label_num (cfun->emit->x_first_label_num)
173 static rtx make_jump_insn_raw PARAMS ((rtx));
174 static rtx make_call_insn_raw PARAMS ((rtx));
175 static rtx find_line_note PARAMS ((rtx));
176 static void mark_sequence_stack PARAMS ((struct sequence_stack *));
177 static void unshare_all_rtl_1 PARAMS ((rtx));
178 static void unshare_all_decls PARAMS ((tree));
179 static void reset_used_decls PARAMS ((tree));
180 static hashval_t const_int_htab_hash PARAMS ((const void *));
181 static int const_int_htab_eq PARAMS ((const void *,
182 const void *));
183 static int rtx_htab_mark_1 PARAMS ((void **, void *));
184 static void rtx_htab_mark PARAMS ((void *));
187 /* Returns a hash code for X (which is a really a CONST_INT). */
189 static hashval_t
190 const_int_htab_hash (x)
191 const void *x;
193 return (hashval_t) INTVAL ((const struct rtx_def *) x);
196 /* Returns non-zero if the value represented by X (which is really a
197 CONST_INT) is the same as that given by Y (which is really a
198 HOST_WIDE_INT *). */
200 static int
201 const_int_htab_eq (x, y)
202 const void *x;
203 const void *y;
205 return (INTVAL ((const struct rtx_def *) x) == *((const HOST_WIDE_INT *) y));
208 /* Mark the hash-table element X (which is really a pointer to an
209 rtx). */
211 static int
212 rtx_htab_mark_1 (x, data)
213 void **x;
214 void *data ATTRIBUTE_UNUSED;
216 ggc_mark_rtx (*x);
217 return 1;
220 /* Mark all the elements of HTAB (which is really an htab_t full of
221 rtxs). */
223 static void
224 rtx_htab_mark (htab)
225 void *htab;
227 htab_traverse (*((htab_t *) htab), rtx_htab_mark_1, NULL);
230 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
231 don't attempt to share with the various global pieces of rtl (such as
232 frame_pointer_rtx). */
235 gen_raw_REG (mode, regno)
236 enum machine_mode mode;
237 int regno;
239 rtx x = gen_rtx_raw_REG (mode, regno);
240 ORIGINAL_REGNO (x) = regno;
241 return x;
244 /* There are some RTL codes that require special attention; the generation
245 functions do the raw handling. If you add to this list, modify
246 special_rtx in gengenrtl.c as well. */
249 gen_rtx_CONST_INT (mode, arg)
250 enum machine_mode mode ATTRIBUTE_UNUSED;
251 HOST_WIDE_INT arg;
253 void **slot;
255 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
256 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
258 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
259 if (const_true_rtx && arg == STORE_FLAG_VALUE)
260 return const_true_rtx;
261 #endif
263 /* Look up the CONST_INT in the hash table. */
264 slot = htab_find_slot_with_hash (const_int_htab, &arg,
265 (hashval_t) arg, INSERT);
266 if (*slot == 0)
267 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
269 return (rtx) *slot;
272 /* CONST_DOUBLEs needs special handling because their length is known
273 only at run-time. */
276 gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2)
277 enum machine_mode mode;
278 rtx arg0;
279 HOST_WIDE_INT arg1, arg2;
281 rtx r = rtx_alloc (CONST_DOUBLE);
282 int i;
284 PUT_MODE (r, mode);
285 XEXP (r, 0) = arg0;
286 X0EXP (r, 1) = NULL_RTX;
287 XWINT (r, 2) = arg1;
288 XWINT (r, 3) = arg2;
290 for (i = GET_RTX_LENGTH (CONST_DOUBLE) - 1; i > 3; --i)
291 XWINT (r, i) = 0;
293 return r;
297 gen_rtx_REG (mode, regno)
298 enum machine_mode mode;
299 int regno;
301 /* In case the MD file explicitly references the frame pointer, have
302 all such references point to the same frame pointer. This is
303 used during frame pointer elimination to distinguish the explicit
304 references to these registers from pseudos that happened to be
305 assigned to them.
307 If we have eliminated the frame pointer or arg pointer, we will
308 be using it as a normal register, for example as a spill
309 register. In such cases, we might be accessing it in a mode that
310 is not Pmode and therefore cannot use the pre-allocated rtx.
312 Also don't do this when we are making new REGs in reload, since
313 we don't want to get confused with the real pointers. */
315 if (mode == Pmode && !reload_in_progress)
317 if (regno == FRAME_POINTER_REGNUM)
318 return frame_pointer_rtx;
319 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
320 if (regno == HARD_FRAME_POINTER_REGNUM)
321 return hard_frame_pointer_rtx;
322 #endif
323 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
324 if (regno == ARG_POINTER_REGNUM)
325 return arg_pointer_rtx;
326 #endif
327 #ifdef RETURN_ADDRESS_POINTER_REGNUM
328 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
329 return return_address_pointer_rtx;
330 #endif
331 if (regno == STACK_POINTER_REGNUM)
332 return stack_pointer_rtx;
335 return gen_raw_REG (mode, regno);
339 gen_rtx_MEM (mode, addr)
340 enum machine_mode mode;
341 rtx addr;
343 rtx rt = gen_rtx_raw_MEM (mode, addr);
345 /* This field is not cleared by the mere allocation of the rtx, so
346 we clear it here. */
347 MEM_ALIAS_SET (rt) = 0;
349 return rt;
352 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
354 ** This routine generates an RTX of the size specified by
355 ** <code>, which is an RTX code. The RTX structure is initialized
356 ** from the arguments <element1> through <elementn>, which are
357 ** interpreted according to the specific RTX type's format. The
358 ** special machine mode associated with the rtx (if any) is specified
359 ** in <mode>.
361 ** gen_rtx can be invoked in a way which resembles the lisp-like
362 ** rtx it will generate. For example, the following rtx structure:
364 ** (plus:QI (mem:QI (reg:SI 1))
365 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
367 ** ...would be generated by the following C code:
369 ** gen_rtx (PLUS, QImode,
370 ** gen_rtx (MEM, QImode,
371 ** gen_rtx (REG, SImode, 1)),
372 ** gen_rtx (MEM, QImode,
373 ** gen_rtx (PLUS, SImode,
374 ** gen_rtx (REG, SImode, 2),
375 ** gen_rtx (REG, SImode, 3)))),
378 /*VARARGS2*/
380 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
382 #ifndef ANSI_PROTOTYPES
383 enum rtx_code code;
384 enum machine_mode mode;
385 #endif
386 va_list p;
387 register int i; /* Array indices... */
388 register const char *fmt; /* Current rtx's format... */
389 register rtx rt_val; /* RTX to return to caller... */
391 VA_START (p, mode);
393 #ifndef ANSI_PROTOTYPES
394 code = va_arg (p, enum rtx_code);
395 mode = va_arg (p, enum machine_mode);
396 #endif
398 switch (code)
400 case CONST_INT:
401 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
402 break;
404 case CONST_DOUBLE:
406 rtx arg0 = va_arg (p, rtx);
407 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
408 HOST_WIDE_INT arg2 = va_arg (p, HOST_WIDE_INT);
409 rt_val = gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2);
411 break;
413 case REG:
414 rt_val = gen_rtx_REG (mode, va_arg (p, int));
415 break;
417 case MEM:
418 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
419 break;
421 default:
422 rt_val = rtx_alloc (code); /* Allocate the storage space. */
423 rt_val->mode = mode; /* Store the machine mode... */
425 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
426 for (i = 0; i < GET_RTX_LENGTH (code); i++)
428 switch (*fmt++)
430 case '0': /* Unused field. */
431 break;
433 case 'i': /* An integer? */
434 XINT (rt_val, i) = va_arg (p, int);
435 break;
437 case 'w': /* A wide integer? */
438 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
439 break;
441 case 's': /* A string? */
442 XSTR (rt_val, i) = va_arg (p, char *);
443 break;
445 case 'e': /* An expression? */
446 case 'u': /* An insn? Same except when printing. */
447 XEXP (rt_val, i) = va_arg (p, rtx);
448 break;
450 case 'E': /* An RTX vector? */
451 XVEC (rt_val, i) = va_arg (p, rtvec);
452 break;
454 case 'b': /* A bitmap? */
455 XBITMAP (rt_val, i) = va_arg (p, bitmap);
456 break;
458 case 't': /* A tree? */
459 XTREE (rt_val, i) = va_arg (p, tree);
460 break;
462 default:
463 abort ();
466 break;
469 va_end (p);
470 return rt_val;
473 /* gen_rtvec (n, [rt1, ..., rtn])
475 ** This routine creates an rtvec and stores within it the
476 ** pointers to rtx's which are its arguments.
479 /*VARARGS1*/
480 rtvec
481 gen_rtvec VPARAMS ((int n, ...))
483 #ifndef ANSI_PROTOTYPES
484 int n;
485 #endif
486 int i;
487 va_list p;
488 rtx *vector;
490 VA_START (p, n);
492 #ifndef ANSI_PROTOTYPES
493 n = va_arg (p, int);
494 #endif
496 if (n == 0)
497 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
499 vector = (rtx *) alloca (n * sizeof (rtx));
501 for (i = 0; i < n; i++)
502 vector[i] = va_arg (p, rtx);
503 va_end (p);
505 return gen_rtvec_v (n, vector);
508 rtvec
509 gen_rtvec_v (n, argp)
510 int n;
511 rtx *argp;
513 register int i;
514 register rtvec rt_val;
516 if (n == 0)
517 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
519 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
521 for (i = 0; i < n; i++)
522 rt_val->elem[i] = *argp++;
524 return rt_val;
528 /* Generate a REG rtx for a new pseudo register of mode MODE.
529 This pseudo is assigned the next sequential register number. */
532 gen_reg_rtx (mode)
533 enum machine_mode mode;
535 struct function *f = cfun;
536 register rtx val;
538 /* Don't let anything called after initial flow analysis create new
539 registers. */
540 if (no_new_pseudos)
541 abort ();
543 if (generating_concat_p
544 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
545 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
547 /* For complex modes, don't make a single pseudo.
548 Instead, make a CONCAT of two pseudos.
549 This allows noncontiguous allocation of the real and imaginary parts,
550 which makes much better code. Besides, allocating DCmode
551 pseudos overstrains reload on some machines like the 386. */
552 rtx realpart, imagpart;
553 int size = GET_MODE_UNIT_SIZE (mode);
554 enum machine_mode partmode
555 = mode_for_size (size * BITS_PER_UNIT,
556 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
557 ? MODE_FLOAT : MODE_INT),
560 realpart = gen_reg_rtx (partmode);
561 imagpart = gen_reg_rtx (partmode);
562 return gen_rtx_CONCAT (mode, realpart, imagpart);
565 /* Make sure regno_pointer_align and regno_reg_rtx are large enough
566 to have an element for this pseudo reg number. */
568 if (reg_rtx_no == f->emit->regno_pointer_align_length)
570 int old_size = f->emit->regno_pointer_align_length;
571 rtx *new1;
572 char *new;
573 new = xrealloc (f->emit->regno_pointer_align, old_size * 2);
574 memset (new + old_size, 0, old_size);
575 f->emit->regno_pointer_align = (unsigned char *) new;
577 new1 = (rtx *) xrealloc (f->emit->x_regno_reg_rtx,
578 old_size * 2 * sizeof (rtx));
579 memset (new1 + old_size, 0, old_size * sizeof (rtx));
580 regno_reg_rtx = new1;
582 f->emit->regno_pointer_align_length = old_size * 2;
585 val = gen_raw_REG (mode, reg_rtx_no);
586 regno_reg_rtx[reg_rtx_no++] = val;
587 return val;
590 /* Identify REG (which may be a CONCAT) as a user register. */
592 void
593 mark_user_reg (reg)
594 rtx reg;
596 if (GET_CODE (reg) == CONCAT)
598 REG_USERVAR_P (XEXP (reg, 0)) = 1;
599 REG_USERVAR_P (XEXP (reg, 1)) = 1;
601 else if (GET_CODE (reg) == REG)
602 REG_USERVAR_P (reg) = 1;
603 else
604 abort ();
607 /* Identify REG as a probable pointer register and show its alignment
608 as ALIGN, if nonzero. */
610 void
611 mark_reg_pointer (reg, align)
612 rtx reg;
613 int align;
615 if (! REG_POINTER (reg))
617 REG_POINTER (reg) = 1;
619 if (align)
620 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
622 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
623 /* We can no-longer be sure just how aligned this pointer is */
624 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
627 /* Return 1 plus largest pseudo reg number used in the current function. */
630 max_reg_num ()
632 return reg_rtx_no;
635 /* Return 1 + the largest label number used so far in the current function. */
638 max_label_num ()
640 if (last_label_num && label_num == base_label_num)
641 return last_label_num;
642 return label_num;
645 /* Return first label number used in this function (if any were used). */
648 get_first_label_num ()
650 return first_label_num;
653 /* Return a value representing some low-order bits of X, where the number
654 of low-order bits is given by MODE. Note that no conversion is done
655 between floating-point and fixed-point values, rather, the bit
656 representation is returned.
658 This function handles the cases in common between gen_lowpart, below,
659 and two variants in cse.c and combine.c. These are the cases that can
660 be safely handled at all points in the compilation.
662 If this is not a case we can handle, return 0. */
665 gen_lowpart_common (mode, x)
666 enum machine_mode mode;
667 register rtx x;
669 int word = 0;
671 if (GET_MODE (x) == mode)
672 return x;
674 /* MODE must occupy no more words than the mode of X. */
675 if (GET_MODE (x) != VOIDmode
676 && ((GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
677 > ((GET_MODE_SIZE (GET_MODE (x)) + (UNITS_PER_WORD - 1))
678 / UNITS_PER_WORD)))
679 return 0;
681 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
682 word = ((GET_MODE_SIZE (GET_MODE (x))
683 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
684 / UNITS_PER_WORD);
686 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
687 && (GET_MODE_CLASS (mode) == MODE_INT
688 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
690 /* If we are getting the low-order part of something that has been
691 sign- or zero-extended, we can either just use the object being
692 extended or make a narrower extension. If we want an even smaller
693 piece than the size of the object being extended, call ourselves
694 recursively.
696 This case is used mostly by combine and cse. */
698 if (GET_MODE (XEXP (x, 0)) == mode)
699 return XEXP (x, 0);
700 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
701 return gen_lowpart_common (mode, XEXP (x, 0));
702 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
703 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
705 else if (GET_CODE (x) == SUBREG
706 && (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
707 || GET_MODE_SIZE (mode) <= UNITS_PER_WORD
708 || GET_MODE_SIZE (mode) == GET_MODE_UNIT_SIZE (GET_MODE (x))))
709 return (GET_MODE (SUBREG_REG (x)) == mode && SUBREG_WORD (x) == 0
710 ? SUBREG_REG (x)
711 : gen_rtx_SUBREG (mode, SUBREG_REG (x), SUBREG_WORD (x) + word));
712 else if (GET_CODE (x) == REG)
714 /* Let the backend decide how many registers to skip. This is needed
715 in particular for Sparc64 where fp regs are smaller than a word. */
716 /* ??? Note that subregs are now ambiguous, in that those against
717 pseudos are sized by the Word Size, while those against hard
718 regs are sized by the underlying register size. Better would be
719 to always interpret the subreg offset parameter as bytes or bits. */
721 if (WORDS_BIG_ENDIAN && REGNO (x) < FIRST_PSEUDO_REGISTER
722 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (mode))
723 word = (HARD_REGNO_NREGS (REGNO (x), GET_MODE (x))
724 - HARD_REGNO_NREGS (REGNO (x), mode));
726 /* If the register is not valid for MODE, return 0. If we don't
727 do this, there is no way to fix up the resulting REG later.
728 But we do do this if the current REG is not valid for its
729 mode. This latter is a kludge, but is required due to the
730 way that parameters are passed on some machines, most
731 notably Sparc. */
732 if (REGNO (x) < FIRST_PSEUDO_REGISTER
733 && ! HARD_REGNO_MODE_OK (REGNO (x) + word, mode)
734 && HARD_REGNO_MODE_OK (REGNO (x), GET_MODE (x)))
735 return 0;
736 else if (REGNO (x) < FIRST_PSEUDO_REGISTER
737 /* integrate.c can't handle parts of a return value register. */
738 && (! REG_FUNCTION_VALUE_P (x)
739 || ! rtx_equal_function_value_matters)
740 #ifdef CLASS_CANNOT_CHANGE_MODE
741 && ! (CLASS_CANNOT_CHANGE_MODE_P (mode, GET_MODE (x))
742 && GET_MODE_CLASS (GET_MODE (x)) != MODE_COMPLEX_INT
743 && GET_MODE_CLASS (GET_MODE (x)) != MODE_COMPLEX_FLOAT
744 && (TEST_HARD_REG_BIT
745 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
746 REGNO (x))))
747 #endif
748 /* We want to keep the stack, frame, and arg pointers
749 special. */
750 && x != frame_pointer_rtx
751 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
752 && x != arg_pointer_rtx
753 #endif
754 && x != stack_pointer_rtx)
755 return gen_rtx_REG (mode, REGNO (x) + word);
756 else
757 return gen_rtx_SUBREG (mode, x, word);
759 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
760 from the low-order part of the constant. */
761 else if ((GET_MODE_CLASS (mode) == MODE_INT
762 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
763 && GET_MODE (x) == VOIDmode
764 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
766 /* If MODE is twice the host word size, X is already the desired
767 representation. Otherwise, if MODE is wider than a word, we can't
768 do this. If MODE is exactly a word, return just one CONST_INT. */
770 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
771 return x;
772 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
773 return 0;
774 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
775 return (GET_CODE (x) == CONST_INT ? x
776 : GEN_INT (CONST_DOUBLE_LOW (x)));
777 else
779 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
780 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
781 : CONST_DOUBLE_LOW (x));
783 /* Sign extend to HOST_WIDE_INT. */
784 val = trunc_int_for_mode (val, mode);
786 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
787 : GEN_INT (val));
791 #ifndef REAL_ARITHMETIC
792 /* If X is an integral constant but we want it in floating-point, it
793 must be the case that we have a union of an integer and a floating-point
794 value. If the machine-parameters allow it, simulate that union here
795 and return the result. The two-word and single-word cases are
796 different. */
798 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
799 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
800 || flag_pretend_float)
801 && GET_MODE_CLASS (mode) == MODE_FLOAT
802 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
803 && GET_CODE (x) == CONST_INT
804 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
806 union {HOST_WIDE_INT i; float d; } u;
808 u.i = INTVAL (x);
809 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
811 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
812 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
813 || flag_pretend_float)
814 && GET_MODE_CLASS (mode) == MODE_FLOAT
815 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
816 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
817 && GET_MODE (x) == VOIDmode
818 && (sizeof (double) * HOST_BITS_PER_CHAR
819 == 2 * HOST_BITS_PER_WIDE_INT))
821 union {HOST_WIDE_INT i[2]; double d; } u;
822 HOST_WIDE_INT low, high;
824 if (GET_CODE (x) == CONST_INT)
825 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
826 else
827 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
829 #ifdef HOST_WORDS_BIG_ENDIAN
830 u.i[0] = high, u.i[1] = low;
831 #else
832 u.i[0] = low, u.i[1] = high;
833 #endif
835 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
838 /* Similarly, if this is converting a floating-point value into a
839 single-word integer. Only do this is the host and target parameters are
840 compatible. */
842 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
843 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
844 || flag_pretend_float)
845 && (GET_MODE_CLASS (mode) == MODE_INT
846 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
847 && GET_CODE (x) == CONST_DOUBLE
848 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
849 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
850 return operand_subword (x, word, 0, GET_MODE (x));
852 /* Similarly, if this is converting a floating-point value into a
853 two-word integer, we can do this one word at a time and make an
854 integer. Only do this is the host and target parameters are
855 compatible. */
857 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
858 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
859 || flag_pretend_float)
860 && (GET_MODE_CLASS (mode) == MODE_INT
861 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
862 && GET_CODE (x) == CONST_DOUBLE
863 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
864 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
866 rtx lowpart
867 = operand_subword (x, word + WORDS_BIG_ENDIAN, 0, GET_MODE (x));
868 rtx highpart
869 = operand_subword (x, word + ! WORDS_BIG_ENDIAN, 0, GET_MODE (x));
871 if (lowpart && GET_CODE (lowpart) == CONST_INT
872 && highpart && GET_CODE (highpart) == CONST_INT)
873 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
875 #else /* ifndef REAL_ARITHMETIC */
877 /* When we have a FP emulator, we can handle all conversions between
878 FP and integer operands. This simplifies reload because it
879 doesn't have to deal with constructs like (subreg:DI
880 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
882 else if (mode == SFmode
883 && GET_CODE (x) == CONST_INT)
885 REAL_VALUE_TYPE r;
886 HOST_WIDE_INT i;
888 i = INTVAL (x);
889 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
890 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
892 else if (mode == DFmode
893 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
894 && GET_MODE (x) == VOIDmode)
896 REAL_VALUE_TYPE r;
897 HOST_WIDE_INT i[2];
898 HOST_WIDE_INT low, high;
900 if (GET_CODE (x) == CONST_INT)
902 low = INTVAL (x);
903 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
905 else
907 low = CONST_DOUBLE_LOW (x);
908 high = CONST_DOUBLE_HIGH (x);
911 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
912 target machine. */
913 if (WORDS_BIG_ENDIAN)
914 i[0] = high, i[1] = low;
915 else
916 i[0] = low, i[1] = high;
918 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
919 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
921 else if ((GET_MODE_CLASS (mode) == MODE_INT
922 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
923 && GET_CODE (x) == CONST_DOUBLE
924 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
926 REAL_VALUE_TYPE r;
927 long i[4]; /* Only the low 32 bits of each 'long' are used. */
928 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
930 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
931 switch (GET_MODE (x))
933 case SFmode:
934 REAL_VALUE_TO_TARGET_SINGLE (r, i[endian]);
935 i[1 - endian] = 0;
936 break;
937 case DFmode:
938 REAL_VALUE_TO_TARGET_DOUBLE (r, i);
939 break;
940 #if LONG_DOUBLE_TYPE_SIZE == 96
941 case XFmode:
942 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
943 i[3-3*endian] = 0;
944 #else
945 case TFmode:
946 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
947 #endif
948 break;
949 default:
950 abort ();
953 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
954 and return it. */
955 #if HOST_BITS_PER_WIDE_INT == 32
956 return immed_double_const (i[endian], i[1 - endian], mode);
957 #else
959 int c;
961 if (HOST_BITS_PER_WIDE_INT != 64)
962 abort ();
964 for (c = 0; c < 4; c++)
965 i[c] &= ~ (0L);
967 switch (GET_MODE (x))
969 case SFmode:
970 case DFmode:
971 return immed_double_const (((unsigned long) i[endian]) |
972 (((HOST_WIDE_INT) i[1-endian]) << 32),
973 0, mode);
974 default:
975 return immed_double_const (((unsigned long) i[endian*3]) |
976 (((HOST_WIDE_INT) i[1+endian]) << 32),
977 ((unsigned long) i[2-endian]) |
978 (((HOST_WIDE_INT) i[3-endian*3]) << 32),
979 mode);
982 #endif
984 #endif /* ifndef REAL_ARITHMETIC */
986 /* Otherwise, we can't do this. */
987 return 0;
990 /* Return the real part (which has mode MODE) of a complex value X.
991 This always comes at the low address in memory. */
994 gen_realpart (mode, x)
995 enum machine_mode mode;
996 register rtx x;
998 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
999 return XEXP (x, 0);
1000 else if (WORDS_BIG_ENDIAN
1001 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1002 && REG_P (x)
1003 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1004 internal_error
1005 ("Can't access real part of complex value in hard register");
1006 else if (WORDS_BIG_ENDIAN)
1007 return gen_highpart (mode, x);
1008 else
1009 return gen_lowpart (mode, x);
1012 /* Return the imaginary part (which has mode MODE) of a complex value X.
1013 This always comes at the high address in memory. */
1016 gen_imagpart (mode, x)
1017 enum machine_mode mode;
1018 register rtx x;
1020 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
1021 return XEXP (x, 1);
1022 else if (WORDS_BIG_ENDIAN)
1023 return gen_lowpart (mode, x);
1024 else if (!WORDS_BIG_ENDIAN
1025 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1026 && REG_P (x)
1027 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1028 internal_error
1029 ("can't access imaginary part of complex value in hard register");
1030 else
1031 return gen_highpart (mode, x);
1034 /* Return 1 iff X, assumed to be a SUBREG,
1035 refers to the real part of the complex value in its containing reg.
1036 Complex values are always stored with the real part in the first word,
1037 regardless of WORDS_BIG_ENDIAN. */
1040 subreg_realpart_p (x)
1041 rtx x;
1043 if (GET_CODE (x) != SUBREG)
1044 abort ();
1046 return ((unsigned int) SUBREG_WORD (x) * UNITS_PER_WORD
1047 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1050 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1051 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1052 least-significant part of X.
1053 MODE specifies how big a part of X to return;
1054 it usually should not be larger than a word.
1055 If X is a MEM whose address is a QUEUED, the value may be so also. */
1058 gen_lowpart (mode, x)
1059 enum machine_mode mode;
1060 register rtx x;
1062 rtx result = gen_lowpart_common (mode, x);
1064 if (result)
1065 return result;
1066 else if (GET_CODE (x) == REG)
1068 /* Must be a hard reg that's not valid in MODE. */
1069 result = gen_lowpart_common (mode, copy_to_reg (x));
1070 if (result == 0)
1071 abort ();
1072 return result;
1074 else if (GET_CODE (x) == MEM)
1076 /* The only additional case we can do is MEM. */
1077 register int offset = 0;
1078 if (WORDS_BIG_ENDIAN)
1079 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1080 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1082 if (BYTES_BIG_ENDIAN)
1083 /* Adjust the address so that the address-after-the-data
1084 is unchanged. */
1085 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1086 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1088 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
1090 else if (GET_CODE (x) == ADDRESSOF)
1091 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1092 else
1093 abort ();
1096 /* Like `gen_lowpart', but refer to the most significant part.
1097 This is used to access the imaginary part of a complex number. */
1100 gen_highpart (mode, x)
1101 enum machine_mode mode;
1102 register rtx x;
1104 /* This case loses if X is a subreg. To catch bugs early,
1105 complain if an invalid MODE is used even in other cases. */
1106 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
1107 && GET_MODE_SIZE (mode) != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1108 abort ();
1109 if (GET_CODE (x) == CONST_DOUBLE
1110 #if !(TARGET_FLOAT_FORMAT != HOST_FLOAT_FORMAT || defined (REAL_IS_NOT_DOUBLE))
1111 && GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT
1112 #endif
1114 return GEN_INT (CONST_DOUBLE_HIGH (x) & GET_MODE_MASK (mode));
1115 else if (GET_CODE (x) == CONST_INT)
1117 if (HOST_BITS_PER_WIDE_INT <= BITS_PER_WORD)
1118 return const0_rtx;
1119 return GEN_INT (INTVAL (x) >> (HOST_BITS_PER_WIDE_INT - BITS_PER_WORD));
1121 else if (GET_CODE (x) == MEM)
1123 register int offset = 0;
1124 if (! WORDS_BIG_ENDIAN)
1125 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1126 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1128 if (! BYTES_BIG_ENDIAN
1129 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
1130 offset -= (GET_MODE_SIZE (mode)
1131 - MIN (UNITS_PER_WORD,
1132 GET_MODE_SIZE (GET_MODE (x))));
1134 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
1136 else if (GET_CODE (x) == SUBREG)
1138 /* The only time this should occur is when we are looking at a
1139 multi-word item with a SUBREG whose mode is the same as that of the
1140 item. It isn't clear what we would do if it wasn't. */
1141 if (SUBREG_WORD (x) != 0)
1142 abort ();
1143 return gen_highpart (mode, SUBREG_REG (x));
1145 else if (GET_CODE (x) == REG)
1147 int word;
1149 /* Let the backend decide how many registers to skip. This is needed
1150 in particular for sparc64 where fp regs are smaller than a word. */
1151 /* ??? Note that subregs are now ambiguous, in that those against
1152 pseudos are sized by the word size, while those against hard
1153 regs are sized by the underlying register size. Better would be
1154 to always interpret the subreg offset parameter as bytes or bits. */
1156 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
1157 abort ();
1158 else if (WORDS_BIG_ENDIAN)
1159 word = 0;
1160 else if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1161 word = (HARD_REGNO_NREGS (REGNO (x), GET_MODE (x))
1162 - HARD_REGNO_NREGS (REGNO (x), mode));
1163 else
1164 word = ((GET_MODE_SIZE (GET_MODE (x))
1165 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
1166 / UNITS_PER_WORD);
1168 if (REGNO (x) < FIRST_PSEUDO_REGISTER
1169 /* integrate.c can't handle parts of a return value register. */
1170 && (! REG_FUNCTION_VALUE_P (x)
1171 || ! rtx_equal_function_value_matters)
1172 /* We want to keep the stack, frame, and arg pointers special. */
1173 && x != frame_pointer_rtx
1174 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1175 && x != arg_pointer_rtx
1176 #endif
1177 && x != stack_pointer_rtx)
1178 return gen_rtx_REG (mode, REGNO (x) + word);
1179 else
1180 return gen_rtx_SUBREG (mode, x, word);
1182 else
1183 abort ();
1186 /* Return 1 iff X, assumed to be a SUBREG,
1187 refers to the least significant part of its containing reg.
1188 If X is not a SUBREG, always return 1 (it is its own low part!). */
1191 subreg_lowpart_p (x)
1192 rtx x;
1194 if (GET_CODE (x) != SUBREG)
1195 return 1;
1196 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1197 return 0;
1199 if (WORDS_BIG_ENDIAN
1200 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD)
1201 return (SUBREG_WORD (x)
1202 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
1203 - MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD))
1204 / UNITS_PER_WORD));
1206 return SUBREG_WORD (x) == 0;
1209 /* Return subword I of operand OP.
1210 The word number, I, is interpreted as the word number starting at the
1211 low-order address. Word 0 is the low-order word if not WORDS_BIG_ENDIAN,
1212 otherwise it is the high-order word.
1214 If we cannot extract the required word, we return zero. Otherwise, an
1215 rtx corresponding to the requested word will be returned.
1217 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1218 reload has completed, a valid address will always be returned. After
1219 reload, if a valid address cannot be returned, we return zero.
1221 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1222 it is the responsibility of the caller.
1224 MODE is the mode of OP in case it is a CONST_INT. */
1227 operand_subword (op, i, validate_address, mode)
1228 rtx op;
1229 unsigned int i;
1230 int validate_address;
1231 enum machine_mode mode;
1233 HOST_WIDE_INT val;
1234 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1236 if (mode == VOIDmode)
1237 mode = GET_MODE (op);
1239 if (mode == VOIDmode)
1240 abort ();
1242 /* If OP is narrower than a word, fail. */
1243 if (mode != BLKmode
1244 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1245 return 0;
1247 /* If we want a word outside OP, return zero. */
1248 if (mode != BLKmode
1249 && (i + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1250 return const0_rtx;
1252 /* If OP is already an integer word, return it. */
1253 if (GET_MODE_CLASS (mode) == MODE_INT
1254 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1255 return op;
1257 /* If OP is a REG or SUBREG, we can handle it very simply. */
1258 if (GET_CODE (op) == REG)
1260 /* ??? There is a potential problem with this code. It does not
1261 properly handle extractions of a subword from a hard register
1262 that is larger than word_mode. Presumably the check for
1263 HARD_REGNO_MODE_OK catches these most of these cases. */
1265 /* If OP is a hard register, but OP + I is not a hard register,
1266 then extracting a subword is impossible.
1268 For example, consider if OP is the last hard register and it is
1269 larger than word_mode. If we wanted word N (for N > 0) because a
1270 part of that hard register was known to contain a useful value,
1271 then OP + I would refer to a pseudo, not the hard register we
1272 actually wanted. */
1273 if (REGNO (op) < FIRST_PSEUDO_REGISTER
1274 && REGNO (op) + i >= FIRST_PSEUDO_REGISTER)
1275 return 0;
1277 /* If the register is not valid for MODE, return 0. Note we
1278 have to check both OP and OP + I since they may refer to
1279 different parts of the register file.
1281 Consider if OP refers to the last 96bit FP register and we want
1282 subword 3 because that subword is known to contain a value we
1283 needed. */
1284 if (REGNO (op) < FIRST_PSEUDO_REGISTER
1285 && (! HARD_REGNO_MODE_OK (REGNO (op), word_mode)
1286 || ! HARD_REGNO_MODE_OK (REGNO (op) + i, word_mode)))
1287 return 0;
1288 else if (REGNO (op) >= FIRST_PSEUDO_REGISTER
1289 || (REG_FUNCTION_VALUE_P (op)
1290 && rtx_equal_function_value_matters)
1291 /* We want to keep the stack, frame, and arg pointers
1292 special. */
1293 || op == frame_pointer_rtx
1294 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1295 || op == arg_pointer_rtx
1296 #endif
1297 || op == stack_pointer_rtx)
1298 return gen_rtx_SUBREG (word_mode, op, i);
1299 else
1300 return gen_rtx_REG (word_mode, REGNO (op) + i);
1302 else if (GET_CODE (op) == SUBREG)
1303 return gen_rtx_SUBREG (word_mode, SUBREG_REG (op), i + SUBREG_WORD (op));
1304 else if (GET_CODE (op) == CONCAT)
1306 unsigned int partwords
1307 = GET_MODE_UNIT_SIZE (GET_MODE (op)) / UNITS_PER_WORD;
1309 if (i < partwords)
1310 return operand_subword (XEXP (op, 0), i, validate_address, mode);
1311 return operand_subword (XEXP (op, 1), i - partwords,
1312 validate_address, mode);
1315 /* Form a new MEM at the requested address. */
1316 if (GET_CODE (op) == MEM)
1318 rtx addr = plus_constant (XEXP (op, 0), i * UNITS_PER_WORD);
1319 rtx new;
1321 if (validate_address)
1323 if (reload_completed)
1325 if (! strict_memory_address_p (word_mode, addr))
1326 return 0;
1328 else
1329 addr = memory_address (word_mode, addr);
1332 new = gen_rtx_MEM (word_mode, addr);
1333 MEM_COPY_ATTRIBUTES (new, op);
1334 return new;
1337 /* The only remaining cases are when OP is a constant. If the host and
1338 target floating formats are the same, handling two-word floating
1339 constants are easy. Note that REAL_VALUE_TO_TARGET_{SINGLE,DOUBLE}
1340 are defined as returning one or two 32 bit values, respectively,
1341 and not values of BITS_PER_WORD bits. */
1342 #ifdef REAL_ARITHMETIC
1343 /* The output is some bits, the width of the target machine's word.
1344 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1345 host can't. */
1346 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1347 && GET_MODE_CLASS (mode) == MODE_FLOAT
1348 && GET_MODE_BITSIZE (mode) == 64
1349 && GET_CODE (op) == CONST_DOUBLE)
1351 long k[2];
1352 REAL_VALUE_TYPE rv;
1354 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1355 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1357 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1358 which the words are written depends on the word endianness.
1359 ??? This is a potential portability problem and should
1360 be fixed at some point.
1362 We must excercise caution with the sign bit. By definition there
1363 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1364 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1365 So we explicitly mask and sign-extend as necessary. */
1366 if (BITS_PER_WORD == 32)
1368 val = k[i];
1369 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1370 return GEN_INT (val);
1372 #if HOST_BITS_PER_WIDE_INT >= 64
1373 else if (BITS_PER_WORD >= 64 && i == 0)
1375 val = k[! WORDS_BIG_ENDIAN];
1376 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1377 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1378 return GEN_INT (val);
1380 #endif
1381 else if (BITS_PER_WORD == 16)
1383 val = k[i >> 1];
1384 if ((i & 1) == !WORDS_BIG_ENDIAN)
1385 val >>= 16;
1386 val &= 0xffff;
1387 return GEN_INT (val);
1389 else
1390 abort ();
1392 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1393 && GET_MODE_CLASS (mode) == MODE_FLOAT
1394 && GET_MODE_BITSIZE (mode) > 64
1395 && GET_CODE (op) == CONST_DOUBLE)
1397 long k[4];
1398 REAL_VALUE_TYPE rv;
1400 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1401 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1403 if (BITS_PER_WORD == 32)
1405 val = k[i];
1406 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1407 return GEN_INT (val);
1409 #if HOST_BITS_PER_WIDE_INT >= 64
1410 else if (BITS_PER_WORD >= 64 && i <= 1)
1412 val = k[i*2 + ! WORDS_BIG_ENDIAN];
1413 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1414 val |= (HOST_WIDE_INT) k[i*2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1415 return GEN_INT (val);
1417 #endif
1418 else
1419 abort ();
1421 #else /* no REAL_ARITHMETIC */
1422 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1423 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1424 || flag_pretend_float)
1425 && GET_MODE_CLASS (mode) == MODE_FLOAT
1426 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1427 && GET_CODE (op) == CONST_DOUBLE)
1429 /* The constant is stored in the host's word-ordering,
1430 but we want to access it in the target's word-ordering. Some
1431 compilers don't like a conditional inside macro args, so we have two
1432 copies of the return. */
1433 #ifdef HOST_WORDS_BIG_ENDIAN
1434 return GEN_INT (i == WORDS_BIG_ENDIAN
1435 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1436 #else
1437 return GEN_INT (i != WORDS_BIG_ENDIAN
1438 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1439 #endif
1441 #endif /* no REAL_ARITHMETIC */
1443 /* Single word float is a little harder, since single- and double-word
1444 values often do not have the same high-order bits. We have already
1445 verified that we want the only defined word of the single-word value. */
1446 #ifdef REAL_ARITHMETIC
1447 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1448 && GET_MODE_BITSIZE (mode) == 32
1449 && GET_CODE (op) == CONST_DOUBLE)
1451 long l;
1452 REAL_VALUE_TYPE rv;
1454 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1455 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1457 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1458 val = l;
1459 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1461 if (BITS_PER_WORD == 16)
1463 if ((i & 1) == !WORDS_BIG_ENDIAN)
1464 val >>= 16;
1465 val &= 0xffff;
1468 return GEN_INT (val);
1470 #else
1471 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1472 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1473 || flag_pretend_float)
1474 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
1475 && GET_MODE_CLASS (mode) == MODE_FLOAT
1476 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1477 && GET_CODE (op) == CONST_DOUBLE)
1479 double d;
1480 union {float f; HOST_WIDE_INT i; } u;
1482 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1484 u.f = d;
1485 return GEN_INT (u.i);
1487 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1488 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1489 || flag_pretend_float)
1490 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1491 && GET_MODE_CLASS (mode) == MODE_FLOAT
1492 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1493 && GET_CODE (op) == CONST_DOUBLE)
1495 double d;
1496 union {double d; HOST_WIDE_INT i; } u;
1498 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1500 u.d = d;
1501 return GEN_INT (u.i);
1503 #endif /* no REAL_ARITHMETIC */
1505 /* The only remaining cases that we can handle are integers.
1506 Convert to proper endianness now since these cases need it.
1507 At this point, i == 0 means the low-order word.
1509 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1510 in general. However, if OP is (const_int 0), we can just return
1511 it for any word. */
1513 if (op == const0_rtx)
1514 return op;
1516 if (GET_MODE_CLASS (mode) != MODE_INT
1517 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1518 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1519 return 0;
1521 if (WORDS_BIG_ENDIAN)
1522 i = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - i;
1524 /* Find out which word on the host machine this value is in and get
1525 it from the constant. */
1526 val = (i / size_ratio == 0
1527 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1528 : (GET_CODE (op) == CONST_INT
1529 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1531 /* Get the value we want into the low bits of val. */
1532 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1533 val = ((val >> ((i % size_ratio) * BITS_PER_WORD)));
1535 val = trunc_int_for_mode (val, word_mode);
1537 return GEN_INT (val);
1540 /* Similar to `operand_subword', but never return 0. If we can't extract
1541 the required subword, put OP into a register and try again. If that fails,
1542 abort. We always validate the address in this case. It is not valid
1543 to call this function after reload; it is mostly meant for RTL
1544 generation.
1546 MODE is the mode of OP, in case it is CONST_INT. */
1549 operand_subword_force (op, i, mode)
1550 rtx op;
1551 unsigned int i;
1552 enum machine_mode mode;
1554 rtx result = operand_subword (op, i, 1, mode);
1556 if (result)
1557 return result;
1559 if (mode != BLKmode && mode != VOIDmode)
1561 /* If this is a register which can not be accessed by words, copy it
1562 to a pseudo register. */
1563 if (GET_CODE (op) == REG)
1564 op = copy_to_reg (op);
1565 else
1566 op = force_reg (mode, op);
1569 result = operand_subword (op, i, 1, mode);
1570 if (result == 0)
1571 abort ();
1573 return result;
1576 /* Given a compare instruction, swap the operands.
1577 A test instruction is changed into a compare of 0 against the operand. */
1579 void
1580 reverse_comparison (insn)
1581 rtx insn;
1583 rtx body = PATTERN (insn);
1584 rtx comp;
1586 if (GET_CODE (body) == SET)
1587 comp = SET_SRC (body);
1588 else
1589 comp = SET_SRC (XVECEXP (body, 0, 0));
1591 if (GET_CODE (comp) == COMPARE)
1593 rtx op0 = XEXP (comp, 0);
1594 rtx op1 = XEXP (comp, 1);
1595 XEXP (comp, 0) = op1;
1596 XEXP (comp, 1) = op0;
1598 else
1600 rtx new = gen_rtx_COMPARE (VOIDmode,
1601 CONST0_RTX (GET_MODE (comp)), comp);
1602 if (GET_CODE (body) == SET)
1603 SET_SRC (body) = new;
1604 else
1605 SET_SRC (XVECEXP (body, 0, 0)) = new;
1609 /* Return a memory reference like MEMREF, but with its mode changed
1610 to MODE and its address changed to ADDR.
1611 (VOIDmode means don't change the mode.
1612 NULL for ADDR means don't change the address.) */
1615 change_address (memref, mode, addr)
1616 rtx memref;
1617 enum machine_mode mode;
1618 rtx addr;
1620 rtx new;
1622 if (GET_CODE (memref) != MEM)
1623 abort ();
1624 if (mode == VOIDmode)
1625 mode = GET_MODE (memref);
1626 if (addr == 0)
1627 addr = XEXP (memref, 0);
1629 /* If reload is in progress or has completed, ADDR must be valid.
1630 Otherwise, we can call memory_address to make it valid. */
1631 if (reload_completed || reload_in_progress)
1633 if (! memory_address_p (mode, addr))
1634 abort ();
1636 else
1637 addr = memory_address (mode, addr);
1639 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1640 return memref;
1642 new = gen_rtx_MEM (mode, addr);
1643 MEM_COPY_ATTRIBUTES (new, memref);
1644 return new;
1647 /* Return a newly created CODE_LABEL rtx with a unique label number. */
1650 gen_label_rtx ()
1652 register rtx label;
1654 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX,
1655 NULL_RTX, label_num++, NULL_PTR, NULL_PTR);
1657 LABEL_NUSES (label) = 0;
1658 LABEL_ALTERNATE_NAME (label) = NULL;
1659 return label;
1662 /* For procedure integration. */
1664 /* Install new pointers to the first and last insns in the chain.
1665 Also, set cur_insn_uid to one higher than the last in use.
1666 Used for an inline-procedure after copying the insn chain. */
1668 void
1669 set_new_first_and_last_insn (first, last)
1670 rtx first, last;
1672 rtx insn;
1674 first_insn = first;
1675 last_insn = last;
1676 cur_insn_uid = 0;
1678 for (insn = first; insn; insn = NEXT_INSN (insn))
1679 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
1681 cur_insn_uid++;
1684 /* Set the range of label numbers found in the current function.
1685 This is used when belatedly compiling an inline function. */
1687 void
1688 set_new_first_and_last_label_num (first, last)
1689 int first, last;
1691 base_label_num = label_num;
1692 first_label_num = first;
1693 last_label_num = last;
1696 /* Set the last label number found in the current function.
1697 This is used when belatedly compiling an inline function. */
1699 void
1700 set_new_last_label_num (last)
1701 int last;
1703 base_label_num = label_num;
1704 last_label_num = last;
1707 /* Restore all variables describing the current status from the structure *P.
1708 This is used after a nested function. */
1710 void
1711 restore_emit_status (p)
1712 struct function *p ATTRIBUTE_UNUSED;
1714 last_label_num = 0;
1715 clear_emit_caches ();
1718 /* Clear out all parts of the state in F that can safely be discarded
1719 after the function has been compiled, to let garbage collection
1720 reclaim the memory. */
1722 void
1723 free_emit_status (f)
1724 struct function *f;
1726 free (f->emit->x_regno_reg_rtx);
1727 free (f->emit->regno_pointer_align);
1728 free (f->emit);
1729 f->emit = NULL;
1732 /* Go through all the RTL insn bodies and copy any invalid shared
1733 structure. This routine should only be called once. */
1735 void
1736 unshare_all_rtl (fndecl, insn)
1737 tree fndecl;
1738 rtx insn;
1740 tree decl;
1742 /* Make sure that virtual parameters are not shared. */
1743 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1744 DECL_RTL (decl) = copy_rtx_if_shared (DECL_RTL (decl));
1746 /* Make sure that virtual stack slots are not shared. */
1747 unshare_all_decls (DECL_INITIAL (fndecl));
1749 /* Unshare just about everything else. */
1750 unshare_all_rtl_1 (insn);
1752 /* Make sure the addresses of stack slots found outside the insn chain
1753 (such as, in DECL_RTL of a variable) are not shared
1754 with the insn chain.
1756 This special care is necessary when the stack slot MEM does not
1757 actually appear in the insn chain. If it does appear, its address
1758 is unshared from all else at that point. */
1759 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
1762 /* Go through all the RTL insn bodies and copy any invalid shared
1763 structure, again. This is a fairly expensive thing to do so it
1764 should be done sparingly. */
1766 void
1767 unshare_all_rtl_again (insn)
1768 rtx insn;
1770 rtx p;
1771 tree decl;
1773 for (p = insn; p; p = NEXT_INSN (p))
1774 if (INSN_P (p))
1776 reset_used_flags (PATTERN (p));
1777 reset_used_flags (REG_NOTES (p));
1778 reset_used_flags (LOG_LINKS (p));
1781 /* Make sure that virtual stack slots are not shared. */
1782 reset_used_decls (DECL_INITIAL (cfun->decl));
1784 /* Make sure that virtual parameters are not shared. */
1785 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
1786 reset_used_flags (DECL_RTL (decl));
1788 reset_used_flags (stack_slot_list);
1790 unshare_all_rtl (cfun->decl, insn);
1793 /* Go through all the RTL insn bodies and copy any invalid shared structure.
1794 Assumes the mark bits are cleared at entry. */
1796 static void
1797 unshare_all_rtl_1 (insn)
1798 rtx insn;
1800 for (; insn; insn = NEXT_INSN (insn))
1801 if (INSN_P (insn))
1803 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
1804 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
1805 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
1809 /* Go through all virtual stack slots of a function and copy any
1810 shared structure. */
1811 static void
1812 unshare_all_decls (blk)
1813 tree blk;
1815 tree t;
1817 /* Copy shared decls. */
1818 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
1819 DECL_RTL (t) = copy_rtx_if_shared (DECL_RTL (t));
1821 /* Now process sub-blocks. */
1822 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
1823 unshare_all_decls (t);
1826 /* Go through all virtual stack slots of a function and mark them as
1827 not shared. */
1828 static void
1829 reset_used_decls (blk)
1830 tree blk;
1832 tree t;
1834 /* Mark decls. */
1835 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
1836 reset_used_flags (DECL_RTL (t));
1838 /* Now process sub-blocks. */
1839 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
1840 reset_used_decls (t);
1843 /* Mark ORIG as in use, and return a copy of it if it was already in use.
1844 Recursively does the same for subexpressions. */
1847 copy_rtx_if_shared (orig)
1848 rtx orig;
1850 register rtx x = orig;
1851 register int i;
1852 register enum rtx_code code;
1853 register const char *format_ptr;
1854 int copied = 0;
1856 if (x == 0)
1857 return 0;
1859 code = GET_CODE (x);
1861 /* These types may be freely shared. */
1863 switch (code)
1865 case REG:
1866 case QUEUED:
1867 case CONST_INT:
1868 case CONST_DOUBLE:
1869 case SYMBOL_REF:
1870 case CODE_LABEL:
1871 case PC:
1872 case CC0:
1873 case SCRATCH:
1874 /* SCRATCH must be shared because they represent distinct values. */
1875 return x;
1877 case CONST:
1878 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
1879 a LABEL_REF, it isn't sharable. */
1880 if (GET_CODE (XEXP (x, 0)) == PLUS
1881 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
1882 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
1883 return x;
1884 break;
1886 case INSN:
1887 case JUMP_INSN:
1888 case CALL_INSN:
1889 case NOTE:
1890 case BARRIER:
1891 /* The chain of insns is not being copied. */
1892 return x;
1894 case MEM:
1895 /* A MEM is allowed to be shared if its address is constant.
1897 We used to allow sharing of MEMs which referenced
1898 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
1899 that can lose. instantiate_virtual_regs will not unshare
1900 the MEMs, and combine may change the structure of the address
1901 because it looks safe and profitable in one context, but
1902 in some other context it creates unrecognizable RTL. */
1903 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
1904 return x;
1906 break;
1908 default:
1909 break;
1912 /* This rtx may not be shared. If it has already been seen,
1913 replace it with a copy of itself. */
1915 if (x->used)
1917 register rtx copy;
1919 copy = rtx_alloc (code);
1920 memcpy (copy, x,
1921 (sizeof (*copy) - sizeof (copy->fld)
1922 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
1923 x = copy;
1924 copied = 1;
1926 x->used = 1;
1928 /* Now scan the subexpressions recursively.
1929 We can store any replaced subexpressions directly into X
1930 since we know X is not shared! Any vectors in X
1931 must be copied if X was copied. */
1933 format_ptr = GET_RTX_FORMAT (code);
1935 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1937 switch (*format_ptr++)
1939 case 'e':
1940 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
1941 break;
1943 case 'E':
1944 if (XVEC (x, i) != NULL)
1946 register int j;
1947 int len = XVECLEN (x, i);
1949 if (copied && len > 0)
1950 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
1951 for (j = 0; j < len; j++)
1952 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
1954 break;
1957 return x;
1960 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
1961 to look for shared sub-parts. */
1963 void
1964 reset_used_flags (x)
1965 rtx x;
1967 register int i, j;
1968 register enum rtx_code code;
1969 register const char *format_ptr;
1971 if (x == 0)
1972 return;
1974 code = GET_CODE (x);
1976 /* These types may be freely shared so we needn't do any resetting
1977 for them. */
1979 switch (code)
1981 case REG:
1982 case QUEUED:
1983 case CONST_INT:
1984 case CONST_DOUBLE:
1985 case SYMBOL_REF:
1986 case CODE_LABEL:
1987 case PC:
1988 case CC0:
1989 return;
1991 case INSN:
1992 case JUMP_INSN:
1993 case CALL_INSN:
1994 case NOTE:
1995 case LABEL_REF:
1996 case BARRIER:
1997 /* The chain of insns is not being copied. */
1998 return;
2000 default:
2001 break;
2004 x->used = 0;
2006 format_ptr = GET_RTX_FORMAT (code);
2007 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2009 switch (*format_ptr++)
2011 case 'e':
2012 reset_used_flags (XEXP (x, i));
2013 break;
2015 case 'E':
2016 for (j = 0; j < XVECLEN (x, i); j++)
2017 reset_used_flags (XVECEXP (x, i, j));
2018 break;
2023 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2024 Return X or the rtx for the pseudo reg the value of X was copied into.
2025 OTHER must be valid as a SET_DEST. */
2028 make_safe_from (x, other)
2029 rtx x, other;
2031 while (1)
2032 switch (GET_CODE (other))
2034 case SUBREG:
2035 other = SUBREG_REG (other);
2036 break;
2037 case STRICT_LOW_PART:
2038 case SIGN_EXTEND:
2039 case ZERO_EXTEND:
2040 other = XEXP (other, 0);
2041 break;
2042 default:
2043 goto done;
2045 done:
2046 if ((GET_CODE (other) == MEM
2047 && ! CONSTANT_P (x)
2048 && GET_CODE (x) != REG
2049 && GET_CODE (x) != SUBREG)
2050 || (GET_CODE (other) == REG
2051 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2052 || reg_mentioned_p (other, x))))
2054 rtx temp = gen_reg_rtx (GET_MODE (x));
2055 emit_move_insn (temp, x);
2056 return temp;
2058 return x;
2061 /* Emission of insns (adding them to the doubly-linked list). */
2063 /* Return the first insn of the current sequence or current function. */
2066 get_insns ()
2068 return first_insn;
2071 /* Return the last insn emitted in current sequence or current function. */
2074 get_last_insn ()
2076 return last_insn;
2079 /* Specify a new insn as the last in the chain. */
2081 void
2082 set_last_insn (insn)
2083 rtx insn;
2085 if (NEXT_INSN (insn) != 0)
2086 abort ();
2087 last_insn = insn;
2090 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2093 get_last_insn_anywhere ()
2095 struct sequence_stack *stack;
2096 if (last_insn)
2097 return last_insn;
2098 for (stack = seq_stack; stack; stack = stack->next)
2099 if (stack->last != 0)
2100 return stack->last;
2101 return 0;
2104 /* Return a number larger than any instruction's uid in this function. */
2107 get_max_uid ()
2109 return cur_insn_uid;
2112 /* Renumber instructions so that no instruction UIDs are wasted. */
2114 void
2115 renumber_insns (stream)
2116 FILE *stream;
2118 rtx insn;
2120 /* If we're not supposed to renumber instructions, don't. */
2121 if (!flag_renumber_insns)
2122 return;
2124 /* If there aren't that many instructions, then it's not really
2125 worth renumbering them. */
2126 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2127 return;
2129 cur_insn_uid = 1;
2131 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2133 if (stream)
2134 fprintf (stream, "Renumbering insn %d to %d\n",
2135 INSN_UID (insn), cur_insn_uid);
2136 INSN_UID (insn) = cur_insn_uid++;
2140 /* Return the next insn. If it is a SEQUENCE, return the first insn
2141 of the sequence. */
2144 next_insn (insn)
2145 rtx insn;
2147 if (insn)
2149 insn = NEXT_INSN (insn);
2150 if (insn && GET_CODE (insn) == INSN
2151 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2152 insn = XVECEXP (PATTERN (insn), 0, 0);
2155 return insn;
2158 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2159 of the sequence. */
2162 previous_insn (insn)
2163 rtx insn;
2165 if (insn)
2167 insn = PREV_INSN (insn);
2168 if (insn && GET_CODE (insn) == INSN
2169 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2170 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2173 return insn;
2176 /* Return the next insn after INSN that is not a NOTE. This routine does not
2177 look inside SEQUENCEs. */
2180 next_nonnote_insn (insn)
2181 rtx insn;
2183 while (insn)
2185 insn = NEXT_INSN (insn);
2186 if (insn == 0 || GET_CODE (insn) != NOTE)
2187 break;
2190 return insn;
2193 /* Return the previous insn before INSN that is not a NOTE. This routine does
2194 not look inside SEQUENCEs. */
2197 prev_nonnote_insn (insn)
2198 rtx insn;
2200 while (insn)
2202 insn = PREV_INSN (insn);
2203 if (insn == 0 || GET_CODE (insn) != NOTE)
2204 break;
2207 return insn;
2210 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2211 or 0, if there is none. This routine does not look inside
2212 SEQUENCEs. */
2215 next_real_insn (insn)
2216 rtx insn;
2218 while (insn)
2220 insn = NEXT_INSN (insn);
2221 if (insn == 0 || GET_CODE (insn) == INSN
2222 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2223 break;
2226 return insn;
2229 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2230 or 0, if there is none. This routine does not look inside
2231 SEQUENCEs. */
2234 prev_real_insn (insn)
2235 rtx insn;
2237 while (insn)
2239 insn = PREV_INSN (insn);
2240 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2241 || GET_CODE (insn) == JUMP_INSN)
2242 break;
2245 return insn;
2248 /* Find the next insn after INSN that really does something. This routine
2249 does not look inside SEQUENCEs. Until reload has completed, this is the
2250 same as next_real_insn. */
2253 active_insn_p (insn)
2254 rtx insn;
2256 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2257 || (GET_CODE (insn) == INSN
2258 && (! reload_completed
2259 || (GET_CODE (PATTERN (insn)) != USE
2260 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2264 next_active_insn (insn)
2265 rtx insn;
2267 while (insn)
2269 insn = NEXT_INSN (insn);
2270 if (insn == 0 || active_insn_p (insn))
2271 break;
2274 return insn;
2277 /* Find the last insn before INSN that really does something. This routine
2278 does not look inside SEQUENCEs. Until reload has completed, this is the
2279 same as prev_real_insn. */
2282 prev_active_insn (insn)
2283 rtx insn;
2285 while (insn)
2287 insn = PREV_INSN (insn);
2288 if (insn == 0 || active_insn_p (insn))
2289 break;
2292 return insn;
2295 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2298 next_label (insn)
2299 rtx insn;
2301 while (insn)
2303 insn = NEXT_INSN (insn);
2304 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2305 break;
2308 return insn;
2311 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2314 prev_label (insn)
2315 rtx insn;
2317 while (insn)
2319 insn = PREV_INSN (insn);
2320 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2321 break;
2324 return insn;
2327 #ifdef HAVE_cc0
2328 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2329 and REG_CC_USER notes so we can find it. */
2331 void
2332 link_cc0_insns (insn)
2333 rtx insn;
2335 rtx user = next_nonnote_insn (insn);
2337 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2338 user = XVECEXP (PATTERN (user), 0, 0);
2340 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2341 REG_NOTES (user));
2342 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
2345 /* Return the next insn that uses CC0 after INSN, which is assumed to
2346 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2347 applied to the result of this function should yield INSN).
2349 Normally, this is simply the next insn. However, if a REG_CC_USER note
2350 is present, it contains the insn that uses CC0.
2352 Return 0 if we can't find the insn. */
2355 next_cc0_user (insn)
2356 rtx insn;
2358 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
2360 if (note)
2361 return XEXP (note, 0);
2363 insn = next_nonnote_insn (insn);
2364 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2365 insn = XVECEXP (PATTERN (insn), 0, 0);
2367 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
2368 return insn;
2370 return 0;
2373 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2374 note, it is the previous insn. */
2377 prev_cc0_setter (insn)
2378 rtx insn;
2380 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2382 if (note)
2383 return XEXP (note, 0);
2385 insn = prev_nonnote_insn (insn);
2386 if (! sets_cc0_p (PATTERN (insn)))
2387 abort ();
2389 return insn;
2391 #endif
2393 /* Try splitting insns that can be split for better scheduling.
2394 PAT is the pattern which might split.
2395 TRIAL is the insn providing PAT.
2396 LAST is non-zero if we should return the last insn of the sequence produced.
2398 If this routine succeeds in splitting, it returns the first or last
2399 replacement insn depending on the value of LAST. Otherwise, it
2400 returns TRIAL. If the insn to be returned can be split, it will be. */
2403 try_split (pat, trial, last)
2404 rtx pat, trial;
2405 int last;
2407 rtx before = PREV_INSN (trial);
2408 rtx after = NEXT_INSN (trial);
2409 rtx seq = split_insns (pat, trial);
2410 int has_barrier = 0;
2411 rtx tem;
2413 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2414 We may need to handle this specially. */
2415 if (after && GET_CODE (after) == BARRIER)
2417 has_barrier = 1;
2418 after = NEXT_INSN (after);
2421 if (seq)
2423 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2424 The latter case will normally arise only when being done so that
2425 it, in turn, will be split (SFmode on the 29k is an example). */
2426 if (GET_CODE (seq) == SEQUENCE)
2428 int i;
2430 /* Avoid infinite loop if any insn of the result matches
2431 the original pattern. */
2432 for (i = 0; i < XVECLEN (seq, 0); i++)
2433 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN
2434 && rtx_equal_p (PATTERN (XVECEXP (seq, 0, i)), pat))
2435 return trial;
2437 /* Mark labels. */
2438 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2439 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
2440 mark_jump_label (PATTERN (XVECEXP (seq, 0, i)),
2441 XVECEXP (seq, 0, i), 0, 0);
2443 /* If we are splitting a CALL_INSN, look for the CALL_INSN
2444 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
2445 if (GET_CODE (trial) == CALL_INSN)
2446 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2447 if (GET_CODE (XVECEXP (seq, 0, i)) == CALL_INSN)
2448 CALL_INSN_FUNCTION_USAGE (XVECEXP (seq, 0, i))
2449 = CALL_INSN_FUNCTION_USAGE (trial);
2451 tem = emit_insn_after (seq, before);
2453 delete_insn (trial);
2454 if (has_barrier)
2455 emit_barrier_after (tem);
2457 /* Recursively call try_split for each new insn created; by the
2458 time control returns here that insn will be fully split, so
2459 set LAST and continue from the insn after the one returned.
2460 We can't use next_active_insn here since AFTER may be a note.
2461 Ignore deleted insns, which can be occur if not optimizing. */
2462 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
2463 if (! INSN_DELETED_P (tem) && INSN_P (tem))
2464 tem = try_split (PATTERN (tem), tem, 1);
2466 /* Avoid infinite loop if the result matches the original pattern. */
2467 else if (rtx_equal_p (seq, pat))
2468 return trial;
2469 else
2471 PATTERN (trial) = seq;
2472 INSN_CODE (trial) = -1;
2473 try_split (seq, trial, last);
2476 /* Return either the first or the last insn, depending on which was
2477 requested. */
2478 return last
2479 ? (after ? prev_active_insn (after) : last_insn)
2480 : next_active_insn (before);
2483 return trial;
2486 /* Make and return an INSN rtx, initializing all its slots.
2487 Store PATTERN in the pattern slots. */
2490 make_insn_raw (pattern)
2491 rtx pattern;
2493 register rtx insn;
2495 insn = rtx_alloc (INSN);
2497 INSN_UID (insn) = cur_insn_uid++;
2498 PATTERN (insn) = pattern;
2499 INSN_CODE (insn) = -1;
2500 LOG_LINKS (insn) = NULL;
2501 REG_NOTES (insn) = NULL;
2503 #ifdef ENABLE_RTL_CHECKING
2504 if (insn
2505 && INSN_P (insn)
2506 && (returnjump_p (insn)
2507 || (GET_CODE (insn) == SET
2508 && SET_DEST (insn) == pc_rtx)))
2510 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
2511 debug_rtx (insn);
2513 #endif
2515 return insn;
2518 /* Like `make_insn' but make a JUMP_INSN instead of an insn. */
2520 static rtx
2521 make_jump_insn_raw (pattern)
2522 rtx pattern;
2524 register rtx insn;
2526 insn = rtx_alloc (JUMP_INSN);
2527 INSN_UID (insn) = cur_insn_uid++;
2529 PATTERN (insn) = pattern;
2530 INSN_CODE (insn) = -1;
2531 LOG_LINKS (insn) = NULL;
2532 REG_NOTES (insn) = NULL;
2533 JUMP_LABEL (insn) = NULL;
2535 return insn;
2538 /* Like `make_insn' but make a CALL_INSN instead of an insn. */
2540 static rtx
2541 make_call_insn_raw (pattern)
2542 rtx pattern;
2544 register rtx insn;
2546 insn = rtx_alloc (CALL_INSN);
2547 INSN_UID (insn) = cur_insn_uid++;
2549 PATTERN (insn) = pattern;
2550 INSN_CODE (insn) = -1;
2551 LOG_LINKS (insn) = NULL;
2552 REG_NOTES (insn) = NULL;
2553 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
2555 return insn;
2558 /* Add INSN to the end of the doubly-linked list.
2559 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
2561 void
2562 add_insn (insn)
2563 register rtx insn;
2565 PREV_INSN (insn) = last_insn;
2566 NEXT_INSN (insn) = 0;
2568 if (NULL != last_insn)
2569 NEXT_INSN (last_insn) = insn;
2571 if (NULL == first_insn)
2572 first_insn = insn;
2574 last_insn = insn;
2577 /* Add INSN into the doubly-linked list after insn AFTER. This and
2578 the next should be the only functions called to insert an insn once
2579 delay slots have been filled since only they know how to update a
2580 SEQUENCE. */
2582 void
2583 add_insn_after (insn, after)
2584 rtx insn, after;
2586 rtx next = NEXT_INSN (after);
2588 if (optimize && INSN_DELETED_P (after))
2589 abort ();
2591 NEXT_INSN (insn) = next;
2592 PREV_INSN (insn) = after;
2594 if (next)
2596 PREV_INSN (next) = insn;
2597 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2598 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
2600 else if (last_insn == after)
2601 last_insn = insn;
2602 else
2604 struct sequence_stack *stack = seq_stack;
2605 /* Scan all pending sequences too. */
2606 for (; stack; stack = stack->next)
2607 if (after == stack->last)
2609 stack->last = insn;
2610 break;
2613 if (stack == 0)
2614 abort ();
2617 NEXT_INSN (after) = insn;
2618 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
2620 rtx sequence = PATTERN (after);
2621 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2625 /* Add INSN into the doubly-linked list before insn BEFORE. This and
2626 the previous should be the only functions called to insert an insn once
2627 delay slots have been filled since only they know how to update a
2628 SEQUENCE. */
2630 void
2631 add_insn_before (insn, before)
2632 rtx insn, before;
2634 rtx prev = PREV_INSN (before);
2636 if (optimize && INSN_DELETED_P (before))
2637 abort ();
2639 PREV_INSN (insn) = prev;
2640 NEXT_INSN (insn) = before;
2642 if (prev)
2644 NEXT_INSN (prev) = insn;
2645 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2647 rtx sequence = PATTERN (prev);
2648 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2651 else if (first_insn == before)
2652 first_insn = insn;
2653 else
2655 struct sequence_stack *stack = seq_stack;
2656 /* Scan all pending sequences too. */
2657 for (; stack; stack = stack->next)
2658 if (before == stack->first)
2660 stack->first = insn;
2661 break;
2664 if (stack == 0)
2665 abort ();
2668 PREV_INSN (before) = insn;
2669 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
2670 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
2673 /* Remove an insn from its doubly-linked list. This function knows how
2674 to handle sequences. */
2675 void
2676 remove_insn (insn)
2677 rtx insn;
2679 rtx next = NEXT_INSN (insn);
2680 rtx prev = PREV_INSN (insn);
2681 if (prev)
2683 NEXT_INSN (prev) = next;
2684 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2686 rtx sequence = PATTERN (prev);
2687 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
2690 else if (first_insn == insn)
2691 first_insn = next;
2692 else
2694 struct sequence_stack *stack = seq_stack;
2695 /* Scan all pending sequences too. */
2696 for (; stack; stack = stack->next)
2697 if (insn == stack->first)
2699 stack->first = next;
2700 break;
2703 if (stack == 0)
2704 abort ();
2707 if (next)
2709 PREV_INSN (next) = prev;
2710 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2711 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2713 else if (last_insn == insn)
2714 last_insn = prev;
2715 else
2717 struct sequence_stack *stack = seq_stack;
2718 /* Scan all pending sequences too. */
2719 for (; stack; stack = stack->next)
2720 if (insn == stack->last)
2722 stack->last = prev;
2723 break;
2726 if (stack == 0)
2727 abort ();
2731 /* Delete all insns made since FROM.
2732 FROM becomes the new last instruction. */
2734 void
2735 delete_insns_since (from)
2736 rtx from;
2738 if (from == 0)
2739 first_insn = 0;
2740 else
2741 NEXT_INSN (from) = 0;
2742 last_insn = from;
2745 /* This function is deprecated, please use sequences instead.
2747 Move a consecutive bunch of insns to a different place in the chain.
2748 The insns to be moved are those between FROM and TO.
2749 They are moved to a new position after the insn AFTER.
2750 AFTER must not be FROM or TO or any insn in between.
2752 This function does not know about SEQUENCEs and hence should not be
2753 called after delay-slot filling has been done. */
2755 void
2756 reorder_insns (from, to, after)
2757 rtx from, to, after;
2759 /* Splice this bunch out of where it is now. */
2760 if (PREV_INSN (from))
2761 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
2762 if (NEXT_INSN (to))
2763 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
2764 if (last_insn == to)
2765 last_insn = PREV_INSN (from);
2766 if (first_insn == from)
2767 first_insn = NEXT_INSN (to);
2769 /* Make the new neighbors point to it and it to them. */
2770 if (NEXT_INSN (after))
2771 PREV_INSN (NEXT_INSN (after)) = to;
2773 NEXT_INSN (to) = NEXT_INSN (after);
2774 PREV_INSN (from) = after;
2775 NEXT_INSN (after) = from;
2776 if (after == last_insn)
2777 last_insn = to;
2780 /* Return the line note insn preceding INSN. */
2782 static rtx
2783 find_line_note (insn)
2784 rtx insn;
2786 if (no_line_numbers)
2787 return 0;
2789 for (; insn; insn = PREV_INSN (insn))
2790 if (GET_CODE (insn) == NOTE
2791 && NOTE_LINE_NUMBER (insn) >= 0)
2792 break;
2794 return insn;
2797 /* Like reorder_insns, but inserts line notes to preserve the line numbers
2798 of the moved insns when debugging. This may insert a note between AFTER
2799 and FROM, and another one after TO. */
2801 void
2802 reorder_insns_with_line_notes (from, to, after)
2803 rtx from, to, after;
2805 rtx from_line = find_line_note (from);
2806 rtx after_line = find_line_note (after);
2808 reorder_insns (from, to, after);
2810 if (from_line == after_line)
2811 return;
2813 if (from_line)
2814 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
2815 NOTE_LINE_NUMBER (from_line),
2816 after);
2817 if (after_line)
2818 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
2819 NOTE_LINE_NUMBER (after_line),
2820 to);
2823 /* Remove unnecessary notes from the instruction stream. */
2825 void
2826 remove_unnecessary_notes ()
2828 rtx insn;
2829 rtx next;
2831 /* We must not remove the first instruction in the function because
2832 the compiler depends on the first instruction being a note. */
2833 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
2835 /* Remember what's next. */
2836 next = NEXT_INSN (insn);
2838 /* We're only interested in notes. */
2839 if (GET_CODE (insn) != NOTE)
2840 continue;
2842 /* By now, all notes indicating lexical blocks should have
2843 NOTE_BLOCK filled in. */
2844 if ((NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2845 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
2846 && NOTE_BLOCK (insn) == NULL_TREE)
2847 abort ();
2849 /* Remove NOTE_INSN_DELETED notes. */
2850 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
2851 remove_insn (insn);
2852 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
2854 /* Scan back to see if there are any non-note instructions
2855 between INSN and the beginning of this block. If not,
2856 then there is no PC range in the generated code that will
2857 actually be in this block, so there's no point in
2858 remembering the existence of the block. */
2859 rtx prev;
2861 for (prev = PREV_INSN (insn); prev; prev = PREV_INSN (prev))
2863 /* This block contains a real instruction. Note that we
2864 don't include labels; if the only thing in the block
2865 is a label, then there are still no PC values that
2866 lie within the block. */
2867 if (INSN_P (prev))
2868 break;
2870 /* We're only interested in NOTEs. */
2871 if (GET_CODE (prev) != NOTE)
2872 continue;
2874 if (NOTE_LINE_NUMBER (prev) == NOTE_INSN_BLOCK_BEG)
2876 /* If the BLOCKs referred to by these notes don't
2877 match, then something is wrong with our BLOCK
2878 nesting structure. */
2879 if (NOTE_BLOCK (prev) != NOTE_BLOCK (insn))
2880 abort ();
2882 if (debug_ignore_block (NOTE_BLOCK (insn)))
2884 BLOCK_DEAD (NOTE_BLOCK (insn)) = 1;
2885 remove_insn (prev);
2886 remove_insn (insn);
2888 break;
2890 else if (NOTE_LINE_NUMBER (prev) == NOTE_INSN_BLOCK_END)
2891 /* There's a nested block. We need to leave the
2892 current block in place since otherwise the debugger
2893 wouldn't be able to show symbols from our block in
2894 the nested block. */
2895 break;
2902 /* Emit an insn of given code and pattern
2903 at a specified place within the doubly-linked list. */
2905 /* Make an instruction with body PATTERN
2906 and output it before the instruction BEFORE. */
2909 emit_insn_before (pattern, before)
2910 register rtx pattern, before;
2912 register rtx insn = before;
2914 if (GET_CODE (pattern) == SEQUENCE)
2916 register int i;
2918 for (i = 0; i < XVECLEN (pattern, 0); i++)
2920 insn = XVECEXP (pattern, 0, i);
2921 add_insn_before (insn, before);
2924 else
2926 insn = make_insn_raw (pattern);
2927 add_insn_before (insn, before);
2930 return insn;
2933 /* Similar to emit_insn_before, but update basic block boundaries as well. */
2936 emit_block_insn_before (pattern, before, block)
2937 rtx pattern, before;
2938 basic_block block;
2940 rtx prev = PREV_INSN (before);
2941 rtx r = emit_insn_before (pattern, before);
2942 if (block && block->head == before)
2943 block->head = NEXT_INSN (prev);
2944 return r;
2947 /* Make an instruction with body PATTERN and code JUMP_INSN
2948 and output it before the instruction BEFORE. */
2951 emit_jump_insn_before (pattern, before)
2952 register rtx pattern, before;
2954 register rtx insn;
2956 if (GET_CODE (pattern) == SEQUENCE)
2957 insn = emit_insn_before (pattern, before);
2958 else
2960 insn = make_jump_insn_raw (pattern);
2961 add_insn_before (insn, before);
2964 return insn;
2967 /* Make an instruction with body PATTERN and code CALL_INSN
2968 and output it before the instruction BEFORE. */
2971 emit_call_insn_before (pattern, before)
2972 register rtx pattern, before;
2974 register rtx insn;
2976 if (GET_CODE (pattern) == SEQUENCE)
2977 insn = emit_insn_before (pattern, before);
2978 else
2980 insn = make_call_insn_raw (pattern);
2981 add_insn_before (insn, before);
2982 PUT_CODE (insn, CALL_INSN);
2985 return insn;
2988 /* Make an insn of code BARRIER
2989 and output it before the insn BEFORE. */
2992 emit_barrier_before (before)
2993 register rtx before;
2995 register rtx insn = rtx_alloc (BARRIER);
2997 INSN_UID (insn) = cur_insn_uid++;
2999 add_insn_before (insn, before);
3000 return insn;
3003 /* Emit the label LABEL before the insn BEFORE. */
3006 emit_label_before (label, before)
3007 rtx label, before;
3009 /* This can be called twice for the same label as a result of the
3010 confusion that follows a syntax error! So make it harmless. */
3011 if (INSN_UID (label) == 0)
3013 INSN_UID (label) = cur_insn_uid++;
3014 add_insn_before (label, before);
3017 return label;
3020 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3023 emit_note_before (subtype, before)
3024 int subtype;
3025 rtx before;
3027 register rtx note = rtx_alloc (NOTE);
3028 INSN_UID (note) = cur_insn_uid++;
3029 NOTE_SOURCE_FILE (note) = 0;
3030 NOTE_LINE_NUMBER (note) = subtype;
3032 add_insn_before (note, before);
3033 return note;
3036 /* Make an insn of code INSN with body PATTERN
3037 and output it after the insn AFTER. */
3040 emit_insn_after (pattern, after)
3041 register rtx pattern, after;
3043 register rtx insn = after;
3045 if (GET_CODE (pattern) == SEQUENCE)
3047 register int i;
3049 for (i = 0; i < XVECLEN (pattern, 0); i++)
3051 insn = XVECEXP (pattern, 0, i);
3052 add_insn_after (insn, after);
3053 after = insn;
3056 else
3058 insn = make_insn_raw (pattern);
3059 add_insn_after (insn, after);
3062 return insn;
3065 /* Similar to emit_insn_after, except that line notes are to be inserted so
3066 as to act as if this insn were at FROM. */
3068 void
3069 emit_insn_after_with_line_notes (pattern, after, from)
3070 rtx pattern, after, from;
3072 rtx from_line = find_line_note (from);
3073 rtx after_line = find_line_note (after);
3074 rtx insn = emit_insn_after (pattern, after);
3076 if (from_line)
3077 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3078 NOTE_LINE_NUMBER (from_line),
3079 after);
3081 if (after_line)
3082 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3083 NOTE_LINE_NUMBER (after_line),
3084 insn);
3087 /* Similar to emit_insn_after, but update basic block boundaries as well. */
3090 emit_block_insn_after (pattern, after, block)
3091 rtx pattern, after;
3092 basic_block block;
3094 rtx r = emit_insn_after (pattern, after);
3095 if (block && block->end == after)
3096 block->end = r;
3097 return r;
3100 /* Make an insn of code JUMP_INSN with body PATTERN
3101 and output it after the insn AFTER. */
3104 emit_jump_insn_after (pattern, after)
3105 register rtx pattern, after;
3107 register rtx insn;
3109 if (GET_CODE (pattern) == SEQUENCE)
3110 insn = emit_insn_after (pattern, after);
3111 else
3113 insn = make_jump_insn_raw (pattern);
3114 add_insn_after (insn, after);
3117 return insn;
3120 /* Make an insn of code BARRIER
3121 and output it after the insn AFTER. */
3124 emit_barrier_after (after)
3125 register rtx after;
3127 register rtx insn = rtx_alloc (BARRIER);
3129 INSN_UID (insn) = cur_insn_uid++;
3131 add_insn_after (insn, after);
3132 return insn;
3135 /* Emit the label LABEL after the insn AFTER. */
3138 emit_label_after (label, after)
3139 rtx label, after;
3141 /* This can be called twice for the same label
3142 as a result of the confusion that follows a syntax error!
3143 So make it harmless. */
3144 if (INSN_UID (label) == 0)
3146 INSN_UID (label) = cur_insn_uid++;
3147 add_insn_after (label, after);
3150 return label;
3153 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
3156 emit_note_after (subtype, after)
3157 int subtype;
3158 rtx after;
3160 register rtx note = rtx_alloc (NOTE);
3161 INSN_UID (note) = cur_insn_uid++;
3162 NOTE_SOURCE_FILE (note) = 0;
3163 NOTE_LINE_NUMBER (note) = subtype;
3164 add_insn_after (note, after);
3165 return note;
3168 /* Emit a line note for FILE and LINE after the insn AFTER. */
3171 emit_line_note_after (file, line, after)
3172 const char *file;
3173 int line;
3174 rtx after;
3176 register rtx note;
3178 if (no_line_numbers && line > 0)
3180 cur_insn_uid++;
3181 return 0;
3184 note = rtx_alloc (NOTE);
3185 INSN_UID (note) = cur_insn_uid++;
3186 NOTE_SOURCE_FILE (note) = file;
3187 NOTE_LINE_NUMBER (note) = line;
3188 add_insn_after (note, after);
3189 return note;
3192 /* Make an insn of code INSN with pattern PATTERN
3193 and add it to the end of the doubly-linked list.
3194 If PATTERN is a SEQUENCE, take the elements of it
3195 and emit an insn for each element.
3197 Returns the last insn emitted. */
3200 emit_insn (pattern)
3201 rtx pattern;
3203 rtx insn = last_insn;
3205 if (GET_CODE (pattern) == SEQUENCE)
3207 register int i;
3209 for (i = 0; i < XVECLEN (pattern, 0); i++)
3211 insn = XVECEXP (pattern, 0, i);
3212 add_insn (insn);
3215 else
3217 insn = make_insn_raw (pattern);
3218 add_insn (insn);
3221 return insn;
3224 /* Emit the insns in a chain starting with INSN.
3225 Return the last insn emitted. */
3228 emit_insns (insn)
3229 rtx insn;
3231 rtx last = 0;
3233 while (insn)
3235 rtx next = NEXT_INSN (insn);
3236 add_insn (insn);
3237 last = insn;
3238 insn = next;
3241 return last;
3244 /* Emit the insns in a chain starting with INSN and place them in front of
3245 the insn BEFORE. Return the last insn emitted. */
3248 emit_insns_before (insn, before)
3249 rtx insn;
3250 rtx before;
3252 rtx last = 0;
3254 while (insn)
3256 rtx next = NEXT_INSN (insn);
3257 add_insn_before (insn, before);
3258 last = insn;
3259 insn = next;
3262 return last;
3265 /* Emit the insns in a chain starting with FIRST and place them in back of
3266 the insn AFTER. Return the last insn emitted. */
3269 emit_insns_after (first, after)
3270 register rtx first;
3271 register rtx after;
3273 register rtx last;
3274 register rtx after_after;
3276 if (!after)
3277 abort ();
3279 if (!first)
3280 return first;
3282 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3283 continue;
3285 after_after = NEXT_INSN (after);
3287 NEXT_INSN (after) = first;
3288 PREV_INSN (first) = after;
3289 NEXT_INSN (last) = after_after;
3290 if (after_after)
3291 PREV_INSN (after_after) = last;
3293 if (after == last_insn)
3294 last_insn = last;
3295 return last;
3298 /* Make an insn of code JUMP_INSN with pattern PATTERN
3299 and add it to the end of the doubly-linked list. */
3302 emit_jump_insn (pattern)
3303 rtx pattern;
3305 if (GET_CODE (pattern) == SEQUENCE)
3306 return emit_insn (pattern);
3307 else
3309 register rtx insn = make_jump_insn_raw (pattern);
3310 add_insn (insn);
3311 return insn;
3315 /* Make an insn of code CALL_INSN with pattern PATTERN
3316 and add it to the end of the doubly-linked list. */
3319 emit_call_insn (pattern)
3320 rtx pattern;
3322 if (GET_CODE (pattern) == SEQUENCE)
3323 return emit_insn (pattern);
3324 else
3326 register rtx insn = make_call_insn_raw (pattern);
3327 add_insn (insn);
3328 PUT_CODE (insn, CALL_INSN);
3329 return insn;
3333 /* Add the label LABEL to the end of the doubly-linked list. */
3336 emit_label (label)
3337 rtx label;
3339 /* This can be called twice for the same label
3340 as a result of the confusion that follows a syntax error!
3341 So make it harmless. */
3342 if (INSN_UID (label) == 0)
3344 INSN_UID (label) = cur_insn_uid++;
3345 add_insn (label);
3347 return label;
3350 /* Make an insn of code BARRIER
3351 and add it to the end of the doubly-linked list. */
3354 emit_barrier ()
3356 register rtx barrier = rtx_alloc (BARRIER);
3357 INSN_UID (barrier) = cur_insn_uid++;
3358 add_insn (barrier);
3359 return barrier;
3362 /* Make an insn of code NOTE
3363 with data-fields specified by FILE and LINE
3364 and add it to the end of the doubly-linked list,
3365 but only if line-numbers are desired for debugging info. */
3368 emit_line_note (file, line)
3369 const char *file;
3370 int line;
3372 set_file_and_line_for_stmt (file, line);
3374 #if 0
3375 if (no_line_numbers)
3376 return 0;
3377 #endif
3379 return emit_note (file, line);
3382 /* Make an insn of code NOTE
3383 with data-fields specified by FILE and LINE
3384 and add it to the end of the doubly-linked list.
3385 If it is a line-number NOTE, omit it if it matches the previous one. */
3388 emit_note (file, line)
3389 const char *file;
3390 int line;
3392 register rtx note;
3394 if (line > 0)
3396 if (file && last_filename && !strcmp (file, last_filename)
3397 && line == last_linenum)
3398 return 0;
3399 last_filename = file;
3400 last_linenum = line;
3403 if (no_line_numbers && line > 0)
3405 cur_insn_uid++;
3406 return 0;
3409 note = rtx_alloc (NOTE);
3410 INSN_UID (note) = cur_insn_uid++;
3411 NOTE_SOURCE_FILE (note) = file;
3412 NOTE_LINE_NUMBER (note) = line;
3413 add_insn (note);
3414 return note;
3417 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
3420 emit_line_note_force (file, line)
3421 const char *file;
3422 int line;
3424 last_linenum = -1;
3425 return emit_line_note (file, line);
3428 /* Cause next statement to emit a line note even if the line number
3429 has not changed. This is used at the beginning of a function. */
3431 void
3432 force_next_line_note ()
3434 last_linenum = -1;
3437 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
3438 note of this type already exists, remove it first. */
3440 void
3441 set_unique_reg_note (insn, kind, datum)
3442 rtx insn;
3443 enum reg_note kind;
3444 rtx datum;
3446 rtx note = find_reg_note (insn, kind, NULL_RTX);
3448 /* First remove the note if there already is one. */
3449 if (note)
3450 remove_note (insn, note);
3452 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
3455 /* Return an indication of which type of insn should have X as a body.
3456 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
3458 enum rtx_code
3459 classify_insn (x)
3460 rtx x;
3462 if (GET_CODE (x) == CODE_LABEL)
3463 return CODE_LABEL;
3464 if (GET_CODE (x) == CALL)
3465 return CALL_INSN;
3466 if (GET_CODE (x) == RETURN)
3467 return JUMP_INSN;
3468 if (GET_CODE (x) == SET)
3470 if (SET_DEST (x) == pc_rtx)
3471 return JUMP_INSN;
3472 else if (GET_CODE (SET_SRC (x)) == CALL)
3473 return CALL_INSN;
3474 else
3475 return INSN;
3477 if (GET_CODE (x) == PARALLEL)
3479 register int j;
3480 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
3481 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
3482 return CALL_INSN;
3483 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3484 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
3485 return JUMP_INSN;
3486 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3487 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
3488 return CALL_INSN;
3490 return INSN;
3493 /* Emit the rtl pattern X as an appropriate kind of insn.
3494 If X is a label, it is simply added into the insn chain. */
3497 emit (x)
3498 rtx x;
3500 enum rtx_code code = classify_insn (x);
3502 if (code == CODE_LABEL)
3503 return emit_label (x);
3504 else if (code == INSN)
3505 return emit_insn (x);
3506 else if (code == JUMP_INSN)
3508 register rtx insn = emit_jump_insn (x);
3509 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
3510 return emit_barrier ();
3511 return insn;
3513 else if (code == CALL_INSN)
3514 return emit_call_insn (x);
3515 else
3516 abort ();
3519 /* Begin emitting insns to a sequence which can be packaged in an
3520 RTL_EXPR. If this sequence will contain something that might cause
3521 the compiler to pop arguments to function calls (because those
3522 pops have previously been deferred; see INHIBIT_DEFER_POP for more
3523 details), use do_pending_stack_adjust before calling this function.
3524 That will ensure that the deferred pops are not accidentally
3525 emitted in the middle of this sequence. */
3527 void
3528 start_sequence ()
3530 struct sequence_stack *tem;
3532 tem = (struct sequence_stack *) xmalloc (sizeof (struct sequence_stack));
3534 tem->next = seq_stack;
3535 tem->first = first_insn;
3536 tem->last = last_insn;
3537 tem->sequence_rtl_expr = seq_rtl_expr;
3539 seq_stack = tem;
3541 first_insn = 0;
3542 last_insn = 0;
3545 /* Similarly, but indicate that this sequence will be placed in T, an
3546 RTL_EXPR. See the documentation for start_sequence for more
3547 information about how to use this function. */
3549 void
3550 start_sequence_for_rtl_expr (t)
3551 tree t;
3553 start_sequence ();
3555 seq_rtl_expr = t;
3558 /* Set up the insn chain starting with FIRST as the current sequence,
3559 saving the previously current one. See the documentation for
3560 start_sequence for more information about how to use this function. */
3562 void
3563 push_to_sequence (first)
3564 rtx first;
3566 rtx last;
3568 start_sequence ();
3570 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
3572 first_insn = first;
3573 last_insn = last;
3576 /* Set up the insn chain from a chain stort in FIRST to LAST. */
3578 void
3579 push_to_full_sequence (first, last)
3580 rtx first, last;
3582 start_sequence ();
3583 first_insn = first;
3584 last_insn = last;
3585 /* We really should have the end of the insn chain here. */
3586 if (last && NEXT_INSN (last))
3587 abort ();
3590 /* Set up the outer-level insn chain
3591 as the current sequence, saving the previously current one. */
3593 void
3594 push_topmost_sequence ()
3596 struct sequence_stack *stack, *top = NULL;
3598 start_sequence ();
3600 for (stack = seq_stack; stack; stack = stack->next)
3601 top = stack;
3603 first_insn = top->first;
3604 last_insn = top->last;
3605 seq_rtl_expr = top->sequence_rtl_expr;
3608 /* After emitting to the outer-level insn chain, update the outer-level
3609 insn chain, and restore the previous saved state. */
3611 void
3612 pop_topmost_sequence ()
3614 struct sequence_stack *stack, *top = NULL;
3616 for (stack = seq_stack; stack; stack = stack->next)
3617 top = stack;
3619 top->first = first_insn;
3620 top->last = last_insn;
3621 /* ??? Why don't we save seq_rtl_expr here? */
3623 end_sequence ();
3626 /* After emitting to a sequence, restore previous saved state.
3628 To get the contents of the sequence just made, you must call
3629 `gen_sequence' *before* calling here.
3631 If the compiler might have deferred popping arguments while
3632 generating this sequence, and this sequence will not be immediately
3633 inserted into the instruction stream, use do_pending_stack_adjust
3634 before calling gen_sequence. That will ensure that the deferred
3635 pops are inserted into this sequence, and not into some random
3636 location in the instruction stream. See INHIBIT_DEFER_POP for more
3637 information about deferred popping of arguments. */
3639 void
3640 end_sequence ()
3642 struct sequence_stack *tem = seq_stack;
3644 first_insn = tem->first;
3645 last_insn = tem->last;
3646 seq_rtl_expr = tem->sequence_rtl_expr;
3647 seq_stack = tem->next;
3649 free (tem);
3652 /* This works like end_sequence, but records the old sequence in FIRST
3653 and LAST. */
3655 void
3656 end_full_sequence (first, last)
3657 rtx *first, *last;
3659 *first = first_insn;
3660 *last = last_insn;
3661 end_sequence();
3664 /* Return 1 if currently emitting into a sequence. */
3667 in_sequence_p ()
3669 return seq_stack != 0;
3672 /* Generate a SEQUENCE rtx containing the insns already emitted
3673 to the current sequence.
3675 This is how the gen_... function from a DEFINE_EXPAND
3676 constructs the SEQUENCE that it returns. */
3679 gen_sequence ()
3681 rtx result;
3682 rtx tem;
3683 int i;
3684 int len;
3686 /* Count the insns in the chain. */
3687 len = 0;
3688 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
3689 len++;
3691 /* If only one insn, return it rather than a SEQUENCE.
3692 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
3693 the case of an empty list.)
3694 We only return the pattern of an insn if its code is INSN and it
3695 has no notes. This ensures that no information gets lost. */
3696 if (len == 1
3697 && ! RTX_FRAME_RELATED_P (first_insn)
3698 && GET_CODE (first_insn) == INSN
3699 /* Don't throw away any reg notes. */
3700 && REG_NOTES (first_insn) == 0)
3701 return PATTERN (first_insn);
3703 result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
3705 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
3706 XVECEXP (result, 0, i) = tem;
3708 return result;
3711 /* Put the various virtual registers into REGNO_REG_RTX. */
3713 void
3714 init_virtual_regs (es)
3715 struct emit_status *es;
3717 rtx *ptr = es->x_regno_reg_rtx;
3718 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
3719 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
3720 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
3721 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
3722 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
3725 void
3726 clear_emit_caches ()
3728 int i;
3730 /* Clear the start_sequence/gen_sequence cache. */
3731 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
3732 sequence_result[i] = 0;
3733 free_insn = 0;
3736 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
3737 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
3738 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
3739 static int copy_insn_n_scratches;
3741 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
3742 copied an ASM_OPERANDS.
3743 In that case, it is the original input-operand vector. */
3744 static rtvec orig_asm_operands_vector;
3746 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
3747 copied an ASM_OPERANDS.
3748 In that case, it is the copied input-operand vector. */
3749 static rtvec copy_asm_operands_vector;
3751 /* Likewise for the constraints vector. */
3752 static rtvec orig_asm_constraints_vector;
3753 static rtvec copy_asm_constraints_vector;
3755 /* Recursively create a new copy of an rtx for copy_insn.
3756 This function differs from copy_rtx in that it handles SCRATCHes and
3757 ASM_OPERANDs properly.
3758 Normally, this function is not used directly; use copy_insn as front end.
3759 However, you could first copy an insn pattern with copy_insn and then use
3760 this function afterwards to properly copy any REG_NOTEs containing
3761 SCRATCHes. */
3764 copy_insn_1 (orig)
3765 register rtx orig;
3767 register rtx copy;
3768 register int i, j;
3769 register RTX_CODE code;
3770 register const char *format_ptr;
3772 code = GET_CODE (orig);
3774 switch (code)
3776 case REG:
3777 case QUEUED:
3778 case CONST_INT:
3779 case CONST_DOUBLE:
3780 case SYMBOL_REF:
3781 case CODE_LABEL:
3782 case PC:
3783 case CC0:
3784 case ADDRESSOF:
3785 return orig;
3787 case SCRATCH:
3788 for (i = 0; i < copy_insn_n_scratches; i++)
3789 if (copy_insn_scratch_in[i] == orig)
3790 return copy_insn_scratch_out[i];
3791 break;
3793 case CONST:
3794 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
3795 a LABEL_REF, it isn't sharable. */
3796 if (GET_CODE (XEXP (orig, 0)) == PLUS
3797 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
3798 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
3799 return orig;
3800 break;
3802 /* A MEM with a constant address is not sharable. The problem is that
3803 the constant address may need to be reloaded. If the mem is shared,
3804 then reloading one copy of this mem will cause all copies to appear
3805 to have been reloaded. */
3807 default:
3808 break;
3811 copy = rtx_alloc (code);
3813 /* Copy the various flags, and other information. We assume that
3814 all fields need copying, and then clear the fields that should
3815 not be copied. That is the sensible default behavior, and forces
3816 us to explicitly document why we are *not* copying a flag. */
3817 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
3819 /* We do not copy the USED flag, which is used as a mark bit during
3820 walks over the RTL. */
3821 copy->used = 0;
3823 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
3824 if (GET_RTX_CLASS (code) == 'i')
3826 copy->jump = 0;
3827 copy->call = 0;
3828 copy->frame_related = 0;
3831 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
3833 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
3835 copy->fld[i] = orig->fld[i];
3836 switch (*format_ptr++)
3838 case 'e':
3839 if (XEXP (orig, i) != NULL)
3840 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
3841 break;
3843 case 'E':
3844 case 'V':
3845 if (XVEC (orig, i) == orig_asm_constraints_vector)
3846 XVEC (copy, i) = copy_asm_constraints_vector;
3847 else if (XVEC (orig, i) == orig_asm_operands_vector)
3848 XVEC (copy, i) = copy_asm_operands_vector;
3849 else if (XVEC (orig, i) != NULL)
3851 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
3852 for (j = 0; j < XVECLEN (copy, i); j++)
3853 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
3855 break;
3857 case 't':
3858 case 'w':
3859 case 'i':
3860 case 's':
3861 case 'S':
3862 case 'u':
3863 case '0':
3864 /* These are left unchanged. */
3865 break;
3867 default:
3868 abort ();
3872 if (code == SCRATCH)
3874 i = copy_insn_n_scratches++;
3875 if (i >= MAX_RECOG_OPERANDS)
3876 abort ();
3877 copy_insn_scratch_in[i] = orig;
3878 copy_insn_scratch_out[i] = copy;
3880 else if (code == ASM_OPERANDS)
3882 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
3883 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
3884 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
3885 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
3888 return copy;
3891 /* Create a new copy of an rtx.
3892 This function differs from copy_rtx in that it handles SCRATCHes and
3893 ASM_OPERANDs properly.
3894 INSN doesn't really have to be a full INSN; it could be just the
3895 pattern. */
3897 copy_insn (insn)
3898 rtx insn;
3900 copy_insn_n_scratches = 0;
3901 orig_asm_operands_vector = 0;
3902 orig_asm_constraints_vector = 0;
3903 copy_asm_operands_vector = 0;
3904 copy_asm_constraints_vector = 0;
3905 return copy_insn_1 (insn);
3908 /* Initialize data structures and variables in this file
3909 before generating rtl for each function. */
3911 void
3912 init_emit ()
3914 struct function *f = cfun;
3916 f->emit = (struct emit_status *) xmalloc (sizeof (struct emit_status));
3917 first_insn = NULL;
3918 last_insn = NULL;
3919 seq_rtl_expr = NULL;
3920 cur_insn_uid = 1;
3921 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
3922 last_linenum = 0;
3923 last_filename = 0;
3924 first_label_num = label_num;
3925 last_label_num = 0;
3926 seq_stack = NULL;
3928 clear_emit_caches ();
3930 /* Init the tables that describe all the pseudo regs. */
3932 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
3934 f->emit->regno_pointer_align
3935 = (unsigned char *) xcalloc (f->emit->regno_pointer_align_length,
3936 sizeof (unsigned char));
3938 regno_reg_rtx
3939 = (rtx *) xcalloc (f->emit->regno_pointer_align_length * sizeof (rtx),
3940 sizeof (rtx));
3942 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
3943 init_virtual_regs (f->emit);
3945 /* Indicate that the virtual registers and stack locations are
3946 all pointers. */
3947 REG_POINTER (stack_pointer_rtx) = 1;
3948 REG_POINTER (frame_pointer_rtx) = 1;
3949 REG_POINTER (hard_frame_pointer_rtx) = 1;
3950 REG_POINTER (arg_pointer_rtx) = 1;
3952 REG_POINTER (virtual_incoming_args_rtx) = 1;
3953 REG_POINTER (virtual_stack_vars_rtx) = 1;
3954 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
3955 REG_POINTER (virtual_outgoing_args_rtx) = 1;
3956 REG_POINTER (virtual_cfa_rtx) = 1;
3958 #ifdef STACK_BOUNDARY
3959 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
3960 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
3961 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
3962 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
3964 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
3965 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
3966 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
3967 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
3968 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
3969 #endif
3971 #ifdef INIT_EXPANDERS
3972 INIT_EXPANDERS;
3973 #endif
3976 /* Mark SS for GC. */
3978 static void
3979 mark_sequence_stack (ss)
3980 struct sequence_stack *ss;
3982 while (ss)
3984 ggc_mark_rtx (ss->first);
3985 ggc_mark_tree (ss->sequence_rtl_expr);
3986 ss = ss->next;
3990 /* Mark ES for GC. */
3992 void
3993 mark_emit_status (es)
3994 struct emit_status *es;
3996 rtx *r;
3997 int i;
3999 if (es == 0)
4000 return;
4002 for (i = es->regno_pointer_align_length, r = es->x_regno_reg_rtx;
4003 i > 0; --i, ++r)
4004 ggc_mark_rtx (*r);
4006 mark_sequence_stack (es->sequence_stack);
4007 ggc_mark_tree (es->sequence_rtl_expr);
4008 ggc_mark_rtx (es->x_first_insn);
4011 /* Create some permanent unique rtl objects shared between all functions.
4012 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4014 void
4015 init_emit_once (line_numbers)
4016 int line_numbers;
4018 int i;
4019 enum machine_mode mode;
4020 enum machine_mode double_mode;
4022 /* Initialize the CONST_INT hash table. */
4023 const_int_htab = htab_create (37, const_int_htab_hash,
4024 const_int_htab_eq, NULL);
4025 ggc_add_root (&const_int_htab, 1, sizeof (const_int_htab),
4026 rtx_htab_mark);
4028 no_line_numbers = ! line_numbers;
4030 /* Compute the word and byte modes. */
4032 byte_mode = VOIDmode;
4033 word_mode = VOIDmode;
4034 double_mode = VOIDmode;
4036 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4037 mode = GET_MODE_WIDER_MODE (mode))
4039 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
4040 && byte_mode == VOIDmode)
4041 byte_mode = mode;
4043 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
4044 && word_mode == VOIDmode)
4045 word_mode = mode;
4048 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4049 mode = GET_MODE_WIDER_MODE (mode))
4051 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
4052 && double_mode == VOIDmode)
4053 double_mode = mode;
4056 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
4058 /* Assign register numbers to the globally defined register rtx.
4059 This must be done at runtime because the register number field
4060 is in a union and some compilers can't initialize unions. */
4062 pc_rtx = gen_rtx (PC, VOIDmode);
4063 cc0_rtx = gen_rtx (CC0, VOIDmode);
4064 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
4065 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
4066 if (hard_frame_pointer_rtx == 0)
4067 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
4068 HARD_FRAME_POINTER_REGNUM);
4069 if (arg_pointer_rtx == 0)
4070 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
4071 virtual_incoming_args_rtx =
4072 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
4073 virtual_stack_vars_rtx =
4074 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
4075 virtual_stack_dynamic_rtx =
4076 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
4077 virtual_outgoing_args_rtx =
4078 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
4079 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
4081 /* These rtx must be roots if GC is enabled. */
4082 ggc_add_rtx_root (global_rtl, GR_MAX);
4084 #ifdef INIT_EXPANDERS
4085 /* This is to initialize {init|mark|free}_machine_status before the first
4086 call to push_function_context_to. This is needed by the Chill front
4087 end which calls push_function_context_to before the first cal to
4088 init_function_start. */
4089 INIT_EXPANDERS;
4090 #endif
4092 /* Create the unique rtx's for certain rtx codes and operand values. */
4094 /* Don't use gen_rtx here since gen_rtx in this case
4095 tries to use these variables. */
4096 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
4097 const_int_rtx[i + MAX_SAVED_CONST_INT] =
4098 gen_rtx_raw_CONST_INT (VOIDmode, i);
4099 ggc_add_rtx_root (const_int_rtx, 2 * MAX_SAVED_CONST_INT + 1);
4101 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
4102 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
4103 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
4104 else
4105 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
4107 dconst0 = REAL_VALUE_ATOF ("0", double_mode);
4108 dconst1 = REAL_VALUE_ATOF ("1", double_mode);
4109 dconst2 = REAL_VALUE_ATOF ("2", double_mode);
4110 dconstm1 = REAL_VALUE_ATOF ("-1", double_mode);
4112 for (i = 0; i <= 2; i++)
4114 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4115 mode = GET_MODE_WIDER_MODE (mode))
4117 rtx tem = rtx_alloc (CONST_DOUBLE);
4118 union real_extract u;
4120 memset ((char *) &u, 0, sizeof u); /* Zero any holes in a structure. */
4121 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
4123 memcpy (&CONST_DOUBLE_LOW (tem), &u, sizeof u);
4124 CONST_DOUBLE_MEM (tem) = cc0_rtx;
4125 CONST_DOUBLE_CHAIN (tem) = NULL_RTX;
4126 PUT_MODE (tem, mode);
4128 const_tiny_rtx[i][(int) mode] = tem;
4131 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
4133 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4134 mode = GET_MODE_WIDER_MODE (mode))
4135 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4137 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
4138 mode != VOIDmode;
4139 mode = GET_MODE_WIDER_MODE (mode))
4140 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4143 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
4144 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
4145 const_tiny_rtx[0][i] = const0_rtx;
4147 const_tiny_rtx[0][(int) BImode] = const0_rtx;
4148 if (STORE_FLAG_VALUE == 1)
4149 const_tiny_rtx[1][(int) BImode] = const1_rtx;
4151 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4152 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4153 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4154 ggc_add_rtx_root ((rtx *) const_tiny_rtx, sizeof const_tiny_rtx / sizeof (rtx));
4155 ggc_add_rtx_root (&const_true_rtx, 1);
4157 #ifdef RETURN_ADDRESS_POINTER_REGNUM
4158 return_address_pointer_rtx
4159 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
4160 #endif
4162 #ifdef STRUCT_VALUE
4163 struct_value_rtx = STRUCT_VALUE;
4164 #else
4165 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
4166 #endif
4168 #ifdef STRUCT_VALUE_INCOMING
4169 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
4170 #else
4171 #ifdef STRUCT_VALUE_INCOMING_REGNUM
4172 struct_value_incoming_rtx
4173 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
4174 #else
4175 struct_value_incoming_rtx = struct_value_rtx;
4176 #endif
4177 #endif
4179 #ifdef STATIC_CHAIN_REGNUM
4180 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
4182 #ifdef STATIC_CHAIN_INCOMING_REGNUM
4183 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
4184 static_chain_incoming_rtx
4185 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
4186 else
4187 #endif
4188 static_chain_incoming_rtx = static_chain_rtx;
4189 #endif
4191 #ifdef STATIC_CHAIN
4192 static_chain_rtx = STATIC_CHAIN;
4194 #ifdef STATIC_CHAIN_INCOMING
4195 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
4196 #else
4197 static_chain_incoming_rtx = static_chain_rtx;
4198 #endif
4199 #endif
4201 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
4202 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
4204 ggc_add_rtx_root (&pic_offset_table_rtx, 1);
4205 ggc_add_rtx_root (&struct_value_rtx, 1);
4206 ggc_add_rtx_root (&struct_value_incoming_rtx, 1);
4207 ggc_add_rtx_root (&static_chain_rtx, 1);
4208 ggc_add_rtx_root (&static_chain_incoming_rtx, 1);
4209 ggc_add_rtx_root (&return_address_pointer_rtx, 1);
4212 /* Query and clear/ restore no_line_numbers. This is used by the
4213 switch / case handling in stmt.c to give proper line numbers in
4214 warnings about unreachable code. */
4217 force_line_numbers ()
4219 int old = no_line_numbers;
4221 no_line_numbers = 0;
4222 if (old)
4223 force_next_line_note ();
4224 return old;
4227 void
4228 restore_line_number_status (old_value)
4229 int old_value;
4231 no_line_numbers = old_value;